1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // Return the calling convention if the Value passed requires ABI mangling as it 161 // is a parameter to a function or a return value from a function which is not 162 // an intrinsic. 163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 164 if (auto *R = dyn_cast<ReturnInst>(V)) 165 return R->getParent()->getParent()->getCallingConv(); 166 167 if (auto *CI = dyn_cast<CallInst>(V)) { 168 const bool IsInlineAsm = CI->isInlineAsm(); 169 const bool IsIndirectFunctionCall = 170 !IsInlineAsm && !CI->getCalledFunction(); 171 172 // It is possible that the call instruction is an inline asm statement or an 173 // indirect function call in which case the return value of 174 // getCalledFunction() would be nullptr. 175 const bool IsInstrinsicCall = 176 !IsInlineAsm && !IsIndirectFunctionCall && 177 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 178 179 if (!IsInlineAsm && !IsInstrinsicCall) 180 return CI->getCallingConv(); 181 } 182 183 return None; 184 } 185 186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 187 const SDValue *Parts, unsigned NumParts, 188 MVT PartVT, EVT ValueVT, const Value *V, 189 Optional<CallingConv::ID> CC); 190 191 /// getCopyFromParts - Create a value that contains the specified legal parts 192 /// combined into the value they represent. If the parts combine to a type 193 /// larger than ValueVT then AssertOp can be used to specify whether the extra 194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 195 /// (ISD::AssertSext). 196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 197 const SDValue *Parts, unsigned NumParts, 198 MVT PartVT, EVT ValueVT, const Value *V, 199 Optional<CallingConv::ID> CC = None, 200 Optional<ISD::NodeType> AssertOp = None) { 201 if (ValueVT.isVector()) 202 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 203 CC); 204 205 assert(NumParts > 0 && "No parts to assemble!"); 206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 207 SDValue Val = Parts[0]; 208 209 if (NumParts > 1) { 210 // Assemble the value from multiple parts. 211 if (ValueVT.isInteger()) { 212 unsigned PartBits = PartVT.getSizeInBits(); 213 unsigned ValueBits = ValueVT.getSizeInBits(); 214 215 // Assemble the power of 2 part. 216 unsigned RoundParts = NumParts & (NumParts - 1) ? 217 1 << Log2_32(NumParts) : NumParts; 218 unsigned RoundBits = PartBits * RoundParts; 219 EVT RoundVT = RoundBits == ValueBits ? 220 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 221 SDValue Lo, Hi; 222 223 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 224 225 if (RoundParts > 2) { 226 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 227 PartVT, HalfVT, V); 228 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 229 RoundParts / 2, PartVT, HalfVT, V); 230 } else { 231 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 233 } 234 235 if (DAG.getDataLayout().isBigEndian()) 236 std::swap(Lo, Hi); 237 238 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 239 240 if (RoundParts < NumParts) { 241 // Assemble the trailing non-power-of-2 part. 242 unsigned OddParts = NumParts - RoundParts; 243 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 244 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 245 OddVT, V, CC); 246 247 // Combine the round and odd parts. 248 Lo = Val; 249 if (DAG.getDataLayout().isBigEndian()) 250 std::swap(Lo, Hi); 251 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 252 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 253 Hi = 254 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 255 DAG.getConstant(Lo.getValueSizeInBits(), DL, 256 TLI.getPointerTy(DAG.getDataLayout()))); 257 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 258 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 259 } 260 } else if (PartVT.isFloatingPoint()) { 261 // FP split into multiple FP parts (for ppcf128) 262 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 263 "Unexpected split"); 264 SDValue Lo, Hi; 265 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 266 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 267 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 268 std::swap(Lo, Hi); 269 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 270 } else { 271 // FP split into integer parts (soft fp) 272 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 273 !PartVT.isVector() && "Unexpected split"); 274 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 275 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 276 } 277 } 278 279 // There is now one part, held in Val. Correct it to match ValueVT. 280 // PartEVT is the type of the register class that holds the value. 281 // ValueVT is the type of the inline asm operation. 282 EVT PartEVT = Val.getValueType(); 283 284 if (PartEVT == ValueVT) 285 return Val; 286 287 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 288 ValueVT.bitsLT(PartEVT)) { 289 // For an FP value in an integer part, we need to truncate to the right 290 // width first. 291 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 293 } 294 295 // Handle types that have the same size. 296 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 297 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 298 299 // Handle types with different sizes. 300 if (PartEVT.isInteger() && ValueVT.isInteger()) { 301 if (ValueVT.bitsLT(PartEVT)) { 302 // For a truncate, see if we have any information to 303 // indicate whether the truncated bits will always be 304 // zero or sign-extension. 305 if (AssertOp.hasValue()) 306 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 307 DAG.getValueType(ValueVT)); 308 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 309 } 310 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 311 } 312 313 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 314 // FP_ROUND's are always exact here. 315 if (ValueVT.bitsLT(Val.getValueType())) 316 return DAG.getNode( 317 ISD::FP_ROUND, DL, ValueVT, Val, 318 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 319 320 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 321 } 322 323 llvm_unreachable("Unknown mismatch!"); 324 } 325 326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 327 const Twine &ErrMsg) { 328 const Instruction *I = dyn_cast_or_null<Instruction>(V); 329 if (!V) 330 return Ctx.emitError(ErrMsg); 331 332 const char *AsmError = ", possible invalid constraint for vector type"; 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) 334 if (isa<InlineAsm>(CI->getCalledValue())) 335 return Ctx.emitError(I, ErrMsg + AsmError); 336 337 return Ctx.emitError(I, ErrMsg); 338 } 339 340 /// getCopyFromPartsVector - Create a value that contains the specified legal 341 /// parts combined into the value they represent. If the parts combine to a 342 /// type larger than ValueVT then AssertOp can be used to specify whether the 343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 344 /// ValueVT (ISD::AssertSext). 345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 346 const SDValue *Parts, unsigned NumParts, 347 MVT PartVT, EVT ValueVT, const Value *V, 348 Optional<CallingConv::ID> CallConv) { 349 assert(ValueVT.isVector() && "Not a vector value"); 350 assert(NumParts > 0 && "No parts to assemble!"); 351 const bool IsABIRegCopy = CallConv.hasValue(); 352 353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 354 SDValue Val = Parts[0]; 355 356 // Handle a multi-element vector. 357 if (NumParts > 1) { 358 EVT IntermediateVT; 359 MVT RegisterVT; 360 unsigned NumIntermediates; 361 unsigned NumRegs; 362 363 if (IsABIRegCopy) { 364 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 365 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } else { 368 NumRegs = 369 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 370 NumIntermediates, RegisterVT); 371 } 372 373 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 374 NumParts = NumRegs; // Silence a compiler warning. 375 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 376 assert(RegisterVT.getSizeInBits() == 377 Parts[0].getSimpleValueType().getSizeInBits() && 378 "Part type sizes don't match!"); 379 380 // Assemble the parts into intermediate operands. 381 SmallVector<SDValue, 8> Ops(NumIntermediates); 382 if (NumIntermediates == NumParts) { 383 // If the register was not expanded, truncate or copy the value, 384 // as appropriate. 385 for (unsigned i = 0; i != NumParts; ++i) 386 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 387 PartVT, IntermediateVT, V); 388 } else if (NumParts > 0) { 389 // If the intermediate type was expanded, build the intermediate 390 // operands from the parts. 391 assert(NumParts % NumIntermediates == 0 && 392 "Must expand into a divisible number of parts!"); 393 unsigned Factor = NumParts / NumIntermediates; 394 for (unsigned i = 0; i != NumIntermediates; ++i) 395 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 396 PartVT, IntermediateVT, V); 397 } 398 399 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 400 // intermediate operands. 401 EVT BuiltVectorTy = 402 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 403 (IntermediateVT.isVector() 404 ? IntermediateVT.getVectorNumElements() * NumParts 405 : NumIntermediates)); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // If the element type of the source/dest vectors are the same, but the 419 // parts vector has more elements than the value vector, then we have a 420 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 421 // elements we want. 422 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 423 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 424 "Cannot narrow, it would be a lossy transformation"); 425 return DAG.getNode( 426 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 427 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 428 } 429 430 // Vector/Vector bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 434 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 435 "Cannot handle this kind of promotion"); 436 // Promoted vector extract 437 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 438 439 } 440 441 // Trivial bitcast if the types are the same size and the destination 442 // vector type is legal. 443 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 444 TLI.isTypeLegal(ValueVT)) 445 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 446 447 if (ValueVT.getVectorNumElements() != 1) { 448 // Certain ABIs require that vectors are passed as integers. For vectors 449 // are the same size, this is an obvious bitcast. 450 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 453 // Bitcast Val back the original type and extract the corresponding 454 // vector we want. 455 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 456 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 457 ValueVT.getVectorElementType(), Elts); 458 Val = DAG.getBitcast(WiderVecType, Val); 459 return DAG.getNode( 460 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 461 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 462 } 463 464 diagnosePossiblyInvalidConstraint( 465 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 466 return DAG.getUNDEF(ValueVT); 467 } 468 469 // Handle cases such as i8 -> <1 x i1> 470 EVT ValueSVT = ValueVT.getVectorElementType(); 471 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 472 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 475 return DAG.getBuildVector(ValueVT, DL, Val); 476 } 477 478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V, 481 Optional<CallingConv::ID> CallConv); 482 483 /// getCopyToParts - Create a series of nodes that contain the specified value 484 /// split into legal parts. If the parts contain more bits than Val, then, for 485 /// integers, ExtendKind can be used to specify how to generate the extra bits. 486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 487 SDValue *Parts, unsigned NumParts, MVT PartVT, 488 const Value *V, 489 Optional<CallingConv::ID> CallConv = None, 490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getIntPtrConstant(RoundBits, DL)); 575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 576 CallConv); 577 578 if (DAG.getDataLayout().isBigEndian()) 579 // The odd parts were reversed by getCopyToParts - unreverse them. 580 std::reverse(Parts + RoundParts, Parts + NumParts); 581 582 NumParts = RoundParts; 583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 585 } 586 587 // The number of parts is a power of 2. Repeatedly bisect the value using 588 // EXTRACT_ELEMENT. 589 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 590 EVT::getIntegerVT(*DAG.getContext(), 591 ValueVT.getSizeInBits()), 592 Val); 593 594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 595 for (unsigned i = 0; i < NumParts; i += StepSize) { 596 unsigned ThisBits = StepSize * PartBits / 2; 597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 598 SDValue &Part0 = Parts[i]; 599 SDValue &Part1 = Parts[i+StepSize/2]; 600 601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 605 606 if (ThisBits == PartBits && ThisVT != PartVT) { 607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 609 } 610 } 611 } 612 613 if (DAG.getDataLayout().isBigEndian()) 614 std::reverse(Parts, Parts + OrigNumParts); 615 } 616 617 static SDValue widenVectorToPartType(SelectionDAG &DAG, 618 SDValue Val, const SDLoc &DL, EVT PartVT) { 619 if (!PartVT.isVector()) 620 return SDValue(); 621 622 EVT ValueVT = Val.getValueType(); 623 unsigned PartNumElts = PartVT.getVectorNumElements(); 624 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 625 if (PartNumElts > ValueNumElts && 626 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 627 EVT ElementVT = PartVT.getVectorElementType(); 628 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 629 // undef elements. 630 SmallVector<SDValue, 16> Ops; 631 DAG.ExtractVectorElements(Val, Ops); 632 SDValue EltUndef = DAG.getUNDEF(ElementVT); 633 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 634 Ops.push_back(EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 return SDValue(); 641 } 642 643 /// getCopyToPartsVector - Create a series of nodes that contain the specified 644 /// value split into legal parts. 645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 646 SDValue Val, SDValue *Parts, unsigned NumParts, 647 MVT PartVT, const Value *V, 648 Optional<CallingConv::ID> CallConv) { 649 EVT ValueVT = Val.getValueType(); 650 assert(ValueVT.isVector() && "Not a vector"); 651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 652 const bool IsABIRegCopy = CallConv.hasValue(); 653 654 if (NumParts == 1) { 655 EVT PartEVT = PartVT; 656 if (PartEVT == ValueVT) { 657 // Nothing to do. 658 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 659 // Bitconvert vector->vector case. 660 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 661 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 662 Val = Widened; 663 } else if (PartVT.isVector() && 664 PartEVT.getVectorElementType().bitsGE( 665 ValueVT.getVectorElementType()) && 666 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 667 668 // Promoted vector extract 669 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 670 } else { 671 if (ValueVT.getVectorNumElements() == 1) { 672 Val = DAG.getNode( 673 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 674 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 675 } else { 676 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 677 "lossy conversion of vector to scalar type"); 678 EVT IntermediateType = 679 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 680 Val = DAG.getBitcast(IntermediateType, Val); 681 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 682 } 683 } 684 685 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 686 Parts[0] = Val; 687 return; 688 } 689 690 // Handle a multi-element vector. 691 EVT IntermediateVT; 692 MVT RegisterVT; 693 unsigned NumIntermediates; 694 unsigned NumRegs; 695 if (IsABIRegCopy) { 696 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 697 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } else { 700 NumRegs = 701 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 702 NumIntermediates, RegisterVT); 703 } 704 705 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 706 NumParts = NumRegs; // Silence a compiler warning. 707 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 708 709 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 710 IntermediateVT.getVectorNumElements() : 1; 711 712 // Convert the vector to the appropiate type if necessary. 713 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 717 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 718 if (ValueVT != BuiltVectorTy) { 719 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 720 Val = Widened; 721 722 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 723 } 724 725 // Split the vector into intermediate operands. 726 SmallVector<SDValue, 8> Ops(NumIntermediates); 727 for (unsigned i = 0; i != NumIntermediates; ++i) { 728 if (IntermediateVT.isVector()) { 729 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 730 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 731 } else { 732 Ops[i] = DAG.getNode( 733 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 734 DAG.getConstant(i, DL, IdxVT)); 735 } 736 } 737 738 // Split the intermediate operands into legal parts. 739 if (NumParts == NumIntermediates) { 740 // If the register was not expanded, promote or copy the value, 741 // as appropriate. 742 for (unsigned i = 0; i != NumParts; ++i) 743 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 744 } else if (NumParts > 0) { 745 // If the intermediate type was expanded, split each the value into 746 // legal parts. 747 assert(NumIntermediates != 0 && "division by zero"); 748 assert(NumParts % NumIntermediates == 0 && 749 "Must expand into a divisible number of parts!"); 750 unsigned Factor = NumParts / NumIntermediates; 751 for (unsigned i = 0; i != NumIntermediates; ++i) 752 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 753 CallConv); 754 } 755 } 756 757 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 758 EVT valuevt, Optional<CallingConv::ID> CC) 759 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 760 RegCount(1, regs.size()), CallConv(CC) {} 761 762 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 763 const DataLayout &DL, unsigned Reg, Type *Ty, 764 Optional<CallingConv::ID> CC) { 765 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 766 767 CallConv = CC; 768 769 for (EVT ValueVT : ValueVTs) { 770 unsigned NumRegs = 771 isABIMangled() 772 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 773 : TLI.getNumRegisters(Context, ValueVT); 774 MVT RegisterVT = 775 isABIMangled() 776 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 777 : TLI.getRegisterType(Context, ValueVT); 778 for (unsigned i = 0; i != NumRegs; ++i) 779 Regs.push_back(Reg + i); 780 RegVTs.push_back(RegisterVT); 781 RegCount.push_back(NumRegs); 782 Reg += NumRegs; 783 } 784 } 785 786 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 787 FunctionLoweringInfo &FuncInfo, 788 const SDLoc &dl, SDValue &Chain, 789 SDValue *Flag, const Value *V) const { 790 // A Value with type {} or [0 x %t] needs no registers. 791 if (ValueVTs.empty()) 792 return SDValue(); 793 794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 795 796 // Assemble the legal parts into the final values. 797 SmallVector<SDValue, 4> Values(ValueVTs.size()); 798 SmallVector<SDValue, 8> Parts; 799 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 800 // Copy the legal parts from the registers. 801 EVT ValueVT = ValueVTs[Value]; 802 unsigned NumRegs = RegCount[Value]; 803 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 804 *DAG.getContext(), 805 CallConv.getValue(), RegVTs[Value]) 806 : RegVTs[Value]; 807 808 Parts.resize(NumRegs); 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 SDValue P; 811 if (!Flag) { 812 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 813 } else { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 815 *Flag = P.getValue(2); 816 } 817 818 Chain = P.getValue(1); 819 Parts[i] = P; 820 821 // If the source register was virtual and if we know something about it, 822 // add an assert node. 823 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 824 !RegisterVT.isInteger() || RegisterVT.isVector()) 825 continue; 826 827 const FunctionLoweringInfo::LiveOutInfo *LOI = 828 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 829 if (!LOI) 830 continue; 831 832 unsigned RegSize = RegisterVT.getSizeInBits(); 833 unsigned NumSignBits = LOI->NumSignBits; 834 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 835 836 if (NumZeroBits == RegSize) { 837 // The current value is a zero. 838 // Explicitly express that as it would be easier for 839 // optimizations to kick in. 840 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 841 continue; 842 } 843 844 // FIXME: We capture more information than the dag can represent. For 845 // now, just use the tightest assertzext/assertsext possible. 846 bool isSExt; 847 EVT FromVT(MVT::Other); 848 if (NumZeroBits) { 849 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 850 isSExt = false; 851 } else if (NumSignBits > 1) { 852 FromVT = 853 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 854 isSExt = true; 855 } else { 856 continue; 857 } 858 // Add an assertion node. 859 assert(FromVT != MVT::Other); 860 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 861 RegisterVT, P, DAG.getValueType(FromVT)); 862 } 863 864 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 865 RegisterVT, ValueVT, V, CallConv); 866 Part += NumRegs; 867 Parts.clear(); 868 } 869 870 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 871 } 872 873 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 874 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 875 const Value *V, 876 ISD::NodeType PreferredExtendType) const { 877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 878 ISD::NodeType ExtendKind = PreferredExtendType; 879 880 // Get the list of the values's legal parts. 881 unsigned NumRegs = Regs.size(); 882 SmallVector<SDValue, 8> Parts(NumRegs); 883 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 884 unsigned NumParts = RegCount[Value]; 885 886 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 887 *DAG.getContext(), 888 CallConv.getValue(), RegVTs[Value]) 889 : RegVTs[Value]; 890 891 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 892 ExtendKind = ISD::ZERO_EXTEND; 893 894 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 895 NumParts, RegisterVT, V, CallConv, ExtendKind); 896 Part += NumParts; 897 } 898 899 // Copy the parts into the registers. 900 SmallVector<SDValue, 8> Chains(NumRegs); 901 for (unsigned i = 0; i != NumRegs; ++i) { 902 SDValue Part; 903 if (!Flag) { 904 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 905 } else { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 907 *Flag = Part.getValue(1); 908 } 909 910 Chains[i] = Part.getValue(0); 911 } 912 913 if (NumRegs == 1 || Flag) 914 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 915 // flagged to it. That is the CopyToReg nodes and the user are considered 916 // a single scheduling unit. If we create a TokenFactor and return it as 917 // chain, then the TokenFactor is both a predecessor (operand) of the 918 // user as well as a successor (the TF operands are flagged to the user). 919 // c1, f1 = CopyToReg 920 // c2, f2 = CopyToReg 921 // c3 = TokenFactor c1, c2 922 // ... 923 // = op c3, ..., f2 924 Chain = Chains[NumRegs-1]; 925 else 926 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 927 } 928 929 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 930 unsigned MatchingIdx, const SDLoc &dl, 931 SelectionDAG &DAG, 932 std::vector<SDValue> &Ops) const { 933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 934 935 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 936 if (HasMatching) 937 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 938 else if (!Regs.empty() && 939 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 940 // Put the register class of the virtual registers in the flag word. That 941 // way, later passes can recompute register class constraints for inline 942 // assembly as well as normal instructions. 943 // Don't do this for tied operands that can use the regclass information 944 // from the def. 945 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 946 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 947 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 948 } 949 950 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 951 Ops.push_back(Res); 952 953 if (Code == InlineAsm::Kind_Clobber) { 954 // Clobbers should always have a 1:1 mapping with registers, and may 955 // reference registers that have illegal (e.g. vector) types. Hence, we 956 // shouldn't try to apply any sort of splitting logic to them. 957 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 958 "No 1:1 mapping from clobbers to regs?"); 959 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 960 (void)SP; 961 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 962 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 963 assert( 964 (Regs[I] != SP || 965 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 966 "If we clobbered the stack pointer, MFI should know about it."); 967 } 968 return; 969 } 970 971 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 972 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 973 MVT RegisterVT = RegVTs[Value]; 974 for (unsigned i = 0; i != NumRegs; ++i) { 975 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 976 unsigned TheReg = Regs[Reg++]; 977 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 978 } 979 } 980 } 981 982 SmallVector<std::pair<unsigned, unsigned>, 4> 983 RegsForValue::getRegsAndSizes() const { 984 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 985 unsigned I = 0; 986 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 987 unsigned RegCount = std::get<0>(CountAndVT); 988 MVT RegisterVT = std::get<1>(CountAndVT); 989 unsigned RegisterSize = RegisterVT.getSizeInBits(); 990 for (unsigned E = I + RegCount; I != E; ++I) 991 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 992 } 993 return OutVec; 994 } 995 996 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 997 const TargetLibraryInfo *li) { 998 AA = aa; 999 GFI = gfi; 1000 LibInfo = li; 1001 DL = &DAG.getDataLayout(); 1002 Context = DAG.getContext(); 1003 LPadToCallSiteMap.clear(); 1004 } 1005 1006 void SelectionDAGBuilder::clear() { 1007 NodeMap.clear(); 1008 UnusedArgNodeMap.clear(); 1009 PendingLoads.clear(); 1010 PendingExports.clear(); 1011 CurInst = nullptr; 1012 HasTailCall = false; 1013 SDNodeOrder = LowestSDNodeOrder; 1014 StatepointLowering.clear(); 1015 } 1016 1017 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1018 DanglingDebugInfoMap.clear(); 1019 } 1020 1021 SDValue SelectionDAGBuilder::getRoot() { 1022 if (PendingLoads.empty()) 1023 return DAG.getRoot(); 1024 1025 if (PendingLoads.size() == 1) { 1026 SDValue Root = PendingLoads[0]; 1027 DAG.setRoot(Root); 1028 PendingLoads.clear(); 1029 return Root; 1030 } 1031 1032 // Otherwise, we have to make a token factor node. 1033 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1034 PendingLoads); 1035 PendingLoads.clear(); 1036 DAG.setRoot(Root); 1037 return Root; 1038 } 1039 1040 SDValue SelectionDAGBuilder::getControlRoot() { 1041 SDValue Root = DAG.getRoot(); 1042 1043 if (PendingExports.empty()) 1044 return Root; 1045 1046 // Turn all of the CopyToReg chains into one factored node. 1047 if (Root.getOpcode() != ISD::EntryToken) { 1048 unsigned i = 0, e = PendingExports.size(); 1049 for (; i != e; ++i) { 1050 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1051 if (PendingExports[i].getNode()->getOperand(0) == Root) 1052 break; // Don't add the root if we already indirectly depend on it. 1053 } 1054 1055 if (i == e) 1056 PendingExports.push_back(Root); 1057 } 1058 1059 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1060 PendingExports); 1061 PendingExports.clear(); 1062 DAG.setRoot(Root); 1063 return Root; 1064 } 1065 1066 void SelectionDAGBuilder::visit(const Instruction &I) { 1067 // Set up outgoing PHI node register values before emitting the terminator. 1068 if (I.isTerminator()) { 1069 HandlePHINodesInSuccessorBlocks(I.getParent()); 1070 } 1071 1072 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1073 if (!isa<DbgInfoIntrinsic>(I)) 1074 ++SDNodeOrder; 1075 1076 CurInst = &I; 1077 1078 visit(I.getOpcode(), I); 1079 1080 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1081 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1082 // maps to this instruction. 1083 // TODO: We could handle all flags (nsw, etc) here. 1084 // TODO: If an IR instruction maps to >1 node, only the final node will have 1085 // flags set. 1086 if (SDNode *Node = getNodeForIRValue(&I)) { 1087 SDNodeFlags IncomingFlags; 1088 IncomingFlags.copyFMF(*FPMO); 1089 if (!Node->getFlags().isDefined()) 1090 Node->setFlags(IncomingFlags); 1091 else 1092 Node->intersectFlagsWith(IncomingFlags); 1093 } 1094 } 1095 1096 if (!I.isTerminator() && !HasTailCall && 1097 !isStatepoint(&I)) // statepoints handle their exports internally 1098 CopyToExportRegsIfNeeded(&I); 1099 1100 CurInst = nullptr; 1101 } 1102 1103 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1104 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1105 } 1106 1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1108 // Note: this doesn't use InstVisitor, because it has to work with 1109 // ConstantExpr's in addition to instructions. 1110 switch (Opcode) { 1111 default: llvm_unreachable("Unknown instruction type encountered!"); 1112 // Build the switch statement using the Instruction.def file. 1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1114 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1115 #include "llvm/IR/Instruction.def" 1116 } 1117 } 1118 1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1120 const DIExpression *Expr) { 1121 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1122 const DbgValueInst *DI = DDI.getDI(); 1123 DIVariable *DanglingVariable = DI->getVariable(); 1124 DIExpression *DanglingExpr = DI->getExpression(); 1125 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1126 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1127 return true; 1128 } 1129 return false; 1130 }; 1131 1132 for (auto &DDIMI : DanglingDebugInfoMap) { 1133 DanglingDebugInfoVector &DDIV = DDIMI.second; 1134 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1135 } 1136 } 1137 1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1139 // generate the debug data structures now that we've seen its definition. 1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1141 SDValue Val) { 1142 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1143 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1144 return; 1145 1146 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1147 for (auto &DDI : DDIV) { 1148 const DbgValueInst *DI = DDI.getDI(); 1149 assert(DI && "Ill-formed DanglingDebugInfo"); 1150 DebugLoc dl = DDI.getdl(); 1151 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1152 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1153 DILocalVariable *Variable = DI->getVariable(); 1154 DIExpression *Expr = DI->getExpression(); 1155 assert(Variable->isValidLocationForIntrinsic(dl) && 1156 "Expected inlined-at fields to agree"); 1157 SDDbgValue *SDV; 1158 if (Val.getNode()) { 1159 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1160 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1161 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1162 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1163 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1164 // inserted after the definition of Val when emitting the instructions 1165 // after ISel. An alternative could be to teach 1166 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1167 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1168 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1169 << ValSDNodeOrder << "\n"); 1170 SDV = getDbgValue(Val, Variable, Expr, dl, 1171 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1172 DAG.AddDbgValue(SDV, Val.getNode(), false); 1173 } else 1174 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1175 << "in EmitFuncArgumentDbgValue\n"); 1176 } else 1177 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1178 } 1179 DDIV.clear(); 1180 } 1181 1182 /// getCopyFromRegs - If there was virtual register allocated for the value V 1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1185 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1186 SDValue Result; 1187 1188 if (It != FuncInfo.ValueMap.end()) { 1189 unsigned InReg = It->second; 1190 1191 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1192 DAG.getDataLayout(), InReg, Ty, 1193 None); // This is not an ABI copy. 1194 SDValue Chain = DAG.getEntryNode(); 1195 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1196 V); 1197 resolveDanglingDebugInfo(V, Result); 1198 } 1199 1200 return Result; 1201 } 1202 1203 /// getValue - Return an SDValue for the given Value. 1204 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1205 // If we already have an SDValue for this value, use it. It's important 1206 // to do this first, so that we don't create a CopyFromReg if we already 1207 // have a regular SDValue. 1208 SDValue &N = NodeMap[V]; 1209 if (N.getNode()) return N; 1210 1211 // If there's a virtual register allocated and initialized for this 1212 // value, use it. 1213 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1214 return copyFromReg; 1215 1216 // Otherwise create a new SDValue and remember it. 1217 SDValue Val = getValueImpl(V); 1218 NodeMap[V] = Val; 1219 resolveDanglingDebugInfo(V, Val); 1220 return Val; 1221 } 1222 1223 // Return true if SDValue exists for the given Value 1224 bool SelectionDAGBuilder::findValue(const Value *V) const { 1225 return (NodeMap.find(V) != NodeMap.end()) || 1226 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1227 } 1228 1229 /// getNonRegisterValue - Return an SDValue for the given Value, but 1230 /// don't look in FuncInfo.ValueMap for a virtual register. 1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1232 // If we already have an SDValue for this value, use it. 1233 SDValue &N = NodeMap[V]; 1234 if (N.getNode()) { 1235 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1236 // Remove the debug location from the node as the node is about to be used 1237 // in a location which may differ from the original debug location. This 1238 // is relevant to Constant and ConstantFP nodes because they can appear 1239 // as constant expressions inside PHI nodes. 1240 N->setDebugLoc(DebugLoc()); 1241 } 1242 return N; 1243 } 1244 1245 // Otherwise create a new SDValue and remember it. 1246 SDValue Val = getValueImpl(V); 1247 NodeMap[V] = Val; 1248 resolveDanglingDebugInfo(V, Val); 1249 return Val; 1250 } 1251 1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1253 /// Create an SDValue for the given value. 1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1256 1257 if (const Constant *C = dyn_cast<Constant>(V)) { 1258 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1259 1260 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1261 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1262 1263 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1264 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1265 1266 if (isa<ConstantPointerNull>(C)) { 1267 unsigned AS = V->getType()->getPointerAddressSpace(); 1268 return DAG.getConstant(0, getCurSDLoc(), 1269 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1270 } 1271 1272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1273 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1274 1275 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1276 return DAG.getUNDEF(VT); 1277 1278 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1279 visit(CE->getOpcode(), *CE); 1280 SDValue N1 = NodeMap[V]; 1281 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1282 return N1; 1283 } 1284 1285 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1286 SmallVector<SDValue, 4> Constants; 1287 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1288 OI != OE; ++OI) { 1289 SDNode *Val = getValue(*OI).getNode(); 1290 // If the operand is an empty aggregate, there are no values. 1291 if (!Val) continue; 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Constants.push_back(SDValue(Val, i)); 1296 } 1297 1298 return DAG.getMergeValues(Constants, getCurSDLoc()); 1299 } 1300 1301 if (const ConstantDataSequential *CDS = 1302 dyn_cast<ConstantDataSequential>(C)) { 1303 SmallVector<SDValue, 4> Ops; 1304 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1305 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1306 // Add each leaf value from the operand to the Constants list 1307 // to form a flattened list of all the values. 1308 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1309 Ops.push_back(SDValue(Val, i)); 1310 } 1311 1312 if (isa<ArrayType>(CDS->getType())) 1313 return DAG.getMergeValues(Ops, getCurSDLoc()); 1314 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1315 } 1316 1317 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1318 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1319 "Unknown struct or array constant!"); 1320 1321 SmallVector<EVT, 4> ValueVTs; 1322 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1323 unsigned NumElts = ValueVTs.size(); 1324 if (NumElts == 0) 1325 return SDValue(); // empty struct 1326 SmallVector<SDValue, 4> Constants(NumElts); 1327 for (unsigned i = 0; i != NumElts; ++i) { 1328 EVT EltVT = ValueVTs[i]; 1329 if (isa<UndefValue>(C)) 1330 Constants[i] = DAG.getUNDEF(EltVT); 1331 else if (EltVT.isFloatingPoint()) 1332 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1333 else 1334 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1335 } 1336 1337 return DAG.getMergeValues(Constants, getCurSDLoc()); 1338 } 1339 1340 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1341 return DAG.getBlockAddress(BA, VT); 1342 1343 VectorType *VecTy = cast<VectorType>(V->getType()); 1344 unsigned NumElements = VecTy->getNumElements(); 1345 1346 // Now that we know the number and type of the elements, get that number of 1347 // elements into the Ops array based on what kind of constant it is. 1348 SmallVector<SDValue, 16> Ops; 1349 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1350 for (unsigned i = 0; i != NumElements; ++i) 1351 Ops.push_back(getValue(CV->getOperand(i))); 1352 } else { 1353 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1354 EVT EltVT = 1355 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1356 1357 SDValue Op; 1358 if (EltVT.isFloatingPoint()) 1359 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1360 else 1361 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1362 Ops.assign(NumElements, Op); 1363 } 1364 1365 // Create a BUILD_VECTOR node. 1366 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1367 } 1368 1369 // If this is a static alloca, generate it as the frameindex instead of 1370 // computation. 1371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1372 DenseMap<const AllocaInst*, int>::iterator SI = 1373 FuncInfo.StaticAllocaMap.find(AI); 1374 if (SI != FuncInfo.StaticAllocaMap.end()) 1375 return DAG.getFrameIndex(SI->second, 1376 TLI.getFrameIndexTy(DAG.getDataLayout())); 1377 } 1378 1379 // If this is an instruction which fast-isel has deferred, select it now. 1380 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1381 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1382 1383 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1384 Inst->getType(), getABIRegCopyCC(V)); 1385 SDValue Chain = DAG.getEntryNode(); 1386 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1387 } 1388 1389 llvm_unreachable("Can't get register for value!"); 1390 } 1391 1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1393 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1394 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1395 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1396 bool IsSEH = isAsynchronousEHPersonality(Pers); 1397 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1398 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1399 if (!IsSEH) 1400 CatchPadMBB->setIsEHScopeEntry(); 1401 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1402 if (IsMSVCCXX || IsCoreCLR) 1403 CatchPadMBB->setIsEHFuncletEntry(); 1404 // Wasm does not need catchpads anymore 1405 if (!IsWasmCXX) 1406 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1407 getControlRoot())); 1408 } 1409 1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1411 // Update machine-CFG edge. 1412 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1413 FuncInfo.MBB->addSuccessor(TargetMBB); 1414 1415 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1416 bool IsSEH = isAsynchronousEHPersonality(Pers); 1417 if (IsSEH) { 1418 // If this is not a fall-through branch or optimizations are switched off, 1419 // emit the branch. 1420 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1421 TM.getOptLevel() == CodeGenOpt::None) 1422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1423 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1424 return; 1425 } 1426 1427 // Figure out the funclet membership for the catchret's successor. 1428 // This will be used by the FuncletLayout pass to determine how to order the 1429 // BB's. 1430 // A 'catchret' returns to the outer scope's color. 1431 Value *ParentPad = I.getCatchSwitchParentPad(); 1432 const BasicBlock *SuccessorColor; 1433 if (isa<ConstantTokenNone>(ParentPad)) 1434 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1435 else 1436 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1437 assert(SuccessorColor && "No parent funclet for catchret!"); 1438 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1439 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1440 1441 // Create the terminator node. 1442 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1443 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1444 DAG.getBasicBlock(SuccessorColorMBB)); 1445 DAG.setRoot(Ret); 1446 } 1447 1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1449 // Don't emit any special code for the cleanuppad instruction. It just marks 1450 // the start of an EH scope/funclet. 1451 FuncInfo.MBB->setIsEHScopeEntry(); 1452 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1453 if (Pers != EHPersonality::Wasm_CXX) { 1454 FuncInfo.MBB->setIsEHFuncletEntry(); 1455 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1456 } 1457 } 1458 1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1460 /// many places it could ultimately go. In the IR, we have a single unwind 1461 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1462 /// This function skips over imaginary basic blocks that hold catchswitch 1463 /// instructions, and finds all the "real" machine 1464 /// basic block destinations. As those destinations may not be successors of 1465 /// EHPadBB, here we also calculate the edge probability to those destinations. 1466 /// The passed-in Prob is the edge probability to EHPadBB. 1467 static void findUnwindDestinations( 1468 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1469 BranchProbability Prob, 1470 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1471 &UnwindDests) { 1472 EHPersonality Personality = 1473 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1474 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1475 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1476 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1477 bool IsSEH = isAsynchronousEHPersonality(Personality); 1478 1479 while (EHPadBB) { 1480 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1481 BasicBlock *NewEHPadBB = nullptr; 1482 if (isa<LandingPadInst>(Pad)) { 1483 // Stop on landingpads. They are not funclets. 1484 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1485 break; 1486 } else if (isa<CleanupPadInst>(Pad)) { 1487 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1488 // personalities. 1489 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1490 UnwindDests.back().first->setIsEHScopeEntry(); 1491 if (!IsWasmCXX) 1492 UnwindDests.back().first->setIsEHFuncletEntry(); 1493 break; 1494 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1495 // Add the catchpad handlers to the possible destinations. 1496 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1497 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1498 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1499 if (IsMSVCCXX || IsCoreCLR) 1500 UnwindDests.back().first->setIsEHFuncletEntry(); 1501 if (!IsSEH) 1502 UnwindDests.back().first->setIsEHScopeEntry(); 1503 } 1504 NewEHPadBB = CatchSwitch->getUnwindDest(); 1505 } else { 1506 continue; 1507 } 1508 1509 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1510 if (BPI && NewEHPadBB) 1511 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1512 EHPadBB = NewEHPadBB; 1513 } 1514 } 1515 1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1517 // Update successor info. 1518 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1519 auto UnwindDest = I.getUnwindDest(); 1520 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1521 BranchProbability UnwindDestProb = 1522 (BPI && UnwindDest) 1523 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1524 : BranchProbability::getZero(); 1525 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1526 for (auto &UnwindDest : UnwindDests) { 1527 UnwindDest.first->setIsEHPad(); 1528 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1529 } 1530 FuncInfo.MBB->normalizeSuccProbs(); 1531 1532 // Create the terminator node. 1533 SDValue Ret = 1534 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1535 DAG.setRoot(Ret); 1536 } 1537 1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1539 report_fatal_error("visitCatchSwitch not yet implemented!"); 1540 } 1541 1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1544 auto &DL = DAG.getDataLayout(); 1545 SDValue Chain = getControlRoot(); 1546 SmallVector<ISD::OutputArg, 8> Outs; 1547 SmallVector<SDValue, 8> OutVals; 1548 1549 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1550 // lower 1551 // 1552 // %val = call <ty> @llvm.experimental.deoptimize() 1553 // ret <ty> %val 1554 // 1555 // differently. 1556 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1557 LowerDeoptimizingReturn(); 1558 return; 1559 } 1560 1561 if (!FuncInfo.CanLowerReturn) { 1562 unsigned DemoteReg = FuncInfo.DemoteRegister; 1563 const Function *F = I.getParent()->getParent(); 1564 1565 // Emit a store of the return value through the virtual register. 1566 // Leave Outs empty so that LowerReturn won't try to load return 1567 // registers the usual way. 1568 SmallVector<EVT, 1> PtrValueVTs; 1569 ComputeValueVTs(TLI, DL, 1570 F->getReturnType()->getPointerTo( 1571 DAG.getDataLayout().getAllocaAddrSpace()), 1572 PtrValueVTs); 1573 1574 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1575 DemoteReg, PtrValueVTs[0]); 1576 SDValue RetOp = getValue(I.getOperand(0)); 1577 1578 SmallVector<EVT, 4> ValueVTs; 1579 SmallVector<uint64_t, 4> Offsets; 1580 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1581 unsigned NumValues = ValueVTs.size(); 1582 1583 SmallVector<SDValue, 4> Chains(NumValues); 1584 for (unsigned i = 0; i != NumValues; ++i) { 1585 // An aggregate return value cannot wrap around the address space, so 1586 // offsets to its parts don't wrap either. 1587 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1588 Chains[i] = DAG.getStore( 1589 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1590 // FIXME: better loc info would be nice. 1591 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1592 } 1593 1594 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1595 MVT::Other, Chains); 1596 } else if (I.getNumOperands() != 0) { 1597 SmallVector<EVT, 4> ValueVTs; 1598 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1599 unsigned NumValues = ValueVTs.size(); 1600 if (NumValues) { 1601 SDValue RetOp = getValue(I.getOperand(0)); 1602 1603 const Function *F = I.getParent()->getParent(); 1604 1605 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1606 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1607 Attribute::SExt)) 1608 ExtendKind = ISD::SIGN_EXTEND; 1609 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1610 Attribute::ZExt)) 1611 ExtendKind = ISD::ZERO_EXTEND; 1612 1613 LLVMContext &Context = F->getContext(); 1614 bool RetInReg = F->getAttributes().hasAttribute( 1615 AttributeList::ReturnIndex, Attribute::InReg); 1616 1617 for (unsigned j = 0; j != NumValues; ++j) { 1618 EVT VT = ValueVTs[j]; 1619 1620 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1621 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1622 1623 CallingConv::ID CC = F->getCallingConv(); 1624 1625 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1626 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1627 SmallVector<SDValue, 4> Parts(NumParts); 1628 getCopyToParts(DAG, getCurSDLoc(), 1629 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1630 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1631 1632 // 'inreg' on function refers to return value 1633 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1634 if (RetInReg) 1635 Flags.setInReg(); 1636 1637 // Propagate extension type if any 1638 if (ExtendKind == ISD::SIGN_EXTEND) 1639 Flags.setSExt(); 1640 else if (ExtendKind == ISD::ZERO_EXTEND) 1641 Flags.setZExt(); 1642 1643 for (unsigned i = 0; i < NumParts; ++i) { 1644 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1645 VT, /*isfixed=*/true, 0, 0)); 1646 OutVals.push_back(Parts[i]); 1647 } 1648 } 1649 } 1650 } 1651 1652 // Push in swifterror virtual register as the last element of Outs. This makes 1653 // sure swifterror virtual register will be returned in the swifterror 1654 // physical register. 1655 const Function *F = I.getParent()->getParent(); 1656 if (TLI.supportSwiftError() && 1657 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1658 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1659 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1660 Flags.setSwiftError(); 1661 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1662 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1663 true /*isfixed*/, 1 /*origidx*/, 1664 0 /*partOffs*/)); 1665 // Create SDNode for the swifterror virtual register. 1666 OutVals.push_back( 1667 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1668 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1669 EVT(TLI.getPointerTy(DL)))); 1670 } 1671 1672 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1673 CallingConv::ID CallConv = 1674 DAG.getMachineFunction().getFunction().getCallingConv(); 1675 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1676 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1677 1678 // Verify that the target's LowerReturn behaved as expected. 1679 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1680 "LowerReturn didn't return a valid chain!"); 1681 1682 // Update the DAG with the new chain value resulting from return lowering. 1683 DAG.setRoot(Chain); 1684 } 1685 1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1687 /// created for it, emit nodes to copy the value into the virtual 1688 /// registers. 1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1690 // Skip empty types 1691 if (V->getType()->isEmptyTy()) 1692 return; 1693 1694 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1695 if (VMI != FuncInfo.ValueMap.end()) { 1696 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1697 CopyValueToVirtualRegister(V, VMI->second); 1698 } 1699 } 1700 1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1702 /// the current basic block, add it to ValueMap now so that we'll get a 1703 /// CopyTo/FromReg. 1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1705 // No need to export constants. 1706 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1707 1708 // Already exported? 1709 if (FuncInfo.isExportedInst(V)) return; 1710 1711 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1712 CopyValueToVirtualRegister(V, Reg); 1713 } 1714 1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1716 const BasicBlock *FromBB) { 1717 // The operands of the setcc have to be in this block. We don't know 1718 // how to export them from some other block. 1719 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1720 // Can export from current BB. 1721 if (VI->getParent() == FromBB) 1722 return true; 1723 1724 // Is already exported, noop. 1725 return FuncInfo.isExportedInst(V); 1726 } 1727 1728 // If this is an argument, we can export it if the BB is the entry block or 1729 // if it is already exported. 1730 if (isa<Argument>(V)) { 1731 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1732 return true; 1733 1734 // Otherwise, can only export this if it is already exported. 1735 return FuncInfo.isExportedInst(V); 1736 } 1737 1738 // Otherwise, constants can always be exported. 1739 return true; 1740 } 1741 1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1743 BranchProbability 1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1745 const MachineBasicBlock *Dst) const { 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 const BasicBlock *SrcBB = Src->getBasicBlock(); 1748 const BasicBlock *DstBB = Dst->getBasicBlock(); 1749 if (!BPI) { 1750 // If BPI is not available, set the default probability as 1 / N, where N is 1751 // the number of successors. 1752 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1753 return BranchProbability(1, SuccSize); 1754 } 1755 return BPI->getEdgeProbability(SrcBB, DstBB); 1756 } 1757 1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1759 MachineBasicBlock *Dst, 1760 BranchProbability Prob) { 1761 if (!FuncInfo.BPI) 1762 Src->addSuccessorWithoutProb(Dst); 1763 else { 1764 if (Prob.isUnknown()) 1765 Prob = getEdgeProbability(Src, Dst); 1766 Src->addSuccessor(Dst, Prob); 1767 } 1768 } 1769 1770 static bool InBlock(const Value *V, const BasicBlock *BB) { 1771 if (const Instruction *I = dyn_cast<Instruction>(V)) 1772 return I->getParent() == BB; 1773 return true; 1774 } 1775 1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1777 /// This function emits a branch and is used at the leaves of an OR or an 1778 /// AND operator tree. 1779 void 1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1781 MachineBasicBlock *TBB, 1782 MachineBasicBlock *FBB, 1783 MachineBasicBlock *CurBB, 1784 MachineBasicBlock *SwitchBB, 1785 BranchProbability TProb, 1786 BranchProbability FProb, 1787 bool InvertCond) { 1788 const BasicBlock *BB = CurBB->getBasicBlock(); 1789 1790 // If the leaf of the tree is a comparison, merge the condition into 1791 // the caseblock. 1792 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1793 // The operands of the cmp have to be in this block. We don't know 1794 // how to export them from some other block. If this is the first block 1795 // of the sequence, no exporting is needed. 1796 if (CurBB == SwitchBB || 1797 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1798 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1799 ISD::CondCode Condition; 1800 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1801 ICmpInst::Predicate Pred = 1802 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1803 Condition = getICmpCondCode(Pred); 1804 } else { 1805 const FCmpInst *FC = cast<FCmpInst>(Cond); 1806 FCmpInst::Predicate Pred = 1807 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1808 Condition = getFCmpCondCode(Pred); 1809 if (TM.Options.NoNaNsFPMath) 1810 Condition = getFCmpCodeWithoutNaN(Condition); 1811 } 1812 1813 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1814 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1815 SwitchCases.push_back(CB); 1816 return; 1817 } 1818 } 1819 1820 // Create a CaseBlock record representing this branch. 1821 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1822 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1823 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1824 SwitchCases.push_back(CB); 1825 } 1826 1827 /// FindMergedConditions - If Cond is an expression like 1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1829 MachineBasicBlock *TBB, 1830 MachineBasicBlock *FBB, 1831 MachineBasicBlock *CurBB, 1832 MachineBasicBlock *SwitchBB, 1833 Instruction::BinaryOps Opc, 1834 BranchProbability TProb, 1835 BranchProbability FProb, 1836 bool InvertCond) { 1837 // Skip over not part of the tree and remember to invert op and operands at 1838 // next level. 1839 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1840 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1841 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1842 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1843 !InvertCond); 1844 return; 1845 } 1846 } 1847 1848 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1849 // Compute the effective opcode for Cond, taking into account whether it needs 1850 // to be inverted, e.g. 1851 // and (not (or A, B)), C 1852 // gets lowered as 1853 // and (and (not A, not B), C) 1854 unsigned BOpc = 0; 1855 if (BOp) { 1856 BOpc = BOp->getOpcode(); 1857 if (InvertCond) { 1858 if (BOpc == Instruction::And) 1859 BOpc = Instruction::Or; 1860 else if (BOpc == Instruction::Or) 1861 BOpc = Instruction::And; 1862 } 1863 } 1864 1865 // If this node is not part of the or/and tree, emit it as a branch. 1866 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1867 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1868 BOp->getParent() != CurBB->getBasicBlock() || 1869 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1870 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1871 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1872 TProb, FProb, InvertCond); 1873 return; 1874 } 1875 1876 // Create TmpBB after CurBB. 1877 MachineFunction::iterator BBI(CurBB); 1878 MachineFunction &MF = DAG.getMachineFunction(); 1879 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1880 CurBB->getParent()->insert(++BBI, TmpBB); 1881 1882 if (Opc == Instruction::Or) { 1883 // Codegen X | Y as: 1884 // BB1: 1885 // jmp_if_X TBB 1886 // jmp TmpBB 1887 // TmpBB: 1888 // jmp_if_Y TBB 1889 // jmp FBB 1890 // 1891 1892 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1893 // The requirement is that 1894 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1895 // = TrueProb for original BB. 1896 // Assuming the original probabilities are A and B, one choice is to set 1897 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1898 // A/(1+B) and 2B/(1+B). This choice assumes that 1899 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1900 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1901 // TmpBB, but the math is more complicated. 1902 1903 auto NewTrueProb = TProb / 2; 1904 auto NewFalseProb = TProb / 2 + FProb; 1905 // Emit the LHS condition. 1906 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1907 NewTrueProb, NewFalseProb, InvertCond); 1908 1909 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1910 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1911 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1912 // Emit the RHS condition into TmpBB. 1913 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1914 Probs[0], Probs[1], InvertCond); 1915 } else { 1916 assert(Opc == Instruction::And && "Unknown merge op!"); 1917 // Codegen X & Y as: 1918 // BB1: 1919 // jmp_if_X TmpBB 1920 // jmp FBB 1921 // TmpBB: 1922 // jmp_if_Y TBB 1923 // jmp FBB 1924 // 1925 // This requires creation of TmpBB after CurBB. 1926 1927 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1928 // The requirement is that 1929 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1930 // = FalseProb for original BB. 1931 // Assuming the original probabilities are A and B, one choice is to set 1932 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1933 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1934 // TrueProb for BB1 * FalseProb for TmpBB. 1935 1936 auto NewTrueProb = TProb + FProb / 2; 1937 auto NewFalseProb = FProb / 2; 1938 // Emit the LHS condition. 1939 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1940 NewTrueProb, NewFalseProb, InvertCond); 1941 1942 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1943 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1944 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1945 // Emit the RHS condition into TmpBB. 1946 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1947 Probs[0], Probs[1], InvertCond); 1948 } 1949 } 1950 1951 /// If the set of cases should be emitted as a series of branches, return true. 1952 /// If we should emit this as a bunch of and/or'd together conditions, return 1953 /// false. 1954 bool 1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1956 if (Cases.size() != 2) return true; 1957 1958 // If this is two comparisons of the same values or'd or and'd together, they 1959 // will get folded into a single comparison, so don't emit two blocks. 1960 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1961 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1962 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1963 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1964 return false; 1965 } 1966 1967 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1968 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1969 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1970 Cases[0].CC == Cases[1].CC && 1971 isa<Constant>(Cases[0].CmpRHS) && 1972 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1973 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1974 return false; 1975 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1976 return false; 1977 } 1978 1979 return true; 1980 } 1981 1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1983 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1984 1985 // Update machine-CFG edges. 1986 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1987 1988 if (I.isUnconditional()) { 1989 // Update machine-CFG edges. 1990 BrMBB->addSuccessor(Succ0MBB); 1991 1992 // If this is not a fall-through branch or optimizations are switched off, 1993 // emit the branch. 1994 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1995 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1996 MVT::Other, getControlRoot(), 1997 DAG.getBasicBlock(Succ0MBB))); 1998 1999 return; 2000 } 2001 2002 // If this condition is one of the special cases we handle, do special stuff 2003 // now. 2004 const Value *CondVal = I.getCondition(); 2005 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2006 2007 // If this is a series of conditions that are or'd or and'd together, emit 2008 // this as a sequence of branches instead of setcc's with and/or operations. 2009 // As long as jumps are not expensive, this should improve performance. 2010 // For example, instead of something like: 2011 // cmp A, B 2012 // C = seteq 2013 // cmp D, E 2014 // F = setle 2015 // or C, F 2016 // jnz foo 2017 // Emit: 2018 // cmp A, B 2019 // je foo 2020 // cmp D, E 2021 // jle foo 2022 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2023 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2024 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2025 !I.getMetadata(LLVMContext::MD_unpredictable) && 2026 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2027 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2028 Opcode, 2029 getEdgeProbability(BrMBB, Succ0MBB), 2030 getEdgeProbability(BrMBB, Succ1MBB), 2031 /*InvertCond=*/false); 2032 // If the compares in later blocks need to use values not currently 2033 // exported from this block, export them now. This block should always 2034 // be the first entry. 2035 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2036 2037 // Allow some cases to be rejected. 2038 if (ShouldEmitAsBranches(SwitchCases)) { 2039 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2040 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2041 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2042 } 2043 2044 // Emit the branch for this block. 2045 visitSwitchCase(SwitchCases[0], BrMBB); 2046 SwitchCases.erase(SwitchCases.begin()); 2047 return; 2048 } 2049 2050 // Okay, we decided not to do this, remove any inserted MBB's and clear 2051 // SwitchCases. 2052 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2053 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2054 2055 SwitchCases.clear(); 2056 } 2057 } 2058 2059 // Create a CaseBlock record representing this branch. 2060 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2061 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2062 2063 // Use visitSwitchCase to actually insert the fast branch sequence for this 2064 // cond branch. 2065 visitSwitchCase(CB, BrMBB); 2066 } 2067 2068 /// visitSwitchCase - Emits the necessary code to represent a single node in 2069 /// the binary search tree resulting from lowering a switch instruction. 2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2071 MachineBasicBlock *SwitchBB) { 2072 SDValue Cond; 2073 SDValue CondLHS = getValue(CB.CmpLHS); 2074 SDLoc dl = CB.DL; 2075 2076 // Build the setcc now. 2077 if (!CB.CmpMHS) { 2078 // Fold "(X == true)" to X and "(X == false)" to !X to 2079 // handle common cases produced by branch lowering. 2080 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2081 CB.CC == ISD::SETEQ) 2082 Cond = CondLHS; 2083 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2084 CB.CC == ISD::SETEQ) { 2085 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2086 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2087 } else 2088 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2089 } else { 2090 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2091 2092 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2093 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2094 2095 SDValue CmpOp = getValue(CB.CmpMHS); 2096 EVT VT = CmpOp.getValueType(); 2097 2098 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2099 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2100 ISD::SETLE); 2101 } else { 2102 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2103 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2104 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2105 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2106 } 2107 } 2108 2109 // Update successor info 2110 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2111 // TrueBB and FalseBB are always different unless the incoming IR is 2112 // degenerate. This only happens when running llc on weird IR. 2113 if (CB.TrueBB != CB.FalseBB) 2114 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2115 SwitchBB->normalizeSuccProbs(); 2116 2117 // If the lhs block is the next block, invert the condition so that we can 2118 // fall through to the lhs instead of the rhs block. 2119 if (CB.TrueBB == NextBlock(SwitchBB)) { 2120 std::swap(CB.TrueBB, CB.FalseBB); 2121 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2122 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2123 } 2124 2125 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2126 MVT::Other, getControlRoot(), Cond, 2127 DAG.getBasicBlock(CB.TrueBB)); 2128 2129 // Insert the false branch. Do this even if it's a fall through branch, 2130 // this makes it easier to do DAG optimizations which require inverting 2131 // the branch condition. 2132 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2133 DAG.getBasicBlock(CB.FalseBB)); 2134 2135 DAG.setRoot(BrCond); 2136 } 2137 2138 /// visitJumpTable - Emit JumpTable node in the current MBB 2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2140 // Emit the code for the jump table 2141 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2142 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2143 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2144 JT.Reg, PTy); 2145 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2146 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2147 MVT::Other, Index.getValue(1), 2148 Table, Index); 2149 DAG.setRoot(BrJumpTable); 2150 } 2151 2152 /// visitJumpTableHeader - This function emits necessary code to produce index 2153 /// in the JumpTable from switch case. 2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2155 JumpTableHeader &JTH, 2156 MachineBasicBlock *SwitchBB) { 2157 SDLoc dl = getCurSDLoc(); 2158 2159 // Subtract the lowest switch case value from the value being switched on and 2160 // conditional branch to default mbb if the result is greater than the 2161 // difference between smallest and largest cases. 2162 SDValue SwitchOp = getValue(JTH.SValue); 2163 EVT VT = SwitchOp.getValueType(); 2164 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2165 DAG.getConstant(JTH.First, dl, VT)); 2166 2167 // The SDNode we just created, which holds the value being switched on minus 2168 // the smallest case value, needs to be copied to a virtual register so it 2169 // can be used as an index into the jump table in a subsequent basic block. 2170 // This value may be smaller or larger than the target's pointer type, and 2171 // therefore require extension or truncating. 2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2173 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2174 2175 unsigned JumpTableReg = 2176 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2177 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2178 JumpTableReg, SwitchOp); 2179 JT.Reg = JumpTableReg; 2180 2181 // Emit the range check for the jump table, and branch to the default block 2182 // for the switch statement if the value being switched on exceeds the largest 2183 // case in the switch. 2184 SDValue CMP = DAG.getSetCC( 2185 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2186 Sub.getValueType()), 2187 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2188 2189 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2190 MVT::Other, CopyTo, CMP, 2191 DAG.getBasicBlock(JT.Default)); 2192 2193 // Avoid emitting unnecessary branches to the next block. 2194 if (JT.MBB != NextBlock(SwitchBB)) 2195 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2196 DAG.getBasicBlock(JT.MBB)); 2197 2198 DAG.setRoot(BrCond); 2199 } 2200 2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2202 /// variable if there exists one. 2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2204 SDValue &Chain) { 2205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2206 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2207 MachineFunction &MF = DAG.getMachineFunction(); 2208 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2209 MachineSDNode *Node = 2210 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2211 if (Global) { 2212 MachinePointerInfo MPInfo(Global); 2213 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2214 MachineMemOperand::MODereferenceable; 2215 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2216 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2217 DAG.setNodeMemRefs(Node, {MemRef}); 2218 } 2219 return SDValue(Node, 0); 2220 } 2221 2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2223 /// tail spliced into a stack protector check success bb. 2224 /// 2225 /// For a high level explanation of how this fits into the stack protector 2226 /// generation see the comment on the declaration of class 2227 /// StackProtectorDescriptor. 2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2229 MachineBasicBlock *ParentBB) { 2230 2231 // First create the loads to the guard/stack slot for the comparison. 2232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2233 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2234 2235 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2236 int FI = MFI.getStackProtectorIndex(); 2237 2238 SDValue Guard; 2239 SDLoc dl = getCurSDLoc(); 2240 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2241 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2242 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2243 2244 // Generate code to load the content of the guard slot. 2245 SDValue GuardVal = DAG.getLoad( 2246 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2247 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2248 MachineMemOperand::MOVolatile); 2249 2250 if (TLI.useStackGuardXorFP()) 2251 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2252 2253 // Retrieve guard check function, nullptr if instrumentation is inlined. 2254 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2255 // The target provides a guard check function to validate the guard value. 2256 // Generate a call to that function with the content of the guard slot as 2257 // argument. 2258 auto *Fn = cast<Function>(GuardCheck); 2259 FunctionType *FnTy = Fn->getFunctionType(); 2260 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2261 2262 TargetLowering::ArgListTy Args; 2263 TargetLowering::ArgListEntry Entry; 2264 Entry.Node = GuardVal; 2265 Entry.Ty = FnTy->getParamType(0); 2266 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2267 Entry.IsInReg = true; 2268 Args.push_back(Entry); 2269 2270 TargetLowering::CallLoweringInfo CLI(DAG); 2271 CLI.setDebugLoc(getCurSDLoc()) 2272 .setChain(DAG.getEntryNode()) 2273 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2274 getValue(GuardCheck), std::move(Args)); 2275 2276 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2277 DAG.setRoot(Result.second); 2278 return; 2279 } 2280 2281 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2282 // Otherwise, emit a volatile load to retrieve the stack guard value. 2283 SDValue Chain = DAG.getEntryNode(); 2284 if (TLI.useLoadStackGuardNode()) { 2285 Guard = getLoadStackGuard(DAG, dl, Chain); 2286 } else { 2287 const Value *IRGuard = TLI.getSDagStackGuard(M); 2288 SDValue GuardPtr = getValue(IRGuard); 2289 2290 Guard = 2291 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2292 Align, MachineMemOperand::MOVolatile); 2293 } 2294 2295 // Perform the comparison via a subtract/getsetcc. 2296 EVT VT = Guard.getValueType(); 2297 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2298 2299 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2300 *DAG.getContext(), 2301 Sub.getValueType()), 2302 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2303 2304 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2305 // branch to failure MBB. 2306 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2307 MVT::Other, GuardVal.getOperand(0), 2308 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2309 // Otherwise branch to success MBB. 2310 SDValue Br = DAG.getNode(ISD::BR, dl, 2311 MVT::Other, BrCond, 2312 DAG.getBasicBlock(SPD.getSuccessMBB())); 2313 2314 DAG.setRoot(Br); 2315 } 2316 2317 /// Codegen the failure basic block for a stack protector check. 2318 /// 2319 /// A failure stack protector machine basic block consists simply of a call to 2320 /// __stack_chk_fail(). 2321 /// 2322 /// For a high level explanation of how this fits into the stack protector 2323 /// generation see the comment on the declaration of class 2324 /// StackProtectorDescriptor. 2325 void 2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2328 SDValue Chain = 2329 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2330 None, false, getCurSDLoc(), false, false).second; 2331 DAG.setRoot(Chain); 2332 } 2333 2334 /// visitBitTestHeader - This function emits necessary code to produce value 2335 /// suitable for "bit tests" 2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2337 MachineBasicBlock *SwitchBB) { 2338 SDLoc dl = getCurSDLoc(); 2339 2340 // Subtract the minimum value 2341 SDValue SwitchOp = getValue(B.SValue); 2342 EVT VT = SwitchOp.getValueType(); 2343 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2344 DAG.getConstant(B.First, dl, VT)); 2345 2346 // Check range 2347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2348 SDValue RangeCmp = DAG.getSetCC( 2349 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2350 Sub.getValueType()), 2351 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2352 2353 // Determine the type of the test operands. 2354 bool UsePtrType = false; 2355 if (!TLI.isTypeLegal(VT)) 2356 UsePtrType = true; 2357 else { 2358 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2359 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2360 // Switch table case range are encoded into series of masks. 2361 // Just use pointer type, it's guaranteed to fit. 2362 UsePtrType = true; 2363 break; 2364 } 2365 } 2366 if (UsePtrType) { 2367 VT = TLI.getPointerTy(DAG.getDataLayout()); 2368 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2369 } 2370 2371 B.RegVT = VT.getSimpleVT(); 2372 B.Reg = FuncInfo.CreateReg(B.RegVT); 2373 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2374 2375 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2376 2377 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2378 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2382 MVT::Other, CopyTo, RangeCmp, 2383 DAG.getBasicBlock(B.Default)); 2384 2385 // Avoid emitting unnecessary branches to the next block. 2386 if (MBB != NextBlock(SwitchBB)) 2387 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2388 DAG.getBasicBlock(MBB)); 2389 2390 DAG.setRoot(BrRange); 2391 } 2392 2393 /// visitBitTestCase - this function produces one "bit test" 2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2395 MachineBasicBlock* NextMBB, 2396 BranchProbability BranchProbToNext, 2397 unsigned Reg, 2398 BitTestCase &B, 2399 MachineBasicBlock *SwitchBB) { 2400 SDLoc dl = getCurSDLoc(); 2401 MVT VT = BB.RegVT; 2402 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2403 SDValue Cmp; 2404 unsigned PopCount = countPopulation(B.Mask); 2405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2406 if (PopCount == 1) { 2407 // Testing for a single bit; just compare the shift count with what it 2408 // would need to be to shift a 1 bit in that position. 2409 Cmp = DAG.getSetCC( 2410 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2411 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2412 ISD::SETEQ); 2413 } else if (PopCount == BB.Range) { 2414 // There is only one zero bit in the range, test for it directly. 2415 Cmp = DAG.getSetCC( 2416 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2417 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2418 ISD::SETNE); 2419 } else { 2420 // Make desired shift 2421 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2422 DAG.getConstant(1, dl, VT), ShiftOp); 2423 2424 // Emit bit tests and jumps 2425 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2426 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2427 Cmp = DAG.getSetCC( 2428 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2429 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2430 } 2431 2432 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2433 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2434 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2435 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2436 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2437 // one as they are relative probabilities (and thus work more like weights), 2438 // and hence we need to normalize them to let the sum of them become one. 2439 SwitchBB->normalizeSuccProbs(); 2440 2441 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2442 MVT::Other, getControlRoot(), 2443 Cmp, DAG.getBasicBlock(B.TargetBB)); 2444 2445 // Avoid emitting unnecessary branches to the next block. 2446 if (NextMBB != NextBlock(SwitchBB)) 2447 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2448 DAG.getBasicBlock(NextMBB)); 2449 2450 DAG.setRoot(BrAnd); 2451 } 2452 2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2454 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2455 2456 // Retrieve successors. Look through artificial IR level blocks like 2457 // catchswitch for successors. 2458 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2459 const BasicBlock *EHPadBB = I.getSuccessor(1); 2460 2461 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2462 // have to do anything here to lower funclet bundles. 2463 assert(!I.hasOperandBundlesOtherThan( 2464 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2465 "Cannot lower invokes with arbitrary operand bundles yet!"); 2466 2467 const Value *Callee(I.getCalledValue()); 2468 const Function *Fn = dyn_cast<Function>(Callee); 2469 if (isa<InlineAsm>(Callee)) 2470 visitInlineAsm(&I); 2471 else if (Fn && Fn->isIntrinsic()) { 2472 switch (Fn->getIntrinsicID()) { 2473 default: 2474 llvm_unreachable("Cannot invoke this intrinsic"); 2475 case Intrinsic::donothing: 2476 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2477 break; 2478 case Intrinsic::experimental_patchpoint_void: 2479 case Intrinsic::experimental_patchpoint_i64: 2480 visitPatchpoint(&I, EHPadBB); 2481 break; 2482 case Intrinsic::experimental_gc_statepoint: 2483 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2484 break; 2485 } 2486 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2487 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2488 // Eventually we will support lowering the @llvm.experimental.deoptimize 2489 // intrinsic, and right now there are no plans to support other intrinsics 2490 // with deopt state. 2491 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2492 } else { 2493 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2494 } 2495 2496 // If the value of the invoke is used outside of its defining block, make it 2497 // available as a virtual register. 2498 // We already took care of the exported value for the statepoint instruction 2499 // during call to the LowerStatepoint. 2500 if (!isStatepoint(I)) { 2501 CopyToExportRegsIfNeeded(&I); 2502 } 2503 2504 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2505 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2506 BranchProbability EHPadBBProb = 2507 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2508 : BranchProbability::getZero(); 2509 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2510 2511 // Update successor info. 2512 addSuccessorWithProb(InvokeMBB, Return); 2513 for (auto &UnwindDest : UnwindDests) { 2514 UnwindDest.first->setIsEHPad(); 2515 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2516 } 2517 InvokeMBB->normalizeSuccProbs(); 2518 2519 // Drop into normal successor. 2520 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2521 MVT::Other, getControlRoot(), 2522 DAG.getBasicBlock(Return))); 2523 } 2524 2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2526 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2527 } 2528 2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2530 assert(FuncInfo.MBB->isEHPad() && 2531 "Call to landingpad not in landing pad!"); 2532 2533 MachineBasicBlock *MBB = FuncInfo.MBB; 2534 addLandingPadInfo(LP, *MBB); 2535 2536 // If there aren't registers to copy the values into (e.g., during SjLj 2537 // exceptions), then don't bother to create these DAG nodes. 2538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2539 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2540 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2541 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2542 return; 2543 2544 // If landingpad's return type is token type, we don't create DAG nodes 2545 // for its exception pointer and selector value. The extraction of exception 2546 // pointer or selector value from token type landingpads is not currently 2547 // supported. 2548 if (LP.getType()->isTokenTy()) 2549 return; 2550 2551 SmallVector<EVT, 2> ValueVTs; 2552 SDLoc dl = getCurSDLoc(); 2553 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2554 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2555 2556 // Get the two live-in registers as SDValues. The physregs have already been 2557 // copied into virtual registers. 2558 SDValue Ops[2]; 2559 if (FuncInfo.ExceptionPointerVirtReg) { 2560 Ops[0] = DAG.getZExtOrTrunc( 2561 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2562 FuncInfo.ExceptionPointerVirtReg, 2563 TLI.getPointerTy(DAG.getDataLayout())), 2564 dl, ValueVTs[0]); 2565 } else { 2566 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2567 } 2568 Ops[1] = DAG.getZExtOrTrunc( 2569 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2570 FuncInfo.ExceptionSelectorVirtReg, 2571 TLI.getPointerTy(DAG.getDataLayout())), 2572 dl, ValueVTs[1]); 2573 2574 // Merge into one. 2575 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2576 DAG.getVTList(ValueVTs), Ops); 2577 setValue(&LP, Res); 2578 } 2579 2580 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2581 #ifndef NDEBUG 2582 for (const CaseCluster &CC : Clusters) 2583 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2584 #endif 2585 2586 llvm::sort(Clusters.begin(), Clusters.end(), 2587 [](const CaseCluster &a, const CaseCluster &b) { 2588 return a.Low->getValue().slt(b.Low->getValue()); 2589 }); 2590 2591 // Merge adjacent clusters with the same destination. 2592 const unsigned N = Clusters.size(); 2593 unsigned DstIndex = 0; 2594 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2595 CaseCluster &CC = Clusters[SrcIndex]; 2596 const ConstantInt *CaseVal = CC.Low; 2597 MachineBasicBlock *Succ = CC.MBB; 2598 2599 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2600 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2601 // If this case has the same successor and is a neighbour, merge it into 2602 // the previous cluster. 2603 Clusters[DstIndex - 1].High = CaseVal; 2604 Clusters[DstIndex - 1].Prob += CC.Prob; 2605 } else { 2606 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2607 sizeof(Clusters[SrcIndex])); 2608 } 2609 } 2610 Clusters.resize(DstIndex); 2611 } 2612 2613 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2614 MachineBasicBlock *Last) { 2615 // Update JTCases. 2616 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2617 if (JTCases[i].first.HeaderBB == First) 2618 JTCases[i].first.HeaderBB = Last; 2619 2620 // Update BitTestCases. 2621 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2622 if (BitTestCases[i].Parent == First) 2623 BitTestCases[i].Parent = Last; 2624 } 2625 2626 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2627 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2628 2629 // Update machine-CFG edges with unique successors. 2630 SmallSet<BasicBlock*, 32> Done; 2631 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2632 BasicBlock *BB = I.getSuccessor(i); 2633 bool Inserted = Done.insert(BB).second; 2634 if (!Inserted) 2635 continue; 2636 2637 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2638 addSuccessorWithProb(IndirectBrMBB, Succ); 2639 } 2640 IndirectBrMBB->normalizeSuccProbs(); 2641 2642 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2643 MVT::Other, getControlRoot(), 2644 getValue(I.getAddress()))); 2645 } 2646 2647 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2648 if (!DAG.getTarget().Options.TrapUnreachable) 2649 return; 2650 2651 // We may be able to ignore unreachable behind a noreturn call. 2652 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2653 const BasicBlock &BB = *I.getParent(); 2654 if (&I != &BB.front()) { 2655 BasicBlock::const_iterator PredI = 2656 std::prev(BasicBlock::const_iterator(&I)); 2657 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2658 if (Call->doesNotReturn()) 2659 return; 2660 } 2661 } 2662 } 2663 2664 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2665 } 2666 2667 void SelectionDAGBuilder::visitFSub(const User &I) { 2668 // -0.0 - X --> fneg 2669 Type *Ty = I.getType(); 2670 if (isa<Constant>(I.getOperand(0)) && 2671 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2674 Op2.getValueType(), Op2)); 2675 return; 2676 } 2677 2678 visitBinary(I, ISD::FSUB); 2679 } 2680 2681 /// Checks if the given instruction performs a vector reduction, in which case 2682 /// we have the freedom to alter the elements in the result as long as the 2683 /// reduction of them stays unchanged. 2684 static bool isVectorReductionOp(const User *I) { 2685 const Instruction *Inst = dyn_cast<Instruction>(I); 2686 if (!Inst || !Inst->getType()->isVectorTy()) 2687 return false; 2688 2689 auto OpCode = Inst->getOpcode(); 2690 switch (OpCode) { 2691 case Instruction::Add: 2692 case Instruction::Mul: 2693 case Instruction::And: 2694 case Instruction::Or: 2695 case Instruction::Xor: 2696 break; 2697 case Instruction::FAdd: 2698 case Instruction::FMul: 2699 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2700 if (FPOp->getFastMathFlags().isFast()) 2701 break; 2702 LLVM_FALLTHROUGH; 2703 default: 2704 return false; 2705 } 2706 2707 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2708 // Ensure the reduction size is a power of 2. 2709 if (!isPowerOf2_32(ElemNum)) 2710 return false; 2711 2712 unsigned ElemNumToReduce = ElemNum; 2713 2714 // Do DFS search on the def-use chain from the given instruction. We only 2715 // allow four kinds of operations during the search until we reach the 2716 // instruction that extracts the first element from the vector: 2717 // 2718 // 1. The reduction operation of the same opcode as the given instruction. 2719 // 2720 // 2. PHI node. 2721 // 2722 // 3. ShuffleVector instruction together with a reduction operation that 2723 // does a partial reduction. 2724 // 2725 // 4. ExtractElement that extracts the first element from the vector, and we 2726 // stop searching the def-use chain here. 2727 // 2728 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2729 // from 1-3 to the stack to continue the DFS. The given instruction is not 2730 // a reduction operation if we meet any other instructions other than those 2731 // listed above. 2732 2733 SmallVector<const User *, 16> UsersToVisit{Inst}; 2734 SmallPtrSet<const User *, 16> Visited; 2735 bool ReduxExtracted = false; 2736 2737 while (!UsersToVisit.empty()) { 2738 auto User = UsersToVisit.back(); 2739 UsersToVisit.pop_back(); 2740 if (!Visited.insert(User).second) 2741 continue; 2742 2743 for (const auto &U : User->users()) { 2744 auto Inst = dyn_cast<Instruction>(U); 2745 if (!Inst) 2746 return false; 2747 2748 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2749 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2750 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2751 return false; 2752 UsersToVisit.push_back(U); 2753 } else if (const ShuffleVectorInst *ShufInst = 2754 dyn_cast<ShuffleVectorInst>(U)) { 2755 // Detect the following pattern: A ShuffleVector instruction together 2756 // with a reduction that do partial reduction on the first and second 2757 // ElemNumToReduce / 2 elements, and store the result in 2758 // ElemNumToReduce / 2 elements in another vector. 2759 2760 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2761 if (ResultElements < ElemNum) 2762 return false; 2763 2764 if (ElemNumToReduce == 1) 2765 return false; 2766 if (!isa<UndefValue>(U->getOperand(1))) 2767 return false; 2768 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2769 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2770 return false; 2771 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2772 if (ShufInst->getMaskValue(i) != -1) 2773 return false; 2774 2775 // There is only one user of this ShuffleVector instruction, which 2776 // must be a reduction operation. 2777 if (!U->hasOneUse()) 2778 return false; 2779 2780 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2781 if (!U2 || U2->getOpcode() != OpCode) 2782 return false; 2783 2784 // Check operands of the reduction operation. 2785 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2786 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2787 UsersToVisit.push_back(U2); 2788 ElemNumToReduce /= 2; 2789 } else 2790 return false; 2791 } else if (isa<ExtractElementInst>(U)) { 2792 // At this moment we should have reduced all elements in the vector. 2793 if (ElemNumToReduce != 1) 2794 return false; 2795 2796 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2797 if (!Val || !Val->isZero()) 2798 return false; 2799 2800 ReduxExtracted = true; 2801 } else 2802 return false; 2803 } 2804 } 2805 return ReduxExtracted; 2806 } 2807 2808 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2809 SDNodeFlags Flags; 2810 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2811 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2812 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2813 } 2814 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2815 Flags.setExact(ExactOp->isExact()); 2816 } 2817 if (isVectorReductionOp(&I)) { 2818 Flags.setVectorReduction(true); 2819 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2820 } 2821 2822 SDValue Op1 = getValue(I.getOperand(0)); 2823 SDValue Op2 = getValue(I.getOperand(1)); 2824 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2825 Op1, Op2, Flags); 2826 setValue(&I, BinNodeValue); 2827 } 2828 2829 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2830 SDValue Op1 = getValue(I.getOperand(0)); 2831 SDValue Op2 = getValue(I.getOperand(1)); 2832 2833 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2834 Op2.getValueType(), DAG.getDataLayout()); 2835 2836 // Coerce the shift amount to the right type if we can. 2837 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2838 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2839 unsigned Op2Size = Op2.getValueSizeInBits(); 2840 SDLoc DL = getCurSDLoc(); 2841 2842 // If the operand is smaller than the shift count type, promote it. 2843 if (ShiftSize > Op2Size) 2844 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2845 2846 // If the operand is larger than the shift count type but the shift 2847 // count type has enough bits to represent any shift value, truncate 2848 // it now. This is a common case and it exposes the truncate to 2849 // optimization early. 2850 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2851 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2852 // Otherwise we'll need to temporarily settle for some other convenient 2853 // type. Type legalization will make adjustments once the shiftee is split. 2854 else 2855 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2856 } 2857 2858 bool nuw = false; 2859 bool nsw = false; 2860 bool exact = false; 2861 2862 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2863 2864 if (const OverflowingBinaryOperator *OFBinOp = 2865 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2866 nuw = OFBinOp->hasNoUnsignedWrap(); 2867 nsw = OFBinOp->hasNoSignedWrap(); 2868 } 2869 if (const PossiblyExactOperator *ExactOp = 2870 dyn_cast<const PossiblyExactOperator>(&I)) 2871 exact = ExactOp->isExact(); 2872 } 2873 SDNodeFlags Flags; 2874 Flags.setExact(exact); 2875 Flags.setNoSignedWrap(nsw); 2876 Flags.setNoUnsignedWrap(nuw); 2877 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2878 Flags); 2879 setValue(&I, Res); 2880 } 2881 2882 void SelectionDAGBuilder::visitSDiv(const User &I) { 2883 SDValue Op1 = getValue(I.getOperand(0)); 2884 SDValue Op2 = getValue(I.getOperand(1)); 2885 2886 SDNodeFlags Flags; 2887 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2888 cast<PossiblyExactOperator>(&I)->isExact()); 2889 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2890 Op2, Flags)); 2891 } 2892 2893 void SelectionDAGBuilder::visitICmp(const User &I) { 2894 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2895 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2896 predicate = IC->getPredicate(); 2897 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2898 predicate = ICmpInst::Predicate(IC->getPredicate()); 2899 SDValue Op1 = getValue(I.getOperand(0)); 2900 SDValue Op2 = getValue(I.getOperand(1)); 2901 ISD::CondCode Opcode = getICmpCondCode(predicate); 2902 2903 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2904 I.getType()); 2905 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2906 } 2907 2908 void SelectionDAGBuilder::visitFCmp(const User &I) { 2909 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2910 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2911 predicate = FC->getPredicate(); 2912 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2913 predicate = FCmpInst::Predicate(FC->getPredicate()); 2914 SDValue Op1 = getValue(I.getOperand(0)); 2915 SDValue Op2 = getValue(I.getOperand(1)); 2916 2917 ISD::CondCode Condition = getFCmpCondCode(predicate); 2918 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2919 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2920 Condition = getFCmpCodeWithoutNaN(Condition); 2921 2922 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2923 I.getType()); 2924 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2925 } 2926 2927 // Check if the condition of the select has one use or two users that are both 2928 // selects with the same condition. 2929 static bool hasOnlySelectUsers(const Value *Cond) { 2930 return llvm::all_of(Cond->users(), [](const Value *V) { 2931 return isa<SelectInst>(V); 2932 }); 2933 } 2934 2935 void SelectionDAGBuilder::visitSelect(const User &I) { 2936 SmallVector<EVT, 4> ValueVTs; 2937 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2938 ValueVTs); 2939 unsigned NumValues = ValueVTs.size(); 2940 if (NumValues == 0) return; 2941 2942 SmallVector<SDValue, 4> Values(NumValues); 2943 SDValue Cond = getValue(I.getOperand(0)); 2944 SDValue LHSVal = getValue(I.getOperand(1)); 2945 SDValue RHSVal = getValue(I.getOperand(2)); 2946 auto BaseOps = {Cond}; 2947 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2948 ISD::VSELECT : ISD::SELECT; 2949 2950 // Min/max matching is only viable if all output VTs are the same. 2951 if (is_splat(ValueVTs)) { 2952 EVT VT = ValueVTs[0]; 2953 LLVMContext &Ctx = *DAG.getContext(); 2954 auto &TLI = DAG.getTargetLoweringInfo(); 2955 2956 // We care about the legality of the operation after it has been type 2957 // legalized. 2958 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2959 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2960 VT = TLI.getTypeToTransformTo(Ctx, VT); 2961 2962 // If the vselect is legal, assume we want to leave this as a vector setcc + 2963 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2964 // min/max is legal on the scalar type. 2965 bool UseScalarMinMax = VT.isVector() && 2966 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2967 2968 Value *LHS, *RHS; 2969 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2970 ISD::NodeType Opc = ISD::DELETED_NODE; 2971 switch (SPR.Flavor) { 2972 case SPF_UMAX: Opc = ISD::UMAX; break; 2973 case SPF_UMIN: Opc = ISD::UMIN; break; 2974 case SPF_SMAX: Opc = ISD::SMAX; break; 2975 case SPF_SMIN: Opc = ISD::SMIN; break; 2976 case SPF_FMINNUM: 2977 switch (SPR.NaNBehavior) { 2978 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2979 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2980 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2981 case SPNB_RETURNS_ANY: { 2982 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2983 Opc = ISD::FMINNUM; 2984 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2985 Opc = ISD::FMINNAN; 2986 else if (UseScalarMinMax) 2987 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2988 ISD::FMINNUM : ISD::FMINNAN; 2989 break; 2990 } 2991 } 2992 break; 2993 case SPF_FMAXNUM: 2994 switch (SPR.NaNBehavior) { 2995 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2996 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2997 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2998 case SPNB_RETURNS_ANY: 2999 3000 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3001 Opc = ISD::FMAXNUM; 3002 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 3003 Opc = ISD::FMAXNAN; 3004 else if (UseScalarMinMax) 3005 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3006 ISD::FMAXNUM : ISD::FMAXNAN; 3007 break; 3008 } 3009 break; 3010 default: break; 3011 } 3012 3013 if (Opc != ISD::DELETED_NODE && 3014 (TLI.isOperationLegalOrCustom(Opc, VT) || 3015 (UseScalarMinMax && 3016 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3017 // If the underlying comparison instruction is used by any other 3018 // instruction, the consumed instructions won't be destroyed, so it is 3019 // not profitable to convert to a min/max. 3020 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3021 OpCode = Opc; 3022 LHSVal = getValue(LHS); 3023 RHSVal = getValue(RHS); 3024 BaseOps = {}; 3025 } 3026 } 3027 3028 for (unsigned i = 0; i != NumValues; ++i) { 3029 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3030 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3031 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3032 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3033 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3034 Ops); 3035 } 3036 3037 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3038 DAG.getVTList(ValueVTs), Values)); 3039 } 3040 3041 void SelectionDAGBuilder::visitTrunc(const User &I) { 3042 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3043 SDValue N = getValue(I.getOperand(0)); 3044 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3045 I.getType()); 3046 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3047 } 3048 3049 void SelectionDAGBuilder::visitZExt(const User &I) { 3050 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3051 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3052 SDValue N = getValue(I.getOperand(0)); 3053 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3054 I.getType()); 3055 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3056 } 3057 3058 void SelectionDAGBuilder::visitSExt(const User &I) { 3059 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3060 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3061 SDValue N = getValue(I.getOperand(0)); 3062 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3063 I.getType()); 3064 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3065 } 3066 3067 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3068 // FPTrunc is never a no-op cast, no need to check 3069 SDValue N = getValue(I.getOperand(0)); 3070 SDLoc dl = getCurSDLoc(); 3071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3072 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3073 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3074 DAG.getTargetConstant( 3075 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3076 } 3077 3078 void SelectionDAGBuilder::visitFPExt(const User &I) { 3079 // FPExt is never a no-op cast, no need to check 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3084 } 3085 3086 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3087 // FPToUI is never a no-op cast, no need to check 3088 SDValue N = getValue(I.getOperand(0)); 3089 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3090 I.getType()); 3091 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3092 } 3093 3094 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3095 // FPToSI is never a no-op cast, no need to check 3096 SDValue N = getValue(I.getOperand(0)); 3097 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3098 I.getType()); 3099 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3100 } 3101 3102 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3103 // UIToFP is never a no-op cast, no need to check 3104 SDValue N = getValue(I.getOperand(0)); 3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3106 I.getType()); 3107 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3108 } 3109 3110 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3111 // SIToFP is never a no-op cast, no need to check 3112 SDValue N = getValue(I.getOperand(0)); 3113 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3114 I.getType()); 3115 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3116 } 3117 3118 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3119 // What to do depends on the size of the integer and the size of the pointer. 3120 // We can either truncate, zero extend, or no-op, accordingly. 3121 SDValue N = getValue(I.getOperand(0)); 3122 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3123 I.getType()); 3124 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3125 } 3126 3127 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3128 // What to do depends on the size of the integer and the size of the pointer. 3129 // We can either truncate, zero extend, or no-op, accordingly. 3130 SDValue N = getValue(I.getOperand(0)); 3131 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3132 I.getType()); 3133 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3134 } 3135 3136 void SelectionDAGBuilder::visitBitCast(const User &I) { 3137 SDValue N = getValue(I.getOperand(0)); 3138 SDLoc dl = getCurSDLoc(); 3139 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3140 I.getType()); 3141 3142 // BitCast assures us that source and destination are the same size so this is 3143 // either a BITCAST or a no-op. 3144 if (DestVT != N.getValueType()) 3145 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3146 DestVT, N)); // convert types. 3147 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3148 // might fold any kind of constant expression to an integer constant and that 3149 // is not what we are looking for. Only recognize a bitcast of a genuine 3150 // constant integer as an opaque constant. 3151 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3152 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3153 /*isOpaque*/true)); 3154 else 3155 setValue(&I, N); // noop cast. 3156 } 3157 3158 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3160 const Value *SV = I.getOperand(0); 3161 SDValue N = getValue(SV); 3162 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3163 3164 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3165 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3166 3167 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3168 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3169 3170 setValue(&I, N); 3171 } 3172 3173 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3175 SDValue InVec = getValue(I.getOperand(0)); 3176 SDValue InVal = getValue(I.getOperand(1)); 3177 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3178 TLI.getVectorIdxTy(DAG.getDataLayout())); 3179 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3180 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3181 InVec, InVal, InIdx)); 3182 } 3183 3184 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3186 SDValue InVec = getValue(I.getOperand(0)); 3187 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3188 TLI.getVectorIdxTy(DAG.getDataLayout())); 3189 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3190 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3191 InVec, InIdx)); 3192 } 3193 3194 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3195 SDValue Src1 = getValue(I.getOperand(0)); 3196 SDValue Src2 = getValue(I.getOperand(1)); 3197 SDLoc DL = getCurSDLoc(); 3198 3199 SmallVector<int, 8> Mask; 3200 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3201 unsigned MaskNumElts = Mask.size(); 3202 3203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3204 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3205 EVT SrcVT = Src1.getValueType(); 3206 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3207 3208 if (SrcNumElts == MaskNumElts) { 3209 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3210 return; 3211 } 3212 3213 // Normalize the shuffle vector since mask and vector length don't match. 3214 if (SrcNumElts < MaskNumElts) { 3215 // Mask is longer than the source vectors. We can use concatenate vector to 3216 // make the mask and vectors lengths match. 3217 3218 if (MaskNumElts % SrcNumElts == 0) { 3219 // Mask length is a multiple of the source vector length. 3220 // Check if the shuffle is some kind of concatenation of the input 3221 // vectors. 3222 unsigned NumConcat = MaskNumElts / SrcNumElts; 3223 bool IsConcat = true; 3224 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3225 for (unsigned i = 0; i != MaskNumElts; ++i) { 3226 int Idx = Mask[i]; 3227 if (Idx < 0) 3228 continue; 3229 // Ensure the indices in each SrcVT sized piece are sequential and that 3230 // the same source is used for the whole piece. 3231 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3232 (ConcatSrcs[i / SrcNumElts] >= 0 && 3233 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3234 IsConcat = false; 3235 break; 3236 } 3237 // Remember which source this index came from. 3238 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3239 } 3240 3241 // The shuffle is concatenating multiple vectors together. Just emit 3242 // a CONCAT_VECTORS operation. 3243 if (IsConcat) { 3244 SmallVector<SDValue, 8> ConcatOps; 3245 for (auto Src : ConcatSrcs) { 3246 if (Src < 0) 3247 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3248 else if (Src == 0) 3249 ConcatOps.push_back(Src1); 3250 else 3251 ConcatOps.push_back(Src2); 3252 } 3253 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3254 return; 3255 } 3256 } 3257 3258 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3259 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3260 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3261 PaddedMaskNumElts); 3262 3263 // Pad both vectors with undefs to make them the same length as the mask. 3264 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3265 3266 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3267 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3268 MOps1[0] = Src1; 3269 MOps2[0] = Src2; 3270 3271 Src1 = Src1.isUndef() 3272 ? DAG.getUNDEF(PaddedVT) 3273 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3274 Src2 = Src2.isUndef() 3275 ? DAG.getUNDEF(PaddedVT) 3276 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3277 3278 // Readjust mask for new input vector length. 3279 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3280 for (unsigned i = 0; i != MaskNumElts; ++i) { 3281 int Idx = Mask[i]; 3282 if (Idx >= (int)SrcNumElts) 3283 Idx -= SrcNumElts - PaddedMaskNumElts; 3284 MappedOps[i] = Idx; 3285 } 3286 3287 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3288 3289 // If the concatenated vector was padded, extract a subvector with the 3290 // correct number of elements. 3291 if (MaskNumElts != PaddedMaskNumElts) 3292 Result = DAG.getNode( 3293 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3294 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3295 3296 setValue(&I, Result); 3297 return; 3298 } 3299 3300 if (SrcNumElts > MaskNumElts) { 3301 // Analyze the access pattern of the vector to see if we can extract 3302 // two subvectors and do the shuffle. 3303 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3304 bool CanExtract = true; 3305 for (int Idx : Mask) { 3306 unsigned Input = 0; 3307 if (Idx < 0) 3308 continue; 3309 3310 if (Idx >= (int)SrcNumElts) { 3311 Input = 1; 3312 Idx -= SrcNumElts; 3313 } 3314 3315 // If all the indices come from the same MaskNumElts sized portion of 3316 // the sources we can use extract. Also make sure the extract wouldn't 3317 // extract past the end of the source. 3318 int NewStartIdx = alignDown(Idx, MaskNumElts); 3319 if (NewStartIdx + MaskNumElts > SrcNumElts || 3320 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3321 CanExtract = false; 3322 // Make sure we always update StartIdx as we use it to track if all 3323 // elements are undef. 3324 StartIdx[Input] = NewStartIdx; 3325 } 3326 3327 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3328 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3329 return; 3330 } 3331 if (CanExtract) { 3332 // Extract appropriate subvector and generate a vector shuffle 3333 for (unsigned Input = 0; Input < 2; ++Input) { 3334 SDValue &Src = Input == 0 ? Src1 : Src2; 3335 if (StartIdx[Input] < 0) 3336 Src = DAG.getUNDEF(VT); 3337 else { 3338 Src = DAG.getNode( 3339 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3340 DAG.getConstant(StartIdx[Input], DL, 3341 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3342 } 3343 } 3344 3345 // Calculate new mask. 3346 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3347 for (int &Idx : MappedOps) { 3348 if (Idx >= (int)SrcNumElts) 3349 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3350 else if (Idx >= 0) 3351 Idx -= StartIdx[0]; 3352 } 3353 3354 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3355 return; 3356 } 3357 } 3358 3359 // We can't use either concat vectors or extract subvectors so fall back to 3360 // replacing the shuffle with extract and build vector. 3361 // to insert and build vector. 3362 EVT EltVT = VT.getVectorElementType(); 3363 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3364 SmallVector<SDValue,8> Ops; 3365 for (int Idx : Mask) { 3366 SDValue Res; 3367 3368 if (Idx < 0) { 3369 Res = DAG.getUNDEF(EltVT); 3370 } else { 3371 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3372 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3373 3374 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3375 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3376 } 3377 3378 Ops.push_back(Res); 3379 } 3380 3381 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3382 } 3383 3384 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3385 ArrayRef<unsigned> Indices; 3386 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3387 Indices = IV->getIndices(); 3388 else 3389 Indices = cast<ConstantExpr>(&I)->getIndices(); 3390 3391 const Value *Op0 = I.getOperand(0); 3392 const Value *Op1 = I.getOperand(1); 3393 Type *AggTy = I.getType(); 3394 Type *ValTy = Op1->getType(); 3395 bool IntoUndef = isa<UndefValue>(Op0); 3396 bool FromUndef = isa<UndefValue>(Op1); 3397 3398 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3399 3400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3401 SmallVector<EVT, 4> AggValueVTs; 3402 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3403 SmallVector<EVT, 4> ValValueVTs; 3404 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3405 3406 unsigned NumAggValues = AggValueVTs.size(); 3407 unsigned NumValValues = ValValueVTs.size(); 3408 SmallVector<SDValue, 4> Values(NumAggValues); 3409 3410 // Ignore an insertvalue that produces an empty object 3411 if (!NumAggValues) { 3412 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3413 return; 3414 } 3415 3416 SDValue Agg = getValue(Op0); 3417 unsigned i = 0; 3418 // Copy the beginning value(s) from the original aggregate. 3419 for (; i != LinearIndex; ++i) 3420 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3421 SDValue(Agg.getNode(), Agg.getResNo() + i); 3422 // Copy values from the inserted value(s). 3423 if (NumValValues) { 3424 SDValue Val = getValue(Op1); 3425 for (; i != LinearIndex + NumValValues; ++i) 3426 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3427 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3428 } 3429 // Copy remaining value(s) from the original aggregate. 3430 for (; i != NumAggValues; ++i) 3431 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3432 SDValue(Agg.getNode(), Agg.getResNo() + i); 3433 3434 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3435 DAG.getVTList(AggValueVTs), Values)); 3436 } 3437 3438 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3439 ArrayRef<unsigned> Indices; 3440 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3441 Indices = EV->getIndices(); 3442 else 3443 Indices = cast<ConstantExpr>(&I)->getIndices(); 3444 3445 const Value *Op0 = I.getOperand(0); 3446 Type *AggTy = Op0->getType(); 3447 Type *ValTy = I.getType(); 3448 bool OutOfUndef = isa<UndefValue>(Op0); 3449 3450 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3451 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 SmallVector<EVT, 4> ValValueVTs; 3454 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3455 3456 unsigned NumValValues = ValValueVTs.size(); 3457 3458 // Ignore a extractvalue that produces an empty object 3459 if (!NumValValues) { 3460 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3461 return; 3462 } 3463 3464 SmallVector<SDValue, 4> Values(NumValValues); 3465 3466 SDValue Agg = getValue(Op0); 3467 // Copy out the selected value(s). 3468 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3469 Values[i - LinearIndex] = 3470 OutOfUndef ? 3471 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3472 SDValue(Agg.getNode(), Agg.getResNo() + i); 3473 3474 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3475 DAG.getVTList(ValValueVTs), Values)); 3476 } 3477 3478 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3479 Value *Op0 = I.getOperand(0); 3480 // Note that the pointer operand may be a vector of pointers. Take the scalar 3481 // element which holds a pointer. 3482 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3483 SDValue N = getValue(Op0); 3484 SDLoc dl = getCurSDLoc(); 3485 3486 // Normalize Vector GEP - all scalar operands should be converted to the 3487 // splat vector. 3488 unsigned VectorWidth = I.getType()->isVectorTy() ? 3489 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3490 3491 if (VectorWidth && !N.getValueType().isVector()) { 3492 LLVMContext &Context = *DAG.getContext(); 3493 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3494 N = DAG.getSplatBuildVector(VT, dl, N); 3495 } 3496 3497 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3498 GTI != E; ++GTI) { 3499 const Value *Idx = GTI.getOperand(); 3500 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3501 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3502 if (Field) { 3503 // N = N + Offset 3504 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3505 3506 // In an inbounds GEP with an offset that is nonnegative even when 3507 // interpreted as signed, assume there is no unsigned overflow. 3508 SDNodeFlags Flags; 3509 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3510 Flags.setNoUnsignedWrap(true); 3511 3512 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3513 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3514 } 3515 } else { 3516 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3517 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3518 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3519 3520 // If this is a scalar constant or a splat vector of constants, 3521 // handle it quickly. 3522 const auto *CI = dyn_cast<ConstantInt>(Idx); 3523 if (!CI && isa<ConstantDataVector>(Idx) && 3524 cast<ConstantDataVector>(Idx)->getSplatValue()) 3525 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3526 3527 if (CI) { 3528 if (CI->isZero()) 3529 continue; 3530 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3531 LLVMContext &Context = *DAG.getContext(); 3532 SDValue OffsVal = VectorWidth ? 3533 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3534 DAG.getConstant(Offs, dl, IdxTy); 3535 3536 // In an inbouds GEP with an offset that is nonnegative even when 3537 // interpreted as signed, assume there is no unsigned overflow. 3538 SDNodeFlags Flags; 3539 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3540 Flags.setNoUnsignedWrap(true); 3541 3542 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3543 continue; 3544 } 3545 3546 // N = N + Idx * ElementSize; 3547 SDValue IdxN = getValue(Idx); 3548 3549 if (!IdxN.getValueType().isVector() && VectorWidth) { 3550 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3551 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3552 } 3553 3554 // If the index is smaller or larger than intptr_t, truncate or extend 3555 // it. 3556 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3557 3558 // If this is a multiply by a power of two, turn it into a shl 3559 // immediately. This is a very common case. 3560 if (ElementSize != 1) { 3561 if (ElementSize.isPowerOf2()) { 3562 unsigned Amt = ElementSize.logBase2(); 3563 IdxN = DAG.getNode(ISD::SHL, dl, 3564 N.getValueType(), IdxN, 3565 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3566 } else { 3567 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3568 IdxN = DAG.getNode(ISD::MUL, dl, 3569 N.getValueType(), IdxN, Scale); 3570 } 3571 } 3572 3573 N = DAG.getNode(ISD::ADD, dl, 3574 N.getValueType(), N, IdxN); 3575 } 3576 } 3577 3578 setValue(&I, N); 3579 } 3580 3581 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3582 // If this is a fixed sized alloca in the entry block of the function, 3583 // allocate it statically on the stack. 3584 if (FuncInfo.StaticAllocaMap.count(&I)) 3585 return; // getValue will auto-populate this. 3586 3587 SDLoc dl = getCurSDLoc(); 3588 Type *Ty = I.getAllocatedType(); 3589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3590 auto &DL = DAG.getDataLayout(); 3591 uint64_t TySize = DL.getTypeAllocSize(Ty); 3592 unsigned Align = 3593 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3594 3595 SDValue AllocSize = getValue(I.getArraySize()); 3596 3597 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3598 if (AllocSize.getValueType() != IntPtr) 3599 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3600 3601 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3602 AllocSize, 3603 DAG.getConstant(TySize, dl, IntPtr)); 3604 3605 // Handle alignment. If the requested alignment is less than or equal to 3606 // the stack alignment, ignore it. If the size is greater than or equal to 3607 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3608 unsigned StackAlign = 3609 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3610 if (Align <= StackAlign) 3611 Align = 0; 3612 3613 // Round the size of the allocation up to the stack alignment size 3614 // by add SA-1 to the size. This doesn't overflow because we're computing 3615 // an address inside an alloca. 3616 SDNodeFlags Flags; 3617 Flags.setNoUnsignedWrap(true); 3618 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3619 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3620 3621 // Mask out the low bits for alignment purposes. 3622 AllocSize = 3623 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3624 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3625 3626 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3627 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3628 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3629 setValue(&I, DSA); 3630 DAG.setRoot(DSA.getValue(1)); 3631 3632 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3633 } 3634 3635 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3636 if (I.isAtomic()) 3637 return visitAtomicLoad(I); 3638 3639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3640 const Value *SV = I.getOperand(0); 3641 if (TLI.supportSwiftError()) { 3642 // Swifterror values can come from either a function parameter with 3643 // swifterror attribute or an alloca with swifterror attribute. 3644 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3645 if (Arg->hasSwiftErrorAttr()) 3646 return visitLoadFromSwiftError(I); 3647 } 3648 3649 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3650 if (Alloca->isSwiftError()) 3651 return visitLoadFromSwiftError(I); 3652 } 3653 } 3654 3655 SDValue Ptr = getValue(SV); 3656 3657 Type *Ty = I.getType(); 3658 3659 bool isVolatile = I.isVolatile(); 3660 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3661 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3662 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3663 unsigned Alignment = I.getAlignment(); 3664 3665 AAMDNodes AAInfo; 3666 I.getAAMetadata(AAInfo); 3667 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3668 3669 SmallVector<EVT, 4> ValueVTs; 3670 SmallVector<uint64_t, 4> Offsets; 3671 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3672 unsigned NumValues = ValueVTs.size(); 3673 if (NumValues == 0) 3674 return; 3675 3676 SDValue Root; 3677 bool ConstantMemory = false; 3678 if (isVolatile || NumValues > MaxParallelChains) 3679 // Serialize volatile loads with other side effects. 3680 Root = getRoot(); 3681 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3682 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3683 // Do not serialize (non-volatile) loads of constant memory with anything. 3684 Root = DAG.getEntryNode(); 3685 ConstantMemory = true; 3686 } else { 3687 // Do not serialize non-volatile loads against each other. 3688 Root = DAG.getRoot(); 3689 } 3690 3691 SDLoc dl = getCurSDLoc(); 3692 3693 if (isVolatile) 3694 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3695 3696 // An aggregate load cannot wrap around the address space, so offsets to its 3697 // parts don't wrap either. 3698 SDNodeFlags Flags; 3699 Flags.setNoUnsignedWrap(true); 3700 3701 SmallVector<SDValue, 4> Values(NumValues); 3702 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3703 EVT PtrVT = Ptr.getValueType(); 3704 unsigned ChainI = 0; 3705 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3706 // Serializing loads here may result in excessive register pressure, and 3707 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3708 // could recover a bit by hoisting nodes upward in the chain by recognizing 3709 // they are side-effect free or do not alias. The optimizer should really 3710 // avoid this case by converting large object/array copies to llvm.memcpy 3711 // (MaxParallelChains should always remain as failsafe). 3712 if (ChainI == MaxParallelChains) { 3713 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3714 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3715 makeArrayRef(Chains.data(), ChainI)); 3716 Root = Chain; 3717 ChainI = 0; 3718 } 3719 SDValue A = DAG.getNode(ISD::ADD, dl, 3720 PtrVT, Ptr, 3721 DAG.getConstant(Offsets[i], dl, PtrVT), 3722 Flags); 3723 auto MMOFlags = MachineMemOperand::MONone; 3724 if (isVolatile) 3725 MMOFlags |= MachineMemOperand::MOVolatile; 3726 if (isNonTemporal) 3727 MMOFlags |= MachineMemOperand::MONonTemporal; 3728 if (isInvariant) 3729 MMOFlags |= MachineMemOperand::MOInvariant; 3730 if (isDereferenceable) 3731 MMOFlags |= MachineMemOperand::MODereferenceable; 3732 MMOFlags |= TLI.getMMOFlags(I); 3733 3734 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3735 MachinePointerInfo(SV, Offsets[i]), Alignment, 3736 MMOFlags, AAInfo, Ranges); 3737 3738 Values[i] = L; 3739 Chains[ChainI] = L.getValue(1); 3740 } 3741 3742 if (!ConstantMemory) { 3743 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3744 makeArrayRef(Chains.data(), ChainI)); 3745 if (isVolatile) 3746 DAG.setRoot(Chain); 3747 else 3748 PendingLoads.push_back(Chain); 3749 } 3750 3751 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3752 DAG.getVTList(ValueVTs), Values)); 3753 } 3754 3755 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3756 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3757 "call visitStoreToSwiftError when backend supports swifterror"); 3758 3759 SmallVector<EVT, 4> ValueVTs; 3760 SmallVector<uint64_t, 4> Offsets; 3761 const Value *SrcV = I.getOperand(0); 3762 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3763 SrcV->getType(), ValueVTs, &Offsets); 3764 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3765 "expect a single EVT for swifterror"); 3766 3767 SDValue Src = getValue(SrcV); 3768 // Create a virtual register, then update the virtual register. 3769 unsigned VReg; bool CreatedVReg; 3770 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3771 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3772 // Chain can be getRoot or getControlRoot. 3773 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3774 SDValue(Src.getNode(), Src.getResNo())); 3775 DAG.setRoot(CopyNode); 3776 if (CreatedVReg) 3777 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3778 } 3779 3780 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3781 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3782 "call visitLoadFromSwiftError when backend supports swifterror"); 3783 3784 assert(!I.isVolatile() && 3785 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3786 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3787 "Support volatile, non temporal, invariant for load_from_swift_error"); 3788 3789 const Value *SV = I.getOperand(0); 3790 Type *Ty = I.getType(); 3791 AAMDNodes AAInfo; 3792 I.getAAMetadata(AAInfo); 3793 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3794 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3795 "load_from_swift_error should not be constant memory"); 3796 3797 SmallVector<EVT, 4> ValueVTs; 3798 SmallVector<uint64_t, 4> Offsets; 3799 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3800 ValueVTs, &Offsets); 3801 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3802 "expect a single EVT for swifterror"); 3803 3804 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3805 SDValue L = DAG.getCopyFromReg( 3806 getRoot(), getCurSDLoc(), 3807 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3808 ValueVTs[0]); 3809 3810 setValue(&I, L); 3811 } 3812 3813 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3814 if (I.isAtomic()) 3815 return visitAtomicStore(I); 3816 3817 const Value *SrcV = I.getOperand(0); 3818 const Value *PtrV = I.getOperand(1); 3819 3820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3821 if (TLI.supportSwiftError()) { 3822 // Swifterror values can come from either a function parameter with 3823 // swifterror attribute or an alloca with swifterror attribute. 3824 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3825 if (Arg->hasSwiftErrorAttr()) 3826 return visitStoreToSwiftError(I); 3827 } 3828 3829 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3830 if (Alloca->isSwiftError()) 3831 return visitStoreToSwiftError(I); 3832 } 3833 } 3834 3835 SmallVector<EVT, 4> ValueVTs; 3836 SmallVector<uint64_t, 4> Offsets; 3837 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3838 SrcV->getType(), ValueVTs, &Offsets); 3839 unsigned NumValues = ValueVTs.size(); 3840 if (NumValues == 0) 3841 return; 3842 3843 // Get the lowered operands. Note that we do this after 3844 // checking if NumResults is zero, because with zero results 3845 // the operands won't have values in the map. 3846 SDValue Src = getValue(SrcV); 3847 SDValue Ptr = getValue(PtrV); 3848 3849 SDValue Root = getRoot(); 3850 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3851 SDLoc dl = getCurSDLoc(); 3852 EVT PtrVT = Ptr.getValueType(); 3853 unsigned Alignment = I.getAlignment(); 3854 AAMDNodes AAInfo; 3855 I.getAAMetadata(AAInfo); 3856 3857 auto MMOFlags = MachineMemOperand::MONone; 3858 if (I.isVolatile()) 3859 MMOFlags |= MachineMemOperand::MOVolatile; 3860 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3861 MMOFlags |= MachineMemOperand::MONonTemporal; 3862 MMOFlags |= TLI.getMMOFlags(I); 3863 3864 // An aggregate load cannot wrap around the address space, so offsets to its 3865 // parts don't wrap either. 3866 SDNodeFlags Flags; 3867 Flags.setNoUnsignedWrap(true); 3868 3869 unsigned ChainI = 0; 3870 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3871 // See visitLoad comments. 3872 if (ChainI == MaxParallelChains) { 3873 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3874 makeArrayRef(Chains.data(), ChainI)); 3875 Root = Chain; 3876 ChainI = 0; 3877 } 3878 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3879 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3880 SDValue St = DAG.getStore( 3881 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3882 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3883 Chains[ChainI] = St; 3884 } 3885 3886 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3887 makeArrayRef(Chains.data(), ChainI)); 3888 DAG.setRoot(StoreNode); 3889 } 3890 3891 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3892 bool IsCompressing) { 3893 SDLoc sdl = getCurSDLoc(); 3894 3895 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3896 unsigned& Alignment) { 3897 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3898 Src0 = I.getArgOperand(0); 3899 Ptr = I.getArgOperand(1); 3900 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3901 Mask = I.getArgOperand(3); 3902 }; 3903 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3904 unsigned& Alignment) { 3905 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3906 Src0 = I.getArgOperand(0); 3907 Ptr = I.getArgOperand(1); 3908 Mask = I.getArgOperand(2); 3909 Alignment = 0; 3910 }; 3911 3912 Value *PtrOperand, *MaskOperand, *Src0Operand; 3913 unsigned Alignment; 3914 if (IsCompressing) 3915 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3916 else 3917 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3918 3919 SDValue Ptr = getValue(PtrOperand); 3920 SDValue Src0 = getValue(Src0Operand); 3921 SDValue Mask = getValue(MaskOperand); 3922 3923 EVT VT = Src0.getValueType(); 3924 if (!Alignment) 3925 Alignment = DAG.getEVTAlignment(VT); 3926 3927 AAMDNodes AAInfo; 3928 I.getAAMetadata(AAInfo); 3929 3930 MachineMemOperand *MMO = 3931 DAG.getMachineFunction(). 3932 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3933 MachineMemOperand::MOStore, VT.getStoreSize(), 3934 Alignment, AAInfo); 3935 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3936 MMO, false /* Truncating */, 3937 IsCompressing); 3938 DAG.setRoot(StoreNode); 3939 setValue(&I, StoreNode); 3940 } 3941 3942 // Get a uniform base for the Gather/Scatter intrinsic. 3943 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3944 // We try to represent it as a base pointer + vector of indices. 3945 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3946 // The first operand of the GEP may be a single pointer or a vector of pointers 3947 // Example: 3948 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3949 // or 3950 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3951 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3952 // 3953 // When the first GEP operand is a single pointer - it is the uniform base we 3954 // are looking for. If first operand of the GEP is a splat vector - we 3955 // extract the splat value and use it as a uniform base. 3956 // In all other cases the function returns 'false'. 3957 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3958 SDValue &Scale, SelectionDAGBuilder* SDB) { 3959 SelectionDAG& DAG = SDB->DAG; 3960 LLVMContext &Context = *DAG.getContext(); 3961 3962 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3963 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3964 if (!GEP) 3965 return false; 3966 3967 const Value *GEPPtr = GEP->getPointerOperand(); 3968 if (!GEPPtr->getType()->isVectorTy()) 3969 Ptr = GEPPtr; 3970 else if (!(Ptr = getSplatValue(GEPPtr))) 3971 return false; 3972 3973 unsigned FinalIndex = GEP->getNumOperands() - 1; 3974 Value *IndexVal = GEP->getOperand(FinalIndex); 3975 3976 // Ensure all the other indices are 0. 3977 for (unsigned i = 1; i < FinalIndex; ++i) { 3978 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3979 if (!C || !C->isZero()) 3980 return false; 3981 } 3982 3983 // The operands of the GEP may be defined in another basic block. 3984 // In this case we'll not find nodes for the operands. 3985 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3986 return false; 3987 3988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3989 const DataLayout &DL = DAG.getDataLayout(); 3990 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3991 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3992 Base = SDB->getValue(Ptr); 3993 Index = SDB->getValue(IndexVal); 3994 3995 if (!Index.getValueType().isVector()) { 3996 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3997 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3998 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3999 } 4000 return true; 4001 } 4002 4003 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4004 SDLoc sdl = getCurSDLoc(); 4005 4006 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4007 const Value *Ptr = I.getArgOperand(1); 4008 SDValue Src0 = getValue(I.getArgOperand(0)); 4009 SDValue Mask = getValue(I.getArgOperand(3)); 4010 EVT VT = Src0.getValueType(); 4011 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4012 if (!Alignment) 4013 Alignment = DAG.getEVTAlignment(VT); 4014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4015 4016 AAMDNodes AAInfo; 4017 I.getAAMetadata(AAInfo); 4018 4019 SDValue Base; 4020 SDValue Index; 4021 SDValue Scale; 4022 const Value *BasePtr = Ptr; 4023 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4024 4025 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4026 MachineMemOperand *MMO = DAG.getMachineFunction(). 4027 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4028 MachineMemOperand::MOStore, VT.getStoreSize(), 4029 Alignment, AAInfo); 4030 if (!UniformBase) { 4031 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4032 Index = getValue(Ptr); 4033 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4034 } 4035 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4036 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4037 Ops, MMO); 4038 DAG.setRoot(Scatter); 4039 setValue(&I, Scatter); 4040 } 4041 4042 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4043 SDLoc sdl = getCurSDLoc(); 4044 4045 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4046 unsigned& Alignment) { 4047 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4048 Ptr = I.getArgOperand(0); 4049 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4050 Mask = I.getArgOperand(2); 4051 Src0 = I.getArgOperand(3); 4052 }; 4053 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4054 unsigned& Alignment) { 4055 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4056 Ptr = I.getArgOperand(0); 4057 Alignment = 0; 4058 Mask = I.getArgOperand(1); 4059 Src0 = I.getArgOperand(2); 4060 }; 4061 4062 Value *PtrOperand, *MaskOperand, *Src0Operand; 4063 unsigned Alignment; 4064 if (IsExpanding) 4065 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4066 else 4067 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4068 4069 SDValue Ptr = getValue(PtrOperand); 4070 SDValue Src0 = getValue(Src0Operand); 4071 SDValue Mask = getValue(MaskOperand); 4072 4073 EVT VT = Src0.getValueType(); 4074 if (!Alignment) 4075 Alignment = DAG.getEVTAlignment(VT); 4076 4077 AAMDNodes AAInfo; 4078 I.getAAMetadata(AAInfo); 4079 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4080 4081 // Do not serialize masked loads of constant memory with anything. 4082 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4083 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4084 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4085 4086 MachineMemOperand *MMO = 4087 DAG.getMachineFunction(). 4088 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4089 MachineMemOperand::MOLoad, VT.getStoreSize(), 4090 Alignment, AAInfo, Ranges); 4091 4092 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4093 ISD::NON_EXTLOAD, IsExpanding); 4094 if (AddToChain) 4095 PendingLoads.push_back(Load.getValue(1)); 4096 setValue(&I, Load); 4097 } 4098 4099 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4100 SDLoc sdl = getCurSDLoc(); 4101 4102 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4103 const Value *Ptr = I.getArgOperand(0); 4104 SDValue Src0 = getValue(I.getArgOperand(3)); 4105 SDValue Mask = getValue(I.getArgOperand(2)); 4106 4107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4108 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4109 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4110 if (!Alignment) 4111 Alignment = DAG.getEVTAlignment(VT); 4112 4113 AAMDNodes AAInfo; 4114 I.getAAMetadata(AAInfo); 4115 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4116 4117 SDValue Root = DAG.getRoot(); 4118 SDValue Base; 4119 SDValue Index; 4120 SDValue Scale; 4121 const Value *BasePtr = Ptr; 4122 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4123 bool ConstantMemory = false; 4124 if (UniformBase && 4125 AA && AA->pointsToConstantMemory(MemoryLocation( 4126 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4127 AAInfo))) { 4128 // Do not serialize (non-volatile) loads of constant memory with anything. 4129 Root = DAG.getEntryNode(); 4130 ConstantMemory = true; 4131 } 4132 4133 MachineMemOperand *MMO = 4134 DAG.getMachineFunction(). 4135 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4136 MachineMemOperand::MOLoad, VT.getStoreSize(), 4137 Alignment, AAInfo, Ranges); 4138 4139 if (!UniformBase) { 4140 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4141 Index = getValue(Ptr); 4142 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4143 } 4144 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4145 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4146 Ops, MMO); 4147 4148 SDValue OutChain = Gather.getValue(1); 4149 if (!ConstantMemory) 4150 PendingLoads.push_back(OutChain); 4151 setValue(&I, Gather); 4152 } 4153 4154 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4155 SDLoc dl = getCurSDLoc(); 4156 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4157 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4158 SyncScope::ID SSID = I.getSyncScopeID(); 4159 4160 SDValue InChain = getRoot(); 4161 4162 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4163 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4164 SDValue L = DAG.getAtomicCmpSwap( 4165 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4166 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4167 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4168 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4169 4170 SDValue OutChain = L.getValue(2); 4171 4172 setValue(&I, L); 4173 DAG.setRoot(OutChain); 4174 } 4175 4176 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4177 SDLoc dl = getCurSDLoc(); 4178 ISD::NodeType NT; 4179 switch (I.getOperation()) { 4180 default: llvm_unreachable("Unknown atomicrmw operation"); 4181 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4182 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4183 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4184 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4185 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4186 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4187 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4188 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4189 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4190 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4191 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4192 } 4193 AtomicOrdering Order = I.getOrdering(); 4194 SyncScope::ID SSID = I.getSyncScopeID(); 4195 4196 SDValue InChain = getRoot(); 4197 4198 SDValue L = 4199 DAG.getAtomic(NT, dl, 4200 getValue(I.getValOperand()).getSimpleValueType(), 4201 InChain, 4202 getValue(I.getPointerOperand()), 4203 getValue(I.getValOperand()), 4204 I.getPointerOperand(), 4205 /* Alignment=*/ 0, Order, SSID); 4206 4207 SDValue OutChain = L.getValue(1); 4208 4209 setValue(&I, L); 4210 DAG.setRoot(OutChain); 4211 } 4212 4213 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4214 SDLoc dl = getCurSDLoc(); 4215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4216 SDValue Ops[3]; 4217 Ops[0] = getRoot(); 4218 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4219 TLI.getFenceOperandTy(DAG.getDataLayout())); 4220 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4221 TLI.getFenceOperandTy(DAG.getDataLayout())); 4222 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4223 } 4224 4225 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4226 SDLoc dl = getCurSDLoc(); 4227 AtomicOrdering Order = I.getOrdering(); 4228 SyncScope::ID SSID = I.getSyncScopeID(); 4229 4230 SDValue InChain = getRoot(); 4231 4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4233 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4234 4235 if (!TLI.supportsUnalignedAtomics() && 4236 I.getAlignment() < VT.getStoreSize()) 4237 report_fatal_error("Cannot generate unaligned atomic load"); 4238 4239 MachineMemOperand *MMO = 4240 DAG.getMachineFunction(). 4241 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4242 MachineMemOperand::MOVolatile | 4243 MachineMemOperand::MOLoad, 4244 VT.getStoreSize(), 4245 I.getAlignment() ? I.getAlignment() : 4246 DAG.getEVTAlignment(VT), 4247 AAMDNodes(), nullptr, SSID, Order); 4248 4249 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4250 SDValue L = 4251 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4252 getValue(I.getPointerOperand()), MMO); 4253 4254 SDValue OutChain = L.getValue(1); 4255 4256 setValue(&I, L); 4257 DAG.setRoot(OutChain); 4258 } 4259 4260 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4261 SDLoc dl = getCurSDLoc(); 4262 4263 AtomicOrdering Order = I.getOrdering(); 4264 SyncScope::ID SSID = I.getSyncScopeID(); 4265 4266 SDValue InChain = getRoot(); 4267 4268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4269 EVT VT = 4270 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4271 4272 if (I.getAlignment() < VT.getStoreSize()) 4273 report_fatal_error("Cannot generate unaligned atomic store"); 4274 4275 SDValue OutChain = 4276 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4277 InChain, 4278 getValue(I.getPointerOperand()), 4279 getValue(I.getValueOperand()), 4280 I.getPointerOperand(), I.getAlignment(), 4281 Order, SSID); 4282 4283 DAG.setRoot(OutChain); 4284 } 4285 4286 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4287 /// node. 4288 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4289 unsigned Intrinsic) { 4290 // Ignore the callsite's attributes. A specific call site may be marked with 4291 // readnone, but the lowering code will expect the chain based on the 4292 // definition. 4293 const Function *F = I.getCalledFunction(); 4294 bool HasChain = !F->doesNotAccessMemory(); 4295 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4296 4297 // Build the operand list. 4298 SmallVector<SDValue, 8> Ops; 4299 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4300 if (OnlyLoad) { 4301 // We don't need to serialize loads against other loads. 4302 Ops.push_back(DAG.getRoot()); 4303 } else { 4304 Ops.push_back(getRoot()); 4305 } 4306 } 4307 4308 // Info is set by getTgtMemInstrinsic 4309 TargetLowering::IntrinsicInfo Info; 4310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4311 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4312 DAG.getMachineFunction(), 4313 Intrinsic); 4314 4315 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4316 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4317 Info.opc == ISD::INTRINSIC_W_CHAIN) 4318 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4319 TLI.getPointerTy(DAG.getDataLayout()))); 4320 4321 // Add all operands of the call to the operand list. 4322 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4323 SDValue Op = getValue(I.getArgOperand(i)); 4324 Ops.push_back(Op); 4325 } 4326 4327 SmallVector<EVT, 4> ValueVTs; 4328 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4329 4330 if (HasChain) 4331 ValueVTs.push_back(MVT::Other); 4332 4333 SDVTList VTs = DAG.getVTList(ValueVTs); 4334 4335 // Create the node. 4336 SDValue Result; 4337 if (IsTgtIntrinsic) { 4338 // This is target intrinsic that touches memory 4339 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4340 Ops, Info.memVT, 4341 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4342 Info.flags, Info.size); 4343 } else if (!HasChain) { 4344 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4345 } else if (!I.getType()->isVoidTy()) { 4346 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4347 } else { 4348 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4349 } 4350 4351 if (HasChain) { 4352 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4353 if (OnlyLoad) 4354 PendingLoads.push_back(Chain); 4355 else 4356 DAG.setRoot(Chain); 4357 } 4358 4359 if (!I.getType()->isVoidTy()) { 4360 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4361 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4362 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4363 } else 4364 Result = lowerRangeToAssertZExt(DAG, I, Result); 4365 4366 setValue(&I, Result); 4367 } 4368 } 4369 4370 /// GetSignificand - Get the significand and build it into a floating-point 4371 /// number with exponent of 1: 4372 /// 4373 /// Op = (Op & 0x007fffff) | 0x3f800000; 4374 /// 4375 /// where Op is the hexadecimal representation of floating point value. 4376 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4377 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4378 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4379 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4380 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4381 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4382 } 4383 4384 /// GetExponent - Get the exponent: 4385 /// 4386 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4387 /// 4388 /// where Op is the hexadecimal representation of floating point value. 4389 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4390 const TargetLowering &TLI, const SDLoc &dl) { 4391 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4392 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4393 SDValue t1 = DAG.getNode( 4394 ISD::SRL, dl, MVT::i32, t0, 4395 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4396 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4397 DAG.getConstant(127, dl, MVT::i32)); 4398 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4399 } 4400 4401 /// getF32Constant - Get 32-bit floating point constant. 4402 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4403 const SDLoc &dl) { 4404 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4405 MVT::f32); 4406 } 4407 4408 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4409 SelectionDAG &DAG) { 4410 // TODO: What fast-math-flags should be set on the floating-point nodes? 4411 4412 // IntegerPartOfX = ((int32_t)(t0); 4413 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4414 4415 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4416 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4417 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4418 4419 // IntegerPartOfX <<= 23; 4420 IntegerPartOfX = DAG.getNode( 4421 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4422 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4423 DAG.getDataLayout()))); 4424 4425 SDValue TwoToFractionalPartOfX; 4426 if (LimitFloatPrecision <= 6) { 4427 // For floating-point precision of 6: 4428 // 4429 // TwoToFractionalPartOfX = 4430 // 0.997535578f + 4431 // (0.735607626f + 0.252464424f * x) * x; 4432 // 4433 // error 0.0144103317, which is 6 bits 4434 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4435 getF32Constant(DAG, 0x3e814304, dl)); 4436 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4437 getF32Constant(DAG, 0x3f3c50c8, dl)); 4438 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4439 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4440 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4441 } else if (LimitFloatPrecision <= 12) { 4442 // For floating-point precision of 12: 4443 // 4444 // TwoToFractionalPartOfX = 4445 // 0.999892986f + 4446 // (0.696457318f + 4447 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4448 // 4449 // error 0.000107046256, which is 13 to 14 bits 4450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4451 getF32Constant(DAG, 0x3da235e3, dl)); 4452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4453 getF32Constant(DAG, 0x3e65b8f3, dl)); 4454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4455 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4456 getF32Constant(DAG, 0x3f324b07, dl)); 4457 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4458 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4459 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4460 } else { // LimitFloatPrecision <= 18 4461 // For floating-point precision of 18: 4462 // 4463 // TwoToFractionalPartOfX = 4464 // 0.999999982f + 4465 // (0.693148872f + 4466 // (0.240227044f + 4467 // (0.554906021e-1f + 4468 // (0.961591928e-2f + 4469 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4470 // error 2.47208000*10^(-7), which is better than 18 bits 4471 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4472 getF32Constant(DAG, 0x3924b03e, dl)); 4473 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4474 getF32Constant(DAG, 0x3ab24b87, dl)); 4475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4476 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4477 getF32Constant(DAG, 0x3c1d8c17, dl)); 4478 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4479 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4480 getF32Constant(DAG, 0x3d634a1d, dl)); 4481 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4482 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4483 getF32Constant(DAG, 0x3e75fe14, dl)); 4484 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4485 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4486 getF32Constant(DAG, 0x3f317234, dl)); 4487 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4488 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4489 getF32Constant(DAG, 0x3f800000, dl)); 4490 } 4491 4492 // Add the exponent into the result in integer domain. 4493 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4494 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4495 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4496 } 4497 4498 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4499 /// limited-precision mode. 4500 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4501 const TargetLowering &TLI) { 4502 if (Op.getValueType() == MVT::f32 && 4503 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4504 4505 // Put the exponent in the right bit position for later addition to the 4506 // final result: 4507 // 4508 // #define LOG2OFe 1.4426950f 4509 // t0 = Op * LOG2OFe 4510 4511 // TODO: What fast-math-flags should be set here? 4512 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4513 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4514 return getLimitedPrecisionExp2(t0, dl, DAG); 4515 } 4516 4517 // No special expansion. 4518 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4519 } 4520 4521 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4522 /// limited-precision mode. 4523 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4524 const TargetLowering &TLI) { 4525 // TODO: What fast-math-flags should be set on the floating-point nodes? 4526 4527 if (Op.getValueType() == MVT::f32 && 4528 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4529 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4530 4531 // Scale the exponent by log(2) [0.69314718f]. 4532 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4533 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4534 getF32Constant(DAG, 0x3f317218, dl)); 4535 4536 // Get the significand and build it into a floating-point number with 4537 // exponent of 1. 4538 SDValue X = GetSignificand(DAG, Op1, dl); 4539 4540 SDValue LogOfMantissa; 4541 if (LimitFloatPrecision <= 6) { 4542 // For floating-point precision of 6: 4543 // 4544 // LogofMantissa = 4545 // -1.1609546f + 4546 // (1.4034025f - 0.23903021f * x) * x; 4547 // 4548 // error 0.0034276066, which is better than 8 bits 4549 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4550 getF32Constant(DAG, 0xbe74c456, dl)); 4551 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4552 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4553 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4554 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4555 getF32Constant(DAG, 0x3f949a29, dl)); 4556 } else if (LimitFloatPrecision <= 12) { 4557 // For floating-point precision of 12: 4558 // 4559 // LogOfMantissa = 4560 // -1.7417939f + 4561 // (2.8212026f + 4562 // (-1.4699568f + 4563 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4564 // 4565 // error 0.000061011436, which is 14 bits 4566 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4567 getF32Constant(DAG, 0xbd67b6d6, dl)); 4568 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4569 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4570 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4571 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4572 getF32Constant(DAG, 0x3fbc278b, dl)); 4573 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4574 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4575 getF32Constant(DAG, 0x40348e95, dl)); 4576 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4577 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4578 getF32Constant(DAG, 0x3fdef31a, dl)); 4579 } else { // LimitFloatPrecision <= 18 4580 // For floating-point precision of 18: 4581 // 4582 // LogOfMantissa = 4583 // -2.1072184f + 4584 // (4.2372794f + 4585 // (-3.7029485f + 4586 // (2.2781945f + 4587 // (-0.87823314f + 4588 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4589 // 4590 // error 0.0000023660568, which is better than 18 bits 4591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4592 getF32Constant(DAG, 0xbc91e5ac, dl)); 4593 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4594 getF32Constant(DAG, 0x3e4350aa, dl)); 4595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4596 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4597 getF32Constant(DAG, 0x3f60d3e3, dl)); 4598 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4599 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4600 getF32Constant(DAG, 0x4011cdf0, dl)); 4601 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4602 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4603 getF32Constant(DAG, 0x406cfd1c, dl)); 4604 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4605 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4606 getF32Constant(DAG, 0x408797cb, dl)); 4607 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4608 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4609 getF32Constant(DAG, 0x4006dcab, dl)); 4610 } 4611 4612 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4613 } 4614 4615 // No special expansion. 4616 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4617 } 4618 4619 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4620 /// limited-precision mode. 4621 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4622 const TargetLowering &TLI) { 4623 // TODO: What fast-math-flags should be set on the floating-point nodes? 4624 4625 if (Op.getValueType() == MVT::f32 && 4626 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4627 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4628 4629 // Get the exponent. 4630 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4631 4632 // Get the significand and build it into a floating-point number with 4633 // exponent of 1. 4634 SDValue X = GetSignificand(DAG, Op1, dl); 4635 4636 // Different possible minimax approximations of significand in 4637 // floating-point for various degrees of accuracy over [1,2]. 4638 SDValue Log2ofMantissa; 4639 if (LimitFloatPrecision <= 6) { 4640 // For floating-point precision of 6: 4641 // 4642 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4643 // 4644 // error 0.0049451742, which is more than 7 bits 4645 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4646 getF32Constant(DAG, 0xbeb08fe0, dl)); 4647 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4648 getF32Constant(DAG, 0x40019463, dl)); 4649 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4650 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4651 getF32Constant(DAG, 0x3fd6633d, dl)); 4652 } else if (LimitFloatPrecision <= 12) { 4653 // For floating-point precision of 12: 4654 // 4655 // Log2ofMantissa = 4656 // -2.51285454f + 4657 // (4.07009056f + 4658 // (-2.12067489f + 4659 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4660 // 4661 // error 0.0000876136000, which is better than 13 bits 4662 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4663 getF32Constant(DAG, 0xbda7262e, dl)); 4664 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4665 getF32Constant(DAG, 0x3f25280b, dl)); 4666 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4667 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4668 getF32Constant(DAG, 0x4007b923, dl)); 4669 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4670 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4671 getF32Constant(DAG, 0x40823e2f, dl)); 4672 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4673 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4674 getF32Constant(DAG, 0x4020d29c, dl)); 4675 } else { // LimitFloatPrecision <= 18 4676 // For floating-point precision of 18: 4677 // 4678 // Log2ofMantissa = 4679 // -3.0400495f + 4680 // (6.1129976f + 4681 // (-5.3420409f + 4682 // (3.2865683f + 4683 // (-1.2669343f + 4684 // (0.27515199f - 4685 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4686 // 4687 // error 0.0000018516, which is better than 18 bits 4688 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4689 getF32Constant(DAG, 0xbcd2769e, dl)); 4690 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4691 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4692 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4693 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4694 getF32Constant(DAG, 0x3fa22ae7, dl)); 4695 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4696 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4697 getF32Constant(DAG, 0x40525723, dl)); 4698 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4699 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4700 getF32Constant(DAG, 0x40aaf200, dl)); 4701 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4702 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4703 getF32Constant(DAG, 0x40c39dad, dl)); 4704 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4705 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4706 getF32Constant(DAG, 0x4042902c, dl)); 4707 } 4708 4709 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4710 } 4711 4712 // No special expansion. 4713 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4714 } 4715 4716 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4717 /// limited-precision mode. 4718 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4719 const TargetLowering &TLI) { 4720 // TODO: What fast-math-flags should be set on the floating-point nodes? 4721 4722 if (Op.getValueType() == MVT::f32 && 4723 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4724 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4725 4726 // Scale the exponent by log10(2) [0.30102999f]. 4727 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4728 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4729 getF32Constant(DAG, 0x3e9a209a, dl)); 4730 4731 // Get the significand and build it into a floating-point number with 4732 // exponent of 1. 4733 SDValue X = GetSignificand(DAG, Op1, dl); 4734 4735 SDValue Log10ofMantissa; 4736 if (LimitFloatPrecision <= 6) { 4737 // For floating-point precision of 6: 4738 // 4739 // Log10ofMantissa = 4740 // -0.50419619f + 4741 // (0.60948995f - 0.10380950f * x) * x; 4742 // 4743 // error 0.0014886165, which is 6 bits 4744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4745 getF32Constant(DAG, 0xbdd49a13, dl)); 4746 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4747 getF32Constant(DAG, 0x3f1c0789, dl)); 4748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4749 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4750 getF32Constant(DAG, 0x3f011300, dl)); 4751 } else if (LimitFloatPrecision <= 12) { 4752 // For floating-point precision of 12: 4753 // 4754 // Log10ofMantissa = 4755 // -0.64831180f + 4756 // (0.91751397f + 4757 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4758 // 4759 // error 0.00019228036, which is better than 12 bits 4760 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4761 getF32Constant(DAG, 0x3d431f31, dl)); 4762 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4763 getF32Constant(DAG, 0x3ea21fb2, dl)); 4764 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4766 getF32Constant(DAG, 0x3f6ae232, dl)); 4767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4768 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4769 getF32Constant(DAG, 0x3f25f7c3, dl)); 4770 } else { // LimitFloatPrecision <= 18 4771 // For floating-point precision of 18: 4772 // 4773 // Log10ofMantissa = 4774 // -0.84299375f + 4775 // (1.5327582f + 4776 // (-1.0688956f + 4777 // (0.49102474f + 4778 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4779 // 4780 // error 0.0000037995730, which is better than 18 bits 4781 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4782 getF32Constant(DAG, 0x3c5d51ce, dl)); 4783 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4784 getF32Constant(DAG, 0x3e00685a, dl)); 4785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4787 getF32Constant(DAG, 0x3efb6798, dl)); 4788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4789 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4790 getF32Constant(DAG, 0x3f88d192, dl)); 4791 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4792 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4793 getF32Constant(DAG, 0x3fc4316c, dl)); 4794 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4795 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4796 getF32Constant(DAG, 0x3f57ce70, dl)); 4797 } 4798 4799 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4800 } 4801 4802 // No special expansion. 4803 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4804 } 4805 4806 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4807 /// limited-precision mode. 4808 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4809 const TargetLowering &TLI) { 4810 if (Op.getValueType() == MVT::f32 && 4811 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4812 return getLimitedPrecisionExp2(Op, dl, DAG); 4813 4814 // No special expansion. 4815 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4816 } 4817 4818 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4819 /// limited-precision mode with x == 10.0f. 4820 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4821 SelectionDAG &DAG, const TargetLowering &TLI) { 4822 bool IsExp10 = false; 4823 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4824 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4825 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4826 APFloat Ten(10.0f); 4827 IsExp10 = LHSC->isExactlyValue(Ten); 4828 } 4829 } 4830 4831 // TODO: What fast-math-flags should be set on the FMUL node? 4832 if (IsExp10) { 4833 // Put the exponent in the right bit position for later addition to the 4834 // final result: 4835 // 4836 // #define LOG2OF10 3.3219281f 4837 // t0 = Op * LOG2OF10; 4838 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4839 getF32Constant(DAG, 0x40549a78, dl)); 4840 return getLimitedPrecisionExp2(t0, dl, DAG); 4841 } 4842 4843 // No special expansion. 4844 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4845 } 4846 4847 /// ExpandPowI - Expand a llvm.powi intrinsic. 4848 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4849 SelectionDAG &DAG) { 4850 // If RHS is a constant, we can expand this out to a multiplication tree, 4851 // otherwise we end up lowering to a call to __powidf2 (for example). When 4852 // optimizing for size, we only want to do this if the expansion would produce 4853 // a small number of multiplies, otherwise we do the full expansion. 4854 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4855 // Get the exponent as a positive value. 4856 unsigned Val = RHSC->getSExtValue(); 4857 if ((int)Val < 0) Val = -Val; 4858 4859 // powi(x, 0) -> 1.0 4860 if (Val == 0) 4861 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4862 4863 const Function &F = DAG.getMachineFunction().getFunction(); 4864 if (!F.optForSize() || 4865 // If optimizing for size, don't insert too many multiplies. 4866 // This inserts up to 5 multiplies. 4867 countPopulation(Val) + Log2_32(Val) < 7) { 4868 // We use the simple binary decomposition method to generate the multiply 4869 // sequence. There are more optimal ways to do this (for example, 4870 // powi(x,15) generates one more multiply than it should), but this has 4871 // the benefit of being both really simple and much better than a libcall. 4872 SDValue Res; // Logically starts equal to 1.0 4873 SDValue CurSquare = LHS; 4874 // TODO: Intrinsics should have fast-math-flags that propagate to these 4875 // nodes. 4876 while (Val) { 4877 if (Val & 1) { 4878 if (Res.getNode()) 4879 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4880 else 4881 Res = CurSquare; // 1.0*CurSquare. 4882 } 4883 4884 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4885 CurSquare, CurSquare); 4886 Val >>= 1; 4887 } 4888 4889 // If the original was negative, invert the result, producing 1/(x*x*x). 4890 if (RHSC->getSExtValue() < 0) 4891 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4892 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4893 return Res; 4894 } 4895 } 4896 4897 // Otherwise, expand to a libcall. 4898 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4899 } 4900 4901 // getUnderlyingArgReg - Find underlying register used for a truncated or 4902 // bitcasted argument. 4903 static unsigned getUnderlyingArgReg(const SDValue &N) { 4904 switch (N.getOpcode()) { 4905 case ISD::CopyFromReg: 4906 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4907 case ISD::BITCAST: 4908 case ISD::AssertZext: 4909 case ISD::AssertSext: 4910 case ISD::TRUNCATE: 4911 return getUnderlyingArgReg(N.getOperand(0)); 4912 default: 4913 return 0; 4914 } 4915 } 4916 4917 /// If the DbgValueInst is a dbg_value of a function argument, create the 4918 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4919 /// instruction selection, they will be inserted to the entry BB. 4920 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4921 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4922 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4923 const Argument *Arg = dyn_cast<Argument>(V); 4924 if (!Arg) 4925 return false; 4926 4927 MachineFunction &MF = DAG.getMachineFunction(); 4928 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4929 4930 bool IsIndirect = false; 4931 Optional<MachineOperand> Op; 4932 // Some arguments' frame index is recorded during argument lowering. 4933 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4934 if (FI != std::numeric_limits<int>::max()) 4935 Op = MachineOperand::CreateFI(FI); 4936 4937 if (!Op && N.getNode()) { 4938 unsigned Reg = getUnderlyingArgReg(N); 4939 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4940 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4941 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4942 if (PR) 4943 Reg = PR; 4944 } 4945 if (Reg) { 4946 Op = MachineOperand::CreateReg(Reg, false); 4947 IsIndirect = IsDbgDeclare; 4948 } 4949 } 4950 4951 if (!Op && N.getNode()) 4952 // Check if frame index is available. 4953 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4954 if (FrameIndexSDNode *FINode = 4955 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4956 Op = MachineOperand::CreateFI(FINode->getIndex()); 4957 4958 if (!Op) { 4959 // Check if ValueMap has reg number. 4960 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4961 if (VMI != FuncInfo.ValueMap.end()) { 4962 const auto &TLI = DAG.getTargetLoweringInfo(); 4963 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4964 V->getType(), getABIRegCopyCC(V)); 4965 if (RFV.occupiesMultipleRegs()) { 4966 unsigned Offset = 0; 4967 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4968 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4969 auto FragmentExpr = DIExpression::createFragmentExpression( 4970 Expr, Offset, RegAndSize.second); 4971 if (!FragmentExpr) 4972 continue; 4973 FuncInfo.ArgDbgValues.push_back( 4974 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4975 Op->getReg(), Variable, *FragmentExpr)); 4976 Offset += RegAndSize.second; 4977 } 4978 return true; 4979 } 4980 Op = MachineOperand::CreateReg(VMI->second, false); 4981 IsIndirect = IsDbgDeclare; 4982 } 4983 } 4984 4985 if (!Op) 4986 return false; 4987 4988 assert(Variable->isValidLocationForIntrinsic(DL) && 4989 "Expected inlined-at fields to agree"); 4990 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4991 FuncInfo.ArgDbgValues.push_back( 4992 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4993 *Op, Variable, Expr)); 4994 4995 return true; 4996 } 4997 4998 /// Return the appropriate SDDbgValue based on N. 4999 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5000 DILocalVariable *Variable, 5001 DIExpression *Expr, 5002 const DebugLoc &dl, 5003 unsigned DbgSDNodeOrder) { 5004 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5005 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5006 // stack slot locations. 5007 // 5008 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5009 // debug values here after optimization: 5010 // 5011 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5012 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5013 // 5014 // Both describe the direct values of their associated variables. 5015 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5016 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5017 } 5018 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5019 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5020 } 5021 5022 // VisualStudio defines setjmp as _setjmp 5023 #if defined(_MSC_VER) && defined(setjmp) && \ 5024 !defined(setjmp_undefined_for_msvc) 5025 # pragma push_macro("setjmp") 5026 # undef setjmp 5027 # define setjmp_undefined_for_msvc 5028 #endif 5029 5030 /// Lower the call to the specified intrinsic function. If we want to emit this 5031 /// as a call to a named external function, return the name. Otherwise, lower it 5032 /// and return null. 5033 const char * 5034 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5036 SDLoc sdl = getCurSDLoc(); 5037 DebugLoc dl = getCurDebugLoc(); 5038 SDValue Res; 5039 5040 switch (Intrinsic) { 5041 default: 5042 // By default, turn this into a target intrinsic node. 5043 visitTargetIntrinsic(I, Intrinsic); 5044 return nullptr; 5045 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5046 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5047 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5048 case Intrinsic::returnaddress: 5049 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5050 TLI.getPointerTy(DAG.getDataLayout()), 5051 getValue(I.getArgOperand(0)))); 5052 return nullptr; 5053 case Intrinsic::addressofreturnaddress: 5054 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5055 TLI.getPointerTy(DAG.getDataLayout()))); 5056 return nullptr; 5057 case Intrinsic::frameaddress: 5058 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5059 TLI.getPointerTy(DAG.getDataLayout()), 5060 getValue(I.getArgOperand(0)))); 5061 return nullptr; 5062 case Intrinsic::read_register: { 5063 Value *Reg = I.getArgOperand(0); 5064 SDValue Chain = getRoot(); 5065 SDValue RegName = 5066 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5067 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5068 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5069 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5070 setValue(&I, Res); 5071 DAG.setRoot(Res.getValue(1)); 5072 return nullptr; 5073 } 5074 case Intrinsic::write_register: { 5075 Value *Reg = I.getArgOperand(0); 5076 Value *RegValue = I.getArgOperand(1); 5077 SDValue Chain = getRoot(); 5078 SDValue RegName = 5079 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5080 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5081 RegName, getValue(RegValue))); 5082 return nullptr; 5083 } 5084 case Intrinsic::setjmp: 5085 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5086 case Intrinsic::longjmp: 5087 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5088 case Intrinsic::memcpy: { 5089 const auto &MCI = cast<MemCpyInst>(I); 5090 SDValue Op1 = getValue(I.getArgOperand(0)); 5091 SDValue Op2 = getValue(I.getArgOperand(1)); 5092 SDValue Op3 = getValue(I.getArgOperand(2)); 5093 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5094 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5095 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5096 unsigned Align = MinAlign(DstAlign, SrcAlign); 5097 bool isVol = MCI.isVolatile(); 5098 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5099 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5100 // node. 5101 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5102 false, isTC, 5103 MachinePointerInfo(I.getArgOperand(0)), 5104 MachinePointerInfo(I.getArgOperand(1))); 5105 updateDAGForMaybeTailCall(MC); 5106 return nullptr; 5107 } 5108 case Intrinsic::memset: { 5109 const auto &MSI = cast<MemSetInst>(I); 5110 SDValue Op1 = getValue(I.getArgOperand(0)); 5111 SDValue Op2 = getValue(I.getArgOperand(1)); 5112 SDValue Op3 = getValue(I.getArgOperand(2)); 5113 // @llvm.memset defines 0 and 1 to both mean no alignment. 5114 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5115 bool isVol = MSI.isVolatile(); 5116 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5117 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5118 isTC, MachinePointerInfo(I.getArgOperand(0))); 5119 updateDAGForMaybeTailCall(MS); 5120 return nullptr; 5121 } 5122 case Intrinsic::memmove: { 5123 const auto &MMI = cast<MemMoveInst>(I); 5124 SDValue Op1 = getValue(I.getArgOperand(0)); 5125 SDValue Op2 = getValue(I.getArgOperand(1)); 5126 SDValue Op3 = getValue(I.getArgOperand(2)); 5127 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5128 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5129 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5130 unsigned Align = MinAlign(DstAlign, SrcAlign); 5131 bool isVol = MMI.isVolatile(); 5132 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5133 // FIXME: Support passing different dest/src alignments to the memmove DAG 5134 // node. 5135 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5136 isTC, MachinePointerInfo(I.getArgOperand(0)), 5137 MachinePointerInfo(I.getArgOperand(1))); 5138 updateDAGForMaybeTailCall(MM); 5139 return nullptr; 5140 } 5141 case Intrinsic::memcpy_element_unordered_atomic: { 5142 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5143 SDValue Dst = getValue(MI.getRawDest()); 5144 SDValue Src = getValue(MI.getRawSource()); 5145 SDValue Length = getValue(MI.getLength()); 5146 5147 unsigned DstAlign = MI.getDestAlignment(); 5148 unsigned SrcAlign = MI.getSourceAlignment(); 5149 Type *LengthTy = MI.getLength()->getType(); 5150 unsigned ElemSz = MI.getElementSizeInBytes(); 5151 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5152 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5153 SrcAlign, Length, LengthTy, ElemSz, isTC, 5154 MachinePointerInfo(MI.getRawDest()), 5155 MachinePointerInfo(MI.getRawSource())); 5156 updateDAGForMaybeTailCall(MC); 5157 return nullptr; 5158 } 5159 case Intrinsic::memmove_element_unordered_atomic: { 5160 auto &MI = cast<AtomicMemMoveInst>(I); 5161 SDValue Dst = getValue(MI.getRawDest()); 5162 SDValue Src = getValue(MI.getRawSource()); 5163 SDValue Length = getValue(MI.getLength()); 5164 5165 unsigned DstAlign = MI.getDestAlignment(); 5166 unsigned SrcAlign = MI.getSourceAlignment(); 5167 Type *LengthTy = MI.getLength()->getType(); 5168 unsigned ElemSz = MI.getElementSizeInBytes(); 5169 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5170 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5171 SrcAlign, Length, LengthTy, ElemSz, isTC, 5172 MachinePointerInfo(MI.getRawDest()), 5173 MachinePointerInfo(MI.getRawSource())); 5174 updateDAGForMaybeTailCall(MC); 5175 return nullptr; 5176 } 5177 case Intrinsic::memset_element_unordered_atomic: { 5178 auto &MI = cast<AtomicMemSetInst>(I); 5179 SDValue Dst = getValue(MI.getRawDest()); 5180 SDValue Val = getValue(MI.getValue()); 5181 SDValue Length = getValue(MI.getLength()); 5182 5183 unsigned DstAlign = MI.getDestAlignment(); 5184 Type *LengthTy = MI.getLength()->getType(); 5185 unsigned ElemSz = MI.getElementSizeInBytes(); 5186 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5187 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5188 LengthTy, ElemSz, isTC, 5189 MachinePointerInfo(MI.getRawDest())); 5190 updateDAGForMaybeTailCall(MC); 5191 return nullptr; 5192 } 5193 case Intrinsic::dbg_addr: 5194 case Intrinsic::dbg_declare: { 5195 const auto &DI = cast<DbgVariableIntrinsic>(I); 5196 DILocalVariable *Variable = DI.getVariable(); 5197 DIExpression *Expression = DI.getExpression(); 5198 dropDanglingDebugInfo(Variable, Expression); 5199 assert(Variable && "Missing variable"); 5200 5201 // Check if address has undef value. 5202 const Value *Address = DI.getVariableLocation(); 5203 if (!Address || isa<UndefValue>(Address) || 5204 (Address->use_empty() && !isa<Argument>(Address))) { 5205 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5206 return nullptr; 5207 } 5208 5209 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5210 5211 // Check if this variable can be described by a frame index, typically 5212 // either as a static alloca or a byval parameter. 5213 int FI = std::numeric_limits<int>::max(); 5214 if (const auto *AI = 5215 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5216 if (AI->isStaticAlloca()) { 5217 auto I = FuncInfo.StaticAllocaMap.find(AI); 5218 if (I != FuncInfo.StaticAllocaMap.end()) 5219 FI = I->second; 5220 } 5221 } else if (const auto *Arg = dyn_cast<Argument>( 5222 Address->stripInBoundsConstantOffsets())) { 5223 FI = FuncInfo.getArgumentFrameIndex(Arg); 5224 } 5225 5226 // llvm.dbg.addr is control dependent and always generates indirect 5227 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5228 // the MachineFunction variable table. 5229 if (FI != std::numeric_limits<int>::max()) { 5230 if (Intrinsic == Intrinsic::dbg_addr) { 5231 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5232 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5233 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5234 } 5235 return nullptr; 5236 } 5237 5238 SDValue &N = NodeMap[Address]; 5239 if (!N.getNode() && isa<Argument>(Address)) 5240 // Check unused arguments map. 5241 N = UnusedArgNodeMap[Address]; 5242 SDDbgValue *SDV; 5243 if (N.getNode()) { 5244 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5245 Address = BCI->getOperand(0); 5246 // Parameters are handled specially. 5247 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5248 if (isParameter && FINode) { 5249 // Byval parameter. We have a frame index at this point. 5250 SDV = 5251 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5252 /*IsIndirect*/ true, dl, SDNodeOrder); 5253 } else if (isa<Argument>(Address)) { 5254 // Address is an argument, so try to emit its dbg value using 5255 // virtual register info from the FuncInfo.ValueMap. 5256 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5257 return nullptr; 5258 } else { 5259 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5260 true, dl, SDNodeOrder); 5261 } 5262 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5263 } else { 5264 // If Address is an argument then try to emit its dbg value using 5265 // virtual register info from the FuncInfo.ValueMap. 5266 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5267 N)) { 5268 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5269 } 5270 } 5271 return nullptr; 5272 } 5273 case Intrinsic::dbg_label: { 5274 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5275 DILabel *Label = DI.getLabel(); 5276 assert(Label && "Missing label"); 5277 5278 SDDbgLabel *SDV; 5279 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5280 DAG.AddDbgLabel(SDV); 5281 return nullptr; 5282 } 5283 case Intrinsic::dbg_value: { 5284 const DbgValueInst &DI = cast<DbgValueInst>(I); 5285 assert(DI.getVariable() && "Missing variable"); 5286 5287 DILocalVariable *Variable = DI.getVariable(); 5288 DIExpression *Expression = DI.getExpression(); 5289 dropDanglingDebugInfo(Variable, Expression); 5290 const Value *V = DI.getValue(); 5291 if (!V) 5292 return nullptr; 5293 5294 SDDbgValue *SDV; 5295 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5296 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5297 DAG.AddDbgValue(SDV, nullptr, false); 5298 return nullptr; 5299 } 5300 5301 // Do not use getValue() in here; we don't want to generate code at 5302 // this point if it hasn't been done yet. 5303 SDValue N = NodeMap[V]; 5304 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5305 N = UnusedArgNodeMap[V]; 5306 if (N.getNode()) { 5307 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5308 return nullptr; 5309 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5310 DAG.AddDbgValue(SDV, N.getNode(), false); 5311 return nullptr; 5312 } 5313 5314 // PHI nodes have already been selected, so we should know which VReg that 5315 // is assigns to already. 5316 if (isa<PHINode>(V)) { 5317 auto VMI = FuncInfo.ValueMap.find(V); 5318 if (VMI != FuncInfo.ValueMap.end()) { 5319 unsigned Reg = VMI->second; 5320 // The PHI node may be split up into several MI PHI nodes (in 5321 // FunctionLoweringInfo::set). 5322 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5323 V->getType(), None); 5324 if (RFV.occupiesMultipleRegs()) { 5325 unsigned Offset = 0; 5326 unsigned BitsToDescribe = 0; 5327 if (auto VarSize = Variable->getSizeInBits()) 5328 BitsToDescribe = *VarSize; 5329 if (auto Fragment = Expression->getFragmentInfo()) 5330 BitsToDescribe = Fragment->SizeInBits; 5331 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5332 unsigned RegisterSize = RegAndSize.second; 5333 // Bail out if all bits are described already. 5334 if (Offset >= BitsToDescribe) 5335 break; 5336 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5337 ? BitsToDescribe - Offset 5338 : RegisterSize; 5339 auto FragmentExpr = DIExpression::createFragmentExpression( 5340 Expression, Offset, FragmentSize); 5341 if (!FragmentExpr) 5342 continue; 5343 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5344 false, dl, SDNodeOrder); 5345 DAG.AddDbgValue(SDV, nullptr, false); 5346 Offset += RegisterSize; 5347 } 5348 } else { 5349 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5350 SDNodeOrder); 5351 DAG.AddDbgValue(SDV, nullptr, false); 5352 } 5353 return nullptr; 5354 } 5355 } 5356 5357 // TODO: When we get here we will either drop the dbg.value completely, or 5358 // we try to move it forward by letting it dangle for awhile. So we should 5359 // probably add an extra DbgValue to the DAG here, with a reference to 5360 // "noreg", to indicate that we have lost the debug location for the 5361 // variable. 5362 5363 if (!V->use_empty() ) { 5364 // Do not call getValue(V) yet, as we don't want to generate code. 5365 // Remember it for later. 5366 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5367 return nullptr; 5368 } 5369 5370 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5371 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5372 return nullptr; 5373 } 5374 5375 case Intrinsic::eh_typeid_for: { 5376 // Find the type id for the given typeinfo. 5377 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5378 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5379 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5380 setValue(&I, Res); 5381 return nullptr; 5382 } 5383 5384 case Intrinsic::eh_return_i32: 5385 case Intrinsic::eh_return_i64: 5386 DAG.getMachineFunction().setCallsEHReturn(true); 5387 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5388 MVT::Other, 5389 getControlRoot(), 5390 getValue(I.getArgOperand(0)), 5391 getValue(I.getArgOperand(1)))); 5392 return nullptr; 5393 case Intrinsic::eh_unwind_init: 5394 DAG.getMachineFunction().setCallsUnwindInit(true); 5395 return nullptr; 5396 case Intrinsic::eh_dwarf_cfa: 5397 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5398 TLI.getPointerTy(DAG.getDataLayout()), 5399 getValue(I.getArgOperand(0)))); 5400 return nullptr; 5401 case Intrinsic::eh_sjlj_callsite: { 5402 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5403 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5404 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5405 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5406 5407 MMI.setCurrentCallSite(CI->getZExtValue()); 5408 return nullptr; 5409 } 5410 case Intrinsic::eh_sjlj_functioncontext: { 5411 // Get and store the index of the function context. 5412 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5413 AllocaInst *FnCtx = 5414 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5415 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5416 MFI.setFunctionContextIndex(FI); 5417 return nullptr; 5418 } 5419 case Intrinsic::eh_sjlj_setjmp: { 5420 SDValue Ops[2]; 5421 Ops[0] = getRoot(); 5422 Ops[1] = getValue(I.getArgOperand(0)); 5423 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5424 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5425 setValue(&I, Op.getValue(0)); 5426 DAG.setRoot(Op.getValue(1)); 5427 return nullptr; 5428 } 5429 case Intrinsic::eh_sjlj_longjmp: 5430 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5431 getRoot(), getValue(I.getArgOperand(0)))); 5432 return nullptr; 5433 case Intrinsic::eh_sjlj_setup_dispatch: 5434 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5435 getRoot())); 5436 return nullptr; 5437 case Intrinsic::masked_gather: 5438 visitMaskedGather(I); 5439 return nullptr; 5440 case Intrinsic::masked_load: 5441 visitMaskedLoad(I); 5442 return nullptr; 5443 case Intrinsic::masked_scatter: 5444 visitMaskedScatter(I); 5445 return nullptr; 5446 case Intrinsic::masked_store: 5447 visitMaskedStore(I); 5448 return nullptr; 5449 case Intrinsic::masked_expandload: 5450 visitMaskedLoad(I, true /* IsExpanding */); 5451 return nullptr; 5452 case Intrinsic::masked_compressstore: 5453 visitMaskedStore(I, true /* IsCompressing */); 5454 return nullptr; 5455 case Intrinsic::x86_mmx_pslli_w: 5456 case Intrinsic::x86_mmx_pslli_d: 5457 case Intrinsic::x86_mmx_pslli_q: 5458 case Intrinsic::x86_mmx_psrli_w: 5459 case Intrinsic::x86_mmx_psrli_d: 5460 case Intrinsic::x86_mmx_psrli_q: 5461 case Intrinsic::x86_mmx_psrai_w: 5462 case Intrinsic::x86_mmx_psrai_d: { 5463 SDValue ShAmt = getValue(I.getArgOperand(1)); 5464 if (isa<ConstantSDNode>(ShAmt)) { 5465 visitTargetIntrinsic(I, Intrinsic); 5466 return nullptr; 5467 } 5468 unsigned NewIntrinsic = 0; 5469 EVT ShAmtVT = MVT::v2i32; 5470 switch (Intrinsic) { 5471 case Intrinsic::x86_mmx_pslli_w: 5472 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5473 break; 5474 case Intrinsic::x86_mmx_pslli_d: 5475 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5476 break; 5477 case Intrinsic::x86_mmx_pslli_q: 5478 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5479 break; 5480 case Intrinsic::x86_mmx_psrli_w: 5481 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5482 break; 5483 case Intrinsic::x86_mmx_psrli_d: 5484 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5485 break; 5486 case Intrinsic::x86_mmx_psrli_q: 5487 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5488 break; 5489 case Intrinsic::x86_mmx_psrai_w: 5490 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5491 break; 5492 case Intrinsic::x86_mmx_psrai_d: 5493 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5494 break; 5495 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5496 } 5497 5498 // The vector shift intrinsics with scalars uses 32b shift amounts but 5499 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5500 // to be zero. 5501 // We must do this early because v2i32 is not a legal type. 5502 SDValue ShOps[2]; 5503 ShOps[0] = ShAmt; 5504 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5505 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5506 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5507 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5508 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5509 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5510 getValue(I.getArgOperand(0)), ShAmt); 5511 setValue(&I, Res); 5512 return nullptr; 5513 } 5514 case Intrinsic::powi: 5515 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5516 getValue(I.getArgOperand(1)), DAG)); 5517 return nullptr; 5518 case Intrinsic::log: 5519 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5520 return nullptr; 5521 case Intrinsic::log2: 5522 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5523 return nullptr; 5524 case Intrinsic::log10: 5525 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5526 return nullptr; 5527 case Intrinsic::exp: 5528 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5529 return nullptr; 5530 case Intrinsic::exp2: 5531 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5532 return nullptr; 5533 case Intrinsic::pow: 5534 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5535 getValue(I.getArgOperand(1)), DAG, TLI)); 5536 return nullptr; 5537 case Intrinsic::sqrt: 5538 case Intrinsic::fabs: 5539 case Intrinsic::sin: 5540 case Intrinsic::cos: 5541 case Intrinsic::floor: 5542 case Intrinsic::ceil: 5543 case Intrinsic::trunc: 5544 case Intrinsic::rint: 5545 case Intrinsic::nearbyint: 5546 case Intrinsic::round: 5547 case Intrinsic::canonicalize: { 5548 unsigned Opcode; 5549 switch (Intrinsic) { 5550 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5551 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5552 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5553 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5554 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5555 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5556 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5557 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5558 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5559 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5560 case Intrinsic::round: Opcode = ISD::FROUND; break; 5561 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5562 } 5563 5564 setValue(&I, DAG.getNode(Opcode, sdl, 5565 getValue(I.getArgOperand(0)).getValueType(), 5566 getValue(I.getArgOperand(0)))); 5567 return nullptr; 5568 } 5569 case Intrinsic::minnum: { 5570 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5571 unsigned Opc = 5572 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5573 ? ISD::FMINNAN 5574 : ISD::FMINNUM; 5575 setValue(&I, DAG.getNode(Opc, sdl, VT, 5576 getValue(I.getArgOperand(0)), 5577 getValue(I.getArgOperand(1)))); 5578 return nullptr; 5579 } 5580 case Intrinsic::maxnum: { 5581 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5582 unsigned Opc = 5583 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5584 ? ISD::FMAXNAN 5585 : ISD::FMAXNUM; 5586 setValue(&I, DAG.getNode(Opc, sdl, VT, 5587 getValue(I.getArgOperand(0)), 5588 getValue(I.getArgOperand(1)))); 5589 return nullptr; 5590 } 5591 case Intrinsic::copysign: 5592 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5593 getValue(I.getArgOperand(0)).getValueType(), 5594 getValue(I.getArgOperand(0)), 5595 getValue(I.getArgOperand(1)))); 5596 return nullptr; 5597 case Intrinsic::fma: 5598 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5599 getValue(I.getArgOperand(0)).getValueType(), 5600 getValue(I.getArgOperand(0)), 5601 getValue(I.getArgOperand(1)), 5602 getValue(I.getArgOperand(2)))); 5603 return nullptr; 5604 case Intrinsic::experimental_constrained_fadd: 5605 case Intrinsic::experimental_constrained_fsub: 5606 case Intrinsic::experimental_constrained_fmul: 5607 case Intrinsic::experimental_constrained_fdiv: 5608 case Intrinsic::experimental_constrained_frem: 5609 case Intrinsic::experimental_constrained_fma: 5610 case Intrinsic::experimental_constrained_sqrt: 5611 case Intrinsic::experimental_constrained_pow: 5612 case Intrinsic::experimental_constrained_powi: 5613 case Intrinsic::experimental_constrained_sin: 5614 case Intrinsic::experimental_constrained_cos: 5615 case Intrinsic::experimental_constrained_exp: 5616 case Intrinsic::experimental_constrained_exp2: 5617 case Intrinsic::experimental_constrained_log: 5618 case Intrinsic::experimental_constrained_log10: 5619 case Intrinsic::experimental_constrained_log2: 5620 case Intrinsic::experimental_constrained_rint: 5621 case Intrinsic::experimental_constrained_nearbyint: 5622 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5623 return nullptr; 5624 case Intrinsic::fmuladd: { 5625 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5626 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5627 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5628 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5629 getValue(I.getArgOperand(0)).getValueType(), 5630 getValue(I.getArgOperand(0)), 5631 getValue(I.getArgOperand(1)), 5632 getValue(I.getArgOperand(2)))); 5633 } else { 5634 // TODO: Intrinsic calls should have fast-math-flags. 5635 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5636 getValue(I.getArgOperand(0)).getValueType(), 5637 getValue(I.getArgOperand(0)), 5638 getValue(I.getArgOperand(1))); 5639 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5640 getValue(I.getArgOperand(0)).getValueType(), 5641 Mul, 5642 getValue(I.getArgOperand(2))); 5643 setValue(&I, Add); 5644 } 5645 return nullptr; 5646 } 5647 case Intrinsic::convert_to_fp16: 5648 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5649 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5650 getValue(I.getArgOperand(0)), 5651 DAG.getTargetConstant(0, sdl, 5652 MVT::i32)))); 5653 return nullptr; 5654 case Intrinsic::convert_from_fp16: 5655 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5656 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5657 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5658 getValue(I.getArgOperand(0))))); 5659 return nullptr; 5660 case Intrinsic::pcmarker: { 5661 SDValue Tmp = getValue(I.getArgOperand(0)); 5662 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5663 return nullptr; 5664 } 5665 case Intrinsic::readcyclecounter: { 5666 SDValue Op = getRoot(); 5667 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5668 DAG.getVTList(MVT::i64, MVT::Other), Op); 5669 setValue(&I, Res); 5670 DAG.setRoot(Res.getValue(1)); 5671 return nullptr; 5672 } 5673 case Intrinsic::bitreverse: 5674 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5675 getValue(I.getArgOperand(0)).getValueType(), 5676 getValue(I.getArgOperand(0)))); 5677 return nullptr; 5678 case Intrinsic::bswap: 5679 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5680 getValue(I.getArgOperand(0)).getValueType(), 5681 getValue(I.getArgOperand(0)))); 5682 return nullptr; 5683 case Intrinsic::cttz: { 5684 SDValue Arg = getValue(I.getArgOperand(0)); 5685 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5686 EVT Ty = Arg.getValueType(); 5687 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5688 sdl, Ty, Arg)); 5689 return nullptr; 5690 } 5691 case Intrinsic::ctlz: { 5692 SDValue Arg = getValue(I.getArgOperand(0)); 5693 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5694 EVT Ty = Arg.getValueType(); 5695 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5696 sdl, Ty, Arg)); 5697 return nullptr; 5698 } 5699 case Intrinsic::ctpop: { 5700 SDValue Arg = getValue(I.getArgOperand(0)); 5701 EVT Ty = Arg.getValueType(); 5702 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5703 return nullptr; 5704 } 5705 case Intrinsic::fshl: 5706 case Intrinsic::fshr: { 5707 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5708 SDValue X = getValue(I.getArgOperand(0)); 5709 SDValue Y = getValue(I.getArgOperand(1)); 5710 SDValue Z = getValue(I.getArgOperand(2)); 5711 EVT VT = X.getValueType(); 5712 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5713 SDValue Zero = DAG.getConstant(0, sdl, VT); 5714 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5715 5716 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5717 // avoid the select that is necessary in the general case to filter out 5718 // the 0-shift possibility that leads to UB. 5719 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5720 // TODO: This should also be done if the operation is custom, but we have 5721 // to make sure targets are handling the modulo shift amount as expected. 5722 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5723 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5724 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5725 return nullptr; 5726 } 5727 5728 // Some targets only rotate one way. Try the opposite direction. 5729 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5730 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5731 // Negate the shift amount because it is safe to ignore the high bits. 5732 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5733 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5734 return nullptr; 5735 } 5736 5737 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5738 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5739 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5740 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5741 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5742 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5743 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5744 return nullptr; 5745 } 5746 5747 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5748 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5749 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5750 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5751 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5752 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5753 5754 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5755 // and that is undefined. We must compare and select to avoid UB. 5756 EVT CCVT = MVT::i1; 5757 if (VT.isVector()) 5758 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5759 5760 // For fshl, 0-shift returns the 1st arg (X). 5761 // For fshr, 0-shift returns the 2nd arg (Y). 5762 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5763 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5764 return nullptr; 5765 } 5766 case Intrinsic::stacksave: { 5767 SDValue Op = getRoot(); 5768 Res = DAG.getNode( 5769 ISD::STACKSAVE, sdl, 5770 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5771 setValue(&I, Res); 5772 DAG.setRoot(Res.getValue(1)); 5773 return nullptr; 5774 } 5775 case Intrinsic::stackrestore: 5776 Res = getValue(I.getArgOperand(0)); 5777 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5778 return nullptr; 5779 case Intrinsic::get_dynamic_area_offset: { 5780 SDValue Op = getRoot(); 5781 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5782 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5783 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5784 // target. 5785 if (PtrTy != ResTy) 5786 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5787 " intrinsic!"); 5788 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5789 Op); 5790 DAG.setRoot(Op); 5791 setValue(&I, Res); 5792 return nullptr; 5793 } 5794 case Intrinsic::stackguard: { 5795 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5796 MachineFunction &MF = DAG.getMachineFunction(); 5797 const Module &M = *MF.getFunction().getParent(); 5798 SDValue Chain = getRoot(); 5799 if (TLI.useLoadStackGuardNode()) { 5800 Res = getLoadStackGuard(DAG, sdl, Chain); 5801 } else { 5802 const Value *Global = TLI.getSDagStackGuard(M); 5803 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5804 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5805 MachinePointerInfo(Global, 0), Align, 5806 MachineMemOperand::MOVolatile); 5807 } 5808 if (TLI.useStackGuardXorFP()) 5809 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5810 DAG.setRoot(Chain); 5811 setValue(&I, Res); 5812 return nullptr; 5813 } 5814 case Intrinsic::stackprotector: { 5815 // Emit code into the DAG to store the stack guard onto the stack. 5816 MachineFunction &MF = DAG.getMachineFunction(); 5817 MachineFrameInfo &MFI = MF.getFrameInfo(); 5818 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5819 SDValue Src, Chain = getRoot(); 5820 5821 if (TLI.useLoadStackGuardNode()) 5822 Src = getLoadStackGuard(DAG, sdl, Chain); 5823 else 5824 Src = getValue(I.getArgOperand(0)); // The guard's value. 5825 5826 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5827 5828 int FI = FuncInfo.StaticAllocaMap[Slot]; 5829 MFI.setStackProtectorIndex(FI); 5830 5831 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5832 5833 // Store the stack protector onto the stack. 5834 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5835 DAG.getMachineFunction(), FI), 5836 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5837 setValue(&I, Res); 5838 DAG.setRoot(Res); 5839 return nullptr; 5840 } 5841 case Intrinsic::objectsize: { 5842 // If we don't know by now, we're never going to know. 5843 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5844 5845 assert(CI && "Non-constant type in __builtin_object_size?"); 5846 5847 SDValue Arg = getValue(I.getCalledValue()); 5848 EVT Ty = Arg.getValueType(); 5849 5850 if (CI->isZero()) 5851 Res = DAG.getConstant(-1ULL, sdl, Ty); 5852 else 5853 Res = DAG.getConstant(0, sdl, Ty); 5854 5855 setValue(&I, Res); 5856 return nullptr; 5857 } 5858 case Intrinsic::annotation: 5859 case Intrinsic::ptr_annotation: 5860 case Intrinsic::launder_invariant_group: 5861 case Intrinsic::strip_invariant_group: 5862 // Drop the intrinsic, but forward the value 5863 setValue(&I, getValue(I.getOperand(0))); 5864 return nullptr; 5865 case Intrinsic::assume: 5866 case Intrinsic::var_annotation: 5867 case Intrinsic::sideeffect: 5868 // Discard annotate attributes, assumptions, and artificial side-effects. 5869 return nullptr; 5870 5871 case Intrinsic::codeview_annotation: { 5872 // Emit a label associated with this metadata. 5873 MachineFunction &MF = DAG.getMachineFunction(); 5874 MCSymbol *Label = 5875 MF.getMMI().getContext().createTempSymbol("annotation", true); 5876 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5877 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5878 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5879 DAG.setRoot(Res); 5880 return nullptr; 5881 } 5882 5883 case Intrinsic::init_trampoline: { 5884 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5885 5886 SDValue Ops[6]; 5887 Ops[0] = getRoot(); 5888 Ops[1] = getValue(I.getArgOperand(0)); 5889 Ops[2] = getValue(I.getArgOperand(1)); 5890 Ops[3] = getValue(I.getArgOperand(2)); 5891 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5892 Ops[5] = DAG.getSrcValue(F); 5893 5894 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5895 5896 DAG.setRoot(Res); 5897 return nullptr; 5898 } 5899 case Intrinsic::adjust_trampoline: 5900 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5901 TLI.getPointerTy(DAG.getDataLayout()), 5902 getValue(I.getArgOperand(0)))); 5903 return nullptr; 5904 case Intrinsic::gcroot: { 5905 assert(DAG.getMachineFunction().getFunction().hasGC() && 5906 "only valid in functions with gc specified, enforced by Verifier"); 5907 assert(GFI && "implied by previous"); 5908 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5909 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5910 5911 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5912 GFI->addStackRoot(FI->getIndex(), TypeMap); 5913 return nullptr; 5914 } 5915 case Intrinsic::gcread: 5916 case Intrinsic::gcwrite: 5917 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5918 case Intrinsic::flt_rounds: 5919 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5920 return nullptr; 5921 5922 case Intrinsic::expect: 5923 // Just replace __builtin_expect(exp, c) with EXP. 5924 setValue(&I, getValue(I.getArgOperand(0))); 5925 return nullptr; 5926 5927 case Intrinsic::debugtrap: 5928 case Intrinsic::trap: { 5929 StringRef TrapFuncName = 5930 I.getAttributes() 5931 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5932 .getValueAsString(); 5933 if (TrapFuncName.empty()) { 5934 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5935 ISD::TRAP : ISD::DEBUGTRAP; 5936 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5937 return nullptr; 5938 } 5939 TargetLowering::ArgListTy Args; 5940 5941 TargetLowering::CallLoweringInfo CLI(DAG); 5942 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5943 CallingConv::C, I.getType(), 5944 DAG.getExternalSymbol(TrapFuncName.data(), 5945 TLI.getPointerTy(DAG.getDataLayout())), 5946 std::move(Args)); 5947 5948 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5949 DAG.setRoot(Result.second); 5950 return nullptr; 5951 } 5952 5953 case Intrinsic::uadd_with_overflow: 5954 case Intrinsic::sadd_with_overflow: 5955 case Intrinsic::usub_with_overflow: 5956 case Intrinsic::ssub_with_overflow: 5957 case Intrinsic::umul_with_overflow: 5958 case Intrinsic::smul_with_overflow: { 5959 ISD::NodeType Op; 5960 switch (Intrinsic) { 5961 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5962 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5963 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5964 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5965 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5966 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5967 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5968 } 5969 SDValue Op1 = getValue(I.getArgOperand(0)); 5970 SDValue Op2 = getValue(I.getArgOperand(1)); 5971 5972 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5973 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5974 return nullptr; 5975 } 5976 case Intrinsic::prefetch: { 5977 SDValue Ops[5]; 5978 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5979 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5980 Ops[0] = DAG.getRoot(); 5981 Ops[1] = getValue(I.getArgOperand(0)); 5982 Ops[2] = getValue(I.getArgOperand(1)); 5983 Ops[3] = getValue(I.getArgOperand(2)); 5984 Ops[4] = getValue(I.getArgOperand(3)); 5985 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5986 DAG.getVTList(MVT::Other), Ops, 5987 EVT::getIntegerVT(*Context, 8), 5988 MachinePointerInfo(I.getArgOperand(0)), 5989 0, /* align */ 5990 Flags); 5991 5992 // Chain the prefetch in parallell with any pending loads, to stay out of 5993 // the way of later optimizations. 5994 PendingLoads.push_back(Result); 5995 Result = getRoot(); 5996 DAG.setRoot(Result); 5997 return nullptr; 5998 } 5999 case Intrinsic::lifetime_start: 6000 case Intrinsic::lifetime_end: { 6001 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6002 // Stack coloring is not enabled in O0, discard region information. 6003 if (TM.getOptLevel() == CodeGenOpt::None) 6004 return nullptr; 6005 6006 SmallVector<Value *, 4> Allocas; 6007 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6008 6009 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6010 E = Allocas.end(); Object != E; ++Object) { 6011 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6012 6013 // Could not find an Alloca. 6014 if (!LifetimeObject) 6015 continue; 6016 6017 // First check that the Alloca is static, otherwise it won't have a 6018 // valid frame index. 6019 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6020 if (SI == FuncInfo.StaticAllocaMap.end()) 6021 return nullptr; 6022 6023 int FI = SI->second; 6024 6025 SDValue Ops[2]; 6026 Ops[0] = getRoot(); 6027 Ops[1] = 6028 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6029 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6030 6031 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6032 DAG.setRoot(Res); 6033 } 6034 return nullptr; 6035 } 6036 case Intrinsic::invariant_start: 6037 // Discard region information. 6038 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6039 return nullptr; 6040 case Intrinsic::invariant_end: 6041 // Discard region information. 6042 return nullptr; 6043 case Intrinsic::clear_cache: 6044 return TLI.getClearCacheBuiltinName(); 6045 case Intrinsic::donothing: 6046 // ignore 6047 return nullptr; 6048 case Intrinsic::experimental_stackmap: 6049 visitStackmap(I); 6050 return nullptr; 6051 case Intrinsic::experimental_patchpoint_void: 6052 case Intrinsic::experimental_patchpoint_i64: 6053 visitPatchpoint(&I); 6054 return nullptr; 6055 case Intrinsic::experimental_gc_statepoint: 6056 LowerStatepoint(ImmutableStatepoint(&I)); 6057 return nullptr; 6058 case Intrinsic::experimental_gc_result: 6059 visitGCResult(cast<GCResultInst>(I)); 6060 return nullptr; 6061 case Intrinsic::experimental_gc_relocate: 6062 visitGCRelocate(cast<GCRelocateInst>(I)); 6063 return nullptr; 6064 case Intrinsic::instrprof_increment: 6065 llvm_unreachable("instrprof failed to lower an increment"); 6066 case Intrinsic::instrprof_value_profile: 6067 llvm_unreachable("instrprof failed to lower a value profiling call"); 6068 case Intrinsic::localescape: { 6069 MachineFunction &MF = DAG.getMachineFunction(); 6070 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6071 6072 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6073 // is the same on all targets. 6074 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6075 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6076 if (isa<ConstantPointerNull>(Arg)) 6077 continue; // Skip null pointers. They represent a hole in index space. 6078 AllocaInst *Slot = cast<AllocaInst>(Arg); 6079 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6080 "can only escape static allocas"); 6081 int FI = FuncInfo.StaticAllocaMap[Slot]; 6082 MCSymbol *FrameAllocSym = 6083 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6084 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6085 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6086 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6087 .addSym(FrameAllocSym) 6088 .addFrameIndex(FI); 6089 } 6090 6091 return nullptr; 6092 } 6093 6094 case Intrinsic::localrecover: { 6095 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6096 MachineFunction &MF = DAG.getMachineFunction(); 6097 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6098 6099 // Get the symbol that defines the frame offset. 6100 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6101 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6102 unsigned IdxVal = 6103 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6104 MCSymbol *FrameAllocSym = 6105 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6106 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6107 6108 // Create a MCSymbol for the label to avoid any target lowering 6109 // that would make this PC relative. 6110 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6111 SDValue OffsetVal = 6112 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6113 6114 // Add the offset to the FP. 6115 Value *FP = I.getArgOperand(1); 6116 SDValue FPVal = getValue(FP); 6117 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6118 setValue(&I, Add); 6119 6120 return nullptr; 6121 } 6122 6123 case Intrinsic::eh_exceptionpointer: 6124 case Intrinsic::eh_exceptioncode: { 6125 // Get the exception pointer vreg, copy from it, and resize it to fit. 6126 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6127 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6128 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6129 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6130 SDValue N = 6131 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6132 if (Intrinsic == Intrinsic::eh_exceptioncode) 6133 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6134 setValue(&I, N); 6135 return nullptr; 6136 } 6137 case Intrinsic::xray_customevent: { 6138 // Here we want to make sure that the intrinsic behaves as if it has a 6139 // specific calling convention, and only for x86_64. 6140 // FIXME: Support other platforms later. 6141 const auto &Triple = DAG.getTarget().getTargetTriple(); 6142 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6143 return nullptr; 6144 6145 SDLoc DL = getCurSDLoc(); 6146 SmallVector<SDValue, 8> Ops; 6147 6148 // We want to say that we always want the arguments in registers. 6149 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6150 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6151 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6152 SDValue Chain = getRoot(); 6153 Ops.push_back(LogEntryVal); 6154 Ops.push_back(StrSizeVal); 6155 Ops.push_back(Chain); 6156 6157 // We need to enforce the calling convention for the callsite, so that 6158 // argument ordering is enforced correctly, and that register allocation can 6159 // see that some registers may be assumed clobbered and have to preserve 6160 // them across calls to the intrinsic. 6161 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6162 DL, NodeTys, Ops); 6163 SDValue patchableNode = SDValue(MN, 0); 6164 DAG.setRoot(patchableNode); 6165 setValue(&I, patchableNode); 6166 return nullptr; 6167 } 6168 case Intrinsic::xray_typedevent: { 6169 // Here we want to make sure that the intrinsic behaves as if it has a 6170 // specific calling convention, and only for x86_64. 6171 // FIXME: Support other platforms later. 6172 const auto &Triple = DAG.getTarget().getTargetTriple(); 6173 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6174 return nullptr; 6175 6176 SDLoc DL = getCurSDLoc(); 6177 SmallVector<SDValue, 8> Ops; 6178 6179 // We want to say that we always want the arguments in registers. 6180 // It's unclear to me how manipulating the selection DAG here forces callers 6181 // to provide arguments in registers instead of on the stack. 6182 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6183 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6184 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6185 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6186 SDValue Chain = getRoot(); 6187 Ops.push_back(LogTypeId); 6188 Ops.push_back(LogEntryVal); 6189 Ops.push_back(StrSizeVal); 6190 Ops.push_back(Chain); 6191 6192 // We need to enforce the calling convention for the callsite, so that 6193 // argument ordering is enforced correctly, and that register allocation can 6194 // see that some registers may be assumed clobbered and have to preserve 6195 // them across calls to the intrinsic. 6196 MachineSDNode *MN = DAG.getMachineNode( 6197 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6198 SDValue patchableNode = SDValue(MN, 0); 6199 DAG.setRoot(patchableNode); 6200 setValue(&I, patchableNode); 6201 return nullptr; 6202 } 6203 case Intrinsic::experimental_deoptimize: 6204 LowerDeoptimizeCall(&I); 6205 return nullptr; 6206 6207 case Intrinsic::experimental_vector_reduce_fadd: 6208 case Intrinsic::experimental_vector_reduce_fmul: 6209 case Intrinsic::experimental_vector_reduce_add: 6210 case Intrinsic::experimental_vector_reduce_mul: 6211 case Intrinsic::experimental_vector_reduce_and: 6212 case Intrinsic::experimental_vector_reduce_or: 6213 case Intrinsic::experimental_vector_reduce_xor: 6214 case Intrinsic::experimental_vector_reduce_smax: 6215 case Intrinsic::experimental_vector_reduce_smin: 6216 case Intrinsic::experimental_vector_reduce_umax: 6217 case Intrinsic::experimental_vector_reduce_umin: 6218 case Intrinsic::experimental_vector_reduce_fmax: 6219 case Intrinsic::experimental_vector_reduce_fmin: 6220 visitVectorReduce(I, Intrinsic); 6221 return nullptr; 6222 6223 case Intrinsic::icall_branch_funnel: { 6224 SmallVector<SDValue, 16> Ops; 6225 Ops.push_back(DAG.getRoot()); 6226 Ops.push_back(getValue(I.getArgOperand(0))); 6227 6228 int64_t Offset; 6229 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6230 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6231 if (!Base) 6232 report_fatal_error( 6233 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6234 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6235 6236 struct BranchFunnelTarget { 6237 int64_t Offset; 6238 SDValue Target; 6239 }; 6240 SmallVector<BranchFunnelTarget, 8> Targets; 6241 6242 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6243 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6244 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6245 if (ElemBase != Base) 6246 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6247 "to the same GlobalValue"); 6248 6249 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6250 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6251 if (!GA) 6252 report_fatal_error( 6253 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6254 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6255 GA->getGlobal(), getCurSDLoc(), 6256 Val.getValueType(), GA->getOffset())}); 6257 } 6258 llvm::sort(Targets.begin(), Targets.end(), 6259 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6260 return T1.Offset < T2.Offset; 6261 }); 6262 6263 for (auto &T : Targets) { 6264 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6265 Ops.push_back(T.Target); 6266 } 6267 6268 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6269 getCurSDLoc(), MVT::Other, Ops), 6270 0); 6271 DAG.setRoot(N); 6272 setValue(&I, N); 6273 HasTailCall = true; 6274 return nullptr; 6275 } 6276 6277 case Intrinsic::wasm_landingpad_index: { 6278 // TODO store landing pad index in a map, which will be used when generating 6279 // LSDA information 6280 return nullptr; 6281 } 6282 } 6283 } 6284 6285 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6286 const ConstrainedFPIntrinsic &FPI) { 6287 SDLoc sdl = getCurSDLoc(); 6288 unsigned Opcode; 6289 switch (FPI.getIntrinsicID()) { 6290 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6291 case Intrinsic::experimental_constrained_fadd: 6292 Opcode = ISD::STRICT_FADD; 6293 break; 6294 case Intrinsic::experimental_constrained_fsub: 6295 Opcode = ISD::STRICT_FSUB; 6296 break; 6297 case Intrinsic::experimental_constrained_fmul: 6298 Opcode = ISD::STRICT_FMUL; 6299 break; 6300 case Intrinsic::experimental_constrained_fdiv: 6301 Opcode = ISD::STRICT_FDIV; 6302 break; 6303 case Intrinsic::experimental_constrained_frem: 6304 Opcode = ISD::STRICT_FREM; 6305 break; 6306 case Intrinsic::experimental_constrained_fma: 6307 Opcode = ISD::STRICT_FMA; 6308 break; 6309 case Intrinsic::experimental_constrained_sqrt: 6310 Opcode = ISD::STRICT_FSQRT; 6311 break; 6312 case Intrinsic::experimental_constrained_pow: 6313 Opcode = ISD::STRICT_FPOW; 6314 break; 6315 case Intrinsic::experimental_constrained_powi: 6316 Opcode = ISD::STRICT_FPOWI; 6317 break; 6318 case Intrinsic::experimental_constrained_sin: 6319 Opcode = ISD::STRICT_FSIN; 6320 break; 6321 case Intrinsic::experimental_constrained_cos: 6322 Opcode = ISD::STRICT_FCOS; 6323 break; 6324 case Intrinsic::experimental_constrained_exp: 6325 Opcode = ISD::STRICT_FEXP; 6326 break; 6327 case Intrinsic::experimental_constrained_exp2: 6328 Opcode = ISD::STRICT_FEXP2; 6329 break; 6330 case Intrinsic::experimental_constrained_log: 6331 Opcode = ISD::STRICT_FLOG; 6332 break; 6333 case Intrinsic::experimental_constrained_log10: 6334 Opcode = ISD::STRICT_FLOG10; 6335 break; 6336 case Intrinsic::experimental_constrained_log2: 6337 Opcode = ISD::STRICT_FLOG2; 6338 break; 6339 case Intrinsic::experimental_constrained_rint: 6340 Opcode = ISD::STRICT_FRINT; 6341 break; 6342 case Intrinsic::experimental_constrained_nearbyint: 6343 Opcode = ISD::STRICT_FNEARBYINT; 6344 break; 6345 } 6346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6347 SDValue Chain = getRoot(); 6348 SmallVector<EVT, 4> ValueVTs; 6349 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6350 ValueVTs.push_back(MVT::Other); // Out chain 6351 6352 SDVTList VTs = DAG.getVTList(ValueVTs); 6353 SDValue Result; 6354 if (FPI.isUnaryOp()) 6355 Result = DAG.getNode(Opcode, sdl, VTs, 6356 { Chain, getValue(FPI.getArgOperand(0)) }); 6357 else if (FPI.isTernaryOp()) 6358 Result = DAG.getNode(Opcode, sdl, VTs, 6359 { Chain, getValue(FPI.getArgOperand(0)), 6360 getValue(FPI.getArgOperand(1)), 6361 getValue(FPI.getArgOperand(2)) }); 6362 else 6363 Result = DAG.getNode(Opcode, sdl, VTs, 6364 { Chain, getValue(FPI.getArgOperand(0)), 6365 getValue(FPI.getArgOperand(1)) }); 6366 6367 assert(Result.getNode()->getNumValues() == 2); 6368 SDValue OutChain = Result.getValue(1); 6369 DAG.setRoot(OutChain); 6370 SDValue FPResult = Result.getValue(0); 6371 setValue(&FPI, FPResult); 6372 } 6373 6374 std::pair<SDValue, SDValue> 6375 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6376 const BasicBlock *EHPadBB) { 6377 MachineFunction &MF = DAG.getMachineFunction(); 6378 MachineModuleInfo &MMI = MF.getMMI(); 6379 MCSymbol *BeginLabel = nullptr; 6380 6381 if (EHPadBB) { 6382 // Insert a label before the invoke call to mark the try range. This can be 6383 // used to detect deletion of the invoke via the MachineModuleInfo. 6384 BeginLabel = MMI.getContext().createTempSymbol(); 6385 6386 // For SjLj, keep track of which landing pads go with which invokes 6387 // so as to maintain the ordering of pads in the LSDA. 6388 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6389 if (CallSiteIndex) { 6390 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6391 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6392 6393 // Now that the call site is handled, stop tracking it. 6394 MMI.setCurrentCallSite(0); 6395 } 6396 6397 // Both PendingLoads and PendingExports must be flushed here; 6398 // this call might not return. 6399 (void)getRoot(); 6400 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6401 6402 CLI.setChain(getRoot()); 6403 } 6404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6405 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6406 6407 assert((CLI.IsTailCall || Result.second.getNode()) && 6408 "Non-null chain expected with non-tail call!"); 6409 assert((Result.second.getNode() || !Result.first.getNode()) && 6410 "Null value expected with tail call!"); 6411 6412 if (!Result.second.getNode()) { 6413 // As a special case, a null chain means that a tail call has been emitted 6414 // and the DAG root is already updated. 6415 HasTailCall = true; 6416 6417 // Since there's no actual continuation from this block, nothing can be 6418 // relying on us setting vregs for them. 6419 PendingExports.clear(); 6420 } else { 6421 DAG.setRoot(Result.second); 6422 } 6423 6424 if (EHPadBB) { 6425 // Insert a label at the end of the invoke call to mark the try range. This 6426 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6427 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6428 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6429 6430 // Inform MachineModuleInfo of range. 6431 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6432 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6433 // actually use outlined funclets and their LSDA info style. 6434 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6435 assert(CLI.CS); 6436 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6437 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6438 BeginLabel, EndLabel); 6439 } else { 6440 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6441 } 6442 } 6443 6444 return Result; 6445 } 6446 6447 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6448 bool isTailCall, 6449 const BasicBlock *EHPadBB) { 6450 auto &DL = DAG.getDataLayout(); 6451 FunctionType *FTy = CS.getFunctionType(); 6452 Type *RetTy = CS.getType(); 6453 6454 TargetLowering::ArgListTy Args; 6455 Args.reserve(CS.arg_size()); 6456 6457 const Value *SwiftErrorVal = nullptr; 6458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6459 6460 // We can't tail call inside a function with a swifterror argument. Lowering 6461 // does not support this yet. It would have to move into the swifterror 6462 // register before the call. 6463 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6464 if (TLI.supportSwiftError() && 6465 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6466 isTailCall = false; 6467 6468 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6469 i != e; ++i) { 6470 TargetLowering::ArgListEntry Entry; 6471 const Value *V = *i; 6472 6473 // Skip empty types 6474 if (V->getType()->isEmptyTy()) 6475 continue; 6476 6477 SDValue ArgNode = getValue(V); 6478 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6479 6480 Entry.setAttributes(&CS, i - CS.arg_begin()); 6481 6482 // Use swifterror virtual register as input to the call. 6483 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6484 SwiftErrorVal = V; 6485 // We find the virtual register for the actual swifterror argument. 6486 // Instead of using the Value, we use the virtual register instead. 6487 Entry.Node = DAG.getRegister(FuncInfo 6488 .getOrCreateSwiftErrorVRegUseAt( 6489 CS.getInstruction(), FuncInfo.MBB, V) 6490 .first, 6491 EVT(TLI.getPointerTy(DL))); 6492 } 6493 6494 Args.push_back(Entry); 6495 6496 // If we have an explicit sret argument that is an Instruction, (i.e., it 6497 // might point to function-local memory), we can't meaningfully tail-call. 6498 if (Entry.IsSRet && isa<Instruction>(V)) 6499 isTailCall = false; 6500 } 6501 6502 // Check if target-independent constraints permit a tail call here. 6503 // Target-dependent constraints are checked within TLI->LowerCallTo. 6504 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6505 isTailCall = false; 6506 6507 // Disable tail calls if there is an swifterror argument. Targets have not 6508 // been updated to support tail calls. 6509 if (TLI.supportSwiftError() && SwiftErrorVal) 6510 isTailCall = false; 6511 6512 TargetLowering::CallLoweringInfo CLI(DAG); 6513 CLI.setDebugLoc(getCurSDLoc()) 6514 .setChain(getRoot()) 6515 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6516 .setTailCall(isTailCall) 6517 .setConvergent(CS.isConvergent()); 6518 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6519 6520 if (Result.first.getNode()) { 6521 const Instruction *Inst = CS.getInstruction(); 6522 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6523 setValue(Inst, Result.first); 6524 } 6525 6526 // The last element of CLI.InVals has the SDValue for swifterror return. 6527 // Here we copy it to a virtual register and update SwiftErrorMap for 6528 // book-keeping. 6529 if (SwiftErrorVal && TLI.supportSwiftError()) { 6530 // Get the last element of InVals. 6531 SDValue Src = CLI.InVals.back(); 6532 unsigned VReg; bool CreatedVReg; 6533 std::tie(VReg, CreatedVReg) = 6534 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6535 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6536 // We update the virtual register for the actual swifterror argument. 6537 if (CreatedVReg) 6538 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6539 DAG.setRoot(CopyNode); 6540 } 6541 } 6542 6543 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6544 SelectionDAGBuilder &Builder) { 6545 // Check to see if this load can be trivially constant folded, e.g. if the 6546 // input is from a string literal. 6547 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6548 // Cast pointer to the type we really want to load. 6549 Type *LoadTy = 6550 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6551 if (LoadVT.isVector()) 6552 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6553 6554 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6555 PointerType::getUnqual(LoadTy)); 6556 6557 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6558 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6559 return Builder.getValue(LoadCst); 6560 } 6561 6562 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6563 // still constant memory, the input chain can be the entry node. 6564 SDValue Root; 6565 bool ConstantMemory = false; 6566 6567 // Do not serialize (non-volatile) loads of constant memory with anything. 6568 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6569 Root = Builder.DAG.getEntryNode(); 6570 ConstantMemory = true; 6571 } else { 6572 // Do not serialize non-volatile loads against each other. 6573 Root = Builder.DAG.getRoot(); 6574 } 6575 6576 SDValue Ptr = Builder.getValue(PtrVal); 6577 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6578 Ptr, MachinePointerInfo(PtrVal), 6579 /* Alignment = */ 1); 6580 6581 if (!ConstantMemory) 6582 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6583 return LoadVal; 6584 } 6585 6586 /// Record the value for an instruction that produces an integer result, 6587 /// converting the type where necessary. 6588 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6589 SDValue Value, 6590 bool IsSigned) { 6591 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6592 I.getType(), true); 6593 if (IsSigned) 6594 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6595 else 6596 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6597 setValue(&I, Value); 6598 } 6599 6600 /// See if we can lower a memcmp call into an optimized form. If so, return 6601 /// true and lower it. Otherwise return false, and it will be lowered like a 6602 /// normal call. 6603 /// The caller already checked that \p I calls the appropriate LibFunc with a 6604 /// correct prototype. 6605 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6606 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6607 const Value *Size = I.getArgOperand(2); 6608 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6609 if (CSize && CSize->getZExtValue() == 0) { 6610 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6611 I.getType(), true); 6612 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6613 return true; 6614 } 6615 6616 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6617 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6618 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6619 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6620 if (Res.first.getNode()) { 6621 processIntegerCallValue(I, Res.first, true); 6622 PendingLoads.push_back(Res.second); 6623 return true; 6624 } 6625 6626 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6627 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6628 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6629 return false; 6630 6631 // If the target has a fast compare for the given size, it will return a 6632 // preferred load type for that size. Require that the load VT is legal and 6633 // that the target supports unaligned loads of that type. Otherwise, return 6634 // INVALID. 6635 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6637 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6638 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6639 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6640 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6641 // TODO: Check alignment of src and dest ptrs. 6642 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6643 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6644 if (!TLI.isTypeLegal(LVT) || 6645 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6646 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6647 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6648 } 6649 6650 return LVT; 6651 }; 6652 6653 // This turns into unaligned loads. We only do this if the target natively 6654 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6655 // we'll only produce a small number of byte loads. 6656 MVT LoadVT; 6657 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6658 switch (NumBitsToCompare) { 6659 default: 6660 return false; 6661 case 16: 6662 LoadVT = MVT::i16; 6663 break; 6664 case 32: 6665 LoadVT = MVT::i32; 6666 break; 6667 case 64: 6668 case 128: 6669 case 256: 6670 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6671 break; 6672 } 6673 6674 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6675 return false; 6676 6677 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6678 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6679 6680 // Bitcast to a wide integer type if the loads are vectors. 6681 if (LoadVT.isVector()) { 6682 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6683 LoadL = DAG.getBitcast(CmpVT, LoadL); 6684 LoadR = DAG.getBitcast(CmpVT, LoadR); 6685 } 6686 6687 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6688 processIntegerCallValue(I, Cmp, false); 6689 return true; 6690 } 6691 6692 /// See if we can lower a memchr call into an optimized form. If so, return 6693 /// true and lower it. Otherwise return false, and it will be lowered like a 6694 /// normal call. 6695 /// The caller already checked that \p I calls the appropriate LibFunc with a 6696 /// correct prototype. 6697 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6698 const Value *Src = I.getArgOperand(0); 6699 const Value *Char = I.getArgOperand(1); 6700 const Value *Length = I.getArgOperand(2); 6701 6702 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6703 std::pair<SDValue, SDValue> Res = 6704 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6705 getValue(Src), getValue(Char), getValue(Length), 6706 MachinePointerInfo(Src)); 6707 if (Res.first.getNode()) { 6708 setValue(&I, Res.first); 6709 PendingLoads.push_back(Res.second); 6710 return true; 6711 } 6712 6713 return false; 6714 } 6715 6716 /// See if we can lower a mempcpy call into an optimized form. If so, return 6717 /// true and lower it. Otherwise return false, and it will be lowered like a 6718 /// normal call. 6719 /// The caller already checked that \p I calls the appropriate LibFunc with a 6720 /// correct prototype. 6721 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6722 SDValue Dst = getValue(I.getArgOperand(0)); 6723 SDValue Src = getValue(I.getArgOperand(1)); 6724 SDValue Size = getValue(I.getArgOperand(2)); 6725 6726 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6727 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6728 unsigned Align = std::min(DstAlign, SrcAlign); 6729 if (Align == 0) // Alignment of one or both could not be inferred. 6730 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6731 6732 bool isVol = false; 6733 SDLoc sdl = getCurSDLoc(); 6734 6735 // In the mempcpy context we need to pass in a false value for isTailCall 6736 // because the return pointer needs to be adjusted by the size of 6737 // the copied memory. 6738 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6739 false, /*isTailCall=*/false, 6740 MachinePointerInfo(I.getArgOperand(0)), 6741 MachinePointerInfo(I.getArgOperand(1))); 6742 assert(MC.getNode() != nullptr && 6743 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6744 DAG.setRoot(MC); 6745 6746 // Check if Size needs to be truncated or extended. 6747 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6748 6749 // Adjust return pointer to point just past the last dst byte. 6750 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6751 Dst, Size); 6752 setValue(&I, DstPlusSize); 6753 return true; 6754 } 6755 6756 /// See if we can lower a strcpy call into an optimized form. If so, return 6757 /// true and lower it, otherwise return false and it will be lowered like a 6758 /// normal call. 6759 /// The caller already checked that \p I calls the appropriate LibFunc with a 6760 /// correct prototype. 6761 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6762 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6763 6764 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6765 std::pair<SDValue, SDValue> Res = 6766 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6767 getValue(Arg0), getValue(Arg1), 6768 MachinePointerInfo(Arg0), 6769 MachinePointerInfo(Arg1), isStpcpy); 6770 if (Res.first.getNode()) { 6771 setValue(&I, Res.first); 6772 DAG.setRoot(Res.second); 6773 return true; 6774 } 6775 6776 return false; 6777 } 6778 6779 /// See if we can lower a strcmp call into an optimized form. If so, return 6780 /// true and lower it, otherwise return false and it will be lowered like a 6781 /// normal call. 6782 /// The caller already checked that \p I calls the appropriate LibFunc with a 6783 /// correct prototype. 6784 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6785 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6786 6787 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6788 std::pair<SDValue, SDValue> Res = 6789 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6790 getValue(Arg0), getValue(Arg1), 6791 MachinePointerInfo(Arg0), 6792 MachinePointerInfo(Arg1)); 6793 if (Res.first.getNode()) { 6794 processIntegerCallValue(I, Res.first, true); 6795 PendingLoads.push_back(Res.second); 6796 return true; 6797 } 6798 6799 return false; 6800 } 6801 6802 /// See if we can lower a strlen call into an optimized form. If so, return 6803 /// true and lower it, otherwise return false and it will be lowered like a 6804 /// normal call. 6805 /// The caller already checked that \p I calls the appropriate LibFunc with a 6806 /// correct prototype. 6807 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6808 const Value *Arg0 = I.getArgOperand(0); 6809 6810 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6811 std::pair<SDValue, SDValue> Res = 6812 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6813 getValue(Arg0), MachinePointerInfo(Arg0)); 6814 if (Res.first.getNode()) { 6815 processIntegerCallValue(I, Res.first, false); 6816 PendingLoads.push_back(Res.second); 6817 return true; 6818 } 6819 6820 return false; 6821 } 6822 6823 /// See if we can lower a strnlen call into an optimized form. If so, return 6824 /// true and lower it, otherwise return false and it will be lowered like a 6825 /// normal call. 6826 /// The caller already checked that \p I calls the appropriate LibFunc with a 6827 /// correct prototype. 6828 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6829 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6830 6831 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6832 std::pair<SDValue, SDValue> Res = 6833 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6834 getValue(Arg0), getValue(Arg1), 6835 MachinePointerInfo(Arg0)); 6836 if (Res.first.getNode()) { 6837 processIntegerCallValue(I, Res.first, false); 6838 PendingLoads.push_back(Res.second); 6839 return true; 6840 } 6841 6842 return false; 6843 } 6844 6845 /// See if we can lower a unary floating-point operation into an SDNode with 6846 /// the specified Opcode. If so, return true and lower it, otherwise return 6847 /// false and it will be lowered like a normal call. 6848 /// The caller already checked that \p I calls the appropriate LibFunc with a 6849 /// correct prototype. 6850 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6851 unsigned Opcode) { 6852 // We already checked this call's prototype; verify it doesn't modify errno. 6853 if (!I.onlyReadsMemory()) 6854 return false; 6855 6856 SDValue Tmp = getValue(I.getArgOperand(0)); 6857 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6858 return true; 6859 } 6860 6861 /// See if we can lower a binary floating-point operation into an SDNode with 6862 /// the specified Opcode. If so, return true and lower it. Otherwise return 6863 /// false, and it will be lowered like a normal call. 6864 /// The caller already checked that \p I calls the appropriate LibFunc with a 6865 /// correct prototype. 6866 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6867 unsigned Opcode) { 6868 // We already checked this call's prototype; verify it doesn't modify errno. 6869 if (!I.onlyReadsMemory()) 6870 return false; 6871 6872 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6873 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6874 EVT VT = Tmp0.getValueType(); 6875 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6876 return true; 6877 } 6878 6879 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6880 // Handle inline assembly differently. 6881 if (isa<InlineAsm>(I.getCalledValue())) { 6882 visitInlineAsm(&I); 6883 return; 6884 } 6885 6886 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6887 computeUsesVAFloatArgument(I, MMI); 6888 6889 const char *RenameFn = nullptr; 6890 if (Function *F = I.getCalledFunction()) { 6891 if (F->isDeclaration()) { 6892 // Is this an LLVM intrinsic or a target-specific intrinsic? 6893 unsigned IID = F->getIntrinsicID(); 6894 if (!IID) 6895 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6896 IID = II->getIntrinsicID(F); 6897 6898 if (IID) { 6899 RenameFn = visitIntrinsicCall(I, IID); 6900 if (!RenameFn) 6901 return; 6902 } 6903 } 6904 6905 // Check for well-known libc/libm calls. If the function is internal, it 6906 // can't be a library call. Don't do the check if marked as nobuiltin for 6907 // some reason or the call site requires strict floating point semantics. 6908 LibFunc Func; 6909 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6910 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6911 LibInfo->hasOptimizedCodeGen(Func)) { 6912 switch (Func) { 6913 default: break; 6914 case LibFunc_copysign: 6915 case LibFunc_copysignf: 6916 case LibFunc_copysignl: 6917 // We already checked this call's prototype; verify it doesn't modify 6918 // errno. 6919 if (I.onlyReadsMemory()) { 6920 SDValue LHS = getValue(I.getArgOperand(0)); 6921 SDValue RHS = getValue(I.getArgOperand(1)); 6922 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6923 LHS.getValueType(), LHS, RHS)); 6924 return; 6925 } 6926 break; 6927 case LibFunc_fabs: 6928 case LibFunc_fabsf: 6929 case LibFunc_fabsl: 6930 if (visitUnaryFloatCall(I, ISD::FABS)) 6931 return; 6932 break; 6933 case LibFunc_fmin: 6934 case LibFunc_fminf: 6935 case LibFunc_fminl: 6936 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6937 return; 6938 break; 6939 case LibFunc_fmax: 6940 case LibFunc_fmaxf: 6941 case LibFunc_fmaxl: 6942 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6943 return; 6944 break; 6945 case LibFunc_sin: 6946 case LibFunc_sinf: 6947 case LibFunc_sinl: 6948 if (visitUnaryFloatCall(I, ISD::FSIN)) 6949 return; 6950 break; 6951 case LibFunc_cos: 6952 case LibFunc_cosf: 6953 case LibFunc_cosl: 6954 if (visitUnaryFloatCall(I, ISD::FCOS)) 6955 return; 6956 break; 6957 case LibFunc_sqrt: 6958 case LibFunc_sqrtf: 6959 case LibFunc_sqrtl: 6960 case LibFunc_sqrt_finite: 6961 case LibFunc_sqrtf_finite: 6962 case LibFunc_sqrtl_finite: 6963 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6964 return; 6965 break; 6966 case LibFunc_floor: 6967 case LibFunc_floorf: 6968 case LibFunc_floorl: 6969 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6970 return; 6971 break; 6972 case LibFunc_nearbyint: 6973 case LibFunc_nearbyintf: 6974 case LibFunc_nearbyintl: 6975 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6976 return; 6977 break; 6978 case LibFunc_ceil: 6979 case LibFunc_ceilf: 6980 case LibFunc_ceill: 6981 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6982 return; 6983 break; 6984 case LibFunc_rint: 6985 case LibFunc_rintf: 6986 case LibFunc_rintl: 6987 if (visitUnaryFloatCall(I, ISD::FRINT)) 6988 return; 6989 break; 6990 case LibFunc_round: 6991 case LibFunc_roundf: 6992 case LibFunc_roundl: 6993 if (visitUnaryFloatCall(I, ISD::FROUND)) 6994 return; 6995 break; 6996 case LibFunc_trunc: 6997 case LibFunc_truncf: 6998 case LibFunc_truncl: 6999 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7000 return; 7001 break; 7002 case LibFunc_log2: 7003 case LibFunc_log2f: 7004 case LibFunc_log2l: 7005 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7006 return; 7007 break; 7008 case LibFunc_exp2: 7009 case LibFunc_exp2f: 7010 case LibFunc_exp2l: 7011 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7012 return; 7013 break; 7014 case LibFunc_memcmp: 7015 if (visitMemCmpCall(I)) 7016 return; 7017 break; 7018 case LibFunc_mempcpy: 7019 if (visitMemPCpyCall(I)) 7020 return; 7021 break; 7022 case LibFunc_memchr: 7023 if (visitMemChrCall(I)) 7024 return; 7025 break; 7026 case LibFunc_strcpy: 7027 if (visitStrCpyCall(I, false)) 7028 return; 7029 break; 7030 case LibFunc_stpcpy: 7031 if (visitStrCpyCall(I, true)) 7032 return; 7033 break; 7034 case LibFunc_strcmp: 7035 if (visitStrCmpCall(I)) 7036 return; 7037 break; 7038 case LibFunc_strlen: 7039 if (visitStrLenCall(I)) 7040 return; 7041 break; 7042 case LibFunc_strnlen: 7043 if (visitStrNLenCall(I)) 7044 return; 7045 break; 7046 } 7047 } 7048 } 7049 7050 SDValue Callee; 7051 if (!RenameFn) 7052 Callee = getValue(I.getCalledValue()); 7053 else 7054 Callee = DAG.getExternalSymbol( 7055 RenameFn, 7056 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7057 7058 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7059 // have to do anything here to lower funclet bundles. 7060 assert(!I.hasOperandBundlesOtherThan( 7061 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7062 "Cannot lower calls with arbitrary operand bundles!"); 7063 7064 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7065 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7066 else 7067 // Check if we can potentially perform a tail call. More detailed checking 7068 // is be done within LowerCallTo, after more information about the call is 7069 // known. 7070 LowerCallTo(&I, Callee, I.isTailCall()); 7071 } 7072 7073 namespace { 7074 7075 /// AsmOperandInfo - This contains information for each constraint that we are 7076 /// lowering. 7077 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7078 public: 7079 /// CallOperand - If this is the result output operand or a clobber 7080 /// this is null, otherwise it is the incoming operand to the CallInst. 7081 /// This gets modified as the asm is processed. 7082 SDValue CallOperand; 7083 7084 /// AssignedRegs - If this is a register or register class operand, this 7085 /// contains the set of register corresponding to the operand. 7086 RegsForValue AssignedRegs; 7087 7088 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7089 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7090 } 7091 7092 /// Whether or not this operand accesses memory 7093 bool hasMemory(const TargetLowering &TLI) const { 7094 // Indirect operand accesses access memory. 7095 if (isIndirect) 7096 return true; 7097 7098 for (const auto &Code : Codes) 7099 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7100 return true; 7101 7102 return false; 7103 } 7104 7105 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7106 /// corresponds to. If there is no Value* for this operand, it returns 7107 /// MVT::Other. 7108 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7109 const DataLayout &DL) const { 7110 if (!CallOperandVal) return MVT::Other; 7111 7112 if (isa<BasicBlock>(CallOperandVal)) 7113 return TLI.getPointerTy(DL); 7114 7115 llvm::Type *OpTy = CallOperandVal->getType(); 7116 7117 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7118 // If this is an indirect operand, the operand is a pointer to the 7119 // accessed type. 7120 if (isIndirect) { 7121 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7122 if (!PtrTy) 7123 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7124 OpTy = PtrTy->getElementType(); 7125 } 7126 7127 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7128 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7129 if (STy->getNumElements() == 1) 7130 OpTy = STy->getElementType(0); 7131 7132 // If OpTy is not a single value, it may be a struct/union that we 7133 // can tile with integers. 7134 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7135 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7136 switch (BitSize) { 7137 default: break; 7138 case 1: 7139 case 8: 7140 case 16: 7141 case 32: 7142 case 64: 7143 case 128: 7144 OpTy = IntegerType::get(Context, BitSize); 7145 break; 7146 } 7147 } 7148 7149 return TLI.getValueType(DL, OpTy, true); 7150 } 7151 }; 7152 7153 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7154 7155 } // end anonymous namespace 7156 7157 /// Make sure that the output operand \p OpInfo and its corresponding input 7158 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7159 /// out). 7160 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7161 SDISelAsmOperandInfo &MatchingOpInfo, 7162 SelectionDAG &DAG) { 7163 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7164 return; 7165 7166 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7167 const auto &TLI = DAG.getTargetLoweringInfo(); 7168 7169 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7170 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7171 OpInfo.ConstraintVT); 7172 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7173 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7174 MatchingOpInfo.ConstraintVT); 7175 if ((OpInfo.ConstraintVT.isInteger() != 7176 MatchingOpInfo.ConstraintVT.isInteger()) || 7177 (MatchRC.second != InputRC.second)) { 7178 // FIXME: error out in a more elegant fashion 7179 report_fatal_error("Unsupported asm: input constraint" 7180 " with a matching output constraint of" 7181 " incompatible type!"); 7182 } 7183 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7184 } 7185 7186 /// Get a direct memory input to behave well as an indirect operand. 7187 /// This may introduce stores, hence the need for a \p Chain. 7188 /// \return The (possibly updated) chain. 7189 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7190 SDISelAsmOperandInfo &OpInfo, 7191 SelectionDAG &DAG) { 7192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7193 7194 // If we don't have an indirect input, put it in the constpool if we can, 7195 // otherwise spill it to a stack slot. 7196 // TODO: This isn't quite right. We need to handle these according to 7197 // the addressing mode that the constraint wants. Also, this may take 7198 // an additional register for the computation and we don't want that 7199 // either. 7200 7201 // If the operand is a float, integer, or vector constant, spill to a 7202 // constant pool entry to get its address. 7203 const Value *OpVal = OpInfo.CallOperandVal; 7204 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7205 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7206 OpInfo.CallOperand = DAG.getConstantPool( 7207 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7208 return Chain; 7209 } 7210 7211 // Otherwise, create a stack slot and emit a store to it before the asm. 7212 Type *Ty = OpVal->getType(); 7213 auto &DL = DAG.getDataLayout(); 7214 uint64_t TySize = DL.getTypeAllocSize(Ty); 7215 unsigned Align = DL.getPrefTypeAlignment(Ty); 7216 MachineFunction &MF = DAG.getMachineFunction(); 7217 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7218 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7219 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7220 MachinePointerInfo::getFixedStack(MF, SSFI)); 7221 OpInfo.CallOperand = StackSlot; 7222 7223 return Chain; 7224 } 7225 7226 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7227 /// specified operand. We prefer to assign virtual registers, to allow the 7228 /// register allocator to handle the assignment process. However, if the asm 7229 /// uses features that we can't model on machineinstrs, we have SDISel do the 7230 /// allocation. This produces generally horrible, but correct, code. 7231 /// 7232 /// OpInfo describes the operand 7233 /// RefOpInfo describes the matching operand if any, the operand otherwise 7234 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7235 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7236 SDISelAsmOperandInfo &RefOpInfo) { 7237 LLVMContext &Context = *DAG.getContext(); 7238 7239 MachineFunction &MF = DAG.getMachineFunction(); 7240 SmallVector<unsigned, 4> Regs; 7241 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7242 7243 // If this is a constraint for a single physreg, or a constraint for a 7244 // register class, find it. 7245 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7246 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7247 RefOpInfo.ConstraintVT); 7248 7249 unsigned NumRegs = 1; 7250 if (OpInfo.ConstraintVT != MVT::Other) { 7251 // If this is an FP operand in an integer register (or visa versa), or more 7252 // generally if the operand value disagrees with the register class we plan 7253 // to stick it in, fix the operand type. 7254 // 7255 // If this is an input value, the bitcast to the new type is done now. 7256 // Bitcast for output value is done at the end of visitInlineAsm(). 7257 if ((OpInfo.Type == InlineAsm::isOutput || 7258 OpInfo.Type == InlineAsm::isInput) && 7259 PhysReg.second && 7260 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7261 // Try to convert to the first EVT that the reg class contains. If the 7262 // types are identical size, use a bitcast to convert (e.g. two differing 7263 // vector types). Note: output bitcast is done at the end of 7264 // visitInlineAsm(). 7265 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7266 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7267 // Exclude indirect inputs while they are unsupported because the code 7268 // to perform the load is missing and thus OpInfo.CallOperand still 7269 // refers to the input address rather than the pointed-to value. 7270 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7271 OpInfo.CallOperand = 7272 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7273 OpInfo.ConstraintVT = RegVT; 7274 // If the operand is an FP value and we want it in integer registers, 7275 // use the corresponding integer type. This turns an f64 value into 7276 // i64, which can be passed with two i32 values on a 32-bit machine. 7277 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7278 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7279 if (OpInfo.Type == InlineAsm::isInput) 7280 OpInfo.CallOperand = 7281 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7282 OpInfo.ConstraintVT = RegVT; 7283 } 7284 } 7285 7286 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7287 } 7288 7289 // No need to allocate a matching input constraint since the constraint it's 7290 // matching to has already been allocated. 7291 if (OpInfo.isMatchingInputConstraint()) 7292 return; 7293 7294 MVT RegVT; 7295 EVT ValueVT = OpInfo.ConstraintVT; 7296 7297 // If this is a constraint for a specific physical register, like {r17}, 7298 // assign it now. 7299 if (unsigned AssignedReg = PhysReg.first) { 7300 const TargetRegisterClass *RC = PhysReg.second; 7301 if (OpInfo.ConstraintVT == MVT::Other) 7302 ValueVT = *TRI.legalclasstypes_begin(*RC); 7303 7304 // Get the actual register value type. This is important, because the user 7305 // may have asked for (e.g.) the AX register in i32 type. We need to 7306 // remember that AX is actually i16 to get the right extension. 7307 RegVT = *TRI.legalclasstypes_begin(*RC); 7308 7309 // This is an explicit reference to a physical register. 7310 Regs.push_back(AssignedReg); 7311 7312 // If this is an expanded reference, add the rest of the regs to Regs. 7313 if (NumRegs != 1) { 7314 TargetRegisterClass::iterator I = RC->begin(); 7315 for (; *I != AssignedReg; ++I) 7316 assert(I != RC->end() && "Didn't find reg!"); 7317 7318 // Already added the first reg. 7319 --NumRegs; ++I; 7320 for (; NumRegs; --NumRegs, ++I) { 7321 assert(I != RC->end() && "Ran out of registers to allocate!"); 7322 Regs.push_back(*I); 7323 } 7324 } 7325 7326 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7327 return; 7328 } 7329 7330 // Otherwise, if this was a reference to an LLVM register class, create vregs 7331 // for this reference. 7332 if (const TargetRegisterClass *RC = PhysReg.second) { 7333 RegVT = *TRI.legalclasstypes_begin(*RC); 7334 if (OpInfo.ConstraintVT == MVT::Other) 7335 ValueVT = RegVT; 7336 7337 // Create the appropriate number of virtual registers. 7338 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7339 for (; NumRegs; --NumRegs) 7340 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7341 7342 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7343 return; 7344 } 7345 7346 // Otherwise, we couldn't allocate enough registers for this. 7347 } 7348 7349 static unsigned 7350 findMatchingInlineAsmOperand(unsigned OperandNo, 7351 const std::vector<SDValue> &AsmNodeOperands) { 7352 // Scan until we find the definition we already emitted of this operand. 7353 unsigned CurOp = InlineAsm::Op_FirstOperand; 7354 for (; OperandNo; --OperandNo) { 7355 // Advance to the next operand. 7356 unsigned OpFlag = 7357 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7358 assert((InlineAsm::isRegDefKind(OpFlag) || 7359 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7360 InlineAsm::isMemKind(OpFlag)) && 7361 "Skipped past definitions?"); 7362 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7363 } 7364 return CurOp; 7365 } 7366 7367 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7368 /// \return true if it has succeeded, false otherwise 7369 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7370 MVT RegVT, SelectionDAG &DAG) { 7371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7372 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7373 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7374 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7375 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7376 else 7377 return false; 7378 } 7379 return true; 7380 } 7381 7382 namespace { 7383 7384 class ExtraFlags { 7385 unsigned Flags = 0; 7386 7387 public: 7388 explicit ExtraFlags(ImmutableCallSite CS) { 7389 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7390 if (IA->hasSideEffects()) 7391 Flags |= InlineAsm::Extra_HasSideEffects; 7392 if (IA->isAlignStack()) 7393 Flags |= InlineAsm::Extra_IsAlignStack; 7394 if (CS.isConvergent()) 7395 Flags |= InlineAsm::Extra_IsConvergent; 7396 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7397 } 7398 7399 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7400 // Ideally, we would only check against memory constraints. However, the 7401 // meaning of an Other constraint can be target-specific and we can't easily 7402 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7403 // for Other constraints as well. 7404 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7405 OpInfo.ConstraintType == TargetLowering::C_Other) { 7406 if (OpInfo.Type == InlineAsm::isInput) 7407 Flags |= InlineAsm::Extra_MayLoad; 7408 else if (OpInfo.Type == InlineAsm::isOutput) 7409 Flags |= InlineAsm::Extra_MayStore; 7410 else if (OpInfo.Type == InlineAsm::isClobber) 7411 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7412 } 7413 } 7414 7415 unsigned get() const { return Flags; } 7416 }; 7417 7418 } // end anonymous namespace 7419 7420 /// visitInlineAsm - Handle a call to an InlineAsm object. 7421 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7422 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7423 7424 /// ConstraintOperands - Information about all of the constraints. 7425 SDISelAsmOperandInfoVector ConstraintOperands; 7426 7427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7428 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7429 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7430 7431 bool hasMemory = false; 7432 7433 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7434 ExtraFlags ExtraInfo(CS); 7435 7436 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7437 unsigned ResNo = 0; // ResNo - The result number of the next output. 7438 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7439 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7440 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7441 7442 MVT OpVT = MVT::Other; 7443 7444 // Compute the value type for each operand. 7445 if (OpInfo.Type == InlineAsm::isInput || 7446 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7447 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7448 7449 // Process the call argument. BasicBlocks are labels, currently appearing 7450 // only in asm's. 7451 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7452 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7453 } else { 7454 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7455 } 7456 7457 OpVT = 7458 OpInfo 7459 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7460 .getSimpleVT(); 7461 } 7462 7463 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7464 // The return value of the call is this value. As such, there is no 7465 // corresponding argument. 7466 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7467 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7468 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7469 STy->getElementType(ResNo)); 7470 } else { 7471 assert(ResNo == 0 && "Asm only has one result!"); 7472 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7473 } 7474 ++ResNo; 7475 } 7476 7477 OpInfo.ConstraintVT = OpVT; 7478 7479 if (!hasMemory) 7480 hasMemory = OpInfo.hasMemory(TLI); 7481 7482 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7483 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7484 auto TargetConstraint = TargetConstraints[i]; 7485 7486 // Compute the constraint code and ConstraintType to use. 7487 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7488 7489 ExtraInfo.update(TargetConstraint); 7490 } 7491 7492 SDValue Chain, Flag; 7493 7494 // We won't need to flush pending loads if this asm doesn't touch 7495 // memory and is nonvolatile. 7496 if (hasMemory || IA->hasSideEffects()) 7497 Chain = getRoot(); 7498 else 7499 Chain = DAG.getRoot(); 7500 7501 // Second pass over the constraints: compute which constraint option to use 7502 // and assign registers to constraints that want a specific physreg. 7503 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7504 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7505 7506 // If this is an output operand with a matching input operand, look up the 7507 // matching input. If their types mismatch, e.g. one is an integer, the 7508 // other is floating point, or their sizes are different, flag it as an 7509 // error. 7510 if (OpInfo.hasMatchingInput()) { 7511 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7512 patchMatchingInput(OpInfo, Input, DAG); 7513 } 7514 7515 // Compute the constraint code and ConstraintType to use. 7516 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7517 7518 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7519 OpInfo.Type == InlineAsm::isClobber) 7520 continue; 7521 7522 // If this is a memory input, and if the operand is not indirect, do what we 7523 // need to provide an address for the memory input. 7524 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7525 !OpInfo.isIndirect) { 7526 assert((OpInfo.isMultipleAlternative || 7527 (OpInfo.Type == InlineAsm::isInput)) && 7528 "Can only indirectify direct input operands!"); 7529 7530 // Memory operands really want the address of the value. 7531 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7532 7533 // There is no longer a Value* corresponding to this operand. 7534 OpInfo.CallOperandVal = nullptr; 7535 7536 // It is now an indirect operand. 7537 OpInfo.isIndirect = true; 7538 } 7539 7540 // If this constraint is for a specific register, allocate it before 7541 // anything else. 7542 SDISelAsmOperandInfo &RefOpInfo = 7543 OpInfo.isMatchingInputConstraint() 7544 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7545 : ConstraintOperands[i]; 7546 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7547 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7548 } 7549 7550 // Third pass - Loop over all of the operands, assigning virtual or physregs 7551 // to register class operands. 7552 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7553 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7554 SDISelAsmOperandInfo &RefOpInfo = 7555 OpInfo.isMatchingInputConstraint() 7556 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7557 : ConstraintOperands[i]; 7558 7559 // C_Register operands have already been allocated, Other/Memory don't need 7560 // to be. 7561 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7562 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7563 } 7564 7565 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7566 std::vector<SDValue> AsmNodeOperands; 7567 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7568 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7569 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7570 7571 // If we have a !srcloc metadata node associated with it, we want to attach 7572 // this to the ultimately generated inline asm machineinstr. To do this, we 7573 // pass in the third operand as this (potentially null) inline asm MDNode. 7574 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7575 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7576 7577 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7578 // bits as operand 3. 7579 AsmNodeOperands.push_back(DAG.getTargetConstant( 7580 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7581 7582 // Loop over all of the inputs, copying the operand values into the 7583 // appropriate registers and processing the output regs. 7584 RegsForValue RetValRegs; 7585 7586 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7587 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7588 7589 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7590 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7591 7592 switch (OpInfo.Type) { 7593 case InlineAsm::isOutput: 7594 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7595 OpInfo.ConstraintType != TargetLowering::C_Register) { 7596 // Memory output, or 'other' output (e.g. 'X' constraint). 7597 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7598 7599 unsigned ConstraintID = 7600 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7601 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7602 "Failed to convert memory constraint code to constraint id."); 7603 7604 // Add information to the INLINEASM node to know about this output. 7605 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7606 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7607 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7608 MVT::i32)); 7609 AsmNodeOperands.push_back(OpInfo.CallOperand); 7610 break; 7611 } 7612 7613 // Otherwise, this is a register or register class output. 7614 7615 // Copy the output from the appropriate register. Find a register that 7616 // we can use. 7617 if (OpInfo.AssignedRegs.Regs.empty()) { 7618 emitInlineAsmError( 7619 CS, "couldn't allocate output register for constraint '" + 7620 Twine(OpInfo.ConstraintCode) + "'"); 7621 return; 7622 } 7623 7624 // If this is an indirect operand, store through the pointer after the 7625 // asm. 7626 if (OpInfo.isIndirect) { 7627 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7628 OpInfo.CallOperandVal)); 7629 } else { 7630 // This is the result value of the call. 7631 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7632 // Concatenate this output onto the outputs list. 7633 RetValRegs.append(OpInfo.AssignedRegs); 7634 } 7635 7636 // Add information to the INLINEASM node to know that this register is 7637 // set. 7638 OpInfo.AssignedRegs 7639 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7640 ? InlineAsm::Kind_RegDefEarlyClobber 7641 : InlineAsm::Kind_RegDef, 7642 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7643 break; 7644 7645 case InlineAsm::isInput: { 7646 SDValue InOperandVal = OpInfo.CallOperand; 7647 7648 if (OpInfo.isMatchingInputConstraint()) { 7649 // If this is required to match an output register we have already set, 7650 // just use its register. 7651 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7652 AsmNodeOperands); 7653 unsigned OpFlag = 7654 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7655 if (InlineAsm::isRegDefKind(OpFlag) || 7656 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7657 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7658 if (OpInfo.isIndirect) { 7659 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7660 emitInlineAsmError(CS, "inline asm not supported yet:" 7661 " don't know how to handle tied " 7662 "indirect register inputs"); 7663 return; 7664 } 7665 7666 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7667 SmallVector<unsigned, 4> Regs; 7668 7669 if (!createVirtualRegs(Regs, 7670 InlineAsm::getNumOperandRegisters(OpFlag), 7671 RegVT, DAG)) { 7672 emitInlineAsmError(CS, "inline asm error: This value type register " 7673 "class is not natively supported!"); 7674 return; 7675 } 7676 7677 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7678 7679 SDLoc dl = getCurSDLoc(); 7680 // Use the produced MatchedRegs object to 7681 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7682 CS.getInstruction()); 7683 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7684 true, OpInfo.getMatchedOperand(), dl, 7685 DAG, AsmNodeOperands); 7686 break; 7687 } 7688 7689 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7690 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7691 "Unexpected number of operands"); 7692 // Add information to the INLINEASM node to know about this input. 7693 // See InlineAsm.h isUseOperandTiedToDef. 7694 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7695 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7696 OpInfo.getMatchedOperand()); 7697 AsmNodeOperands.push_back(DAG.getTargetConstant( 7698 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7699 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7700 break; 7701 } 7702 7703 // Treat indirect 'X' constraint as memory. 7704 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7705 OpInfo.isIndirect) 7706 OpInfo.ConstraintType = TargetLowering::C_Memory; 7707 7708 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7709 std::vector<SDValue> Ops; 7710 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7711 Ops, DAG); 7712 if (Ops.empty()) { 7713 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7714 Twine(OpInfo.ConstraintCode) + "'"); 7715 return; 7716 } 7717 7718 // Add information to the INLINEASM node to know about this input. 7719 unsigned ResOpType = 7720 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7721 AsmNodeOperands.push_back(DAG.getTargetConstant( 7722 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7723 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7724 break; 7725 } 7726 7727 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7728 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7729 assert(InOperandVal.getValueType() == 7730 TLI.getPointerTy(DAG.getDataLayout()) && 7731 "Memory operands expect pointer values"); 7732 7733 unsigned ConstraintID = 7734 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7735 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7736 "Failed to convert memory constraint code to constraint id."); 7737 7738 // Add information to the INLINEASM node to know about this input. 7739 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7740 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7741 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7742 getCurSDLoc(), 7743 MVT::i32)); 7744 AsmNodeOperands.push_back(InOperandVal); 7745 break; 7746 } 7747 7748 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7749 OpInfo.ConstraintType == TargetLowering::C_Register) && 7750 "Unknown constraint type!"); 7751 7752 // TODO: Support this. 7753 if (OpInfo.isIndirect) { 7754 emitInlineAsmError( 7755 CS, "Don't know how to handle indirect register inputs yet " 7756 "for constraint '" + 7757 Twine(OpInfo.ConstraintCode) + "'"); 7758 return; 7759 } 7760 7761 // Copy the input into the appropriate registers. 7762 if (OpInfo.AssignedRegs.Regs.empty()) { 7763 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7764 Twine(OpInfo.ConstraintCode) + "'"); 7765 return; 7766 } 7767 7768 SDLoc dl = getCurSDLoc(); 7769 7770 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7771 Chain, &Flag, CS.getInstruction()); 7772 7773 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7774 dl, DAG, AsmNodeOperands); 7775 break; 7776 } 7777 case InlineAsm::isClobber: 7778 // Add the clobbered value to the operand list, so that the register 7779 // allocator is aware that the physreg got clobbered. 7780 if (!OpInfo.AssignedRegs.Regs.empty()) 7781 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7782 false, 0, getCurSDLoc(), DAG, 7783 AsmNodeOperands); 7784 break; 7785 } 7786 } 7787 7788 // Finish up input operands. Set the input chain and add the flag last. 7789 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7790 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7791 7792 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7793 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7794 Flag = Chain.getValue(1); 7795 7796 // If this asm returns a register value, copy the result from that register 7797 // and set it as the value of the call. 7798 if (!RetValRegs.Regs.empty()) { 7799 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7800 Chain, &Flag, CS.getInstruction()); 7801 7802 llvm::Type *CSResultType = CS.getType(); 7803 unsigned numRet; 7804 ArrayRef<Type *> ResultTypes; 7805 SmallVector<SDValue, 1> ResultValues(1); 7806 if (CSResultType->isSingleValueType()) { 7807 numRet = 1; 7808 ResultValues[0] = Val; 7809 ResultTypes = makeArrayRef(CSResultType); 7810 } else { 7811 numRet = CSResultType->getNumContainedTypes(); 7812 assert(Val->getNumOperands() == numRet && 7813 "Mismatch in number of output operands in asm result"); 7814 ResultTypes = CSResultType->subtypes(); 7815 ArrayRef<SDUse> ValueUses = Val->ops(); 7816 ResultValues.resize(numRet); 7817 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7818 [](const SDUse &u) -> SDValue { return u.get(); }); 7819 } 7820 SmallVector<EVT, 1> ResultVTs(numRet); 7821 for (unsigned i = 0; i < numRet; i++) { 7822 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7823 SDValue Val = ResultValues[i]; 7824 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7825 // If the type of the inline asm call site return value is different but 7826 // has same size as the type of the asm output bitcast it. One example 7827 // of this is for vectors with different width / number of elements. 7828 // This can happen for register classes that can contain multiple 7829 // different value types. The preg or vreg allocated may not have the 7830 // same VT as was expected. 7831 // 7832 // This can also happen for a return value that disagrees with the 7833 // register class it is put in, eg. a double in a general-purpose 7834 // register on a 32-bit machine. 7835 if (ResultVT != Val.getValueType() && 7836 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7837 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7838 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7839 Val.getValueType().isInteger()) { 7840 // If a result value was tied to an input value, the computed result 7841 // may have a wider width than the expected result. Extract the 7842 // relevant portion. 7843 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7844 } 7845 7846 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7847 ResultVTs[i] = ResultVT; 7848 ResultValues[i] = Val; 7849 } 7850 7851 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7852 DAG.getVTList(ResultVTs), ResultValues); 7853 setValue(CS.getInstruction(), Val); 7854 // Don't need to use this as a chain in this case. 7855 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7856 return; 7857 } 7858 7859 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7860 7861 // Process indirect outputs, first output all of the flagged copies out of 7862 // physregs. 7863 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7864 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7865 const Value *Ptr = IndirectStoresToEmit[i].second; 7866 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7867 Chain, &Flag, IA); 7868 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7869 } 7870 7871 // Emit the non-flagged stores from the physregs. 7872 SmallVector<SDValue, 8> OutChains; 7873 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7874 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7875 getValue(StoresToEmit[i].second), 7876 MachinePointerInfo(StoresToEmit[i].second)); 7877 OutChains.push_back(Val); 7878 } 7879 7880 if (!OutChains.empty()) 7881 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7882 7883 DAG.setRoot(Chain); 7884 } 7885 7886 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7887 const Twine &Message) { 7888 LLVMContext &Ctx = *DAG.getContext(); 7889 Ctx.emitError(CS.getInstruction(), Message); 7890 7891 // Make sure we leave the DAG in a valid state 7892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7893 SmallVector<EVT, 1> ValueVTs; 7894 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7895 7896 if (ValueVTs.empty()) 7897 return; 7898 7899 SmallVector<SDValue, 1> Ops; 7900 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7901 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7902 7903 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7904 } 7905 7906 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7907 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7908 MVT::Other, getRoot(), 7909 getValue(I.getArgOperand(0)), 7910 DAG.getSrcValue(I.getArgOperand(0)))); 7911 } 7912 7913 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7915 const DataLayout &DL = DAG.getDataLayout(); 7916 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7917 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7918 DAG.getSrcValue(I.getOperand(0)), 7919 DL.getABITypeAlignment(I.getType())); 7920 setValue(&I, V); 7921 DAG.setRoot(V.getValue(1)); 7922 } 7923 7924 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7925 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7926 MVT::Other, getRoot(), 7927 getValue(I.getArgOperand(0)), 7928 DAG.getSrcValue(I.getArgOperand(0)))); 7929 } 7930 7931 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7932 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7933 MVT::Other, getRoot(), 7934 getValue(I.getArgOperand(0)), 7935 getValue(I.getArgOperand(1)), 7936 DAG.getSrcValue(I.getArgOperand(0)), 7937 DAG.getSrcValue(I.getArgOperand(1)))); 7938 } 7939 7940 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7941 const Instruction &I, 7942 SDValue Op) { 7943 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7944 if (!Range) 7945 return Op; 7946 7947 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7948 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7949 return Op; 7950 7951 APInt Lo = CR.getUnsignedMin(); 7952 if (!Lo.isMinValue()) 7953 return Op; 7954 7955 APInt Hi = CR.getUnsignedMax(); 7956 unsigned Bits = Hi.getActiveBits(); 7957 7958 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7959 7960 SDLoc SL = getCurSDLoc(); 7961 7962 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7963 DAG.getValueType(SmallVT)); 7964 unsigned NumVals = Op.getNode()->getNumValues(); 7965 if (NumVals == 1) 7966 return ZExt; 7967 7968 SmallVector<SDValue, 4> Ops; 7969 7970 Ops.push_back(ZExt); 7971 for (unsigned I = 1; I != NumVals; ++I) 7972 Ops.push_back(Op.getValue(I)); 7973 7974 return DAG.getMergeValues(Ops, SL); 7975 } 7976 7977 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7978 /// the call being lowered. 7979 /// 7980 /// This is a helper for lowering intrinsics that follow a target calling 7981 /// convention or require stack pointer adjustment. Only a subset of the 7982 /// intrinsic's operands need to participate in the calling convention. 7983 void SelectionDAGBuilder::populateCallLoweringInfo( 7984 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7985 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7986 bool IsPatchPoint) { 7987 TargetLowering::ArgListTy Args; 7988 Args.reserve(NumArgs); 7989 7990 // Populate the argument list. 7991 // Attributes for args start at offset 1, after the return attribute. 7992 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7993 ArgI != ArgE; ++ArgI) { 7994 const Value *V = CS->getOperand(ArgI); 7995 7996 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7997 7998 TargetLowering::ArgListEntry Entry; 7999 Entry.Node = getValue(V); 8000 Entry.Ty = V->getType(); 8001 Entry.setAttributes(&CS, ArgI); 8002 Args.push_back(Entry); 8003 } 8004 8005 CLI.setDebugLoc(getCurSDLoc()) 8006 .setChain(getRoot()) 8007 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8008 .setDiscardResult(CS->use_empty()) 8009 .setIsPatchPoint(IsPatchPoint); 8010 } 8011 8012 /// Add a stack map intrinsic call's live variable operands to a stackmap 8013 /// or patchpoint target node's operand list. 8014 /// 8015 /// Constants are converted to TargetConstants purely as an optimization to 8016 /// avoid constant materialization and register allocation. 8017 /// 8018 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8019 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8020 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8021 /// address materialization and register allocation, but may also be required 8022 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8023 /// alloca in the entry block, then the runtime may assume that the alloca's 8024 /// StackMap location can be read immediately after compilation and that the 8025 /// location is valid at any point during execution (this is similar to the 8026 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8027 /// only available in a register, then the runtime would need to trap when 8028 /// execution reaches the StackMap in order to read the alloca's location. 8029 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8030 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8031 SelectionDAGBuilder &Builder) { 8032 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8033 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8034 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8035 Ops.push_back( 8036 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8037 Ops.push_back( 8038 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8039 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8040 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8041 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8042 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8043 } else 8044 Ops.push_back(OpVal); 8045 } 8046 } 8047 8048 /// Lower llvm.experimental.stackmap directly to its target opcode. 8049 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8050 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8051 // [live variables...]) 8052 8053 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8054 8055 SDValue Chain, InFlag, Callee, NullPtr; 8056 SmallVector<SDValue, 32> Ops; 8057 8058 SDLoc DL = getCurSDLoc(); 8059 Callee = getValue(CI.getCalledValue()); 8060 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8061 8062 // The stackmap intrinsic only records the live variables (the arguemnts 8063 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8064 // intrinsic, this won't be lowered to a function call. This means we don't 8065 // have to worry about calling conventions and target specific lowering code. 8066 // Instead we perform the call lowering right here. 8067 // 8068 // chain, flag = CALLSEQ_START(chain, 0, 0) 8069 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8070 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8071 // 8072 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8073 InFlag = Chain.getValue(1); 8074 8075 // Add the <id> and <numBytes> constants. 8076 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8077 Ops.push_back(DAG.getTargetConstant( 8078 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8079 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8080 Ops.push_back(DAG.getTargetConstant( 8081 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8082 MVT::i32)); 8083 8084 // Push live variables for the stack map. 8085 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8086 8087 // We are not pushing any register mask info here on the operands list, 8088 // because the stackmap doesn't clobber anything. 8089 8090 // Push the chain and the glue flag. 8091 Ops.push_back(Chain); 8092 Ops.push_back(InFlag); 8093 8094 // Create the STACKMAP node. 8095 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8096 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8097 Chain = SDValue(SM, 0); 8098 InFlag = Chain.getValue(1); 8099 8100 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8101 8102 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8103 8104 // Set the root to the target-lowered call chain. 8105 DAG.setRoot(Chain); 8106 8107 // Inform the Frame Information that we have a stackmap in this function. 8108 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8109 } 8110 8111 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8112 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8113 const BasicBlock *EHPadBB) { 8114 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8115 // i32 <numBytes>, 8116 // i8* <target>, 8117 // i32 <numArgs>, 8118 // [Args...], 8119 // [live variables...]) 8120 8121 CallingConv::ID CC = CS.getCallingConv(); 8122 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8123 bool HasDef = !CS->getType()->isVoidTy(); 8124 SDLoc dl = getCurSDLoc(); 8125 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8126 8127 // Handle immediate and symbolic callees. 8128 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8129 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8130 /*isTarget=*/true); 8131 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8132 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8133 SDLoc(SymbolicCallee), 8134 SymbolicCallee->getValueType(0)); 8135 8136 // Get the real number of arguments participating in the call <numArgs> 8137 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8138 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8139 8140 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8141 // Intrinsics include all meta-operands up to but not including CC. 8142 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8143 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8144 "Not enough arguments provided to the patchpoint intrinsic"); 8145 8146 // For AnyRegCC the arguments are lowered later on manually. 8147 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8148 Type *ReturnTy = 8149 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8150 8151 TargetLowering::CallLoweringInfo CLI(DAG); 8152 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8153 true); 8154 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8155 8156 SDNode *CallEnd = Result.second.getNode(); 8157 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8158 CallEnd = CallEnd->getOperand(0).getNode(); 8159 8160 /// Get a call instruction from the call sequence chain. 8161 /// Tail calls are not allowed. 8162 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8163 "Expected a callseq node."); 8164 SDNode *Call = CallEnd->getOperand(0).getNode(); 8165 bool HasGlue = Call->getGluedNode(); 8166 8167 // Replace the target specific call node with the patchable intrinsic. 8168 SmallVector<SDValue, 8> Ops; 8169 8170 // Add the <id> and <numBytes> constants. 8171 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8172 Ops.push_back(DAG.getTargetConstant( 8173 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8174 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8175 Ops.push_back(DAG.getTargetConstant( 8176 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8177 MVT::i32)); 8178 8179 // Add the callee. 8180 Ops.push_back(Callee); 8181 8182 // Adjust <numArgs> to account for any arguments that have been passed on the 8183 // stack instead. 8184 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8185 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8186 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8187 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8188 8189 // Add the calling convention 8190 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8191 8192 // Add the arguments we omitted previously. The register allocator should 8193 // place these in any free register. 8194 if (IsAnyRegCC) 8195 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8196 Ops.push_back(getValue(CS.getArgument(i))); 8197 8198 // Push the arguments from the call instruction up to the register mask. 8199 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8200 Ops.append(Call->op_begin() + 2, e); 8201 8202 // Push live variables for the stack map. 8203 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8204 8205 // Push the register mask info. 8206 if (HasGlue) 8207 Ops.push_back(*(Call->op_end()-2)); 8208 else 8209 Ops.push_back(*(Call->op_end()-1)); 8210 8211 // Push the chain (this is originally the first operand of the call, but 8212 // becomes now the last or second to last operand). 8213 Ops.push_back(*(Call->op_begin())); 8214 8215 // Push the glue flag (last operand). 8216 if (HasGlue) 8217 Ops.push_back(*(Call->op_end()-1)); 8218 8219 SDVTList NodeTys; 8220 if (IsAnyRegCC && HasDef) { 8221 // Create the return types based on the intrinsic definition 8222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8223 SmallVector<EVT, 3> ValueVTs; 8224 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8225 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8226 8227 // There is always a chain and a glue type at the end 8228 ValueVTs.push_back(MVT::Other); 8229 ValueVTs.push_back(MVT::Glue); 8230 NodeTys = DAG.getVTList(ValueVTs); 8231 } else 8232 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8233 8234 // Replace the target specific call node with a PATCHPOINT node. 8235 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8236 dl, NodeTys, Ops); 8237 8238 // Update the NodeMap. 8239 if (HasDef) { 8240 if (IsAnyRegCC) 8241 setValue(CS.getInstruction(), SDValue(MN, 0)); 8242 else 8243 setValue(CS.getInstruction(), Result.first); 8244 } 8245 8246 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8247 // call sequence. Furthermore the location of the chain and glue can change 8248 // when the AnyReg calling convention is used and the intrinsic returns a 8249 // value. 8250 if (IsAnyRegCC && HasDef) { 8251 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8252 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8253 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8254 } else 8255 DAG.ReplaceAllUsesWith(Call, MN); 8256 DAG.DeleteNode(Call); 8257 8258 // Inform the Frame Information that we have a patchpoint in this function. 8259 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8260 } 8261 8262 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8263 unsigned Intrinsic) { 8264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8265 SDValue Op1 = getValue(I.getArgOperand(0)); 8266 SDValue Op2; 8267 if (I.getNumArgOperands() > 1) 8268 Op2 = getValue(I.getArgOperand(1)); 8269 SDLoc dl = getCurSDLoc(); 8270 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8271 SDValue Res; 8272 FastMathFlags FMF; 8273 if (isa<FPMathOperator>(I)) 8274 FMF = I.getFastMathFlags(); 8275 8276 switch (Intrinsic) { 8277 case Intrinsic::experimental_vector_reduce_fadd: 8278 if (FMF.isFast()) 8279 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8280 else 8281 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8282 break; 8283 case Intrinsic::experimental_vector_reduce_fmul: 8284 if (FMF.isFast()) 8285 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8286 else 8287 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8288 break; 8289 case Intrinsic::experimental_vector_reduce_add: 8290 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8291 break; 8292 case Intrinsic::experimental_vector_reduce_mul: 8293 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8294 break; 8295 case Intrinsic::experimental_vector_reduce_and: 8296 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8297 break; 8298 case Intrinsic::experimental_vector_reduce_or: 8299 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8300 break; 8301 case Intrinsic::experimental_vector_reduce_xor: 8302 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8303 break; 8304 case Intrinsic::experimental_vector_reduce_smax: 8305 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8306 break; 8307 case Intrinsic::experimental_vector_reduce_smin: 8308 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8309 break; 8310 case Intrinsic::experimental_vector_reduce_umax: 8311 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8312 break; 8313 case Intrinsic::experimental_vector_reduce_umin: 8314 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8315 break; 8316 case Intrinsic::experimental_vector_reduce_fmax: 8317 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8318 break; 8319 case Intrinsic::experimental_vector_reduce_fmin: 8320 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8321 break; 8322 default: 8323 llvm_unreachable("Unhandled vector reduce intrinsic"); 8324 } 8325 setValue(&I, Res); 8326 } 8327 8328 /// Returns an AttributeList representing the attributes applied to the return 8329 /// value of the given call. 8330 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8331 SmallVector<Attribute::AttrKind, 2> Attrs; 8332 if (CLI.RetSExt) 8333 Attrs.push_back(Attribute::SExt); 8334 if (CLI.RetZExt) 8335 Attrs.push_back(Attribute::ZExt); 8336 if (CLI.IsInReg) 8337 Attrs.push_back(Attribute::InReg); 8338 8339 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8340 Attrs); 8341 } 8342 8343 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8344 /// implementation, which just calls LowerCall. 8345 /// FIXME: When all targets are 8346 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8347 std::pair<SDValue, SDValue> 8348 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8349 // Handle the incoming return values from the call. 8350 CLI.Ins.clear(); 8351 Type *OrigRetTy = CLI.RetTy; 8352 SmallVector<EVT, 4> RetTys; 8353 SmallVector<uint64_t, 4> Offsets; 8354 auto &DL = CLI.DAG.getDataLayout(); 8355 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8356 8357 if (CLI.IsPostTypeLegalization) { 8358 // If we are lowering a libcall after legalization, split the return type. 8359 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8360 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8361 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8362 EVT RetVT = OldRetTys[i]; 8363 uint64_t Offset = OldOffsets[i]; 8364 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8365 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8366 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8367 RetTys.append(NumRegs, RegisterVT); 8368 for (unsigned j = 0; j != NumRegs; ++j) 8369 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8370 } 8371 } 8372 8373 SmallVector<ISD::OutputArg, 4> Outs; 8374 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8375 8376 bool CanLowerReturn = 8377 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8378 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8379 8380 SDValue DemoteStackSlot; 8381 int DemoteStackIdx = -100; 8382 if (!CanLowerReturn) { 8383 // FIXME: equivalent assert? 8384 // assert(!CS.hasInAllocaArgument() && 8385 // "sret demotion is incompatible with inalloca"); 8386 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8387 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8388 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8389 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8390 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8391 DL.getAllocaAddrSpace()); 8392 8393 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8394 ArgListEntry Entry; 8395 Entry.Node = DemoteStackSlot; 8396 Entry.Ty = StackSlotPtrType; 8397 Entry.IsSExt = false; 8398 Entry.IsZExt = false; 8399 Entry.IsInReg = false; 8400 Entry.IsSRet = true; 8401 Entry.IsNest = false; 8402 Entry.IsByVal = false; 8403 Entry.IsReturned = false; 8404 Entry.IsSwiftSelf = false; 8405 Entry.IsSwiftError = false; 8406 Entry.Alignment = Align; 8407 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8408 CLI.NumFixedArgs += 1; 8409 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8410 8411 // sret demotion isn't compatible with tail-calls, since the sret argument 8412 // points into the callers stack frame. 8413 CLI.IsTailCall = false; 8414 } else { 8415 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8416 EVT VT = RetTys[I]; 8417 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8418 CLI.CallConv, VT); 8419 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8420 CLI.CallConv, VT); 8421 for (unsigned i = 0; i != NumRegs; ++i) { 8422 ISD::InputArg MyFlags; 8423 MyFlags.VT = RegisterVT; 8424 MyFlags.ArgVT = VT; 8425 MyFlags.Used = CLI.IsReturnValueUsed; 8426 if (CLI.RetSExt) 8427 MyFlags.Flags.setSExt(); 8428 if (CLI.RetZExt) 8429 MyFlags.Flags.setZExt(); 8430 if (CLI.IsInReg) 8431 MyFlags.Flags.setInReg(); 8432 CLI.Ins.push_back(MyFlags); 8433 } 8434 } 8435 } 8436 8437 // We push in swifterror return as the last element of CLI.Ins. 8438 ArgListTy &Args = CLI.getArgs(); 8439 if (supportSwiftError()) { 8440 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8441 if (Args[i].IsSwiftError) { 8442 ISD::InputArg MyFlags; 8443 MyFlags.VT = getPointerTy(DL); 8444 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8445 MyFlags.Flags.setSwiftError(); 8446 CLI.Ins.push_back(MyFlags); 8447 } 8448 } 8449 } 8450 8451 // Handle all of the outgoing arguments. 8452 CLI.Outs.clear(); 8453 CLI.OutVals.clear(); 8454 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8455 SmallVector<EVT, 4> ValueVTs; 8456 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8457 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8458 Type *FinalType = Args[i].Ty; 8459 if (Args[i].IsByVal) 8460 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8461 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8462 FinalType, CLI.CallConv, CLI.IsVarArg); 8463 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8464 ++Value) { 8465 EVT VT = ValueVTs[Value]; 8466 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8467 SDValue Op = SDValue(Args[i].Node.getNode(), 8468 Args[i].Node.getResNo() + Value); 8469 ISD::ArgFlagsTy Flags; 8470 8471 // Certain targets (such as MIPS), may have a different ABI alignment 8472 // for a type depending on the context. Give the target a chance to 8473 // specify the alignment it wants. 8474 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8475 8476 if (Args[i].IsZExt) 8477 Flags.setZExt(); 8478 if (Args[i].IsSExt) 8479 Flags.setSExt(); 8480 if (Args[i].IsInReg) { 8481 // If we are using vectorcall calling convention, a structure that is 8482 // passed InReg - is surely an HVA 8483 if (CLI.CallConv == CallingConv::X86_VectorCall && 8484 isa<StructType>(FinalType)) { 8485 // The first value of a structure is marked 8486 if (0 == Value) 8487 Flags.setHvaStart(); 8488 Flags.setHva(); 8489 } 8490 // Set InReg Flag 8491 Flags.setInReg(); 8492 } 8493 if (Args[i].IsSRet) 8494 Flags.setSRet(); 8495 if (Args[i].IsSwiftSelf) 8496 Flags.setSwiftSelf(); 8497 if (Args[i].IsSwiftError) 8498 Flags.setSwiftError(); 8499 if (Args[i].IsByVal) 8500 Flags.setByVal(); 8501 if (Args[i].IsInAlloca) { 8502 Flags.setInAlloca(); 8503 // Set the byval flag for CCAssignFn callbacks that don't know about 8504 // inalloca. This way we can know how many bytes we should've allocated 8505 // and how many bytes a callee cleanup function will pop. If we port 8506 // inalloca to more targets, we'll have to add custom inalloca handling 8507 // in the various CC lowering callbacks. 8508 Flags.setByVal(); 8509 } 8510 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8511 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8512 Type *ElementTy = Ty->getElementType(); 8513 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8514 // For ByVal, alignment should come from FE. BE will guess if this 8515 // info is not there but there are cases it cannot get right. 8516 unsigned FrameAlign; 8517 if (Args[i].Alignment) 8518 FrameAlign = Args[i].Alignment; 8519 else 8520 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8521 Flags.setByValAlign(FrameAlign); 8522 } 8523 if (Args[i].IsNest) 8524 Flags.setNest(); 8525 if (NeedsRegBlock) 8526 Flags.setInConsecutiveRegs(); 8527 Flags.setOrigAlign(OriginalAlignment); 8528 8529 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8530 CLI.CallConv, VT); 8531 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8532 CLI.CallConv, VT); 8533 SmallVector<SDValue, 4> Parts(NumParts); 8534 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8535 8536 if (Args[i].IsSExt) 8537 ExtendKind = ISD::SIGN_EXTEND; 8538 else if (Args[i].IsZExt) 8539 ExtendKind = ISD::ZERO_EXTEND; 8540 8541 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8542 // for now. 8543 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8544 CanLowerReturn) { 8545 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8546 "unexpected use of 'returned'"); 8547 // Before passing 'returned' to the target lowering code, ensure that 8548 // either the register MVT and the actual EVT are the same size or that 8549 // the return value and argument are extended in the same way; in these 8550 // cases it's safe to pass the argument register value unchanged as the 8551 // return register value (although it's at the target's option whether 8552 // to do so) 8553 // TODO: allow code generation to take advantage of partially preserved 8554 // registers rather than clobbering the entire register when the 8555 // parameter extension method is not compatible with the return 8556 // extension method 8557 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8558 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8559 CLI.RetZExt == Args[i].IsZExt)) 8560 Flags.setReturned(); 8561 } 8562 8563 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8564 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8565 8566 for (unsigned j = 0; j != NumParts; ++j) { 8567 // if it isn't first piece, alignment must be 1 8568 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8569 i < CLI.NumFixedArgs, 8570 i, j*Parts[j].getValueType().getStoreSize()); 8571 if (NumParts > 1 && j == 0) 8572 MyFlags.Flags.setSplit(); 8573 else if (j != 0) { 8574 MyFlags.Flags.setOrigAlign(1); 8575 if (j == NumParts - 1) 8576 MyFlags.Flags.setSplitEnd(); 8577 } 8578 8579 CLI.Outs.push_back(MyFlags); 8580 CLI.OutVals.push_back(Parts[j]); 8581 } 8582 8583 if (NeedsRegBlock && Value == NumValues - 1) 8584 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8585 } 8586 } 8587 8588 SmallVector<SDValue, 4> InVals; 8589 CLI.Chain = LowerCall(CLI, InVals); 8590 8591 // Update CLI.InVals to use outside of this function. 8592 CLI.InVals = InVals; 8593 8594 // Verify that the target's LowerCall behaved as expected. 8595 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8596 "LowerCall didn't return a valid chain!"); 8597 assert((!CLI.IsTailCall || InVals.empty()) && 8598 "LowerCall emitted a return value for a tail call!"); 8599 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8600 "LowerCall didn't emit the correct number of values!"); 8601 8602 // For a tail call, the return value is merely live-out and there aren't 8603 // any nodes in the DAG representing it. Return a special value to 8604 // indicate that a tail call has been emitted and no more Instructions 8605 // should be processed in the current block. 8606 if (CLI.IsTailCall) { 8607 CLI.DAG.setRoot(CLI.Chain); 8608 return std::make_pair(SDValue(), SDValue()); 8609 } 8610 8611 #ifndef NDEBUG 8612 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8613 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8614 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8615 "LowerCall emitted a value with the wrong type!"); 8616 } 8617 #endif 8618 8619 SmallVector<SDValue, 4> ReturnValues; 8620 if (!CanLowerReturn) { 8621 // The instruction result is the result of loading from the 8622 // hidden sret parameter. 8623 SmallVector<EVT, 1> PVTs; 8624 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8625 8626 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8627 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8628 EVT PtrVT = PVTs[0]; 8629 8630 unsigned NumValues = RetTys.size(); 8631 ReturnValues.resize(NumValues); 8632 SmallVector<SDValue, 4> Chains(NumValues); 8633 8634 // An aggregate return value cannot wrap around the address space, so 8635 // offsets to its parts don't wrap either. 8636 SDNodeFlags Flags; 8637 Flags.setNoUnsignedWrap(true); 8638 8639 for (unsigned i = 0; i < NumValues; ++i) { 8640 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8641 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8642 PtrVT), Flags); 8643 SDValue L = CLI.DAG.getLoad( 8644 RetTys[i], CLI.DL, CLI.Chain, Add, 8645 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8646 DemoteStackIdx, Offsets[i]), 8647 /* Alignment = */ 1); 8648 ReturnValues[i] = L; 8649 Chains[i] = L.getValue(1); 8650 } 8651 8652 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8653 } else { 8654 // Collect the legal value parts into potentially illegal values 8655 // that correspond to the original function's return values. 8656 Optional<ISD::NodeType> AssertOp; 8657 if (CLI.RetSExt) 8658 AssertOp = ISD::AssertSext; 8659 else if (CLI.RetZExt) 8660 AssertOp = ISD::AssertZext; 8661 unsigned CurReg = 0; 8662 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8663 EVT VT = RetTys[I]; 8664 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8665 CLI.CallConv, VT); 8666 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8667 CLI.CallConv, VT); 8668 8669 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8670 NumRegs, RegisterVT, VT, nullptr, 8671 CLI.CallConv, AssertOp)); 8672 CurReg += NumRegs; 8673 } 8674 8675 // For a function returning void, there is no return value. We can't create 8676 // such a node, so we just return a null return value in that case. In 8677 // that case, nothing will actually look at the value. 8678 if (ReturnValues.empty()) 8679 return std::make_pair(SDValue(), CLI.Chain); 8680 } 8681 8682 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8683 CLI.DAG.getVTList(RetTys), ReturnValues); 8684 return std::make_pair(Res, CLI.Chain); 8685 } 8686 8687 void TargetLowering::LowerOperationWrapper(SDNode *N, 8688 SmallVectorImpl<SDValue> &Results, 8689 SelectionDAG &DAG) const { 8690 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8691 Results.push_back(Res); 8692 } 8693 8694 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8695 llvm_unreachable("LowerOperation not implemented for this target!"); 8696 } 8697 8698 void 8699 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8700 SDValue Op = getNonRegisterValue(V); 8701 assert((Op.getOpcode() != ISD::CopyFromReg || 8702 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8703 "Copy from a reg to the same reg!"); 8704 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8705 8706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8707 // If this is an InlineAsm we have to match the registers required, not the 8708 // notional registers required by the type. 8709 8710 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8711 None); // This is not an ABI copy. 8712 SDValue Chain = DAG.getEntryNode(); 8713 8714 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8715 FuncInfo.PreferredExtendType.end()) 8716 ? ISD::ANY_EXTEND 8717 : FuncInfo.PreferredExtendType[V]; 8718 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8719 PendingExports.push_back(Chain); 8720 } 8721 8722 #include "llvm/CodeGen/SelectionDAGISel.h" 8723 8724 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8725 /// entry block, return true. This includes arguments used by switches, since 8726 /// the switch may expand into multiple basic blocks. 8727 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8728 // With FastISel active, we may be splitting blocks, so force creation 8729 // of virtual registers for all non-dead arguments. 8730 if (FastISel) 8731 return A->use_empty(); 8732 8733 const BasicBlock &Entry = A->getParent()->front(); 8734 for (const User *U : A->users()) 8735 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8736 return false; // Use not in entry block. 8737 8738 return true; 8739 } 8740 8741 using ArgCopyElisionMapTy = 8742 DenseMap<const Argument *, 8743 std::pair<const AllocaInst *, const StoreInst *>>; 8744 8745 /// Scan the entry block of the function in FuncInfo for arguments that look 8746 /// like copies into a local alloca. Record any copied arguments in 8747 /// ArgCopyElisionCandidates. 8748 static void 8749 findArgumentCopyElisionCandidates(const DataLayout &DL, 8750 FunctionLoweringInfo *FuncInfo, 8751 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8752 // Record the state of every static alloca used in the entry block. Argument 8753 // allocas are all used in the entry block, so we need approximately as many 8754 // entries as we have arguments. 8755 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8756 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8757 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8758 StaticAllocas.reserve(NumArgs * 2); 8759 8760 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8761 if (!V) 8762 return nullptr; 8763 V = V->stripPointerCasts(); 8764 const auto *AI = dyn_cast<AllocaInst>(V); 8765 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8766 return nullptr; 8767 auto Iter = StaticAllocas.insert({AI, Unknown}); 8768 return &Iter.first->second; 8769 }; 8770 8771 // Look for stores of arguments to static allocas. Look through bitcasts and 8772 // GEPs to handle type coercions, as long as the alloca is fully initialized 8773 // by the store. Any non-store use of an alloca escapes it and any subsequent 8774 // unanalyzed store might write it. 8775 // FIXME: Handle structs initialized with multiple stores. 8776 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8777 // Look for stores, and handle non-store uses conservatively. 8778 const auto *SI = dyn_cast<StoreInst>(&I); 8779 if (!SI) { 8780 // We will look through cast uses, so ignore them completely. 8781 if (I.isCast()) 8782 continue; 8783 // Ignore debug info intrinsics, they don't escape or store to allocas. 8784 if (isa<DbgInfoIntrinsic>(I)) 8785 continue; 8786 // This is an unknown instruction. Assume it escapes or writes to all 8787 // static alloca operands. 8788 for (const Use &U : I.operands()) { 8789 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8790 *Info = StaticAllocaInfo::Clobbered; 8791 } 8792 continue; 8793 } 8794 8795 // If the stored value is a static alloca, mark it as escaped. 8796 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8797 *Info = StaticAllocaInfo::Clobbered; 8798 8799 // Check if the destination is a static alloca. 8800 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8801 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8802 if (!Info) 8803 continue; 8804 const AllocaInst *AI = cast<AllocaInst>(Dst); 8805 8806 // Skip allocas that have been initialized or clobbered. 8807 if (*Info != StaticAllocaInfo::Unknown) 8808 continue; 8809 8810 // Check if the stored value is an argument, and that this store fully 8811 // initializes the alloca. Don't elide copies from the same argument twice. 8812 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8813 const auto *Arg = dyn_cast<Argument>(Val); 8814 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8815 Arg->getType()->isEmptyTy() || 8816 DL.getTypeStoreSize(Arg->getType()) != 8817 DL.getTypeAllocSize(AI->getAllocatedType()) || 8818 ArgCopyElisionCandidates.count(Arg)) { 8819 *Info = StaticAllocaInfo::Clobbered; 8820 continue; 8821 } 8822 8823 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8824 << '\n'); 8825 8826 // Mark this alloca and store for argument copy elision. 8827 *Info = StaticAllocaInfo::Elidable; 8828 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8829 8830 // Stop scanning if we've seen all arguments. This will happen early in -O0 8831 // builds, which is useful, because -O0 builds have large entry blocks and 8832 // many allocas. 8833 if (ArgCopyElisionCandidates.size() == NumArgs) 8834 break; 8835 } 8836 } 8837 8838 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8839 /// ArgVal is a load from a suitable fixed stack object. 8840 static void tryToElideArgumentCopy( 8841 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8842 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8843 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8844 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8845 SDValue ArgVal, bool &ArgHasUses) { 8846 // Check if this is a load from a fixed stack object. 8847 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8848 if (!LNode) 8849 return; 8850 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8851 if (!FINode) 8852 return; 8853 8854 // Check that the fixed stack object is the right size and alignment. 8855 // Look at the alignment that the user wrote on the alloca instead of looking 8856 // at the stack object. 8857 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8858 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8859 const AllocaInst *AI = ArgCopyIter->second.first; 8860 int FixedIndex = FINode->getIndex(); 8861 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8862 int OldIndex = AllocaIndex; 8863 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8864 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8865 LLVM_DEBUG( 8866 dbgs() << " argument copy elision failed due to bad fixed stack " 8867 "object size\n"); 8868 return; 8869 } 8870 unsigned RequiredAlignment = AI->getAlignment(); 8871 if (!RequiredAlignment) { 8872 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8873 AI->getAllocatedType()); 8874 } 8875 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8876 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8877 "greater than stack argument alignment (" 8878 << RequiredAlignment << " vs " 8879 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8880 return; 8881 } 8882 8883 // Perform the elision. Delete the old stack object and replace its only use 8884 // in the variable info map. Mark the stack object as mutable. 8885 LLVM_DEBUG({ 8886 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8887 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8888 << '\n'; 8889 }); 8890 MFI.RemoveStackObject(OldIndex); 8891 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8892 AllocaIndex = FixedIndex; 8893 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8894 Chains.push_back(ArgVal.getValue(1)); 8895 8896 // Avoid emitting code for the store implementing the copy. 8897 const StoreInst *SI = ArgCopyIter->second.second; 8898 ElidedArgCopyInstrs.insert(SI); 8899 8900 // Check for uses of the argument again so that we can avoid exporting ArgVal 8901 // if it is't used by anything other than the store. 8902 for (const Value *U : Arg.users()) { 8903 if (U != SI) { 8904 ArgHasUses = true; 8905 break; 8906 } 8907 } 8908 } 8909 8910 void SelectionDAGISel::LowerArguments(const Function &F) { 8911 SelectionDAG &DAG = SDB->DAG; 8912 SDLoc dl = SDB->getCurSDLoc(); 8913 const DataLayout &DL = DAG.getDataLayout(); 8914 SmallVector<ISD::InputArg, 16> Ins; 8915 8916 if (!FuncInfo->CanLowerReturn) { 8917 // Put in an sret pointer parameter before all the other parameters. 8918 SmallVector<EVT, 1> ValueVTs; 8919 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8920 F.getReturnType()->getPointerTo( 8921 DAG.getDataLayout().getAllocaAddrSpace()), 8922 ValueVTs); 8923 8924 // NOTE: Assuming that a pointer will never break down to more than one VT 8925 // or one register. 8926 ISD::ArgFlagsTy Flags; 8927 Flags.setSRet(); 8928 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8929 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8930 ISD::InputArg::NoArgIndex, 0); 8931 Ins.push_back(RetArg); 8932 } 8933 8934 // Look for stores of arguments to static allocas. Mark such arguments with a 8935 // flag to ask the target to give us the memory location of that argument if 8936 // available. 8937 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8938 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8939 8940 // Set up the incoming argument description vector. 8941 for (const Argument &Arg : F.args()) { 8942 unsigned ArgNo = Arg.getArgNo(); 8943 SmallVector<EVT, 4> ValueVTs; 8944 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8945 bool isArgValueUsed = !Arg.use_empty(); 8946 unsigned PartBase = 0; 8947 Type *FinalType = Arg.getType(); 8948 if (Arg.hasAttribute(Attribute::ByVal)) 8949 FinalType = cast<PointerType>(FinalType)->getElementType(); 8950 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8951 FinalType, F.getCallingConv(), F.isVarArg()); 8952 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8953 Value != NumValues; ++Value) { 8954 EVT VT = ValueVTs[Value]; 8955 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8956 ISD::ArgFlagsTy Flags; 8957 8958 // Certain targets (such as MIPS), may have a different ABI alignment 8959 // for a type depending on the context. Give the target a chance to 8960 // specify the alignment it wants. 8961 unsigned OriginalAlignment = 8962 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8963 8964 if (Arg.hasAttribute(Attribute::ZExt)) 8965 Flags.setZExt(); 8966 if (Arg.hasAttribute(Attribute::SExt)) 8967 Flags.setSExt(); 8968 if (Arg.hasAttribute(Attribute::InReg)) { 8969 // If we are using vectorcall calling convention, a structure that is 8970 // passed InReg - is surely an HVA 8971 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8972 isa<StructType>(Arg.getType())) { 8973 // The first value of a structure is marked 8974 if (0 == Value) 8975 Flags.setHvaStart(); 8976 Flags.setHva(); 8977 } 8978 // Set InReg Flag 8979 Flags.setInReg(); 8980 } 8981 if (Arg.hasAttribute(Attribute::StructRet)) 8982 Flags.setSRet(); 8983 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8984 Flags.setSwiftSelf(); 8985 if (Arg.hasAttribute(Attribute::SwiftError)) 8986 Flags.setSwiftError(); 8987 if (Arg.hasAttribute(Attribute::ByVal)) 8988 Flags.setByVal(); 8989 if (Arg.hasAttribute(Attribute::InAlloca)) { 8990 Flags.setInAlloca(); 8991 // Set the byval flag for CCAssignFn callbacks that don't know about 8992 // inalloca. This way we can know how many bytes we should've allocated 8993 // and how many bytes a callee cleanup function will pop. If we port 8994 // inalloca to more targets, we'll have to add custom inalloca handling 8995 // in the various CC lowering callbacks. 8996 Flags.setByVal(); 8997 } 8998 if (F.getCallingConv() == CallingConv::X86_INTR) { 8999 // IA Interrupt passes frame (1st parameter) by value in the stack. 9000 if (ArgNo == 0) 9001 Flags.setByVal(); 9002 } 9003 if (Flags.isByVal() || Flags.isInAlloca()) { 9004 PointerType *Ty = cast<PointerType>(Arg.getType()); 9005 Type *ElementTy = Ty->getElementType(); 9006 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9007 // For ByVal, alignment should be passed from FE. BE will guess if 9008 // this info is not there but there are cases it cannot get right. 9009 unsigned FrameAlign; 9010 if (Arg.getParamAlignment()) 9011 FrameAlign = Arg.getParamAlignment(); 9012 else 9013 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9014 Flags.setByValAlign(FrameAlign); 9015 } 9016 if (Arg.hasAttribute(Attribute::Nest)) 9017 Flags.setNest(); 9018 if (NeedsRegBlock) 9019 Flags.setInConsecutiveRegs(); 9020 Flags.setOrigAlign(OriginalAlignment); 9021 if (ArgCopyElisionCandidates.count(&Arg)) 9022 Flags.setCopyElisionCandidate(); 9023 9024 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9025 *CurDAG->getContext(), F.getCallingConv(), VT); 9026 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9027 *CurDAG->getContext(), F.getCallingConv(), VT); 9028 for (unsigned i = 0; i != NumRegs; ++i) { 9029 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9030 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9031 if (NumRegs > 1 && i == 0) 9032 MyFlags.Flags.setSplit(); 9033 // if it isn't first piece, alignment must be 1 9034 else if (i > 0) { 9035 MyFlags.Flags.setOrigAlign(1); 9036 if (i == NumRegs - 1) 9037 MyFlags.Flags.setSplitEnd(); 9038 } 9039 Ins.push_back(MyFlags); 9040 } 9041 if (NeedsRegBlock && Value == NumValues - 1) 9042 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9043 PartBase += VT.getStoreSize(); 9044 } 9045 } 9046 9047 // Call the target to set up the argument values. 9048 SmallVector<SDValue, 8> InVals; 9049 SDValue NewRoot = TLI->LowerFormalArguments( 9050 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9051 9052 // Verify that the target's LowerFormalArguments behaved as expected. 9053 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9054 "LowerFormalArguments didn't return a valid chain!"); 9055 assert(InVals.size() == Ins.size() && 9056 "LowerFormalArguments didn't emit the correct number of values!"); 9057 LLVM_DEBUG({ 9058 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9059 assert(InVals[i].getNode() && 9060 "LowerFormalArguments emitted a null value!"); 9061 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9062 "LowerFormalArguments emitted a value with the wrong type!"); 9063 } 9064 }); 9065 9066 // Update the DAG with the new chain value resulting from argument lowering. 9067 DAG.setRoot(NewRoot); 9068 9069 // Set up the argument values. 9070 unsigned i = 0; 9071 if (!FuncInfo->CanLowerReturn) { 9072 // Create a virtual register for the sret pointer, and put in a copy 9073 // from the sret argument into it. 9074 SmallVector<EVT, 1> ValueVTs; 9075 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9076 F.getReturnType()->getPointerTo( 9077 DAG.getDataLayout().getAllocaAddrSpace()), 9078 ValueVTs); 9079 MVT VT = ValueVTs[0].getSimpleVT(); 9080 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9081 Optional<ISD::NodeType> AssertOp = None; 9082 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9083 nullptr, F.getCallingConv(), AssertOp); 9084 9085 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9086 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9087 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9088 FuncInfo->DemoteRegister = SRetReg; 9089 NewRoot = 9090 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9091 DAG.setRoot(NewRoot); 9092 9093 // i indexes lowered arguments. Bump it past the hidden sret argument. 9094 ++i; 9095 } 9096 9097 SmallVector<SDValue, 4> Chains; 9098 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9099 for (const Argument &Arg : F.args()) { 9100 SmallVector<SDValue, 4> ArgValues; 9101 SmallVector<EVT, 4> ValueVTs; 9102 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9103 unsigned NumValues = ValueVTs.size(); 9104 if (NumValues == 0) 9105 continue; 9106 9107 bool ArgHasUses = !Arg.use_empty(); 9108 9109 // Elide the copying store if the target loaded this argument from a 9110 // suitable fixed stack object. 9111 if (Ins[i].Flags.isCopyElisionCandidate()) { 9112 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9113 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9114 InVals[i], ArgHasUses); 9115 } 9116 9117 // If this argument is unused then remember its value. It is used to generate 9118 // debugging information. 9119 bool isSwiftErrorArg = 9120 TLI->supportSwiftError() && 9121 Arg.hasAttribute(Attribute::SwiftError); 9122 if (!ArgHasUses && !isSwiftErrorArg) { 9123 SDB->setUnusedArgValue(&Arg, InVals[i]); 9124 9125 // Also remember any frame index for use in FastISel. 9126 if (FrameIndexSDNode *FI = 9127 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9128 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9129 } 9130 9131 for (unsigned Val = 0; Val != NumValues; ++Val) { 9132 EVT VT = ValueVTs[Val]; 9133 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9134 F.getCallingConv(), VT); 9135 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9136 *CurDAG->getContext(), F.getCallingConv(), VT); 9137 9138 // Even an apparant 'unused' swifterror argument needs to be returned. So 9139 // we do generate a copy for it that can be used on return from the 9140 // function. 9141 if (ArgHasUses || isSwiftErrorArg) { 9142 Optional<ISD::NodeType> AssertOp; 9143 if (Arg.hasAttribute(Attribute::SExt)) 9144 AssertOp = ISD::AssertSext; 9145 else if (Arg.hasAttribute(Attribute::ZExt)) 9146 AssertOp = ISD::AssertZext; 9147 9148 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9149 PartVT, VT, nullptr, 9150 F.getCallingConv(), AssertOp)); 9151 } 9152 9153 i += NumParts; 9154 } 9155 9156 // We don't need to do anything else for unused arguments. 9157 if (ArgValues.empty()) 9158 continue; 9159 9160 // Note down frame index. 9161 if (FrameIndexSDNode *FI = 9162 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9163 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9164 9165 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9166 SDB->getCurSDLoc()); 9167 9168 SDB->setValue(&Arg, Res); 9169 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9170 // We want to associate the argument with the frame index, among 9171 // involved operands, that correspond to the lowest address. The 9172 // getCopyFromParts function, called earlier, is swapping the order of 9173 // the operands to BUILD_PAIR depending on endianness. The result of 9174 // that swapping is that the least significant bits of the argument will 9175 // be in the first operand of the BUILD_PAIR node, and the most 9176 // significant bits will be in the second operand. 9177 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9178 if (LoadSDNode *LNode = 9179 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9180 if (FrameIndexSDNode *FI = 9181 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9182 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9183 } 9184 9185 // Update the SwiftErrorVRegDefMap. 9186 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9187 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9188 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9189 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9190 FuncInfo->SwiftErrorArg, Reg); 9191 } 9192 9193 // If this argument is live outside of the entry block, insert a copy from 9194 // wherever we got it to the vreg that other BB's will reference it as. 9195 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9196 // If we can, though, try to skip creating an unnecessary vreg. 9197 // FIXME: This isn't very clean... it would be nice to make this more 9198 // general. It's also subtly incompatible with the hacks FastISel 9199 // uses with vregs. 9200 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9201 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9202 FuncInfo->ValueMap[&Arg] = Reg; 9203 continue; 9204 } 9205 } 9206 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9207 FuncInfo->InitializeRegForValue(&Arg); 9208 SDB->CopyToExportRegsIfNeeded(&Arg); 9209 } 9210 } 9211 9212 if (!Chains.empty()) { 9213 Chains.push_back(NewRoot); 9214 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9215 } 9216 9217 DAG.setRoot(NewRoot); 9218 9219 assert(i == InVals.size() && "Argument register count mismatch!"); 9220 9221 // If any argument copy elisions occurred and we have debug info, update the 9222 // stale frame indices used in the dbg.declare variable info table. 9223 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9224 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9225 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9226 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9227 if (I != ArgCopyElisionFrameIndexMap.end()) 9228 VI.Slot = I->second; 9229 } 9230 } 9231 9232 // Finally, if the target has anything special to do, allow it to do so. 9233 EmitFunctionEntryCode(); 9234 } 9235 9236 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9237 /// ensure constants are generated when needed. Remember the virtual registers 9238 /// that need to be added to the Machine PHI nodes as input. We cannot just 9239 /// directly add them, because expansion might result in multiple MBB's for one 9240 /// BB. As such, the start of the BB might correspond to a different MBB than 9241 /// the end. 9242 void 9243 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9244 const TerminatorInst *TI = LLVMBB->getTerminator(); 9245 9246 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9247 9248 // Check PHI nodes in successors that expect a value to be available from this 9249 // block. 9250 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9251 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9252 if (!isa<PHINode>(SuccBB->begin())) continue; 9253 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9254 9255 // If this terminator has multiple identical successors (common for 9256 // switches), only handle each succ once. 9257 if (!SuccsHandled.insert(SuccMBB).second) 9258 continue; 9259 9260 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9261 9262 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9263 // nodes and Machine PHI nodes, but the incoming operands have not been 9264 // emitted yet. 9265 for (const PHINode &PN : SuccBB->phis()) { 9266 // Ignore dead phi's. 9267 if (PN.use_empty()) 9268 continue; 9269 9270 // Skip empty types 9271 if (PN.getType()->isEmptyTy()) 9272 continue; 9273 9274 unsigned Reg; 9275 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9276 9277 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9278 unsigned &RegOut = ConstantsOut[C]; 9279 if (RegOut == 0) { 9280 RegOut = FuncInfo.CreateRegs(C->getType()); 9281 CopyValueToVirtualRegister(C, RegOut); 9282 } 9283 Reg = RegOut; 9284 } else { 9285 DenseMap<const Value *, unsigned>::iterator I = 9286 FuncInfo.ValueMap.find(PHIOp); 9287 if (I != FuncInfo.ValueMap.end()) 9288 Reg = I->second; 9289 else { 9290 assert(isa<AllocaInst>(PHIOp) && 9291 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9292 "Didn't codegen value into a register!??"); 9293 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9294 CopyValueToVirtualRegister(PHIOp, Reg); 9295 } 9296 } 9297 9298 // Remember that this register needs to added to the machine PHI node as 9299 // the input for this MBB. 9300 SmallVector<EVT, 4> ValueVTs; 9301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9302 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9303 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9304 EVT VT = ValueVTs[vti]; 9305 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9306 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9307 FuncInfo.PHINodesToUpdate.push_back( 9308 std::make_pair(&*MBBI++, Reg + i)); 9309 Reg += NumRegisters; 9310 } 9311 } 9312 } 9313 9314 ConstantsOut.clear(); 9315 } 9316 9317 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9318 /// is 0. 9319 MachineBasicBlock * 9320 SelectionDAGBuilder::StackProtectorDescriptor:: 9321 AddSuccessorMBB(const BasicBlock *BB, 9322 MachineBasicBlock *ParentMBB, 9323 bool IsLikely, 9324 MachineBasicBlock *SuccMBB) { 9325 // If SuccBB has not been created yet, create it. 9326 if (!SuccMBB) { 9327 MachineFunction *MF = ParentMBB->getParent(); 9328 MachineFunction::iterator BBI(ParentMBB); 9329 SuccMBB = MF->CreateMachineBasicBlock(BB); 9330 MF->insert(++BBI, SuccMBB); 9331 } 9332 // Add it as a successor of ParentMBB. 9333 ParentMBB->addSuccessor( 9334 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9335 return SuccMBB; 9336 } 9337 9338 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9339 MachineFunction::iterator I(MBB); 9340 if (++I == FuncInfo.MF->end()) 9341 return nullptr; 9342 return &*I; 9343 } 9344 9345 /// During lowering new call nodes can be created (such as memset, etc.). 9346 /// Those will become new roots of the current DAG, but complications arise 9347 /// when they are tail calls. In such cases, the call lowering will update 9348 /// the root, but the builder still needs to know that a tail call has been 9349 /// lowered in order to avoid generating an additional return. 9350 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9351 // If the node is null, we do have a tail call. 9352 if (MaybeTC.getNode() != nullptr) 9353 DAG.setRoot(MaybeTC); 9354 else 9355 HasTailCall = true; 9356 } 9357 9358 uint64_t 9359 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9360 unsigned First, unsigned Last) const { 9361 assert(Last >= First); 9362 const APInt &LowCase = Clusters[First].Low->getValue(); 9363 const APInt &HighCase = Clusters[Last].High->getValue(); 9364 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9365 9366 // FIXME: A range of consecutive cases has 100% density, but only requires one 9367 // comparison to lower. We should discriminate against such consecutive ranges 9368 // in jump tables. 9369 9370 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9371 } 9372 9373 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9374 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9375 unsigned Last) const { 9376 assert(Last >= First); 9377 assert(TotalCases[Last] >= TotalCases[First]); 9378 uint64_t NumCases = 9379 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9380 return NumCases; 9381 } 9382 9383 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9384 unsigned First, unsigned Last, 9385 const SwitchInst *SI, 9386 MachineBasicBlock *DefaultMBB, 9387 CaseCluster &JTCluster) { 9388 assert(First <= Last); 9389 9390 auto Prob = BranchProbability::getZero(); 9391 unsigned NumCmps = 0; 9392 std::vector<MachineBasicBlock*> Table; 9393 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9394 9395 // Initialize probabilities in JTProbs. 9396 for (unsigned I = First; I <= Last; ++I) 9397 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9398 9399 for (unsigned I = First; I <= Last; ++I) { 9400 assert(Clusters[I].Kind == CC_Range); 9401 Prob += Clusters[I].Prob; 9402 const APInt &Low = Clusters[I].Low->getValue(); 9403 const APInt &High = Clusters[I].High->getValue(); 9404 NumCmps += (Low == High) ? 1 : 2; 9405 if (I != First) { 9406 // Fill the gap between this and the previous cluster. 9407 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9408 assert(PreviousHigh.slt(Low)); 9409 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9410 for (uint64_t J = 0; J < Gap; J++) 9411 Table.push_back(DefaultMBB); 9412 } 9413 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9414 for (uint64_t J = 0; J < ClusterSize; ++J) 9415 Table.push_back(Clusters[I].MBB); 9416 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9417 } 9418 9419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9420 unsigned NumDests = JTProbs.size(); 9421 if (TLI.isSuitableForBitTests( 9422 NumDests, NumCmps, Clusters[First].Low->getValue(), 9423 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9424 // Clusters[First..Last] should be lowered as bit tests instead. 9425 return false; 9426 } 9427 9428 // Create the MBB that will load from and jump through the table. 9429 // Note: We create it here, but it's not inserted into the function yet. 9430 MachineFunction *CurMF = FuncInfo.MF; 9431 MachineBasicBlock *JumpTableMBB = 9432 CurMF->CreateMachineBasicBlock(SI->getParent()); 9433 9434 // Add successors. Note: use table order for determinism. 9435 SmallPtrSet<MachineBasicBlock *, 8> Done; 9436 for (MachineBasicBlock *Succ : Table) { 9437 if (Done.count(Succ)) 9438 continue; 9439 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9440 Done.insert(Succ); 9441 } 9442 JumpTableMBB->normalizeSuccProbs(); 9443 9444 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9445 ->createJumpTableIndex(Table); 9446 9447 // Set up the jump table info. 9448 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9449 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9450 Clusters[Last].High->getValue(), SI->getCondition(), 9451 nullptr, false); 9452 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9453 9454 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9455 JTCases.size() - 1, Prob); 9456 return true; 9457 } 9458 9459 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9460 const SwitchInst *SI, 9461 MachineBasicBlock *DefaultMBB) { 9462 #ifndef NDEBUG 9463 // Clusters must be non-empty, sorted, and only contain Range clusters. 9464 assert(!Clusters.empty()); 9465 for (CaseCluster &C : Clusters) 9466 assert(C.Kind == CC_Range); 9467 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9468 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9469 #endif 9470 9471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9472 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9473 return; 9474 9475 const int64_t N = Clusters.size(); 9476 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9477 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9478 9479 if (N < 2 || N < MinJumpTableEntries) 9480 return; 9481 9482 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9483 SmallVector<unsigned, 8> TotalCases(N); 9484 for (unsigned i = 0; i < N; ++i) { 9485 const APInt &Hi = Clusters[i].High->getValue(); 9486 const APInt &Lo = Clusters[i].Low->getValue(); 9487 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9488 if (i != 0) 9489 TotalCases[i] += TotalCases[i - 1]; 9490 } 9491 9492 // Cheap case: the whole range may be suitable for jump table. 9493 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9494 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9495 assert(NumCases < UINT64_MAX / 100); 9496 assert(Range >= NumCases); 9497 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9498 CaseCluster JTCluster; 9499 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9500 Clusters[0] = JTCluster; 9501 Clusters.resize(1); 9502 return; 9503 } 9504 } 9505 9506 // The algorithm below is not suitable for -O0. 9507 if (TM.getOptLevel() == CodeGenOpt::None) 9508 return; 9509 9510 // Split Clusters into minimum number of dense partitions. The algorithm uses 9511 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9512 // for the Case Statement'" (1994), but builds the MinPartitions array in 9513 // reverse order to make it easier to reconstruct the partitions in ascending 9514 // order. In the choice between two optimal partitionings, it picks the one 9515 // which yields more jump tables. 9516 9517 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9518 SmallVector<unsigned, 8> MinPartitions(N); 9519 // LastElement[i] is the last element of the partition starting at i. 9520 SmallVector<unsigned, 8> LastElement(N); 9521 // PartitionsScore[i] is used to break ties when choosing between two 9522 // partitionings resulting in the same number of partitions. 9523 SmallVector<unsigned, 8> PartitionsScore(N); 9524 // For PartitionsScore, a small number of comparisons is considered as good as 9525 // a jump table and a single comparison is considered better than a jump 9526 // table. 9527 enum PartitionScores : unsigned { 9528 NoTable = 0, 9529 Table = 1, 9530 FewCases = 1, 9531 SingleCase = 2 9532 }; 9533 9534 // Base case: There is only one way to partition Clusters[N-1]. 9535 MinPartitions[N - 1] = 1; 9536 LastElement[N - 1] = N - 1; 9537 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9538 9539 // Note: loop indexes are signed to avoid underflow. 9540 for (int64_t i = N - 2; i >= 0; i--) { 9541 // Find optimal partitioning of Clusters[i..N-1]. 9542 // Baseline: Put Clusters[i] into a partition on its own. 9543 MinPartitions[i] = MinPartitions[i + 1] + 1; 9544 LastElement[i] = i; 9545 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9546 9547 // Search for a solution that results in fewer partitions. 9548 for (int64_t j = N - 1; j > i; j--) { 9549 // Try building a partition from Clusters[i..j]. 9550 uint64_t Range = getJumpTableRange(Clusters, i, j); 9551 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9552 assert(NumCases < UINT64_MAX / 100); 9553 assert(Range >= NumCases); 9554 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9555 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9556 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9557 int64_t NumEntries = j - i + 1; 9558 9559 if (NumEntries == 1) 9560 Score += PartitionScores::SingleCase; 9561 else if (NumEntries <= SmallNumberOfEntries) 9562 Score += PartitionScores::FewCases; 9563 else if (NumEntries >= MinJumpTableEntries) 9564 Score += PartitionScores::Table; 9565 9566 // If this leads to fewer partitions, or to the same number of 9567 // partitions with better score, it is a better partitioning. 9568 if (NumPartitions < MinPartitions[i] || 9569 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9570 MinPartitions[i] = NumPartitions; 9571 LastElement[i] = j; 9572 PartitionsScore[i] = Score; 9573 } 9574 } 9575 } 9576 } 9577 9578 // Iterate over the partitions, replacing some with jump tables in-place. 9579 unsigned DstIndex = 0; 9580 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9581 Last = LastElement[First]; 9582 assert(Last >= First); 9583 assert(DstIndex <= First); 9584 unsigned NumClusters = Last - First + 1; 9585 9586 CaseCluster JTCluster; 9587 if (NumClusters >= MinJumpTableEntries && 9588 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9589 Clusters[DstIndex++] = JTCluster; 9590 } else { 9591 for (unsigned I = First; I <= Last; ++I) 9592 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9593 } 9594 } 9595 Clusters.resize(DstIndex); 9596 } 9597 9598 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9599 unsigned First, unsigned Last, 9600 const SwitchInst *SI, 9601 CaseCluster &BTCluster) { 9602 assert(First <= Last); 9603 if (First == Last) 9604 return false; 9605 9606 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9607 unsigned NumCmps = 0; 9608 for (int64_t I = First; I <= Last; ++I) { 9609 assert(Clusters[I].Kind == CC_Range); 9610 Dests.set(Clusters[I].MBB->getNumber()); 9611 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9612 } 9613 unsigned NumDests = Dests.count(); 9614 9615 APInt Low = Clusters[First].Low->getValue(); 9616 APInt High = Clusters[Last].High->getValue(); 9617 assert(Low.slt(High)); 9618 9619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9620 const DataLayout &DL = DAG.getDataLayout(); 9621 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9622 return false; 9623 9624 APInt LowBound; 9625 APInt CmpRange; 9626 9627 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9628 assert(TLI.rangeFitsInWord(Low, High, DL) && 9629 "Case range must fit in bit mask!"); 9630 9631 // Check if the clusters cover a contiguous range such that no value in the 9632 // range will jump to the default statement. 9633 bool ContiguousRange = true; 9634 for (int64_t I = First + 1; I <= Last; ++I) { 9635 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9636 ContiguousRange = false; 9637 break; 9638 } 9639 } 9640 9641 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9642 // Optimize the case where all the case values fit in a word without having 9643 // to subtract minValue. In this case, we can optimize away the subtraction. 9644 LowBound = APInt::getNullValue(Low.getBitWidth()); 9645 CmpRange = High; 9646 ContiguousRange = false; 9647 } else { 9648 LowBound = Low; 9649 CmpRange = High - Low; 9650 } 9651 9652 CaseBitsVector CBV; 9653 auto TotalProb = BranchProbability::getZero(); 9654 for (unsigned i = First; i <= Last; ++i) { 9655 // Find the CaseBits for this destination. 9656 unsigned j; 9657 for (j = 0; j < CBV.size(); ++j) 9658 if (CBV[j].BB == Clusters[i].MBB) 9659 break; 9660 if (j == CBV.size()) 9661 CBV.push_back( 9662 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9663 CaseBits *CB = &CBV[j]; 9664 9665 // Update Mask, Bits and ExtraProb. 9666 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9667 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9668 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9669 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9670 CB->Bits += Hi - Lo + 1; 9671 CB->ExtraProb += Clusters[i].Prob; 9672 TotalProb += Clusters[i].Prob; 9673 } 9674 9675 BitTestInfo BTI; 9676 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9677 // Sort by probability first, number of bits second, bit mask third. 9678 if (a.ExtraProb != b.ExtraProb) 9679 return a.ExtraProb > b.ExtraProb; 9680 if (a.Bits != b.Bits) 9681 return a.Bits > b.Bits; 9682 return a.Mask < b.Mask; 9683 }); 9684 9685 for (auto &CB : CBV) { 9686 MachineBasicBlock *BitTestBB = 9687 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9688 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9689 } 9690 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9691 SI->getCondition(), -1U, MVT::Other, false, 9692 ContiguousRange, nullptr, nullptr, std::move(BTI), 9693 TotalProb); 9694 9695 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9696 BitTestCases.size() - 1, TotalProb); 9697 return true; 9698 } 9699 9700 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9701 const SwitchInst *SI) { 9702 // Partition Clusters into as few subsets as possible, where each subset has a 9703 // range that fits in a machine word and has <= 3 unique destinations. 9704 9705 #ifndef NDEBUG 9706 // Clusters must be sorted and contain Range or JumpTable clusters. 9707 assert(!Clusters.empty()); 9708 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9709 for (const CaseCluster &C : Clusters) 9710 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9711 for (unsigned i = 1; i < Clusters.size(); ++i) 9712 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9713 #endif 9714 9715 // The algorithm below is not suitable for -O0. 9716 if (TM.getOptLevel() == CodeGenOpt::None) 9717 return; 9718 9719 // If target does not have legal shift left, do not emit bit tests at all. 9720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9721 const DataLayout &DL = DAG.getDataLayout(); 9722 9723 EVT PTy = TLI.getPointerTy(DL); 9724 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9725 return; 9726 9727 int BitWidth = PTy.getSizeInBits(); 9728 const int64_t N = Clusters.size(); 9729 9730 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9731 SmallVector<unsigned, 8> MinPartitions(N); 9732 // LastElement[i] is the last element of the partition starting at i. 9733 SmallVector<unsigned, 8> LastElement(N); 9734 9735 // FIXME: This might not be the best algorithm for finding bit test clusters. 9736 9737 // Base case: There is only one way to partition Clusters[N-1]. 9738 MinPartitions[N - 1] = 1; 9739 LastElement[N - 1] = N - 1; 9740 9741 // Note: loop indexes are signed to avoid underflow. 9742 for (int64_t i = N - 2; i >= 0; --i) { 9743 // Find optimal partitioning of Clusters[i..N-1]. 9744 // Baseline: Put Clusters[i] into a partition on its own. 9745 MinPartitions[i] = MinPartitions[i + 1] + 1; 9746 LastElement[i] = i; 9747 9748 // Search for a solution that results in fewer partitions. 9749 // Note: the search is limited by BitWidth, reducing time complexity. 9750 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9751 // Try building a partition from Clusters[i..j]. 9752 9753 // Check the range. 9754 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9755 Clusters[j].High->getValue(), DL)) 9756 continue; 9757 9758 // Check nbr of destinations and cluster types. 9759 // FIXME: This works, but doesn't seem very efficient. 9760 bool RangesOnly = true; 9761 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9762 for (int64_t k = i; k <= j; k++) { 9763 if (Clusters[k].Kind != CC_Range) { 9764 RangesOnly = false; 9765 break; 9766 } 9767 Dests.set(Clusters[k].MBB->getNumber()); 9768 } 9769 if (!RangesOnly || Dests.count() > 3) 9770 break; 9771 9772 // Check if it's a better partition. 9773 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9774 if (NumPartitions < MinPartitions[i]) { 9775 // Found a better partition. 9776 MinPartitions[i] = NumPartitions; 9777 LastElement[i] = j; 9778 } 9779 } 9780 } 9781 9782 // Iterate over the partitions, replacing with bit-test clusters in-place. 9783 unsigned DstIndex = 0; 9784 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9785 Last = LastElement[First]; 9786 assert(First <= Last); 9787 assert(DstIndex <= First); 9788 9789 CaseCluster BitTestCluster; 9790 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9791 Clusters[DstIndex++] = BitTestCluster; 9792 } else { 9793 size_t NumClusters = Last - First + 1; 9794 std::memmove(&Clusters[DstIndex], &Clusters[First], 9795 sizeof(Clusters[0]) * NumClusters); 9796 DstIndex += NumClusters; 9797 } 9798 } 9799 Clusters.resize(DstIndex); 9800 } 9801 9802 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9803 MachineBasicBlock *SwitchMBB, 9804 MachineBasicBlock *DefaultMBB) { 9805 MachineFunction *CurMF = FuncInfo.MF; 9806 MachineBasicBlock *NextMBB = nullptr; 9807 MachineFunction::iterator BBI(W.MBB); 9808 if (++BBI != FuncInfo.MF->end()) 9809 NextMBB = &*BBI; 9810 9811 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9812 9813 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9814 9815 if (Size == 2 && W.MBB == SwitchMBB) { 9816 // If any two of the cases has the same destination, and if one value 9817 // is the same as the other, but has one bit unset that the other has set, 9818 // use bit manipulation to do two compares at once. For example: 9819 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9820 // TODO: This could be extended to merge any 2 cases in switches with 3 9821 // cases. 9822 // TODO: Handle cases where W.CaseBB != SwitchBB. 9823 CaseCluster &Small = *W.FirstCluster; 9824 CaseCluster &Big = *W.LastCluster; 9825 9826 if (Small.Low == Small.High && Big.Low == Big.High && 9827 Small.MBB == Big.MBB) { 9828 const APInt &SmallValue = Small.Low->getValue(); 9829 const APInt &BigValue = Big.Low->getValue(); 9830 9831 // Check that there is only one bit different. 9832 APInt CommonBit = BigValue ^ SmallValue; 9833 if (CommonBit.isPowerOf2()) { 9834 SDValue CondLHS = getValue(Cond); 9835 EVT VT = CondLHS.getValueType(); 9836 SDLoc DL = getCurSDLoc(); 9837 9838 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9839 DAG.getConstant(CommonBit, DL, VT)); 9840 SDValue Cond = DAG.getSetCC( 9841 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9842 ISD::SETEQ); 9843 9844 // Update successor info. 9845 // Both Small and Big will jump to Small.BB, so we sum up the 9846 // probabilities. 9847 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9848 if (BPI) 9849 addSuccessorWithProb( 9850 SwitchMBB, DefaultMBB, 9851 // The default destination is the first successor in IR. 9852 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9853 else 9854 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9855 9856 // Insert the true branch. 9857 SDValue BrCond = 9858 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9859 DAG.getBasicBlock(Small.MBB)); 9860 // Insert the false branch. 9861 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9862 DAG.getBasicBlock(DefaultMBB)); 9863 9864 DAG.setRoot(BrCond); 9865 return; 9866 } 9867 } 9868 } 9869 9870 if (TM.getOptLevel() != CodeGenOpt::None) { 9871 // Here, we order cases by probability so the most likely case will be 9872 // checked first. However, two clusters can have the same probability in 9873 // which case their relative ordering is non-deterministic. So we use Low 9874 // as a tie-breaker as clusters are guaranteed to never overlap. 9875 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9876 [](const CaseCluster &a, const CaseCluster &b) { 9877 return a.Prob != b.Prob ? 9878 a.Prob > b.Prob : 9879 a.Low->getValue().slt(b.Low->getValue()); 9880 }); 9881 9882 // Rearrange the case blocks so that the last one falls through if possible 9883 // without changing the order of probabilities. 9884 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9885 --I; 9886 if (I->Prob > W.LastCluster->Prob) 9887 break; 9888 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9889 std::swap(*I, *W.LastCluster); 9890 break; 9891 } 9892 } 9893 } 9894 9895 // Compute total probability. 9896 BranchProbability DefaultProb = W.DefaultProb; 9897 BranchProbability UnhandledProbs = DefaultProb; 9898 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9899 UnhandledProbs += I->Prob; 9900 9901 MachineBasicBlock *CurMBB = W.MBB; 9902 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9903 MachineBasicBlock *Fallthrough; 9904 if (I == W.LastCluster) { 9905 // For the last cluster, fall through to the default destination. 9906 Fallthrough = DefaultMBB; 9907 } else { 9908 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9909 CurMF->insert(BBI, Fallthrough); 9910 // Put Cond in a virtual register to make it available from the new blocks. 9911 ExportFromCurrentBlock(Cond); 9912 } 9913 UnhandledProbs -= I->Prob; 9914 9915 switch (I->Kind) { 9916 case CC_JumpTable: { 9917 // FIXME: Optimize away range check based on pivot comparisons. 9918 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9919 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9920 9921 // The jump block hasn't been inserted yet; insert it here. 9922 MachineBasicBlock *JumpMBB = JT->MBB; 9923 CurMF->insert(BBI, JumpMBB); 9924 9925 auto JumpProb = I->Prob; 9926 auto FallthroughProb = UnhandledProbs; 9927 9928 // If the default statement is a target of the jump table, we evenly 9929 // distribute the default probability to successors of CurMBB. Also 9930 // update the probability on the edge from JumpMBB to Fallthrough. 9931 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9932 SE = JumpMBB->succ_end(); 9933 SI != SE; ++SI) { 9934 if (*SI == DefaultMBB) { 9935 JumpProb += DefaultProb / 2; 9936 FallthroughProb -= DefaultProb / 2; 9937 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9938 JumpMBB->normalizeSuccProbs(); 9939 break; 9940 } 9941 } 9942 9943 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9944 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9945 CurMBB->normalizeSuccProbs(); 9946 9947 // The jump table header will be inserted in our current block, do the 9948 // range check, and fall through to our fallthrough block. 9949 JTH->HeaderBB = CurMBB; 9950 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9951 9952 // If we're in the right place, emit the jump table header right now. 9953 if (CurMBB == SwitchMBB) { 9954 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9955 JTH->Emitted = true; 9956 } 9957 break; 9958 } 9959 case CC_BitTests: { 9960 // FIXME: Optimize away range check based on pivot comparisons. 9961 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9962 9963 // The bit test blocks haven't been inserted yet; insert them here. 9964 for (BitTestCase &BTC : BTB->Cases) 9965 CurMF->insert(BBI, BTC.ThisBB); 9966 9967 // Fill in fields of the BitTestBlock. 9968 BTB->Parent = CurMBB; 9969 BTB->Default = Fallthrough; 9970 9971 BTB->DefaultProb = UnhandledProbs; 9972 // If the cases in bit test don't form a contiguous range, we evenly 9973 // distribute the probability on the edge to Fallthrough to two 9974 // successors of CurMBB. 9975 if (!BTB->ContiguousRange) { 9976 BTB->Prob += DefaultProb / 2; 9977 BTB->DefaultProb -= DefaultProb / 2; 9978 } 9979 9980 // If we're in the right place, emit the bit test header right now. 9981 if (CurMBB == SwitchMBB) { 9982 visitBitTestHeader(*BTB, SwitchMBB); 9983 BTB->Emitted = true; 9984 } 9985 break; 9986 } 9987 case CC_Range: { 9988 const Value *RHS, *LHS, *MHS; 9989 ISD::CondCode CC; 9990 if (I->Low == I->High) { 9991 // Check Cond == I->Low. 9992 CC = ISD::SETEQ; 9993 LHS = Cond; 9994 RHS=I->Low; 9995 MHS = nullptr; 9996 } else { 9997 // Check I->Low <= Cond <= I->High. 9998 CC = ISD::SETLE; 9999 LHS = I->Low; 10000 MHS = Cond; 10001 RHS = I->High; 10002 } 10003 10004 // The false probability is the sum of all unhandled cases. 10005 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10006 getCurSDLoc(), I->Prob, UnhandledProbs); 10007 10008 if (CurMBB == SwitchMBB) 10009 visitSwitchCase(CB, SwitchMBB); 10010 else 10011 SwitchCases.push_back(CB); 10012 10013 break; 10014 } 10015 } 10016 CurMBB = Fallthrough; 10017 } 10018 } 10019 10020 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10021 CaseClusterIt First, 10022 CaseClusterIt Last) { 10023 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10024 if (X.Prob != CC.Prob) 10025 return X.Prob > CC.Prob; 10026 10027 // Ties are broken by comparing the case value. 10028 return X.Low->getValue().slt(CC.Low->getValue()); 10029 }); 10030 } 10031 10032 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10033 const SwitchWorkListItem &W, 10034 Value *Cond, 10035 MachineBasicBlock *SwitchMBB) { 10036 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10037 "Clusters not sorted?"); 10038 10039 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10040 10041 // Balance the tree based on branch probabilities to create a near-optimal (in 10042 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10043 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10044 CaseClusterIt LastLeft = W.FirstCluster; 10045 CaseClusterIt FirstRight = W.LastCluster; 10046 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10047 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10048 10049 // Move LastLeft and FirstRight towards each other from opposite directions to 10050 // find a partitioning of the clusters which balances the probability on both 10051 // sides. If LeftProb and RightProb are equal, alternate which side is 10052 // taken to ensure 0-probability nodes are distributed evenly. 10053 unsigned I = 0; 10054 while (LastLeft + 1 < FirstRight) { 10055 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10056 LeftProb += (++LastLeft)->Prob; 10057 else 10058 RightProb += (--FirstRight)->Prob; 10059 I++; 10060 } 10061 10062 while (true) { 10063 // Our binary search tree differs from a typical BST in that ours can have up 10064 // to three values in each leaf. The pivot selection above doesn't take that 10065 // into account, which means the tree might require more nodes and be less 10066 // efficient. We compensate for this here. 10067 10068 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10069 unsigned NumRight = W.LastCluster - FirstRight + 1; 10070 10071 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10072 // If one side has less than 3 clusters, and the other has more than 3, 10073 // consider taking a cluster from the other side. 10074 10075 if (NumLeft < NumRight) { 10076 // Consider moving the first cluster on the right to the left side. 10077 CaseCluster &CC = *FirstRight; 10078 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10079 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10080 if (LeftSideRank <= RightSideRank) { 10081 // Moving the cluster to the left does not demote it. 10082 ++LastLeft; 10083 ++FirstRight; 10084 continue; 10085 } 10086 } else { 10087 assert(NumRight < NumLeft); 10088 // Consider moving the last element on the left to the right side. 10089 CaseCluster &CC = *LastLeft; 10090 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10091 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10092 if (RightSideRank <= LeftSideRank) { 10093 // Moving the cluster to the right does not demot it. 10094 --LastLeft; 10095 --FirstRight; 10096 continue; 10097 } 10098 } 10099 } 10100 break; 10101 } 10102 10103 assert(LastLeft + 1 == FirstRight); 10104 assert(LastLeft >= W.FirstCluster); 10105 assert(FirstRight <= W.LastCluster); 10106 10107 // Use the first element on the right as pivot since we will make less-than 10108 // comparisons against it. 10109 CaseClusterIt PivotCluster = FirstRight; 10110 assert(PivotCluster > W.FirstCluster); 10111 assert(PivotCluster <= W.LastCluster); 10112 10113 CaseClusterIt FirstLeft = W.FirstCluster; 10114 CaseClusterIt LastRight = W.LastCluster; 10115 10116 const ConstantInt *Pivot = PivotCluster->Low; 10117 10118 // New blocks will be inserted immediately after the current one. 10119 MachineFunction::iterator BBI(W.MBB); 10120 ++BBI; 10121 10122 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10123 // we can branch to its destination directly if it's squeezed exactly in 10124 // between the known lower bound and Pivot - 1. 10125 MachineBasicBlock *LeftMBB; 10126 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10127 FirstLeft->Low == W.GE && 10128 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10129 LeftMBB = FirstLeft->MBB; 10130 } else { 10131 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10132 FuncInfo.MF->insert(BBI, LeftMBB); 10133 WorkList.push_back( 10134 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10135 // Put Cond in a virtual register to make it available from the new blocks. 10136 ExportFromCurrentBlock(Cond); 10137 } 10138 10139 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10140 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10141 // directly if RHS.High equals the current upper bound. 10142 MachineBasicBlock *RightMBB; 10143 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10144 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10145 RightMBB = FirstRight->MBB; 10146 } else { 10147 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10148 FuncInfo.MF->insert(BBI, RightMBB); 10149 WorkList.push_back( 10150 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10151 // Put Cond in a virtual register to make it available from the new blocks. 10152 ExportFromCurrentBlock(Cond); 10153 } 10154 10155 // Create the CaseBlock record that will be used to lower the branch. 10156 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10157 getCurSDLoc(), LeftProb, RightProb); 10158 10159 if (W.MBB == SwitchMBB) 10160 visitSwitchCase(CB, SwitchMBB); 10161 else 10162 SwitchCases.push_back(CB); 10163 } 10164 10165 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10166 // from the swith statement. 10167 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10168 BranchProbability PeeledCaseProb) { 10169 if (PeeledCaseProb == BranchProbability::getOne()) 10170 return BranchProbability::getZero(); 10171 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10172 10173 uint32_t Numerator = CaseProb.getNumerator(); 10174 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10175 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10176 } 10177 10178 // Try to peel the top probability case if it exceeds the threshold. 10179 // Return current MachineBasicBlock for the switch statement if the peeling 10180 // does not occur. 10181 // If the peeling is performed, return the newly created MachineBasicBlock 10182 // for the peeled switch statement. Also update Clusters to remove the peeled 10183 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10184 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10185 const SwitchInst &SI, CaseClusterVector &Clusters, 10186 BranchProbability &PeeledCaseProb) { 10187 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10188 // Don't perform if there is only one cluster or optimizing for size. 10189 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10190 TM.getOptLevel() == CodeGenOpt::None || 10191 SwitchMBB->getParent()->getFunction().optForMinSize()) 10192 return SwitchMBB; 10193 10194 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10195 unsigned PeeledCaseIndex = 0; 10196 bool SwitchPeeled = false; 10197 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10198 CaseCluster &CC = Clusters[Index]; 10199 if (CC.Prob < TopCaseProb) 10200 continue; 10201 TopCaseProb = CC.Prob; 10202 PeeledCaseIndex = Index; 10203 SwitchPeeled = true; 10204 } 10205 if (!SwitchPeeled) 10206 return SwitchMBB; 10207 10208 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10209 << TopCaseProb << "\n"); 10210 10211 // Record the MBB for the peeled switch statement. 10212 MachineFunction::iterator BBI(SwitchMBB); 10213 ++BBI; 10214 MachineBasicBlock *PeeledSwitchMBB = 10215 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10216 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10217 10218 ExportFromCurrentBlock(SI.getCondition()); 10219 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10220 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10221 nullptr, nullptr, TopCaseProb.getCompl()}; 10222 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10223 10224 Clusters.erase(PeeledCaseIt); 10225 for (CaseCluster &CC : Clusters) { 10226 LLVM_DEBUG( 10227 dbgs() << "Scale the probablity for one cluster, before scaling: " 10228 << CC.Prob << "\n"); 10229 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10230 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10231 } 10232 PeeledCaseProb = TopCaseProb; 10233 return PeeledSwitchMBB; 10234 } 10235 10236 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10237 // Extract cases from the switch. 10238 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10239 CaseClusterVector Clusters; 10240 Clusters.reserve(SI.getNumCases()); 10241 for (auto I : SI.cases()) { 10242 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10243 const ConstantInt *CaseVal = I.getCaseValue(); 10244 BranchProbability Prob = 10245 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10246 : BranchProbability(1, SI.getNumCases() + 1); 10247 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10248 } 10249 10250 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10251 10252 // Cluster adjacent cases with the same destination. We do this at all 10253 // optimization levels because it's cheap to do and will make codegen faster 10254 // if there are many clusters. 10255 sortAndRangeify(Clusters); 10256 10257 if (TM.getOptLevel() != CodeGenOpt::None) { 10258 // Replace an unreachable default with the most popular destination. 10259 // FIXME: Exploit unreachable default more aggressively. 10260 bool UnreachableDefault = 10261 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10262 if (UnreachableDefault && !Clusters.empty()) { 10263 DenseMap<const BasicBlock *, unsigned> Popularity; 10264 unsigned MaxPop = 0; 10265 const BasicBlock *MaxBB = nullptr; 10266 for (auto I : SI.cases()) { 10267 const BasicBlock *BB = I.getCaseSuccessor(); 10268 if (++Popularity[BB] > MaxPop) { 10269 MaxPop = Popularity[BB]; 10270 MaxBB = BB; 10271 } 10272 } 10273 // Set new default. 10274 assert(MaxPop > 0 && MaxBB); 10275 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10276 10277 // Remove cases that were pointing to the destination that is now the 10278 // default. 10279 CaseClusterVector New; 10280 New.reserve(Clusters.size()); 10281 for (CaseCluster &CC : Clusters) { 10282 if (CC.MBB != DefaultMBB) 10283 New.push_back(CC); 10284 } 10285 Clusters = std::move(New); 10286 } 10287 } 10288 10289 // The branch probablity of the peeled case. 10290 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10291 MachineBasicBlock *PeeledSwitchMBB = 10292 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10293 10294 // If there is only the default destination, jump there directly. 10295 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10296 if (Clusters.empty()) { 10297 assert(PeeledSwitchMBB == SwitchMBB); 10298 SwitchMBB->addSuccessor(DefaultMBB); 10299 if (DefaultMBB != NextBlock(SwitchMBB)) { 10300 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10301 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10302 } 10303 return; 10304 } 10305 10306 findJumpTables(Clusters, &SI, DefaultMBB); 10307 findBitTestClusters(Clusters, &SI); 10308 10309 LLVM_DEBUG({ 10310 dbgs() << "Case clusters: "; 10311 for (const CaseCluster &C : Clusters) { 10312 if (C.Kind == CC_JumpTable) 10313 dbgs() << "JT:"; 10314 if (C.Kind == CC_BitTests) 10315 dbgs() << "BT:"; 10316 10317 C.Low->getValue().print(dbgs(), true); 10318 if (C.Low != C.High) { 10319 dbgs() << '-'; 10320 C.High->getValue().print(dbgs(), true); 10321 } 10322 dbgs() << ' '; 10323 } 10324 dbgs() << '\n'; 10325 }); 10326 10327 assert(!Clusters.empty()); 10328 SwitchWorkList WorkList; 10329 CaseClusterIt First = Clusters.begin(); 10330 CaseClusterIt Last = Clusters.end() - 1; 10331 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10332 // Scale the branchprobability for DefaultMBB if the peel occurs and 10333 // DefaultMBB is not replaced. 10334 if (PeeledCaseProb != BranchProbability::getZero() && 10335 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10336 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10337 WorkList.push_back( 10338 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10339 10340 while (!WorkList.empty()) { 10341 SwitchWorkListItem W = WorkList.back(); 10342 WorkList.pop_back(); 10343 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10344 10345 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10346 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10347 // For optimized builds, lower large range as a balanced binary tree. 10348 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10349 continue; 10350 } 10351 10352 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10353 } 10354 } 10355