1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && 952 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 953 // Put the register class of the virtual registers in the flag word. That 954 // way, later passes can recompute register class constraints for inline 955 // assembly as well as normal instructions. 956 // Don't do this for tied operands that can use the regclass information 957 // from the def. 958 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 959 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 960 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 961 } 962 963 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 964 Ops.push_back(Res); 965 966 if (Code == InlineAsm::Kind_Clobber) { 967 // Clobbers should always have a 1:1 mapping with registers, and may 968 // reference registers that have illegal (e.g. vector) types. Hence, we 969 // shouldn't try to apply any sort of splitting logic to them. 970 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 971 "No 1:1 mapping from clobbers to regs?"); 972 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 973 (void)SP; 974 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 975 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 976 assert( 977 (Regs[I] != SP || 978 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 979 "If we clobbered the stack pointer, MFI should know about it."); 980 } 981 return; 982 } 983 984 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 985 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 986 MVT RegisterVT = RegVTs[Value]; 987 for (unsigned i = 0; i != NumRegs; ++i) { 988 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 989 unsigned TheReg = Regs[Reg++]; 990 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 991 } 992 } 993 } 994 995 SmallVector<std::pair<unsigned, unsigned>, 4> 996 RegsForValue::getRegsAndSizes() const { 997 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 998 unsigned I = 0; 999 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1000 unsigned RegCount = std::get<0>(CountAndVT); 1001 MVT RegisterVT = std::get<1>(CountAndVT); 1002 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1003 for (unsigned E = I + RegCount; I != E; ++I) 1004 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1005 } 1006 return OutVec; 1007 } 1008 1009 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1010 const TargetLibraryInfo *li) { 1011 AA = aa; 1012 GFI = gfi; 1013 LibInfo = li; 1014 DL = &DAG.getDataLayout(); 1015 Context = DAG.getContext(); 1016 LPadToCallSiteMap.clear(); 1017 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1018 } 1019 1020 void SelectionDAGBuilder::clear() { 1021 NodeMap.clear(); 1022 UnusedArgNodeMap.clear(); 1023 PendingLoads.clear(); 1024 PendingExports.clear(); 1025 CurInst = nullptr; 1026 HasTailCall = false; 1027 SDNodeOrder = LowestSDNodeOrder; 1028 StatepointLowering.clear(); 1029 } 1030 1031 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1032 DanglingDebugInfoMap.clear(); 1033 } 1034 1035 SDValue SelectionDAGBuilder::getRoot() { 1036 if (PendingLoads.empty()) 1037 return DAG.getRoot(); 1038 1039 if (PendingLoads.size() == 1) { 1040 SDValue Root = PendingLoads[0]; 1041 DAG.setRoot(Root); 1042 PendingLoads.clear(); 1043 return Root; 1044 } 1045 1046 // Otherwise, we have to make a token factor node. 1047 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1048 PendingLoads.clear(); 1049 DAG.setRoot(Root); 1050 return Root; 1051 } 1052 1053 SDValue SelectionDAGBuilder::getControlRoot() { 1054 SDValue Root = DAG.getRoot(); 1055 1056 if (PendingExports.empty()) 1057 return Root; 1058 1059 // Turn all of the CopyToReg chains into one factored node. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = PendingExports.size(); 1062 for (; i != e; ++i) { 1063 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1064 if (PendingExports[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 PendingExports.push_back(Root); 1070 } 1071 1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1073 PendingExports); 1074 PendingExports.clear(); 1075 DAG.setRoot(Root); 1076 return Root; 1077 } 1078 1079 void SelectionDAGBuilder::visit(const Instruction &I) { 1080 // Set up outgoing PHI node register values before emitting the terminator. 1081 if (I.isTerminator()) { 1082 HandlePHINodesInSuccessorBlocks(I.getParent()); 1083 } 1084 1085 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1086 if (!isa<DbgInfoIntrinsic>(I)) 1087 ++SDNodeOrder; 1088 1089 CurInst = &I; 1090 1091 visit(I.getOpcode(), I); 1092 1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1095 // maps to this instruction. 1096 // TODO: We could handle all flags (nsw, etc) here. 1097 // TODO: If an IR instruction maps to >1 node, only the final node will have 1098 // flags set. 1099 if (SDNode *Node = getNodeForIRValue(&I)) { 1100 SDNodeFlags IncomingFlags; 1101 IncomingFlags.copyFMF(*FPMO); 1102 if (!Node->getFlags().isDefined()) 1103 Node->setFlags(IncomingFlags); 1104 else 1105 Node->intersectFlagsWith(IncomingFlags); 1106 } 1107 } 1108 1109 if (!I.isTerminator() && !HasTailCall && 1110 !isStatepoint(&I)) // statepoints handle their exports internally 1111 CopyToExportRegsIfNeeded(&I); 1112 1113 CurInst = nullptr; 1114 } 1115 1116 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1118 } 1119 1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1121 // Note: this doesn't use InstVisitor, because it has to work with 1122 // ConstantExpr's in addition to instructions. 1123 switch (Opcode) { 1124 default: llvm_unreachable("Unknown instruction type encountered!"); 1125 // Build the switch statement using the Instruction.def file. 1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1128 #include "llvm/IR/Instruction.def" 1129 } 1130 } 1131 1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1133 const DIExpression *Expr) { 1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1135 const DbgValueInst *DI = DDI.getDI(); 1136 DIVariable *DanglingVariable = DI->getVariable(); 1137 DIExpression *DanglingExpr = DI->getExpression(); 1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 for (auto &DDIMI : DanglingDebugInfoMap) { 1146 DanglingDebugInfoVector &DDIV = DDIMI.second; 1147 1148 // If debug info is to be dropped, run it through final checks to see 1149 // whether it can be salvaged. 1150 for (auto &DDI : DDIV) 1151 if (isMatchingDbgValue(DDI)) 1152 salvageUnresolvedDbgValue(DDI); 1153 1154 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1155 } 1156 } 1157 1158 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1159 // generate the debug data structures now that we've seen its definition. 1160 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1161 SDValue Val) { 1162 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1163 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1164 return; 1165 1166 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1167 for (auto &DDI : DDIV) { 1168 const DbgValueInst *DI = DDI.getDI(); 1169 assert(DI && "Ill-formed DanglingDebugInfo"); 1170 DebugLoc dl = DDI.getdl(); 1171 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1172 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1173 DILocalVariable *Variable = DI->getVariable(); 1174 DIExpression *Expr = DI->getExpression(); 1175 assert(Variable->isValidLocationForIntrinsic(dl) && 1176 "Expected inlined-at fields to agree"); 1177 SDDbgValue *SDV; 1178 if (Val.getNode()) { 1179 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1180 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1181 // we couldn't resolve it directly when examining the DbgValue intrinsic 1182 // in the first place we should not be more successful here). Unless we 1183 // have some test case that prove this to be correct we should avoid 1184 // calling EmitFuncArgumentDbgValue here. 1185 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1186 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1187 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1188 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1189 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1190 // inserted after the definition of Val when emitting the instructions 1191 // after ISel. An alternative could be to teach 1192 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1193 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1194 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1195 << ValSDNodeOrder << "\n"); 1196 SDV = getDbgValue(Val, Variable, Expr, dl, 1197 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1198 DAG.AddDbgValue(SDV, Val.getNode(), false); 1199 } else 1200 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1201 << "in EmitFuncArgumentDbgValue\n"); 1202 } else { 1203 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1204 auto Undef = 1205 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1206 auto SDV = 1207 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1208 DAG.AddDbgValue(SDV, nullptr, false); 1209 } 1210 } 1211 DDIV.clear(); 1212 } 1213 1214 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1215 Value *V = DDI.getDI()->getValue(); 1216 DILocalVariable *Var = DDI.getDI()->getVariable(); 1217 DIExpression *Expr = DDI.getDI()->getExpression(); 1218 DebugLoc DL = DDI.getdl(); 1219 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1220 unsigned SDOrder = DDI.getSDNodeOrder(); 1221 1222 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1223 // that DW_OP_stack_value is desired. 1224 assert(isa<DbgValueInst>(DDI.getDI())); 1225 bool StackValue = true; 1226 1227 // Can this Value can be encoded without any further work? 1228 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1229 return; 1230 1231 // Attempt to salvage back through as many instructions as possible. Bail if 1232 // a non-instruction is seen, such as a constant expression or global 1233 // variable. FIXME: Further work could recover those too. 1234 while (isa<Instruction>(V)) { 1235 Instruction &VAsInst = *cast<Instruction>(V); 1236 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1237 1238 // If we cannot salvage any further, and haven't yet found a suitable debug 1239 // expression, bail out. 1240 if (!NewExpr) 1241 break; 1242 1243 // New value and expr now represent this debuginfo. 1244 V = VAsInst.getOperand(0); 1245 Expr = NewExpr; 1246 1247 // Some kind of simplification occurred: check whether the operand of the 1248 // salvaged debug expression can be encoded in this DAG. 1249 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1250 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1251 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1252 return; 1253 } 1254 } 1255 1256 // This was the final opportunity to salvage this debug information, and it 1257 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1258 // any earlier variable location. 1259 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1260 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1261 DAG.AddDbgValue(SDV, nullptr, false); 1262 1263 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1264 << "\n"); 1265 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1266 << "\n"); 1267 } 1268 1269 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1270 DIExpression *Expr, DebugLoc dl, 1271 DebugLoc InstDL, unsigned Order) { 1272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1273 SDDbgValue *SDV; 1274 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1275 isa<ConstantPointerNull>(V)) { 1276 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1277 DAG.AddDbgValue(SDV, nullptr, false); 1278 return true; 1279 } 1280 1281 // If the Value is a frame index, we can create a FrameIndex debug value 1282 // without relying on the DAG at all. 1283 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1284 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1285 if (SI != FuncInfo.StaticAllocaMap.end()) { 1286 auto SDV = 1287 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1288 /*IsIndirect*/ false, dl, SDNodeOrder); 1289 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1290 // is still available even if the SDNode gets optimized out. 1291 DAG.AddDbgValue(SDV, nullptr, false); 1292 return true; 1293 } 1294 } 1295 1296 // Do not use getValue() in here; we don't want to generate code at 1297 // this point if it hasn't been done yet. 1298 SDValue N = NodeMap[V]; 1299 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1300 N = UnusedArgNodeMap[V]; 1301 if (N.getNode()) { 1302 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1303 return true; 1304 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, N.getNode(), false); 1306 return true; 1307 } 1308 1309 // Special rules apply for the first dbg.values of parameter variables in a 1310 // function. Identify them by the fact they reference Argument Values, that 1311 // they're parameters, and they are parameters of the current function. We 1312 // need to let them dangle until they get an SDNode. 1313 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1314 !InstDL.getInlinedAt(); 1315 if (!IsParamOfFunc) { 1316 // The value is not used in this block yet (or it would have an SDNode). 1317 // We still want the value to appear for the user if possible -- if it has 1318 // an associated VReg, we can refer to that instead. 1319 auto VMI = FuncInfo.ValueMap.find(V); 1320 if (VMI != FuncInfo.ValueMap.end()) { 1321 unsigned Reg = VMI->second; 1322 // If this is a PHI node, it may be split up into several MI PHI nodes 1323 // (in FunctionLoweringInfo::set). 1324 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1325 V->getType(), None); 1326 if (RFV.occupiesMultipleRegs()) { 1327 unsigned Offset = 0; 1328 unsigned BitsToDescribe = 0; 1329 if (auto VarSize = Var->getSizeInBits()) 1330 BitsToDescribe = *VarSize; 1331 if (auto Fragment = Expr->getFragmentInfo()) 1332 BitsToDescribe = Fragment->SizeInBits; 1333 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1334 unsigned RegisterSize = RegAndSize.second; 1335 // Bail out if all bits are described already. 1336 if (Offset >= BitsToDescribe) 1337 break; 1338 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1339 ? BitsToDescribe - Offset 1340 : RegisterSize; 1341 auto FragmentExpr = DIExpression::createFragmentExpression( 1342 Expr, Offset, FragmentSize); 1343 if (!FragmentExpr) 1344 continue; 1345 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1346 false, dl, SDNodeOrder); 1347 DAG.AddDbgValue(SDV, nullptr, false); 1348 Offset += RegisterSize; 1349 } 1350 } else { 1351 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1352 DAG.AddDbgValue(SDV, nullptr, false); 1353 } 1354 return true; 1355 } 1356 } 1357 1358 return false; 1359 } 1360 1361 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1362 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1363 for (auto &Pair : DanglingDebugInfoMap) 1364 for (auto &DDI : Pair.second) 1365 salvageUnresolvedDbgValue(DDI); 1366 clearDanglingDebugInfo(); 1367 } 1368 1369 /// getCopyFromRegs - If there was virtual register allocated for the value V 1370 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1371 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1372 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1373 SDValue Result; 1374 1375 if (It != FuncInfo.ValueMap.end()) { 1376 unsigned InReg = It->second; 1377 1378 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1379 DAG.getDataLayout(), InReg, Ty, 1380 None); // This is not an ABI copy. 1381 SDValue Chain = DAG.getEntryNode(); 1382 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1383 V); 1384 resolveDanglingDebugInfo(V, Result); 1385 } 1386 1387 return Result; 1388 } 1389 1390 /// getValue - Return an SDValue for the given Value. 1391 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1392 // If we already have an SDValue for this value, use it. It's important 1393 // to do this first, so that we don't create a CopyFromReg if we already 1394 // have a regular SDValue. 1395 SDValue &N = NodeMap[V]; 1396 if (N.getNode()) return N; 1397 1398 // If there's a virtual register allocated and initialized for this 1399 // value, use it. 1400 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1401 return copyFromReg; 1402 1403 // Otherwise create a new SDValue and remember it. 1404 SDValue Val = getValueImpl(V); 1405 NodeMap[V] = Val; 1406 resolveDanglingDebugInfo(V, Val); 1407 return Val; 1408 } 1409 1410 // Return true if SDValue exists for the given Value 1411 bool SelectionDAGBuilder::findValue(const Value *V) const { 1412 return (NodeMap.find(V) != NodeMap.end()) || 1413 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1414 } 1415 1416 /// getNonRegisterValue - Return an SDValue for the given Value, but 1417 /// don't look in FuncInfo.ValueMap for a virtual register. 1418 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. 1420 SDValue &N = NodeMap[V]; 1421 if (N.getNode()) { 1422 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1423 // Remove the debug location from the node as the node is about to be used 1424 // in a location which may differ from the original debug location. This 1425 // is relevant to Constant and ConstantFP nodes because they can appear 1426 // as constant expressions inside PHI nodes. 1427 N->setDebugLoc(DebugLoc()); 1428 } 1429 return N; 1430 } 1431 1432 // Otherwise create a new SDValue and remember it. 1433 SDValue Val = getValueImpl(V); 1434 NodeMap[V] = Val; 1435 resolveDanglingDebugInfo(V, Val); 1436 return Val; 1437 } 1438 1439 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1440 /// Create an SDValue for the given value. 1441 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1443 1444 if (const Constant *C = dyn_cast<Constant>(V)) { 1445 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1446 1447 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1448 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1449 1450 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1451 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1452 1453 if (isa<ConstantPointerNull>(C)) { 1454 unsigned AS = V->getType()->getPointerAddressSpace(); 1455 return DAG.getConstant(0, getCurSDLoc(), 1456 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1457 } 1458 1459 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1460 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1461 1462 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1463 return DAG.getUNDEF(VT); 1464 1465 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1466 visit(CE->getOpcode(), *CE); 1467 SDValue N1 = NodeMap[V]; 1468 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1469 return N1; 1470 } 1471 1472 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1473 SmallVector<SDValue, 4> Constants; 1474 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1475 OI != OE; ++OI) { 1476 SDNode *Val = getValue(*OI).getNode(); 1477 // If the operand is an empty aggregate, there are no values. 1478 if (!Val) continue; 1479 // Add each leaf value from the operand to the Constants list 1480 // to form a flattened list of all the values. 1481 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1482 Constants.push_back(SDValue(Val, i)); 1483 } 1484 1485 return DAG.getMergeValues(Constants, getCurSDLoc()); 1486 } 1487 1488 if (const ConstantDataSequential *CDS = 1489 dyn_cast<ConstantDataSequential>(C)) { 1490 SmallVector<SDValue, 4> Ops; 1491 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1492 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1493 // Add each leaf value from the operand to the Constants list 1494 // to form a flattened list of all the values. 1495 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1496 Ops.push_back(SDValue(Val, i)); 1497 } 1498 1499 if (isa<ArrayType>(CDS->getType())) 1500 return DAG.getMergeValues(Ops, getCurSDLoc()); 1501 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1502 } 1503 1504 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1505 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1506 "Unknown struct or array constant!"); 1507 1508 SmallVector<EVT, 4> ValueVTs; 1509 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1510 unsigned NumElts = ValueVTs.size(); 1511 if (NumElts == 0) 1512 return SDValue(); // empty struct 1513 SmallVector<SDValue, 4> Constants(NumElts); 1514 for (unsigned i = 0; i != NumElts; ++i) { 1515 EVT EltVT = ValueVTs[i]; 1516 if (isa<UndefValue>(C)) 1517 Constants[i] = DAG.getUNDEF(EltVT); 1518 else if (EltVT.isFloatingPoint()) 1519 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1520 else 1521 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1522 } 1523 1524 return DAG.getMergeValues(Constants, getCurSDLoc()); 1525 } 1526 1527 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1528 return DAG.getBlockAddress(BA, VT); 1529 1530 VectorType *VecTy = cast<VectorType>(V->getType()); 1531 unsigned NumElements = VecTy->getNumElements(); 1532 1533 // Now that we know the number and type of the elements, get that number of 1534 // elements into the Ops array based on what kind of constant it is. 1535 SmallVector<SDValue, 16> Ops; 1536 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1537 for (unsigned i = 0; i != NumElements; ++i) 1538 Ops.push_back(getValue(CV->getOperand(i))); 1539 } else { 1540 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1541 EVT EltVT = 1542 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1543 1544 SDValue Op; 1545 if (EltVT.isFloatingPoint()) 1546 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1547 else 1548 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1549 Ops.assign(NumElements, Op); 1550 } 1551 1552 // Create a BUILD_VECTOR node. 1553 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1554 } 1555 1556 // If this is a static alloca, generate it as the frameindex instead of 1557 // computation. 1558 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1559 DenseMap<const AllocaInst*, int>::iterator SI = 1560 FuncInfo.StaticAllocaMap.find(AI); 1561 if (SI != FuncInfo.StaticAllocaMap.end()) 1562 return DAG.getFrameIndex(SI->second, 1563 TLI.getFrameIndexTy(DAG.getDataLayout())); 1564 } 1565 1566 // If this is an instruction which fast-isel has deferred, select it now. 1567 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1568 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1569 1570 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1571 Inst->getType(), getABIRegCopyCC(V)); 1572 SDValue Chain = DAG.getEntryNode(); 1573 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1574 } 1575 1576 llvm_unreachable("Can't get register for value!"); 1577 } 1578 1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1580 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1581 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1582 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1583 bool IsSEH = isAsynchronousEHPersonality(Pers); 1584 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1585 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1586 if (!IsSEH) 1587 CatchPadMBB->setIsEHScopeEntry(); 1588 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1589 if (IsMSVCCXX || IsCoreCLR) 1590 CatchPadMBB->setIsEHFuncletEntry(); 1591 // Wasm does not need catchpads anymore 1592 if (!IsWasmCXX) 1593 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1594 getControlRoot())); 1595 } 1596 1597 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1598 // Update machine-CFG edge. 1599 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1600 FuncInfo.MBB->addSuccessor(TargetMBB); 1601 1602 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1603 bool IsSEH = isAsynchronousEHPersonality(Pers); 1604 if (IsSEH) { 1605 // If this is not a fall-through branch or optimizations are switched off, 1606 // emit the branch. 1607 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1608 TM.getOptLevel() == CodeGenOpt::None) 1609 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1610 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1611 return; 1612 } 1613 1614 // Figure out the funclet membership for the catchret's successor. 1615 // This will be used by the FuncletLayout pass to determine how to order the 1616 // BB's. 1617 // A 'catchret' returns to the outer scope's color. 1618 Value *ParentPad = I.getCatchSwitchParentPad(); 1619 const BasicBlock *SuccessorColor; 1620 if (isa<ConstantTokenNone>(ParentPad)) 1621 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1622 else 1623 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1624 assert(SuccessorColor && "No parent funclet for catchret!"); 1625 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1626 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1627 1628 // Create the terminator node. 1629 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1630 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1631 DAG.getBasicBlock(SuccessorColorMBB)); 1632 DAG.setRoot(Ret); 1633 } 1634 1635 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1636 // Don't emit any special code for the cleanuppad instruction. It just marks 1637 // the start of an EH scope/funclet. 1638 FuncInfo.MBB->setIsEHScopeEntry(); 1639 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1640 if (Pers != EHPersonality::Wasm_CXX) { 1641 FuncInfo.MBB->setIsEHFuncletEntry(); 1642 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1643 } 1644 } 1645 1646 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1647 // the control flow always stops at the single catch pad, as it does for a 1648 // cleanup pad. In case the exception caught is not of the types the catch pad 1649 // catches, it will be rethrown by a rethrow. 1650 static void findWasmUnwindDestinations( 1651 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1652 BranchProbability Prob, 1653 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1654 &UnwindDests) { 1655 while (EHPadBB) { 1656 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1657 if (isa<CleanupPadInst>(Pad)) { 1658 // Stop on cleanup pads. 1659 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1660 UnwindDests.back().first->setIsEHScopeEntry(); 1661 break; 1662 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1663 // Add the catchpad handlers to the possible destinations. We don't 1664 // continue to the unwind destination of the catchswitch for wasm. 1665 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1666 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1667 UnwindDests.back().first->setIsEHScopeEntry(); 1668 } 1669 break; 1670 } else { 1671 continue; 1672 } 1673 } 1674 } 1675 1676 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1677 /// many places it could ultimately go. In the IR, we have a single unwind 1678 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1679 /// This function skips over imaginary basic blocks that hold catchswitch 1680 /// instructions, and finds all the "real" machine 1681 /// basic block destinations. As those destinations may not be successors of 1682 /// EHPadBB, here we also calculate the edge probability to those destinations. 1683 /// The passed-in Prob is the edge probability to EHPadBB. 1684 static void findUnwindDestinations( 1685 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1686 BranchProbability Prob, 1687 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1688 &UnwindDests) { 1689 EHPersonality Personality = 1690 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1693 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1694 bool IsSEH = isAsynchronousEHPersonality(Personality); 1695 1696 if (IsWasmCXX) { 1697 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1698 assert(UnwindDests.size() <= 1 && 1699 "There should be at most one unwind destination for wasm"); 1700 return; 1701 } 1702 1703 while (EHPadBB) { 1704 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1705 BasicBlock *NewEHPadBB = nullptr; 1706 if (isa<LandingPadInst>(Pad)) { 1707 // Stop on landingpads. They are not funclets. 1708 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1709 break; 1710 } else if (isa<CleanupPadInst>(Pad)) { 1711 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1712 // personalities. 1713 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 UnwindDests.back().first->setIsEHFuncletEntry(); 1716 break; 1717 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1718 // Add the catchpad handlers to the possible destinations. 1719 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1720 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1721 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1722 if (IsMSVCCXX || IsCoreCLR) 1723 UnwindDests.back().first->setIsEHFuncletEntry(); 1724 if (!IsSEH) 1725 UnwindDests.back().first->setIsEHScopeEntry(); 1726 } 1727 NewEHPadBB = CatchSwitch->getUnwindDest(); 1728 } else { 1729 continue; 1730 } 1731 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 if (BPI && NewEHPadBB) 1734 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1735 EHPadBB = NewEHPadBB; 1736 } 1737 } 1738 1739 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1740 // Update successor info. 1741 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1742 auto UnwindDest = I.getUnwindDest(); 1743 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1744 BranchProbability UnwindDestProb = 1745 (BPI && UnwindDest) 1746 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1747 : BranchProbability::getZero(); 1748 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1749 for (auto &UnwindDest : UnwindDests) { 1750 UnwindDest.first->setIsEHPad(); 1751 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1752 } 1753 FuncInfo.MBB->normalizeSuccProbs(); 1754 1755 // Create the terminator node. 1756 SDValue Ret = 1757 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1758 DAG.setRoot(Ret); 1759 } 1760 1761 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1762 report_fatal_error("visitCatchSwitch not yet implemented!"); 1763 } 1764 1765 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1767 auto &DL = DAG.getDataLayout(); 1768 SDValue Chain = getControlRoot(); 1769 SmallVector<ISD::OutputArg, 8> Outs; 1770 SmallVector<SDValue, 8> OutVals; 1771 1772 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1773 // lower 1774 // 1775 // %val = call <ty> @llvm.experimental.deoptimize() 1776 // ret <ty> %val 1777 // 1778 // differently. 1779 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1780 LowerDeoptimizingReturn(); 1781 return; 1782 } 1783 1784 if (!FuncInfo.CanLowerReturn) { 1785 unsigned DemoteReg = FuncInfo.DemoteRegister; 1786 const Function *F = I.getParent()->getParent(); 1787 1788 // Emit a store of the return value through the virtual register. 1789 // Leave Outs empty so that LowerReturn won't try to load return 1790 // registers the usual way. 1791 SmallVector<EVT, 1> PtrValueVTs; 1792 ComputeValueVTs(TLI, DL, 1793 F->getReturnType()->getPointerTo( 1794 DAG.getDataLayout().getAllocaAddrSpace()), 1795 PtrValueVTs); 1796 1797 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1798 DemoteReg, PtrValueVTs[0]); 1799 SDValue RetOp = getValue(I.getOperand(0)); 1800 1801 SmallVector<EVT, 4> ValueVTs, MemVTs; 1802 SmallVector<uint64_t, 4> Offsets; 1803 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1804 &Offsets); 1805 unsigned NumValues = ValueVTs.size(); 1806 1807 SmallVector<SDValue, 4> Chains(NumValues); 1808 for (unsigned i = 0; i != NumValues; ++i) { 1809 // An aggregate return value cannot wrap around the address space, so 1810 // offsets to its parts don't wrap either. 1811 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1812 1813 SDValue Val = RetOp.getValue(i); 1814 if (MemVTs[i] != ValueVTs[i]) 1815 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1816 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1817 // FIXME: better loc info would be nice. 1818 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1819 } 1820 1821 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1822 MVT::Other, Chains); 1823 } else if (I.getNumOperands() != 0) { 1824 SmallVector<EVT, 4> ValueVTs; 1825 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1826 unsigned NumValues = ValueVTs.size(); 1827 if (NumValues) { 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 const Function *F = I.getParent()->getParent(); 1831 1832 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1833 I.getOperand(0)->getType(), F->getCallingConv(), 1834 /*IsVarArg*/ false); 1835 1836 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1837 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1838 Attribute::SExt)) 1839 ExtendKind = ISD::SIGN_EXTEND; 1840 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::ZExt)) 1842 ExtendKind = ISD::ZERO_EXTEND; 1843 1844 LLVMContext &Context = F->getContext(); 1845 bool RetInReg = F->getAttributes().hasAttribute( 1846 AttributeList::ReturnIndex, Attribute::InReg); 1847 1848 for (unsigned j = 0; j != NumValues; ++j) { 1849 EVT VT = ValueVTs[j]; 1850 1851 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1852 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1853 1854 CallingConv::ID CC = F->getCallingConv(); 1855 1856 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1857 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1858 SmallVector<SDValue, 4> Parts(NumParts); 1859 getCopyToParts(DAG, getCurSDLoc(), 1860 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1861 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1862 1863 // 'inreg' on function refers to return value 1864 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1865 if (RetInReg) 1866 Flags.setInReg(); 1867 1868 if (I.getOperand(0)->getType()->isPointerTy()) { 1869 Flags.setPointer(); 1870 Flags.setPointerAddrSpace( 1871 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1872 } 1873 1874 if (NeedsRegBlock) { 1875 Flags.setInConsecutiveRegs(); 1876 if (j == NumValues - 1) 1877 Flags.setInConsecutiveRegsLast(); 1878 } 1879 1880 // Propagate extension type if any 1881 if (ExtendKind == ISD::SIGN_EXTEND) 1882 Flags.setSExt(); 1883 else if (ExtendKind == ISD::ZERO_EXTEND) 1884 Flags.setZExt(); 1885 1886 for (unsigned i = 0; i < NumParts; ++i) { 1887 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1888 VT, /*isfixed=*/true, 0, 0)); 1889 OutVals.push_back(Parts[i]); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Push in swifterror virtual register as the last element of Outs. This makes 1896 // sure swifterror virtual register will be returned in the swifterror 1897 // physical register. 1898 const Function *F = I.getParent()->getParent(); 1899 if (TLI.supportSwiftError() && 1900 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1901 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1902 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1903 Flags.setSwiftError(); 1904 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1905 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1906 true /*isfixed*/, 1 /*origidx*/, 1907 0 /*partOffs*/)); 1908 // Create SDNode for the swifterror virtual register. 1909 OutVals.push_back( 1910 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1911 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1912 EVT(TLI.getPointerTy(DL)))); 1913 } 1914 1915 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1916 CallingConv::ID CallConv = 1917 DAG.getMachineFunction().getFunction().getCallingConv(); 1918 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1919 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1920 1921 // Verify that the target's LowerReturn behaved as expected. 1922 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1923 "LowerReturn didn't return a valid chain!"); 1924 1925 // Update the DAG with the new chain value resulting from return lowering. 1926 DAG.setRoot(Chain); 1927 } 1928 1929 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1930 /// created for it, emit nodes to copy the value into the virtual 1931 /// registers. 1932 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1933 // Skip empty types 1934 if (V->getType()->isEmptyTy()) 1935 return; 1936 1937 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1938 if (VMI != FuncInfo.ValueMap.end()) { 1939 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1940 CopyValueToVirtualRegister(V, VMI->second); 1941 } 1942 } 1943 1944 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1945 /// the current basic block, add it to ValueMap now so that we'll get a 1946 /// CopyTo/FromReg. 1947 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1948 // No need to export constants. 1949 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1950 1951 // Already exported? 1952 if (FuncInfo.isExportedInst(V)) return; 1953 1954 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1955 CopyValueToVirtualRegister(V, Reg); 1956 } 1957 1958 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1959 const BasicBlock *FromBB) { 1960 // The operands of the setcc have to be in this block. We don't know 1961 // how to export them from some other block. 1962 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1963 // Can export from current BB. 1964 if (VI->getParent() == FromBB) 1965 return true; 1966 1967 // Is already exported, noop. 1968 return FuncInfo.isExportedInst(V); 1969 } 1970 1971 // If this is an argument, we can export it if the BB is the entry block or 1972 // if it is already exported. 1973 if (isa<Argument>(V)) { 1974 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1975 return true; 1976 1977 // Otherwise, can only export this if it is already exported. 1978 return FuncInfo.isExportedInst(V); 1979 } 1980 1981 // Otherwise, constants can always be exported. 1982 return true; 1983 } 1984 1985 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1986 BranchProbability 1987 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1988 const MachineBasicBlock *Dst) const { 1989 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1990 const BasicBlock *SrcBB = Src->getBasicBlock(); 1991 const BasicBlock *DstBB = Dst->getBasicBlock(); 1992 if (!BPI) { 1993 // If BPI is not available, set the default probability as 1 / N, where N is 1994 // the number of successors. 1995 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1996 return BranchProbability(1, SuccSize); 1997 } 1998 return BPI->getEdgeProbability(SrcBB, DstBB); 1999 } 2000 2001 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2002 MachineBasicBlock *Dst, 2003 BranchProbability Prob) { 2004 if (!FuncInfo.BPI) 2005 Src->addSuccessorWithoutProb(Dst); 2006 else { 2007 if (Prob.isUnknown()) 2008 Prob = getEdgeProbability(Src, Dst); 2009 Src->addSuccessor(Dst, Prob); 2010 } 2011 } 2012 2013 static bool InBlock(const Value *V, const BasicBlock *BB) { 2014 if (const Instruction *I = dyn_cast<Instruction>(V)) 2015 return I->getParent() == BB; 2016 return true; 2017 } 2018 2019 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2020 /// This function emits a branch and is used at the leaves of an OR or an 2021 /// AND operator tree. 2022 void 2023 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2024 MachineBasicBlock *TBB, 2025 MachineBasicBlock *FBB, 2026 MachineBasicBlock *CurBB, 2027 MachineBasicBlock *SwitchBB, 2028 BranchProbability TProb, 2029 BranchProbability FProb, 2030 bool InvertCond) { 2031 const BasicBlock *BB = CurBB->getBasicBlock(); 2032 2033 // If the leaf of the tree is a comparison, merge the condition into 2034 // the caseblock. 2035 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2036 // The operands of the cmp have to be in this block. We don't know 2037 // how to export them from some other block. If this is the first block 2038 // of the sequence, no exporting is needed. 2039 if (CurBB == SwitchBB || 2040 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2041 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2042 ISD::CondCode Condition; 2043 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2044 ICmpInst::Predicate Pred = 2045 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2046 Condition = getICmpCondCode(Pred); 2047 } else { 2048 const FCmpInst *FC = cast<FCmpInst>(Cond); 2049 FCmpInst::Predicate Pred = 2050 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2051 Condition = getFCmpCondCode(Pred); 2052 if (TM.Options.NoNaNsFPMath) 2053 Condition = getFCmpCodeWithoutNaN(Condition); 2054 } 2055 2056 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2057 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2058 SL->SwitchCases.push_back(CB); 2059 return; 2060 } 2061 } 2062 2063 // Create a CaseBlock record representing this branch. 2064 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2065 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2066 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2067 SL->SwitchCases.push_back(CB); 2068 } 2069 2070 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2071 MachineBasicBlock *TBB, 2072 MachineBasicBlock *FBB, 2073 MachineBasicBlock *CurBB, 2074 MachineBasicBlock *SwitchBB, 2075 Instruction::BinaryOps Opc, 2076 BranchProbability TProb, 2077 BranchProbability FProb, 2078 bool InvertCond) { 2079 // Skip over not part of the tree and remember to invert op and operands at 2080 // next level. 2081 Value *NotCond; 2082 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2083 InBlock(NotCond, CurBB->getBasicBlock())) { 2084 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2085 !InvertCond); 2086 return; 2087 } 2088 2089 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2090 // Compute the effective opcode for Cond, taking into account whether it needs 2091 // to be inverted, e.g. 2092 // and (not (or A, B)), C 2093 // gets lowered as 2094 // and (and (not A, not B), C) 2095 unsigned BOpc = 0; 2096 if (BOp) { 2097 BOpc = BOp->getOpcode(); 2098 if (InvertCond) { 2099 if (BOpc == Instruction::And) 2100 BOpc = Instruction::Or; 2101 else if (BOpc == Instruction::Or) 2102 BOpc = Instruction::And; 2103 } 2104 } 2105 2106 // If this node is not part of the or/and tree, emit it as a branch. 2107 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2108 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2109 BOp->getParent() != CurBB->getBasicBlock() || 2110 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2111 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2112 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2113 TProb, FProb, InvertCond); 2114 return; 2115 } 2116 2117 // Create TmpBB after CurBB. 2118 MachineFunction::iterator BBI(CurBB); 2119 MachineFunction &MF = DAG.getMachineFunction(); 2120 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2121 CurBB->getParent()->insert(++BBI, TmpBB); 2122 2123 if (Opc == Instruction::Or) { 2124 // Codegen X | Y as: 2125 // BB1: 2126 // jmp_if_X TBB 2127 // jmp TmpBB 2128 // TmpBB: 2129 // jmp_if_Y TBB 2130 // jmp FBB 2131 // 2132 2133 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2134 // The requirement is that 2135 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2136 // = TrueProb for original BB. 2137 // Assuming the original probabilities are A and B, one choice is to set 2138 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2139 // A/(1+B) and 2B/(1+B). This choice assumes that 2140 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2141 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2142 // TmpBB, but the math is more complicated. 2143 2144 auto NewTrueProb = TProb / 2; 2145 auto NewFalseProb = TProb / 2 + FProb; 2146 // Emit the LHS condition. 2147 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2148 NewTrueProb, NewFalseProb, InvertCond); 2149 2150 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2151 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2152 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2153 // Emit the RHS condition into TmpBB. 2154 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2155 Probs[0], Probs[1], InvertCond); 2156 } else { 2157 assert(Opc == Instruction::And && "Unknown merge op!"); 2158 // Codegen X & Y as: 2159 // BB1: 2160 // jmp_if_X TmpBB 2161 // jmp FBB 2162 // TmpBB: 2163 // jmp_if_Y TBB 2164 // jmp FBB 2165 // 2166 // This requires creation of TmpBB after CurBB. 2167 2168 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2169 // The requirement is that 2170 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2171 // = FalseProb for original BB. 2172 // Assuming the original probabilities are A and B, one choice is to set 2173 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2174 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2175 // TrueProb for BB1 * FalseProb for TmpBB. 2176 2177 auto NewTrueProb = TProb + FProb / 2; 2178 auto NewFalseProb = FProb / 2; 2179 // Emit the LHS condition. 2180 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2181 NewTrueProb, NewFalseProb, InvertCond); 2182 2183 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2184 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2185 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2186 // Emit the RHS condition into TmpBB. 2187 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2188 Probs[0], Probs[1], InvertCond); 2189 } 2190 } 2191 2192 /// If the set of cases should be emitted as a series of branches, return true. 2193 /// If we should emit this as a bunch of and/or'd together conditions, return 2194 /// false. 2195 bool 2196 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2197 if (Cases.size() != 2) return true; 2198 2199 // If this is two comparisons of the same values or'd or and'd together, they 2200 // will get folded into a single comparison, so don't emit two blocks. 2201 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2202 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2203 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2204 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2205 return false; 2206 } 2207 2208 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2209 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2210 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2211 Cases[0].CC == Cases[1].CC && 2212 isa<Constant>(Cases[0].CmpRHS) && 2213 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2214 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2215 return false; 2216 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2217 return false; 2218 } 2219 2220 return true; 2221 } 2222 2223 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2224 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2225 2226 // Update machine-CFG edges. 2227 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2228 2229 if (I.isUnconditional()) { 2230 // Update machine-CFG edges. 2231 BrMBB->addSuccessor(Succ0MBB); 2232 2233 // If this is not a fall-through branch or optimizations are switched off, 2234 // emit the branch. 2235 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2236 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2237 MVT::Other, getControlRoot(), 2238 DAG.getBasicBlock(Succ0MBB))); 2239 2240 return; 2241 } 2242 2243 // If this condition is one of the special cases we handle, do special stuff 2244 // now. 2245 const Value *CondVal = I.getCondition(); 2246 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2247 2248 // If this is a series of conditions that are or'd or and'd together, emit 2249 // this as a sequence of branches instead of setcc's with and/or operations. 2250 // As long as jumps are not expensive, this should improve performance. 2251 // For example, instead of something like: 2252 // cmp A, B 2253 // C = seteq 2254 // cmp D, E 2255 // F = setle 2256 // or C, F 2257 // jnz foo 2258 // Emit: 2259 // cmp A, B 2260 // je foo 2261 // cmp D, E 2262 // jle foo 2263 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2264 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2265 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2266 !I.getMetadata(LLVMContext::MD_unpredictable) && 2267 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2268 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2269 Opcode, 2270 getEdgeProbability(BrMBB, Succ0MBB), 2271 getEdgeProbability(BrMBB, Succ1MBB), 2272 /*InvertCond=*/false); 2273 // If the compares in later blocks need to use values not currently 2274 // exported from this block, export them now. This block should always 2275 // be the first entry. 2276 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2277 2278 // Allow some cases to be rejected. 2279 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2280 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2282 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2283 } 2284 2285 // Emit the branch for this block. 2286 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2287 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2288 return; 2289 } 2290 2291 // Okay, we decided not to do this, remove any inserted MBB's and clear 2292 // SwitchCases. 2293 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2294 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2295 2296 SL->SwitchCases.clear(); 2297 } 2298 } 2299 2300 // Create a CaseBlock record representing this branch. 2301 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2302 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2303 2304 // Use visitSwitchCase to actually insert the fast branch sequence for this 2305 // cond branch. 2306 visitSwitchCase(CB, BrMBB); 2307 } 2308 2309 /// visitSwitchCase - Emits the necessary code to represent a single node in 2310 /// the binary search tree resulting from lowering a switch instruction. 2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2312 MachineBasicBlock *SwitchBB) { 2313 SDValue Cond; 2314 SDValue CondLHS = getValue(CB.CmpLHS); 2315 SDLoc dl = CB.DL; 2316 2317 if (CB.CC == ISD::SETTRUE) { 2318 // Branch or fall through to TrueBB. 2319 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2320 SwitchBB->normalizeSuccProbs(); 2321 if (CB.TrueBB != NextBlock(SwitchBB)) { 2322 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2323 DAG.getBasicBlock(CB.TrueBB))); 2324 } 2325 return; 2326 } 2327 2328 auto &TLI = DAG.getTargetLoweringInfo(); 2329 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2330 2331 // Build the setcc now. 2332 if (!CB.CmpMHS) { 2333 // Fold "(X == true)" to X and "(X == false)" to !X to 2334 // handle common cases produced by branch lowering. 2335 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) 2337 Cond = CondLHS; 2338 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) { 2340 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2341 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2342 } else { 2343 SDValue CondRHS = getValue(CB.CmpRHS); 2344 2345 // If a pointer's DAG type is larger than its memory type then the DAG 2346 // values are zero-extended. This breaks signed comparisons so truncate 2347 // back to the underlying type before doing the compare. 2348 if (CondLHS.getValueType() != MemVT) { 2349 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2350 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2351 } 2352 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2353 } 2354 } else { 2355 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2356 2357 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2358 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2359 2360 SDValue CmpOp = getValue(CB.CmpMHS); 2361 EVT VT = CmpOp.getValueType(); 2362 2363 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2364 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2365 ISD::SETLE); 2366 } else { 2367 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2368 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2369 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2370 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2371 } 2372 } 2373 2374 // Update successor info 2375 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2376 // TrueBB and FalseBB are always different unless the incoming IR is 2377 // degenerate. This only happens when running llc on weird IR. 2378 if (CB.TrueBB != CB.FalseBB) 2379 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2380 SwitchBB->normalizeSuccProbs(); 2381 2382 // If the lhs block is the next block, invert the condition so that we can 2383 // fall through to the lhs instead of the rhs block. 2384 if (CB.TrueBB == NextBlock(SwitchBB)) { 2385 std::swap(CB.TrueBB, CB.FalseBB); 2386 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2387 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2388 } 2389 2390 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2391 MVT::Other, getControlRoot(), Cond, 2392 DAG.getBasicBlock(CB.TrueBB)); 2393 2394 // Insert the false branch. Do this even if it's a fall through branch, 2395 // this makes it easier to do DAG optimizations which require inverting 2396 // the branch condition. 2397 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2398 DAG.getBasicBlock(CB.FalseBB)); 2399 2400 DAG.setRoot(BrCond); 2401 } 2402 2403 /// visitJumpTable - Emit JumpTable node in the current MBB 2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2405 // Emit the code for the jump table 2406 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2407 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2408 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2409 JT.Reg, PTy); 2410 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2411 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2412 MVT::Other, Index.getValue(1), 2413 Table, Index); 2414 DAG.setRoot(BrJumpTable); 2415 } 2416 2417 /// visitJumpTableHeader - This function emits necessary code to produce index 2418 /// in the JumpTable from switch case. 2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2420 JumpTableHeader &JTH, 2421 MachineBasicBlock *SwitchBB) { 2422 SDLoc dl = getCurSDLoc(); 2423 2424 // Subtract the lowest switch case value from the value being switched on. 2425 SDValue SwitchOp = getValue(JTH.SValue); 2426 EVT VT = SwitchOp.getValueType(); 2427 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2428 DAG.getConstant(JTH.First, dl, VT)); 2429 2430 // The SDNode we just created, which holds the value being switched on minus 2431 // the smallest case value, needs to be copied to a virtual register so it 2432 // can be used as an index into the jump table in a subsequent basic block. 2433 // This value may be smaller or larger than the target's pointer type, and 2434 // therefore require extension or truncating. 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2437 2438 unsigned JumpTableReg = 2439 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2440 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2441 JumpTableReg, SwitchOp); 2442 JT.Reg = JumpTableReg; 2443 2444 if (!JTH.OmitRangeCheck) { 2445 // Emit the range check for the jump table, and branch to the default block 2446 // for the switch statement if the value being switched on exceeds the 2447 // largest case in the switch. 2448 SDValue CMP = DAG.getSetCC( 2449 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2450 Sub.getValueType()), 2451 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2452 2453 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2454 MVT::Other, CopyTo, CMP, 2455 DAG.getBasicBlock(JT.Default)); 2456 2457 // Avoid emitting unnecessary branches to the next block. 2458 if (JT.MBB != NextBlock(SwitchBB)) 2459 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2460 DAG.getBasicBlock(JT.MBB)); 2461 2462 DAG.setRoot(BrCond); 2463 } else { 2464 // Avoid emitting unnecessary branches to the next block. 2465 if (JT.MBB != NextBlock(SwitchBB)) 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2467 DAG.getBasicBlock(JT.MBB))); 2468 else 2469 DAG.setRoot(CopyTo); 2470 } 2471 } 2472 2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2474 /// variable if there exists one. 2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2476 SDValue &Chain) { 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2479 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2482 MachineSDNode *Node = 2483 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2484 if (Global) { 2485 MachinePointerInfo MPInfo(Global); 2486 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2487 MachineMemOperand::MODereferenceable; 2488 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2489 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2490 DAG.setNodeMemRefs(Node, {MemRef}); 2491 } 2492 if (PtrTy != PtrMemTy) 2493 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2494 return SDValue(Node, 0); 2495 } 2496 2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2498 /// tail spliced into a stack protector check success bb. 2499 /// 2500 /// For a high level explanation of how this fits into the stack protector 2501 /// generation see the comment on the declaration of class 2502 /// StackProtectorDescriptor. 2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2504 MachineBasicBlock *ParentBB) { 2505 2506 // First create the loads to the guard/stack slot for the comparison. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 2511 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2512 int FI = MFI.getStackProtectorIndex(); 2513 2514 SDValue Guard; 2515 SDLoc dl = getCurSDLoc(); 2516 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2517 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2518 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2519 2520 // Generate code to load the content of the guard slot. 2521 SDValue GuardVal = DAG.getLoad( 2522 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2523 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2524 MachineMemOperand::MOVolatile); 2525 2526 if (TLI.useStackGuardXorFP()) 2527 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2528 2529 // Retrieve guard check function, nullptr if instrumentation is inlined. 2530 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2531 // The target provides a guard check function to validate the guard value. 2532 // Generate a call to that function with the content of the guard slot as 2533 // argument. 2534 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2535 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 Entry.Node = GuardVal; 2540 Entry.Ty = FnTy->getParamType(0); 2541 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2542 Entry.IsInReg = true; 2543 Args.push_back(Entry); 2544 2545 TargetLowering::CallLoweringInfo CLI(DAG); 2546 CLI.setDebugLoc(getCurSDLoc()) 2547 .setChain(DAG.getEntryNode()) 2548 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2549 getValue(GuardCheckFn), std::move(Args)); 2550 2551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2552 DAG.setRoot(Result.second); 2553 return; 2554 } 2555 2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2557 // Otherwise, emit a volatile load to retrieve the stack guard value. 2558 SDValue Chain = DAG.getEntryNode(); 2559 if (TLI.useLoadStackGuardNode()) { 2560 Guard = getLoadStackGuard(DAG, dl, Chain); 2561 } else { 2562 const Value *IRGuard = TLI.getSDagStackGuard(M); 2563 SDValue GuardPtr = getValue(IRGuard); 2564 2565 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2566 MachinePointerInfo(IRGuard, 0), Align, 2567 MachineMemOperand::MOVolatile); 2568 } 2569 2570 // Perform the comparison via a subtract/getsetcc. 2571 EVT VT = Guard.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2573 2574 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2575 *DAG.getContext(), 2576 Sub.getValueType()), 2577 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2578 2579 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2580 // branch to failure MBB. 2581 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2582 MVT::Other, GuardVal.getOperand(0), 2583 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2584 // Otherwise branch to success MBB. 2585 SDValue Br = DAG.getNode(ISD::BR, dl, 2586 MVT::Other, BrCond, 2587 DAG.getBasicBlock(SPD.getSuccessMBB())); 2588 2589 DAG.setRoot(Br); 2590 } 2591 2592 /// Codegen the failure basic block for a stack protector check. 2593 /// 2594 /// A failure stack protector machine basic block consists simply of a call to 2595 /// __stack_chk_fail(). 2596 /// 2597 /// For a high level explanation of how this fits into the stack protector 2598 /// generation see the comment on the declaration of class 2599 /// StackProtectorDescriptor. 2600 void 2601 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 SDValue Chain = 2604 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2605 None, false, getCurSDLoc(), false, false).second; 2606 // On PS4, the "return address" must still be within the calling function, 2607 // even if it's at the very end, so emit an explicit TRAP here. 2608 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2609 if (TM.getTargetTriple().isPS4CPU()) 2610 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2611 2612 DAG.setRoot(Chain); 2613 } 2614 2615 /// visitBitTestHeader - This function emits necessary code to produce value 2616 /// suitable for "bit tests" 2617 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2618 MachineBasicBlock *SwitchBB) { 2619 SDLoc dl = getCurSDLoc(); 2620 2621 // Subtract the minimum value 2622 SDValue SwitchOp = getValue(B.SValue); 2623 EVT VT = SwitchOp.getValueType(); 2624 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2625 DAG.getConstant(B.First, dl, VT)); 2626 2627 // Check range 2628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2629 SDValue RangeCmp = DAG.getSetCC( 2630 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2631 Sub.getValueType()), 2632 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2633 2634 // Determine the type of the test operands. 2635 bool UsePtrType = false; 2636 if (!TLI.isTypeLegal(VT)) 2637 UsePtrType = true; 2638 else { 2639 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2640 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2641 // Switch table case range are encoded into series of masks. 2642 // Just use pointer type, it's guaranteed to fit. 2643 UsePtrType = true; 2644 break; 2645 } 2646 } 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2659 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2660 SwitchBB->normalizeSuccProbs(); 2661 2662 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2663 MVT::Other, CopyTo, RangeCmp, 2664 DAG.getBasicBlock(B.Default)); 2665 2666 // Avoid emitting unnecessary branches to the next block. 2667 if (MBB != NextBlock(SwitchBB)) 2668 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2669 DAG.getBasicBlock(MBB)); 2670 2671 DAG.setRoot(BrRange); 2672 } 2673 2674 /// visitBitTestCase - this function produces one "bit test" 2675 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2676 MachineBasicBlock* NextMBB, 2677 BranchProbability BranchProbToNext, 2678 unsigned Reg, 2679 BitTestCase &B, 2680 MachineBasicBlock *SwitchBB) { 2681 SDLoc dl = getCurSDLoc(); 2682 MVT VT = BB.RegVT; 2683 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2684 SDValue Cmp; 2685 unsigned PopCount = countPopulation(B.Mask); 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 if (PopCount == 1) { 2688 // Testing for a single bit; just compare the shift count with what it 2689 // would need to be to shift a 1 bit in that position. 2690 Cmp = DAG.getSetCC( 2691 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2692 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2693 ISD::SETEQ); 2694 } else if (PopCount == BB.Range) { 2695 // There is only one zero bit in the range, test for it directly. 2696 Cmp = DAG.getSetCC( 2697 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2698 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2699 ISD::SETNE); 2700 } else { 2701 // Make desired shift 2702 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2703 DAG.getConstant(1, dl, VT), ShiftOp); 2704 2705 // Emit bit tests and jumps 2706 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2707 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2708 Cmp = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2710 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2711 } 2712 2713 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2714 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2715 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2716 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2717 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2718 // one as they are relative probabilities (and thus work more like weights), 2719 // and hence we need to normalize them to let the sum of them become one. 2720 SwitchBB->normalizeSuccProbs(); 2721 2722 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, getControlRoot(), 2724 Cmp, DAG.getBasicBlock(B.TargetBB)); 2725 2726 // Avoid emitting unnecessary branches to the next block. 2727 if (NextMBB != NextBlock(SwitchBB)) 2728 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2729 DAG.getBasicBlock(NextMBB)); 2730 2731 DAG.setRoot(BrAnd); 2732 } 2733 2734 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2735 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2736 2737 // Retrieve successors. Look through artificial IR level blocks like 2738 // catchswitch for successors. 2739 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2740 const BasicBlock *EHPadBB = I.getSuccessor(1); 2741 2742 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2743 // have to do anything here to lower funclet bundles. 2744 assert(!I.hasOperandBundlesOtherThan( 2745 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2746 "Cannot lower invokes with arbitrary operand bundles yet!"); 2747 2748 const Value *Callee(I.getCalledValue()); 2749 const Function *Fn = dyn_cast<Function>(Callee); 2750 if (isa<InlineAsm>(Callee)) 2751 visitInlineAsm(&I); 2752 else if (Fn && Fn->isIntrinsic()) { 2753 switch (Fn->getIntrinsicID()) { 2754 default: 2755 llvm_unreachable("Cannot invoke this intrinsic"); 2756 case Intrinsic::donothing: 2757 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2758 break; 2759 case Intrinsic::experimental_patchpoint_void: 2760 case Intrinsic::experimental_patchpoint_i64: 2761 visitPatchpoint(&I, EHPadBB); 2762 break; 2763 case Intrinsic::experimental_gc_statepoint: 2764 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2765 break; 2766 case Intrinsic::wasm_rethrow_in_catch: { 2767 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2768 // special because it can be invoked, so we manually lower it to a DAG 2769 // node here. 2770 SmallVector<SDValue, 8> Ops; 2771 Ops.push_back(getRoot()); // inchain 2772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2773 Ops.push_back( 2774 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2775 TLI.getPointerTy(DAG.getDataLayout()))); 2776 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2777 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2778 break; 2779 } 2780 } 2781 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2782 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2783 // Eventually we will support lowering the @llvm.experimental.deoptimize 2784 // intrinsic, and right now there are no plans to support other intrinsics 2785 // with deopt state. 2786 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2787 } else { 2788 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2789 } 2790 2791 // If the value of the invoke is used outside of its defining block, make it 2792 // available as a virtual register. 2793 // We already took care of the exported value for the statepoint instruction 2794 // during call to the LowerStatepoint. 2795 if (!isStatepoint(I)) { 2796 CopyToExportRegsIfNeeded(&I); 2797 } 2798 2799 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2800 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2801 BranchProbability EHPadBBProb = 2802 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2803 : BranchProbability::getZero(); 2804 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2805 2806 // Update successor info. 2807 addSuccessorWithProb(InvokeMBB, Return); 2808 for (auto &UnwindDest : UnwindDests) { 2809 UnwindDest.first->setIsEHPad(); 2810 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2811 } 2812 InvokeMBB->normalizeSuccProbs(); 2813 2814 // Drop into normal successor. 2815 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2816 DAG.getBasicBlock(Return))); 2817 } 2818 2819 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2820 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2821 2822 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2823 // have to do anything here to lower funclet bundles. 2824 assert(!I.hasOperandBundlesOtherThan( 2825 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2826 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2827 2828 assert(isa<InlineAsm>(I.getCalledValue()) && 2829 "Only know how to handle inlineasm callbr"); 2830 visitInlineAsm(&I); 2831 2832 // Retrieve successors. 2833 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2834 2835 // Update successor info. 2836 addSuccessorWithProb(CallBrMBB, Return); 2837 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2838 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2839 addSuccessorWithProb(CallBrMBB, Target); 2840 } 2841 CallBrMBB->normalizeSuccProbs(); 2842 2843 // Drop into default successor. 2844 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2845 MVT::Other, getControlRoot(), 2846 DAG.getBasicBlock(Return))); 2847 } 2848 2849 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2850 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2851 } 2852 2853 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2854 assert(FuncInfo.MBB->isEHPad() && 2855 "Call to landingpad not in landing pad!"); 2856 2857 // If there aren't registers to copy the values into (e.g., during SjLj 2858 // exceptions), then don't bother to create these DAG nodes. 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2861 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2862 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2863 return; 2864 2865 // If landingpad's return type is token type, we don't create DAG nodes 2866 // for its exception pointer and selector value. The extraction of exception 2867 // pointer or selector value from token type landingpads is not currently 2868 // supported. 2869 if (LP.getType()->isTokenTy()) 2870 return; 2871 2872 SmallVector<EVT, 2> ValueVTs; 2873 SDLoc dl = getCurSDLoc(); 2874 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2875 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2876 2877 // Get the two live-in registers as SDValues. The physregs have already been 2878 // copied into virtual registers. 2879 SDValue Ops[2]; 2880 if (FuncInfo.ExceptionPointerVirtReg) { 2881 Ops[0] = DAG.getZExtOrTrunc( 2882 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2883 FuncInfo.ExceptionPointerVirtReg, 2884 TLI.getPointerTy(DAG.getDataLayout())), 2885 dl, ValueVTs[0]); 2886 } else { 2887 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2888 } 2889 Ops[1] = DAG.getZExtOrTrunc( 2890 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2891 FuncInfo.ExceptionSelectorVirtReg, 2892 TLI.getPointerTy(DAG.getDataLayout())), 2893 dl, ValueVTs[1]); 2894 2895 // Merge into one. 2896 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2897 DAG.getVTList(ValueVTs), Ops); 2898 setValue(&LP, Res); 2899 } 2900 2901 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2902 MachineBasicBlock *Last) { 2903 // Update JTCases. 2904 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2905 if (SL->JTCases[i].first.HeaderBB == First) 2906 SL->JTCases[i].first.HeaderBB = Last; 2907 2908 // Update BitTestCases. 2909 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2910 if (SL->BitTestCases[i].Parent == First) 2911 SL->BitTestCases[i].Parent = Last; 2912 } 2913 2914 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2915 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2916 2917 // Update machine-CFG edges with unique successors. 2918 SmallSet<BasicBlock*, 32> Done; 2919 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2920 BasicBlock *BB = I.getSuccessor(i); 2921 bool Inserted = Done.insert(BB).second; 2922 if (!Inserted) 2923 continue; 2924 2925 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2926 addSuccessorWithProb(IndirectBrMBB, Succ); 2927 } 2928 IndirectBrMBB->normalizeSuccProbs(); 2929 2930 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2931 MVT::Other, getControlRoot(), 2932 getValue(I.getAddress()))); 2933 } 2934 2935 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2936 if (!DAG.getTarget().Options.TrapUnreachable) 2937 return; 2938 2939 // We may be able to ignore unreachable behind a noreturn call. 2940 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2941 const BasicBlock &BB = *I.getParent(); 2942 if (&I != &BB.front()) { 2943 BasicBlock::const_iterator PredI = 2944 std::prev(BasicBlock::const_iterator(&I)); 2945 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2946 if (Call->doesNotReturn()) 2947 return; 2948 } 2949 } 2950 } 2951 2952 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2953 } 2954 2955 void SelectionDAGBuilder::visitFSub(const User &I) { 2956 // -0.0 - X --> fneg 2957 Type *Ty = I.getType(); 2958 if (isa<Constant>(I.getOperand(0)) && 2959 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2960 SDValue Op2 = getValue(I.getOperand(1)); 2961 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2962 Op2.getValueType(), Op2)); 2963 return; 2964 } 2965 2966 visitBinary(I, ISD::FSUB); 2967 } 2968 2969 /// Checks if the given instruction performs a vector reduction, in which case 2970 /// we have the freedom to alter the elements in the result as long as the 2971 /// reduction of them stays unchanged. 2972 static bool isVectorReductionOp(const User *I) { 2973 const Instruction *Inst = dyn_cast<Instruction>(I); 2974 if (!Inst || !Inst->getType()->isVectorTy()) 2975 return false; 2976 2977 auto OpCode = Inst->getOpcode(); 2978 switch (OpCode) { 2979 case Instruction::Add: 2980 case Instruction::Mul: 2981 case Instruction::And: 2982 case Instruction::Or: 2983 case Instruction::Xor: 2984 break; 2985 case Instruction::FAdd: 2986 case Instruction::FMul: 2987 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2988 if (FPOp->getFastMathFlags().isFast()) 2989 break; 2990 LLVM_FALLTHROUGH; 2991 default: 2992 return false; 2993 } 2994 2995 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2996 // Ensure the reduction size is a power of 2. 2997 if (!isPowerOf2_32(ElemNum)) 2998 return false; 2999 3000 unsigned ElemNumToReduce = ElemNum; 3001 3002 // Do DFS search on the def-use chain from the given instruction. We only 3003 // allow four kinds of operations during the search until we reach the 3004 // instruction that extracts the first element from the vector: 3005 // 3006 // 1. The reduction operation of the same opcode as the given instruction. 3007 // 3008 // 2. PHI node. 3009 // 3010 // 3. ShuffleVector instruction together with a reduction operation that 3011 // does a partial reduction. 3012 // 3013 // 4. ExtractElement that extracts the first element from the vector, and we 3014 // stop searching the def-use chain here. 3015 // 3016 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3017 // from 1-3 to the stack to continue the DFS. The given instruction is not 3018 // a reduction operation if we meet any other instructions other than those 3019 // listed above. 3020 3021 SmallVector<const User *, 16> UsersToVisit{Inst}; 3022 SmallPtrSet<const User *, 16> Visited; 3023 bool ReduxExtracted = false; 3024 3025 while (!UsersToVisit.empty()) { 3026 auto User = UsersToVisit.back(); 3027 UsersToVisit.pop_back(); 3028 if (!Visited.insert(User).second) 3029 continue; 3030 3031 for (const auto &U : User->users()) { 3032 auto Inst = dyn_cast<Instruction>(U); 3033 if (!Inst) 3034 return false; 3035 3036 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3037 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3038 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3039 return false; 3040 UsersToVisit.push_back(U); 3041 } else if (const ShuffleVectorInst *ShufInst = 3042 dyn_cast<ShuffleVectorInst>(U)) { 3043 // Detect the following pattern: A ShuffleVector instruction together 3044 // with a reduction that do partial reduction on the first and second 3045 // ElemNumToReduce / 2 elements, and store the result in 3046 // ElemNumToReduce / 2 elements in another vector. 3047 3048 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3049 if (ResultElements < ElemNum) 3050 return false; 3051 3052 if (ElemNumToReduce == 1) 3053 return false; 3054 if (!isa<UndefValue>(U->getOperand(1))) 3055 return false; 3056 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3057 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3058 return false; 3059 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3060 if (ShufInst->getMaskValue(i) != -1) 3061 return false; 3062 3063 // There is only one user of this ShuffleVector instruction, which 3064 // must be a reduction operation. 3065 if (!U->hasOneUse()) 3066 return false; 3067 3068 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3069 if (!U2 || U2->getOpcode() != OpCode) 3070 return false; 3071 3072 // Check operands of the reduction operation. 3073 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3074 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3075 UsersToVisit.push_back(U2); 3076 ElemNumToReduce /= 2; 3077 } else 3078 return false; 3079 } else if (isa<ExtractElementInst>(U)) { 3080 // At this moment we should have reduced all elements in the vector. 3081 if (ElemNumToReduce != 1) 3082 return false; 3083 3084 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3085 if (!Val || !Val->isZero()) 3086 return false; 3087 3088 ReduxExtracted = true; 3089 } else 3090 return false; 3091 } 3092 } 3093 return ReduxExtracted; 3094 } 3095 3096 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3097 SDNodeFlags Flags; 3098 3099 SDValue Op = getValue(I.getOperand(0)); 3100 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3101 Op, Flags); 3102 setValue(&I, UnNodeValue); 3103 } 3104 3105 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3106 SDNodeFlags Flags; 3107 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3108 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3109 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3110 } 3111 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3112 Flags.setExact(ExactOp->isExact()); 3113 } 3114 if (isVectorReductionOp(&I)) { 3115 Flags.setVectorReduction(true); 3116 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3117 } 3118 3119 SDValue Op1 = getValue(I.getOperand(0)); 3120 SDValue Op2 = getValue(I.getOperand(1)); 3121 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3122 Op1, Op2, Flags); 3123 setValue(&I, BinNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3131 Op1.getValueType(), DAG.getDataLayout()); 3132 3133 // Coerce the shift amount to the right type if we can. 3134 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3135 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3136 unsigned Op2Size = Op2.getValueSizeInBits(); 3137 SDLoc DL = getCurSDLoc(); 3138 3139 // If the operand is smaller than the shift count type, promote it. 3140 if (ShiftSize > Op2Size) 3141 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3142 3143 // If the operand is larger than the shift count type but the shift 3144 // count type has enough bits to represent any shift value, truncate 3145 // it now. This is a common case and it exposes the truncate to 3146 // optimization early. 3147 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3148 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3149 // Otherwise we'll need to temporarily settle for some other convenient 3150 // type. Type legalization will make adjustments once the shiftee is split. 3151 else 3152 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3153 } 3154 3155 bool nuw = false; 3156 bool nsw = false; 3157 bool exact = false; 3158 3159 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3160 3161 if (const OverflowingBinaryOperator *OFBinOp = 3162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3163 nuw = OFBinOp->hasNoUnsignedWrap(); 3164 nsw = OFBinOp->hasNoSignedWrap(); 3165 } 3166 if (const PossiblyExactOperator *ExactOp = 3167 dyn_cast<const PossiblyExactOperator>(&I)) 3168 exact = ExactOp->isExact(); 3169 } 3170 SDNodeFlags Flags; 3171 Flags.setExact(exact); 3172 Flags.setNoSignedWrap(nsw); 3173 Flags.setNoUnsignedWrap(nuw); 3174 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3175 Flags); 3176 setValue(&I, Res); 3177 } 3178 3179 void SelectionDAGBuilder::visitSDiv(const User &I) { 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 3183 SDNodeFlags Flags; 3184 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3185 cast<PossiblyExactOperator>(&I)->isExact()); 3186 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3187 Op2, Flags)); 3188 } 3189 3190 void SelectionDAGBuilder::visitICmp(const User &I) { 3191 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3192 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3193 predicate = IC->getPredicate(); 3194 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3195 predicate = ICmpInst::Predicate(IC->getPredicate()); 3196 SDValue Op1 = getValue(I.getOperand(0)); 3197 SDValue Op2 = getValue(I.getOperand(1)); 3198 ISD::CondCode Opcode = getICmpCondCode(predicate); 3199 3200 auto &TLI = DAG.getTargetLoweringInfo(); 3201 EVT MemVT = 3202 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3203 3204 // If a pointer's DAG type is larger than its memory type then the DAG values 3205 // are zero-extended. This breaks signed comparisons so truncate back to the 3206 // underlying type before doing the compare. 3207 if (Op1.getValueType() != MemVT) { 3208 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3209 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3210 } 3211 3212 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3213 I.getType()); 3214 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3215 } 3216 3217 void SelectionDAGBuilder::visitFCmp(const User &I) { 3218 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3219 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3220 predicate = FC->getPredicate(); 3221 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3222 predicate = FCmpInst::Predicate(FC->getPredicate()); 3223 SDValue Op1 = getValue(I.getOperand(0)); 3224 SDValue Op2 = getValue(I.getOperand(1)); 3225 3226 ISD::CondCode Condition = getFCmpCondCode(predicate); 3227 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3228 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3229 Condition = getFCmpCodeWithoutNaN(Condition); 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3234 } 3235 3236 // Check if the condition of the select has one use or two users that are both 3237 // selects with the same condition. 3238 static bool hasOnlySelectUsers(const Value *Cond) { 3239 return llvm::all_of(Cond->users(), [](const Value *V) { 3240 return isa<SelectInst>(V); 3241 }); 3242 } 3243 3244 void SelectionDAGBuilder::visitSelect(const User &I) { 3245 SmallVector<EVT, 4> ValueVTs; 3246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3247 ValueVTs); 3248 unsigned NumValues = ValueVTs.size(); 3249 if (NumValues == 0) return; 3250 3251 SmallVector<SDValue, 4> Values(NumValues); 3252 SDValue Cond = getValue(I.getOperand(0)); 3253 SDValue LHSVal = getValue(I.getOperand(1)); 3254 SDValue RHSVal = getValue(I.getOperand(2)); 3255 auto BaseOps = {Cond}; 3256 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3257 ISD::VSELECT : ISD::SELECT; 3258 3259 bool IsUnaryAbs = false; 3260 3261 // Min/max matching is only viable if all output VTs are the same. 3262 if (is_splat(ValueVTs)) { 3263 EVT VT = ValueVTs[0]; 3264 LLVMContext &Ctx = *DAG.getContext(); 3265 auto &TLI = DAG.getTargetLoweringInfo(); 3266 3267 // We care about the legality of the operation after it has been type 3268 // legalized. 3269 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3270 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3271 VT = TLI.getTypeToTransformTo(Ctx, VT); 3272 3273 // If the vselect is legal, assume we want to leave this as a vector setcc + 3274 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3275 // min/max is legal on the scalar type. 3276 bool UseScalarMinMax = VT.isVector() && 3277 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3278 3279 Value *LHS, *RHS; 3280 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3281 ISD::NodeType Opc = ISD::DELETED_NODE; 3282 switch (SPR.Flavor) { 3283 case SPF_UMAX: Opc = ISD::UMAX; break; 3284 case SPF_UMIN: Opc = ISD::UMIN; break; 3285 case SPF_SMAX: Opc = ISD::SMAX; break; 3286 case SPF_SMIN: Opc = ISD::SMIN; break; 3287 case SPF_FMINNUM: 3288 switch (SPR.NaNBehavior) { 3289 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3290 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3291 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3292 case SPNB_RETURNS_ANY: { 3293 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3294 Opc = ISD::FMINNUM; 3295 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3296 Opc = ISD::FMINIMUM; 3297 else if (UseScalarMinMax) 3298 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3299 ISD::FMINNUM : ISD::FMINIMUM; 3300 break; 3301 } 3302 } 3303 break; 3304 case SPF_FMAXNUM: 3305 switch (SPR.NaNBehavior) { 3306 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3307 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3308 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3309 case SPNB_RETURNS_ANY: 3310 3311 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3312 Opc = ISD::FMAXNUM; 3313 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3314 Opc = ISD::FMAXIMUM; 3315 else if (UseScalarMinMax) 3316 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3317 ISD::FMAXNUM : ISD::FMAXIMUM; 3318 break; 3319 } 3320 break; 3321 case SPF_ABS: 3322 IsUnaryAbs = true; 3323 Opc = ISD::ABS; 3324 break; 3325 case SPF_NABS: 3326 // TODO: we need to produce sub(0, abs(X)). 3327 default: break; 3328 } 3329 3330 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3331 (TLI.isOperationLegalOrCustom(Opc, VT) || 3332 (UseScalarMinMax && 3333 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3334 // If the underlying comparison instruction is used by any other 3335 // instruction, the consumed instructions won't be destroyed, so it is 3336 // not profitable to convert to a min/max. 3337 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3338 OpCode = Opc; 3339 LHSVal = getValue(LHS); 3340 RHSVal = getValue(RHS); 3341 BaseOps = {}; 3342 } 3343 3344 if (IsUnaryAbs) { 3345 OpCode = Opc; 3346 LHSVal = getValue(LHS); 3347 BaseOps = {}; 3348 } 3349 } 3350 3351 if (IsUnaryAbs) { 3352 for (unsigned i = 0; i != NumValues; ++i) { 3353 Values[i] = 3354 DAG.getNode(OpCode, getCurSDLoc(), 3355 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3356 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3357 } 3358 } else { 3359 for (unsigned i = 0; i != NumValues; ++i) { 3360 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3361 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3362 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3363 Values[i] = DAG.getNode( 3364 OpCode, getCurSDLoc(), 3365 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3366 } 3367 } 3368 3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3370 DAG.getVTList(ValueVTs), Values)); 3371 } 3372 3373 void SelectionDAGBuilder::visitTrunc(const User &I) { 3374 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3375 SDValue N = getValue(I.getOperand(0)); 3376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3377 I.getType()); 3378 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3379 } 3380 3381 void SelectionDAGBuilder::visitZExt(const User &I) { 3382 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3383 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitSExt(const User &I) { 3391 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3400 // FPTrunc is never a no-op cast, no need to check 3401 SDValue N = getValue(I.getOperand(0)); 3402 SDLoc dl = getCurSDLoc(); 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3405 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3406 DAG.getTargetConstant( 3407 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3408 } 3409 3410 void SelectionDAGBuilder::visitFPExt(const User &I) { 3411 // FPExt is never a no-op cast, no need to check 3412 SDValue N = getValue(I.getOperand(0)); 3413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3414 I.getType()); 3415 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3416 } 3417 3418 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3419 // FPToUI is never a no-op cast, no need to check 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3427 // FPToSI is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3435 // UIToFP is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3443 // SIToFP is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3451 // What to do depends on the size of the integer and the size of the pointer. 3452 // We can either truncate, zero extend, or no-op, accordingly. 3453 SDValue N = getValue(I.getOperand(0)); 3454 auto &TLI = DAG.getTargetLoweringInfo(); 3455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3456 I.getType()); 3457 EVT PtrMemVT = 3458 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3459 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3460 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3461 setValue(&I, N); 3462 } 3463 3464 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3465 // What to do depends on the size of the integer and the size of the pointer. 3466 // We can either truncate, zero extend, or no-op, accordingly. 3467 SDValue N = getValue(I.getOperand(0)); 3468 auto &TLI = DAG.getTargetLoweringInfo(); 3469 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3470 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3471 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3472 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3473 setValue(&I, N); 3474 } 3475 3476 void SelectionDAGBuilder::visitBitCast(const User &I) { 3477 SDValue N = getValue(I.getOperand(0)); 3478 SDLoc dl = getCurSDLoc(); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 3482 // BitCast assures us that source and destination are the same size so this is 3483 // either a BITCAST or a no-op. 3484 if (DestVT != N.getValueType()) 3485 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3486 DestVT, N)); // convert types. 3487 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3488 // might fold any kind of constant expression to an integer constant and that 3489 // is not what we are looking for. Only recognize a bitcast of a genuine 3490 // constant integer as an opaque constant. 3491 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3492 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3493 /*isOpaque*/true)); 3494 else 3495 setValue(&I, N); // noop cast. 3496 } 3497 3498 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3500 const Value *SV = I.getOperand(0); 3501 SDValue N = getValue(SV); 3502 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3503 3504 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3505 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3506 3507 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3508 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3509 3510 setValue(&I, N); 3511 } 3512 3513 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3515 SDValue InVec = getValue(I.getOperand(0)); 3516 SDValue InVal = getValue(I.getOperand(1)); 3517 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3518 TLI.getVectorIdxTy(DAG.getDataLayout())); 3519 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3520 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3521 InVec, InVal, InIdx)); 3522 } 3523 3524 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3526 SDValue InVec = getValue(I.getOperand(0)); 3527 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3528 TLI.getVectorIdxTy(DAG.getDataLayout())); 3529 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3530 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3531 InVec, InIdx)); 3532 } 3533 3534 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3535 SDValue Src1 = getValue(I.getOperand(0)); 3536 SDValue Src2 = getValue(I.getOperand(1)); 3537 SDLoc DL = getCurSDLoc(); 3538 3539 SmallVector<int, 8> Mask; 3540 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3541 unsigned MaskNumElts = Mask.size(); 3542 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 EVT SrcVT = Src1.getValueType(); 3546 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3547 3548 if (SrcNumElts == MaskNumElts) { 3549 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3550 return; 3551 } 3552 3553 // Normalize the shuffle vector since mask and vector length don't match. 3554 if (SrcNumElts < MaskNumElts) { 3555 // Mask is longer than the source vectors. We can use concatenate vector to 3556 // make the mask and vectors lengths match. 3557 3558 if (MaskNumElts % SrcNumElts == 0) { 3559 // Mask length is a multiple of the source vector length. 3560 // Check if the shuffle is some kind of concatenation of the input 3561 // vectors. 3562 unsigned NumConcat = MaskNumElts / SrcNumElts; 3563 bool IsConcat = true; 3564 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3565 for (unsigned i = 0; i != MaskNumElts; ++i) { 3566 int Idx = Mask[i]; 3567 if (Idx < 0) 3568 continue; 3569 // Ensure the indices in each SrcVT sized piece are sequential and that 3570 // the same source is used for the whole piece. 3571 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3572 (ConcatSrcs[i / SrcNumElts] >= 0 && 3573 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3574 IsConcat = false; 3575 break; 3576 } 3577 // Remember which source this index came from. 3578 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3579 } 3580 3581 // The shuffle is concatenating multiple vectors together. Just emit 3582 // a CONCAT_VECTORS operation. 3583 if (IsConcat) { 3584 SmallVector<SDValue, 8> ConcatOps; 3585 for (auto Src : ConcatSrcs) { 3586 if (Src < 0) 3587 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3588 else if (Src == 0) 3589 ConcatOps.push_back(Src1); 3590 else 3591 ConcatOps.push_back(Src2); 3592 } 3593 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3594 return; 3595 } 3596 } 3597 3598 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3599 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3600 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3601 PaddedMaskNumElts); 3602 3603 // Pad both vectors with undefs to make them the same length as the mask. 3604 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3605 3606 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3607 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3608 MOps1[0] = Src1; 3609 MOps2[0] = Src2; 3610 3611 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3612 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3613 3614 // Readjust mask for new input vector length. 3615 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3616 for (unsigned i = 0; i != MaskNumElts; ++i) { 3617 int Idx = Mask[i]; 3618 if (Idx >= (int)SrcNumElts) 3619 Idx -= SrcNumElts - PaddedMaskNumElts; 3620 MappedOps[i] = Idx; 3621 } 3622 3623 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3624 3625 // If the concatenated vector was padded, extract a subvector with the 3626 // correct number of elements. 3627 if (MaskNumElts != PaddedMaskNumElts) 3628 Result = DAG.getNode( 3629 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3630 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3631 3632 setValue(&I, Result); 3633 return; 3634 } 3635 3636 if (SrcNumElts > MaskNumElts) { 3637 // Analyze the access pattern of the vector to see if we can extract 3638 // two subvectors and do the shuffle. 3639 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3640 bool CanExtract = true; 3641 for (int Idx : Mask) { 3642 unsigned Input = 0; 3643 if (Idx < 0) 3644 continue; 3645 3646 if (Idx >= (int)SrcNumElts) { 3647 Input = 1; 3648 Idx -= SrcNumElts; 3649 } 3650 3651 // If all the indices come from the same MaskNumElts sized portion of 3652 // the sources we can use extract. Also make sure the extract wouldn't 3653 // extract past the end of the source. 3654 int NewStartIdx = alignDown(Idx, MaskNumElts); 3655 if (NewStartIdx + MaskNumElts > SrcNumElts || 3656 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3657 CanExtract = false; 3658 // Make sure we always update StartIdx as we use it to track if all 3659 // elements are undef. 3660 StartIdx[Input] = NewStartIdx; 3661 } 3662 3663 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3664 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3665 return; 3666 } 3667 if (CanExtract) { 3668 // Extract appropriate subvector and generate a vector shuffle 3669 for (unsigned Input = 0; Input < 2; ++Input) { 3670 SDValue &Src = Input == 0 ? Src1 : Src2; 3671 if (StartIdx[Input] < 0) 3672 Src = DAG.getUNDEF(VT); 3673 else { 3674 Src = DAG.getNode( 3675 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3676 DAG.getConstant(StartIdx[Input], DL, 3677 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3678 } 3679 } 3680 3681 // Calculate new mask. 3682 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3683 for (int &Idx : MappedOps) { 3684 if (Idx >= (int)SrcNumElts) 3685 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3686 else if (Idx >= 0) 3687 Idx -= StartIdx[0]; 3688 } 3689 3690 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3691 return; 3692 } 3693 } 3694 3695 // We can't use either concat vectors or extract subvectors so fall back to 3696 // replacing the shuffle with extract and build vector. 3697 // to insert and build vector. 3698 EVT EltVT = VT.getVectorElementType(); 3699 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3700 SmallVector<SDValue,8> Ops; 3701 for (int Idx : Mask) { 3702 SDValue Res; 3703 3704 if (Idx < 0) { 3705 Res = DAG.getUNDEF(EltVT); 3706 } else { 3707 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3708 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3709 3710 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3711 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3712 } 3713 3714 Ops.push_back(Res); 3715 } 3716 3717 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3718 } 3719 3720 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3721 ArrayRef<unsigned> Indices; 3722 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3723 Indices = IV->getIndices(); 3724 else 3725 Indices = cast<ConstantExpr>(&I)->getIndices(); 3726 3727 const Value *Op0 = I.getOperand(0); 3728 const Value *Op1 = I.getOperand(1); 3729 Type *AggTy = I.getType(); 3730 Type *ValTy = Op1->getType(); 3731 bool IntoUndef = isa<UndefValue>(Op0); 3732 bool FromUndef = isa<UndefValue>(Op1); 3733 3734 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3735 3736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3737 SmallVector<EVT, 4> AggValueVTs; 3738 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3739 SmallVector<EVT, 4> ValValueVTs; 3740 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3741 3742 unsigned NumAggValues = AggValueVTs.size(); 3743 unsigned NumValValues = ValValueVTs.size(); 3744 SmallVector<SDValue, 4> Values(NumAggValues); 3745 3746 // Ignore an insertvalue that produces an empty object 3747 if (!NumAggValues) { 3748 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3749 return; 3750 } 3751 3752 SDValue Agg = getValue(Op0); 3753 unsigned i = 0; 3754 // Copy the beginning value(s) from the original aggregate. 3755 for (; i != LinearIndex; ++i) 3756 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3757 SDValue(Agg.getNode(), Agg.getResNo() + i); 3758 // Copy values from the inserted value(s). 3759 if (NumValValues) { 3760 SDValue Val = getValue(Op1); 3761 for (; i != LinearIndex + NumValValues; ++i) 3762 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3763 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3764 } 3765 // Copy remaining value(s) from the original aggregate. 3766 for (; i != NumAggValues; ++i) 3767 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3768 SDValue(Agg.getNode(), Agg.getResNo() + i); 3769 3770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3771 DAG.getVTList(AggValueVTs), Values)); 3772 } 3773 3774 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3775 ArrayRef<unsigned> Indices; 3776 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3777 Indices = EV->getIndices(); 3778 else 3779 Indices = cast<ConstantExpr>(&I)->getIndices(); 3780 3781 const Value *Op0 = I.getOperand(0); 3782 Type *AggTy = Op0->getType(); 3783 Type *ValTy = I.getType(); 3784 bool OutOfUndef = isa<UndefValue>(Op0); 3785 3786 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3787 3788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3789 SmallVector<EVT, 4> ValValueVTs; 3790 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3791 3792 unsigned NumValValues = ValValueVTs.size(); 3793 3794 // Ignore a extractvalue that produces an empty object 3795 if (!NumValValues) { 3796 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3797 return; 3798 } 3799 3800 SmallVector<SDValue, 4> Values(NumValValues); 3801 3802 SDValue Agg = getValue(Op0); 3803 // Copy out the selected value(s). 3804 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3805 Values[i - LinearIndex] = 3806 OutOfUndef ? 3807 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3808 SDValue(Agg.getNode(), Agg.getResNo() + i); 3809 3810 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3811 DAG.getVTList(ValValueVTs), Values)); 3812 } 3813 3814 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3815 Value *Op0 = I.getOperand(0); 3816 // Note that the pointer operand may be a vector of pointers. Take the scalar 3817 // element which holds a pointer. 3818 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3819 SDValue N = getValue(Op0); 3820 SDLoc dl = getCurSDLoc(); 3821 auto &TLI = DAG.getTargetLoweringInfo(); 3822 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3823 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3824 3825 // Normalize Vector GEP - all scalar operands should be converted to the 3826 // splat vector. 3827 unsigned VectorWidth = I.getType()->isVectorTy() ? 3828 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3829 3830 if (VectorWidth && !N.getValueType().isVector()) { 3831 LLVMContext &Context = *DAG.getContext(); 3832 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3833 N = DAG.getSplatBuildVector(VT, dl, N); 3834 } 3835 3836 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3837 GTI != E; ++GTI) { 3838 const Value *Idx = GTI.getOperand(); 3839 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3840 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3841 if (Field) { 3842 // N = N + Offset 3843 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3844 3845 // In an inbounds GEP with an offset that is nonnegative even when 3846 // interpreted as signed, assume there is no unsigned overflow. 3847 SDNodeFlags Flags; 3848 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3849 Flags.setNoUnsignedWrap(true); 3850 3851 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3852 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3853 } 3854 } else { 3855 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3856 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3857 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3858 3859 // If this is a scalar constant or a splat vector of constants, 3860 // handle it quickly. 3861 const auto *CI = dyn_cast<ConstantInt>(Idx); 3862 if (!CI && isa<ConstantDataVector>(Idx) && 3863 cast<ConstantDataVector>(Idx)->getSplatValue()) 3864 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3865 3866 if (CI) { 3867 if (CI->isZero()) 3868 continue; 3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3870 LLVMContext &Context = *DAG.getContext(); 3871 SDValue OffsVal = VectorWidth ? 3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3873 DAG.getConstant(Offs, dl, IdxTy); 3874 3875 // In an inbouds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3882 3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3884 continue; 3885 } 3886 3887 // N = N + Idx * ElementSize; 3888 SDValue IdxN = getValue(Idx); 3889 3890 if (!IdxN.getValueType().isVector() && VectorWidth) { 3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3893 } 3894 3895 // If the index is smaller or larger than intptr_t, truncate or extend 3896 // it. 3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3898 3899 // If this is a multiply by a power of two, turn it into a shl 3900 // immediately. This is a very common case. 3901 if (ElementSize != 1) { 3902 if (ElementSize.isPowerOf2()) { 3903 unsigned Amt = ElementSize.logBase2(); 3904 IdxN = DAG.getNode(ISD::SHL, dl, 3905 N.getValueType(), IdxN, 3906 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3907 } else { 3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3909 IdxN.getValueType()); 3910 IdxN = DAG.getNode(ISD::MUL, dl, 3911 N.getValueType(), IdxN, Scale); 3912 } 3913 } 3914 3915 N = DAG.getNode(ISD::ADD, dl, 3916 N.getValueType(), N, IdxN); 3917 } 3918 } 3919 3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3922 3923 setValue(&I, N); 3924 } 3925 3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3927 // If this is a fixed sized alloca in the entry block of the function, 3928 // allocate it statically on the stack. 3929 if (FuncInfo.StaticAllocaMap.count(&I)) 3930 return; // getValue will auto-populate this. 3931 3932 SDLoc dl = getCurSDLoc(); 3933 Type *Ty = I.getAllocatedType(); 3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3935 auto &DL = DAG.getDataLayout(); 3936 uint64_t TySize = DL.getTypeAllocSize(Ty); 3937 unsigned Align = 3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3939 3940 SDValue AllocSize = getValue(I.getArraySize()); 3941 3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3943 if (AllocSize.getValueType() != IntPtr) 3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3945 3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3947 AllocSize, 3948 DAG.getConstant(TySize, dl, IntPtr)); 3949 3950 // Handle alignment. If the requested alignment is less than or equal to 3951 // the stack alignment, ignore it. If the size is greater than or equal to 3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3953 unsigned StackAlign = 3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3955 if (Align <= StackAlign) 3956 Align = 0; 3957 3958 // Round the size of the allocation up to the stack alignment size 3959 // by add SA-1 to the size. This doesn't overflow because we're computing 3960 // an address inside an alloca. 3961 SDNodeFlags Flags; 3962 Flags.setNoUnsignedWrap(true); 3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3965 3966 // Mask out the low bits for alignment purposes. 3967 AllocSize = 3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3970 3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3974 setValue(&I, DSA); 3975 DAG.setRoot(DSA.getValue(1)); 3976 3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3978 } 3979 3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3981 if (I.isAtomic()) 3982 return visitAtomicLoad(I); 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const Value *SV = I.getOperand(0); 3986 if (TLI.supportSwiftError()) { 3987 // Swifterror values can come from either a function parameter with 3988 // swifterror attribute or an alloca with swifterror attribute. 3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3990 if (Arg->hasSwiftErrorAttr()) 3991 return visitLoadFromSwiftError(I); 3992 } 3993 3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3995 if (Alloca->isSwiftError()) 3996 return visitLoadFromSwiftError(I); 3997 } 3998 } 3999 4000 SDValue Ptr = getValue(SV); 4001 4002 Type *Ty = I.getType(); 4003 4004 bool isVolatile = I.isVolatile(); 4005 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4006 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4007 bool isDereferenceable = 4008 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4009 unsigned Alignment = I.getAlignment(); 4010 4011 AAMDNodes AAInfo; 4012 I.getAAMetadata(AAInfo); 4013 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4014 4015 SmallVector<EVT, 4> ValueVTs, MemVTs; 4016 SmallVector<uint64_t, 4> Offsets; 4017 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4018 unsigned NumValues = ValueVTs.size(); 4019 if (NumValues == 0) 4020 return; 4021 4022 SDValue Root; 4023 bool ConstantMemory = false; 4024 if (isVolatile || NumValues > MaxParallelChains) 4025 // Serialize volatile loads with other side effects. 4026 Root = getRoot(); 4027 else if (AA && 4028 AA->pointsToConstantMemory(MemoryLocation( 4029 SV, 4030 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4031 AAInfo))) { 4032 // Do not serialize (non-volatile) loads of constant memory with anything. 4033 Root = DAG.getEntryNode(); 4034 ConstantMemory = true; 4035 } else { 4036 // Do not serialize non-volatile loads against each other. 4037 Root = DAG.getRoot(); 4038 } 4039 4040 SDLoc dl = getCurSDLoc(); 4041 4042 if (isVolatile) 4043 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4044 4045 // An aggregate load cannot wrap around the address space, so offsets to its 4046 // parts don't wrap either. 4047 SDNodeFlags Flags; 4048 Flags.setNoUnsignedWrap(true); 4049 4050 SmallVector<SDValue, 4> Values(NumValues); 4051 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4052 EVT PtrVT = Ptr.getValueType(); 4053 unsigned ChainI = 0; 4054 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4055 // Serializing loads here may result in excessive register pressure, and 4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4057 // could recover a bit by hoisting nodes upward in the chain by recognizing 4058 // they are side-effect free or do not alias. The optimizer should really 4059 // avoid this case by converting large object/array copies to llvm.memcpy 4060 // (MaxParallelChains should always remain as failsafe). 4061 if (ChainI == MaxParallelChains) { 4062 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4063 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4064 makeArrayRef(Chains.data(), ChainI)); 4065 Root = Chain; 4066 ChainI = 0; 4067 } 4068 SDValue A = DAG.getNode(ISD::ADD, dl, 4069 PtrVT, Ptr, 4070 DAG.getConstant(Offsets[i], dl, PtrVT), 4071 Flags); 4072 auto MMOFlags = MachineMemOperand::MONone; 4073 if (isVolatile) 4074 MMOFlags |= MachineMemOperand::MOVolatile; 4075 if (isNonTemporal) 4076 MMOFlags |= MachineMemOperand::MONonTemporal; 4077 if (isInvariant) 4078 MMOFlags |= MachineMemOperand::MOInvariant; 4079 if (isDereferenceable) 4080 MMOFlags |= MachineMemOperand::MODereferenceable; 4081 MMOFlags |= TLI.getMMOFlags(I); 4082 4083 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4084 MachinePointerInfo(SV, Offsets[i]), Alignment, 4085 MMOFlags, AAInfo, Ranges); 4086 Chains[ChainI] = L.getValue(1); 4087 4088 if (MemVTs[i] != ValueVTs[i]) 4089 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4090 4091 Values[i] = L; 4092 } 4093 4094 if (!ConstantMemory) { 4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4096 makeArrayRef(Chains.data(), ChainI)); 4097 if (isVolatile) 4098 DAG.setRoot(Chain); 4099 else 4100 PendingLoads.push_back(Chain); 4101 } 4102 4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4104 DAG.getVTList(ValueVTs), Values)); 4105 } 4106 4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4108 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4109 "call visitStoreToSwiftError when backend supports swifterror"); 4110 4111 SmallVector<EVT, 4> ValueVTs; 4112 SmallVector<uint64_t, 4> Offsets; 4113 const Value *SrcV = I.getOperand(0); 4114 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4115 SrcV->getType(), ValueVTs, &Offsets); 4116 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4117 "expect a single EVT for swifterror"); 4118 4119 SDValue Src = getValue(SrcV); 4120 // Create a virtual register, then update the virtual register. 4121 unsigned VReg = 4122 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4124 // Chain can be getRoot or getControlRoot. 4125 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4126 SDValue(Src.getNode(), Src.getResNo())); 4127 DAG.setRoot(CopyNode); 4128 } 4129 4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitLoadFromSwiftError when backend supports swifterror"); 4133 4134 assert(!I.isVolatile() && 4135 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4136 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4137 "Support volatile, non temporal, invariant for load_from_swift_error"); 4138 4139 const Value *SV = I.getOperand(0); 4140 Type *Ty = I.getType(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 assert( 4144 (!AA || 4145 !AA->pointsToConstantMemory(MemoryLocation( 4146 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4147 AAInfo))) && 4148 "load_from_swift_error should not be constant memory"); 4149 4150 SmallVector<EVT, 4> ValueVTs; 4151 SmallVector<uint64_t, 4> Offsets; 4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4153 ValueVTs, &Offsets); 4154 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4155 "expect a single EVT for swifterror"); 4156 4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4158 SDValue L = DAG.getCopyFromReg( 4159 getRoot(), getCurSDLoc(), 4160 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4161 4162 setValue(&I, L); 4163 } 4164 4165 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4166 if (I.isAtomic()) 4167 return visitAtomicStore(I); 4168 4169 const Value *SrcV = I.getOperand(0); 4170 const Value *PtrV = I.getOperand(1); 4171 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 if (TLI.supportSwiftError()) { 4174 // Swifterror values can come from either a function parameter with 4175 // swifterror attribute or an alloca with swifterror attribute. 4176 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4177 if (Arg->hasSwiftErrorAttr()) 4178 return visitStoreToSwiftError(I); 4179 } 4180 4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4182 if (Alloca->isSwiftError()) 4183 return visitStoreToSwiftError(I); 4184 } 4185 } 4186 4187 SmallVector<EVT, 4> ValueVTs, MemVTs; 4188 SmallVector<uint64_t, 4> Offsets; 4189 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4190 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4191 unsigned NumValues = ValueVTs.size(); 4192 if (NumValues == 0) 4193 return; 4194 4195 // Get the lowered operands. Note that we do this after 4196 // checking if NumResults is zero, because with zero results 4197 // the operands won't have values in the map. 4198 SDValue Src = getValue(SrcV); 4199 SDValue Ptr = getValue(PtrV); 4200 4201 SDValue Root = getRoot(); 4202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4203 SDLoc dl = getCurSDLoc(); 4204 EVT PtrVT = Ptr.getValueType(); 4205 unsigned Alignment = I.getAlignment(); 4206 AAMDNodes AAInfo; 4207 I.getAAMetadata(AAInfo); 4208 4209 auto MMOFlags = MachineMemOperand::MONone; 4210 if (I.isVolatile()) 4211 MMOFlags |= MachineMemOperand::MOVolatile; 4212 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4213 MMOFlags |= MachineMemOperand::MONonTemporal; 4214 MMOFlags |= TLI.getMMOFlags(I); 4215 4216 // An aggregate load cannot wrap around the address space, so offsets to its 4217 // parts don't wrap either. 4218 SDNodeFlags Flags; 4219 Flags.setNoUnsignedWrap(true); 4220 4221 unsigned ChainI = 0; 4222 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4223 // See visitLoad comments. 4224 if (ChainI == MaxParallelChains) { 4225 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4226 makeArrayRef(Chains.data(), ChainI)); 4227 Root = Chain; 4228 ChainI = 0; 4229 } 4230 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4231 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4232 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4233 if (MemVTs[i] != ValueVTs[i]) 4234 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4235 SDValue St = 4236 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4237 Alignment, MMOFlags, AAInfo); 4238 Chains[ChainI] = St; 4239 } 4240 4241 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4242 makeArrayRef(Chains.data(), ChainI)); 4243 DAG.setRoot(StoreNode); 4244 } 4245 4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4247 bool IsCompressing) { 4248 SDLoc sdl = getCurSDLoc(); 4249 4250 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4251 unsigned& Alignment) { 4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4253 Src0 = I.getArgOperand(0); 4254 Ptr = I.getArgOperand(1); 4255 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4256 Mask = I.getArgOperand(3); 4257 }; 4258 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4259 unsigned& Alignment) { 4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4261 Src0 = I.getArgOperand(0); 4262 Ptr = I.getArgOperand(1); 4263 Mask = I.getArgOperand(2); 4264 Alignment = 0; 4265 }; 4266 4267 Value *PtrOperand, *MaskOperand, *Src0Operand; 4268 unsigned Alignment; 4269 if (IsCompressing) 4270 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4271 else 4272 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4273 4274 SDValue Ptr = getValue(PtrOperand); 4275 SDValue Src0 = getValue(Src0Operand); 4276 SDValue Mask = getValue(MaskOperand); 4277 4278 EVT VT = Src0.getValueType(); 4279 if (!Alignment) 4280 Alignment = DAG.getEVTAlignment(VT); 4281 4282 AAMDNodes AAInfo; 4283 I.getAAMetadata(AAInfo); 4284 4285 MachineMemOperand *MMO = 4286 DAG.getMachineFunction(). 4287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4288 MachineMemOperand::MOStore, VT.getStoreSize(), 4289 Alignment, AAInfo); 4290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4291 MMO, false /* Truncating */, 4292 IsCompressing); 4293 DAG.setRoot(StoreNode); 4294 setValue(&I, StoreNode); 4295 } 4296 4297 // Get a uniform base for the Gather/Scatter intrinsic. 4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4299 // We try to represent it as a base pointer + vector of indices. 4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4301 // The first operand of the GEP may be a single pointer or a vector of pointers 4302 // Example: 4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4304 // or 4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4307 // 4308 // When the first GEP operand is a single pointer - it is the uniform base we 4309 // are looking for. If first operand of the GEP is a splat vector - we 4310 // extract the splat value and use it as a uniform base. 4311 // In all other cases the function returns 'false'. 4312 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4313 SDValue &Scale, SelectionDAGBuilder* SDB) { 4314 SelectionDAG& DAG = SDB->DAG; 4315 LLVMContext &Context = *DAG.getContext(); 4316 4317 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4318 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4319 if (!GEP) 4320 return false; 4321 4322 const Value *GEPPtr = GEP->getPointerOperand(); 4323 if (!GEPPtr->getType()->isVectorTy()) 4324 Ptr = GEPPtr; 4325 else if (!(Ptr = getSplatValue(GEPPtr))) 4326 return false; 4327 4328 unsigned FinalIndex = GEP->getNumOperands() - 1; 4329 Value *IndexVal = GEP->getOperand(FinalIndex); 4330 4331 // Ensure all the other indices are 0. 4332 for (unsigned i = 1; i < FinalIndex; ++i) { 4333 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4334 if (!C || !C->isZero()) 4335 return false; 4336 } 4337 4338 // The operands of the GEP may be defined in another basic block. 4339 // In this case we'll not find nodes for the operands. 4340 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4341 return false; 4342 4343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4344 const DataLayout &DL = DAG.getDataLayout(); 4345 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4346 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4347 Base = SDB->getValue(Ptr); 4348 Index = SDB->getValue(IndexVal); 4349 4350 if (!Index.getValueType().isVector()) { 4351 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4352 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4353 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4354 } 4355 return true; 4356 } 4357 4358 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4359 SDLoc sdl = getCurSDLoc(); 4360 4361 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4362 const Value *Ptr = I.getArgOperand(1); 4363 SDValue Src0 = getValue(I.getArgOperand(0)); 4364 SDValue Mask = getValue(I.getArgOperand(3)); 4365 EVT VT = Src0.getValueType(); 4366 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4367 if (!Alignment) 4368 Alignment = DAG.getEVTAlignment(VT); 4369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4370 4371 AAMDNodes AAInfo; 4372 I.getAAMetadata(AAInfo); 4373 4374 SDValue Base; 4375 SDValue Index; 4376 SDValue Scale; 4377 const Value *BasePtr = Ptr; 4378 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4379 4380 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4381 MachineMemOperand *MMO = DAG.getMachineFunction(). 4382 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4383 MachineMemOperand::MOStore, VT.getStoreSize(), 4384 Alignment, AAInfo); 4385 if (!UniformBase) { 4386 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4387 Index = getValue(Ptr); 4388 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4389 } 4390 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4391 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4392 Ops, MMO); 4393 DAG.setRoot(Scatter); 4394 setValue(&I, Scatter); 4395 } 4396 4397 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4398 SDLoc sdl = getCurSDLoc(); 4399 4400 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4401 unsigned& Alignment) { 4402 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4403 Ptr = I.getArgOperand(0); 4404 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4405 Mask = I.getArgOperand(2); 4406 Src0 = I.getArgOperand(3); 4407 }; 4408 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4409 unsigned& Alignment) { 4410 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4411 Ptr = I.getArgOperand(0); 4412 Alignment = 0; 4413 Mask = I.getArgOperand(1); 4414 Src0 = I.getArgOperand(2); 4415 }; 4416 4417 Value *PtrOperand, *MaskOperand, *Src0Operand; 4418 unsigned Alignment; 4419 if (IsExpanding) 4420 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4421 else 4422 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4423 4424 SDValue Ptr = getValue(PtrOperand); 4425 SDValue Src0 = getValue(Src0Operand); 4426 SDValue Mask = getValue(MaskOperand); 4427 4428 EVT VT = Src0.getValueType(); 4429 if (!Alignment) 4430 Alignment = DAG.getEVTAlignment(VT); 4431 4432 AAMDNodes AAInfo; 4433 I.getAAMetadata(AAInfo); 4434 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4435 4436 // Do not serialize masked loads of constant memory with anything. 4437 bool AddToChain = 4438 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4439 PtrOperand, 4440 LocationSize::precise( 4441 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4442 AAInfo)); 4443 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4444 4445 MachineMemOperand *MMO = 4446 DAG.getMachineFunction(). 4447 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4448 MachineMemOperand::MOLoad, VT.getStoreSize(), 4449 Alignment, AAInfo, Ranges); 4450 4451 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4452 ISD::NON_EXTLOAD, IsExpanding); 4453 if (AddToChain) 4454 PendingLoads.push_back(Load.getValue(1)); 4455 setValue(&I, Load); 4456 } 4457 4458 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4459 SDLoc sdl = getCurSDLoc(); 4460 4461 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4462 const Value *Ptr = I.getArgOperand(0); 4463 SDValue Src0 = getValue(I.getArgOperand(3)); 4464 SDValue Mask = getValue(I.getArgOperand(2)); 4465 4466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4467 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4468 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4469 if (!Alignment) 4470 Alignment = DAG.getEVTAlignment(VT); 4471 4472 AAMDNodes AAInfo; 4473 I.getAAMetadata(AAInfo); 4474 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4475 4476 SDValue Root = DAG.getRoot(); 4477 SDValue Base; 4478 SDValue Index; 4479 SDValue Scale; 4480 const Value *BasePtr = Ptr; 4481 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4482 bool ConstantMemory = false; 4483 if (UniformBase && AA && 4484 AA->pointsToConstantMemory( 4485 MemoryLocation(BasePtr, 4486 LocationSize::precise( 4487 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4488 AAInfo))) { 4489 // Do not serialize (non-volatile) loads of constant memory with anything. 4490 Root = DAG.getEntryNode(); 4491 ConstantMemory = true; 4492 } 4493 4494 MachineMemOperand *MMO = 4495 DAG.getMachineFunction(). 4496 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4497 MachineMemOperand::MOLoad, VT.getStoreSize(), 4498 Alignment, AAInfo, Ranges); 4499 4500 if (!UniformBase) { 4501 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4502 Index = getValue(Ptr); 4503 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4504 } 4505 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4506 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4507 Ops, MMO); 4508 4509 SDValue OutChain = Gather.getValue(1); 4510 if (!ConstantMemory) 4511 PendingLoads.push_back(OutChain); 4512 setValue(&I, Gather); 4513 } 4514 4515 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4516 SDLoc dl = getCurSDLoc(); 4517 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4518 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4519 SyncScope::ID SSID = I.getSyncScopeID(); 4520 4521 SDValue InChain = getRoot(); 4522 4523 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4524 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4525 4526 auto Alignment = DAG.getEVTAlignment(MemVT); 4527 4528 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4529 if (I.isVolatile()) 4530 Flags |= MachineMemOperand::MOVolatile; 4531 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4532 4533 MachineFunction &MF = DAG.getMachineFunction(); 4534 MachineMemOperand *MMO = 4535 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4536 Flags, MemVT.getStoreSize(), Alignment, 4537 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4538 FailureOrdering); 4539 4540 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4541 dl, MemVT, VTs, InChain, 4542 getValue(I.getPointerOperand()), 4543 getValue(I.getCompareOperand()), 4544 getValue(I.getNewValOperand()), MMO); 4545 4546 SDValue OutChain = L.getValue(2); 4547 4548 setValue(&I, L); 4549 DAG.setRoot(OutChain); 4550 } 4551 4552 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4553 SDLoc dl = getCurSDLoc(); 4554 ISD::NodeType NT; 4555 switch (I.getOperation()) { 4556 default: llvm_unreachable("Unknown atomicrmw operation"); 4557 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4558 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4559 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4560 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4561 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4562 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4563 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4564 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4565 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4566 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4567 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4568 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4569 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4570 } 4571 AtomicOrdering Ordering = I.getOrdering(); 4572 SyncScope::ID SSID = I.getSyncScopeID(); 4573 4574 SDValue InChain = getRoot(); 4575 4576 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4577 auto Alignment = DAG.getEVTAlignment(MemVT); 4578 4579 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4580 if (I.isVolatile()) 4581 Flags |= MachineMemOperand::MOVolatile; 4582 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4583 4584 MachineFunction &MF = DAG.getMachineFunction(); 4585 MachineMemOperand *MMO = 4586 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4587 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4588 nullptr, SSID, Ordering); 4589 4590 SDValue L = 4591 DAG.getAtomic(NT, dl, MemVT, InChain, 4592 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4593 MMO); 4594 4595 SDValue OutChain = L.getValue(1); 4596 4597 setValue(&I, L); 4598 DAG.setRoot(OutChain); 4599 } 4600 4601 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4602 SDLoc dl = getCurSDLoc(); 4603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4604 SDValue Ops[3]; 4605 Ops[0] = getRoot(); 4606 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4607 TLI.getFenceOperandTy(DAG.getDataLayout())); 4608 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4609 TLI.getFenceOperandTy(DAG.getDataLayout())); 4610 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4611 } 4612 4613 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4614 SDLoc dl = getCurSDLoc(); 4615 AtomicOrdering Order = I.getOrdering(); 4616 SyncScope::ID SSID = I.getSyncScopeID(); 4617 4618 SDValue InChain = getRoot(); 4619 4620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4621 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4622 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4623 4624 if (!TLI.supportsUnalignedAtomics() && 4625 I.getAlignment() < MemVT.getSizeInBits() / 8) 4626 report_fatal_error("Cannot generate unaligned atomic load"); 4627 4628 auto Flags = MachineMemOperand::MOLoad; 4629 if (I.isVolatile()) 4630 Flags |= MachineMemOperand::MOVolatile; 4631 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4632 Flags |= MachineMemOperand::MOInvariant; 4633 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4634 DAG.getDataLayout())) 4635 Flags |= MachineMemOperand::MODereferenceable; 4636 4637 Flags |= TLI.getMMOFlags(I); 4638 4639 MachineMemOperand *MMO = 4640 DAG.getMachineFunction(). 4641 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4642 Flags, MemVT.getStoreSize(), 4643 I.getAlignment() ? I.getAlignment() : 4644 DAG.getEVTAlignment(MemVT), 4645 AAMDNodes(), nullptr, SSID, Order); 4646 4647 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4648 SDValue L = 4649 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4650 getValue(I.getPointerOperand()), MMO); 4651 4652 SDValue OutChain = L.getValue(1); 4653 if (MemVT != VT) 4654 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4655 4656 setValue(&I, L); 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4669 EVT MemVT = 4670 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4671 4672 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4673 report_fatal_error("Cannot generate unaligned atomic store"); 4674 4675 auto Flags = MachineMemOperand::MOStore; 4676 if (I.isVolatile()) 4677 Flags |= MachineMemOperand::MOVolatile; 4678 Flags |= TLI.getMMOFlags(I); 4679 4680 MachineFunction &MF = DAG.getMachineFunction(); 4681 MachineMemOperand *MMO = 4682 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4683 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4684 nullptr, SSID, Ordering); 4685 4686 SDValue Val = getValue(I.getValueOperand()); 4687 if (Val.getValueType() != MemVT) 4688 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4689 4690 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4691 getValue(I.getPointerOperand()), Val, MMO); 4692 4693 4694 DAG.setRoot(OutChain); 4695 } 4696 4697 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4698 /// node. 4699 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4700 unsigned Intrinsic) { 4701 // Ignore the callsite's attributes. A specific call site may be marked with 4702 // readnone, but the lowering code will expect the chain based on the 4703 // definition. 4704 const Function *F = I.getCalledFunction(); 4705 bool HasChain = !F->doesNotAccessMemory(); 4706 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4707 4708 // Build the operand list. 4709 SmallVector<SDValue, 8> Ops; 4710 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4711 if (OnlyLoad) { 4712 // We don't need to serialize loads against other loads. 4713 Ops.push_back(DAG.getRoot()); 4714 } else { 4715 Ops.push_back(getRoot()); 4716 } 4717 } 4718 4719 // Info is set by getTgtMemInstrinsic 4720 TargetLowering::IntrinsicInfo Info; 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4723 DAG.getMachineFunction(), 4724 Intrinsic); 4725 4726 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4727 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4728 Info.opc == ISD::INTRINSIC_W_CHAIN) 4729 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4730 TLI.getPointerTy(DAG.getDataLayout()))); 4731 4732 // Add all operands of the call to the operand list. 4733 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4734 SDValue Op = getValue(I.getArgOperand(i)); 4735 Ops.push_back(Op); 4736 } 4737 4738 SmallVector<EVT, 4> ValueVTs; 4739 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4740 4741 if (HasChain) 4742 ValueVTs.push_back(MVT::Other); 4743 4744 SDVTList VTs = DAG.getVTList(ValueVTs); 4745 4746 // Create the node. 4747 SDValue Result; 4748 if (IsTgtIntrinsic) { 4749 // This is target intrinsic that touches memory 4750 AAMDNodes AAInfo; 4751 I.getAAMetadata(AAInfo); 4752 Result = 4753 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4754 MachinePointerInfo(Info.ptrVal, Info.offset), 4755 Info.align, Info.flags, Info.size, AAInfo); 4756 } else if (!HasChain) { 4757 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4758 } else if (!I.getType()->isVoidTy()) { 4759 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4760 } else { 4761 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4762 } 4763 4764 if (HasChain) { 4765 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4766 if (OnlyLoad) 4767 PendingLoads.push_back(Chain); 4768 else 4769 DAG.setRoot(Chain); 4770 } 4771 4772 if (!I.getType()->isVoidTy()) { 4773 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4774 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4775 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4776 } else 4777 Result = lowerRangeToAssertZExt(DAG, I, Result); 4778 4779 setValue(&I, Result); 4780 } 4781 } 4782 4783 /// GetSignificand - Get the significand and build it into a floating-point 4784 /// number with exponent of 1: 4785 /// 4786 /// Op = (Op & 0x007fffff) | 0x3f800000; 4787 /// 4788 /// where Op is the hexadecimal representation of floating point value. 4789 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4790 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4791 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4792 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4793 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4794 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4795 } 4796 4797 /// GetExponent - Get the exponent: 4798 /// 4799 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4800 /// 4801 /// where Op is the hexadecimal representation of floating point value. 4802 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4803 const TargetLowering &TLI, const SDLoc &dl) { 4804 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4805 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4806 SDValue t1 = DAG.getNode( 4807 ISD::SRL, dl, MVT::i32, t0, 4808 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4809 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4810 DAG.getConstant(127, dl, MVT::i32)); 4811 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4812 } 4813 4814 /// getF32Constant - Get 32-bit floating point constant. 4815 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4816 const SDLoc &dl) { 4817 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4818 MVT::f32); 4819 } 4820 4821 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4822 SelectionDAG &DAG) { 4823 // TODO: What fast-math-flags should be set on the floating-point nodes? 4824 4825 // IntegerPartOfX = ((int32_t)(t0); 4826 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4827 4828 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4829 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4830 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4831 4832 // IntegerPartOfX <<= 23; 4833 IntegerPartOfX = DAG.getNode( 4834 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4835 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4836 DAG.getDataLayout()))); 4837 4838 SDValue TwoToFractionalPartOfX; 4839 if (LimitFloatPrecision <= 6) { 4840 // For floating-point precision of 6: 4841 // 4842 // TwoToFractionalPartOfX = 4843 // 0.997535578f + 4844 // (0.735607626f + 0.252464424f * x) * x; 4845 // 4846 // error 0.0144103317, which is 6 bits 4847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4848 getF32Constant(DAG, 0x3e814304, dl)); 4849 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4850 getF32Constant(DAG, 0x3f3c50c8, dl)); 4851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4852 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4853 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4854 } else if (LimitFloatPrecision <= 12) { 4855 // For floating-point precision of 12: 4856 // 4857 // TwoToFractionalPartOfX = 4858 // 0.999892986f + 4859 // (0.696457318f + 4860 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4861 // 4862 // error 0.000107046256, which is 13 to 14 bits 4863 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4864 getF32Constant(DAG, 0x3da235e3, dl)); 4865 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4866 getF32Constant(DAG, 0x3e65b8f3, dl)); 4867 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4868 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4869 getF32Constant(DAG, 0x3f324b07, dl)); 4870 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4871 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4872 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4873 } else { // LimitFloatPrecision <= 18 4874 // For floating-point precision of 18: 4875 // 4876 // TwoToFractionalPartOfX = 4877 // 0.999999982f + 4878 // (0.693148872f + 4879 // (0.240227044f + 4880 // (0.554906021e-1f + 4881 // (0.961591928e-2f + 4882 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4883 // error 2.47208000*10^(-7), which is better than 18 bits 4884 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4885 getF32Constant(DAG, 0x3924b03e, dl)); 4886 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4887 getF32Constant(DAG, 0x3ab24b87, dl)); 4888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4889 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4890 getF32Constant(DAG, 0x3c1d8c17, dl)); 4891 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4892 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4893 getF32Constant(DAG, 0x3d634a1d, dl)); 4894 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4895 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4896 getF32Constant(DAG, 0x3e75fe14, dl)); 4897 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4898 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4899 getF32Constant(DAG, 0x3f317234, dl)); 4900 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4901 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4902 getF32Constant(DAG, 0x3f800000, dl)); 4903 } 4904 4905 // Add the exponent into the result in integer domain. 4906 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4907 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4908 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4909 } 4910 4911 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4912 /// limited-precision mode. 4913 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4914 const TargetLowering &TLI) { 4915 if (Op.getValueType() == MVT::f32 && 4916 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4917 4918 // Put the exponent in the right bit position for later addition to the 4919 // final result: 4920 // 4921 // #define LOG2OFe 1.4426950f 4922 // t0 = Op * LOG2OFe 4923 4924 // TODO: What fast-math-flags should be set here? 4925 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4926 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4927 return getLimitedPrecisionExp2(t0, dl, DAG); 4928 } 4929 4930 // No special expansion. 4931 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4932 } 4933 4934 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4935 /// limited-precision mode. 4936 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4937 const TargetLowering &TLI) { 4938 // TODO: What fast-math-flags should be set on the floating-point nodes? 4939 4940 if (Op.getValueType() == MVT::f32 && 4941 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4942 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4943 4944 // Scale the exponent by log(2) [0.69314718f]. 4945 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4946 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4947 getF32Constant(DAG, 0x3f317218, dl)); 4948 4949 // Get the significand and build it into a floating-point number with 4950 // exponent of 1. 4951 SDValue X = GetSignificand(DAG, Op1, dl); 4952 4953 SDValue LogOfMantissa; 4954 if (LimitFloatPrecision <= 6) { 4955 // For floating-point precision of 6: 4956 // 4957 // LogofMantissa = 4958 // -1.1609546f + 4959 // (1.4034025f - 0.23903021f * x) * x; 4960 // 4961 // error 0.0034276066, which is better than 8 bits 4962 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4963 getF32Constant(DAG, 0xbe74c456, dl)); 4964 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4965 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4966 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4967 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4968 getF32Constant(DAG, 0x3f949a29, dl)); 4969 } else if (LimitFloatPrecision <= 12) { 4970 // For floating-point precision of 12: 4971 // 4972 // LogOfMantissa = 4973 // -1.7417939f + 4974 // (2.8212026f + 4975 // (-1.4699568f + 4976 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4977 // 4978 // error 0.000061011436, which is 14 bits 4979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0xbd67b6d6, dl)); 4981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4982 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4985 getF32Constant(DAG, 0x3fbc278b, dl)); 4986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4988 getF32Constant(DAG, 0x40348e95, dl)); 4989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4990 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4991 getF32Constant(DAG, 0x3fdef31a, dl)); 4992 } else { // LimitFloatPrecision <= 18 4993 // For floating-point precision of 18: 4994 // 4995 // LogOfMantissa = 4996 // -2.1072184f + 4997 // (4.2372794f + 4998 // (-3.7029485f + 4999 // (2.2781945f + 5000 // (-0.87823314f + 5001 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5002 // 5003 // error 0.0000023660568, which is better than 18 bits 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5005 getF32Constant(DAG, 0xbc91e5ac, dl)); 5006 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5007 getF32Constant(DAG, 0x3e4350aa, dl)); 5008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5009 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5010 getF32Constant(DAG, 0x3f60d3e3, dl)); 5011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5012 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5013 getF32Constant(DAG, 0x4011cdf0, dl)); 5014 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5015 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5016 getF32Constant(DAG, 0x406cfd1c, dl)); 5017 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5018 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5019 getF32Constant(DAG, 0x408797cb, dl)); 5020 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5021 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5022 getF32Constant(DAG, 0x4006dcab, dl)); 5023 } 5024 5025 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5026 } 5027 5028 // No special expansion. 5029 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5030 } 5031 5032 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5033 /// limited-precision mode. 5034 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5035 const TargetLowering &TLI) { 5036 // TODO: What fast-math-flags should be set on the floating-point nodes? 5037 5038 if (Op.getValueType() == MVT::f32 && 5039 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5040 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5041 5042 // Get the exponent. 5043 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5044 5045 // Get the significand and build it into a floating-point number with 5046 // exponent of 1. 5047 SDValue X = GetSignificand(DAG, Op1, dl); 5048 5049 // Different possible minimax approximations of significand in 5050 // floating-point for various degrees of accuracy over [1,2]. 5051 SDValue Log2ofMantissa; 5052 if (LimitFloatPrecision <= 6) { 5053 // For floating-point precision of 6: 5054 // 5055 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5056 // 5057 // error 0.0049451742, which is more than 7 bits 5058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5059 getF32Constant(DAG, 0xbeb08fe0, dl)); 5060 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5061 getF32Constant(DAG, 0x40019463, dl)); 5062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5063 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5064 getF32Constant(DAG, 0x3fd6633d, dl)); 5065 } else if (LimitFloatPrecision <= 12) { 5066 // For floating-point precision of 12: 5067 // 5068 // Log2ofMantissa = 5069 // -2.51285454f + 5070 // (4.07009056f + 5071 // (-2.12067489f + 5072 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5073 // 5074 // error 0.0000876136000, which is better than 13 bits 5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5076 getF32Constant(DAG, 0xbda7262e, dl)); 5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5078 getF32Constant(DAG, 0x3f25280b, dl)); 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5081 getF32Constant(DAG, 0x4007b923, dl)); 5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5084 getF32Constant(DAG, 0x40823e2f, dl)); 5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5086 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5087 getF32Constant(DAG, 0x4020d29c, dl)); 5088 } else { // LimitFloatPrecision <= 18 5089 // For floating-point precision of 18: 5090 // 5091 // Log2ofMantissa = 5092 // -3.0400495f + 5093 // (6.1129976f + 5094 // (-5.3420409f + 5095 // (3.2865683f + 5096 // (-1.2669343f + 5097 // (0.27515199f - 5098 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5099 // 5100 // error 0.0000018516, which is better than 18 bits 5101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5102 getF32Constant(DAG, 0xbcd2769e, dl)); 5103 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5104 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5106 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x3fa22ae7, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x40525723, dl)); 5111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5112 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5113 getF32Constant(DAG, 0x40aaf200, dl)); 5114 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5115 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5116 getF32Constant(DAG, 0x40c39dad, dl)); 5117 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5118 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5119 getF32Constant(DAG, 0x4042902c, dl)); 5120 } 5121 5122 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5123 } 5124 5125 // No special expansion. 5126 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5127 } 5128 5129 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5130 /// limited-precision mode. 5131 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5132 const TargetLowering &TLI) { 5133 // TODO: What fast-math-flags should be set on the floating-point nodes? 5134 5135 if (Op.getValueType() == MVT::f32 && 5136 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5137 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5138 5139 // Scale the exponent by log10(2) [0.30102999f]. 5140 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5141 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5142 getF32Constant(DAG, 0x3e9a209a, dl)); 5143 5144 // Get the significand and build it into a floating-point number with 5145 // exponent of 1. 5146 SDValue X = GetSignificand(DAG, Op1, dl); 5147 5148 SDValue Log10ofMantissa; 5149 if (LimitFloatPrecision <= 6) { 5150 // For floating-point precision of 6: 5151 // 5152 // Log10ofMantissa = 5153 // -0.50419619f + 5154 // (0.60948995f - 0.10380950f * x) * x; 5155 // 5156 // error 0.0014886165, which is 6 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbdd49a13, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3f1c0789, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f011300, dl)); 5164 } else if (LimitFloatPrecision <= 12) { 5165 // For floating-point precision of 12: 5166 // 5167 // Log10ofMantissa = 5168 // -0.64831180f + 5169 // (0.91751397f + 5170 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5171 // 5172 // error 0.00019228036, which is better than 12 bits 5173 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5174 getF32Constant(DAG, 0x3d431f31, dl)); 5175 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5176 getF32Constant(DAG, 0x3ea21fb2, dl)); 5177 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5178 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5179 getF32Constant(DAG, 0x3f6ae232, dl)); 5180 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5181 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5182 getF32Constant(DAG, 0x3f25f7c3, dl)); 5183 } else { // LimitFloatPrecision <= 18 5184 // For floating-point precision of 18: 5185 // 5186 // Log10ofMantissa = 5187 // -0.84299375f + 5188 // (1.5327582f + 5189 // (-1.0688956f + 5190 // (0.49102474f + 5191 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5192 // 5193 // error 0.0000037995730, which is better than 18 bits 5194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0x3c5d51ce, dl)); 5196 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5197 getF32Constant(DAG, 0x3e00685a, dl)); 5198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5199 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5200 getF32Constant(DAG, 0x3efb6798, dl)); 5201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5202 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5203 getF32Constant(DAG, 0x3f88d192, dl)); 5204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5205 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5206 getF32Constant(DAG, 0x3fc4316c, dl)); 5207 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5208 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5209 getF32Constant(DAG, 0x3f57ce70, dl)); 5210 } 5211 5212 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5213 } 5214 5215 // No special expansion. 5216 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5217 } 5218 5219 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5220 /// limited-precision mode. 5221 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5222 const TargetLowering &TLI) { 5223 if (Op.getValueType() == MVT::f32 && 5224 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5225 return getLimitedPrecisionExp2(Op, dl, DAG); 5226 5227 // No special expansion. 5228 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5229 } 5230 5231 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5232 /// limited-precision mode with x == 10.0f. 5233 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5234 SelectionDAG &DAG, const TargetLowering &TLI) { 5235 bool IsExp10 = false; 5236 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5237 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5238 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5239 APFloat Ten(10.0f); 5240 IsExp10 = LHSC->isExactlyValue(Ten); 5241 } 5242 } 5243 5244 // TODO: What fast-math-flags should be set on the FMUL node? 5245 if (IsExp10) { 5246 // Put the exponent in the right bit position for later addition to the 5247 // final result: 5248 // 5249 // #define LOG2OF10 3.3219281f 5250 // t0 = Op * LOG2OF10; 5251 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5252 getF32Constant(DAG, 0x40549a78, dl)); 5253 return getLimitedPrecisionExp2(t0, dl, DAG); 5254 } 5255 5256 // No special expansion. 5257 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5258 } 5259 5260 /// ExpandPowI - Expand a llvm.powi intrinsic. 5261 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5262 SelectionDAG &DAG) { 5263 // If RHS is a constant, we can expand this out to a multiplication tree, 5264 // otherwise we end up lowering to a call to __powidf2 (for example). When 5265 // optimizing for size, we only want to do this if the expansion would produce 5266 // a small number of multiplies, otherwise we do the full expansion. 5267 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5268 // Get the exponent as a positive value. 5269 unsigned Val = RHSC->getSExtValue(); 5270 if ((int)Val < 0) Val = -Val; 5271 5272 // powi(x, 0) -> 1.0 5273 if (Val == 0) 5274 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5275 5276 const Function &F = DAG.getMachineFunction().getFunction(); 5277 if (!F.hasOptSize() || 5278 // If optimizing for size, don't insert too many multiplies. 5279 // This inserts up to 5 multiplies. 5280 countPopulation(Val) + Log2_32(Val) < 7) { 5281 // We use the simple binary decomposition method to generate the multiply 5282 // sequence. There are more optimal ways to do this (for example, 5283 // powi(x,15) generates one more multiply than it should), but this has 5284 // the benefit of being both really simple and much better than a libcall. 5285 SDValue Res; // Logically starts equal to 1.0 5286 SDValue CurSquare = LHS; 5287 // TODO: Intrinsics should have fast-math-flags that propagate to these 5288 // nodes. 5289 while (Val) { 5290 if (Val & 1) { 5291 if (Res.getNode()) 5292 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5293 else 5294 Res = CurSquare; // 1.0*CurSquare. 5295 } 5296 5297 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5298 CurSquare, CurSquare); 5299 Val >>= 1; 5300 } 5301 5302 // If the original was negative, invert the result, producing 1/(x*x*x). 5303 if (RHSC->getSExtValue() < 0) 5304 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5305 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5306 return Res; 5307 } 5308 } 5309 5310 // Otherwise, expand to a libcall. 5311 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5312 } 5313 5314 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5315 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5316 void getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5317 const SDValue &N) { 5318 switch (N.getOpcode()) { 5319 case ISD::CopyFromReg: { 5320 SDValue Op = N.getOperand(1); 5321 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5322 Op.getValueType().getSizeInBits()); 5323 return; 5324 } 5325 case ISD::BITCAST: 5326 case ISD::AssertZext: 5327 case ISD::AssertSext: 5328 case ISD::TRUNCATE: 5329 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5330 return; 5331 case ISD::BUILD_PAIR: 5332 case ISD::BUILD_VECTOR: 5333 case ISD::CONCAT_VECTORS: 5334 for (SDValue Op : N->op_values()) 5335 getUnderlyingArgRegs(Regs, Op); 5336 return; 5337 default: 5338 return; 5339 } 5340 } 5341 5342 /// If the DbgValueInst is a dbg_value of a function argument, create the 5343 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5344 /// instruction selection, they will be inserted to the entry BB. 5345 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5346 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5347 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5348 const Argument *Arg = dyn_cast<Argument>(V); 5349 if (!Arg) 5350 return false; 5351 5352 if (!IsDbgDeclare) { 5353 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5354 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5355 // the entry block. 5356 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5357 if (!IsInEntryBlock) 5358 return false; 5359 5360 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5361 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5362 // variable that also is a param. 5363 // 5364 // Although, if we are at the top of the entry block already, we can still 5365 // emit using ArgDbgValue. This might catch some situations when the 5366 // dbg.value refers to an argument that isn't used in the entry block, so 5367 // any CopyToReg node would be optimized out and the only way to express 5368 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5369 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5370 // we should only emit as ArgDbgValue if the Variable is an argument to the 5371 // current function, and the dbg.value intrinsic is found in the entry 5372 // block. 5373 bool VariableIsFunctionInputArg = Variable->isParameter() && 5374 !DL->getInlinedAt(); 5375 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5376 if (!IsInPrologue && !VariableIsFunctionInputArg) 5377 return false; 5378 5379 // Here we assume that a function argument on IR level only can be used to 5380 // describe one input parameter on source level. If we for example have 5381 // source code like this 5382 // 5383 // struct A { long x, y; }; 5384 // void foo(struct A a, long b) { 5385 // ... 5386 // b = a.x; 5387 // ... 5388 // } 5389 // 5390 // and IR like this 5391 // 5392 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5393 // entry: 5394 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5395 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5396 // call void @llvm.dbg.value(metadata i32 %b, "b", 5397 // ... 5398 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5399 // ... 5400 // 5401 // then the last dbg.value is describing a parameter "b" using a value that 5402 // is an argument. But since we already has used %a1 to describe a parameter 5403 // we should not handle that last dbg.value here (that would result in an 5404 // incorrect hoisting of the DBG_VALUE to the function entry). 5405 // Notice that we allow one dbg.value per IR level argument, to accomodate 5406 // for the situation with fragments above. 5407 if (VariableIsFunctionInputArg) { 5408 unsigned ArgNo = Arg->getArgNo(); 5409 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5410 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5411 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5412 return false; 5413 FuncInfo.DescribedArgs.set(ArgNo); 5414 } 5415 } 5416 5417 MachineFunction &MF = DAG.getMachineFunction(); 5418 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5419 5420 bool IsIndirect = false; 5421 Optional<MachineOperand> Op; 5422 // Some arguments' frame index is recorded during argument lowering. 5423 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5424 if (FI != std::numeric_limits<int>::max()) 5425 Op = MachineOperand::CreateFI(FI); 5426 5427 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5428 if (!Op && N.getNode()) { 5429 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5430 Register Reg; 5431 if (ArgRegsAndSizes.size() == 1) 5432 Reg = ArgRegsAndSizes.front().first; 5433 5434 if (Reg && Reg.isVirtual()) { 5435 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5436 Register PR = RegInfo.getLiveInPhysReg(Reg); 5437 if (PR) 5438 Reg = PR; 5439 } 5440 if (Reg) { 5441 Op = MachineOperand::CreateReg(Reg, false); 5442 IsIndirect = IsDbgDeclare; 5443 } 5444 } 5445 5446 if (!Op && N.getNode()) { 5447 // Check if frame index is available. 5448 SDValue LCandidate = peekThroughBitcasts(N); 5449 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5450 if (FrameIndexSDNode *FINode = 5451 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5452 Op = MachineOperand::CreateFI(FINode->getIndex()); 5453 } 5454 5455 if (!Op) { 5456 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5457 auto splitMultiRegDbgValue 5458 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5459 unsigned Offset = 0; 5460 for (auto RegAndSize : SplitRegs) { 5461 auto FragmentExpr = DIExpression::createFragmentExpression( 5462 Expr, Offset, RegAndSize.second); 5463 if (!FragmentExpr) 5464 continue; 5465 FuncInfo.ArgDbgValues.push_back( 5466 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5467 RegAndSize.first, Variable, *FragmentExpr)); 5468 Offset += RegAndSize.second; 5469 } 5470 }; 5471 5472 // Check if ValueMap has reg number. 5473 DenseMap<const Value *, unsigned>::const_iterator 5474 VMI = FuncInfo.ValueMap.find(V); 5475 if (VMI != FuncInfo.ValueMap.end()) { 5476 const auto &TLI = DAG.getTargetLoweringInfo(); 5477 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5478 V->getType(), getABIRegCopyCC(V)); 5479 if (RFV.occupiesMultipleRegs()) { 5480 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5481 return true; 5482 } 5483 5484 Op = MachineOperand::CreateReg(VMI->second, false); 5485 IsIndirect = IsDbgDeclare; 5486 } else if (ArgRegsAndSizes.size() > 1) { 5487 // This was split due to the calling convention, and no virtual register 5488 // mapping exists for the value. 5489 splitMultiRegDbgValue(ArgRegsAndSizes); 5490 return true; 5491 } 5492 } 5493 5494 if (!Op) 5495 return false; 5496 5497 assert(Variable->isValidLocationForIntrinsic(DL) && 5498 "Expected inlined-at fields to agree"); 5499 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5500 FuncInfo.ArgDbgValues.push_back( 5501 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5502 *Op, Variable, Expr)); 5503 5504 return true; 5505 } 5506 5507 /// Return the appropriate SDDbgValue based on N. 5508 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5509 DILocalVariable *Variable, 5510 DIExpression *Expr, 5511 const DebugLoc &dl, 5512 unsigned DbgSDNodeOrder) { 5513 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5514 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5515 // stack slot locations. 5516 // 5517 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5518 // debug values here after optimization: 5519 // 5520 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5521 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5522 // 5523 // Both describe the direct values of their associated variables. 5524 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5525 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5526 } 5527 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5528 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5529 } 5530 5531 // VisualStudio defines setjmp as _setjmp 5532 #if defined(_MSC_VER) && defined(setjmp) && \ 5533 !defined(setjmp_undefined_for_msvc) 5534 # pragma push_macro("setjmp") 5535 # undef setjmp 5536 # define setjmp_undefined_for_msvc 5537 #endif 5538 5539 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5540 switch (Intrinsic) { 5541 case Intrinsic::smul_fix: 5542 return ISD::SMULFIX; 5543 case Intrinsic::umul_fix: 5544 return ISD::UMULFIX; 5545 default: 5546 llvm_unreachable("Unhandled fixed point intrinsic"); 5547 } 5548 } 5549 5550 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5551 const char *FunctionName) { 5552 assert(FunctionName && "FunctionName must not be nullptr"); 5553 SDValue Callee = DAG.getExternalSymbol( 5554 FunctionName, 5555 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5556 LowerCallTo(&I, Callee, I.isTailCall()); 5557 } 5558 5559 /// Lower the call to the specified intrinsic function. 5560 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5561 unsigned Intrinsic) { 5562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5563 SDLoc sdl = getCurSDLoc(); 5564 DebugLoc dl = getCurDebugLoc(); 5565 SDValue Res; 5566 5567 switch (Intrinsic) { 5568 default: 5569 // By default, turn this into a target intrinsic node. 5570 visitTargetIntrinsic(I, Intrinsic); 5571 return; 5572 case Intrinsic::vastart: visitVAStart(I); return; 5573 case Intrinsic::vaend: visitVAEnd(I); return; 5574 case Intrinsic::vacopy: visitVACopy(I); return; 5575 case Intrinsic::returnaddress: 5576 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5577 TLI.getPointerTy(DAG.getDataLayout()), 5578 getValue(I.getArgOperand(0)))); 5579 return; 5580 case Intrinsic::addressofreturnaddress: 5581 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5582 TLI.getPointerTy(DAG.getDataLayout()))); 5583 return; 5584 case Intrinsic::sponentry: 5585 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5586 TLI.getPointerTy(DAG.getDataLayout()))); 5587 return; 5588 case Intrinsic::frameaddress: 5589 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5590 TLI.getPointerTy(DAG.getDataLayout()), 5591 getValue(I.getArgOperand(0)))); 5592 return; 5593 case Intrinsic::read_register: { 5594 Value *Reg = I.getArgOperand(0); 5595 SDValue Chain = getRoot(); 5596 SDValue RegName = 5597 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5598 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5599 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5600 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5601 setValue(&I, Res); 5602 DAG.setRoot(Res.getValue(1)); 5603 return; 5604 } 5605 case Intrinsic::write_register: { 5606 Value *Reg = I.getArgOperand(0); 5607 Value *RegValue = I.getArgOperand(1); 5608 SDValue Chain = getRoot(); 5609 SDValue RegName = 5610 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5611 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5612 RegName, getValue(RegValue))); 5613 return; 5614 } 5615 case Intrinsic::setjmp: 5616 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5617 return; 5618 case Intrinsic::longjmp: 5619 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5620 return; 5621 case Intrinsic::memcpy: { 5622 const auto &MCI = cast<MemCpyInst>(I); 5623 SDValue Op1 = getValue(I.getArgOperand(0)); 5624 SDValue Op2 = getValue(I.getArgOperand(1)); 5625 SDValue Op3 = getValue(I.getArgOperand(2)); 5626 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5627 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5628 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5629 unsigned Align = MinAlign(DstAlign, SrcAlign); 5630 bool isVol = MCI.isVolatile(); 5631 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5632 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5633 // node. 5634 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5635 false, isTC, 5636 MachinePointerInfo(I.getArgOperand(0)), 5637 MachinePointerInfo(I.getArgOperand(1))); 5638 updateDAGForMaybeTailCall(MC); 5639 return; 5640 } 5641 case Intrinsic::memset: { 5642 const auto &MSI = cast<MemSetInst>(I); 5643 SDValue Op1 = getValue(I.getArgOperand(0)); 5644 SDValue Op2 = getValue(I.getArgOperand(1)); 5645 SDValue Op3 = getValue(I.getArgOperand(2)); 5646 // @llvm.memset defines 0 and 1 to both mean no alignment. 5647 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5648 bool isVol = MSI.isVolatile(); 5649 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5650 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5651 isTC, MachinePointerInfo(I.getArgOperand(0))); 5652 updateDAGForMaybeTailCall(MS); 5653 return; 5654 } 5655 case Intrinsic::memmove: { 5656 const auto &MMI = cast<MemMoveInst>(I); 5657 SDValue Op1 = getValue(I.getArgOperand(0)); 5658 SDValue Op2 = getValue(I.getArgOperand(1)); 5659 SDValue Op3 = getValue(I.getArgOperand(2)); 5660 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5661 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5662 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5663 unsigned Align = MinAlign(DstAlign, SrcAlign); 5664 bool isVol = MMI.isVolatile(); 5665 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5666 // FIXME: Support passing different dest/src alignments to the memmove DAG 5667 // node. 5668 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5669 isTC, MachinePointerInfo(I.getArgOperand(0)), 5670 MachinePointerInfo(I.getArgOperand(1))); 5671 updateDAGForMaybeTailCall(MM); 5672 return; 5673 } 5674 case Intrinsic::memcpy_element_unordered_atomic: { 5675 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5676 SDValue Dst = getValue(MI.getRawDest()); 5677 SDValue Src = getValue(MI.getRawSource()); 5678 SDValue Length = getValue(MI.getLength()); 5679 5680 unsigned DstAlign = MI.getDestAlignment(); 5681 unsigned SrcAlign = MI.getSourceAlignment(); 5682 Type *LengthTy = MI.getLength()->getType(); 5683 unsigned ElemSz = MI.getElementSizeInBytes(); 5684 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5685 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5686 SrcAlign, Length, LengthTy, ElemSz, isTC, 5687 MachinePointerInfo(MI.getRawDest()), 5688 MachinePointerInfo(MI.getRawSource())); 5689 updateDAGForMaybeTailCall(MC); 5690 return; 5691 } 5692 case Intrinsic::memmove_element_unordered_atomic: { 5693 auto &MI = cast<AtomicMemMoveInst>(I); 5694 SDValue Dst = getValue(MI.getRawDest()); 5695 SDValue Src = getValue(MI.getRawSource()); 5696 SDValue Length = getValue(MI.getLength()); 5697 5698 unsigned DstAlign = MI.getDestAlignment(); 5699 unsigned SrcAlign = MI.getSourceAlignment(); 5700 Type *LengthTy = MI.getLength()->getType(); 5701 unsigned ElemSz = MI.getElementSizeInBytes(); 5702 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5703 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5704 SrcAlign, Length, LengthTy, ElemSz, isTC, 5705 MachinePointerInfo(MI.getRawDest()), 5706 MachinePointerInfo(MI.getRawSource())); 5707 updateDAGForMaybeTailCall(MC); 5708 return; 5709 } 5710 case Intrinsic::memset_element_unordered_atomic: { 5711 auto &MI = cast<AtomicMemSetInst>(I); 5712 SDValue Dst = getValue(MI.getRawDest()); 5713 SDValue Val = getValue(MI.getValue()); 5714 SDValue Length = getValue(MI.getLength()); 5715 5716 unsigned DstAlign = MI.getDestAlignment(); 5717 Type *LengthTy = MI.getLength()->getType(); 5718 unsigned ElemSz = MI.getElementSizeInBytes(); 5719 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5720 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5721 LengthTy, ElemSz, isTC, 5722 MachinePointerInfo(MI.getRawDest())); 5723 updateDAGForMaybeTailCall(MC); 5724 return; 5725 } 5726 case Intrinsic::dbg_addr: 5727 case Intrinsic::dbg_declare: { 5728 const auto &DI = cast<DbgVariableIntrinsic>(I); 5729 DILocalVariable *Variable = DI.getVariable(); 5730 DIExpression *Expression = DI.getExpression(); 5731 dropDanglingDebugInfo(Variable, Expression); 5732 assert(Variable && "Missing variable"); 5733 5734 // Check if address has undef value. 5735 const Value *Address = DI.getVariableLocation(); 5736 if (!Address || isa<UndefValue>(Address) || 5737 (Address->use_empty() && !isa<Argument>(Address))) { 5738 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5739 return; 5740 } 5741 5742 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5743 5744 // Check if this variable can be described by a frame index, typically 5745 // either as a static alloca or a byval parameter. 5746 int FI = std::numeric_limits<int>::max(); 5747 if (const auto *AI = 5748 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5749 if (AI->isStaticAlloca()) { 5750 auto I = FuncInfo.StaticAllocaMap.find(AI); 5751 if (I != FuncInfo.StaticAllocaMap.end()) 5752 FI = I->second; 5753 } 5754 } else if (const auto *Arg = dyn_cast<Argument>( 5755 Address->stripInBoundsConstantOffsets())) { 5756 FI = FuncInfo.getArgumentFrameIndex(Arg); 5757 } 5758 5759 // llvm.dbg.addr is control dependent and always generates indirect 5760 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5761 // the MachineFunction variable table. 5762 if (FI != std::numeric_limits<int>::max()) { 5763 if (Intrinsic == Intrinsic::dbg_addr) { 5764 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5765 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5766 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5767 } 5768 return; 5769 } 5770 5771 SDValue &N = NodeMap[Address]; 5772 if (!N.getNode() && isa<Argument>(Address)) 5773 // Check unused arguments map. 5774 N = UnusedArgNodeMap[Address]; 5775 SDDbgValue *SDV; 5776 if (N.getNode()) { 5777 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5778 Address = BCI->getOperand(0); 5779 // Parameters are handled specially. 5780 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5781 if (isParameter && FINode) { 5782 // Byval parameter. We have a frame index at this point. 5783 SDV = 5784 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5785 /*IsIndirect*/ true, dl, SDNodeOrder); 5786 } else if (isa<Argument>(Address)) { 5787 // Address is an argument, so try to emit its dbg value using 5788 // virtual register info from the FuncInfo.ValueMap. 5789 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5790 return; 5791 } else { 5792 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5793 true, dl, SDNodeOrder); 5794 } 5795 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5796 } else { 5797 // If Address is an argument then try to emit its dbg value using 5798 // virtual register info from the FuncInfo.ValueMap. 5799 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5800 N)) { 5801 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5802 } 5803 } 5804 return; 5805 } 5806 case Intrinsic::dbg_label: { 5807 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5808 DILabel *Label = DI.getLabel(); 5809 assert(Label && "Missing label"); 5810 5811 SDDbgLabel *SDV; 5812 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5813 DAG.AddDbgLabel(SDV); 5814 return; 5815 } 5816 case Intrinsic::dbg_value: { 5817 const DbgValueInst &DI = cast<DbgValueInst>(I); 5818 assert(DI.getVariable() && "Missing variable"); 5819 5820 DILocalVariable *Variable = DI.getVariable(); 5821 DIExpression *Expression = DI.getExpression(); 5822 dropDanglingDebugInfo(Variable, Expression); 5823 const Value *V = DI.getValue(); 5824 if (!V) 5825 return; 5826 5827 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5828 SDNodeOrder)) 5829 return; 5830 5831 // TODO: Dangling debug info will eventually either be resolved or produce 5832 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5833 // between the original dbg.value location and its resolved DBG_VALUE, which 5834 // we should ideally fill with an extra Undef DBG_VALUE. 5835 5836 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5837 return; 5838 } 5839 5840 case Intrinsic::eh_typeid_for: { 5841 // Find the type id for the given typeinfo. 5842 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5843 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5844 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5845 setValue(&I, Res); 5846 return; 5847 } 5848 5849 case Intrinsic::eh_return_i32: 5850 case Intrinsic::eh_return_i64: 5851 DAG.getMachineFunction().setCallsEHReturn(true); 5852 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5853 MVT::Other, 5854 getControlRoot(), 5855 getValue(I.getArgOperand(0)), 5856 getValue(I.getArgOperand(1)))); 5857 return; 5858 case Intrinsic::eh_unwind_init: 5859 DAG.getMachineFunction().setCallsUnwindInit(true); 5860 return; 5861 case Intrinsic::eh_dwarf_cfa: 5862 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5863 TLI.getPointerTy(DAG.getDataLayout()), 5864 getValue(I.getArgOperand(0)))); 5865 return; 5866 case Intrinsic::eh_sjlj_callsite: { 5867 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5868 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5869 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5870 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5871 5872 MMI.setCurrentCallSite(CI->getZExtValue()); 5873 return; 5874 } 5875 case Intrinsic::eh_sjlj_functioncontext: { 5876 // Get and store the index of the function context. 5877 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5878 AllocaInst *FnCtx = 5879 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5880 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5881 MFI.setFunctionContextIndex(FI); 5882 return; 5883 } 5884 case Intrinsic::eh_sjlj_setjmp: { 5885 SDValue Ops[2]; 5886 Ops[0] = getRoot(); 5887 Ops[1] = getValue(I.getArgOperand(0)); 5888 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5889 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5890 setValue(&I, Op.getValue(0)); 5891 DAG.setRoot(Op.getValue(1)); 5892 return; 5893 } 5894 case Intrinsic::eh_sjlj_longjmp: 5895 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5896 getRoot(), getValue(I.getArgOperand(0)))); 5897 return; 5898 case Intrinsic::eh_sjlj_setup_dispatch: 5899 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5900 getRoot())); 5901 return; 5902 case Intrinsic::masked_gather: 5903 visitMaskedGather(I); 5904 return; 5905 case Intrinsic::masked_load: 5906 visitMaskedLoad(I); 5907 return; 5908 case Intrinsic::masked_scatter: 5909 visitMaskedScatter(I); 5910 return; 5911 case Intrinsic::masked_store: 5912 visitMaskedStore(I); 5913 return; 5914 case Intrinsic::masked_expandload: 5915 visitMaskedLoad(I, true /* IsExpanding */); 5916 return; 5917 case Intrinsic::masked_compressstore: 5918 visitMaskedStore(I, true /* IsCompressing */); 5919 return; 5920 case Intrinsic::x86_mmx_pslli_w: 5921 case Intrinsic::x86_mmx_pslli_d: 5922 case Intrinsic::x86_mmx_pslli_q: 5923 case Intrinsic::x86_mmx_psrli_w: 5924 case Intrinsic::x86_mmx_psrli_d: 5925 case Intrinsic::x86_mmx_psrli_q: 5926 case Intrinsic::x86_mmx_psrai_w: 5927 case Intrinsic::x86_mmx_psrai_d: { 5928 SDValue ShAmt = getValue(I.getArgOperand(1)); 5929 if (isa<ConstantSDNode>(ShAmt)) { 5930 visitTargetIntrinsic(I, Intrinsic); 5931 return; 5932 } 5933 unsigned NewIntrinsic = 0; 5934 EVT ShAmtVT = MVT::v2i32; 5935 switch (Intrinsic) { 5936 case Intrinsic::x86_mmx_pslli_w: 5937 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5938 break; 5939 case Intrinsic::x86_mmx_pslli_d: 5940 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5941 break; 5942 case Intrinsic::x86_mmx_pslli_q: 5943 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5944 break; 5945 case Intrinsic::x86_mmx_psrli_w: 5946 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5947 break; 5948 case Intrinsic::x86_mmx_psrli_d: 5949 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5950 break; 5951 case Intrinsic::x86_mmx_psrli_q: 5952 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5953 break; 5954 case Intrinsic::x86_mmx_psrai_w: 5955 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5956 break; 5957 case Intrinsic::x86_mmx_psrai_d: 5958 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5959 break; 5960 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5961 } 5962 5963 // The vector shift intrinsics with scalars uses 32b shift amounts but 5964 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5965 // to be zero. 5966 // We must do this early because v2i32 is not a legal type. 5967 SDValue ShOps[2]; 5968 ShOps[0] = ShAmt; 5969 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5970 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5971 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5972 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5973 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5974 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5975 getValue(I.getArgOperand(0)), ShAmt); 5976 setValue(&I, Res); 5977 return; 5978 } 5979 case Intrinsic::powi: 5980 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5981 getValue(I.getArgOperand(1)), DAG)); 5982 return; 5983 case Intrinsic::log: 5984 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5985 return; 5986 case Intrinsic::log2: 5987 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5988 return; 5989 case Intrinsic::log10: 5990 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5991 return; 5992 case Intrinsic::exp: 5993 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5994 return; 5995 case Intrinsic::exp2: 5996 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5997 return; 5998 case Intrinsic::pow: 5999 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6000 getValue(I.getArgOperand(1)), DAG, TLI)); 6001 return; 6002 case Intrinsic::sqrt: 6003 case Intrinsic::fabs: 6004 case Intrinsic::sin: 6005 case Intrinsic::cos: 6006 case Intrinsic::floor: 6007 case Intrinsic::ceil: 6008 case Intrinsic::trunc: 6009 case Intrinsic::rint: 6010 case Intrinsic::nearbyint: 6011 case Intrinsic::round: 6012 case Intrinsic::canonicalize: { 6013 unsigned Opcode; 6014 switch (Intrinsic) { 6015 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6016 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6017 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6018 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6019 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6020 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6021 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6022 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6023 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6024 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6025 case Intrinsic::round: Opcode = ISD::FROUND; break; 6026 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6027 } 6028 6029 setValue(&I, DAG.getNode(Opcode, sdl, 6030 getValue(I.getArgOperand(0)).getValueType(), 6031 getValue(I.getArgOperand(0)))); 6032 return; 6033 } 6034 case Intrinsic::lround: 6035 case Intrinsic::llround: 6036 case Intrinsic::lrint: 6037 case Intrinsic::llrint: { 6038 unsigned Opcode; 6039 switch (Intrinsic) { 6040 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6041 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6042 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6043 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6044 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6045 } 6046 6047 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6048 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6049 getValue(I.getArgOperand(0)))); 6050 return; 6051 } 6052 case Intrinsic::minnum: 6053 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6054 getValue(I.getArgOperand(0)).getValueType(), 6055 getValue(I.getArgOperand(0)), 6056 getValue(I.getArgOperand(1)))); 6057 return; 6058 case Intrinsic::maxnum: 6059 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6060 getValue(I.getArgOperand(0)).getValueType(), 6061 getValue(I.getArgOperand(0)), 6062 getValue(I.getArgOperand(1)))); 6063 return; 6064 case Intrinsic::minimum: 6065 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6066 getValue(I.getArgOperand(0)).getValueType(), 6067 getValue(I.getArgOperand(0)), 6068 getValue(I.getArgOperand(1)))); 6069 return; 6070 case Intrinsic::maximum: 6071 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6072 getValue(I.getArgOperand(0)).getValueType(), 6073 getValue(I.getArgOperand(0)), 6074 getValue(I.getArgOperand(1)))); 6075 return; 6076 case Intrinsic::copysign: 6077 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6078 getValue(I.getArgOperand(0)).getValueType(), 6079 getValue(I.getArgOperand(0)), 6080 getValue(I.getArgOperand(1)))); 6081 return; 6082 case Intrinsic::fma: 6083 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6084 getValue(I.getArgOperand(0)).getValueType(), 6085 getValue(I.getArgOperand(0)), 6086 getValue(I.getArgOperand(1)), 6087 getValue(I.getArgOperand(2)))); 6088 return; 6089 case Intrinsic::experimental_constrained_fadd: 6090 case Intrinsic::experimental_constrained_fsub: 6091 case Intrinsic::experimental_constrained_fmul: 6092 case Intrinsic::experimental_constrained_fdiv: 6093 case Intrinsic::experimental_constrained_frem: 6094 case Intrinsic::experimental_constrained_fma: 6095 case Intrinsic::experimental_constrained_fptrunc: 6096 case Intrinsic::experimental_constrained_fpext: 6097 case Intrinsic::experimental_constrained_sqrt: 6098 case Intrinsic::experimental_constrained_pow: 6099 case Intrinsic::experimental_constrained_powi: 6100 case Intrinsic::experimental_constrained_sin: 6101 case Intrinsic::experimental_constrained_cos: 6102 case Intrinsic::experimental_constrained_exp: 6103 case Intrinsic::experimental_constrained_exp2: 6104 case Intrinsic::experimental_constrained_log: 6105 case Intrinsic::experimental_constrained_log10: 6106 case Intrinsic::experimental_constrained_log2: 6107 case Intrinsic::experimental_constrained_rint: 6108 case Intrinsic::experimental_constrained_nearbyint: 6109 case Intrinsic::experimental_constrained_maxnum: 6110 case Intrinsic::experimental_constrained_minnum: 6111 case Intrinsic::experimental_constrained_ceil: 6112 case Intrinsic::experimental_constrained_floor: 6113 case Intrinsic::experimental_constrained_round: 6114 case Intrinsic::experimental_constrained_trunc: 6115 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6116 return; 6117 case Intrinsic::fmuladd: { 6118 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6119 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6120 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6121 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6122 getValue(I.getArgOperand(0)).getValueType(), 6123 getValue(I.getArgOperand(0)), 6124 getValue(I.getArgOperand(1)), 6125 getValue(I.getArgOperand(2)))); 6126 } else { 6127 // TODO: Intrinsic calls should have fast-math-flags. 6128 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1))); 6132 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6133 getValue(I.getArgOperand(0)).getValueType(), 6134 Mul, 6135 getValue(I.getArgOperand(2))); 6136 setValue(&I, Add); 6137 } 6138 return; 6139 } 6140 case Intrinsic::convert_to_fp16: 6141 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6142 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6143 getValue(I.getArgOperand(0)), 6144 DAG.getTargetConstant(0, sdl, 6145 MVT::i32)))); 6146 return; 6147 case Intrinsic::convert_from_fp16: 6148 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6149 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6150 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6151 getValue(I.getArgOperand(0))))); 6152 return; 6153 case Intrinsic::pcmarker: { 6154 SDValue Tmp = getValue(I.getArgOperand(0)); 6155 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6156 return; 6157 } 6158 case Intrinsic::readcyclecounter: { 6159 SDValue Op = getRoot(); 6160 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6161 DAG.getVTList(MVT::i64, MVT::Other), Op); 6162 setValue(&I, Res); 6163 DAG.setRoot(Res.getValue(1)); 6164 return; 6165 } 6166 case Intrinsic::bitreverse: 6167 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6168 getValue(I.getArgOperand(0)).getValueType(), 6169 getValue(I.getArgOperand(0)))); 6170 return; 6171 case Intrinsic::bswap: 6172 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6173 getValue(I.getArgOperand(0)).getValueType(), 6174 getValue(I.getArgOperand(0)))); 6175 return; 6176 case Intrinsic::cttz: { 6177 SDValue Arg = getValue(I.getArgOperand(0)); 6178 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6179 EVT Ty = Arg.getValueType(); 6180 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6181 sdl, Ty, Arg)); 6182 return; 6183 } 6184 case Intrinsic::ctlz: { 6185 SDValue Arg = getValue(I.getArgOperand(0)); 6186 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6187 EVT Ty = Arg.getValueType(); 6188 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6189 sdl, Ty, Arg)); 6190 return; 6191 } 6192 case Intrinsic::ctpop: { 6193 SDValue Arg = getValue(I.getArgOperand(0)); 6194 EVT Ty = Arg.getValueType(); 6195 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6196 return; 6197 } 6198 case Intrinsic::fshl: 6199 case Intrinsic::fshr: { 6200 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6201 SDValue X = getValue(I.getArgOperand(0)); 6202 SDValue Y = getValue(I.getArgOperand(1)); 6203 SDValue Z = getValue(I.getArgOperand(2)); 6204 EVT VT = X.getValueType(); 6205 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6206 SDValue Zero = DAG.getConstant(0, sdl, VT); 6207 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6208 6209 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6210 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6211 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6212 return; 6213 } 6214 6215 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6216 // avoid the select that is necessary in the general case to filter out 6217 // the 0-shift possibility that leads to UB. 6218 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6219 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6220 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6221 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6222 return; 6223 } 6224 6225 // Some targets only rotate one way. Try the opposite direction. 6226 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6227 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6228 // Negate the shift amount because it is safe to ignore the high bits. 6229 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6230 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6231 return; 6232 } 6233 6234 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6235 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6236 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6237 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6238 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6239 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6240 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6241 return; 6242 } 6243 6244 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6245 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6246 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6247 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6248 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6249 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6250 6251 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6252 // and that is undefined. We must compare and select to avoid UB. 6253 EVT CCVT = MVT::i1; 6254 if (VT.isVector()) 6255 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6256 6257 // For fshl, 0-shift returns the 1st arg (X). 6258 // For fshr, 0-shift returns the 2nd arg (Y). 6259 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6260 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6261 return; 6262 } 6263 case Intrinsic::sadd_sat: { 6264 SDValue Op1 = getValue(I.getArgOperand(0)); 6265 SDValue Op2 = getValue(I.getArgOperand(1)); 6266 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6267 return; 6268 } 6269 case Intrinsic::uadd_sat: { 6270 SDValue Op1 = getValue(I.getArgOperand(0)); 6271 SDValue Op2 = getValue(I.getArgOperand(1)); 6272 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6273 return; 6274 } 6275 case Intrinsic::ssub_sat: { 6276 SDValue Op1 = getValue(I.getArgOperand(0)); 6277 SDValue Op2 = getValue(I.getArgOperand(1)); 6278 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6279 return; 6280 } 6281 case Intrinsic::usub_sat: { 6282 SDValue Op1 = getValue(I.getArgOperand(0)); 6283 SDValue Op2 = getValue(I.getArgOperand(1)); 6284 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6285 return; 6286 } 6287 case Intrinsic::smul_fix: 6288 case Intrinsic::umul_fix: { 6289 SDValue Op1 = getValue(I.getArgOperand(0)); 6290 SDValue Op2 = getValue(I.getArgOperand(1)); 6291 SDValue Op3 = getValue(I.getArgOperand(2)); 6292 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6293 Op1.getValueType(), Op1, Op2, Op3)); 6294 return; 6295 } 6296 case Intrinsic::smul_fix_sat: { 6297 SDValue Op1 = getValue(I.getArgOperand(0)); 6298 SDValue Op2 = getValue(I.getArgOperand(1)); 6299 SDValue Op3 = getValue(I.getArgOperand(2)); 6300 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6301 Op3)); 6302 return; 6303 } 6304 case Intrinsic::stacksave: { 6305 SDValue Op = getRoot(); 6306 Res = DAG.getNode( 6307 ISD::STACKSAVE, sdl, 6308 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6309 setValue(&I, Res); 6310 DAG.setRoot(Res.getValue(1)); 6311 return; 6312 } 6313 case Intrinsic::stackrestore: 6314 Res = getValue(I.getArgOperand(0)); 6315 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6316 return; 6317 case Intrinsic::get_dynamic_area_offset: { 6318 SDValue Op = getRoot(); 6319 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6320 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6321 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6322 // target. 6323 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6324 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6325 " intrinsic!"); 6326 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6327 Op); 6328 DAG.setRoot(Op); 6329 setValue(&I, Res); 6330 return; 6331 } 6332 case Intrinsic::stackguard: { 6333 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6334 MachineFunction &MF = DAG.getMachineFunction(); 6335 const Module &M = *MF.getFunction().getParent(); 6336 SDValue Chain = getRoot(); 6337 if (TLI.useLoadStackGuardNode()) { 6338 Res = getLoadStackGuard(DAG, sdl, Chain); 6339 } else { 6340 const Value *Global = TLI.getSDagStackGuard(M); 6341 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6342 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6343 MachinePointerInfo(Global, 0), Align, 6344 MachineMemOperand::MOVolatile); 6345 } 6346 if (TLI.useStackGuardXorFP()) 6347 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6348 DAG.setRoot(Chain); 6349 setValue(&I, Res); 6350 return; 6351 } 6352 case Intrinsic::stackprotector: { 6353 // Emit code into the DAG to store the stack guard onto the stack. 6354 MachineFunction &MF = DAG.getMachineFunction(); 6355 MachineFrameInfo &MFI = MF.getFrameInfo(); 6356 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6357 SDValue Src, Chain = getRoot(); 6358 6359 if (TLI.useLoadStackGuardNode()) 6360 Src = getLoadStackGuard(DAG, sdl, Chain); 6361 else 6362 Src = getValue(I.getArgOperand(0)); // The guard's value. 6363 6364 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6365 6366 int FI = FuncInfo.StaticAllocaMap[Slot]; 6367 MFI.setStackProtectorIndex(FI); 6368 6369 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6370 6371 // Store the stack protector onto the stack. 6372 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6373 DAG.getMachineFunction(), FI), 6374 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6375 setValue(&I, Res); 6376 DAG.setRoot(Res); 6377 return; 6378 } 6379 case Intrinsic::objectsize: { 6380 // If we don't know by now, we're never going to know. 6381 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6382 6383 assert(CI && "Non-constant type in __builtin_object_size?"); 6384 6385 SDValue Arg = getValue(I.getCalledValue()); 6386 EVT Ty = Arg.getValueType(); 6387 6388 if (CI->isZero()) 6389 Res = DAG.getConstant(-1ULL, sdl, Ty); 6390 else 6391 Res = DAG.getConstant(0, sdl, Ty); 6392 6393 setValue(&I, Res); 6394 return; 6395 } 6396 6397 case Intrinsic::is_constant: 6398 // If this wasn't constant-folded away by now, then it's not a 6399 // constant. 6400 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6401 return; 6402 6403 case Intrinsic::annotation: 6404 case Intrinsic::ptr_annotation: 6405 case Intrinsic::launder_invariant_group: 6406 case Intrinsic::strip_invariant_group: 6407 // Drop the intrinsic, but forward the value 6408 setValue(&I, getValue(I.getOperand(0))); 6409 return; 6410 case Intrinsic::assume: 6411 case Intrinsic::var_annotation: 6412 case Intrinsic::sideeffect: 6413 // Discard annotate attributes, assumptions, and artificial side-effects. 6414 return; 6415 6416 case Intrinsic::codeview_annotation: { 6417 // Emit a label associated with this metadata. 6418 MachineFunction &MF = DAG.getMachineFunction(); 6419 MCSymbol *Label = 6420 MF.getMMI().getContext().createTempSymbol("annotation", true); 6421 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6422 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6423 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6424 DAG.setRoot(Res); 6425 return; 6426 } 6427 6428 case Intrinsic::init_trampoline: { 6429 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6430 6431 SDValue Ops[6]; 6432 Ops[0] = getRoot(); 6433 Ops[1] = getValue(I.getArgOperand(0)); 6434 Ops[2] = getValue(I.getArgOperand(1)); 6435 Ops[3] = getValue(I.getArgOperand(2)); 6436 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6437 Ops[5] = DAG.getSrcValue(F); 6438 6439 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6440 6441 DAG.setRoot(Res); 6442 return; 6443 } 6444 case Intrinsic::adjust_trampoline: 6445 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6446 TLI.getPointerTy(DAG.getDataLayout()), 6447 getValue(I.getArgOperand(0)))); 6448 return; 6449 case Intrinsic::gcroot: { 6450 assert(DAG.getMachineFunction().getFunction().hasGC() && 6451 "only valid in functions with gc specified, enforced by Verifier"); 6452 assert(GFI && "implied by previous"); 6453 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6454 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6455 6456 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6457 GFI->addStackRoot(FI->getIndex(), TypeMap); 6458 return; 6459 } 6460 case Intrinsic::gcread: 6461 case Intrinsic::gcwrite: 6462 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6463 case Intrinsic::flt_rounds: 6464 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6465 return; 6466 6467 case Intrinsic::expect: 6468 // Just replace __builtin_expect(exp, c) with EXP. 6469 setValue(&I, getValue(I.getArgOperand(0))); 6470 return; 6471 6472 case Intrinsic::debugtrap: 6473 case Intrinsic::trap: { 6474 StringRef TrapFuncName = 6475 I.getAttributes() 6476 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6477 .getValueAsString(); 6478 if (TrapFuncName.empty()) { 6479 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6480 ISD::TRAP : ISD::DEBUGTRAP; 6481 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6482 return; 6483 } 6484 TargetLowering::ArgListTy Args; 6485 6486 TargetLowering::CallLoweringInfo CLI(DAG); 6487 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6488 CallingConv::C, I.getType(), 6489 DAG.getExternalSymbol(TrapFuncName.data(), 6490 TLI.getPointerTy(DAG.getDataLayout())), 6491 std::move(Args)); 6492 6493 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6494 DAG.setRoot(Result.second); 6495 return; 6496 } 6497 6498 case Intrinsic::uadd_with_overflow: 6499 case Intrinsic::sadd_with_overflow: 6500 case Intrinsic::usub_with_overflow: 6501 case Intrinsic::ssub_with_overflow: 6502 case Intrinsic::umul_with_overflow: 6503 case Intrinsic::smul_with_overflow: { 6504 ISD::NodeType Op; 6505 switch (Intrinsic) { 6506 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6507 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6508 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6509 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6510 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6511 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6512 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6513 } 6514 SDValue Op1 = getValue(I.getArgOperand(0)); 6515 SDValue Op2 = getValue(I.getArgOperand(1)); 6516 6517 EVT ResultVT = Op1.getValueType(); 6518 EVT OverflowVT = MVT::i1; 6519 if (ResultVT.isVector()) 6520 OverflowVT = EVT::getVectorVT( 6521 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6522 6523 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6524 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6525 return; 6526 } 6527 case Intrinsic::prefetch: { 6528 SDValue Ops[5]; 6529 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6530 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6531 Ops[0] = DAG.getRoot(); 6532 Ops[1] = getValue(I.getArgOperand(0)); 6533 Ops[2] = getValue(I.getArgOperand(1)); 6534 Ops[3] = getValue(I.getArgOperand(2)); 6535 Ops[4] = getValue(I.getArgOperand(3)); 6536 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6537 DAG.getVTList(MVT::Other), Ops, 6538 EVT::getIntegerVT(*Context, 8), 6539 MachinePointerInfo(I.getArgOperand(0)), 6540 0, /* align */ 6541 Flags); 6542 6543 // Chain the prefetch in parallell with any pending loads, to stay out of 6544 // the way of later optimizations. 6545 PendingLoads.push_back(Result); 6546 Result = getRoot(); 6547 DAG.setRoot(Result); 6548 return; 6549 } 6550 case Intrinsic::lifetime_start: 6551 case Intrinsic::lifetime_end: { 6552 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6553 // Stack coloring is not enabled in O0, discard region information. 6554 if (TM.getOptLevel() == CodeGenOpt::None) 6555 return; 6556 6557 const int64_t ObjectSize = 6558 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6559 Value *const ObjectPtr = I.getArgOperand(1); 6560 SmallVector<const Value *, 4> Allocas; 6561 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6562 6563 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6564 E = Allocas.end(); Object != E; ++Object) { 6565 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6566 6567 // Could not find an Alloca. 6568 if (!LifetimeObject) 6569 continue; 6570 6571 // First check that the Alloca is static, otherwise it won't have a 6572 // valid frame index. 6573 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6574 if (SI == FuncInfo.StaticAllocaMap.end()) 6575 return; 6576 6577 const int FrameIndex = SI->second; 6578 int64_t Offset; 6579 if (GetPointerBaseWithConstantOffset( 6580 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6581 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6582 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6583 Offset); 6584 DAG.setRoot(Res); 6585 } 6586 return; 6587 } 6588 case Intrinsic::invariant_start: 6589 // Discard region information. 6590 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6591 return; 6592 case Intrinsic::invariant_end: 6593 // Discard region information. 6594 return; 6595 case Intrinsic::clear_cache: 6596 /// FunctionName may be null. 6597 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6598 lowerCallToExternalSymbol(I, FunctionName); 6599 return; 6600 case Intrinsic::donothing: 6601 // ignore 6602 return; 6603 case Intrinsic::experimental_stackmap: 6604 visitStackmap(I); 6605 return; 6606 case Intrinsic::experimental_patchpoint_void: 6607 case Intrinsic::experimental_patchpoint_i64: 6608 visitPatchpoint(&I); 6609 return; 6610 case Intrinsic::experimental_gc_statepoint: 6611 LowerStatepoint(ImmutableStatepoint(&I)); 6612 return; 6613 case Intrinsic::experimental_gc_result: 6614 visitGCResult(cast<GCResultInst>(I)); 6615 return; 6616 case Intrinsic::experimental_gc_relocate: 6617 visitGCRelocate(cast<GCRelocateInst>(I)); 6618 return; 6619 case Intrinsic::instrprof_increment: 6620 llvm_unreachable("instrprof failed to lower an increment"); 6621 case Intrinsic::instrprof_value_profile: 6622 llvm_unreachable("instrprof failed to lower a value profiling call"); 6623 case Intrinsic::localescape: { 6624 MachineFunction &MF = DAG.getMachineFunction(); 6625 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6626 6627 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6628 // is the same on all targets. 6629 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6630 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6631 if (isa<ConstantPointerNull>(Arg)) 6632 continue; // Skip null pointers. They represent a hole in index space. 6633 AllocaInst *Slot = cast<AllocaInst>(Arg); 6634 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6635 "can only escape static allocas"); 6636 int FI = FuncInfo.StaticAllocaMap[Slot]; 6637 MCSymbol *FrameAllocSym = 6638 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6639 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6640 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6641 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6642 .addSym(FrameAllocSym) 6643 .addFrameIndex(FI); 6644 } 6645 6646 return; 6647 } 6648 6649 case Intrinsic::localrecover: { 6650 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6651 MachineFunction &MF = DAG.getMachineFunction(); 6652 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6653 6654 // Get the symbol that defines the frame offset. 6655 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6656 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6657 unsigned IdxVal = 6658 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6659 MCSymbol *FrameAllocSym = 6660 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6661 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6662 6663 // Create a MCSymbol for the label to avoid any target lowering 6664 // that would make this PC relative. 6665 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6666 SDValue OffsetVal = 6667 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6668 6669 // Add the offset to the FP. 6670 Value *FP = I.getArgOperand(1); 6671 SDValue FPVal = getValue(FP); 6672 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6673 setValue(&I, Add); 6674 6675 return; 6676 } 6677 6678 case Intrinsic::eh_exceptionpointer: 6679 case Intrinsic::eh_exceptioncode: { 6680 // Get the exception pointer vreg, copy from it, and resize it to fit. 6681 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6682 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6683 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6684 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6685 SDValue N = 6686 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6687 if (Intrinsic == Intrinsic::eh_exceptioncode) 6688 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6689 setValue(&I, N); 6690 return; 6691 } 6692 case Intrinsic::xray_customevent: { 6693 // Here we want to make sure that the intrinsic behaves as if it has a 6694 // specific calling convention, and only for x86_64. 6695 // FIXME: Support other platforms later. 6696 const auto &Triple = DAG.getTarget().getTargetTriple(); 6697 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6698 return; 6699 6700 SDLoc DL = getCurSDLoc(); 6701 SmallVector<SDValue, 8> Ops; 6702 6703 // We want to say that we always want the arguments in registers. 6704 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6705 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6706 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6707 SDValue Chain = getRoot(); 6708 Ops.push_back(LogEntryVal); 6709 Ops.push_back(StrSizeVal); 6710 Ops.push_back(Chain); 6711 6712 // We need to enforce the calling convention for the callsite, so that 6713 // argument ordering is enforced correctly, and that register allocation can 6714 // see that some registers may be assumed clobbered and have to preserve 6715 // them across calls to the intrinsic. 6716 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6717 DL, NodeTys, Ops); 6718 SDValue patchableNode = SDValue(MN, 0); 6719 DAG.setRoot(patchableNode); 6720 setValue(&I, patchableNode); 6721 return; 6722 } 6723 case Intrinsic::xray_typedevent: { 6724 // Here we want to make sure that the intrinsic behaves as if it has a 6725 // specific calling convention, and only for x86_64. 6726 // FIXME: Support other platforms later. 6727 const auto &Triple = DAG.getTarget().getTargetTriple(); 6728 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6729 return; 6730 6731 SDLoc DL = getCurSDLoc(); 6732 SmallVector<SDValue, 8> Ops; 6733 6734 // We want to say that we always want the arguments in registers. 6735 // It's unclear to me how manipulating the selection DAG here forces callers 6736 // to provide arguments in registers instead of on the stack. 6737 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6738 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6739 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6740 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6741 SDValue Chain = getRoot(); 6742 Ops.push_back(LogTypeId); 6743 Ops.push_back(LogEntryVal); 6744 Ops.push_back(StrSizeVal); 6745 Ops.push_back(Chain); 6746 6747 // We need to enforce the calling convention for the callsite, so that 6748 // argument ordering is enforced correctly, and that register allocation can 6749 // see that some registers may be assumed clobbered and have to preserve 6750 // them across calls to the intrinsic. 6751 MachineSDNode *MN = DAG.getMachineNode( 6752 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6753 SDValue patchableNode = SDValue(MN, 0); 6754 DAG.setRoot(patchableNode); 6755 setValue(&I, patchableNode); 6756 return; 6757 } 6758 case Intrinsic::experimental_deoptimize: 6759 LowerDeoptimizeCall(&I); 6760 return; 6761 6762 case Intrinsic::experimental_vector_reduce_v2_fadd: 6763 case Intrinsic::experimental_vector_reduce_v2_fmul: 6764 case Intrinsic::experimental_vector_reduce_add: 6765 case Intrinsic::experimental_vector_reduce_mul: 6766 case Intrinsic::experimental_vector_reduce_and: 6767 case Intrinsic::experimental_vector_reduce_or: 6768 case Intrinsic::experimental_vector_reduce_xor: 6769 case Intrinsic::experimental_vector_reduce_smax: 6770 case Intrinsic::experimental_vector_reduce_smin: 6771 case Intrinsic::experimental_vector_reduce_umax: 6772 case Intrinsic::experimental_vector_reduce_umin: 6773 case Intrinsic::experimental_vector_reduce_fmax: 6774 case Intrinsic::experimental_vector_reduce_fmin: 6775 visitVectorReduce(I, Intrinsic); 6776 return; 6777 6778 case Intrinsic::icall_branch_funnel: { 6779 SmallVector<SDValue, 16> Ops; 6780 Ops.push_back(getValue(I.getArgOperand(0))); 6781 6782 int64_t Offset; 6783 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6784 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6785 if (!Base) 6786 report_fatal_error( 6787 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6788 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6789 6790 struct BranchFunnelTarget { 6791 int64_t Offset; 6792 SDValue Target; 6793 }; 6794 SmallVector<BranchFunnelTarget, 8> Targets; 6795 6796 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6797 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6798 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6799 if (ElemBase != Base) 6800 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6801 "to the same GlobalValue"); 6802 6803 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6804 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6805 if (!GA) 6806 report_fatal_error( 6807 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6808 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6809 GA->getGlobal(), getCurSDLoc(), 6810 Val.getValueType(), GA->getOffset())}); 6811 } 6812 llvm::sort(Targets, 6813 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6814 return T1.Offset < T2.Offset; 6815 }); 6816 6817 for (auto &T : Targets) { 6818 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6819 Ops.push_back(T.Target); 6820 } 6821 6822 Ops.push_back(DAG.getRoot()); // Chain 6823 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6824 getCurSDLoc(), MVT::Other, Ops), 6825 0); 6826 DAG.setRoot(N); 6827 setValue(&I, N); 6828 HasTailCall = true; 6829 return; 6830 } 6831 6832 case Intrinsic::wasm_landingpad_index: 6833 // Information this intrinsic contained has been transferred to 6834 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6835 // delete it now. 6836 return; 6837 6838 case Intrinsic::aarch64_settag: 6839 case Intrinsic::aarch64_settag_zero: { 6840 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6841 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6842 SDValue Val = TSI.EmitTargetCodeForSetTag( 6843 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6844 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6845 ZeroMemory); 6846 DAG.setRoot(Val); 6847 setValue(&I, Val); 6848 return; 6849 } 6850 } 6851 } 6852 6853 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6854 const ConstrainedFPIntrinsic &FPI) { 6855 SDLoc sdl = getCurSDLoc(); 6856 unsigned Opcode; 6857 switch (FPI.getIntrinsicID()) { 6858 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6859 case Intrinsic::experimental_constrained_fadd: 6860 Opcode = ISD::STRICT_FADD; 6861 break; 6862 case Intrinsic::experimental_constrained_fsub: 6863 Opcode = ISD::STRICT_FSUB; 6864 break; 6865 case Intrinsic::experimental_constrained_fmul: 6866 Opcode = ISD::STRICT_FMUL; 6867 break; 6868 case Intrinsic::experimental_constrained_fdiv: 6869 Opcode = ISD::STRICT_FDIV; 6870 break; 6871 case Intrinsic::experimental_constrained_frem: 6872 Opcode = ISD::STRICT_FREM; 6873 break; 6874 case Intrinsic::experimental_constrained_fma: 6875 Opcode = ISD::STRICT_FMA; 6876 break; 6877 case Intrinsic::experimental_constrained_fptrunc: 6878 Opcode = ISD::STRICT_FP_ROUND; 6879 break; 6880 case Intrinsic::experimental_constrained_fpext: 6881 Opcode = ISD::STRICT_FP_EXTEND; 6882 break; 6883 case Intrinsic::experimental_constrained_sqrt: 6884 Opcode = ISD::STRICT_FSQRT; 6885 break; 6886 case Intrinsic::experimental_constrained_pow: 6887 Opcode = ISD::STRICT_FPOW; 6888 break; 6889 case Intrinsic::experimental_constrained_powi: 6890 Opcode = ISD::STRICT_FPOWI; 6891 break; 6892 case Intrinsic::experimental_constrained_sin: 6893 Opcode = ISD::STRICT_FSIN; 6894 break; 6895 case Intrinsic::experimental_constrained_cos: 6896 Opcode = ISD::STRICT_FCOS; 6897 break; 6898 case Intrinsic::experimental_constrained_exp: 6899 Opcode = ISD::STRICT_FEXP; 6900 break; 6901 case Intrinsic::experimental_constrained_exp2: 6902 Opcode = ISD::STRICT_FEXP2; 6903 break; 6904 case Intrinsic::experimental_constrained_log: 6905 Opcode = ISD::STRICT_FLOG; 6906 break; 6907 case Intrinsic::experimental_constrained_log10: 6908 Opcode = ISD::STRICT_FLOG10; 6909 break; 6910 case Intrinsic::experimental_constrained_log2: 6911 Opcode = ISD::STRICT_FLOG2; 6912 break; 6913 case Intrinsic::experimental_constrained_rint: 6914 Opcode = ISD::STRICT_FRINT; 6915 break; 6916 case Intrinsic::experimental_constrained_nearbyint: 6917 Opcode = ISD::STRICT_FNEARBYINT; 6918 break; 6919 case Intrinsic::experimental_constrained_maxnum: 6920 Opcode = ISD::STRICT_FMAXNUM; 6921 break; 6922 case Intrinsic::experimental_constrained_minnum: 6923 Opcode = ISD::STRICT_FMINNUM; 6924 break; 6925 case Intrinsic::experimental_constrained_ceil: 6926 Opcode = ISD::STRICT_FCEIL; 6927 break; 6928 case Intrinsic::experimental_constrained_floor: 6929 Opcode = ISD::STRICT_FFLOOR; 6930 break; 6931 case Intrinsic::experimental_constrained_round: 6932 Opcode = ISD::STRICT_FROUND; 6933 break; 6934 case Intrinsic::experimental_constrained_trunc: 6935 Opcode = ISD::STRICT_FTRUNC; 6936 break; 6937 } 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 SDValue Chain = getRoot(); 6940 SmallVector<EVT, 4> ValueVTs; 6941 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6942 ValueVTs.push_back(MVT::Other); // Out chain 6943 6944 SDVTList VTs = DAG.getVTList(ValueVTs); 6945 SDValue Result; 6946 if (Opcode == ISD::STRICT_FP_ROUND) 6947 Result = DAG.getNode(Opcode, sdl, VTs, 6948 { Chain, getValue(FPI.getArgOperand(0)), 6949 DAG.getTargetConstant(0, sdl, 6950 TLI.getPointerTy(DAG.getDataLayout())) }); 6951 else if (FPI.isUnaryOp()) 6952 Result = DAG.getNode(Opcode, sdl, VTs, 6953 { Chain, getValue(FPI.getArgOperand(0)) }); 6954 else if (FPI.isTernaryOp()) 6955 Result = DAG.getNode(Opcode, sdl, VTs, 6956 { Chain, getValue(FPI.getArgOperand(0)), 6957 getValue(FPI.getArgOperand(1)), 6958 getValue(FPI.getArgOperand(2)) }); 6959 else 6960 Result = DAG.getNode(Opcode, sdl, VTs, 6961 { Chain, getValue(FPI.getArgOperand(0)), 6962 getValue(FPI.getArgOperand(1)) }); 6963 6964 if (FPI.getExceptionBehavior() != 6965 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 6966 SDNodeFlags Flags; 6967 Flags.setFPExcept(true); 6968 Result->setFlags(Flags); 6969 } 6970 6971 assert(Result.getNode()->getNumValues() == 2); 6972 SDValue OutChain = Result.getValue(1); 6973 DAG.setRoot(OutChain); 6974 SDValue FPResult = Result.getValue(0); 6975 setValue(&FPI, FPResult); 6976 } 6977 6978 std::pair<SDValue, SDValue> 6979 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6980 const BasicBlock *EHPadBB) { 6981 MachineFunction &MF = DAG.getMachineFunction(); 6982 MachineModuleInfo &MMI = MF.getMMI(); 6983 MCSymbol *BeginLabel = nullptr; 6984 6985 if (EHPadBB) { 6986 // Insert a label before the invoke call to mark the try range. This can be 6987 // used to detect deletion of the invoke via the MachineModuleInfo. 6988 BeginLabel = MMI.getContext().createTempSymbol(); 6989 6990 // For SjLj, keep track of which landing pads go with which invokes 6991 // so as to maintain the ordering of pads in the LSDA. 6992 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6993 if (CallSiteIndex) { 6994 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6995 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6996 6997 // Now that the call site is handled, stop tracking it. 6998 MMI.setCurrentCallSite(0); 6999 } 7000 7001 // Both PendingLoads and PendingExports must be flushed here; 7002 // this call might not return. 7003 (void)getRoot(); 7004 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7005 7006 CLI.setChain(getRoot()); 7007 } 7008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7009 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7010 7011 assert((CLI.IsTailCall || Result.second.getNode()) && 7012 "Non-null chain expected with non-tail call!"); 7013 assert((Result.second.getNode() || !Result.first.getNode()) && 7014 "Null value expected with tail call!"); 7015 7016 if (!Result.second.getNode()) { 7017 // As a special case, a null chain means that a tail call has been emitted 7018 // and the DAG root is already updated. 7019 HasTailCall = true; 7020 7021 // Since there's no actual continuation from this block, nothing can be 7022 // relying on us setting vregs for them. 7023 PendingExports.clear(); 7024 } else { 7025 DAG.setRoot(Result.second); 7026 } 7027 7028 if (EHPadBB) { 7029 // Insert a label at the end of the invoke call to mark the try range. This 7030 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7031 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7032 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7033 7034 // Inform MachineModuleInfo of range. 7035 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7036 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7037 // actually use outlined funclets and their LSDA info style. 7038 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7039 assert(CLI.CS); 7040 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7041 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7042 BeginLabel, EndLabel); 7043 } else if (!isScopedEHPersonality(Pers)) { 7044 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7045 } 7046 } 7047 7048 return Result; 7049 } 7050 7051 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7052 bool isTailCall, 7053 const BasicBlock *EHPadBB) { 7054 auto &DL = DAG.getDataLayout(); 7055 FunctionType *FTy = CS.getFunctionType(); 7056 Type *RetTy = CS.getType(); 7057 7058 TargetLowering::ArgListTy Args; 7059 Args.reserve(CS.arg_size()); 7060 7061 const Value *SwiftErrorVal = nullptr; 7062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7063 7064 // We can't tail call inside a function with a swifterror argument. Lowering 7065 // does not support this yet. It would have to move into the swifterror 7066 // register before the call. 7067 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7068 if (TLI.supportSwiftError() && 7069 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7070 isTailCall = false; 7071 7072 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7073 i != e; ++i) { 7074 TargetLowering::ArgListEntry Entry; 7075 const Value *V = *i; 7076 7077 // Skip empty types 7078 if (V->getType()->isEmptyTy()) 7079 continue; 7080 7081 SDValue ArgNode = getValue(V); 7082 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7083 7084 Entry.setAttributes(&CS, i - CS.arg_begin()); 7085 7086 // Use swifterror virtual register as input to the call. 7087 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7088 SwiftErrorVal = V; 7089 // We find the virtual register for the actual swifterror argument. 7090 // Instead of using the Value, we use the virtual register instead. 7091 Entry.Node = DAG.getRegister( 7092 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7093 EVT(TLI.getPointerTy(DL))); 7094 } 7095 7096 Args.push_back(Entry); 7097 7098 // If we have an explicit sret argument that is an Instruction, (i.e., it 7099 // might point to function-local memory), we can't meaningfully tail-call. 7100 if (Entry.IsSRet && isa<Instruction>(V)) 7101 isTailCall = false; 7102 } 7103 7104 // Check if target-independent constraints permit a tail call here. 7105 // Target-dependent constraints are checked within TLI->LowerCallTo. 7106 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7107 isTailCall = false; 7108 7109 // Disable tail calls if there is an swifterror argument. Targets have not 7110 // been updated to support tail calls. 7111 if (TLI.supportSwiftError() && SwiftErrorVal) 7112 isTailCall = false; 7113 7114 TargetLowering::CallLoweringInfo CLI(DAG); 7115 CLI.setDebugLoc(getCurSDLoc()) 7116 .setChain(getRoot()) 7117 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7118 .setTailCall(isTailCall) 7119 .setConvergent(CS.isConvergent()); 7120 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7121 7122 if (Result.first.getNode()) { 7123 const Instruction *Inst = CS.getInstruction(); 7124 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7125 setValue(Inst, Result.first); 7126 } 7127 7128 // The last element of CLI.InVals has the SDValue for swifterror return. 7129 // Here we copy it to a virtual register and update SwiftErrorMap for 7130 // book-keeping. 7131 if (SwiftErrorVal && TLI.supportSwiftError()) { 7132 // Get the last element of InVals. 7133 SDValue Src = CLI.InVals.back(); 7134 unsigned VReg = SwiftError.getOrCreateVRegDefAt( 7135 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7136 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7137 DAG.setRoot(CopyNode); 7138 } 7139 } 7140 7141 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7142 SelectionDAGBuilder &Builder) { 7143 // Check to see if this load can be trivially constant folded, e.g. if the 7144 // input is from a string literal. 7145 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7146 // Cast pointer to the type we really want to load. 7147 Type *LoadTy = 7148 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7149 if (LoadVT.isVector()) 7150 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7151 7152 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7153 PointerType::getUnqual(LoadTy)); 7154 7155 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7156 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7157 return Builder.getValue(LoadCst); 7158 } 7159 7160 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7161 // still constant memory, the input chain can be the entry node. 7162 SDValue Root; 7163 bool ConstantMemory = false; 7164 7165 // Do not serialize (non-volatile) loads of constant memory with anything. 7166 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7167 Root = Builder.DAG.getEntryNode(); 7168 ConstantMemory = true; 7169 } else { 7170 // Do not serialize non-volatile loads against each other. 7171 Root = Builder.DAG.getRoot(); 7172 } 7173 7174 SDValue Ptr = Builder.getValue(PtrVal); 7175 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7176 Ptr, MachinePointerInfo(PtrVal), 7177 /* Alignment = */ 1); 7178 7179 if (!ConstantMemory) 7180 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7181 return LoadVal; 7182 } 7183 7184 /// Record the value for an instruction that produces an integer result, 7185 /// converting the type where necessary. 7186 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7187 SDValue Value, 7188 bool IsSigned) { 7189 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7190 I.getType(), true); 7191 if (IsSigned) 7192 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7193 else 7194 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7195 setValue(&I, Value); 7196 } 7197 7198 /// See if we can lower a memcmp call into an optimized form. If so, return 7199 /// true and lower it. Otherwise return false, and it will be lowered like a 7200 /// normal call. 7201 /// The caller already checked that \p I calls the appropriate LibFunc with a 7202 /// correct prototype. 7203 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7204 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7205 const Value *Size = I.getArgOperand(2); 7206 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7207 if (CSize && CSize->getZExtValue() == 0) { 7208 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7209 I.getType(), true); 7210 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7211 return true; 7212 } 7213 7214 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7215 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7216 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7217 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7218 if (Res.first.getNode()) { 7219 processIntegerCallValue(I, Res.first, true); 7220 PendingLoads.push_back(Res.second); 7221 return true; 7222 } 7223 7224 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7225 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7226 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7227 return false; 7228 7229 // If the target has a fast compare for the given size, it will return a 7230 // preferred load type for that size. Require that the load VT is legal and 7231 // that the target supports unaligned loads of that type. Otherwise, return 7232 // INVALID. 7233 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7235 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7236 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7237 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7238 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7239 // TODO: Check alignment of src and dest ptrs. 7240 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7241 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7242 if (!TLI.isTypeLegal(LVT) || 7243 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7244 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7245 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7246 } 7247 7248 return LVT; 7249 }; 7250 7251 // This turns into unaligned loads. We only do this if the target natively 7252 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7253 // we'll only produce a small number of byte loads. 7254 MVT LoadVT; 7255 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7256 switch (NumBitsToCompare) { 7257 default: 7258 return false; 7259 case 16: 7260 LoadVT = MVT::i16; 7261 break; 7262 case 32: 7263 LoadVT = MVT::i32; 7264 break; 7265 case 64: 7266 case 128: 7267 case 256: 7268 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7269 break; 7270 } 7271 7272 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7273 return false; 7274 7275 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7276 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7277 7278 // Bitcast to a wide integer type if the loads are vectors. 7279 if (LoadVT.isVector()) { 7280 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7281 LoadL = DAG.getBitcast(CmpVT, LoadL); 7282 LoadR = DAG.getBitcast(CmpVT, LoadR); 7283 } 7284 7285 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7286 processIntegerCallValue(I, Cmp, false); 7287 return true; 7288 } 7289 7290 /// See if we can lower a memchr call into an optimized form. If so, return 7291 /// true and lower it. Otherwise return false, and it will be lowered like a 7292 /// normal call. 7293 /// The caller already checked that \p I calls the appropriate LibFunc with a 7294 /// correct prototype. 7295 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7296 const Value *Src = I.getArgOperand(0); 7297 const Value *Char = I.getArgOperand(1); 7298 const Value *Length = I.getArgOperand(2); 7299 7300 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7301 std::pair<SDValue, SDValue> Res = 7302 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7303 getValue(Src), getValue(Char), getValue(Length), 7304 MachinePointerInfo(Src)); 7305 if (Res.first.getNode()) { 7306 setValue(&I, Res.first); 7307 PendingLoads.push_back(Res.second); 7308 return true; 7309 } 7310 7311 return false; 7312 } 7313 7314 /// See if we can lower a mempcpy call into an optimized form. If so, return 7315 /// true and lower it. Otherwise return false, and it will be lowered like a 7316 /// normal call. 7317 /// The caller already checked that \p I calls the appropriate LibFunc with a 7318 /// correct prototype. 7319 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7320 SDValue Dst = getValue(I.getArgOperand(0)); 7321 SDValue Src = getValue(I.getArgOperand(1)); 7322 SDValue Size = getValue(I.getArgOperand(2)); 7323 7324 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7325 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7326 unsigned Align = std::min(DstAlign, SrcAlign); 7327 if (Align == 0) // Alignment of one or both could not be inferred. 7328 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7329 7330 bool isVol = false; 7331 SDLoc sdl = getCurSDLoc(); 7332 7333 // In the mempcpy context we need to pass in a false value for isTailCall 7334 // because the return pointer needs to be adjusted by the size of 7335 // the copied memory. 7336 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7337 false, /*isTailCall=*/false, 7338 MachinePointerInfo(I.getArgOperand(0)), 7339 MachinePointerInfo(I.getArgOperand(1))); 7340 assert(MC.getNode() != nullptr && 7341 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7342 DAG.setRoot(MC); 7343 7344 // Check if Size needs to be truncated or extended. 7345 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7346 7347 // Adjust return pointer to point just past the last dst byte. 7348 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7349 Dst, Size); 7350 setValue(&I, DstPlusSize); 7351 return true; 7352 } 7353 7354 /// See if we can lower a strcpy call into an optimized form. If so, return 7355 /// true and lower it, otherwise return false and it will be lowered like a 7356 /// normal call. 7357 /// The caller already checked that \p I calls the appropriate LibFunc with a 7358 /// correct prototype. 7359 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7360 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7361 7362 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7363 std::pair<SDValue, SDValue> Res = 7364 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7365 getValue(Arg0), getValue(Arg1), 7366 MachinePointerInfo(Arg0), 7367 MachinePointerInfo(Arg1), isStpcpy); 7368 if (Res.first.getNode()) { 7369 setValue(&I, Res.first); 7370 DAG.setRoot(Res.second); 7371 return true; 7372 } 7373 7374 return false; 7375 } 7376 7377 /// See if we can lower a strcmp call into an optimized form. If so, return 7378 /// true and lower it, otherwise return false and it will be lowered like a 7379 /// normal call. 7380 /// The caller already checked that \p I calls the appropriate LibFunc with a 7381 /// correct prototype. 7382 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7383 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7384 7385 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7386 std::pair<SDValue, SDValue> Res = 7387 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7388 getValue(Arg0), getValue(Arg1), 7389 MachinePointerInfo(Arg0), 7390 MachinePointerInfo(Arg1)); 7391 if (Res.first.getNode()) { 7392 processIntegerCallValue(I, Res.first, true); 7393 PendingLoads.push_back(Res.second); 7394 return true; 7395 } 7396 7397 return false; 7398 } 7399 7400 /// See if we can lower a strlen call into an optimized form. If so, return 7401 /// true and lower it, otherwise return false and it will be lowered like a 7402 /// normal call. 7403 /// The caller already checked that \p I calls the appropriate LibFunc with a 7404 /// correct prototype. 7405 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7406 const Value *Arg0 = I.getArgOperand(0); 7407 7408 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7409 std::pair<SDValue, SDValue> Res = 7410 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7411 getValue(Arg0), MachinePointerInfo(Arg0)); 7412 if (Res.first.getNode()) { 7413 processIntegerCallValue(I, Res.first, false); 7414 PendingLoads.push_back(Res.second); 7415 return true; 7416 } 7417 7418 return false; 7419 } 7420 7421 /// See if we can lower a strnlen call into an optimized form. If so, return 7422 /// true and lower it, otherwise return false and it will be lowered like a 7423 /// normal call. 7424 /// The caller already checked that \p I calls the appropriate LibFunc with a 7425 /// correct prototype. 7426 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7427 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7428 7429 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7430 std::pair<SDValue, SDValue> Res = 7431 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7432 getValue(Arg0), getValue(Arg1), 7433 MachinePointerInfo(Arg0)); 7434 if (Res.first.getNode()) { 7435 processIntegerCallValue(I, Res.first, false); 7436 PendingLoads.push_back(Res.second); 7437 return true; 7438 } 7439 7440 return false; 7441 } 7442 7443 /// See if we can lower a unary floating-point operation into an SDNode with 7444 /// the specified Opcode. If so, return true and lower it, otherwise return 7445 /// false and it will be lowered like a normal call. 7446 /// The caller already checked that \p I calls the appropriate LibFunc with a 7447 /// correct prototype. 7448 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7449 unsigned Opcode) { 7450 // We already checked this call's prototype; verify it doesn't modify errno. 7451 if (!I.onlyReadsMemory()) 7452 return false; 7453 7454 SDValue Tmp = getValue(I.getArgOperand(0)); 7455 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7456 return true; 7457 } 7458 7459 /// See if we can lower a binary floating-point operation into an SDNode with 7460 /// the specified Opcode. If so, return true and lower it. Otherwise return 7461 /// false, and it will be lowered like a normal call. 7462 /// The caller already checked that \p I calls the appropriate LibFunc with a 7463 /// correct prototype. 7464 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7465 unsigned Opcode) { 7466 // We already checked this call's prototype; verify it doesn't modify errno. 7467 if (!I.onlyReadsMemory()) 7468 return false; 7469 7470 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7471 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7472 EVT VT = Tmp0.getValueType(); 7473 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7474 return true; 7475 } 7476 7477 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7478 // Handle inline assembly differently. 7479 if (isa<InlineAsm>(I.getCalledValue())) { 7480 visitInlineAsm(&I); 7481 return; 7482 } 7483 7484 if (Function *F = I.getCalledFunction()) { 7485 if (F->isDeclaration()) { 7486 // Is this an LLVM intrinsic or a target-specific intrinsic? 7487 unsigned IID = F->getIntrinsicID(); 7488 if (!IID) 7489 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7490 IID = II->getIntrinsicID(F); 7491 7492 if (IID) { 7493 visitIntrinsicCall(I, IID); 7494 return; 7495 } 7496 } 7497 7498 // Check for well-known libc/libm calls. If the function is internal, it 7499 // can't be a library call. Don't do the check if marked as nobuiltin for 7500 // some reason or the call site requires strict floating point semantics. 7501 LibFunc Func; 7502 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7503 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7504 LibInfo->hasOptimizedCodeGen(Func)) { 7505 switch (Func) { 7506 default: break; 7507 case LibFunc_copysign: 7508 case LibFunc_copysignf: 7509 case LibFunc_copysignl: 7510 // We already checked this call's prototype; verify it doesn't modify 7511 // errno. 7512 if (I.onlyReadsMemory()) { 7513 SDValue LHS = getValue(I.getArgOperand(0)); 7514 SDValue RHS = getValue(I.getArgOperand(1)); 7515 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7516 LHS.getValueType(), LHS, RHS)); 7517 return; 7518 } 7519 break; 7520 case LibFunc_fabs: 7521 case LibFunc_fabsf: 7522 case LibFunc_fabsl: 7523 if (visitUnaryFloatCall(I, ISD::FABS)) 7524 return; 7525 break; 7526 case LibFunc_fmin: 7527 case LibFunc_fminf: 7528 case LibFunc_fminl: 7529 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7530 return; 7531 break; 7532 case LibFunc_fmax: 7533 case LibFunc_fmaxf: 7534 case LibFunc_fmaxl: 7535 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7536 return; 7537 break; 7538 case LibFunc_sin: 7539 case LibFunc_sinf: 7540 case LibFunc_sinl: 7541 if (visitUnaryFloatCall(I, ISD::FSIN)) 7542 return; 7543 break; 7544 case LibFunc_cos: 7545 case LibFunc_cosf: 7546 case LibFunc_cosl: 7547 if (visitUnaryFloatCall(I, ISD::FCOS)) 7548 return; 7549 break; 7550 case LibFunc_sqrt: 7551 case LibFunc_sqrtf: 7552 case LibFunc_sqrtl: 7553 case LibFunc_sqrt_finite: 7554 case LibFunc_sqrtf_finite: 7555 case LibFunc_sqrtl_finite: 7556 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7557 return; 7558 break; 7559 case LibFunc_floor: 7560 case LibFunc_floorf: 7561 case LibFunc_floorl: 7562 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7563 return; 7564 break; 7565 case LibFunc_nearbyint: 7566 case LibFunc_nearbyintf: 7567 case LibFunc_nearbyintl: 7568 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7569 return; 7570 break; 7571 case LibFunc_ceil: 7572 case LibFunc_ceilf: 7573 case LibFunc_ceill: 7574 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7575 return; 7576 break; 7577 case LibFunc_rint: 7578 case LibFunc_rintf: 7579 case LibFunc_rintl: 7580 if (visitUnaryFloatCall(I, ISD::FRINT)) 7581 return; 7582 break; 7583 case LibFunc_round: 7584 case LibFunc_roundf: 7585 case LibFunc_roundl: 7586 if (visitUnaryFloatCall(I, ISD::FROUND)) 7587 return; 7588 break; 7589 case LibFunc_trunc: 7590 case LibFunc_truncf: 7591 case LibFunc_truncl: 7592 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7593 return; 7594 break; 7595 case LibFunc_log2: 7596 case LibFunc_log2f: 7597 case LibFunc_log2l: 7598 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7599 return; 7600 break; 7601 case LibFunc_exp2: 7602 case LibFunc_exp2f: 7603 case LibFunc_exp2l: 7604 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7605 return; 7606 break; 7607 case LibFunc_memcmp: 7608 if (visitMemCmpCall(I)) 7609 return; 7610 break; 7611 case LibFunc_mempcpy: 7612 if (visitMemPCpyCall(I)) 7613 return; 7614 break; 7615 case LibFunc_memchr: 7616 if (visitMemChrCall(I)) 7617 return; 7618 break; 7619 case LibFunc_strcpy: 7620 if (visitStrCpyCall(I, false)) 7621 return; 7622 break; 7623 case LibFunc_stpcpy: 7624 if (visitStrCpyCall(I, true)) 7625 return; 7626 break; 7627 case LibFunc_strcmp: 7628 if (visitStrCmpCall(I)) 7629 return; 7630 break; 7631 case LibFunc_strlen: 7632 if (visitStrLenCall(I)) 7633 return; 7634 break; 7635 case LibFunc_strnlen: 7636 if (visitStrNLenCall(I)) 7637 return; 7638 break; 7639 } 7640 } 7641 } 7642 7643 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7644 // have to do anything here to lower funclet bundles. 7645 assert(!I.hasOperandBundlesOtherThan( 7646 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7647 "Cannot lower calls with arbitrary operand bundles!"); 7648 7649 SDValue Callee = getValue(I.getCalledValue()); 7650 7651 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7652 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7653 else 7654 // Check if we can potentially perform a tail call. More detailed checking 7655 // is be done within LowerCallTo, after more information about the call is 7656 // known. 7657 LowerCallTo(&I, Callee, I.isTailCall()); 7658 } 7659 7660 namespace { 7661 7662 /// AsmOperandInfo - This contains information for each constraint that we are 7663 /// lowering. 7664 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7665 public: 7666 /// CallOperand - If this is the result output operand or a clobber 7667 /// this is null, otherwise it is the incoming operand to the CallInst. 7668 /// This gets modified as the asm is processed. 7669 SDValue CallOperand; 7670 7671 /// AssignedRegs - If this is a register or register class operand, this 7672 /// contains the set of register corresponding to the operand. 7673 RegsForValue AssignedRegs; 7674 7675 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7676 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7677 } 7678 7679 /// Whether or not this operand accesses memory 7680 bool hasMemory(const TargetLowering &TLI) const { 7681 // Indirect operand accesses access memory. 7682 if (isIndirect) 7683 return true; 7684 7685 for (const auto &Code : Codes) 7686 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7687 return true; 7688 7689 return false; 7690 } 7691 7692 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7693 /// corresponds to. If there is no Value* for this operand, it returns 7694 /// MVT::Other. 7695 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7696 const DataLayout &DL) const { 7697 if (!CallOperandVal) return MVT::Other; 7698 7699 if (isa<BasicBlock>(CallOperandVal)) 7700 return TLI.getPointerTy(DL); 7701 7702 llvm::Type *OpTy = CallOperandVal->getType(); 7703 7704 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7705 // If this is an indirect operand, the operand is a pointer to the 7706 // accessed type. 7707 if (isIndirect) { 7708 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7709 if (!PtrTy) 7710 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7711 OpTy = PtrTy->getElementType(); 7712 } 7713 7714 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7715 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7716 if (STy->getNumElements() == 1) 7717 OpTy = STy->getElementType(0); 7718 7719 // If OpTy is not a single value, it may be a struct/union that we 7720 // can tile with integers. 7721 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7722 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7723 switch (BitSize) { 7724 default: break; 7725 case 1: 7726 case 8: 7727 case 16: 7728 case 32: 7729 case 64: 7730 case 128: 7731 OpTy = IntegerType::get(Context, BitSize); 7732 break; 7733 } 7734 } 7735 7736 return TLI.getValueType(DL, OpTy, true); 7737 } 7738 }; 7739 7740 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7741 7742 } // end anonymous namespace 7743 7744 /// Make sure that the output operand \p OpInfo and its corresponding input 7745 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7746 /// out). 7747 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7748 SDISelAsmOperandInfo &MatchingOpInfo, 7749 SelectionDAG &DAG) { 7750 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7751 return; 7752 7753 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7754 const auto &TLI = DAG.getTargetLoweringInfo(); 7755 7756 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7757 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7758 OpInfo.ConstraintVT); 7759 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7760 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7761 MatchingOpInfo.ConstraintVT); 7762 if ((OpInfo.ConstraintVT.isInteger() != 7763 MatchingOpInfo.ConstraintVT.isInteger()) || 7764 (MatchRC.second != InputRC.second)) { 7765 // FIXME: error out in a more elegant fashion 7766 report_fatal_error("Unsupported asm: input constraint" 7767 " with a matching output constraint of" 7768 " incompatible type!"); 7769 } 7770 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7771 } 7772 7773 /// Get a direct memory input to behave well as an indirect operand. 7774 /// This may introduce stores, hence the need for a \p Chain. 7775 /// \return The (possibly updated) chain. 7776 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7777 SDISelAsmOperandInfo &OpInfo, 7778 SelectionDAG &DAG) { 7779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7780 7781 // If we don't have an indirect input, put it in the constpool if we can, 7782 // otherwise spill it to a stack slot. 7783 // TODO: This isn't quite right. We need to handle these according to 7784 // the addressing mode that the constraint wants. Also, this may take 7785 // an additional register for the computation and we don't want that 7786 // either. 7787 7788 // If the operand is a float, integer, or vector constant, spill to a 7789 // constant pool entry to get its address. 7790 const Value *OpVal = OpInfo.CallOperandVal; 7791 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7792 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7793 OpInfo.CallOperand = DAG.getConstantPool( 7794 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7795 return Chain; 7796 } 7797 7798 // Otherwise, create a stack slot and emit a store to it before the asm. 7799 Type *Ty = OpVal->getType(); 7800 auto &DL = DAG.getDataLayout(); 7801 uint64_t TySize = DL.getTypeAllocSize(Ty); 7802 unsigned Align = DL.getPrefTypeAlignment(Ty); 7803 MachineFunction &MF = DAG.getMachineFunction(); 7804 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7805 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7806 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7807 MachinePointerInfo::getFixedStack(MF, SSFI), 7808 TLI.getMemValueType(DL, Ty)); 7809 OpInfo.CallOperand = StackSlot; 7810 7811 return Chain; 7812 } 7813 7814 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7815 /// specified operand. We prefer to assign virtual registers, to allow the 7816 /// register allocator to handle the assignment process. However, if the asm 7817 /// uses features that we can't model on machineinstrs, we have SDISel do the 7818 /// allocation. This produces generally horrible, but correct, code. 7819 /// 7820 /// OpInfo describes the operand 7821 /// RefOpInfo describes the matching operand if any, the operand otherwise 7822 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7823 SDISelAsmOperandInfo &OpInfo, 7824 SDISelAsmOperandInfo &RefOpInfo) { 7825 LLVMContext &Context = *DAG.getContext(); 7826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7827 7828 MachineFunction &MF = DAG.getMachineFunction(); 7829 SmallVector<unsigned, 4> Regs; 7830 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7831 7832 // No work to do for memory operations. 7833 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7834 return; 7835 7836 // If this is a constraint for a single physreg, or a constraint for a 7837 // register class, find it. 7838 unsigned AssignedReg; 7839 const TargetRegisterClass *RC; 7840 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7841 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7842 // RC is unset only on failure. Return immediately. 7843 if (!RC) 7844 return; 7845 7846 // Get the actual register value type. This is important, because the user 7847 // may have asked for (e.g.) the AX register in i32 type. We need to 7848 // remember that AX is actually i16 to get the right extension. 7849 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7850 7851 if (OpInfo.ConstraintVT != MVT::Other) { 7852 // If this is an FP operand in an integer register (or visa versa), or more 7853 // generally if the operand value disagrees with the register class we plan 7854 // to stick it in, fix the operand type. 7855 // 7856 // If this is an input value, the bitcast to the new type is done now. 7857 // Bitcast for output value is done at the end of visitInlineAsm(). 7858 if ((OpInfo.Type == InlineAsm::isOutput || 7859 OpInfo.Type == InlineAsm::isInput) && 7860 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7861 // Try to convert to the first EVT that the reg class contains. If the 7862 // types are identical size, use a bitcast to convert (e.g. two differing 7863 // vector types). Note: output bitcast is done at the end of 7864 // visitInlineAsm(). 7865 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7866 // Exclude indirect inputs while they are unsupported because the code 7867 // to perform the load is missing and thus OpInfo.CallOperand still 7868 // refers to the input address rather than the pointed-to value. 7869 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7870 OpInfo.CallOperand = 7871 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7872 OpInfo.ConstraintVT = RegVT; 7873 // If the operand is an FP value and we want it in integer registers, 7874 // use the corresponding integer type. This turns an f64 value into 7875 // i64, which can be passed with two i32 values on a 32-bit machine. 7876 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7877 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7878 if (OpInfo.Type == InlineAsm::isInput) 7879 OpInfo.CallOperand = 7880 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7881 OpInfo.ConstraintVT = VT; 7882 } 7883 } 7884 } 7885 7886 // No need to allocate a matching input constraint since the constraint it's 7887 // matching to has already been allocated. 7888 if (OpInfo.isMatchingInputConstraint()) 7889 return; 7890 7891 EVT ValueVT = OpInfo.ConstraintVT; 7892 if (OpInfo.ConstraintVT == MVT::Other) 7893 ValueVT = RegVT; 7894 7895 // Initialize NumRegs. 7896 unsigned NumRegs = 1; 7897 if (OpInfo.ConstraintVT != MVT::Other) 7898 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7899 7900 // If this is a constraint for a specific physical register, like {r17}, 7901 // assign it now. 7902 7903 // If this associated to a specific register, initialize iterator to correct 7904 // place. If virtual, make sure we have enough registers 7905 7906 // Initialize iterator if necessary 7907 TargetRegisterClass::iterator I = RC->begin(); 7908 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7909 7910 // Do not check for single registers. 7911 if (AssignedReg) { 7912 for (; *I != AssignedReg; ++I) 7913 assert(I != RC->end() && "AssignedReg should be member of RC"); 7914 } 7915 7916 for (; NumRegs; --NumRegs, ++I) { 7917 assert(I != RC->end() && "Ran out of registers to allocate!"); 7918 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7919 Regs.push_back(R); 7920 } 7921 7922 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7923 } 7924 7925 static unsigned 7926 findMatchingInlineAsmOperand(unsigned OperandNo, 7927 const std::vector<SDValue> &AsmNodeOperands) { 7928 // Scan until we find the definition we already emitted of this operand. 7929 unsigned CurOp = InlineAsm::Op_FirstOperand; 7930 for (; OperandNo; --OperandNo) { 7931 // Advance to the next operand. 7932 unsigned OpFlag = 7933 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7934 assert((InlineAsm::isRegDefKind(OpFlag) || 7935 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7936 InlineAsm::isMemKind(OpFlag)) && 7937 "Skipped past definitions?"); 7938 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7939 } 7940 return CurOp; 7941 } 7942 7943 namespace { 7944 7945 class ExtraFlags { 7946 unsigned Flags = 0; 7947 7948 public: 7949 explicit ExtraFlags(ImmutableCallSite CS) { 7950 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7951 if (IA->hasSideEffects()) 7952 Flags |= InlineAsm::Extra_HasSideEffects; 7953 if (IA->isAlignStack()) 7954 Flags |= InlineAsm::Extra_IsAlignStack; 7955 if (CS.isConvergent()) 7956 Flags |= InlineAsm::Extra_IsConvergent; 7957 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7958 } 7959 7960 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7961 // Ideally, we would only check against memory constraints. However, the 7962 // meaning of an Other constraint can be target-specific and we can't easily 7963 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7964 // for Other constraints as well. 7965 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7966 OpInfo.ConstraintType == TargetLowering::C_Other) { 7967 if (OpInfo.Type == InlineAsm::isInput) 7968 Flags |= InlineAsm::Extra_MayLoad; 7969 else if (OpInfo.Type == InlineAsm::isOutput) 7970 Flags |= InlineAsm::Extra_MayStore; 7971 else if (OpInfo.Type == InlineAsm::isClobber) 7972 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7973 } 7974 } 7975 7976 unsigned get() const { return Flags; } 7977 }; 7978 7979 } // end anonymous namespace 7980 7981 /// visitInlineAsm - Handle a call to an InlineAsm object. 7982 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7983 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7984 7985 /// ConstraintOperands - Information about all of the constraints. 7986 SDISelAsmOperandInfoVector ConstraintOperands; 7987 7988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7989 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7990 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7991 7992 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7993 // AsmDialect, MayLoad, MayStore). 7994 bool HasSideEffect = IA->hasSideEffects(); 7995 ExtraFlags ExtraInfo(CS); 7996 7997 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7998 unsigned ResNo = 0; // ResNo - The result number of the next output. 7999 for (auto &T : TargetConstraints) { 8000 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8001 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8002 8003 // Compute the value type for each operand. 8004 if (OpInfo.Type == InlineAsm::isInput || 8005 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8006 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8007 8008 // Process the call argument. BasicBlocks are labels, currently appearing 8009 // only in asm's. 8010 const Instruction *I = CS.getInstruction(); 8011 if (isa<CallBrInst>(I) && 8012 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8013 cast<CallBrInst>(I)->getNumIndirectDests())) { 8014 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8015 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8016 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8017 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8018 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8019 } else { 8020 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8021 } 8022 8023 OpInfo.ConstraintVT = 8024 OpInfo 8025 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8026 .getSimpleVT(); 8027 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8028 // The return value of the call is this value. As such, there is no 8029 // corresponding argument. 8030 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8031 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8032 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8033 DAG.getDataLayout(), STy->getElementType(ResNo)); 8034 } else { 8035 assert(ResNo == 0 && "Asm only has one result!"); 8036 OpInfo.ConstraintVT = 8037 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8038 } 8039 ++ResNo; 8040 } else { 8041 OpInfo.ConstraintVT = MVT::Other; 8042 } 8043 8044 if (!HasSideEffect) 8045 HasSideEffect = OpInfo.hasMemory(TLI); 8046 8047 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8048 // FIXME: Could we compute this on OpInfo rather than T? 8049 8050 // Compute the constraint code and ConstraintType to use. 8051 TLI.ComputeConstraintToUse(T, SDValue()); 8052 8053 ExtraInfo.update(T); 8054 } 8055 8056 8057 // We won't need to flush pending loads if this asm doesn't touch 8058 // memory and is nonvolatile. 8059 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8060 8061 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8062 if (IsCallBr) { 8063 // If this is a callbr we need to flush pending exports since inlineasm_br 8064 // is a terminator. We need to do this before nodes are glued to 8065 // the inlineasm_br node. 8066 Chain = getControlRoot(); 8067 } 8068 8069 // Second pass over the constraints: compute which constraint option to use. 8070 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8071 // If this is an output operand with a matching input operand, look up the 8072 // matching input. If their types mismatch, e.g. one is an integer, the 8073 // other is floating point, or their sizes are different, flag it as an 8074 // error. 8075 if (OpInfo.hasMatchingInput()) { 8076 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8077 patchMatchingInput(OpInfo, Input, DAG); 8078 } 8079 8080 // Compute the constraint code and ConstraintType to use. 8081 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8082 8083 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8084 OpInfo.Type == InlineAsm::isClobber) 8085 continue; 8086 8087 // If this is a memory input, and if the operand is not indirect, do what we 8088 // need to provide an address for the memory input. 8089 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8090 !OpInfo.isIndirect) { 8091 assert((OpInfo.isMultipleAlternative || 8092 (OpInfo.Type == InlineAsm::isInput)) && 8093 "Can only indirectify direct input operands!"); 8094 8095 // Memory operands really want the address of the value. 8096 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8097 8098 // There is no longer a Value* corresponding to this operand. 8099 OpInfo.CallOperandVal = nullptr; 8100 8101 // It is now an indirect operand. 8102 OpInfo.isIndirect = true; 8103 } 8104 8105 } 8106 8107 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8108 std::vector<SDValue> AsmNodeOperands; 8109 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8110 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8111 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8112 8113 // If we have a !srcloc metadata node associated with it, we want to attach 8114 // this to the ultimately generated inline asm machineinstr. To do this, we 8115 // pass in the third operand as this (potentially null) inline asm MDNode. 8116 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8117 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8118 8119 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8120 // bits as operand 3. 8121 AsmNodeOperands.push_back(DAG.getTargetConstant( 8122 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8123 8124 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8125 // this, assign virtual and physical registers for inputs and otput. 8126 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8127 // Assign Registers. 8128 SDISelAsmOperandInfo &RefOpInfo = 8129 OpInfo.isMatchingInputConstraint() 8130 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8131 : OpInfo; 8132 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8133 8134 switch (OpInfo.Type) { 8135 case InlineAsm::isOutput: 8136 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8137 (OpInfo.ConstraintType == TargetLowering::C_Other && 8138 OpInfo.isIndirect)) { 8139 unsigned ConstraintID = 8140 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8141 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8142 "Failed to convert memory constraint code to constraint id."); 8143 8144 // Add information to the INLINEASM node to know about this output. 8145 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8146 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8147 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8148 MVT::i32)); 8149 AsmNodeOperands.push_back(OpInfo.CallOperand); 8150 break; 8151 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8152 !OpInfo.isIndirect) || 8153 OpInfo.ConstraintType == TargetLowering::C_Register || 8154 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8155 // Otherwise, this outputs to a register (directly for C_Register / 8156 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8157 // register that we can use. 8158 if (OpInfo.AssignedRegs.Regs.empty()) { 8159 emitInlineAsmError( 8160 CS, "couldn't allocate output register for constraint '" + 8161 Twine(OpInfo.ConstraintCode) + "'"); 8162 return; 8163 } 8164 8165 // Add information to the INLINEASM node to know that this register is 8166 // set. 8167 OpInfo.AssignedRegs.AddInlineAsmOperands( 8168 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8169 : InlineAsm::Kind_RegDef, 8170 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8171 } 8172 break; 8173 8174 case InlineAsm::isInput: { 8175 SDValue InOperandVal = OpInfo.CallOperand; 8176 8177 if (OpInfo.isMatchingInputConstraint()) { 8178 // If this is required to match an output register we have already set, 8179 // just use its register. 8180 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8181 AsmNodeOperands); 8182 unsigned OpFlag = 8183 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8184 if (InlineAsm::isRegDefKind(OpFlag) || 8185 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8186 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8187 if (OpInfo.isIndirect) { 8188 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8189 emitInlineAsmError(CS, "inline asm not supported yet:" 8190 " don't know how to handle tied " 8191 "indirect register inputs"); 8192 return; 8193 } 8194 8195 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8196 SmallVector<unsigned, 4> Regs; 8197 8198 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8199 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8200 MachineRegisterInfo &RegInfo = 8201 DAG.getMachineFunction().getRegInfo(); 8202 for (unsigned i = 0; i != NumRegs; ++i) 8203 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8204 } else { 8205 emitInlineAsmError(CS, "inline asm error: This value type register " 8206 "class is not natively supported!"); 8207 return; 8208 } 8209 8210 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8211 8212 SDLoc dl = getCurSDLoc(); 8213 // Use the produced MatchedRegs object to 8214 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8215 CS.getInstruction()); 8216 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8217 true, OpInfo.getMatchedOperand(), dl, 8218 DAG, AsmNodeOperands); 8219 break; 8220 } 8221 8222 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8223 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8224 "Unexpected number of operands"); 8225 // Add information to the INLINEASM node to know about this input. 8226 // See InlineAsm.h isUseOperandTiedToDef. 8227 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8228 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8229 OpInfo.getMatchedOperand()); 8230 AsmNodeOperands.push_back(DAG.getTargetConstant( 8231 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8232 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8233 break; 8234 } 8235 8236 // Treat indirect 'X' constraint as memory. 8237 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8238 OpInfo.isIndirect) 8239 OpInfo.ConstraintType = TargetLowering::C_Memory; 8240 8241 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8242 std::vector<SDValue> Ops; 8243 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8244 Ops, DAG); 8245 if (Ops.empty()) { 8246 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8247 Twine(OpInfo.ConstraintCode) + "'"); 8248 return; 8249 } 8250 8251 // Add information to the INLINEASM node to know about this input. 8252 unsigned ResOpType = 8253 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8254 AsmNodeOperands.push_back(DAG.getTargetConstant( 8255 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8256 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8257 break; 8258 } 8259 8260 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8261 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8262 assert(InOperandVal.getValueType() == 8263 TLI.getPointerTy(DAG.getDataLayout()) && 8264 "Memory operands expect pointer values"); 8265 8266 unsigned ConstraintID = 8267 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8268 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8269 "Failed to convert memory constraint code to constraint id."); 8270 8271 // Add information to the INLINEASM node to know about this input. 8272 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8273 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8274 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8275 getCurSDLoc(), 8276 MVT::i32)); 8277 AsmNodeOperands.push_back(InOperandVal); 8278 break; 8279 } 8280 8281 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8282 OpInfo.ConstraintType == TargetLowering::C_Register) && 8283 "Unknown constraint type!"); 8284 8285 // TODO: Support this. 8286 if (OpInfo.isIndirect) { 8287 emitInlineAsmError( 8288 CS, "Don't know how to handle indirect register inputs yet " 8289 "for constraint '" + 8290 Twine(OpInfo.ConstraintCode) + "'"); 8291 return; 8292 } 8293 8294 // Copy the input into the appropriate registers. 8295 if (OpInfo.AssignedRegs.Regs.empty()) { 8296 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8297 Twine(OpInfo.ConstraintCode) + "'"); 8298 return; 8299 } 8300 8301 SDLoc dl = getCurSDLoc(); 8302 8303 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8304 Chain, &Flag, CS.getInstruction()); 8305 8306 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8307 dl, DAG, AsmNodeOperands); 8308 break; 8309 } 8310 case InlineAsm::isClobber: 8311 // Add the clobbered value to the operand list, so that the register 8312 // allocator is aware that the physreg got clobbered. 8313 if (!OpInfo.AssignedRegs.Regs.empty()) 8314 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8315 false, 0, getCurSDLoc(), DAG, 8316 AsmNodeOperands); 8317 break; 8318 } 8319 } 8320 8321 // Finish up input operands. Set the input chain and add the flag last. 8322 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8323 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8324 8325 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8326 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8327 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8328 Flag = Chain.getValue(1); 8329 8330 // Do additional work to generate outputs. 8331 8332 SmallVector<EVT, 1> ResultVTs; 8333 SmallVector<SDValue, 1> ResultValues; 8334 SmallVector<SDValue, 8> OutChains; 8335 8336 llvm::Type *CSResultType = CS.getType(); 8337 ArrayRef<Type *> ResultTypes; 8338 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8339 ResultTypes = StructResult->elements(); 8340 else if (!CSResultType->isVoidTy()) 8341 ResultTypes = makeArrayRef(CSResultType); 8342 8343 auto CurResultType = ResultTypes.begin(); 8344 auto handleRegAssign = [&](SDValue V) { 8345 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8346 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8347 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8348 ++CurResultType; 8349 // If the type of the inline asm call site return value is different but has 8350 // same size as the type of the asm output bitcast it. One example of this 8351 // is for vectors with different width / number of elements. This can 8352 // happen for register classes that can contain multiple different value 8353 // types. The preg or vreg allocated may not have the same VT as was 8354 // expected. 8355 // 8356 // This can also happen for a return value that disagrees with the register 8357 // class it is put in, eg. a double in a general-purpose register on a 8358 // 32-bit machine. 8359 if (ResultVT != V.getValueType() && 8360 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8361 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8362 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8363 V.getValueType().isInteger()) { 8364 // If a result value was tied to an input value, the computed result 8365 // may have a wider width than the expected result. Extract the 8366 // relevant portion. 8367 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8368 } 8369 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8370 ResultVTs.push_back(ResultVT); 8371 ResultValues.push_back(V); 8372 }; 8373 8374 // Deal with output operands. 8375 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8376 if (OpInfo.Type == InlineAsm::isOutput) { 8377 SDValue Val; 8378 // Skip trivial output operands. 8379 if (OpInfo.AssignedRegs.Regs.empty()) 8380 continue; 8381 8382 switch (OpInfo.ConstraintType) { 8383 case TargetLowering::C_Register: 8384 case TargetLowering::C_RegisterClass: 8385 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8386 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8387 break; 8388 case TargetLowering::C_Other: 8389 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8390 OpInfo, DAG); 8391 break; 8392 case TargetLowering::C_Memory: 8393 break; // Already handled. 8394 case TargetLowering::C_Unknown: 8395 assert(false && "Unexpected unknown constraint"); 8396 } 8397 8398 // Indirect output manifest as stores. Record output chains. 8399 if (OpInfo.isIndirect) { 8400 const Value *Ptr = OpInfo.CallOperandVal; 8401 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8402 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8403 MachinePointerInfo(Ptr)); 8404 OutChains.push_back(Store); 8405 } else { 8406 // generate CopyFromRegs to associated registers. 8407 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8408 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8409 for (const SDValue &V : Val->op_values()) 8410 handleRegAssign(V); 8411 } else 8412 handleRegAssign(Val); 8413 } 8414 } 8415 } 8416 8417 // Set results. 8418 if (!ResultValues.empty()) { 8419 assert(CurResultType == ResultTypes.end() && 8420 "Mismatch in number of ResultTypes"); 8421 assert(ResultValues.size() == ResultTypes.size() && 8422 "Mismatch in number of output operands in asm result"); 8423 8424 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8425 DAG.getVTList(ResultVTs), ResultValues); 8426 setValue(CS.getInstruction(), V); 8427 } 8428 8429 // Collect store chains. 8430 if (!OutChains.empty()) 8431 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8432 8433 // Only Update Root if inline assembly has a memory effect. 8434 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8435 DAG.setRoot(Chain); 8436 } 8437 8438 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8439 const Twine &Message) { 8440 LLVMContext &Ctx = *DAG.getContext(); 8441 Ctx.emitError(CS.getInstruction(), Message); 8442 8443 // Make sure we leave the DAG in a valid state 8444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8445 SmallVector<EVT, 1> ValueVTs; 8446 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8447 8448 if (ValueVTs.empty()) 8449 return; 8450 8451 SmallVector<SDValue, 1> Ops; 8452 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8453 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8454 8455 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8456 } 8457 8458 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8459 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8460 MVT::Other, getRoot(), 8461 getValue(I.getArgOperand(0)), 8462 DAG.getSrcValue(I.getArgOperand(0)))); 8463 } 8464 8465 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8467 const DataLayout &DL = DAG.getDataLayout(); 8468 SDValue V = DAG.getVAArg( 8469 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8470 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8471 DL.getABITypeAlignment(I.getType())); 8472 DAG.setRoot(V.getValue(1)); 8473 8474 if (I.getType()->isPointerTy()) 8475 V = DAG.getPtrExtOrTrunc( 8476 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8477 setValue(&I, V); 8478 } 8479 8480 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8481 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8482 MVT::Other, getRoot(), 8483 getValue(I.getArgOperand(0)), 8484 DAG.getSrcValue(I.getArgOperand(0)))); 8485 } 8486 8487 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8488 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8489 MVT::Other, getRoot(), 8490 getValue(I.getArgOperand(0)), 8491 getValue(I.getArgOperand(1)), 8492 DAG.getSrcValue(I.getArgOperand(0)), 8493 DAG.getSrcValue(I.getArgOperand(1)))); 8494 } 8495 8496 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8497 const Instruction &I, 8498 SDValue Op) { 8499 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8500 if (!Range) 8501 return Op; 8502 8503 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8504 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8505 return Op; 8506 8507 APInt Lo = CR.getUnsignedMin(); 8508 if (!Lo.isMinValue()) 8509 return Op; 8510 8511 APInt Hi = CR.getUnsignedMax(); 8512 unsigned Bits = std::max(Hi.getActiveBits(), 8513 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8514 8515 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8516 8517 SDLoc SL = getCurSDLoc(); 8518 8519 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8520 DAG.getValueType(SmallVT)); 8521 unsigned NumVals = Op.getNode()->getNumValues(); 8522 if (NumVals == 1) 8523 return ZExt; 8524 8525 SmallVector<SDValue, 4> Ops; 8526 8527 Ops.push_back(ZExt); 8528 for (unsigned I = 1; I != NumVals; ++I) 8529 Ops.push_back(Op.getValue(I)); 8530 8531 return DAG.getMergeValues(Ops, SL); 8532 } 8533 8534 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8535 /// the call being lowered. 8536 /// 8537 /// This is a helper for lowering intrinsics that follow a target calling 8538 /// convention or require stack pointer adjustment. Only a subset of the 8539 /// intrinsic's operands need to participate in the calling convention. 8540 void SelectionDAGBuilder::populateCallLoweringInfo( 8541 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8542 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8543 bool IsPatchPoint) { 8544 TargetLowering::ArgListTy Args; 8545 Args.reserve(NumArgs); 8546 8547 // Populate the argument list. 8548 // Attributes for args start at offset 1, after the return attribute. 8549 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8550 ArgI != ArgE; ++ArgI) { 8551 const Value *V = Call->getOperand(ArgI); 8552 8553 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8554 8555 TargetLowering::ArgListEntry Entry; 8556 Entry.Node = getValue(V); 8557 Entry.Ty = V->getType(); 8558 Entry.setAttributes(Call, ArgI); 8559 Args.push_back(Entry); 8560 } 8561 8562 CLI.setDebugLoc(getCurSDLoc()) 8563 .setChain(getRoot()) 8564 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8565 .setDiscardResult(Call->use_empty()) 8566 .setIsPatchPoint(IsPatchPoint); 8567 } 8568 8569 /// Add a stack map intrinsic call's live variable operands to a stackmap 8570 /// or patchpoint target node's operand list. 8571 /// 8572 /// Constants are converted to TargetConstants purely as an optimization to 8573 /// avoid constant materialization and register allocation. 8574 /// 8575 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8576 /// generate addess computation nodes, and so FinalizeISel can convert the 8577 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8578 /// address materialization and register allocation, but may also be required 8579 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8580 /// alloca in the entry block, then the runtime may assume that the alloca's 8581 /// StackMap location can be read immediately after compilation and that the 8582 /// location is valid at any point during execution (this is similar to the 8583 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8584 /// only available in a register, then the runtime would need to trap when 8585 /// execution reaches the StackMap in order to read the alloca's location. 8586 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8587 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8588 SelectionDAGBuilder &Builder) { 8589 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8590 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8591 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8592 Ops.push_back( 8593 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8594 Ops.push_back( 8595 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8596 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8597 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8598 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8599 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8600 } else 8601 Ops.push_back(OpVal); 8602 } 8603 } 8604 8605 /// Lower llvm.experimental.stackmap directly to its target opcode. 8606 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8607 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8608 // [live variables...]) 8609 8610 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8611 8612 SDValue Chain, InFlag, Callee, NullPtr; 8613 SmallVector<SDValue, 32> Ops; 8614 8615 SDLoc DL = getCurSDLoc(); 8616 Callee = getValue(CI.getCalledValue()); 8617 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8618 8619 // The stackmap intrinsic only records the live variables (the arguemnts 8620 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8621 // intrinsic, this won't be lowered to a function call. This means we don't 8622 // have to worry about calling conventions and target specific lowering code. 8623 // Instead we perform the call lowering right here. 8624 // 8625 // chain, flag = CALLSEQ_START(chain, 0, 0) 8626 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8627 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8628 // 8629 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8630 InFlag = Chain.getValue(1); 8631 8632 // Add the <id> and <numBytes> constants. 8633 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8634 Ops.push_back(DAG.getTargetConstant( 8635 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8636 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8637 Ops.push_back(DAG.getTargetConstant( 8638 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8639 MVT::i32)); 8640 8641 // Push live variables for the stack map. 8642 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8643 8644 // We are not pushing any register mask info here on the operands list, 8645 // because the stackmap doesn't clobber anything. 8646 8647 // Push the chain and the glue flag. 8648 Ops.push_back(Chain); 8649 Ops.push_back(InFlag); 8650 8651 // Create the STACKMAP node. 8652 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8653 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8654 Chain = SDValue(SM, 0); 8655 InFlag = Chain.getValue(1); 8656 8657 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8658 8659 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8660 8661 // Set the root to the target-lowered call chain. 8662 DAG.setRoot(Chain); 8663 8664 // Inform the Frame Information that we have a stackmap in this function. 8665 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8666 } 8667 8668 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8669 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8670 const BasicBlock *EHPadBB) { 8671 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8672 // i32 <numBytes>, 8673 // i8* <target>, 8674 // i32 <numArgs>, 8675 // [Args...], 8676 // [live variables...]) 8677 8678 CallingConv::ID CC = CS.getCallingConv(); 8679 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8680 bool HasDef = !CS->getType()->isVoidTy(); 8681 SDLoc dl = getCurSDLoc(); 8682 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8683 8684 // Handle immediate and symbolic callees. 8685 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8686 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8687 /*isTarget=*/true); 8688 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8689 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8690 SDLoc(SymbolicCallee), 8691 SymbolicCallee->getValueType(0)); 8692 8693 // Get the real number of arguments participating in the call <numArgs> 8694 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8695 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8696 8697 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8698 // Intrinsics include all meta-operands up to but not including CC. 8699 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8700 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8701 "Not enough arguments provided to the patchpoint intrinsic"); 8702 8703 // For AnyRegCC the arguments are lowered later on manually. 8704 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8705 Type *ReturnTy = 8706 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8707 8708 TargetLowering::CallLoweringInfo CLI(DAG); 8709 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8710 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8711 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8712 8713 SDNode *CallEnd = Result.second.getNode(); 8714 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8715 CallEnd = CallEnd->getOperand(0).getNode(); 8716 8717 /// Get a call instruction from the call sequence chain. 8718 /// Tail calls are not allowed. 8719 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8720 "Expected a callseq node."); 8721 SDNode *Call = CallEnd->getOperand(0).getNode(); 8722 bool HasGlue = Call->getGluedNode(); 8723 8724 // Replace the target specific call node with the patchable intrinsic. 8725 SmallVector<SDValue, 8> Ops; 8726 8727 // Add the <id> and <numBytes> constants. 8728 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8729 Ops.push_back(DAG.getTargetConstant( 8730 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8731 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8732 Ops.push_back(DAG.getTargetConstant( 8733 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8734 MVT::i32)); 8735 8736 // Add the callee. 8737 Ops.push_back(Callee); 8738 8739 // Adjust <numArgs> to account for any arguments that have been passed on the 8740 // stack instead. 8741 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8742 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8743 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8744 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8745 8746 // Add the calling convention 8747 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8748 8749 // Add the arguments we omitted previously. The register allocator should 8750 // place these in any free register. 8751 if (IsAnyRegCC) 8752 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8753 Ops.push_back(getValue(CS.getArgument(i))); 8754 8755 // Push the arguments from the call instruction up to the register mask. 8756 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8757 Ops.append(Call->op_begin() + 2, e); 8758 8759 // Push live variables for the stack map. 8760 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8761 8762 // Push the register mask info. 8763 if (HasGlue) 8764 Ops.push_back(*(Call->op_end()-2)); 8765 else 8766 Ops.push_back(*(Call->op_end()-1)); 8767 8768 // Push the chain (this is originally the first operand of the call, but 8769 // becomes now the last or second to last operand). 8770 Ops.push_back(*(Call->op_begin())); 8771 8772 // Push the glue flag (last operand). 8773 if (HasGlue) 8774 Ops.push_back(*(Call->op_end()-1)); 8775 8776 SDVTList NodeTys; 8777 if (IsAnyRegCC && HasDef) { 8778 // Create the return types based on the intrinsic definition 8779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8780 SmallVector<EVT, 3> ValueVTs; 8781 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8782 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8783 8784 // There is always a chain and a glue type at the end 8785 ValueVTs.push_back(MVT::Other); 8786 ValueVTs.push_back(MVT::Glue); 8787 NodeTys = DAG.getVTList(ValueVTs); 8788 } else 8789 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8790 8791 // Replace the target specific call node with a PATCHPOINT node. 8792 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8793 dl, NodeTys, Ops); 8794 8795 // Update the NodeMap. 8796 if (HasDef) { 8797 if (IsAnyRegCC) 8798 setValue(CS.getInstruction(), SDValue(MN, 0)); 8799 else 8800 setValue(CS.getInstruction(), Result.first); 8801 } 8802 8803 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8804 // call sequence. Furthermore the location of the chain and glue can change 8805 // when the AnyReg calling convention is used and the intrinsic returns a 8806 // value. 8807 if (IsAnyRegCC && HasDef) { 8808 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8809 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8810 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8811 } else 8812 DAG.ReplaceAllUsesWith(Call, MN); 8813 DAG.DeleteNode(Call); 8814 8815 // Inform the Frame Information that we have a patchpoint in this function. 8816 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8817 } 8818 8819 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8820 unsigned Intrinsic) { 8821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8822 SDValue Op1 = getValue(I.getArgOperand(0)); 8823 SDValue Op2; 8824 if (I.getNumArgOperands() > 1) 8825 Op2 = getValue(I.getArgOperand(1)); 8826 SDLoc dl = getCurSDLoc(); 8827 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8828 SDValue Res; 8829 FastMathFlags FMF; 8830 if (isa<FPMathOperator>(I)) 8831 FMF = I.getFastMathFlags(); 8832 8833 switch (Intrinsic) { 8834 case Intrinsic::experimental_vector_reduce_v2_fadd: 8835 if (FMF.allowReassoc()) 8836 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8837 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8838 else 8839 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8840 break; 8841 case Intrinsic::experimental_vector_reduce_v2_fmul: 8842 if (FMF.allowReassoc()) 8843 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8844 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8845 else 8846 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8847 break; 8848 case Intrinsic::experimental_vector_reduce_add: 8849 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8850 break; 8851 case Intrinsic::experimental_vector_reduce_mul: 8852 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8853 break; 8854 case Intrinsic::experimental_vector_reduce_and: 8855 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8856 break; 8857 case Intrinsic::experimental_vector_reduce_or: 8858 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8859 break; 8860 case Intrinsic::experimental_vector_reduce_xor: 8861 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8862 break; 8863 case Intrinsic::experimental_vector_reduce_smax: 8864 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8865 break; 8866 case Intrinsic::experimental_vector_reduce_smin: 8867 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8868 break; 8869 case Intrinsic::experimental_vector_reduce_umax: 8870 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8871 break; 8872 case Intrinsic::experimental_vector_reduce_umin: 8873 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8874 break; 8875 case Intrinsic::experimental_vector_reduce_fmax: 8876 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8877 break; 8878 case Intrinsic::experimental_vector_reduce_fmin: 8879 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8880 break; 8881 default: 8882 llvm_unreachable("Unhandled vector reduce intrinsic"); 8883 } 8884 setValue(&I, Res); 8885 } 8886 8887 /// Returns an AttributeList representing the attributes applied to the return 8888 /// value of the given call. 8889 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8890 SmallVector<Attribute::AttrKind, 2> Attrs; 8891 if (CLI.RetSExt) 8892 Attrs.push_back(Attribute::SExt); 8893 if (CLI.RetZExt) 8894 Attrs.push_back(Attribute::ZExt); 8895 if (CLI.IsInReg) 8896 Attrs.push_back(Attribute::InReg); 8897 8898 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8899 Attrs); 8900 } 8901 8902 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8903 /// implementation, which just calls LowerCall. 8904 /// FIXME: When all targets are 8905 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8906 std::pair<SDValue, SDValue> 8907 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8908 // Handle the incoming return values from the call. 8909 CLI.Ins.clear(); 8910 Type *OrigRetTy = CLI.RetTy; 8911 SmallVector<EVT, 4> RetTys; 8912 SmallVector<uint64_t, 4> Offsets; 8913 auto &DL = CLI.DAG.getDataLayout(); 8914 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8915 8916 if (CLI.IsPostTypeLegalization) { 8917 // If we are lowering a libcall after legalization, split the return type. 8918 SmallVector<EVT, 4> OldRetTys; 8919 SmallVector<uint64_t, 4> OldOffsets; 8920 RetTys.swap(OldRetTys); 8921 Offsets.swap(OldOffsets); 8922 8923 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8924 EVT RetVT = OldRetTys[i]; 8925 uint64_t Offset = OldOffsets[i]; 8926 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8927 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8928 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8929 RetTys.append(NumRegs, RegisterVT); 8930 for (unsigned j = 0; j != NumRegs; ++j) 8931 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8932 } 8933 } 8934 8935 SmallVector<ISD::OutputArg, 4> Outs; 8936 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8937 8938 bool CanLowerReturn = 8939 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8940 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8941 8942 SDValue DemoteStackSlot; 8943 int DemoteStackIdx = -100; 8944 if (!CanLowerReturn) { 8945 // FIXME: equivalent assert? 8946 // assert(!CS.hasInAllocaArgument() && 8947 // "sret demotion is incompatible with inalloca"); 8948 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8949 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8950 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8951 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8952 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8953 DL.getAllocaAddrSpace()); 8954 8955 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8956 ArgListEntry Entry; 8957 Entry.Node = DemoteStackSlot; 8958 Entry.Ty = StackSlotPtrType; 8959 Entry.IsSExt = false; 8960 Entry.IsZExt = false; 8961 Entry.IsInReg = false; 8962 Entry.IsSRet = true; 8963 Entry.IsNest = false; 8964 Entry.IsByVal = false; 8965 Entry.IsReturned = false; 8966 Entry.IsSwiftSelf = false; 8967 Entry.IsSwiftError = false; 8968 Entry.Alignment = Align; 8969 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8970 CLI.NumFixedArgs += 1; 8971 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8972 8973 // sret demotion isn't compatible with tail-calls, since the sret argument 8974 // points into the callers stack frame. 8975 CLI.IsTailCall = false; 8976 } else { 8977 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8978 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8979 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8980 ISD::ArgFlagsTy Flags; 8981 if (NeedsRegBlock) { 8982 Flags.setInConsecutiveRegs(); 8983 if (I == RetTys.size() - 1) 8984 Flags.setInConsecutiveRegsLast(); 8985 } 8986 EVT VT = RetTys[I]; 8987 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8988 CLI.CallConv, VT); 8989 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8990 CLI.CallConv, VT); 8991 for (unsigned i = 0; i != NumRegs; ++i) { 8992 ISD::InputArg MyFlags; 8993 MyFlags.Flags = Flags; 8994 MyFlags.VT = RegisterVT; 8995 MyFlags.ArgVT = VT; 8996 MyFlags.Used = CLI.IsReturnValueUsed; 8997 if (CLI.RetTy->isPointerTy()) { 8998 MyFlags.Flags.setPointer(); 8999 MyFlags.Flags.setPointerAddrSpace( 9000 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9001 } 9002 if (CLI.RetSExt) 9003 MyFlags.Flags.setSExt(); 9004 if (CLI.RetZExt) 9005 MyFlags.Flags.setZExt(); 9006 if (CLI.IsInReg) 9007 MyFlags.Flags.setInReg(); 9008 CLI.Ins.push_back(MyFlags); 9009 } 9010 } 9011 } 9012 9013 // We push in swifterror return as the last element of CLI.Ins. 9014 ArgListTy &Args = CLI.getArgs(); 9015 if (supportSwiftError()) { 9016 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9017 if (Args[i].IsSwiftError) { 9018 ISD::InputArg MyFlags; 9019 MyFlags.VT = getPointerTy(DL); 9020 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9021 MyFlags.Flags.setSwiftError(); 9022 CLI.Ins.push_back(MyFlags); 9023 } 9024 } 9025 } 9026 9027 // Handle all of the outgoing arguments. 9028 CLI.Outs.clear(); 9029 CLI.OutVals.clear(); 9030 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9031 SmallVector<EVT, 4> ValueVTs; 9032 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9033 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9034 Type *FinalType = Args[i].Ty; 9035 if (Args[i].IsByVal) 9036 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9037 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9038 FinalType, CLI.CallConv, CLI.IsVarArg); 9039 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9040 ++Value) { 9041 EVT VT = ValueVTs[Value]; 9042 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9043 SDValue Op = SDValue(Args[i].Node.getNode(), 9044 Args[i].Node.getResNo() + Value); 9045 ISD::ArgFlagsTy Flags; 9046 9047 // Certain targets (such as MIPS), may have a different ABI alignment 9048 // for a type depending on the context. Give the target a chance to 9049 // specify the alignment it wants. 9050 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9051 9052 if (Args[i].Ty->isPointerTy()) { 9053 Flags.setPointer(); 9054 Flags.setPointerAddrSpace( 9055 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9056 } 9057 if (Args[i].IsZExt) 9058 Flags.setZExt(); 9059 if (Args[i].IsSExt) 9060 Flags.setSExt(); 9061 if (Args[i].IsInReg) { 9062 // If we are using vectorcall calling convention, a structure that is 9063 // passed InReg - is surely an HVA 9064 if (CLI.CallConv == CallingConv::X86_VectorCall && 9065 isa<StructType>(FinalType)) { 9066 // The first value of a structure is marked 9067 if (0 == Value) 9068 Flags.setHvaStart(); 9069 Flags.setHva(); 9070 } 9071 // Set InReg Flag 9072 Flags.setInReg(); 9073 } 9074 if (Args[i].IsSRet) 9075 Flags.setSRet(); 9076 if (Args[i].IsSwiftSelf) 9077 Flags.setSwiftSelf(); 9078 if (Args[i].IsSwiftError) 9079 Flags.setSwiftError(); 9080 if (Args[i].IsByVal) 9081 Flags.setByVal(); 9082 if (Args[i].IsInAlloca) { 9083 Flags.setInAlloca(); 9084 // Set the byval flag for CCAssignFn callbacks that don't know about 9085 // inalloca. This way we can know how many bytes we should've allocated 9086 // and how many bytes a callee cleanup function will pop. If we port 9087 // inalloca to more targets, we'll have to add custom inalloca handling 9088 // in the various CC lowering callbacks. 9089 Flags.setByVal(); 9090 } 9091 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9092 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9093 Type *ElementTy = Ty->getElementType(); 9094 9095 unsigned FrameSize = DL.getTypeAllocSize( 9096 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9097 Flags.setByValSize(FrameSize); 9098 9099 // info is not there but there are cases it cannot get right. 9100 unsigned FrameAlign; 9101 if (Args[i].Alignment) 9102 FrameAlign = Args[i].Alignment; 9103 else 9104 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9105 Flags.setByValAlign(FrameAlign); 9106 } 9107 if (Args[i].IsNest) 9108 Flags.setNest(); 9109 if (NeedsRegBlock) 9110 Flags.setInConsecutiveRegs(); 9111 Flags.setOrigAlign(OriginalAlignment); 9112 9113 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9114 CLI.CallConv, VT); 9115 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9116 CLI.CallConv, VT); 9117 SmallVector<SDValue, 4> Parts(NumParts); 9118 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9119 9120 if (Args[i].IsSExt) 9121 ExtendKind = ISD::SIGN_EXTEND; 9122 else if (Args[i].IsZExt) 9123 ExtendKind = ISD::ZERO_EXTEND; 9124 9125 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9126 // for now. 9127 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9128 CanLowerReturn) { 9129 assert((CLI.RetTy == Args[i].Ty || 9130 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9131 CLI.RetTy->getPointerAddressSpace() == 9132 Args[i].Ty->getPointerAddressSpace())) && 9133 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9134 // Before passing 'returned' to the target lowering code, ensure that 9135 // either the register MVT and the actual EVT are the same size or that 9136 // the return value and argument are extended in the same way; in these 9137 // cases it's safe to pass the argument register value unchanged as the 9138 // return register value (although it's at the target's option whether 9139 // to do so) 9140 // TODO: allow code generation to take advantage of partially preserved 9141 // registers rather than clobbering the entire register when the 9142 // parameter extension method is not compatible with the return 9143 // extension method 9144 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9145 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9146 CLI.RetZExt == Args[i].IsZExt)) 9147 Flags.setReturned(); 9148 } 9149 9150 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9151 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9152 9153 for (unsigned j = 0; j != NumParts; ++j) { 9154 // if it isn't first piece, alignment must be 1 9155 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9156 i < CLI.NumFixedArgs, 9157 i, j*Parts[j].getValueType().getStoreSize()); 9158 if (NumParts > 1 && j == 0) 9159 MyFlags.Flags.setSplit(); 9160 else if (j != 0) { 9161 MyFlags.Flags.setOrigAlign(1); 9162 if (j == NumParts - 1) 9163 MyFlags.Flags.setSplitEnd(); 9164 } 9165 9166 CLI.Outs.push_back(MyFlags); 9167 CLI.OutVals.push_back(Parts[j]); 9168 } 9169 9170 if (NeedsRegBlock && Value == NumValues - 1) 9171 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9172 } 9173 } 9174 9175 SmallVector<SDValue, 4> InVals; 9176 CLI.Chain = LowerCall(CLI, InVals); 9177 9178 // Update CLI.InVals to use outside of this function. 9179 CLI.InVals = InVals; 9180 9181 // Verify that the target's LowerCall behaved as expected. 9182 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9183 "LowerCall didn't return a valid chain!"); 9184 assert((!CLI.IsTailCall || InVals.empty()) && 9185 "LowerCall emitted a return value for a tail call!"); 9186 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9187 "LowerCall didn't emit the correct number of values!"); 9188 9189 // For a tail call, the return value is merely live-out and there aren't 9190 // any nodes in the DAG representing it. Return a special value to 9191 // indicate that a tail call has been emitted and no more Instructions 9192 // should be processed in the current block. 9193 if (CLI.IsTailCall) { 9194 CLI.DAG.setRoot(CLI.Chain); 9195 return std::make_pair(SDValue(), SDValue()); 9196 } 9197 9198 #ifndef NDEBUG 9199 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9200 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9201 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9202 "LowerCall emitted a value with the wrong type!"); 9203 } 9204 #endif 9205 9206 SmallVector<SDValue, 4> ReturnValues; 9207 if (!CanLowerReturn) { 9208 // The instruction result is the result of loading from the 9209 // hidden sret parameter. 9210 SmallVector<EVT, 1> PVTs; 9211 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9212 9213 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9214 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9215 EVT PtrVT = PVTs[0]; 9216 9217 unsigned NumValues = RetTys.size(); 9218 ReturnValues.resize(NumValues); 9219 SmallVector<SDValue, 4> Chains(NumValues); 9220 9221 // An aggregate return value cannot wrap around the address space, so 9222 // offsets to its parts don't wrap either. 9223 SDNodeFlags Flags; 9224 Flags.setNoUnsignedWrap(true); 9225 9226 for (unsigned i = 0; i < NumValues; ++i) { 9227 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9228 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9229 PtrVT), Flags); 9230 SDValue L = CLI.DAG.getLoad( 9231 RetTys[i], CLI.DL, CLI.Chain, Add, 9232 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9233 DemoteStackIdx, Offsets[i]), 9234 /* Alignment = */ 1); 9235 ReturnValues[i] = L; 9236 Chains[i] = L.getValue(1); 9237 } 9238 9239 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9240 } else { 9241 // Collect the legal value parts into potentially illegal values 9242 // that correspond to the original function's return values. 9243 Optional<ISD::NodeType> AssertOp; 9244 if (CLI.RetSExt) 9245 AssertOp = ISD::AssertSext; 9246 else if (CLI.RetZExt) 9247 AssertOp = ISD::AssertZext; 9248 unsigned CurReg = 0; 9249 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9250 EVT VT = RetTys[I]; 9251 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9252 CLI.CallConv, VT); 9253 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9254 CLI.CallConv, VT); 9255 9256 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9257 NumRegs, RegisterVT, VT, nullptr, 9258 CLI.CallConv, AssertOp)); 9259 CurReg += NumRegs; 9260 } 9261 9262 // For a function returning void, there is no return value. We can't create 9263 // such a node, so we just return a null return value in that case. In 9264 // that case, nothing will actually look at the value. 9265 if (ReturnValues.empty()) 9266 return std::make_pair(SDValue(), CLI.Chain); 9267 } 9268 9269 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9270 CLI.DAG.getVTList(RetTys), ReturnValues); 9271 return std::make_pair(Res, CLI.Chain); 9272 } 9273 9274 void TargetLowering::LowerOperationWrapper(SDNode *N, 9275 SmallVectorImpl<SDValue> &Results, 9276 SelectionDAG &DAG) const { 9277 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9278 Results.push_back(Res); 9279 } 9280 9281 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9282 llvm_unreachable("LowerOperation not implemented for this target!"); 9283 } 9284 9285 void 9286 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9287 SDValue Op = getNonRegisterValue(V); 9288 assert((Op.getOpcode() != ISD::CopyFromReg || 9289 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9290 "Copy from a reg to the same reg!"); 9291 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9292 9293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9294 // If this is an InlineAsm we have to match the registers required, not the 9295 // notional registers required by the type. 9296 9297 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9298 None); // This is not an ABI copy. 9299 SDValue Chain = DAG.getEntryNode(); 9300 9301 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9302 FuncInfo.PreferredExtendType.end()) 9303 ? ISD::ANY_EXTEND 9304 : FuncInfo.PreferredExtendType[V]; 9305 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9306 PendingExports.push_back(Chain); 9307 } 9308 9309 #include "llvm/CodeGen/SelectionDAGISel.h" 9310 9311 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9312 /// entry block, return true. This includes arguments used by switches, since 9313 /// the switch may expand into multiple basic blocks. 9314 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9315 // With FastISel active, we may be splitting blocks, so force creation 9316 // of virtual registers for all non-dead arguments. 9317 if (FastISel) 9318 return A->use_empty(); 9319 9320 const BasicBlock &Entry = A->getParent()->front(); 9321 for (const User *U : A->users()) 9322 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9323 return false; // Use not in entry block. 9324 9325 return true; 9326 } 9327 9328 using ArgCopyElisionMapTy = 9329 DenseMap<const Argument *, 9330 std::pair<const AllocaInst *, const StoreInst *>>; 9331 9332 /// Scan the entry block of the function in FuncInfo for arguments that look 9333 /// like copies into a local alloca. Record any copied arguments in 9334 /// ArgCopyElisionCandidates. 9335 static void 9336 findArgumentCopyElisionCandidates(const DataLayout &DL, 9337 FunctionLoweringInfo *FuncInfo, 9338 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9339 // Record the state of every static alloca used in the entry block. Argument 9340 // allocas are all used in the entry block, so we need approximately as many 9341 // entries as we have arguments. 9342 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9343 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9344 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9345 StaticAllocas.reserve(NumArgs * 2); 9346 9347 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9348 if (!V) 9349 return nullptr; 9350 V = V->stripPointerCasts(); 9351 const auto *AI = dyn_cast<AllocaInst>(V); 9352 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9353 return nullptr; 9354 auto Iter = StaticAllocas.insert({AI, Unknown}); 9355 return &Iter.first->second; 9356 }; 9357 9358 // Look for stores of arguments to static allocas. Look through bitcasts and 9359 // GEPs to handle type coercions, as long as the alloca is fully initialized 9360 // by the store. Any non-store use of an alloca escapes it and any subsequent 9361 // unanalyzed store might write it. 9362 // FIXME: Handle structs initialized with multiple stores. 9363 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9364 // Look for stores, and handle non-store uses conservatively. 9365 const auto *SI = dyn_cast<StoreInst>(&I); 9366 if (!SI) { 9367 // We will look through cast uses, so ignore them completely. 9368 if (I.isCast()) 9369 continue; 9370 // Ignore debug info intrinsics, they don't escape or store to allocas. 9371 if (isa<DbgInfoIntrinsic>(I)) 9372 continue; 9373 // This is an unknown instruction. Assume it escapes or writes to all 9374 // static alloca operands. 9375 for (const Use &U : I.operands()) { 9376 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9377 *Info = StaticAllocaInfo::Clobbered; 9378 } 9379 continue; 9380 } 9381 9382 // If the stored value is a static alloca, mark it as escaped. 9383 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9384 *Info = StaticAllocaInfo::Clobbered; 9385 9386 // Check if the destination is a static alloca. 9387 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9388 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9389 if (!Info) 9390 continue; 9391 const AllocaInst *AI = cast<AllocaInst>(Dst); 9392 9393 // Skip allocas that have been initialized or clobbered. 9394 if (*Info != StaticAllocaInfo::Unknown) 9395 continue; 9396 9397 // Check if the stored value is an argument, and that this store fully 9398 // initializes the alloca. Don't elide copies from the same argument twice. 9399 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9400 const auto *Arg = dyn_cast<Argument>(Val); 9401 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9402 Arg->getType()->isEmptyTy() || 9403 DL.getTypeStoreSize(Arg->getType()) != 9404 DL.getTypeAllocSize(AI->getAllocatedType()) || 9405 ArgCopyElisionCandidates.count(Arg)) { 9406 *Info = StaticAllocaInfo::Clobbered; 9407 continue; 9408 } 9409 9410 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9411 << '\n'); 9412 9413 // Mark this alloca and store for argument copy elision. 9414 *Info = StaticAllocaInfo::Elidable; 9415 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9416 9417 // Stop scanning if we've seen all arguments. This will happen early in -O0 9418 // builds, which is useful, because -O0 builds have large entry blocks and 9419 // many allocas. 9420 if (ArgCopyElisionCandidates.size() == NumArgs) 9421 break; 9422 } 9423 } 9424 9425 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9426 /// ArgVal is a load from a suitable fixed stack object. 9427 static void tryToElideArgumentCopy( 9428 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9429 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9430 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9431 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9432 SDValue ArgVal, bool &ArgHasUses) { 9433 // Check if this is a load from a fixed stack object. 9434 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9435 if (!LNode) 9436 return; 9437 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9438 if (!FINode) 9439 return; 9440 9441 // Check that the fixed stack object is the right size and alignment. 9442 // Look at the alignment that the user wrote on the alloca instead of looking 9443 // at the stack object. 9444 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9445 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9446 const AllocaInst *AI = ArgCopyIter->second.first; 9447 int FixedIndex = FINode->getIndex(); 9448 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9449 int OldIndex = AllocaIndex; 9450 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9451 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9452 LLVM_DEBUG( 9453 dbgs() << " argument copy elision failed due to bad fixed stack " 9454 "object size\n"); 9455 return; 9456 } 9457 unsigned RequiredAlignment = AI->getAlignment(); 9458 if (!RequiredAlignment) { 9459 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9460 AI->getAllocatedType()); 9461 } 9462 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9463 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9464 "greater than stack argument alignment (" 9465 << RequiredAlignment << " vs " 9466 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9467 return; 9468 } 9469 9470 // Perform the elision. Delete the old stack object and replace its only use 9471 // in the variable info map. Mark the stack object as mutable. 9472 LLVM_DEBUG({ 9473 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9474 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9475 << '\n'; 9476 }); 9477 MFI.RemoveStackObject(OldIndex); 9478 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9479 AllocaIndex = FixedIndex; 9480 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9481 Chains.push_back(ArgVal.getValue(1)); 9482 9483 // Avoid emitting code for the store implementing the copy. 9484 const StoreInst *SI = ArgCopyIter->second.second; 9485 ElidedArgCopyInstrs.insert(SI); 9486 9487 // Check for uses of the argument again so that we can avoid exporting ArgVal 9488 // if it is't used by anything other than the store. 9489 for (const Value *U : Arg.users()) { 9490 if (U != SI) { 9491 ArgHasUses = true; 9492 break; 9493 } 9494 } 9495 } 9496 9497 void SelectionDAGISel::LowerArguments(const Function &F) { 9498 SelectionDAG &DAG = SDB->DAG; 9499 SDLoc dl = SDB->getCurSDLoc(); 9500 const DataLayout &DL = DAG.getDataLayout(); 9501 SmallVector<ISD::InputArg, 16> Ins; 9502 9503 if (!FuncInfo->CanLowerReturn) { 9504 // Put in an sret pointer parameter before all the other parameters. 9505 SmallVector<EVT, 1> ValueVTs; 9506 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9507 F.getReturnType()->getPointerTo( 9508 DAG.getDataLayout().getAllocaAddrSpace()), 9509 ValueVTs); 9510 9511 // NOTE: Assuming that a pointer will never break down to more than one VT 9512 // or one register. 9513 ISD::ArgFlagsTy Flags; 9514 Flags.setSRet(); 9515 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9516 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9517 ISD::InputArg::NoArgIndex, 0); 9518 Ins.push_back(RetArg); 9519 } 9520 9521 // Look for stores of arguments to static allocas. Mark such arguments with a 9522 // flag to ask the target to give us the memory location of that argument if 9523 // available. 9524 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9525 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9526 9527 // Set up the incoming argument description vector. 9528 for (const Argument &Arg : F.args()) { 9529 unsigned ArgNo = Arg.getArgNo(); 9530 SmallVector<EVT, 4> ValueVTs; 9531 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9532 bool isArgValueUsed = !Arg.use_empty(); 9533 unsigned PartBase = 0; 9534 Type *FinalType = Arg.getType(); 9535 if (Arg.hasAttribute(Attribute::ByVal)) 9536 FinalType = Arg.getParamByValType(); 9537 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9538 FinalType, F.getCallingConv(), F.isVarArg()); 9539 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9540 Value != NumValues; ++Value) { 9541 EVT VT = ValueVTs[Value]; 9542 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9543 ISD::ArgFlagsTy Flags; 9544 9545 // Certain targets (such as MIPS), may have a different ABI alignment 9546 // for a type depending on the context. Give the target a chance to 9547 // specify the alignment it wants. 9548 unsigned OriginalAlignment = 9549 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9550 9551 if (Arg.getType()->isPointerTy()) { 9552 Flags.setPointer(); 9553 Flags.setPointerAddrSpace( 9554 cast<PointerType>(Arg.getType())->getAddressSpace()); 9555 } 9556 if (Arg.hasAttribute(Attribute::ZExt)) 9557 Flags.setZExt(); 9558 if (Arg.hasAttribute(Attribute::SExt)) 9559 Flags.setSExt(); 9560 if (Arg.hasAttribute(Attribute::InReg)) { 9561 // If we are using vectorcall calling convention, a structure that is 9562 // passed InReg - is surely an HVA 9563 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9564 isa<StructType>(Arg.getType())) { 9565 // The first value of a structure is marked 9566 if (0 == Value) 9567 Flags.setHvaStart(); 9568 Flags.setHva(); 9569 } 9570 // Set InReg Flag 9571 Flags.setInReg(); 9572 } 9573 if (Arg.hasAttribute(Attribute::StructRet)) 9574 Flags.setSRet(); 9575 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9576 Flags.setSwiftSelf(); 9577 if (Arg.hasAttribute(Attribute::SwiftError)) 9578 Flags.setSwiftError(); 9579 if (Arg.hasAttribute(Attribute::ByVal)) 9580 Flags.setByVal(); 9581 if (Arg.hasAttribute(Attribute::InAlloca)) { 9582 Flags.setInAlloca(); 9583 // Set the byval flag for CCAssignFn callbacks that don't know about 9584 // inalloca. This way we can know how many bytes we should've allocated 9585 // and how many bytes a callee cleanup function will pop. If we port 9586 // inalloca to more targets, we'll have to add custom inalloca handling 9587 // in the various CC lowering callbacks. 9588 Flags.setByVal(); 9589 } 9590 if (F.getCallingConv() == CallingConv::X86_INTR) { 9591 // IA Interrupt passes frame (1st parameter) by value in the stack. 9592 if (ArgNo == 0) 9593 Flags.setByVal(); 9594 } 9595 if (Flags.isByVal() || Flags.isInAlloca()) { 9596 Type *ElementTy = Arg.getParamByValType(); 9597 9598 // For ByVal, size and alignment should be passed from FE. BE will 9599 // guess if this info is not there but there are cases it cannot get 9600 // right. 9601 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9602 Flags.setByValSize(FrameSize); 9603 9604 unsigned FrameAlign; 9605 if (Arg.getParamAlignment()) 9606 FrameAlign = Arg.getParamAlignment(); 9607 else 9608 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9609 Flags.setByValAlign(FrameAlign); 9610 } 9611 if (Arg.hasAttribute(Attribute::Nest)) 9612 Flags.setNest(); 9613 if (NeedsRegBlock) 9614 Flags.setInConsecutiveRegs(); 9615 Flags.setOrigAlign(OriginalAlignment); 9616 if (ArgCopyElisionCandidates.count(&Arg)) 9617 Flags.setCopyElisionCandidate(); 9618 9619 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9620 *CurDAG->getContext(), F.getCallingConv(), VT); 9621 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9622 *CurDAG->getContext(), F.getCallingConv(), VT); 9623 for (unsigned i = 0; i != NumRegs; ++i) { 9624 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9625 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9626 if (NumRegs > 1 && i == 0) 9627 MyFlags.Flags.setSplit(); 9628 // if it isn't first piece, alignment must be 1 9629 else if (i > 0) { 9630 MyFlags.Flags.setOrigAlign(1); 9631 if (i == NumRegs - 1) 9632 MyFlags.Flags.setSplitEnd(); 9633 } 9634 Ins.push_back(MyFlags); 9635 } 9636 if (NeedsRegBlock && Value == NumValues - 1) 9637 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9638 PartBase += VT.getStoreSize(); 9639 } 9640 } 9641 9642 // Call the target to set up the argument values. 9643 SmallVector<SDValue, 8> InVals; 9644 SDValue NewRoot = TLI->LowerFormalArguments( 9645 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9646 9647 // Verify that the target's LowerFormalArguments behaved as expected. 9648 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9649 "LowerFormalArguments didn't return a valid chain!"); 9650 assert(InVals.size() == Ins.size() && 9651 "LowerFormalArguments didn't emit the correct number of values!"); 9652 LLVM_DEBUG({ 9653 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9654 assert(InVals[i].getNode() && 9655 "LowerFormalArguments emitted a null value!"); 9656 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9657 "LowerFormalArguments emitted a value with the wrong type!"); 9658 } 9659 }); 9660 9661 // Update the DAG with the new chain value resulting from argument lowering. 9662 DAG.setRoot(NewRoot); 9663 9664 // Set up the argument values. 9665 unsigned i = 0; 9666 if (!FuncInfo->CanLowerReturn) { 9667 // Create a virtual register for the sret pointer, and put in a copy 9668 // from the sret argument into it. 9669 SmallVector<EVT, 1> ValueVTs; 9670 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9671 F.getReturnType()->getPointerTo( 9672 DAG.getDataLayout().getAllocaAddrSpace()), 9673 ValueVTs); 9674 MVT VT = ValueVTs[0].getSimpleVT(); 9675 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9676 Optional<ISD::NodeType> AssertOp = None; 9677 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9678 nullptr, F.getCallingConv(), AssertOp); 9679 9680 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9681 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9682 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9683 FuncInfo->DemoteRegister = SRetReg; 9684 NewRoot = 9685 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9686 DAG.setRoot(NewRoot); 9687 9688 // i indexes lowered arguments. Bump it past the hidden sret argument. 9689 ++i; 9690 } 9691 9692 SmallVector<SDValue, 4> Chains; 9693 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9694 for (const Argument &Arg : F.args()) { 9695 SmallVector<SDValue, 4> ArgValues; 9696 SmallVector<EVT, 4> ValueVTs; 9697 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9698 unsigned NumValues = ValueVTs.size(); 9699 if (NumValues == 0) 9700 continue; 9701 9702 bool ArgHasUses = !Arg.use_empty(); 9703 9704 // Elide the copying store if the target loaded this argument from a 9705 // suitable fixed stack object. 9706 if (Ins[i].Flags.isCopyElisionCandidate()) { 9707 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9708 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9709 InVals[i], ArgHasUses); 9710 } 9711 9712 // If this argument is unused then remember its value. It is used to generate 9713 // debugging information. 9714 bool isSwiftErrorArg = 9715 TLI->supportSwiftError() && 9716 Arg.hasAttribute(Attribute::SwiftError); 9717 if (!ArgHasUses && !isSwiftErrorArg) { 9718 SDB->setUnusedArgValue(&Arg, InVals[i]); 9719 9720 // Also remember any frame index for use in FastISel. 9721 if (FrameIndexSDNode *FI = 9722 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9723 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9724 } 9725 9726 for (unsigned Val = 0; Val != NumValues; ++Val) { 9727 EVT VT = ValueVTs[Val]; 9728 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9729 F.getCallingConv(), VT); 9730 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9731 *CurDAG->getContext(), F.getCallingConv(), VT); 9732 9733 // Even an apparant 'unused' swifterror argument needs to be returned. So 9734 // we do generate a copy for it that can be used on return from the 9735 // function. 9736 if (ArgHasUses || isSwiftErrorArg) { 9737 Optional<ISD::NodeType> AssertOp; 9738 if (Arg.hasAttribute(Attribute::SExt)) 9739 AssertOp = ISD::AssertSext; 9740 else if (Arg.hasAttribute(Attribute::ZExt)) 9741 AssertOp = ISD::AssertZext; 9742 9743 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9744 PartVT, VT, nullptr, 9745 F.getCallingConv(), AssertOp)); 9746 } 9747 9748 i += NumParts; 9749 } 9750 9751 // We don't need to do anything else for unused arguments. 9752 if (ArgValues.empty()) 9753 continue; 9754 9755 // Note down frame index. 9756 if (FrameIndexSDNode *FI = 9757 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9758 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9759 9760 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9761 SDB->getCurSDLoc()); 9762 9763 SDB->setValue(&Arg, Res); 9764 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9765 // We want to associate the argument with the frame index, among 9766 // involved operands, that correspond to the lowest address. The 9767 // getCopyFromParts function, called earlier, is swapping the order of 9768 // the operands to BUILD_PAIR depending on endianness. The result of 9769 // that swapping is that the least significant bits of the argument will 9770 // be in the first operand of the BUILD_PAIR node, and the most 9771 // significant bits will be in the second operand. 9772 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9773 if (LoadSDNode *LNode = 9774 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9775 if (FrameIndexSDNode *FI = 9776 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9777 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9778 } 9779 9780 // Update the SwiftErrorVRegDefMap. 9781 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9782 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9783 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9784 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9785 Reg); 9786 } 9787 9788 // If this argument is live outside of the entry block, insert a copy from 9789 // wherever we got it to the vreg that other BB's will reference it as. 9790 if (Res.getOpcode() == ISD::CopyFromReg) { 9791 // If we can, though, try to skip creating an unnecessary vreg. 9792 // FIXME: This isn't very clean... it would be nice to make this more 9793 // general. 9794 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9795 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9796 FuncInfo->ValueMap[&Arg] = Reg; 9797 continue; 9798 } 9799 } 9800 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9801 FuncInfo->InitializeRegForValue(&Arg); 9802 SDB->CopyToExportRegsIfNeeded(&Arg); 9803 } 9804 } 9805 9806 if (!Chains.empty()) { 9807 Chains.push_back(NewRoot); 9808 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9809 } 9810 9811 DAG.setRoot(NewRoot); 9812 9813 assert(i == InVals.size() && "Argument register count mismatch!"); 9814 9815 // If any argument copy elisions occurred and we have debug info, update the 9816 // stale frame indices used in the dbg.declare variable info table. 9817 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9818 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9819 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9820 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9821 if (I != ArgCopyElisionFrameIndexMap.end()) 9822 VI.Slot = I->second; 9823 } 9824 } 9825 9826 // Finally, if the target has anything special to do, allow it to do so. 9827 EmitFunctionEntryCode(); 9828 } 9829 9830 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9831 /// ensure constants are generated when needed. Remember the virtual registers 9832 /// that need to be added to the Machine PHI nodes as input. We cannot just 9833 /// directly add them, because expansion might result in multiple MBB's for one 9834 /// BB. As such, the start of the BB might correspond to a different MBB than 9835 /// the end. 9836 void 9837 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9838 const Instruction *TI = LLVMBB->getTerminator(); 9839 9840 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9841 9842 // Check PHI nodes in successors that expect a value to be available from this 9843 // block. 9844 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9845 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9846 if (!isa<PHINode>(SuccBB->begin())) continue; 9847 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9848 9849 // If this terminator has multiple identical successors (common for 9850 // switches), only handle each succ once. 9851 if (!SuccsHandled.insert(SuccMBB).second) 9852 continue; 9853 9854 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9855 9856 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9857 // nodes and Machine PHI nodes, but the incoming operands have not been 9858 // emitted yet. 9859 for (const PHINode &PN : SuccBB->phis()) { 9860 // Ignore dead phi's. 9861 if (PN.use_empty()) 9862 continue; 9863 9864 // Skip empty types 9865 if (PN.getType()->isEmptyTy()) 9866 continue; 9867 9868 unsigned Reg; 9869 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9870 9871 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9872 unsigned &RegOut = ConstantsOut[C]; 9873 if (RegOut == 0) { 9874 RegOut = FuncInfo.CreateRegs(C); 9875 CopyValueToVirtualRegister(C, RegOut); 9876 } 9877 Reg = RegOut; 9878 } else { 9879 DenseMap<const Value *, unsigned>::iterator I = 9880 FuncInfo.ValueMap.find(PHIOp); 9881 if (I != FuncInfo.ValueMap.end()) 9882 Reg = I->second; 9883 else { 9884 assert(isa<AllocaInst>(PHIOp) && 9885 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9886 "Didn't codegen value into a register!??"); 9887 Reg = FuncInfo.CreateRegs(PHIOp); 9888 CopyValueToVirtualRegister(PHIOp, Reg); 9889 } 9890 } 9891 9892 // Remember that this register needs to added to the machine PHI node as 9893 // the input for this MBB. 9894 SmallVector<EVT, 4> ValueVTs; 9895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9896 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9897 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9898 EVT VT = ValueVTs[vti]; 9899 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9900 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9901 FuncInfo.PHINodesToUpdate.push_back( 9902 std::make_pair(&*MBBI++, Reg + i)); 9903 Reg += NumRegisters; 9904 } 9905 } 9906 } 9907 9908 ConstantsOut.clear(); 9909 } 9910 9911 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9912 /// is 0. 9913 MachineBasicBlock * 9914 SelectionDAGBuilder::StackProtectorDescriptor:: 9915 AddSuccessorMBB(const BasicBlock *BB, 9916 MachineBasicBlock *ParentMBB, 9917 bool IsLikely, 9918 MachineBasicBlock *SuccMBB) { 9919 // If SuccBB has not been created yet, create it. 9920 if (!SuccMBB) { 9921 MachineFunction *MF = ParentMBB->getParent(); 9922 MachineFunction::iterator BBI(ParentMBB); 9923 SuccMBB = MF->CreateMachineBasicBlock(BB); 9924 MF->insert(++BBI, SuccMBB); 9925 } 9926 // Add it as a successor of ParentMBB. 9927 ParentMBB->addSuccessor( 9928 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9929 return SuccMBB; 9930 } 9931 9932 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9933 MachineFunction::iterator I(MBB); 9934 if (++I == FuncInfo.MF->end()) 9935 return nullptr; 9936 return &*I; 9937 } 9938 9939 /// During lowering new call nodes can be created (such as memset, etc.). 9940 /// Those will become new roots of the current DAG, but complications arise 9941 /// when they are tail calls. In such cases, the call lowering will update 9942 /// the root, but the builder still needs to know that a tail call has been 9943 /// lowered in order to avoid generating an additional return. 9944 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9945 // If the node is null, we do have a tail call. 9946 if (MaybeTC.getNode() != nullptr) 9947 DAG.setRoot(MaybeTC); 9948 else 9949 HasTailCall = true; 9950 } 9951 9952 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9953 MachineBasicBlock *SwitchMBB, 9954 MachineBasicBlock *DefaultMBB) { 9955 MachineFunction *CurMF = FuncInfo.MF; 9956 MachineBasicBlock *NextMBB = nullptr; 9957 MachineFunction::iterator BBI(W.MBB); 9958 if (++BBI != FuncInfo.MF->end()) 9959 NextMBB = &*BBI; 9960 9961 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9962 9963 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9964 9965 if (Size == 2 && W.MBB == SwitchMBB) { 9966 // If any two of the cases has the same destination, and if one value 9967 // is the same as the other, but has one bit unset that the other has set, 9968 // use bit manipulation to do two compares at once. For example: 9969 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9970 // TODO: This could be extended to merge any 2 cases in switches with 3 9971 // cases. 9972 // TODO: Handle cases where W.CaseBB != SwitchBB. 9973 CaseCluster &Small = *W.FirstCluster; 9974 CaseCluster &Big = *W.LastCluster; 9975 9976 if (Small.Low == Small.High && Big.Low == Big.High && 9977 Small.MBB == Big.MBB) { 9978 const APInt &SmallValue = Small.Low->getValue(); 9979 const APInt &BigValue = Big.Low->getValue(); 9980 9981 // Check that there is only one bit different. 9982 APInt CommonBit = BigValue ^ SmallValue; 9983 if (CommonBit.isPowerOf2()) { 9984 SDValue CondLHS = getValue(Cond); 9985 EVT VT = CondLHS.getValueType(); 9986 SDLoc DL = getCurSDLoc(); 9987 9988 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9989 DAG.getConstant(CommonBit, DL, VT)); 9990 SDValue Cond = DAG.getSetCC( 9991 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9992 ISD::SETEQ); 9993 9994 // Update successor info. 9995 // Both Small and Big will jump to Small.BB, so we sum up the 9996 // probabilities. 9997 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9998 if (BPI) 9999 addSuccessorWithProb( 10000 SwitchMBB, DefaultMBB, 10001 // The default destination is the first successor in IR. 10002 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10003 else 10004 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10005 10006 // Insert the true branch. 10007 SDValue BrCond = 10008 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10009 DAG.getBasicBlock(Small.MBB)); 10010 // Insert the false branch. 10011 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10012 DAG.getBasicBlock(DefaultMBB)); 10013 10014 DAG.setRoot(BrCond); 10015 return; 10016 } 10017 } 10018 } 10019 10020 if (TM.getOptLevel() != CodeGenOpt::None) { 10021 // Here, we order cases by probability so the most likely case will be 10022 // checked first. However, two clusters can have the same probability in 10023 // which case their relative ordering is non-deterministic. So we use Low 10024 // as a tie-breaker as clusters are guaranteed to never overlap. 10025 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10026 [](const CaseCluster &a, const CaseCluster &b) { 10027 return a.Prob != b.Prob ? 10028 a.Prob > b.Prob : 10029 a.Low->getValue().slt(b.Low->getValue()); 10030 }); 10031 10032 // Rearrange the case blocks so that the last one falls through if possible 10033 // without changing the order of probabilities. 10034 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10035 --I; 10036 if (I->Prob > W.LastCluster->Prob) 10037 break; 10038 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10039 std::swap(*I, *W.LastCluster); 10040 break; 10041 } 10042 } 10043 } 10044 10045 // Compute total probability. 10046 BranchProbability DefaultProb = W.DefaultProb; 10047 BranchProbability UnhandledProbs = DefaultProb; 10048 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10049 UnhandledProbs += I->Prob; 10050 10051 MachineBasicBlock *CurMBB = W.MBB; 10052 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10053 bool FallthroughUnreachable = false; 10054 MachineBasicBlock *Fallthrough; 10055 if (I == W.LastCluster) { 10056 // For the last cluster, fall through to the default destination. 10057 Fallthrough = DefaultMBB; 10058 FallthroughUnreachable = isa<UnreachableInst>( 10059 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10060 } else { 10061 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10062 CurMF->insert(BBI, Fallthrough); 10063 // Put Cond in a virtual register to make it available from the new blocks. 10064 ExportFromCurrentBlock(Cond); 10065 } 10066 UnhandledProbs -= I->Prob; 10067 10068 switch (I->Kind) { 10069 case CC_JumpTable: { 10070 // FIXME: Optimize away range check based on pivot comparisons. 10071 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10072 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10073 10074 // The jump block hasn't been inserted yet; insert it here. 10075 MachineBasicBlock *JumpMBB = JT->MBB; 10076 CurMF->insert(BBI, JumpMBB); 10077 10078 auto JumpProb = I->Prob; 10079 auto FallthroughProb = UnhandledProbs; 10080 10081 // If the default statement is a target of the jump table, we evenly 10082 // distribute the default probability to successors of CurMBB. Also 10083 // update the probability on the edge from JumpMBB to Fallthrough. 10084 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10085 SE = JumpMBB->succ_end(); 10086 SI != SE; ++SI) { 10087 if (*SI == DefaultMBB) { 10088 JumpProb += DefaultProb / 2; 10089 FallthroughProb -= DefaultProb / 2; 10090 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10091 JumpMBB->normalizeSuccProbs(); 10092 break; 10093 } 10094 } 10095 10096 if (FallthroughUnreachable) { 10097 // Skip the range check if the fallthrough block is unreachable. 10098 JTH->OmitRangeCheck = true; 10099 } 10100 10101 if (!JTH->OmitRangeCheck) 10102 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10103 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10104 CurMBB->normalizeSuccProbs(); 10105 10106 // The jump table header will be inserted in our current block, do the 10107 // range check, and fall through to our fallthrough block. 10108 JTH->HeaderBB = CurMBB; 10109 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10110 10111 // If we're in the right place, emit the jump table header right now. 10112 if (CurMBB == SwitchMBB) { 10113 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10114 JTH->Emitted = true; 10115 } 10116 break; 10117 } 10118 case CC_BitTests: { 10119 // FIXME: If Fallthrough is unreachable, skip the range check. 10120 10121 // FIXME: Optimize away range check based on pivot comparisons. 10122 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10123 10124 // The bit test blocks haven't been inserted yet; insert them here. 10125 for (BitTestCase &BTC : BTB->Cases) 10126 CurMF->insert(BBI, BTC.ThisBB); 10127 10128 // Fill in fields of the BitTestBlock. 10129 BTB->Parent = CurMBB; 10130 BTB->Default = Fallthrough; 10131 10132 BTB->DefaultProb = UnhandledProbs; 10133 // If the cases in bit test don't form a contiguous range, we evenly 10134 // distribute the probability on the edge to Fallthrough to two 10135 // successors of CurMBB. 10136 if (!BTB->ContiguousRange) { 10137 BTB->Prob += DefaultProb / 2; 10138 BTB->DefaultProb -= DefaultProb / 2; 10139 } 10140 10141 // If we're in the right place, emit the bit test header right now. 10142 if (CurMBB == SwitchMBB) { 10143 visitBitTestHeader(*BTB, SwitchMBB); 10144 BTB->Emitted = true; 10145 } 10146 break; 10147 } 10148 case CC_Range: { 10149 const Value *RHS, *LHS, *MHS; 10150 ISD::CondCode CC; 10151 if (I->Low == I->High) { 10152 // Check Cond == I->Low. 10153 CC = ISD::SETEQ; 10154 LHS = Cond; 10155 RHS=I->Low; 10156 MHS = nullptr; 10157 } else { 10158 // Check I->Low <= Cond <= I->High. 10159 CC = ISD::SETLE; 10160 LHS = I->Low; 10161 MHS = Cond; 10162 RHS = I->High; 10163 } 10164 10165 // If Fallthrough is unreachable, fold away the comparison. 10166 if (FallthroughUnreachable) 10167 CC = ISD::SETTRUE; 10168 10169 // The false probability is the sum of all unhandled cases. 10170 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10171 getCurSDLoc(), I->Prob, UnhandledProbs); 10172 10173 if (CurMBB == SwitchMBB) 10174 visitSwitchCase(CB, SwitchMBB); 10175 else 10176 SL->SwitchCases.push_back(CB); 10177 10178 break; 10179 } 10180 } 10181 CurMBB = Fallthrough; 10182 } 10183 } 10184 10185 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10186 CaseClusterIt First, 10187 CaseClusterIt Last) { 10188 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10189 if (X.Prob != CC.Prob) 10190 return X.Prob > CC.Prob; 10191 10192 // Ties are broken by comparing the case value. 10193 return X.Low->getValue().slt(CC.Low->getValue()); 10194 }); 10195 } 10196 10197 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10198 const SwitchWorkListItem &W, 10199 Value *Cond, 10200 MachineBasicBlock *SwitchMBB) { 10201 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10202 "Clusters not sorted?"); 10203 10204 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10205 10206 // Balance the tree based on branch probabilities to create a near-optimal (in 10207 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10208 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10209 CaseClusterIt LastLeft = W.FirstCluster; 10210 CaseClusterIt FirstRight = W.LastCluster; 10211 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10212 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10213 10214 // Move LastLeft and FirstRight towards each other from opposite directions to 10215 // find a partitioning of the clusters which balances the probability on both 10216 // sides. If LeftProb and RightProb are equal, alternate which side is 10217 // taken to ensure 0-probability nodes are distributed evenly. 10218 unsigned I = 0; 10219 while (LastLeft + 1 < FirstRight) { 10220 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10221 LeftProb += (++LastLeft)->Prob; 10222 else 10223 RightProb += (--FirstRight)->Prob; 10224 I++; 10225 } 10226 10227 while (true) { 10228 // Our binary search tree differs from a typical BST in that ours can have up 10229 // to three values in each leaf. The pivot selection above doesn't take that 10230 // into account, which means the tree might require more nodes and be less 10231 // efficient. We compensate for this here. 10232 10233 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10234 unsigned NumRight = W.LastCluster - FirstRight + 1; 10235 10236 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10237 // If one side has less than 3 clusters, and the other has more than 3, 10238 // consider taking a cluster from the other side. 10239 10240 if (NumLeft < NumRight) { 10241 // Consider moving the first cluster on the right to the left side. 10242 CaseCluster &CC = *FirstRight; 10243 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10244 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10245 if (LeftSideRank <= RightSideRank) { 10246 // Moving the cluster to the left does not demote it. 10247 ++LastLeft; 10248 ++FirstRight; 10249 continue; 10250 } 10251 } else { 10252 assert(NumRight < NumLeft); 10253 // Consider moving the last element on the left to the right side. 10254 CaseCluster &CC = *LastLeft; 10255 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10256 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10257 if (RightSideRank <= LeftSideRank) { 10258 // Moving the cluster to the right does not demot it. 10259 --LastLeft; 10260 --FirstRight; 10261 continue; 10262 } 10263 } 10264 } 10265 break; 10266 } 10267 10268 assert(LastLeft + 1 == FirstRight); 10269 assert(LastLeft >= W.FirstCluster); 10270 assert(FirstRight <= W.LastCluster); 10271 10272 // Use the first element on the right as pivot since we will make less-than 10273 // comparisons against it. 10274 CaseClusterIt PivotCluster = FirstRight; 10275 assert(PivotCluster > W.FirstCluster); 10276 assert(PivotCluster <= W.LastCluster); 10277 10278 CaseClusterIt FirstLeft = W.FirstCluster; 10279 CaseClusterIt LastRight = W.LastCluster; 10280 10281 const ConstantInt *Pivot = PivotCluster->Low; 10282 10283 // New blocks will be inserted immediately after the current one. 10284 MachineFunction::iterator BBI(W.MBB); 10285 ++BBI; 10286 10287 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10288 // we can branch to its destination directly if it's squeezed exactly in 10289 // between the known lower bound and Pivot - 1. 10290 MachineBasicBlock *LeftMBB; 10291 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10292 FirstLeft->Low == W.GE && 10293 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10294 LeftMBB = FirstLeft->MBB; 10295 } else { 10296 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10297 FuncInfo.MF->insert(BBI, LeftMBB); 10298 WorkList.push_back( 10299 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10300 // Put Cond in a virtual register to make it available from the new blocks. 10301 ExportFromCurrentBlock(Cond); 10302 } 10303 10304 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10305 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10306 // directly if RHS.High equals the current upper bound. 10307 MachineBasicBlock *RightMBB; 10308 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10309 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10310 RightMBB = FirstRight->MBB; 10311 } else { 10312 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10313 FuncInfo.MF->insert(BBI, RightMBB); 10314 WorkList.push_back( 10315 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10316 // Put Cond in a virtual register to make it available from the new blocks. 10317 ExportFromCurrentBlock(Cond); 10318 } 10319 10320 // Create the CaseBlock record that will be used to lower the branch. 10321 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10322 getCurSDLoc(), LeftProb, RightProb); 10323 10324 if (W.MBB == SwitchMBB) 10325 visitSwitchCase(CB, SwitchMBB); 10326 else 10327 SL->SwitchCases.push_back(CB); 10328 } 10329 10330 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10331 // from the swith statement. 10332 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10333 BranchProbability PeeledCaseProb) { 10334 if (PeeledCaseProb == BranchProbability::getOne()) 10335 return BranchProbability::getZero(); 10336 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10337 10338 uint32_t Numerator = CaseProb.getNumerator(); 10339 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10340 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10341 } 10342 10343 // Try to peel the top probability case if it exceeds the threshold. 10344 // Return current MachineBasicBlock for the switch statement if the peeling 10345 // does not occur. 10346 // If the peeling is performed, return the newly created MachineBasicBlock 10347 // for the peeled switch statement. Also update Clusters to remove the peeled 10348 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10349 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10350 const SwitchInst &SI, CaseClusterVector &Clusters, 10351 BranchProbability &PeeledCaseProb) { 10352 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10353 // Don't perform if there is only one cluster or optimizing for size. 10354 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10355 TM.getOptLevel() == CodeGenOpt::None || 10356 SwitchMBB->getParent()->getFunction().hasMinSize()) 10357 return SwitchMBB; 10358 10359 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10360 unsigned PeeledCaseIndex = 0; 10361 bool SwitchPeeled = false; 10362 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10363 CaseCluster &CC = Clusters[Index]; 10364 if (CC.Prob < TopCaseProb) 10365 continue; 10366 TopCaseProb = CC.Prob; 10367 PeeledCaseIndex = Index; 10368 SwitchPeeled = true; 10369 } 10370 if (!SwitchPeeled) 10371 return SwitchMBB; 10372 10373 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10374 << TopCaseProb << "\n"); 10375 10376 // Record the MBB for the peeled switch statement. 10377 MachineFunction::iterator BBI(SwitchMBB); 10378 ++BBI; 10379 MachineBasicBlock *PeeledSwitchMBB = 10380 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10381 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10382 10383 ExportFromCurrentBlock(SI.getCondition()); 10384 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10385 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10386 nullptr, nullptr, TopCaseProb.getCompl()}; 10387 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10388 10389 Clusters.erase(PeeledCaseIt); 10390 for (CaseCluster &CC : Clusters) { 10391 LLVM_DEBUG( 10392 dbgs() << "Scale the probablity for one cluster, before scaling: " 10393 << CC.Prob << "\n"); 10394 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10395 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10396 } 10397 PeeledCaseProb = TopCaseProb; 10398 return PeeledSwitchMBB; 10399 } 10400 10401 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10402 // Extract cases from the switch. 10403 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10404 CaseClusterVector Clusters; 10405 Clusters.reserve(SI.getNumCases()); 10406 for (auto I : SI.cases()) { 10407 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10408 const ConstantInt *CaseVal = I.getCaseValue(); 10409 BranchProbability Prob = 10410 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10411 : BranchProbability(1, SI.getNumCases() + 1); 10412 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10413 } 10414 10415 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10416 10417 // Cluster adjacent cases with the same destination. We do this at all 10418 // optimization levels because it's cheap to do and will make codegen faster 10419 // if there are many clusters. 10420 sortAndRangeify(Clusters); 10421 10422 // The branch probablity of the peeled case. 10423 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10424 MachineBasicBlock *PeeledSwitchMBB = 10425 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10426 10427 // If there is only the default destination, jump there directly. 10428 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10429 if (Clusters.empty()) { 10430 assert(PeeledSwitchMBB == SwitchMBB); 10431 SwitchMBB->addSuccessor(DefaultMBB); 10432 if (DefaultMBB != NextBlock(SwitchMBB)) { 10433 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10434 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10435 } 10436 return; 10437 } 10438 10439 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10440 SL->findBitTestClusters(Clusters, &SI); 10441 10442 LLVM_DEBUG({ 10443 dbgs() << "Case clusters: "; 10444 for (const CaseCluster &C : Clusters) { 10445 if (C.Kind == CC_JumpTable) 10446 dbgs() << "JT:"; 10447 if (C.Kind == CC_BitTests) 10448 dbgs() << "BT:"; 10449 10450 C.Low->getValue().print(dbgs(), true); 10451 if (C.Low != C.High) { 10452 dbgs() << '-'; 10453 C.High->getValue().print(dbgs(), true); 10454 } 10455 dbgs() << ' '; 10456 } 10457 dbgs() << '\n'; 10458 }); 10459 10460 assert(!Clusters.empty()); 10461 SwitchWorkList WorkList; 10462 CaseClusterIt First = Clusters.begin(); 10463 CaseClusterIt Last = Clusters.end() - 1; 10464 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10465 // Scale the branchprobability for DefaultMBB if the peel occurs and 10466 // DefaultMBB is not replaced. 10467 if (PeeledCaseProb != BranchProbability::getZero() && 10468 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10469 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10470 WorkList.push_back( 10471 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10472 10473 while (!WorkList.empty()) { 10474 SwitchWorkListItem W = WorkList.back(); 10475 WorkList.pop_back(); 10476 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10477 10478 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10479 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10480 // For optimized builds, lower large range as a balanced binary tree. 10481 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10482 continue; 10483 } 10484 10485 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10486 } 10487 } 10488