1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsSEH = isAsynchronousEHPersonality(Pers); 1182 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1183 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1184 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1185 if (IsMSVCCXX || IsCoreCLR) 1186 CatchPadMBB->setIsEHFuncletEntry(); 1187 1188 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1189 1190 // Update machine-CFG edge. 1191 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1192 1193 // CatchPads in SEH are not funclets, they are merely markers which indicate 1194 // where to insert register restoration code. 1195 if (IsSEH) { 1196 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1197 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1198 DAG.getBasicBlock(&FuncInfo.MF->front()))); 1199 return; 1200 } 1201 1202 // If this is not a fall-through branch or optimizations are switched off, 1203 // emit the branch. 1204 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1205 TM.getOptLevel() == CodeGenOpt::None) 1206 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1207 getControlRoot(), 1208 DAG.getBasicBlock(NormalDestMBB))); 1209 } 1210 1211 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1212 // Update machine-CFG edge. 1213 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1214 FuncInfo.MBB->addSuccessor(TargetMBB); 1215 1216 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1217 bool IsSEH = isAsynchronousEHPersonality(Pers); 1218 if (IsSEH) { 1219 // If this is not a fall-through branch or optimizations are switched off, 1220 // emit the branch. 1221 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1222 TM.getOptLevel() == CodeGenOpt::None) 1223 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1224 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1225 return; 1226 } 1227 1228 // Figure out the funclet membership for the catchret's successor. 1229 // This will be used by the FuncletLayout pass to determine how to order the 1230 // BB's. 1231 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1232 WinEHFuncInfo &EHInfo = 1233 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1234 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1235 assert(SuccessorColor && "No parent funclet for catchret!"); 1236 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1237 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1238 1239 // Create the terminator node. 1240 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1241 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1242 DAG.getBasicBlock(SuccessorColorMBB)); 1243 DAG.setRoot(Ret); 1244 } 1245 1246 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1247 llvm_unreachable("should never codegen catchendpads"); 1248 } 1249 1250 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1251 // Don't emit any special code for the cleanuppad instruction. It just marks 1252 // the start of a funclet. 1253 FuncInfo.MBB->setIsEHFuncletEntry(); 1254 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1255 } 1256 1257 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1258 /// many places it could ultimately go. In the IR, we have a single unwind 1259 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1260 /// This function skips over imaginary basic blocks that hold catchpad, 1261 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1262 /// basic block destinations. As those destinations may not be successors of 1263 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1264 /// passed-in Weight is the edge weight to EHPadBB. 1265 static void findUnwindDestinations( 1266 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1267 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1268 EHPersonality Personality = 1269 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1270 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1271 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1272 1273 while (EHPadBB) { 1274 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1275 BasicBlock *NewEHPadBB = nullptr; 1276 if (isa<LandingPadInst>(Pad)) { 1277 // Stop on landingpads. They are not funclets. 1278 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1279 break; 1280 } else if (isa<CleanupPadInst>(Pad)) { 1281 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1282 // personalities. 1283 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1284 UnwindDests.back().first->setIsEHFuncletEntry(); 1285 break; 1286 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1287 // Add the catchpad handler to the possible destinations. 1288 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1289 // In MSVC C++, catchblocks are funclets and need prologues. 1290 if (IsMSVCCXX || IsCoreCLR) 1291 UnwindDests.back().first->setIsEHFuncletEntry(); 1292 NewEHPadBB = CPI->getUnwindDest(); 1293 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1294 NewEHPadBB = CEPI->getUnwindDest(); 1295 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1296 NewEHPadBB = CEPI->getUnwindDest(); 1297 else 1298 continue; 1299 1300 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1301 if (BPI && NewEHPadBB) { 1302 // When BPI is available, the calculated weight cannot be zero as zero 1303 // will be turned to a default weight in MachineBlockFrequencyInfo. 1304 Weight = std::max<uint32_t>( 1305 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1306 } 1307 EHPadBB = NewEHPadBB; 1308 } 1309 } 1310 1311 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1312 // Update successor info. 1313 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1314 auto UnwindDest = I.getUnwindDest(); 1315 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1316 uint32_t UnwindDestWeight = 1317 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1318 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1319 for (auto &UnwindDest : UnwindDests) { 1320 UnwindDest.first->setIsEHPad(); 1321 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1322 } 1323 1324 // Create the terminator node. 1325 SDValue Ret = 1326 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1327 DAG.setRoot(Ret); 1328 } 1329 1330 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1331 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1332 } 1333 1334 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1335 report_fatal_error("visitTerminatePad not yet implemented!"); 1336 } 1337 1338 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1340 auto &DL = DAG.getDataLayout(); 1341 SDValue Chain = getControlRoot(); 1342 SmallVector<ISD::OutputArg, 8> Outs; 1343 SmallVector<SDValue, 8> OutVals; 1344 1345 if (!FuncInfo.CanLowerReturn) { 1346 unsigned DemoteReg = FuncInfo.DemoteRegister; 1347 const Function *F = I.getParent()->getParent(); 1348 1349 // Emit a store of the return value through the virtual register. 1350 // Leave Outs empty so that LowerReturn won't try to load return 1351 // registers the usual way. 1352 SmallVector<EVT, 1> PtrValueVTs; 1353 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1354 PtrValueVTs); 1355 1356 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1357 SDValue RetOp = getValue(I.getOperand(0)); 1358 1359 SmallVector<EVT, 4> ValueVTs; 1360 SmallVector<uint64_t, 4> Offsets; 1361 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1362 unsigned NumValues = ValueVTs.size(); 1363 1364 SmallVector<SDValue, 4> Chains(NumValues); 1365 for (unsigned i = 0; i != NumValues; ++i) { 1366 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1367 RetPtr.getValueType(), RetPtr, 1368 DAG.getIntPtrConstant(Offsets[i], 1369 getCurSDLoc())); 1370 Chains[i] = 1371 DAG.getStore(Chain, getCurSDLoc(), 1372 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1373 // FIXME: better loc info would be nice. 1374 Add, MachinePointerInfo(), false, false, 0); 1375 } 1376 1377 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1378 MVT::Other, Chains); 1379 } else if (I.getNumOperands() != 0) { 1380 SmallVector<EVT, 4> ValueVTs; 1381 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1382 unsigned NumValues = ValueVTs.size(); 1383 if (NumValues) { 1384 SDValue RetOp = getValue(I.getOperand(0)); 1385 1386 const Function *F = I.getParent()->getParent(); 1387 1388 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1389 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1390 Attribute::SExt)) 1391 ExtendKind = ISD::SIGN_EXTEND; 1392 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1393 Attribute::ZExt)) 1394 ExtendKind = ISD::ZERO_EXTEND; 1395 1396 LLVMContext &Context = F->getContext(); 1397 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1398 Attribute::InReg); 1399 1400 for (unsigned j = 0; j != NumValues; ++j) { 1401 EVT VT = ValueVTs[j]; 1402 1403 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1404 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1405 1406 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1407 MVT PartVT = TLI.getRegisterType(Context, VT); 1408 SmallVector<SDValue, 4> Parts(NumParts); 1409 getCopyToParts(DAG, getCurSDLoc(), 1410 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1411 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1412 1413 // 'inreg' on function refers to return value 1414 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1415 if (RetInReg) 1416 Flags.setInReg(); 1417 1418 // Propagate extension type if any 1419 if (ExtendKind == ISD::SIGN_EXTEND) 1420 Flags.setSExt(); 1421 else if (ExtendKind == ISD::ZERO_EXTEND) 1422 Flags.setZExt(); 1423 1424 for (unsigned i = 0; i < NumParts; ++i) { 1425 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1426 VT, /*isfixed=*/true, 0, 0)); 1427 OutVals.push_back(Parts[i]); 1428 } 1429 } 1430 } 1431 } 1432 1433 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1434 CallingConv::ID CallConv = 1435 DAG.getMachineFunction().getFunction()->getCallingConv(); 1436 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1437 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1438 1439 // Verify that the target's LowerReturn behaved as expected. 1440 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1441 "LowerReturn didn't return a valid chain!"); 1442 1443 // Update the DAG with the new chain value resulting from return lowering. 1444 DAG.setRoot(Chain); 1445 } 1446 1447 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1448 /// created for it, emit nodes to copy the value into the virtual 1449 /// registers. 1450 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1451 // Skip empty types 1452 if (V->getType()->isEmptyTy()) 1453 return; 1454 1455 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1456 if (VMI != FuncInfo.ValueMap.end()) { 1457 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1458 CopyValueToVirtualRegister(V, VMI->second); 1459 } 1460 } 1461 1462 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1463 /// the current basic block, add it to ValueMap now so that we'll get a 1464 /// CopyTo/FromReg. 1465 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1466 // No need to export constants. 1467 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1468 1469 // Already exported? 1470 if (FuncInfo.isExportedInst(V)) return; 1471 1472 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1473 CopyValueToVirtualRegister(V, Reg); 1474 } 1475 1476 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1477 const BasicBlock *FromBB) { 1478 // The operands of the setcc have to be in this block. We don't know 1479 // how to export them from some other block. 1480 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1481 // Can export from current BB. 1482 if (VI->getParent() == FromBB) 1483 return true; 1484 1485 // Is already exported, noop. 1486 return FuncInfo.isExportedInst(V); 1487 } 1488 1489 // If this is an argument, we can export it if the BB is the entry block or 1490 // if it is already exported. 1491 if (isa<Argument>(V)) { 1492 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1493 return true; 1494 1495 // Otherwise, can only export this if it is already exported. 1496 return FuncInfo.isExportedInst(V); 1497 } 1498 1499 // Otherwise, constants can always be exported. 1500 return true; 1501 } 1502 1503 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1504 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1505 const MachineBasicBlock *Dst) const { 1506 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1507 if (!BPI) 1508 return 0; 1509 const BasicBlock *SrcBB = Src->getBasicBlock(); 1510 const BasicBlock *DstBB = Dst->getBasicBlock(); 1511 return BPI->getEdgeWeight(SrcBB, DstBB); 1512 } 1513 1514 void SelectionDAGBuilder:: 1515 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1516 uint32_t Weight /* = 0 */) { 1517 if (!FuncInfo.BPI) 1518 Src->addSuccessorWithoutWeight(Dst); 1519 else { 1520 if (!Weight) 1521 Weight = getEdgeWeight(Src, Dst); 1522 Src->addSuccessor(Dst, Weight); 1523 } 1524 } 1525 1526 1527 static bool InBlock(const Value *V, const BasicBlock *BB) { 1528 if (const Instruction *I = dyn_cast<Instruction>(V)) 1529 return I->getParent() == BB; 1530 return true; 1531 } 1532 1533 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1534 /// This function emits a branch and is used at the leaves of an OR or an 1535 /// AND operator tree. 1536 /// 1537 void 1538 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1539 MachineBasicBlock *TBB, 1540 MachineBasicBlock *FBB, 1541 MachineBasicBlock *CurBB, 1542 MachineBasicBlock *SwitchBB, 1543 uint32_t TWeight, 1544 uint32_t FWeight) { 1545 const BasicBlock *BB = CurBB->getBasicBlock(); 1546 1547 // If the leaf of the tree is a comparison, merge the condition into 1548 // the caseblock. 1549 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1550 // The operands of the cmp have to be in this block. We don't know 1551 // how to export them from some other block. If this is the first block 1552 // of the sequence, no exporting is needed. 1553 if (CurBB == SwitchBB || 1554 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1555 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1556 ISD::CondCode Condition; 1557 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1558 Condition = getICmpCondCode(IC->getPredicate()); 1559 } else { 1560 const FCmpInst *FC = cast<FCmpInst>(Cond); 1561 Condition = getFCmpCondCode(FC->getPredicate()); 1562 if (TM.Options.NoNaNsFPMath) 1563 Condition = getFCmpCodeWithoutNaN(Condition); 1564 } 1565 1566 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1567 TBB, FBB, CurBB, TWeight, FWeight); 1568 SwitchCases.push_back(CB); 1569 return; 1570 } 1571 } 1572 1573 // Create a CaseBlock record representing this branch. 1574 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1575 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1576 SwitchCases.push_back(CB); 1577 } 1578 1579 /// Scale down both weights to fit into uint32_t. 1580 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1581 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1582 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1583 NewTrue = NewTrue / Scale; 1584 NewFalse = NewFalse / Scale; 1585 } 1586 1587 /// FindMergedConditions - If Cond is an expression like 1588 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1589 MachineBasicBlock *TBB, 1590 MachineBasicBlock *FBB, 1591 MachineBasicBlock *CurBB, 1592 MachineBasicBlock *SwitchBB, 1593 Instruction::BinaryOps Opc, 1594 uint32_t TWeight, 1595 uint32_t FWeight) { 1596 // If this node is not part of the or/and tree, emit it as a branch. 1597 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1598 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1599 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1600 BOp->getParent() != CurBB->getBasicBlock() || 1601 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1602 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1603 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1604 TWeight, FWeight); 1605 return; 1606 } 1607 1608 // Create TmpBB after CurBB. 1609 MachineFunction::iterator BBI(CurBB); 1610 MachineFunction &MF = DAG.getMachineFunction(); 1611 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1612 CurBB->getParent()->insert(++BBI, TmpBB); 1613 1614 if (Opc == Instruction::Or) { 1615 // Codegen X | Y as: 1616 // BB1: 1617 // jmp_if_X TBB 1618 // jmp TmpBB 1619 // TmpBB: 1620 // jmp_if_Y TBB 1621 // jmp FBB 1622 // 1623 1624 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1625 // The requirement is that 1626 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1627 // = TrueProb for original BB. 1628 // Assuming the original weights are A and B, one choice is to set BB1's 1629 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1630 // assumes that 1631 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1632 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1633 // TmpBB, but the math is more complicated. 1634 1635 uint64_t NewTrueWeight = TWeight; 1636 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1637 ScaleWeights(NewTrueWeight, NewFalseWeight); 1638 // Emit the LHS condition. 1639 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1640 NewTrueWeight, NewFalseWeight); 1641 1642 NewTrueWeight = TWeight; 1643 NewFalseWeight = 2 * (uint64_t)FWeight; 1644 ScaleWeights(NewTrueWeight, NewFalseWeight); 1645 // Emit the RHS condition into TmpBB. 1646 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1647 NewTrueWeight, NewFalseWeight); 1648 } else { 1649 assert(Opc == Instruction::And && "Unknown merge op!"); 1650 // Codegen X & Y as: 1651 // BB1: 1652 // jmp_if_X TmpBB 1653 // jmp FBB 1654 // TmpBB: 1655 // jmp_if_Y TBB 1656 // jmp FBB 1657 // 1658 // This requires creation of TmpBB after CurBB. 1659 1660 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1661 // The requirement is that 1662 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1663 // = FalseProb for original BB. 1664 // Assuming the original weights are A and B, one choice is to set BB1's 1665 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1666 // assumes that 1667 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1668 1669 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1670 uint64_t NewFalseWeight = FWeight; 1671 ScaleWeights(NewTrueWeight, NewFalseWeight); 1672 // Emit the LHS condition. 1673 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1674 NewTrueWeight, NewFalseWeight); 1675 1676 NewTrueWeight = 2 * (uint64_t)TWeight; 1677 NewFalseWeight = FWeight; 1678 ScaleWeights(NewTrueWeight, NewFalseWeight); 1679 // Emit the RHS condition into TmpBB. 1680 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1681 NewTrueWeight, NewFalseWeight); 1682 } 1683 } 1684 1685 /// If the set of cases should be emitted as a series of branches, return true. 1686 /// If we should emit this as a bunch of and/or'd together conditions, return 1687 /// false. 1688 bool 1689 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1690 if (Cases.size() != 2) return true; 1691 1692 // If this is two comparisons of the same values or'd or and'd together, they 1693 // will get folded into a single comparison, so don't emit two blocks. 1694 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1695 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1696 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1697 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1698 return false; 1699 } 1700 1701 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1702 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1703 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1704 Cases[0].CC == Cases[1].CC && 1705 isa<Constant>(Cases[0].CmpRHS) && 1706 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1707 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1708 return false; 1709 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1710 return false; 1711 } 1712 1713 return true; 1714 } 1715 1716 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1717 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1718 1719 // Update machine-CFG edges. 1720 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1721 1722 if (I.isUnconditional()) { 1723 // Update machine-CFG edges. 1724 BrMBB->addSuccessor(Succ0MBB); 1725 1726 // If this is not a fall-through branch or optimizations are switched off, 1727 // emit the branch. 1728 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1729 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1730 MVT::Other, getControlRoot(), 1731 DAG.getBasicBlock(Succ0MBB))); 1732 1733 return; 1734 } 1735 1736 // If this condition is one of the special cases we handle, do special stuff 1737 // now. 1738 const Value *CondVal = I.getCondition(); 1739 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1740 1741 // If this is a series of conditions that are or'd or and'd together, emit 1742 // this as a sequence of branches instead of setcc's with and/or operations. 1743 // As long as jumps are not expensive, this should improve performance. 1744 // For example, instead of something like: 1745 // cmp A, B 1746 // C = seteq 1747 // cmp D, E 1748 // F = setle 1749 // or C, F 1750 // jnz foo 1751 // Emit: 1752 // cmp A, B 1753 // je foo 1754 // cmp D, E 1755 // jle foo 1756 // 1757 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1758 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1759 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1760 !I.getMetadata(LLVMContext::MD_unpredictable) && 1761 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1762 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1763 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1764 getEdgeWeight(BrMBB, Succ1MBB)); 1765 // If the compares in later blocks need to use values not currently 1766 // exported from this block, export them now. This block should always 1767 // be the first entry. 1768 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1769 1770 // Allow some cases to be rejected. 1771 if (ShouldEmitAsBranches(SwitchCases)) { 1772 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1773 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1774 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1775 } 1776 1777 // Emit the branch for this block. 1778 visitSwitchCase(SwitchCases[0], BrMBB); 1779 SwitchCases.erase(SwitchCases.begin()); 1780 return; 1781 } 1782 1783 // Okay, we decided not to do this, remove any inserted MBB's and clear 1784 // SwitchCases. 1785 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1786 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1787 1788 SwitchCases.clear(); 1789 } 1790 } 1791 1792 // Create a CaseBlock record representing this branch. 1793 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1794 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1795 1796 // Use visitSwitchCase to actually insert the fast branch sequence for this 1797 // cond branch. 1798 visitSwitchCase(CB, BrMBB); 1799 } 1800 1801 /// visitSwitchCase - Emits the necessary code to represent a single node in 1802 /// the binary search tree resulting from lowering a switch instruction. 1803 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1804 MachineBasicBlock *SwitchBB) { 1805 SDValue Cond; 1806 SDValue CondLHS = getValue(CB.CmpLHS); 1807 SDLoc dl = getCurSDLoc(); 1808 1809 // Build the setcc now. 1810 if (!CB.CmpMHS) { 1811 // Fold "(X == true)" to X and "(X == false)" to !X to 1812 // handle common cases produced by branch lowering. 1813 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1814 CB.CC == ISD::SETEQ) 1815 Cond = CondLHS; 1816 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1817 CB.CC == ISD::SETEQ) { 1818 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1819 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1820 } else 1821 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1822 } else { 1823 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1824 1825 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1826 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1827 1828 SDValue CmpOp = getValue(CB.CmpMHS); 1829 EVT VT = CmpOp.getValueType(); 1830 1831 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1832 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1833 ISD::SETLE); 1834 } else { 1835 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1836 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1837 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1838 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1839 } 1840 } 1841 1842 // Update successor info 1843 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1844 // TrueBB and FalseBB are always different unless the incoming IR is 1845 // degenerate. This only happens when running llc on weird IR. 1846 if (CB.TrueBB != CB.FalseBB) 1847 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1848 1849 // If the lhs block is the next block, invert the condition so that we can 1850 // fall through to the lhs instead of the rhs block. 1851 if (CB.TrueBB == NextBlock(SwitchBB)) { 1852 std::swap(CB.TrueBB, CB.FalseBB); 1853 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1854 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1855 } 1856 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1858 MVT::Other, getControlRoot(), Cond, 1859 DAG.getBasicBlock(CB.TrueBB)); 1860 1861 // Insert the false branch. Do this even if it's a fall through branch, 1862 // this makes it easier to do DAG optimizations which require inverting 1863 // the branch condition. 1864 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1865 DAG.getBasicBlock(CB.FalseBB)); 1866 1867 DAG.setRoot(BrCond); 1868 } 1869 1870 /// visitJumpTable - Emit JumpTable node in the current MBB 1871 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1872 // Emit the code for the jump table 1873 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1874 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1875 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1876 JT.Reg, PTy); 1877 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1878 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1879 MVT::Other, Index.getValue(1), 1880 Table, Index); 1881 DAG.setRoot(BrJumpTable); 1882 } 1883 1884 /// visitJumpTableHeader - This function emits necessary code to produce index 1885 /// in the JumpTable from switch case. 1886 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1887 JumpTableHeader &JTH, 1888 MachineBasicBlock *SwitchBB) { 1889 SDLoc dl = getCurSDLoc(); 1890 1891 // Subtract the lowest switch case value from the value being switched on and 1892 // conditional branch to default mbb if the result is greater than the 1893 // difference between smallest and largest cases. 1894 SDValue SwitchOp = getValue(JTH.SValue); 1895 EVT VT = SwitchOp.getValueType(); 1896 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1897 DAG.getConstant(JTH.First, dl, VT)); 1898 1899 // The SDNode we just created, which holds the value being switched on minus 1900 // the smallest case value, needs to be copied to a virtual register so it 1901 // can be used as an index into the jump table in a subsequent basic block. 1902 // This value may be smaller or larger than the target's pointer type, and 1903 // therefore require extension or truncating. 1904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1905 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1906 1907 unsigned JumpTableReg = 1908 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1909 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1910 JumpTableReg, SwitchOp); 1911 JT.Reg = JumpTableReg; 1912 1913 // Emit the range check for the jump table, and branch to the default block 1914 // for the switch statement if the value being switched on exceeds the largest 1915 // case in the switch. 1916 SDValue CMP = DAG.getSetCC( 1917 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1918 Sub.getValueType()), 1919 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1920 1921 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1922 MVT::Other, CopyTo, CMP, 1923 DAG.getBasicBlock(JT.Default)); 1924 1925 // Avoid emitting unnecessary branches to the next block. 1926 if (JT.MBB != NextBlock(SwitchBB)) 1927 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1928 DAG.getBasicBlock(JT.MBB)); 1929 1930 DAG.setRoot(BrCond); 1931 } 1932 1933 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1934 /// tail spliced into a stack protector check success bb. 1935 /// 1936 /// For a high level explanation of how this fits into the stack protector 1937 /// generation see the comment on the declaration of class 1938 /// StackProtectorDescriptor. 1939 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1940 MachineBasicBlock *ParentBB) { 1941 1942 // First create the loads to the guard/stack slot for the comparison. 1943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1944 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1945 1946 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1947 int FI = MFI->getStackProtectorIndex(); 1948 1949 const Value *IRGuard = SPD.getGuard(); 1950 SDValue GuardPtr = getValue(IRGuard); 1951 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1952 1953 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1954 1955 SDValue Guard; 1956 SDLoc dl = getCurSDLoc(); 1957 1958 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1959 // guard value from the virtual register holding the value. Otherwise, emit a 1960 // volatile load to retrieve the stack guard value. 1961 unsigned GuardReg = SPD.getGuardReg(); 1962 1963 if (GuardReg && TLI.useLoadStackGuardNode()) 1964 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1965 PtrTy); 1966 else 1967 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1968 GuardPtr, MachinePointerInfo(IRGuard, 0), 1969 true, false, false, Align); 1970 1971 SDValue StackSlot = DAG.getLoad( 1972 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1973 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1974 false, false, Align); 1975 1976 // Perform the comparison via a subtract/getsetcc. 1977 EVT VT = Guard.getValueType(); 1978 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1979 1980 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1981 *DAG.getContext(), 1982 Sub.getValueType()), 1983 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1984 1985 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1986 // branch to failure MBB. 1987 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1988 MVT::Other, StackSlot.getOperand(0), 1989 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1990 // Otherwise branch to success MBB. 1991 SDValue Br = DAG.getNode(ISD::BR, dl, 1992 MVT::Other, BrCond, 1993 DAG.getBasicBlock(SPD.getSuccessMBB())); 1994 1995 DAG.setRoot(Br); 1996 } 1997 1998 /// Codegen the failure basic block for a stack protector check. 1999 /// 2000 /// A failure stack protector machine basic block consists simply of a call to 2001 /// __stack_chk_fail(). 2002 /// 2003 /// For a high level explanation of how this fits into the stack protector 2004 /// generation see the comment on the declaration of class 2005 /// StackProtectorDescriptor. 2006 void 2007 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 SDValue Chain = 2010 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2011 None, false, getCurSDLoc(), false, false).second; 2012 DAG.setRoot(Chain); 2013 } 2014 2015 /// visitBitTestHeader - This function emits necessary code to produce value 2016 /// suitable for "bit tests" 2017 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2018 MachineBasicBlock *SwitchBB) { 2019 SDLoc dl = getCurSDLoc(); 2020 2021 // Subtract the minimum value 2022 SDValue SwitchOp = getValue(B.SValue); 2023 EVT VT = SwitchOp.getValueType(); 2024 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2025 DAG.getConstant(B.First, dl, VT)); 2026 2027 // Check range 2028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2029 SDValue RangeCmp = DAG.getSetCC( 2030 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2031 Sub.getValueType()), 2032 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2033 2034 // Determine the type of the test operands. 2035 bool UsePtrType = false; 2036 if (!TLI.isTypeLegal(VT)) 2037 UsePtrType = true; 2038 else { 2039 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2040 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2041 // Switch table case range are encoded into series of masks. 2042 // Just use pointer type, it's guaranteed to fit. 2043 UsePtrType = true; 2044 break; 2045 } 2046 } 2047 if (UsePtrType) { 2048 VT = TLI.getPointerTy(DAG.getDataLayout()); 2049 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2050 } 2051 2052 B.RegVT = VT.getSimpleVT(); 2053 B.Reg = FuncInfo.CreateReg(B.RegVT); 2054 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2055 2056 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2057 2058 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2059 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2060 2061 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2062 MVT::Other, CopyTo, RangeCmp, 2063 DAG.getBasicBlock(B.Default)); 2064 2065 // Avoid emitting unnecessary branches to the next block. 2066 if (MBB != NextBlock(SwitchBB)) 2067 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2068 DAG.getBasicBlock(MBB)); 2069 2070 DAG.setRoot(BrRange); 2071 } 2072 2073 /// visitBitTestCase - this function produces one "bit test" 2074 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2075 MachineBasicBlock* NextMBB, 2076 uint32_t BranchWeightToNext, 2077 unsigned Reg, 2078 BitTestCase &B, 2079 MachineBasicBlock *SwitchBB) { 2080 SDLoc dl = getCurSDLoc(); 2081 MVT VT = BB.RegVT; 2082 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2083 SDValue Cmp; 2084 unsigned PopCount = countPopulation(B.Mask); 2085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2086 if (PopCount == 1) { 2087 // Testing for a single bit; just compare the shift count with what it 2088 // would need to be to shift a 1 bit in that position. 2089 Cmp = DAG.getSetCC( 2090 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2091 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2092 ISD::SETEQ); 2093 } else if (PopCount == BB.Range) { 2094 // There is only one zero bit in the range, test for it directly. 2095 Cmp = DAG.getSetCC( 2096 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2097 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2098 ISD::SETNE); 2099 } else { 2100 // Make desired shift 2101 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2102 DAG.getConstant(1, dl, VT), ShiftOp); 2103 2104 // Emit bit tests and jumps 2105 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2106 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2107 Cmp = DAG.getSetCC( 2108 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2109 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2110 } 2111 2112 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2113 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2114 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2115 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2116 2117 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2118 MVT::Other, getControlRoot(), 2119 Cmp, DAG.getBasicBlock(B.TargetBB)); 2120 2121 // Avoid emitting unnecessary branches to the next block. 2122 if (NextMBB != NextBlock(SwitchBB)) 2123 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2124 DAG.getBasicBlock(NextMBB)); 2125 2126 DAG.setRoot(BrAnd); 2127 } 2128 2129 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2130 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2131 2132 // Retrieve successors. Look through artificial IR level blocks like catchpads 2133 // and catchendpads for successors. 2134 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2135 const BasicBlock *EHPadBB = I.getSuccessor(1); 2136 2137 const Value *Callee(I.getCalledValue()); 2138 const Function *Fn = dyn_cast<Function>(Callee); 2139 if (isa<InlineAsm>(Callee)) 2140 visitInlineAsm(&I); 2141 else if (Fn && Fn->isIntrinsic()) { 2142 switch (Fn->getIntrinsicID()) { 2143 default: 2144 llvm_unreachable("Cannot invoke this intrinsic"); 2145 case Intrinsic::donothing: 2146 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2147 break; 2148 case Intrinsic::experimental_patchpoint_void: 2149 case Intrinsic::experimental_patchpoint_i64: 2150 visitPatchpoint(&I, EHPadBB); 2151 break; 2152 case Intrinsic::experimental_gc_statepoint: 2153 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2154 break; 2155 } 2156 } else 2157 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2158 2159 // If the value of the invoke is used outside of its defining block, make it 2160 // available as a virtual register. 2161 // We already took care of the exported value for the statepoint instruction 2162 // during call to the LowerStatepoint. 2163 if (!isStatepoint(I)) { 2164 CopyToExportRegsIfNeeded(&I); 2165 } 2166 2167 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2168 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2169 uint32_t EHPadBBWeight = 2170 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2171 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2172 2173 // Update successor info. 2174 addSuccessorWithWeight(InvokeMBB, Return); 2175 for (auto &UnwindDest : UnwindDests) { 2176 UnwindDest.first->setIsEHPad(); 2177 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2178 } 2179 2180 // Drop into normal successor. 2181 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2182 MVT::Other, getControlRoot(), 2183 DAG.getBasicBlock(Return))); 2184 } 2185 2186 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2187 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2188 } 2189 2190 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2191 assert(FuncInfo.MBB->isEHPad() && 2192 "Call to landingpad not in landing pad!"); 2193 2194 MachineBasicBlock *MBB = FuncInfo.MBB; 2195 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2196 AddLandingPadInfo(LP, MMI, MBB); 2197 2198 // If there aren't registers to copy the values into (e.g., during SjLj 2199 // exceptions), then don't bother to create these DAG nodes. 2200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2201 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2202 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2203 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2204 return; 2205 2206 SmallVector<EVT, 2> ValueVTs; 2207 SDLoc dl = getCurSDLoc(); 2208 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2209 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2210 2211 // Get the two live-in registers as SDValues. The physregs have already been 2212 // copied into virtual registers. 2213 SDValue Ops[2]; 2214 if (FuncInfo.ExceptionPointerVirtReg) { 2215 Ops[0] = DAG.getZExtOrTrunc( 2216 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2217 FuncInfo.ExceptionPointerVirtReg, 2218 TLI.getPointerTy(DAG.getDataLayout())), 2219 dl, ValueVTs[0]); 2220 } else { 2221 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2222 } 2223 Ops[1] = DAG.getZExtOrTrunc( 2224 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2225 FuncInfo.ExceptionSelectorVirtReg, 2226 TLI.getPointerTy(DAG.getDataLayout())), 2227 dl, ValueVTs[1]); 2228 2229 // Merge into one. 2230 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2231 DAG.getVTList(ValueVTs), Ops); 2232 setValue(&LP, Res); 2233 } 2234 2235 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2236 #ifndef NDEBUG 2237 for (const CaseCluster &CC : Clusters) 2238 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2239 #endif 2240 2241 std::sort(Clusters.begin(), Clusters.end(), 2242 [](const CaseCluster &a, const CaseCluster &b) { 2243 return a.Low->getValue().slt(b.Low->getValue()); 2244 }); 2245 2246 // Merge adjacent clusters with the same destination. 2247 const unsigned N = Clusters.size(); 2248 unsigned DstIndex = 0; 2249 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2250 CaseCluster &CC = Clusters[SrcIndex]; 2251 const ConstantInt *CaseVal = CC.Low; 2252 MachineBasicBlock *Succ = CC.MBB; 2253 2254 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2255 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2256 // If this case has the same successor and is a neighbour, merge it into 2257 // the previous cluster. 2258 Clusters[DstIndex - 1].High = CaseVal; 2259 Clusters[DstIndex - 1].Weight += CC.Weight; 2260 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2261 } else { 2262 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2263 sizeof(Clusters[SrcIndex])); 2264 } 2265 } 2266 Clusters.resize(DstIndex); 2267 } 2268 2269 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2270 MachineBasicBlock *Last) { 2271 // Update JTCases. 2272 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2273 if (JTCases[i].first.HeaderBB == First) 2274 JTCases[i].first.HeaderBB = Last; 2275 2276 // Update BitTestCases. 2277 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2278 if (BitTestCases[i].Parent == First) 2279 BitTestCases[i].Parent = Last; 2280 } 2281 2282 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2283 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2284 2285 // Update machine-CFG edges with unique successors. 2286 SmallSet<BasicBlock*, 32> Done; 2287 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2288 BasicBlock *BB = I.getSuccessor(i); 2289 bool Inserted = Done.insert(BB).second; 2290 if (!Inserted) 2291 continue; 2292 2293 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2294 addSuccessorWithWeight(IndirectBrMBB, Succ); 2295 } 2296 2297 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2298 MVT::Other, getControlRoot(), 2299 getValue(I.getAddress()))); 2300 } 2301 2302 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2303 if (DAG.getTarget().Options.TrapUnreachable) 2304 DAG.setRoot( 2305 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2306 } 2307 2308 void SelectionDAGBuilder::visitFSub(const User &I) { 2309 // -0.0 - X --> fneg 2310 Type *Ty = I.getType(); 2311 if (isa<Constant>(I.getOperand(0)) && 2312 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2313 SDValue Op2 = getValue(I.getOperand(1)); 2314 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2315 Op2.getValueType(), Op2)); 2316 return; 2317 } 2318 2319 visitBinary(I, ISD::FSUB); 2320 } 2321 2322 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2323 SDValue Op1 = getValue(I.getOperand(0)); 2324 SDValue Op2 = getValue(I.getOperand(1)); 2325 2326 bool nuw = false; 2327 bool nsw = false; 2328 bool exact = false; 2329 FastMathFlags FMF; 2330 2331 if (const OverflowingBinaryOperator *OFBinOp = 2332 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2333 nuw = OFBinOp->hasNoUnsignedWrap(); 2334 nsw = OFBinOp->hasNoSignedWrap(); 2335 } 2336 if (const PossiblyExactOperator *ExactOp = 2337 dyn_cast<const PossiblyExactOperator>(&I)) 2338 exact = ExactOp->isExact(); 2339 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2340 FMF = FPOp->getFastMathFlags(); 2341 2342 SDNodeFlags Flags; 2343 Flags.setExact(exact); 2344 Flags.setNoSignedWrap(nsw); 2345 Flags.setNoUnsignedWrap(nuw); 2346 if (EnableFMFInDAG) { 2347 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2348 Flags.setNoInfs(FMF.noInfs()); 2349 Flags.setNoNaNs(FMF.noNaNs()); 2350 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2351 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2352 } 2353 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2354 Op1, Op2, &Flags); 2355 setValue(&I, BinNodeValue); 2356 } 2357 2358 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2359 SDValue Op1 = getValue(I.getOperand(0)); 2360 SDValue Op2 = getValue(I.getOperand(1)); 2361 2362 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2363 Op2.getValueType(), DAG.getDataLayout()); 2364 2365 // Coerce the shift amount to the right type if we can. 2366 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2367 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2368 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2369 SDLoc DL = getCurSDLoc(); 2370 2371 // If the operand is smaller than the shift count type, promote it. 2372 if (ShiftSize > Op2Size) 2373 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2374 2375 // If the operand is larger than the shift count type but the shift 2376 // count type has enough bits to represent any shift value, truncate 2377 // it now. This is a common case and it exposes the truncate to 2378 // optimization early. 2379 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2380 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2381 // Otherwise we'll need to temporarily settle for some other convenient 2382 // type. Type legalization will make adjustments once the shiftee is split. 2383 else 2384 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2385 } 2386 2387 bool nuw = false; 2388 bool nsw = false; 2389 bool exact = false; 2390 2391 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2392 2393 if (const OverflowingBinaryOperator *OFBinOp = 2394 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2395 nuw = OFBinOp->hasNoUnsignedWrap(); 2396 nsw = OFBinOp->hasNoSignedWrap(); 2397 } 2398 if (const PossiblyExactOperator *ExactOp = 2399 dyn_cast<const PossiblyExactOperator>(&I)) 2400 exact = ExactOp->isExact(); 2401 } 2402 SDNodeFlags Flags; 2403 Flags.setExact(exact); 2404 Flags.setNoSignedWrap(nsw); 2405 Flags.setNoUnsignedWrap(nuw); 2406 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2407 &Flags); 2408 setValue(&I, Res); 2409 } 2410 2411 void SelectionDAGBuilder::visitSDiv(const User &I) { 2412 SDValue Op1 = getValue(I.getOperand(0)); 2413 SDValue Op2 = getValue(I.getOperand(1)); 2414 2415 SDNodeFlags Flags; 2416 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2417 cast<PossiblyExactOperator>(&I)->isExact()); 2418 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2419 Op2, &Flags)); 2420 } 2421 2422 void SelectionDAGBuilder::visitICmp(const User &I) { 2423 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2424 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2425 predicate = IC->getPredicate(); 2426 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2427 predicate = ICmpInst::Predicate(IC->getPredicate()); 2428 SDValue Op1 = getValue(I.getOperand(0)); 2429 SDValue Op2 = getValue(I.getOperand(1)); 2430 ISD::CondCode Opcode = getICmpCondCode(predicate); 2431 2432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2433 I.getType()); 2434 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2435 } 2436 2437 void SelectionDAGBuilder::visitFCmp(const User &I) { 2438 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2439 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2440 predicate = FC->getPredicate(); 2441 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2442 predicate = FCmpInst::Predicate(FC->getPredicate()); 2443 SDValue Op1 = getValue(I.getOperand(0)); 2444 SDValue Op2 = getValue(I.getOperand(1)); 2445 ISD::CondCode Condition = getFCmpCondCode(predicate); 2446 2447 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2448 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2449 // further optimization, but currently FMF is only applicable to binary nodes. 2450 if (TM.Options.NoNaNsFPMath) 2451 Condition = getFCmpCodeWithoutNaN(Condition); 2452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2453 I.getType()); 2454 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2455 } 2456 2457 void SelectionDAGBuilder::visitSelect(const User &I) { 2458 SmallVector<EVT, 4> ValueVTs; 2459 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2460 ValueVTs); 2461 unsigned NumValues = ValueVTs.size(); 2462 if (NumValues == 0) return; 2463 2464 SmallVector<SDValue, 4> Values(NumValues); 2465 SDValue Cond = getValue(I.getOperand(0)); 2466 SDValue LHSVal = getValue(I.getOperand(1)); 2467 SDValue RHSVal = getValue(I.getOperand(2)); 2468 auto BaseOps = {Cond}; 2469 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2470 ISD::VSELECT : ISD::SELECT; 2471 2472 // Min/max matching is only viable if all output VTs are the same. 2473 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2474 EVT VT = ValueVTs[0]; 2475 LLVMContext &Ctx = *DAG.getContext(); 2476 auto &TLI = DAG.getTargetLoweringInfo(); 2477 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2478 VT = TLI.getTypeToTransformTo(Ctx, VT); 2479 2480 Value *LHS, *RHS; 2481 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2482 ISD::NodeType Opc = ISD::DELETED_NODE; 2483 switch (SPR.Flavor) { 2484 case SPF_UMAX: Opc = ISD::UMAX; break; 2485 case SPF_UMIN: Opc = ISD::UMIN; break; 2486 case SPF_SMAX: Opc = ISD::SMAX; break; 2487 case SPF_SMIN: Opc = ISD::SMIN; break; 2488 case SPF_FMINNUM: 2489 switch (SPR.NaNBehavior) { 2490 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2491 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2492 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2493 case SPNB_RETURNS_ANY: 2494 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2495 : ISD::FMINNAN; 2496 break; 2497 } 2498 break; 2499 case SPF_FMAXNUM: 2500 switch (SPR.NaNBehavior) { 2501 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2502 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2503 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2504 case SPNB_RETURNS_ANY: 2505 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2506 : ISD::FMAXNAN; 2507 break; 2508 } 2509 break; 2510 default: break; 2511 } 2512 2513 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2514 // If the underlying comparison instruction is used by any other instruction, 2515 // the consumed instructions won't be destroyed, so it is not profitable 2516 // to convert to a min/max. 2517 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2518 OpCode = Opc; 2519 LHSVal = getValue(LHS); 2520 RHSVal = getValue(RHS); 2521 BaseOps = {}; 2522 } 2523 } 2524 2525 for (unsigned i = 0; i != NumValues; ++i) { 2526 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2527 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2528 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2529 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2530 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2531 Ops); 2532 } 2533 2534 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2535 DAG.getVTList(ValueVTs), Values)); 2536 } 2537 2538 void SelectionDAGBuilder::visitTrunc(const User &I) { 2539 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2540 SDValue N = getValue(I.getOperand(0)); 2541 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2542 I.getType()); 2543 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2544 } 2545 2546 void SelectionDAGBuilder::visitZExt(const User &I) { 2547 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2548 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2549 SDValue N = getValue(I.getOperand(0)); 2550 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2551 I.getType()); 2552 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2553 } 2554 2555 void SelectionDAGBuilder::visitSExt(const User &I) { 2556 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2557 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2558 SDValue N = getValue(I.getOperand(0)); 2559 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2560 I.getType()); 2561 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2562 } 2563 2564 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2565 // FPTrunc is never a no-op cast, no need to check 2566 SDValue N = getValue(I.getOperand(0)); 2567 SDLoc dl = getCurSDLoc(); 2568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2569 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2570 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2571 DAG.getTargetConstant( 2572 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2573 } 2574 2575 void SelectionDAGBuilder::visitFPExt(const User &I) { 2576 // FPExt is never a no-op cast, no need to check 2577 SDValue N = getValue(I.getOperand(0)); 2578 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2579 I.getType()); 2580 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2581 } 2582 2583 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2584 // FPToUI is never a no-op cast, no need to check 2585 SDValue N = getValue(I.getOperand(0)); 2586 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2587 I.getType()); 2588 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2589 } 2590 2591 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2592 // FPToSI is never a no-op cast, no need to check 2593 SDValue N = getValue(I.getOperand(0)); 2594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2595 I.getType()); 2596 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2597 } 2598 2599 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2600 // UIToFP is never a no-op cast, no need to check 2601 SDValue N = getValue(I.getOperand(0)); 2602 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2603 I.getType()); 2604 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2605 } 2606 2607 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2608 // SIToFP is never a no-op cast, no need to check 2609 SDValue N = getValue(I.getOperand(0)); 2610 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2611 I.getType()); 2612 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2613 } 2614 2615 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2616 // What to do depends on the size of the integer and the size of the pointer. 2617 // We can either truncate, zero extend, or no-op, accordingly. 2618 SDValue N = getValue(I.getOperand(0)); 2619 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2620 I.getType()); 2621 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2622 } 2623 2624 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2625 // What to do depends on the size of the integer and the size of the pointer. 2626 // We can either truncate, zero extend, or no-op, accordingly. 2627 SDValue N = getValue(I.getOperand(0)); 2628 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2629 I.getType()); 2630 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2631 } 2632 2633 void SelectionDAGBuilder::visitBitCast(const User &I) { 2634 SDValue N = getValue(I.getOperand(0)); 2635 SDLoc dl = getCurSDLoc(); 2636 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2637 I.getType()); 2638 2639 // BitCast assures us that source and destination are the same size so this is 2640 // either a BITCAST or a no-op. 2641 if (DestVT != N.getValueType()) 2642 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2643 DestVT, N)); // convert types. 2644 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2645 // might fold any kind of constant expression to an integer constant and that 2646 // is not what we are looking for. Only regcognize a bitcast of a genuine 2647 // constant integer as an opaque constant. 2648 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2649 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2650 /*isOpaque*/true)); 2651 else 2652 setValue(&I, N); // noop cast. 2653 } 2654 2655 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2657 const Value *SV = I.getOperand(0); 2658 SDValue N = getValue(SV); 2659 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2660 2661 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2662 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2663 2664 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2665 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2666 2667 setValue(&I, N); 2668 } 2669 2670 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2672 SDValue InVec = getValue(I.getOperand(0)); 2673 SDValue InVal = getValue(I.getOperand(1)); 2674 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2675 TLI.getVectorIdxTy(DAG.getDataLayout())); 2676 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2677 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2678 InVec, InVal, InIdx)); 2679 } 2680 2681 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2683 SDValue InVec = getValue(I.getOperand(0)); 2684 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2685 TLI.getVectorIdxTy(DAG.getDataLayout())); 2686 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2687 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2688 InVec, InIdx)); 2689 } 2690 2691 // Utility for visitShuffleVector - Return true if every element in Mask, 2692 // beginning from position Pos and ending in Pos+Size, falls within the 2693 // specified sequential range [L, L+Pos). or is undef. 2694 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2695 unsigned Pos, unsigned Size, int Low) { 2696 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2697 if (Mask[i] >= 0 && Mask[i] != Low) 2698 return false; 2699 return true; 2700 } 2701 2702 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2703 SDValue Src1 = getValue(I.getOperand(0)); 2704 SDValue Src2 = getValue(I.getOperand(1)); 2705 2706 SmallVector<int, 8> Mask; 2707 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2708 unsigned MaskNumElts = Mask.size(); 2709 2710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2711 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2712 EVT SrcVT = Src1.getValueType(); 2713 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2714 2715 if (SrcNumElts == MaskNumElts) { 2716 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2717 &Mask[0])); 2718 return; 2719 } 2720 2721 // Normalize the shuffle vector since mask and vector length don't match. 2722 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2723 // Mask is longer than the source vectors and is a multiple of the source 2724 // vectors. We can use concatenate vector to make the mask and vectors 2725 // lengths match. 2726 if (SrcNumElts*2 == MaskNumElts) { 2727 // First check for Src1 in low and Src2 in high 2728 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2729 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2730 // The shuffle is concatenating two vectors together. 2731 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2732 VT, Src1, Src2)); 2733 return; 2734 } 2735 // Then check for Src2 in low and Src1 in high 2736 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2737 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2738 // The shuffle is concatenating two vectors together. 2739 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2740 VT, Src2, Src1)); 2741 return; 2742 } 2743 } 2744 2745 // Pad both vectors with undefs to make them the same length as the mask. 2746 unsigned NumConcat = MaskNumElts / SrcNumElts; 2747 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2748 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2749 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2750 2751 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2752 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2753 MOps1[0] = Src1; 2754 MOps2[0] = Src2; 2755 2756 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2757 getCurSDLoc(), VT, MOps1); 2758 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2759 getCurSDLoc(), VT, MOps2); 2760 2761 // Readjust mask for new input vector length. 2762 SmallVector<int, 8> MappedOps; 2763 for (unsigned i = 0; i != MaskNumElts; ++i) { 2764 int Idx = Mask[i]; 2765 if (Idx >= (int)SrcNumElts) 2766 Idx -= SrcNumElts - MaskNumElts; 2767 MappedOps.push_back(Idx); 2768 } 2769 2770 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2771 &MappedOps[0])); 2772 return; 2773 } 2774 2775 if (SrcNumElts > MaskNumElts) { 2776 // Analyze the access pattern of the vector to see if we can extract 2777 // two subvectors and do the shuffle. The analysis is done by calculating 2778 // the range of elements the mask access on both vectors. 2779 int MinRange[2] = { static_cast<int>(SrcNumElts), 2780 static_cast<int>(SrcNumElts)}; 2781 int MaxRange[2] = {-1, -1}; 2782 2783 for (unsigned i = 0; i != MaskNumElts; ++i) { 2784 int Idx = Mask[i]; 2785 unsigned Input = 0; 2786 if (Idx < 0) 2787 continue; 2788 2789 if (Idx >= (int)SrcNumElts) { 2790 Input = 1; 2791 Idx -= SrcNumElts; 2792 } 2793 if (Idx > MaxRange[Input]) 2794 MaxRange[Input] = Idx; 2795 if (Idx < MinRange[Input]) 2796 MinRange[Input] = Idx; 2797 } 2798 2799 // Check if the access is smaller than the vector size and can we find 2800 // a reasonable extract index. 2801 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2802 // Extract. 2803 int StartIdx[2]; // StartIdx to extract from 2804 for (unsigned Input = 0; Input < 2; ++Input) { 2805 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2806 RangeUse[Input] = 0; // Unused 2807 StartIdx[Input] = 0; 2808 continue; 2809 } 2810 2811 // Find a good start index that is a multiple of the mask length. Then 2812 // see if the rest of the elements are in range. 2813 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2814 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2815 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2816 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2817 } 2818 2819 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2820 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2821 return; 2822 } 2823 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2824 // Extract appropriate subvector and generate a vector shuffle 2825 for (unsigned Input = 0; Input < 2; ++Input) { 2826 SDValue &Src = Input == 0 ? Src1 : Src2; 2827 if (RangeUse[Input] == 0) 2828 Src = DAG.getUNDEF(VT); 2829 else { 2830 SDLoc dl = getCurSDLoc(); 2831 Src = DAG.getNode( 2832 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2833 DAG.getConstant(StartIdx[Input], dl, 2834 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2835 } 2836 } 2837 2838 // Calculate new mask. 2839 SmallVector<int, 8> MappedOps; 2840 for (unsigned i = 0; i != MaskNumElts; ++i) { 2841 int Idx = Mask[i]; 2842 if (Idx >= 0) { 2843 if (Idx < (int)SrcNumElts) 2844 Idx -= StartIdx[0]; 2845 else 2846 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2847 } 2848 MappedOps.push_back(Idx); 2849 } 2850 2851 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2852 &MappedOps[0])); 2853 return; 2854 } 2855 } 2856 2857 // We can't use either concat vectors or extract subvectors so fall back to 2858 // replacing the shuffle with extract and build vector. 2859 // to insert and build vector. 2860 EVT EltVT = VT.getVectorElementType(); 2861 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2862 SDLoc dl = getCurSDLoc(); 2863 SmallVector<SDValue,8> Ops; 2864 for (unsigned i = 0; i != MaskNumElts; ++i) { 2865 int Idx = Mask[i]; 2866 SDValue Res; 2867 2868 if (Idx < 0) { 2869 Res = DAG.getUNDEF(EltVT); 2870 } else { 2871 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2872 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2873 2874 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2875 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2876 } 2877 2878 Ops.push_back(Res); 2879 } 2880 2881 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2882 } 2883 2884 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2885 const Value *Op0 = I.getOperand(0); 2886 const Value *Op1 = I.getOperand(1); 2887 Type *AggTy = I.getType(); 2888 Type *ValTy = Op1->getType(); 2889 bool IntoUndef = isa<UndefValue>(Op0); 2890 bool FromUndef = isa<UndefValue>(Op1); 2891 2892 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2893 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 SmallVector<EVT, 4> AggValueVTs; 2896 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2897 SmallVector<EVT, 4> ValValueVTs; 2898 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2899 2900 unsigned NumAggValues = AggValueVTs.size(); 2901 unsigned NumValValues = ValValueVTs.size(); 2902 SmallVector<SDValue, 4> Values(NumAggValues); 2903 2904 // Ignore an insertvalue that produces an empty object 2905 if (!NumAggValues) { 2906 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2907 return; 2908 } 2909 2910 SDValue Agg = getValue(Op0); 2911 unsigned i = 0; 2912 // Copy the beginning value(s) from the original aggregate. 2913 for (; i != LinearIndex; ++i) 2914 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2915 SDValue(Agg.getNode(), Agg.getResNo() + i); 2916 // Copy values from the inserted value(s). 2917 if (NumValValues) { 2918 SDValue Val = getValue(Op1); 2919 for (; i != LinearIndex + NumValValues; ++i) 2920 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2921 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2922 } 2923 // Copy remaining value(s) from the original aggregate. 2924 for (; i != NumAggValues; ++i) 2925 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2926 SDValue(Agg.getNode(), Agg.getResNo() + i); 2927 2928 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2929 DAG.getVTList(AggValueVTs), Values)); 2930 } 2931 2932 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2933 const Value *Op0 = I.getOperand(0); 2934 Type *AggTy = Op0->getType(); 2935 Type *ValTy = I.getType(); 2936 bool OutOfUndef = isa<UndefValue>(Op0); 2937 2938 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2939 2940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2941 SmallVector<EVT, 4> ValValueVTs; 2942 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2943 2944 unsigned NumValValues = ValValueVTs.size(); 2945 2946 // Ignore a extractvalue that produces an empty object 2947 if (!NumValValues) { 2948 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2949 return; 2950 } 2951 2952 SmallVector<SDValue, 4> Values(NumValValues); 2953 2954 SDValue Agg = getValue(Op0); 2955 // Copy out the selected value(s). 2956 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2957 Values[i - LinearIndex] = 2958 OutOfUndef ? 2959 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2960 SDValue(Agg.getNode(), Agg.getResNo() + i); 2961 2962 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2963 DAG.getVTList(ValValueVTs), Values)); 2964 } 2965 2966 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2967 Value *Op0 = I.getOperand(0); 2968 // Note that the pointer operand may be a vector of pointers. Take the scalar 2969 // element which holds a pointer. 2970 Type *Ty = Op0->getType()->getScalarType(); 2971 unsigned AS = Ty->getPointerAddressSpace(); 2972 SDValue N = getValue(Op0); 2973 SDLoc dl = getCurSDLoc(); 2974 2975 // Normalize Vector GEP - all scalar operands should be converted to the 2976 // splat vector. 2977 unsigned VectorWidth = I.getType()->isVectorTy() ? 2978 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2979 2980 if (VectorWidth && !N.getValueType().isVector()) { 2981 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2982 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2983 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2984 } 2985 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2986 OI != E; ++OI) { 2987 const Value *Idx = *OI; 2988 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2989 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2990 if (Field) { 2991 // N = N + Offset 2992 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2993 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2994 DAG.getConstant(Offset, dl, N.getValueType())); 2995 } 2996 2997 Ty = StTy->getElementType(Field); 2998 } else { 2999 Ty = cast<SequentialType>(Ty)->getElementType(); 3000 MVT PtrTy = 3001 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3002 unsigned PtrSize = PtrTy.getSizeInBits(); 3003 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3004 3005 // If this is a scalar constant or a splat vector of constants, 3006 // handle it quickly. 3007 const auto *CI = dyn_cast<ConstantInt>(Idx); 3008 if (!CI && isa<ConstantDataVector>(Idx) && 3009 cast<ConstantDataVector>(Idx)->getSplatValue()) 3010 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3011 3012 if (CI) { 3013 if (CI->isZero()) 3014 continue; 3015 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3016 SDValue OffsVal = VectorWidth ? 3017 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3018 DAG.getConstant(Offs, dl, PtrTy); 3019 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3020 continue; 3021 } 3022 3023 // N = N + Idx * ElementSize; 3024 SDValue IdxN = getValue(Idx); 3025 3026 if (!IdxN.getValueType().isVector() && VectorWidth) { 3027 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3028 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3029 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3030 } 3031 // If the index is smaller or larger than intptr_t, truncate or extend 3032 // it. 3033 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3034 3035 // If this is a multiply by a power of two, turn it into a shl 3036 // immediately. This is a very common case. 3037 if (ElementSize != 1) { 3038 if (ElementSize.isPowerOf2()) { 3039 unsigned Amt = ElementSize.logBase2(); 3040 IdxN = DAG.getNode(ISD::SHL, dl, 3041 N.getValueType(), IdxN, 3042 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3043 } else { 3044 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3045 IdxN = DAG.getNode(ISD::MUL, dl, 3046 N.getValueType(), IdxN, Scale); 3047 } 3048 } 3049 3050 N = DAG.getNode(ISD::ADD, dl, 3051 N.getValueType(), N, IdxN); 3052 } 3053 } 3054 3055 setValue(&I, N); 3056 } 3057 3058 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3059 // If this is a fixed sized alloca in the entry block of the function, 3060 // allocate it statically on the stack. 3061 if (FuncInfo.StaticAllocaMap.count(&I)) 3062 return; // getValue will auto-populate this. 3063 3064 SDLoc dl = getCurSDLoc(); 3065 Type *Ty = I.getAllocatedType(); 3066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3067 auto &DL = DAG.getDataLayout(); 3068 uint64_t TySize = DL.getTypeAllocSize(Ty); 3069 unsigned Align = 3070 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3071 3072 SDValue AllocSize = getValue(I.getArraySize()); 3073 3074 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3075 if (AllocSize.getValueType() != IntPtr) 3076 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3077 3078 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3079 AllocSize, 3080 DAG.getConstant(TySize, dl, IntPtr)); 3081 3082 // Handle alignment. If the requested alignment is less than or equal to 3083 // the stack alignment, ignore it. If the size is greater than or equal to 3084 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3085 unsigned StackAlign = 3086 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3087 if (Align <= StackAlign) 3088 Align = 0; 3089 3090 // Round the size of the allocation up to the stack alignment size 3091 // by add SA-1 to the size. 3092 AllocSize = DAG.getNode(ISD::ADD, dl, 3093 AllocSize.getValueType(), AllocSize, 3094 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3095 3096 // Mask out the low bits for alignment purposes. 3097 AllocSize = DAG.getNode(ISD::AND, dl, 3098 AllocSize.getValueType(), AllocSize, 3099 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3100 dl)); 3101 3102 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3103 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3104 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3105 setValue(&I, DSA); 3106 DAG.setRoot(DSA.getValue(1)); 3107 3108 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3109 } 3110 3111 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3112 if (I.isAtomic()) 3113 return visitAtomicLoad(I); 3114 3115 const Value *SV = I.getOperand(0); 3116 SDValue Ptr = getValue(SV); 3117 3118 Type *Ty = I.getType(); 3119 3120 bool isVolatile = I.isVolatile(); 3121 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3122 3123 // The IR notion of invariant_load only guarantees that all *non-faulting* 3124 // invariant loads result in the same value. The MI notion of invariant load 3125 // guarantees that the load can be legally moved to any location within its 3126 // containing function. The MI notion of invariant_load is stronger than the 3127 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3128 // with a guarantee that the location being loaded from is dereferenceable 3129 // throughout the function's lifetime. 3130 3131 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3132 isDereferenceablePointer(SV, DAG.getDataLayout()); 3133 unsigned Alignment = I.getAlignment(); 3134 3135 AAMDNodes AAInfo; 3136 I.getAAMetadata(AAInfo); 3137 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3138 3139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3140 SmallVector<EVT, 4> ValueVTs; 3141 SmallVector<uint64_t, 4> Offsets; 3142 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3143 unsigned NumValues = ValueVTs.size(); 3144 if (NumValues == 0) 3145 return; 3146 3147 SDValue Root; 3148 bool ConstantMemory = false; 3149 if (isVolatile || NumValues > MaxParallelChains) 3150 // Serialize volatile loads with other side effects. 3151 Root = getRoot(); 3152 else if (AA->pointsToConstantMemory(MemoryLocation( 3153 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3154 // Do not serialize (non-volatile) loads of constant memory with anything. 3155 Root = DAG.getEntryNode(); 3156 ConstantMemory = true; 3157 } else { 3158 // Do not serialize non-volatile loads against each other. 3159 Root = DAG.getRoot(); 3160 } 3161 3162 SDLoc dl = getCurSDLoc(); 3163 3164 if (isVolatile) 3165 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3166 3167 SmallVector<SDValue, 4> Values(NumValues); 3168 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3169 EVT PtrVT = Ptr.getValueType(); 3170 unsigned ChainI = 0; 3171 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3172 // Serializing loads here may result in excessive register pressure, and 3173 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3174 // could recover a bit by hoisting nodes upward in the chain by recognizing 3175 // they are side-effect free or do not alias. The optimizer should really 3176 // avoid this case by converting large object/array copies to llvm.memcpy 3177 // (MaxParallelChains should always remain as failsafe). 3178 if (ChainI == MaxParallelChains) { 3179 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3180 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3181 makeArrayRef(Chains.data(), ChainI)); 3182 Root = Chain; 3183 ChainI = 0; 3184 } 3185 SDValue A = DAG.getNode(ISD::ADD, dl, 3186 PtrVT, Ptr, 3187 DAG.getConstant(Offsets[i], dl, PtrVT)); 3188 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3189 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3190 isNonTemporal, isInvariant, Alignment, AAInfo, 3191 Ranges); 3192 3193 Values[i] = L; 3194 Chains[ChainI] = L.getValue(1); 3195 } 3196 3197 if (!ConstantMemory) { 3198 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3199 makeArrayRef(Chains.data(), ChainI)); 3200 if (isVolatile) 3201 DAG.setRoot(Chain); 3202 else 3203 PendingLoads.push_back(Chain); 3204 } 3205 3206 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3207 DAG.getVTList(ValueVTs), Values)); 3208 } 3209 3210 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3211 if (I.isAtomic()) 3212 return visitAtomicStore(I); 3213 3214 const Value *SrcV = I.getOperand(0); 3215 const Value *PtrV = I.getOperand(1); 3216 3217 SmallVector<EVT, 4> ValueVTs; 3218 SmallVector<uint64_t, 4> Offsets; 3219 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3220 SrcV->getType(), ValueVTs, &Offsets); 3221 unsigned NumValues = ValueVTs.size(); 3222 if (NumValues == 0) 3223 return; 3224 3225 // Get the lowered operands. Note that we do this after 3226 // checking if NumResults is zero, because with zero results 3227 // the operands won't have values in the map. 3228 SDValue Src = getValue(SrcV); 3229 SDValue Ptr = getValue(PtrV); 3230 3231 SDValue Root = getRoot(); 3232 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3233 EVT PtrVT = Ptr.getValueType(); 3234 bool isVolatile = I.isVolatile(); 3235 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3236 unsigned Alignment = I.getAlignment(); 3237 SDLoc dl = getCurSDLoc(); 3238 3239 AAMDNodes AAInfo; 3240 I.getAAMetadata(AAInfo); 3241 3242 unsigned ChainI = 0; 3243 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3244 // See visitLoad comments. 3245 if (ChainI == MaxParallelChains) { 3246 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3247 makeArrayRef(Chains.data(), ChainI)); 3248 Root = Chain; 3249 ChainI = 0; 3250 } 3251 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3252 DAG.getConstant(Offsets[i], dl, PtrVT)); 3253 SDValue St = DAG.getStore(Root, dl, 3254 SDValue(Src.getNode(), Src.getResNo() + i), 3255 Add, MachinePointerInfo(PtrV, Offsets[i]), 3256 isVolatile, isNonTemporal, Alignment, AAInfo); 3257 Chains[ChainI] = St; 3258 } 3259 3260 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3261 makeArrayRef(Chains.data(), ChainI)); 3262 DAG.setRoot(StoreNode); 3263 } 3264 3265 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3266 SDLoc sdl = getCurSDLoc(); 3267 3268 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3269 Value *PtrOperand = I.getArgOperand(1); 3270 SDValue Ptr = getValue(PtrOperand); 3271 SDValue Src0 = getValue(I.getArgOperand(0)); 3272 SDValue Mask = getValue(I.getArgOperand(3)); 3273 EVT VT = Src0.getValueType(); 3274 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3275 if (!Alignment) 3276 Alignment = DAG.getEVTAlignment(VT); 3277 3278 AAMDNodes AAInfo; 3279 I.getAAMetadata(AAInfo); 3280 3281 MachineMemOperand *MMO = 3282 DAG.getMachineFunction(). 3283 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3284 MachineMemOperand::MOStore, VT.getStoreSize(), 3285 Alignment, AAInfo); 3286 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3287 MMO, false); 3288 DAG.setRoot(StoreNode); 3289 setValue(&I, StoreNode); 3290 } 3291 3292 // Get a uniform base for the Gather/Scatter intrinsic. 3293 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3294 // We try to represent it as a base pointer + vector of indices. 3295 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3296 // The first operand of the GEP may be a single pointer or a vector of pointers 3297 // Example: 3298 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3299 // or 3300 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3301 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3302 // 3303 // When the first GEP operand is a single pointer - it is the uniform base we 3304 // are looking for. If first operand of the GEP is a splat vector - we 3305 // extract the spalt value and use it as a uniform base. 3306 // In all other cases the function returns 'false'. 3307 // 3308 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3309 SelectionDAGBuilder* SDB) { 3310 3311 SelectionDAG& DAG = SDB->DAG; 3312 LLVMContext &Context = *DAG.getContext(); 3313 3314 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3315 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3316 if (!GEP || GEP->getNumOperands() > 2) 3317 return false; 3318 3319 Value *GEPPtr = GEP->getPointerOperand(); 3320 if (!GEPPtr->getType()->isVectorTy()) 3321 Ptr = GEPPtr; 3322 else if (!(Ptr = getSplatValue(GEPPtr))) 3323 return false; 3324 3325 Value *IndexVal = GEP->getOperand(1); 3326 3327 // The operands of the GEP may be defined in another basic block. 3328 // In this case we'll not find nodes for the operands. 3329 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3330 return false; 3331 3332 Base = SDB->getValue(Ptr); 3333 Index = SDB->getValue(IndexVal); 3334 3335 // Suppress sign extension. 3336 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3337 if (SDB->findValue(Sext->getOperand(0))) { 3338 IndexVal = Sext->getOperand(0); 3339 Index = SDB->getValue(IndexVal); 3340 } 3341 } 3342 if (!Index.getValueType().isVector()) { 3343 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3344 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3345 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3346 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3347 } 3348 return true; 3349 } 3350 3351 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3352 SDLoc sdl = getCurSDLoc(); 3353 3354 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3355 Value *Ptr = I.getArgOperand(1); 3356 SDValue Src0 = getValue(I.getArgOperand(0)); 3357 SDValue Mask = getValue(I.getArgOperand(3)); 3358 EVT VT = Src0.getValueType(); 3359 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3360 if (!Alignment) 3361 Alignment = DAG.getEVTAlignment(VT); 3362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3363 3364 AAMDNodes AAInfo; 3365 I.getAAMetadata(AAInfo); 3366 3367 SDValue Base; 3368 SDValue Index; 3369 Value *BasePtr = Ptr; 3370 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3371 3372 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3373 MachineMemOperand *MMO = DAG.getMachineFunction(). 3374 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3375 MachineMemOperand::MOStore, VT.getStoreSize(), 3376 Alignment, AAInfo); 3377 if (!UniformBase) { 3378 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3379 Index = getValue(Ptr); 3380 } 3381 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3382 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3383 Ops, MMO); 3384 DAG.setRoot(Scatter); 3385 setValue(&I, Scatter); 3386 } 3387 3388 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3389 SDLoc sdl = getCurSDLoc(); 3390 3391 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3392 Value *PtrOperand = I.getArgOperand(0); 3393 SDValue Ptr = getValue(PtrOperand); 3394 SDValue Src0 = getValue(I.getArgOperand(3)); 3395 SDValue Mask = getValue(I.getArgOperand(2)); 3396 3397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3398 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3399 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3400 if (!Alignment) 3401 Alignment = DAG.getEVTAlignment(VT); 3402 3403 AAMDNodes AAInfo; 3404 I.getAAMetadata(AAInfo); 3405 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3406 3407 SDValue InChain = DAG.getRoot(); 3408 if (AA->pointsToConstantMemory(MemoryLocation( 3409 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3410 AAInfo))) { 3411 // Do not serialize (non-volatile) loads of constant memory with anything. 3412 InChain = DAG.getEntryNode(); 3413 } 3414 3415 MachineMemOperand *MMO = 3416 DAG.getMachineFunction(). 3417 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3418 MachineMemOperand::MOLoad, VT.getStoreSize(), 3419 Alignment, AAInfo, Ranges); 3420 3421 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3422 ISD::NON_EXTLOAD); 3423 SDValue OutChain = Load.getValue(1); 3424 DAG.setRoot(OutChain); 3425 setValue(&I, Load); 3426 } 3427 3428 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3429 SDLoc sdl = getCurSDLoc(); 3430 3431 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3432 Value *Ptr = I.getArgOperand(0); 3433 SDValue Src0 = getValue(I.getArgOperand(3)); 3434 SDValue Mask = getValue(I.getArgOperand(2)); 3435 3436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3437 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3438 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3439 if (!Alignment) 3440 Alignment = DAG.getEVTAlignment(VT); 3441 3442 AAMDNodes AAInfo; 3443 I.getAAMetadata(AAInfo); 3444 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3445 3446 SDValue Root = DAG.getRoot(); 3447 SDValue Base; 3448 SDValue Index; 3449 Value *BasePtr = Ptr; 3450 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3451 bool ConstantMemory = false; 3452 if (UniformBase && 3453 AA->pointsToConstantMemory(MemoryLocation( 3454 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3455 AAInfo))) { 3456 // Do not serialize (non-volatile) loads of constant memory with anything. 3457 Root = DAG.getEntryNode(); 3458 ConstantMemory = true; 3459 } 3460 3461 MachineMemOperand *MMO = 3462 DAG.getMachineFunction(). 3463 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3464 MachineMemOperand::MOLoad, VT.getStoreSize(), 3465 Alignment, AAInfo, Ranges); 3466 3467 if (!UniformBase) { 3468 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3469 Index = getValue(Ptr); 3470 } 3471 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3472 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3473 Ops, MMO); 3474 3475 SDValue OutChain = Gather.getValue(1); 3476 if (!ConstantMemory) 3477 PendingLoads.push_back(OutChain); 3478 setValue(&I, Gather); 3479 } 3480 3481 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3482 SDLoc dl = getCurSDLoc(); 3483 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3484 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3485 SynchronizationScope Scope = I.getSynchScope(); 3486 3487 SDValue InChain = getRoot(); 3488 3489 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3490 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3491 SDValue L = DAG.getAtomicCmpSwap( 3492 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3493 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3494 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3495 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3496 3497 SDValue OutChain = L.getValue(2); 3498 3499 setValue(&I, L); 3500 DAG.setRoot(OutChain); 3501 } 3502 3503 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3504 SDLoc dl = getCurSDLoc(); 3505 ISD::NodeType NT; 3506 switch (I.getOperation()) { 3507 default: llvm_unreachable("Unknown atomicrmw operation"); 3508 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3509 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3510 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3511 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3512 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3513 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3514 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3515 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3516 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3517 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3518 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3519 } 3520 AtomicOrdering Order = I.getOrdering(); 3521 SynchronizationScope Scope = I.getSynchScope(); 3522 3523 SDValue InChain = getRoot(); 3524 3525 SDValue L = 3526 DAG.getAtomic(NT, dl, 3527 getValue(I.getValOperand()).getSimpleValueType(), 3528 InChain, 3529 getValue(I.getPointerOperand()), 3530 getValue(I.getValOperand()), 3531 I.getPointerOperand(), 3532 /* Alignment=*/ 0, Order, Scope); 3533 3534 SDValue OutChain = L.getValue(1); 3535 3536 setValue(&I, L); 3537 DAG.setRoot(OutChain); 3538 } 3539 3540 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3541 SDLoc dl = getCurSDLoc(); 3542 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3543 SDValue Ops[3]; 3544 Ops[0] = getRoot(); 3545 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3546 TLI.getPointerTy(DAG.getDataLayout())); 3547 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3548 TLI.getPointerTy(DAG.getDataLayout())); 3549 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3550 } 3551 3552 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3553 SDLoc dl = getCurSDLoc(); 3554 AtomicOrdering Order = I.getOrdering(); 3555 SynchronizationScope Scope = I.getSynchScope(); 3556 3557 SDValue InChain = getRoot(); 3558 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 3562 if (I.getAlignment() < VT.getSizeInBits() / 8) 3563 report_fatal_error("Cannot generate unaligned atomic load"); 3564 3565 MachineMemOperand *MMO = 3566 DAG.getMachineFunction(). 3567 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3568 MachineMemOperand::MOVolatile | 3569 MachineMemOperand::MOLoad, 3570 VT.getStoreSize(), 3571 I.getAlignment() ? I.getAlignment() : 3572 DAG.getEVTAlignment(VT)); 3573 3574 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3575 SDValue L = 3576 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3577 getValue(I.getPointerOperand()), MMO, 3578 Order, Scope); 3579 3580 SDValue OutChain = L.getValue(1); 3581 3582 setValue(&I, L); 3583 DAG.setRoot(OutChain); 3584 } 3585 3586 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3587 SDLoc dl = getCurSDLoc(); 3588 3589 AtomicOrdering Order = I.getOrdering(); 3590 SynchronizationScope Scope = I.getSynchScope(); 3591 3592 SDValue InChain = getRoot(); 3593 3594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3595 EVT VT = 3596 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3597 3598 if (I.getAlignment() < VT.getSizeInBits() / 8) 3599 report_fatal_error("Cannot generate unaligned atomic store"); 3600 3601 SDValue OutChain = 3602 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3603 InChain, 3604 getValue(I.getPointerOperand()), 3605 getValue(I.getValueOperand()), 3606 I.getPointerOperand(), I.getAlignment(), 3607 Order, Scope); 3608 3609 DAG.setRoot(OutChain); 3610 } 3611 3612 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3613 /// node. 3614 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3615 unsigned Intrinsic) { 3616 bool HasChain = !I.doesNotAccessMemory(); 3617 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3618 3619 // Build the operand list. 3620 SmallVector<SDValue, 8> Ops; 3621 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3622 if (OnlyLoad) { 3623 // We don't need to serialize loads against other loads. 3624 Ops.push_back(DAG.getRoot()); 3625 } else { 3626 Ops.push_back(getRoot()); 3627 } 3628 } 3629 3630 // Info is set by getTgtMemInstrinsic 3631 TargetLowering::IntrinsicInfo Info; 3632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3633 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3634 3635 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3636 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3637 Info.opc == ISD::INTRINSIC_W_CHAIN) 3638 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3639 TLI.getPointerTy(DAG.getDataLayout()))); 3640 3641 // Add all operands of the call to the operand list. 3642 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3643 SDValue Op = getValue(I.getArgOperand(i)); 3644 Ops.push_back(Op); 3645 } 3646 3647 SmallVector<EVT, 4> ValueVTs; 3648 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3649 3650 if (HasChain) 3651 ValueVTs.push_back(MVT::Other); 3652 3653 SDVTList VTs = DAG.getVTList(ValueVTs); 3654 3655 // Create the node. 3656 SDValue Result; 3657 if (IsTgtIntrinsic) { 3658 // This is target intrinsic that touches memory 3659 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3660 VTs, Ops, Info.memVT, 3661 MachinePointerInfo(Info.ptrVal, Info.offset), 3662 Info.align, Info.vol, 3663 Info.readMem, Info.writeMem, Info.size); 3664 } else if (!HasChain) { 3665 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3666 } else if (!I.getType()->isVoidTy()) { 3667 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3668 } else { 3669 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3670 } 3671 3672 if (HasChain) { 3673 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3674 if (OnlyLoad) 3675 PendingLoads.push_back(Chain); 3676 else 3677 DAG.setRoot(Chain); 3678 } 3679 3680 if (!I.getType()->isVoidTy()) { 3681 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3682 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3683 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3684 } 3685 3686 setValue(&I, Result); 3687 } 3688 } 3689 3690 /// GetSignificand - Get the significand and build it into a floating-point 3691 /// number with exponent of 1: 3692 /// 3693 /// Op = (Op & 0x007fffff) | 0x3f800000; 3694 /// 3695 /// where Op is the hexadecimal representation of floating point value. 3696 static SDValue 3697 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3698 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3699 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3700 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3701 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3702 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3703 } 3704 3705 /// GetExponent - Get the exponent: 3706 /// 3707 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3708 /// 3709 /// where Op is the hexadecimal representation of floating point value. 3710 static SDValue 3711 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3712 SDLoc dl) { 3713 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3714 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3715 SDValue t1 = DAG.getNode( 3716 ISD::SRL, dl, MVT::i32, t0, 3717 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3718 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3719 DAG.getConstant(127, dl, MVT::i32)); 3720 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3721 } 3722 3723 /// getF32Constant - Get 32-bit floating point constant. 3724 static SDValue 3725 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3726 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3727 MVT::f32); 3728 } 3729 3730 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3731 SelectionDAG &DAG) { 3732 // TODO: What fast-math-flags should be set on the floating-point nodes? 3733 3734 // IntegerPartOfX = ((int32_t)(t0); 3735 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3736 3737 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3738 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3739 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3740 3741 // IntegerPartOfX <<= 23; 3742 IntegerPartOfX = DAG.getNode( 3743 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3744 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3745 DAG.getDataLayout()))); 3746 3747 SDValue TwoToFractionalPartOfX; 3748 if (LimitFloatPrecision <= 6) { 3749 // For floating-point precision of 6: 3750 // 3751 // TwoToFractionalPartOfX = 3752 // 0.997535578f + 3753 // (0.735607626f + 0.252464424f * x) * x; 3754 // 3755 // error 0.0144103317, which is 6 bits 3756 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3757 getF32Constant(DAG, 0x3e814304, dl)); 3758 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3759 getF32Constant(DAG, 0x3f3c50c8, dl)); 3760 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3761 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3762 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3763 } else if (LimitFloatPrecision <= 12) { 3764 // For floating-point precision of 12: 3765 // 3766 // TwoToFractionalPartOfX = 3767 // 0.999892986f + 3768 // (0.696457318f + 3769 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3770 // 3771 // error 0.000107046256, which is 13 to 14 bits 3772 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3773 getF32Constant(DAG, 0x3da235e3, dl)); 3774 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3775 getF32Constant(DAG, 0x3e65b8f3, dl)); 3776 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3777 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3778 getF32Constant(DAG, 0x3f324b07, dl)); 3779 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3780 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3781 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3782 } else { // LimitFloatPrecision <= 18 3783 // For floating-point precision of 18: 3784 // 3785 // TwoToFractionalPartOfX = 3786 // 0.999999982f + 3787 // (0.693148872f + 3788 // (0.240227044f + 3789 // (0.554906021e-1f + 3790 // (0.961591928e-2f + 3791 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3792 // error 2.47208000*10^(-7), which is better than 18 bits 3793 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3794 getF32Constant(DAG, 0x3924b03e, dl)); 3795 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3796 getF32Constant(DAG, 0x3ab24b87, dl)); 3797 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3798 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3799 getF32Constant(DAG, 0x3c1d8c17, dl)); 3800 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3801 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3802 getF32Constant(DAG, 0x3d634a1d, dl)); 3803 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3804 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3805 getF32Constant(DAG, 0x3e75fe14, dl)); 3806 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3807 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3808 getF32Constant(DAG, 0x3f317234, dl)); 3809 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3810 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3811 getF32Constant(DAG, 0x3f800000, dl)); 3812 } 3813 3814 // Add the exponent into the result in integer domain. 3815 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3816 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3817 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3818 } 3819 3820 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3821 /// limited-precision mode. 3822 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3823 const TargetLowering &TLI) { 3824 if (Op.getValueType() == MVT::f32 && 3825 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3826 3827 // Put the exponent in the right bit position for later addition to the 3828 // final result: 3829 // 3830 // #define LOG2OFe 1.4426950f 3831 // t0 = Op * LOG2OFe 3832 3833 // TODO: What fast-math-flags should be set here? 3834 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3835 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3836 return getLimitedPrecisionExp2(t0, dl, DAG); 3837 } 3838 3839 // No special expansion. 3840 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3841 } 3842 3843 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3844 /// limited-precision mode. 3845 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3846 const TargetLowering &TLI) { 3847 3848 // TODO: What fast-math-flags should be set on the floating-point nodes? 3849 3850 if (Op.getValueType() == MVT::f32 && 3851 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3852 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3853 3854 // Scale the exponent by log(2) [0.69314718f]. 3855 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3856 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3857 getF32Constant(DAG, 0x3f317218, dl)); 3858 3859 // Get the significand and build it into a floating-point number with 3860 // exponent of 1. 3861 SDValue X = GetSignificand(DAG, Op1, dl); 3862 3863 SDValue LogOfMantissa; 3864 if (LimitFloatPrecision <= 6) { 3865 // For floating-point precision of 6: 3866 // 3867 // LogofMantissa = 3868 // -1.1609546f + 3869 // (1.4034025f - 0.23903021f * x) * x; 3870 // 3871 // error 0.0034276066, which is better than 8 bits 3872 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3873 getF32Constant(DAG, 0xbe74c456, dl)); 3874 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3875 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3876 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3877 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3878 getF32Constant(DAG, 0x3f949a29, dl)); 3879 } else if (LimitFloatPrecision <= 12) { 3880 // For floating-point precision of 12: 3881 // 3882 // LogOfMantissa = 3883 // -1.7417939f + 3884 // (2.8212026f + 3885 // (-1.4699568f + 3886 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3887 // 3888 // error 0.000061011436, which is 14 bits 3889 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3890 getF32Constant(DAG, 0xbd67b6d6, dl)); 3891 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3892 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3893 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3894 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3895 getF32Constant(DAG, 0x3fbc278b, dl)); 3896 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3897 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3898 getF32Constant(DAG, 0x40348e95, dl)); 3899 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3900 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3901 getF32Constant(DAG, 0x3fdef31a, dl)); 3902 } else { // LimitFloatPrecision <= 18 3903 // For floating-point precision of 18: 3904 // 3905 // LogOfMantissa = 3906 // -2.1072184f + 3907 // (4.2372794f + 3908 // (-3.7029485f + 3909 // (2.2781945f + 3910 // (-0.87823314f + 3911 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3912 // 3913 // error 0.0000023660568, which is better than 18 bits 3914 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3915 getF32Constant(DAG, 0xbc91e5ac, dl)); 3916 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3917 getF32Constant(DAG, 0x3e4350aa, dl)); 3918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3919 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3920 getF32Constant(DAG, 0x3f60d3e3, dl)); 3921 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3922 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3923 getF32Constant(DAG, 0x4011cdf0, dl)); 3924 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3925 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3926 getF32Constant(DAG, 0x406cfd1c, dl)); 3927 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3928 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3929 getF32Constant(DAG, 0x408797cb, dl)); 3930 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3931 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3932 getF32Constant(DAG, 0x4006dcab, dl)); 3933 } 3934 3935 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3936 } 3937 3938 // No special expansion. 3939 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3940 } 3941 3942 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3943 /// limited-precision mode. 3944 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3945 const TargetLowering &TLI) { 3946 3947 // TODO: What fast-math-flags should be set on the floating-point nodes? 3948 3949 if (Op.getValueType() == MVT::f32 && 3950 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3951 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3952 3953 // Get the exponent. 3954 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3955 3956 // Get the significand and build it into a floating-point number with 3957 // exponent of 1. 3958 SDValue X = GetSignificand(DAG, Op1, dl); 3959 3960 // Different possible minimax approximations of significand in 3961 // floating-point for various degrees of accuracy over [1,2]. 3962 SDValue Log2ofMantissa; 3963 if (LimitFloatPrecision <= 6) { 3964 // For floating-point precision of 6: 3965 // 3966 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3967 // 3968 // error 0.0049451742, which is more than 7 bits 3969 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3970 getF32Constant(DAG, 0xbeb08fe0, dl)); 3971 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3972 getF32Constant(DAG, 0x40019463, dl)); 3973 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3974 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3975 getF32Constant(DAG, 0x3fd6633d, dl)); 3976 } else if (LimitFloatPrecision <= 12) { 3977 // For floating-point precision of 12: 3978 // 3979 // Log2ofMantissa = 3980 // -2.51285454f + 3981 // (4.07009056f + 3982 // (-2.12067489f + 3983 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3984 // 3985 // error 0.0000876136000, which is better than 13 bits 3986 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3987 getF32Constant(DAG, 0xbda7262e, dl)); 3988 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3989 getF32Constant(DAG, 0x3f25280b, dl)); 3990 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3991 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3992 getF32Constant(DAG, 0x4007b923, dl)); 3993 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3994 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3995 getF32Constant(DAG, 0x40823e2f, dl)); 3996 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3997 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3998 getF32Constant(DAG, 0x4020d29c, dl)); 3999 } else { // LimitFloatPrecision <= 18 4000 // For floating-point precision of 18: 4001 // 4002 // Log2ofMantissa = 4003 // -3.0400495f + 4004 // (6.1129976f + 4005 // (-5.3420409f + 4006 // (3.2865683f + 4007 // (-1.2669343f + 4008 // (0.27515199f - 4009 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4010 // 4011 // error 0.0000018516, which is better than 18 bits 4012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0xbcd2769e, dl)); 4014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4015 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4017 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4018 getF32Constant(DAG, 0x3fa22ae7, dl)); 4019 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4020 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4021 getF32Constant(DAG, 0x40525723, dl)); 4022 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4023 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4024 getF32Constant(DAG, 0x40aaf200, dl)); 4025 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4026 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4027 getF32Constant(DAG, 0x40c39dad, dl)); 4028 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4029 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4030 getF32Constant(DAG, 0x4042902c, dl)); 4031 } 4032 4033 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4034 } 4035 4036 // No special expansion. 4037 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4038 } 4039 4040 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4041 /// limited-precision mode. 4042 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4043 const TargetLowering &TLI) { 4044 4045 // TODO: What fast-math-flags should be set on the floating-point nodes? 4046 4047 if (Op.getValueType() == MVT::f32 && 4048 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4049 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4050 4051 // Scale the exponent by log10(2) [0.30102999f]. 4052 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4053 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4054 getF32Constant(DAG, 0x3e9a209a, dl)); 4055 4056 // Get the significand and build it into a floating-point number with 4057 // exponent of 1. 4058 SDValue X = GetSignificand(DAG, Op1, dl); 4059 4060 SDValue Log10ofMantissa; 4061 if (LimitFloatPrecision <= 6) { 4062 // For floating-point precision of 6: 4063 // 4064 // Log10ofMantissa = 4065 // -0.50419619f + 4066 // (0.60948995f - 0.10380950f * x) * x; 4067 // 4068 // error 0.0014886165, which is 6 bits 4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4070 getF32Constant(DAG, 0xbdd49a13, dl)); 4071 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4072 getF32Constant(DAG, 0x3f1c0789, dl)); 4073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4074 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4075 getF32Constant(DAG, 0x3f011300, dl)); 4076 } else if (LimitFloatPrecision <= 12) { 4077 // For floating-point precision of 12: 4078 // 4079 // Log10ofMantissa = 4080 // -0.64831180f + 4081 // (0.91751397f + 4082 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4083 // 4084 // error 0.00019228036, which is better than 12 bits 4085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4086 getF32Constant(DAG, 0x3d431f31, dl)); 4087 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4088 getF32Constant(DAG, 0x3ea21fb2, dl)); 4089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4090 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4091 getF32Constant(DAG, 0x3f6ae232, dl)); 4092 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4093 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4094 getF32Constant(DAG, 0x3f25f7c3, dl)); 4095 } else { // LimitFloatPrecision <= 18 4096 // For floating-point precision of 18: 4097 // 4098 // Log10ofMantissa = 4099 // -0.84299375f + 4100 // (1.5327582f + 4101 // (-1.0688956f + 4102 // (0.49102474f + 4103 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4104 // 4105 // error 0.0000037995730, which is better than 18 bits 4106 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4107 getF32Constant(DAG, 0x3c5d51ce, dl)); 4108 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4109 getF32Constant(DAG, 0x3e00685a, dl)); 4110 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4111 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4112 getF32Constant(DAG, 0x3efb6798, dl)); 4113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4114 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4115 getF32Constant(DAG, 0x3f88d192, dl)); 4116 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4117 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4118 getF32Constant(DAG, 0x3fc4316c, dl)); 4119 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4120 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4121 getF32Constant(DAG, 0x3f57ce70, dl)); 4122 } 4123 4124 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4125 } 4126 4127 // No special expansion. 4128 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4129 } 4130 4131 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4132 /// limited-precision mode. 4133 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4134 const TargetLowering &TLI) { 4135 if (Op.getValueType() == MVT::f32 && 4136 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4137 return getLimitedPrecisionExp2(Op, dl, DAG); 4138 4139 // No special expansion. 4140 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4141 } 4142 4143 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4144 /// limited-precision mode with x == 10.0f. 4145 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4146 SelectionDAG &DAG, const TargetLowering &TLI) { 4147 bool IsExp10 = false; 4148 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4149 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4150 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4151 APFloat Ten(10.0f); 4152 IsExp10 = LHSC->isExactlyValue(Ten); 4153 } 4154 } 4155 4156 // TODO: What fast-math-flags should be set on the FMUL node? 4157 if (IsExp10) { 4158 // Put the exponent in the right bit position for later addition to the 4159 // final result: 4160 // 4161 // #define LOG2OF10 3.3219281f 4162 // t0 = Op * LOG2OF10; 4163 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4164 getF32Constant(DAG, 0x40549a78, dl)); 4165 return getLimitedPrecisionExp2(t0, dl, DAG); 4166 } 4167 4168 // No special expansion. 4169 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4170 } 4171 4172 4173 /// ExpandPowI - Expand a llvm.powi intrinsic. 4174 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4175 SelectionDAG &DAG) { 4176 // If RHS is a constant, we can expand this out to a multiplication tree, 4177 // otherwise we end up lowering to a call to __powidf2 (for example). When 4178 // optimizing for size, we only want to do this if the expansion would produce 4179 // a small number of multiplies, otherwise we do the full expansion. 4180 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4181 // Get the exponent as a positive value. 4182 unsigned Val = RHSC->getSExtValue(); 4183 if ((int)Val < 0) Val = -Val; 4184 4185 // powi(x, 0) -> 1.0 4186 if (Val == 0) 4187 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4188 4189 const Function *F = DAG.getMachineFunction().getFunction(); 4190 if (!F->optForSize() || 4191 // If optimizing for size, don't insert too many multiplies. 4192 // This inserts up to 5 multiplies. 4193 countPopulation(Val) + Log2_32(Val) < 7) { 4194 // We use the simple binary decomposition method to generate the multiply 4195 // sequence. There are more optimal ways to do this (for example, 4196 // powi(x,15) generates one more multiply than it should), but this has 4197 // the benefit of being both really simple and much better than a libcall. 4198 SDValue Res; // Logically starts equal to 1.0 4199 SDValue CurSquare = LHS; 4200 // TODO: Intrinsics should have fast-math-flags that propagate to these 4201 // nodes. 4202 while (Val) { 4203 if (Val & 1) { 4204 if (Res.getNode()) 4205 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4206 else 4207 Res = CurSquare; // 1.0*CurSquare. 4208 } 4209 4210 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4211 CurSquare, CurSquare); 4212 Val >>= 1; 4213 } 4214 4215 // If the original was negative, invert the result, producing 1/(x*x*x). 4216 if (RHSC->getSExtValue() < 0) 4217 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4218 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4219 return Res; 4220 } 4221 } 4222 4223 // Otherwise, expand to a libcall. 4224 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4225 } 4226 4227 // getUnderlyingArgReg - Find underlying register used for a truncated or 4228 // bitcasted argument. 4229 static unsigned getUnderlyingArgReg(const SDValue &N) { 4230 switch (N.getOpcode()) { 4231 case ISD::CopyFromReg: 4232 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4233 case ISD::BITCAST: 4234 case ISD::AssertZext: 4235 case ISD::AssertSext: 4236 case ISD::TRUNCATE: 4237 return getUnderlyingArgReg(N.getOperand(0)); 4238 default: 4239 return 0; 4240 } 4241 } 4242 4243 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4244 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4245 /// At the end of instruction selection, they will be inserted to the entry BB. 4246 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4247 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4248 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4249 const Argument *Arg = dyn_cast<Argument>(V); 4250 if (!Arg) 4251 return false; 4252 4253 MachineFunction &MF = DAG.getMachineFunction(); 4254 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4255 4256 // Ignore inlined function arguments here. 4257 // 4258 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4259 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4260 return false; 4261 4262 Optional<MachineOperand> Op; 4263 // Some arguments' frame index is recorded during argument lowering. 4264 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4265 Op = MachineOperand::CreateFI(FI); 4266 4267 if (!Op && N.getNode()) { 4268 unsigned Reg = getUnderlyingArgReg(N); 4269 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4270 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4271 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4272 if (PR) 4273 Reg = PR; 4274 } 4275 if (Reg) 4276 Op = MachineOperand::CreateReg(Reg, false); 4277 } 4278 4279 if (!Op) { 4280 // Check if ValueMap has reg number. 4281 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4282 if (VMI != FuncInfo.ValueMap.end()) 4283 Op = MachineOperand::CreateReg(VMI->second, false); 4284 } 4285 4286 if (!Op && N.getNode()) 4287 // Check if frame index is available. 4288 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4289 if (FrameIndexSDNode *FINode = 4290 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4291 Op = MachineOperand::CreateFI(FINode->getIndex()); 4292 4293 if (!Op) 4294 return false; 4295 4296 assert(Variable->isValidLocationForIntrinsic(DL) && 4297 "Expected inlined-at fields to agree"); 4298 if (Op->isReg()) 4299 FuncInfo.ArgDbgValues.push_back( 4300 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4301 Op->getReg(), Offset, Variable, Expr)); 4302 else 4303 FuncInfo.ArgDbgValues.push_back( 4304 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4305 .addOperand(*Op) 4306 .addImm(Offset) 4307 .addMetadata(Variable) 4308 .addMetadata(Expr)); 4309 4310 return true; 4311 } 4312 4313 // VisualStudio defines setjmp as _setjmp 4314 #if defined(_MSC_VER) && defined(setjmp) && \ 4315 !defined(setjmp_undefined_for_msvc) 4316 # pragma push_macro("setjmp") 4317 # undef setjmp 4318 # define setjmp_undefined_for_msvc 4319 #endif 4320 4321 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4322 /// we want to emit this as a call to a named external function, return the name 4323 /// otherwise lower it and return null. 4324 const char * 4325 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4327 SDLoc sdl = getCurSDLoc(); 4328 DebugLoc dl = getCurDebugLoc(); 4329 SDValue Res; 4330 4331 switch (Intrinsic) { 4332 default: 4333 // By default, turn this into a target intrinsic node. 4334 visitTargetIntrinsic(I, Intrinsic); 4335 return nullptr; 4336 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4337 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4338 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4339 case Intrinsic::returnaddress: 4340 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4341 TLI.getPointerTy(DAG.getDataLayout()), 4342 getValue(I.getArgOperand(0)))); 4343 return nullptr; 4344 case Intrinsic::frameaddress: 4345 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4346 TLI.getPointerTy(DAG.getDataLayout()), 4347 getValue(I.getArgOperand(0)))); 4348 return nullptr; 4349 case Intrinsic::read_register: { 4350 Value *Reg = I.getArgOperand(0); 4351 SDValue Chain = getRoot(); 4352 SDValue RegName = 4353 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4354 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4355 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4356 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4357 setValue(&I, Res); 4358 DAG.setRoot(Res.getValue(1)); 4359 return nullptr; 4360 } 4361 case Intrinsic::write_register: { 4362 Value *Reg = I.getArgOperand(0); 4363 Value *RegValue = I.getArgOperand(1); 4364 SDValue Chain = getRoot(); 4365 SDValue RegName = 4366 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4367 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4368 RegName, getValue(RegValue))); 4369 return nullptr; 4370 } 4371 case Intrinsic::setjmp: 4372 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4373 case Intrinsic::longjmp: 4374 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4375 case Intrinsic::memcpy: { 4376 // FIXME: this definition of "user defined address space" is x86-specific 4377 // Assert for address < 256 since we support only user defined address 4378 // spaces. 4379 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4380 < 256 && 4381 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4382 < 256 && 4383 "Unknown address space"); 4384 SDValue Op1 = getValue(I.getArgOperand(0)); 4385 SDValue Op2 = getValue(I.getArgOperand(1)); 4386 SDValue Op3 = getValue(I.getArgOperand(2)); 4387 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4388 if (!Align) 4389 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4390 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4391 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4392 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4393 false, isTC, 4394 MachinePointerInfo(I.getArgOperand(0)), 4395 MachinePointerInfo(I.getArgOperand(1))); 4396 updateDAGForMaybeTailCall(MC); 4397 return nullptr; 4398 } 4399 case Intrinsic::memset: { 4400 // FIXME: this definition of "user defined address space" is x86-specific 4401 // Assert for address < 256 since we support only user defined address 4402 // spaces. 4403 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4404 < 256 && 4405 "Unknown address space"); 4406 SDValue Op1 = getValue(I.getArgOperand(0)); 4407 SDValue Op2 = getValue(I.getArgOperand(1)); 4408 SDValue Op3 = getValue(I.getArgOperand(2)); 4409 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4410 if (!Align) 4411 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4412 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4413 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4414 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4415 isTC, MachinePointerInfo(I.getArgOperand(0))); 4416 updateDAGForMaybeTailCall(MS); 4417 return nullptr; 4418 } 4419 case Intrinsic::memmove: { 4420 // FIXME: this definition of "user defined address space" is x86-specific 4421 // Assert for address < 256 since we support only user defined address 4422 // spaces. 4423 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4424 < 256 && 4425 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4426 < 256 && 4427 "Unknown address space"); 4428 SDValue Op1 = getValue(I.getArgOperand(0)); 4429 SDValue Op2 = getValue(I.getArgOperand(1)); 4430 SDValue Op3 = getValue(I.getArgOperand(2)); 4431 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4432 if (!Align) 4433 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4434 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4435 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4436 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4437 isTC, MachinePointerInfo(I.getArgOperand(0)), 4438 MachinePointerInfo(I.getArgOperand(1))); 4439 updateDAGForMaybeTailCall(MM); 4440 return nullptr; 4441 } 4442 case Intrinsic::dbg_declare: { 4443 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4444 DILocalVariable *Variable = DI.getVariable(); 4445 DIExpression *Expression = DI.getExpression(); 4446 const Value *Address = DI.getAddress(); 4447 assert(Variable && "Missing variable"); 4448 if (!Address) { 4449 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4450 return nullptr; 4451 } 4452 4453 // Check if address has undef value. 4454 if (isa<UndefValue>(Address) || 4455 (Address->use_empty() && !isa<Argument>(Address))) { 4456 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4457 return nullptr; 4458 } 4459 4460 SDValue &N = NodeMap[Address]; 4461 if (!N.getNode() && isa<Argument>(Address)) 4462 // Check unused arguments map. 4463 N = UnusedArgNodeMap[Address]; 4464 SDDbgValue *SDV; 4465 if (N.getNode()) { 4466 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4467 Address = BCI->getOperand(0); 4468 // Parameters are handled specially. 4469 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4470 4471 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4472 4473 if (isParameter && !AI) { 4474 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4475 if (FINode) 4476 // Byval parameter. We have a frame index at this point. 4477 SDV = DAG.getFrameIndexDbgValue( 4478 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4479 else { 4480 // Address is an argument, so try to emit its dbg value using 4481 // virtual register info from the FuncInfo.ValueMap. 4482 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4483 N); 4484 return nullptr; 4485 } 4486 } else { 4487 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4488 true, 0, dl, SDNodeOrder); 4489 } 4490 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4491 } else { 4492 // If Address is an argument then try to emit its dbg value using 4493 // virtual register info from the FuncInfo.ValueMap. 4494 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4495 N)) { 4496 // If variable is pinned by a alloca in dominating bb then 4497 // use StaticAllocaMap. 4498 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4499 if (AI->getParent() != DI.getParent()) { 4500 DenseMap<const AllocaInst*, int>::iterator SI = 4501 FuncInfo.StaticAllocaMap.find(AI); 4502 if (SI != FuncInfo.StaticAllocaMap.end()) { 4503 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4504 0, dl, SDNodeOrder); 4505 DAG.AddDbgValue(SDV, nullptr, false); 4506 return nullptr; 4507 } 4508 } 4509 } 4510 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4511 } 4512 } 4513 return nullptr; 4514 } 4515 case Intrinsic::dbg_value: { 4516 const DbgValueInst &DI = cast<DbgValueInst>(I); 4517 assert(DI.getVariable() && "Missing variable"); 4518 4519 DILocalVariable *Variable = DI.getVariable(); 4520 DIExpression *Expression = DI.getExpression(); 4521 uint64_t Offset = DI.getOffset(); 4522 const Value *V = DI.getValue(); 4523 if (!V) 4524 return nullptr; 4525 4526 SDDbgValue *SDV; 4527 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4528 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4529 SDNodeOrder); 4530 DAG.AddDbgValue(SDV, nullptr, false); 4531 } else { 4532 // Do not use getValue() in here; we don't want to generate code at 4533 // this point if it hasn't been done yet. 4534 SDValue N = NodeMap[V]; 4535 if (!N.getNode() && isa<Argument>(V)) 4536 // Check unused arguments map. 4537 N = UnusedArgNodeMap[V]; 4538 if (N.getNode()) { 4539 // A dbg.value for an alloca is always indirect. 4540 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4541 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4542 IsIndirect, N)) { 4543 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4544 IsIndirect, Offset, dl, SDNodeOrder); 4545 DAG.AddDbgValue(SDV, N.getNode(), false); 4546 } 4547 } else if (!V->use_empty() ) { 4548 // Do not call getValue(V) yet, as we don't want to generate code. 4549 // Remember it for later. 4550 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4551 DanglingDebugInfoMap[V] = DDI; 4552 } else { 4553 // We may expand this to cover more cases. One case where we have no 4554 // data available is an unreferenced parameter. 4555 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4556 } 4557 } 4558 4559 // Build a debug info table entry. 4560 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4561 V = BCI->getOperand(0); 4562 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4563 // Don't handle byval struct arguments or VLAs, for example. 4564 if (!AI) { 4565 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4566 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4567 return nullptr; 4568 } 4569 DenseMap<const AllocaInst*, int>::iterator SI = 4570 FuncInfo.StaticAllocaMap.find(AI); 4571 if (SI == FuncInfo.StaticAllocaMap.end()) 4572 return nullptr; // VLAs. 4573 return nullptr; 4574 } 4575 4576 case Intrinsic::eh_typeid_for: { 4577 // Find the type id for the given typeinfo. 4578 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4579 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4580 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4581 setValue(&I, Res); 4582 return nullptr; 4583 } 4584 4585 case Intrinsic::eh_return_i32: 4586 case Intrinsic::eh_return_i64: 4587 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4588 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4589 MVT::Other, 4590 getControlRoot(), 4591 getValue(I.getArgOperand(0)), 4592 getValue(I.getArgOperand(1)))); 4593 return nullptr; 4594 case Intrinsic::eh_unwind_init: 4595 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4596 return nullptr; 4597 case Intrinsic::eh_dwarf_cfa: { 4598 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4599 TLI.getPointerTy(DAG.getDataLayout())); 4600 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4601 CfaArg.getValueType(), 4602 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4603 CfaArg.getValueType()), 4604 CfaArg); 4605 SDValue FA = DAG.getNode( 4606 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4607 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4608 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4609 FA, Offset)); 4610 return nullptr; 4611 } 4612 case Intrinsic::eh_sjlj_callsite: { 4613 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4614 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4615 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4616 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4617 4618 MMI.setCurrentCallSite(CI->getZExtValue()); 4619 return nullptr; 4620 } 4621 case Intrinsic::eh_sjlj_functioncontext: { 4622 // Get and store the index of the function context. 4623 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4624 AllocaInst *FnCtx = 4625 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4626 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4627 MFI->setFunctionContextIndex(FI); 4628 return nullptr; 4629 } 4630 case Intrinsic::eh_sjlj_setjmp: { 4631 SDValue Ops[2]; 4632 Ops[0] = getRoot(); 4633 Ops[1] = getValue(I.getArgOperand(0)); 4634 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4635 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4636 setValue(&I, Op.getValue(0)); 4637 DAG.setRoot(Op.getValue(1)); 4638 return nullptr; 4639 } 4640 case Intrinsic::eh_sjlj_longjmp: { 4641 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4642 getRoot(), getValue(I.getArgOperand(0)))); 4643 return nullptr; 4644 } 4645 case Intrinsic::eh_sjlj_setup_dispatch: { 4646 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4647 getRoot())); 4648 return nullptr; 4649 } 4650 4651 case Intrinsic::masked_gather: 4652 visitMaskedGather(I); 4653 return nullptr; 4654 case Intrinsic::masked_load: 4655 visitMaskedLoad(I); 4656 return nullptr; 4657 case Intrinsic::masked_scatter: 4658 visitMaskedScatter(I); 4659 return nullptr; 4660 case Intrinsic::masked_store: 4661 visitMaskedStore(I); 4662 return nullptr; 4663 case Intrinsic::x86_mmx_pslli_w: 4664 case Intrinsic::x86_mmx_pslli_d: 4665 case Intrinsic::x86_mmx_pslli_q: 4666 case Intrinsic::x86_mmx_psrli_w: 4667 case Intrinsic::x86_mmx_psrli_d: 4668 case Intrinsic::x86_mmx_psrli_q: 4669 case Intrinsic::x86_mmx_psrai_w: 4670 case Intrinsic::x86_mmx_psrai_d: { 4671 SDValue ShAmt = getValue(I.getArgOperand(1)); 4672 if (isa<ConstantSDNode>(ShAmt)) { 4673 visitTargetIntrinsic(I, Intrinsic); 4674 return nullptr; 4675 } 4676 unsigned NewIntrinsic = 0; 4677 EVT ShAmtVT = MVT::v2i32; 4678 switch (Intrinsic) { 4679 case Intrinsic::x86_mmx_pslli_w: 4680 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4681 break; 4682 case Intrinsic::x86_mmx_pslli_d: 4683 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4684 break; 4685 case Intrinsic::x86_mmx_pslli_q: 4686 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4687 break; 4688 case Intrinsic::x86_mmx_psrli_w: 4689 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4690 break; 4691 case Intrinsic::x86_mmx_psrli_d: 4692 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4693 break; 4694 case Intrinsic::x86_mmx_psrli_q: 4695 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4696 break; 4697 case Intrinsic::x86_mmx_psrai_w: 4698 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4699 break; 4700 case Intrinsic::x86_mmx_psrai_d: 4701 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4702 break; 4703 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4704 } 4705 4706 // The vector shift intrinsics with scalars uses 32b shift amounts but 4707 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4708 // to be zero. 4709 // We must do this early because v2i32 is not a legal type. 4710 SDValue ShOps[2]; 4711 ShOps[0] = ShAmt; 4712 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4713 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4714 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4715 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4716 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4717 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4718 getValue(I.getArgOperand(0)), ShAmt); 4719 setValue(&I, Res); 4720 return nullptr; 4721 } 4722 case Intrinsic::convertff: 4723 case Intrinsic::convertfsi: 4724 case Intrinsic::convertfui: 4725 case Intrinsic::convertsif: 4726 case Intrinsic::convertuif: 4727 case Intrinsic::convertss: 4728 case Intrinsic::convertsu: 4729 case Intrinsic::convertus: 4730 case Intrinsic::convertuu: { 4731 ISD::CvtCode Code = ISD::CVT_INVALID; 4732 switch (Intrinsic) { 4733 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4734 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4735 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4736 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4737 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4738 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4739 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4740 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4741 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4742 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4743 } 4744 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4745 const Value *Op1 = I.getArgOperand(0); 4746 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4747 DAG.getValueType(DestVT), 4748 DAG.getValueType(getValue(Op1).getValueType()), 4749 getValue(I.getArgOperand(1)), 4750 getValue(I.getArgOperand(2)), 4751 Code); 4752 setValue(&I, Res); 4753 return nullptr; 4754 } 4755 case Intrinsic::powi: 4756 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4757 getValue(I.getArgOperand(1)), DAG)); 4758 return nullptr; 4759 case Intrinsic::log: 4760 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4761 return nullptr; 4762 case Intrinsic::log2: 4763 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4764 return nullptr; 4765 case Intrinsic::log10: 4766 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4767 return nullptr; 4768 case Intrinsic::exp: 4769 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4770 return nullptr; 4771 case Intrinsic::exp2: 4772 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4773 return nullptr; 4774 case Intrinsic::pow: 4775 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4776 getValue(I.getArgOperand(1)), DAG, TLI)); 4777 return nullptr; 4778 case Intrinsic::sqrt: 4779 case Intrinsic::fabs: 4780 case Intrinsic::sin: 4781 case Intrinsic::cos: 4782 case Intrinsic::floor: 4783 case Intrinsic::ceil: 4784 case Intrinsic::trunc: 4785 case Intrinsic::rint: 4786 case Intrinsic::nearbyint: 4787 case Intrinsic::round: { 4788 unsigned Opcode; 4789 switch (Intrinsic) { 4790 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4791 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4792 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4793 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4794 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4795 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4796 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4797 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4798 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4799 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4800 case Intrinsic::round: Opcode = ISD::FROUND; break; 4801 } 4802 4803 setValue(&I, DAG.getNode(Opcode, sdl, 4804 getValue(I.getArgOperand(0)).getValueType(), 4805 getValue(I.getArgOperand(0)))); 4806 return nullptr; 4807 } 4808 case Intrinsic::minnum: 4809 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4810 getValue(I.getArgOperand(0)).getValueType(), 4811 getValue(I.getArgOperand(0)), 4812 getValue(I.getArgOperand(1)))); 4813 return nullptr; 4814 case Intrinsic::maxnum: 4815 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4816 getValue(I.getArgOperand(0)).getValueType(), 4817 getValue(I.getArgOperand(0)), 4818 getValue(I.getArgOperand(1)))); 4819 return nullptr; 4820 case Intrinsic::copysign: 4821 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4822 getValue(I.getArgOperand(0)).getValueType(), 4823 getValue(I.getArgOperand(0)), 4824 getValue(I.getArgOperand(1)))); 4825 return nullptr; 4826 case Intrinsic::fma: 4827 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4828 getValue(I.getArgOperand(0)).getValueType(), 4829 getValue(I.getArgOperand(0)), 4830 getValue(I.getArgOperand(1)), 4831 getValue(I.getArgOperand(2)))); 4832 return nullptr; 4833 case Intrinsic::fmuladd: { 4834 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4835 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4836 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4837 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4838 getValue(I.getArgOperand(0)).getValueType(), 4839 getValue(I.getArgOperand(0)), 4840 getValue(I.getArgOperand(1)), 4841 getValue(I.getArgOperand(2)))); 4842 } else { 4843 // TODO: Intrinsic calls should have fast-math-flags. 4844 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4845 getValue(I.getArgOperand(0)).getValueType(), 4846 getValue(I.getArgOperand(0)), 4847 getValue(I.getArgOperand(1))); 4848 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4849 getValue(I.getArgOperand(0)).getValueType(), 4850 Mul, 4851 getValue(I.getArgOperand(2))); 4852 setValue(&I, Add); 4853 } 4854 return nullptr; 4855 } 4856 case Intrinsic::convert_to_fp16: 4857 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4858 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4859 getValue(I.getArgOperand(0)), 4860 DAG.getTargetConstant(0, sdl, 4861 MVT::i32)))); 4862 return nullptr; 4863 case Intrinsic::convert_from_fp16: 4864 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4865 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4866 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4867 getValue(I.getArgOperand(0))))); 4868 return nullptr; 4869 case Intrinsic::pcmarker: { 4870 SDValue Tmp = getValue(I.getArgOperand(0)); 4871 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4872 return nullptr; 4873 } 4874 case Intrinsic::readcyclecounter: { 4875 SDValue Op = getRoot(); 4876 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4877 DAG.getVTList(MVT::i64, MVT::Other), Op); 4878 setValue(&I, Res); 4879 DAG.setRoot(Res.getValue(1)); 4880 return nullptr; 4881 } 4882 case Intrinsic::bswap: 4883 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4884 getValue(I.getArgOperand(0)).getValueType(), 4885 getValue(I.getArgOperand(0)))); 4886 return nullptr; 4887 case Intrinsic::uabsdiff: 4888 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4889 getValue(I.getArgOperand(0)).getValueType(), 4890 getValue(I.getArgOperand(0)), 4891 getValue(I.getArgOperand(1)))); 4892 return nullptr; 4893 case Intrinsic::sabsdiff: 4894 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4895 getValue(I.getArgOperand(0)).getValueType(), 4896 getValue(I.getArgOperand(0)), 4897 getValue(I.getArgOperand(1)))); 4898 return nullptr; 4899 case Intrinsic::cttz: { 4900 SDValue Arg = getValue(I.getArgOperand(0)); 4901 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4902 EVT Ty = Arg.getValueType(); 4903 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4904 sdl, Ty, Arg)); 4905 return nullptr; 4906 } 4907 case Intrinsic::ctlz: { 4908 SDValue Arg = getValue(I.getArgOperand(0)); 4909 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4910 EVT Ty = Arg.getValueType(); 4911 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4912 sdl, Ty, Arg)); 4913 return nullptr; 4914 } 4915 case Intrinsic::ctpop: { 4916 SDValue Arg = getValue(I.getArgOperand(0)); 4917 EVT Ty = Arg.getValueType(); 4918 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4919 return nullptr; 4920 } 4921 case Intrinsic::stacksave: { 4922 SDValue Op = getRoot(); 4923 Res = DAG.getNode( 4924 ISD::STACKSAVE, sdl, 4925 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4926 setValue(&I, Res); 4927 DAG.setRoot(Res.getValue(1)); 4928 return nullptr; 4929 } 4930 case Intrinsic::stackrestore: { 4931 Res = getValue(I.getArgOperand(0)); 4932 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4933 return nullptr; 4934 } 4935 case Intrinsic::stackprotector: { 4936 // Emit code into the DAG to store the stack guard onto the stack. 4937 MachineFunction &MF = DAG.getMachineFunction(); 4938 MachineFrameInfo *MFI = MF.getFrameInfo(); 4939 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4940 SDValue Src, Chain = getRoot(); 4941 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4942 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4943 4944 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4945 // global variable __stack_chk_guard. 4946 if (!GV) 4947 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4948 if (BC->getOpcode() == Instruction::BitCast) 4949 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4950 4951 if (GV && TLI.useLoadStackGuardNode()) { 4952 // Emit a LOAD_STACK_GUARD node. 4953 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4954 sdl, PtrTy, Chain); 4955 MachinePointerInfo MPInfo(GV); 4956 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4957 unsigned Flags = MachineMemOperand::MOLoad | 4958 MachineMemOperand::MOInvariant; 4959 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4960 PtrTy.getSizeInBits() / 8, 4961 DAG.getEVTAlignment(PtrTy)); 4962 Node->setMemRefs(MemRefs, MemRefs + 1); 4963 4964 // Copy the guard value to a virtual register so that it can be 4965 // retrieved in the epilogue. 4966 Src = SDValue(Node, 0); 4967 const TargetRegisterClass *RC = 4968 TLI.getRegClassFor(Src.getSimpleValueType()); 4969 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4970 4971 SPDescriptor.setGuardReg(Reg); 4972 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4973 } else { 4974 Src = getValue(I.getArgOperand(0)); // The guard's value. 4975 } 4976 4977 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4978 4979 int FI = FuncInfo.StaticAllocaMap[Slot]; 4980 MFI->setStackProtectorIndex(FI); 4981 4982 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4983 4984 // Store the stack protector onto the stack. 4985 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4986 DAG.getMachineFunction(), FI), 4987 true, false, 0); 4988 setValue(&I, Res); 4989 DAG.setRoot(Res); 4990 return nullptr; 4991 } 4992 case Intrinsic::objectsize: { 4993 // If we don't know by now, we're never going to know. 4994 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4995 4996 assert(CI && "Non-constant type in __builtin_object_size?"); 4997 4998 SDValue Arg = getValue(I.getCalledValue()); 4999 EVT Ty = Arg.getValueType(); 5000 5001 if (CI->isZero()) 5002 Res = DAG.getConstant(-1ULL, sdl, Ty); 5003 else 5004 Res = DAG.getConstant(0, sdl, Ty); 5005 5006 setValue(&I, Res); 5007 return nullptr; 5008 } 5009 case Intrinsic::annotation: 5010 case Intrinsic::ptr_annotation: 5011 // Drop the intrinsic, but forward the value 5012 setValue(&I, getValue(I.getOperand(0))); 5013 return nullptr; 5014 case Intrinsic::assume: 5015 case Intrinsic::var_annotation: 5016 // Discard annotate attributes and assumptions 5017 return nullptr; 5018 5019 case Intrinsic::init_trampoline: { 5020 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5021 5022 SDValue Ops[6]; 5023 Ops[0] = getRoot(); 5024 Ops[1] = getValue(I.getArgOperand(0)); 5025 Ops[2] = getValue(I.getArgOperand(1)); 5026 Ops[3] = getValue(I.getArgOperand(2)); 5027 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5028 Ops[5] = DAG.getSrcValue(F); 5029 5030 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5031 5032 DAG.setRoot(Res); 5033 return nullptr; 5034 } 5035 case Intrinsic::adjust_trampoline: { 5036 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5037 TLI.getPointerTy(DAG.getDataLayout()), 5038 getValue(I.getArgOperand(0)))); 5039 return nullptr; 5040 } 5041 case Intrinsic::gcroot: 5042 if (GFI) { 5043 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5044 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5045 5046 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5047 GFI->addStackRoot(FI->getIndex(), TypeMap); 5048 } 5049 return nullptr; 5050 case Intrinsic::gcread: 5051 case Intrinsic::gcwrite: 5052 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5053 case Intrinsic::flt_rounds: 5054 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5055 return nullptr; 5056 5057 case Intrinsic::expect: { 5058 // Just replace __builtin_expect(exp, c) with EXP. 5059 setValue(&I, getValue(I.getArgOperand(0))); 5060 return nullptr; 5061 } 5062 5063 case Intrinsic::debugtrap: 5064 case Intrinsic::trap: { 5065 StringRef TrapFuncName = 5066 I.getAttributes() 5067 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5068 .getValueAsString(); 5069 if (TrapFuncName.empty()) { 5070 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5071 ISD::TRAP : ISD::DEBUGTRAP; 5072 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5073 return nullptr; 5074 } 5075 TargetLowering::ArgListTy Args; 5076 5077 TargetLowering::CallLoweringInfo CLI(DAG); 5078 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5079 CallingConv::C, I.getType(), 5080 DAG.getExternalSymbol(TrapFuncName.data(), 5081 TLI.getPointerTy(DAG.getDataLayout())), 5082 std::move(Args), 0); 5083 5084 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5085 DAG.setRoot(Result.second); 5086 return nullptr; 5087 } 5088 5089 case Intrinsic::uadd_with_overflow: 5090 case Intrinsic::sadd_with_overflow: 5091 case Intrinsic::usub_with_overflow: 5092 case Intrinsic::ssub_with_overflow: 5093 case Intrinsic::umul_with_overflow: 5094 case Intrinsic::smul_with_overflow: { 5095 ISD::NodeType Op; 5096 switch (Intrinsic) { 5097 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5098 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5099 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5100 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5101 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5102 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5103 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5104 } 5105 SDValue Op1 = getValue(I.getArgOperand(0)); 5106 SDValue Op2 = getValue(I.getArgOperand(1)); 5107 5108 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5109 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5110 return nullptr; 5111 } 5112 case Intrinsic::prefetch: { 5113 SDValue Ops[5]; 5114 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5115 Ops[0] = getRoot(); 5116 Ops[1] = getValue(I.getArgOperand(0)); 5117 Ops[2] = getValue(I.getArgOperand(1)); 5118 Ops[3] = getValue(I.getArgOperand(2)); 5119 Ops[4] = getValue(I.getArgOperand(3)); 5120 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5121 DAG.getVTList(MVT::Other), Ops, 5122 EVT::getIntegerVT(*Context, 8), 5123 MachinePointerInfo(I.getArgOperand(0)), 5124 0, /* align */ 5125 false, /* volatile */ 5126 rw==0, /* read */ 5127 rw==1)); /* write */ 5128 return nullptr; 5129 } 5130 case Intrinsic::lifetime_start: 5131 case Intrinsic::lifetime_end: { 5132 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5133 // Stack coloring is not enabled in O0, discard region information. 5134 if (TM.getOptLevel() == CodeGenOpt::None) 5135 return nullptr; 5136 5137 SmallVector<Value *, 4> Allocas; 5138 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5139 5140 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5141 E = Allocas.end(); Object != E; ++Object) { 5142 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5143 5144 // Could not find an Alloca. 5145 if (!LifetimeObject) 5146 continue; 5147 5148 // First check that the Alloca is static, otherwise it won't have a 5149 // valid frame index. 5150 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5151 if (SI == FuncInfo.StaticAllocaMap.end()) 5152 return nullptr; 5153 5154 int FI = SI->second; 5155 5156 SDValue Ops[2]; 5157 Ops[0] = getRoot(); 5158 Ops[1] = 5159 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5160 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5161 5162 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5163 DAG.setRoot(Res); 5164 } 5165 return nullptr; 5166 } 5167 case Intrinsic::invariant_start: 5168 // Discard region information. 5169 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5170 return nullptr; 5171 case Intrinsic::invariant_end: 5172 // Discard region information. 5173 return nullptr; 5174 case Intrinsic::stackprotectorcheck: { 5175 // Do not actually emit anything for this basic block. Instead we initialize 5176 // the stack protector descriptor and export the guard variable so we can 5177 // access it in FinishBasicBlock. 5178 const BasicBlock *BB = I.getParent(); 5179 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5180 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5181 5182 // Flush our exports since we are going to process a terminator. 5183 (void)getControlRoot(); 5184 return nullptr; 5185 } 5186 case Intrinsic::clear_cache: 5187 return TLI.getClearCacheBuiltinName(); 5188 case Intrinsic::donothing: 5189 // ignore 5190 return nullptr; 5191 case Intrinsic::experimental_stackmap: { 5192 visitStackmap(I); 5193 return nullptr; 5194 } 5195 case Intrinsic::experimental_patchpoint_void: 5196 case Intrinsic::experimental_patchpoint_i64: { 5197 visitPatchpoint(&I); 5198 return nullptr; 5199 } 5200 case Intrinsic::experimental_gc_statepoint: { 5201 visitStatepoint(I); 5202 return nullptr; 5203 } 5204 case Intrinsic::experimental_gc_result_int: 5205 case Intrinsic::experimental_gc_result_float: 5206 case Intrinsic::experimental_gc_result_ptr: 5207 case Intrinsic::experimental_gc_result: { 5208 visitGCResult(I); 5209 return nullptr; 5210 } 5211 case Intrinsic::experimental_gc_relocate: { 5212 visitGCRelocate(I); 5213 return nullptr; 5214 } 5215 case Intrinsic::instrprof_increment: 5216 llvm_unreachable("instrprof failed to lower an increment"); 5217 5218 case Intrinsic::localescape: { 5219 MachineFunction &MF = DAG.getMachineFunction(); 5220 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5221 5222 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5223 // is the same on all targets. 5224 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5225 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5226 if (isa<ConstantPointerNull>(Arg)) 5227 continue; // Skip null pointers. They represent a hole in index space. 5228 AllocaInst *Slot = cast<AllocaInst>(Arg); 5229 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5230 "can only escape static allocas"); 5231 int FI = FuncInfo.StaticAllocaMap[Slot]; 5232 MCSymbol *FrameAllocSym = 5233 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5234 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5236 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5237 .addSym(FrameAllocSym) 5238 .addFrameIndex(FI); 5239 } 5240 5241 return nullptr; 5242 } 5243 5244 case Intrinsic::localrecover: { 5245 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5246 MachineFunction &MF = DAG.getMachineFunction(); 5247 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5248 5249 // Get the symbol that defines the frame offset. 5250 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5251 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5252 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5253 MCSymbol *FrameAllocSym = 5254 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5255 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5256 5257 // Create a MCSymbol for the label to avoid any target lowering 5258 // that would make this PC relative. 5259 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5260 SDValue OffsetVal = 5261 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5262 5263 // Add the offset to the FP. 5264 Value *FP = I.getArgOperand(1); 5265 SDValue FPVal = getValue(FP); 5266 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5267 setValue(&I, Add); 5268 5269 return nullptr; 5270 } 5271 5272 case Intrinsic::eh_exceptionpointer: 5273 case Intrinsic::eh_exceptioncode: { 5274 // Get the exception pointer vreg, copy from it, and resize it to fit. 5275 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5276 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5277 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5278 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5279 SDValue N = 5280 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5281 if (Intrinsic == Intrinsic::eh_exceptioncode) 5282 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5283 setValue(&I, N); 5284 return nullptr; 5285 } 5286 } 5287 } 5288 5289 std::pair<SDValue, SDValue> 5290 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5291 const BasicBlock *EHPadBB) { 5292 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5293 MCSymbol *BeginLabel = nullptr; 5294 5295 if (EHPadBB) { 5296 // Insert a label before the invoke call to mark the try range. This can be 5297 // used to detect deletion of the invoke via the MachineModuleInfo. 5298 BeginLabel = MMI.getContext().createTempSymbol(); 5299 5300 // For SjLj, keep track of which landing pads go with which invokes 5301 // so as to maintain the ordering of pads in the LSDA. 5302 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5303 if (CallSiteIndex) { 5304 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5305 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5306 5307 // Now that the call site is handled, stop tracking it. 5308 MMI.setCurrentCallSite(0); 5309 } 5310 5311 // Both PendingLoads and PendingExports must be flushed here; 5312 // this call might not return. 5313 (void)getRoot(); 5314 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5315 5316 CLI.setChain(getRoot()); 5317 } 5318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5319 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5320 5321 assert((CLI.IsTailCall || Result.second.getNode()) && 5322 "Non-null chain expected with non-tail call!"); 5323 assert((Result.second.getNode() || !Result.first.getNode()) && 5324 "Null value expected with tail call!"); 5325 5326 if (!Result.second.getNode()) { 5327 // As a special case, a null chain means that a tail call has been emitted 5328 // and the DAG root is already updated. 5329 HasTailCall = true; 5330 5331 // Since there's no actual continuation from this block, nothing can be 5332 // relying on us setting vregs for them. 5333 PendingExports.clear(); 5334 } else { 5335 DAG.setRoot(Result.second); 5336 } 5337 5338 if (EHPadBB) { 5339 // Insert a label at the end of the invoke call to mark the try range. This 5340 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5341 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5342 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5343 5344 // Inform MachineModuleInfo of range. 5345 if (MMI.hasEHFunclets()) { 5346 WinEHFuncInfo &EHInfo = 5347 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5348 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5349 } else { 5350 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5351 } 5352 } 5353 5354 return Result; 5355 } 5356 5357 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5358 bool isTailCall, 5359 const BasicBlock *EHPadBB) { 5360 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5361 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5362 Type *RetTy = FTy->getReturnType(); 5363 5364 TargetLowering::ArgListTy Args; 5365 TargetLowering::ArgListEntry Entry; 5366 Args.reserve(CS.arg_size()); 5367 5368 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5369 i != e; ++i) { 5370 const Value *V = *i; 5371 5372 // Skip empty types 5373 if (V->getType()->isEmptyTy()) 5374 continue; 5375 5376 SDValue ArgNode = getValue(V); 5377 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5378 5379 // Skip the first return-type Attribute to get to params. 5380 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5381 Args.push_back(Entry); 5382 5383 // If we have an explicit sret argument that is an Instruction, (i.e., it 5384 // might point to function-local memory), we can't meaningfully tail-call. 5385 if (Entry.isSRet && isa<Instruction>(V)) 5386 isTailCall = false; 5387 } 5388 5389 // Check if target-independent constraints permit a tail call here. 5390 // Target-dependent constraints are checked within TLI->LowerCallTo. 5391 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5392 isTailCall = false; 5393 5394 TargetLowering::CallLoweringInfo CLI(DAG); 5395 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5396 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5397 .setTailCall(isTailCall); 5398 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5399 5400 if (Result.first.getNode()) 5401 setValue(CS.getInstruction(), Result.first); 5402 } 5403 5404 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5405 /// value is equal or not-equal to zero. 5406 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5407 for (const User *U : V->users()) { 5408 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5409 if (IC->isEquality()) 5410 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5411 if (C->isNullValue()) 5412 continue; 5413 // Unknown instruction. 5414 return false; 5415 } 5416 return true; 5417 } 5418 5419 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5420 Type *LoadTy, 5421 SelectionDAGBuilder &Builder) { 5422 5423 // Check to see if this load can be trivially constant folded, e.g. if the 5424 // input is from a string literal. 5425 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5426 // Cast pointer to the type we really want to load. 5427 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5428 PointerType::getUnqual(LoadTy)); 5429 5430 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5431 const_cast<Constant *>(LoadInput), *Builder.DL)) 5432 return Builder.getValue(LoadCst); 5433 } 5434 5435 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5436 // still constant memory, the input chain can be the entry node. 5437 SDValue Root; 5438 bool ConstantMemory = false; 5439 5440 // Do not serialize (non-volatile) loads of constant memory with anything. 5441 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5442 Root = Builder.DAG.getEntryNode(); 5443 ConstantMemory = true; 5444 } else { 5445 // Do not serialize non-volatile loads against each other. 5446 Root = Builder.DAG.getRoot(); 5447 } 5448 5449 SDValue Ptr = Builder.getValue(PtrVal); 5450 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5451 Ptr, MachinePointerInfo(PtrVal), 5452 false /*volatile*/, 5453 false /*nontemporal*/, 5454 false /*isinvariant*/, 1 /* align=1 */); 5455 5456 if (!ConstantMemory) 5457 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5458 return LoadVal; 5459 } 5460 5461 /// processIntegerCallValue - Record the value for an instruction that 5462 /// produces an integer result, converting the type where necessary. 5463 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5464 SDValue Value, 5465 bool IsSigned) { 5466 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5467 I.getType(), true); 5468 if (IsSigned) 5469 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5470 else 5471 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5472 setValue(&I, Value); 5473 } 5474 5475 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5476 /// If so, return true and lower it, otherwise return false and it will be 5477 /// lowered like a normal call. 5478 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5479 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5480 if (I.getNumArgOperands() != 3) 5481 return false; 5482 5483 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5484 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5485 !I.getArgOperand(2)->getType()->isIntegerTy() || 5486 !I.getType()->isIntegerTy()) 5487 return false; 5488 5489 const Value *Size = I.getArgOperand(2); 5490 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5491 if (CSize && CSize->getZExtValue() == 0) { 5492 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5493 I.getType(), true); 5494 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5495 return true; 5496 } 5497 5498 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5499 std::pair<SDValue, SDValue> Res = 5500 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5501 getValue(LHS), getValue(RHS), getValue(Size), 5502 MachinePointerInfo(LHS), 5503 MachinePointerInfo(RHS)); 5504 if (Res.first.getNode()) { 5505 processIntegerCallValue(I, Res.first, true); 5506 PendingLoads.push_back(Res.second); 5507 return true; 5508 } 5509 5510 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5511 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5512 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5513 bool ActuallyDoIt = true; 5514 MVT LoadVT; 5515 Type *LoadTy; 5516 switch (CSize->getZExtValue()) { 5517 default: 5518 LoadVT = MVT::Other; 5519 LoadTy = nullptr; 5520 ActuallyDoIt = false; 5521 break; 5522 case 2: 5523 LoadVT = MVT::i16; 5524 LoadTy = Type::getInt16Ty(CSize->getContext()); 5525 break; 5526 case 4: 5527 LoadVT = MVT::i32; 5528 LoadTy = Type::getInt32Ty(CSize->getContext()); 5529 break; 5530 case 8: 5531 LoadVT = MVT::i64; 5532 LoadTy = Type::getInt64Ty(CSize->getContext()); 5533 break; 5534 /* 5535 case 16: 5536 LoadVT = MVT::v4i32; 5537 LoadTy = Type::getInt32Ty(CSize->getContext()); 5538 LoadTy = VectorType::get(LoadTy, 4); 5539 break; 5540 */ 5541 } 5542 5543 // This turns into unaligned loads. We only do this if the target natively 5544 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5545 // we'll only produce a small number of byte loads. 5546 5547 // Require that we can find a legal MVT, and only do this if the target 5548 // supports unaligned loads of that type. Expanding into byte loads would 5549 // bloat the code. 5550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5551 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5552 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5553 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5554 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5555 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5556 // TODO: Check alignment of src and dest ptrs. 5557 if (!TLI.isTypeLegal(LoadVT) || 5558 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5559 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5560 ActuallyDoIt = false; 5561 } 5562 5563 if (ActuallyDoIt) { 5564 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5565 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5566 5567 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5568 ISD::SETNE); 5569 processIntegerCallValue(I, Res, false); 5570 return true; 5571 } 5572 } 5573 5574 5575 return false; 5576 } 5577 5578 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5579 /// form. If so, return true and lower it, otherwise return false and it 5580 /// will be lowered like a normal call. 5581 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5582 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5583 if (I.getNumArgOperands() != 3) 5584 return false; 5585 5586 const Value *Src = I.getArgOperand(0); 5587 const Value *Char = I.getArgOperand(1); 5588 const Value *Length = I.getArgOperand(2); 5589 if (!Src->getType()->isPointerTy() || 5590 !Char->getType()->isIntegerTy() || 5591 !Length->getType()->isIntegerTy() || 5592 !I.getType()->isPointerTy()) 5593 return false; 5594 5595 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5596 std::pair<SDValue, SDValue> Res = 5597 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5598 getValue(Src), getValue(Char), getValue(Length), 5599 MachinePointerInfo(Src)); 5600 if (Res.first.getNode()) { 5601 setValue(&I, Res.first); 5602 PendingLoads.push_back(Res.second); 5603 return true; 5604 } 5605 5606 return false; 5607 } 5608 5609 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5610 /// optimized form. If so, return true and lower it, otherwise return false 5611 /// and it will be lowered like a normal call. 5612 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5613 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5614 if (I.getNumArgOperands() != 2) 5615 return false; 5616 5617 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5618 if (!Arg0->getType()->isPointerTy() || 5619 !Arg1->getType()->isPointerTy() || 5620 !I.getType()->isPointerTy()) 5621 return false; 5622 5623 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5624 std::pair<SDValue, SDValue> Res = 5625 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5626 getValue(Arg0), getValue(Arg1), 5627 MachinePointerInfo(Arg0), 5628 MachinePointerInfo(Arg1), isStpcpy); 5629 if (Res.first.getNode()) { 5630 setValue(&I, Res.first); 5631 DAG.setRoot(Res.second); 5632 return true; 5633 } 5634 5635 return false; 5636 } 5637 5638 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5639 /// If so, return true and lower it, otherwise return false and it will be 5640 /// lowered like a normal call. 5641 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5642 // Verify that the prototype makes sense. int strcmp(void*,void*) 5643 if (I.getNumArgOperands() != 2) 5644 return false; 5645 5646 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5647 if (!Arg0->getType()->isPointerTy() || 5648 !Arg1->getType()->isPointerTy() || 5649 !I.getType()->isIntegerTy()) 5650 return false; 5651 5652 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5653 std::pair<SDValue, SDValue> Res = 5654 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5655 getValue(Arg0), getValue(Arg1), 5656 MachinePointerInfo(Arg0), 5657 MachinePointerInfo(Arg1)); 5658 if (Res.first.getNode()) { 5659 processIntegerCallValue(I, Res.first, true); 5660 PendingLoads.push_back(Res.second); 5661 return true; 5662 } 5663 5664 return false; 5665 } 5666 5667 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5668 /// form. If so, return true and lower it, otherwise return false and it 5669 /// will be lowered like a normal call. 5670 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5671 // Verify that the prototype makes sense. size_t strlen(char *) 5672 if (I.getNumArgOperands() != 1) 5673 return false; 5674 5675 const Value *Arg0 = I.getArgOperand(0); 5676 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5677 return false; 5678 5679 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5680 std::pair<SDValue, SDValue> Res = 5681 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5682 getValue(Arg0), MachinePointerInfo(Arg0)); 5683 if (Res.first.getNode()) { 5684 processIntegerCallValue(I, Res.first, false); 5685 PendingLoads.push_back(Res.second); 5686 return true; 5687 } 5688 5689 return false; 5690 } 5691 5692 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5693 /// form. If so, return true and lower it, otherwise return false and it 5694 /// will be lowered like a normal call. 5695 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5696 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5697 if (I.getNumArgOperands() != 2) 5698 return false; 5699 5700 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5701 if (!Arg0->getType()->isPointerTy() || 5702 !Arg1->getType()->isIntegerTy() || 5703 !I.getType()->isIntegerTy()) 5704 return false; 5705 5706 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5707 std::pair<SDValue, SDValue> Res = 5708 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5709 getValue(Arg0), getValue(Arg1), 5710 MachinePointerInfo(Arg0)); 5711 if (Res.first.getNode()) { 5712 processIntegerCallValue(I, Res.first, false); 5713 PendingLoads.push_back(Res.second); 5714 return true; 5715 } 5716 5717 return false; 5718 } 5719 5720 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5721 /// operation (as expected), translate it to an SDNode with the specified opcode 5722 /// and return true. 5723 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5724 unsigned Opcode) { 5725 // Sanity check that it really is a unary floating-point call. 5726 if (I.getNumArgOperands() != 1 || 5727 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5728 I.getType() != I.getArgOperand(0)->getType() || 5729 !I.onlyReadsMemory()) 5730 return false; 5731 5732 SDValue Tmp = getValue(I.getArgOperand(0)); 5733 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5734 return true; 5735 } 5736 5737 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5738 /// operation (as expected), translate it to an SDNode with the specified opcode 5739 /// and return true. 5740 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5741 unsigned Opcode) { 5742 // Sanity check that it really is a binary floating-point call. 5743 if (I.getNumArgOperands() != 2 || 5744 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5745 I.getType() != I.getArgOperand(0)->getType() || 5746 I.getType() != I.getArgOperand(1)->getType() || 5747 !I.onlyReadsMemory()) 5748 return false; 5749 5750 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5751 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5752 EVT VT = Tmp0.getValueType(); 5753 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5754 return true; 5755 } 5756 5757 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5758 // Handle inline assembly differently. 5759 if (isa<InlineAsm>(I.getCalledValue())) { 5760 visitInlineAsm(&I); 5761 return; 5762 } 5763 5764 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5765 ComputeUsesVAFloatArgument(I, &MMI); 5766 5767 const char *RenameFn = nullptr; 5768 if (Function *F = I.getCalledFunction()) { 5769 if (F->isDeclaration()) { 5770 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5771 if (unsigned IID = II->getIntrinsicID(F)) { 5772 RenameFn = visitIntrinsicCall(I, IID); 5773 if (!RenameFn) 5774 return; 5775 } 5776 } 5777 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5778 RenameFn = visitIntrinsicCall(I, IID); 5779 if (!RenameFn) 5780 return; 5781 } 5782 } 5783 5784 // Check for well-known libc/libm calls. If the function is internal, it 5785 // can't be a library call. 5786 LibFunc::Func Func; 5787 if (!F->hasLocalLinkage() && F->hasName() && 5788 LibInfo->getLibFunc(F->getName(), Func) && 5789 LibInfo->hasOptimizedCodeGen(Func)) { 5790 switch (Func) { 5791 default: break; 5792 case LibFunc::copysign: 5793 case LibFunc::copysignf: 5794 case LibFunc::copysignl: 5795 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5796 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5797 I.getType() == I.getArgOperand(0)->getType() && 5798 I.getType() == I.getArgOperand(1)->getType() && 5799 I.onlyReadsMemory()) { 5800 SDValue LHS = getValue(I.getArgOperand(0)); 5801 SDValue RHS = getValue(I.getArgOperand(1)); 5802 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5803 LHS.getValueType(), LHS, RHS)); 5804 return; 5805 } 5806 break; 5807 case LibFunc::fabs: 5808 case LibFunc::fabsf: 5809 case LibFunc::fabsl: 5810 if (visitUnaryFloatCall(I, ISD::FABS)) 5811 return; 5812 break; 5813 case LibFunc::fmin: 5814 case LibFunc::fminf: 5815 case LibFunc::fminl: 5816 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5817 return; 5818 break; 5819 case LibFunc::fmax: 5820 case LibFunc::fmaxf: 5821 case LibFunc::fmaxl: 5822 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5823 return; 5824 break; 5825 case LibFunc::sin: 5826 case LibFunc::sinf: 5827 case LibFunc::sinl: 5828 if (visitUnaryFloatCall(I, ISD::FSIN)) 5829 return; 5830 break; 5831 case LibFunc::cos: 5832 case LibFunc::cosf: 5833 case LibFunc::cosl: 5834 if (visitUnaryFloatCall(I, ISD::FCOS)) 5835 return; 5836 break; 5837 case LibFunc::sqrt: 5838 case LibFunc::sqrtf: 5839 case LibFunc::sqrtl: 5840 case LibFunc::sqrt_finite: 5841 case LibFunc::sqrtf_finite: 5842 case LibFunc::sqrtl_finite: 5843 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5844 return; 5845 break; 5846 case LibFunc::floor: 5847 case LibFunc::floorf: 5848 case LibFunc::floorl: 5849 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5850 return; 5851 break; 5852 case LibFunc::nearbyint: 5853 case LibFunc::nearbyintf: 5854 case LibFunc::nearbyintl: 5855 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5856 return; 5857 break; 5858 case LibFunc::ceil: 5859 case LibFunc::ceilf: 5860 case LibFunc::ceill: 5861 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5862 return; 5863 break; 5864 case LibFunc::rint: 5865 case LibFunc::rintf: 5866 case LibFunc::rintl: 5867 if (visitUnaryFloatCall(I, ISD::FRINT)) 5868 return; 5869 break; 5870 case LibFunc::round: 5871 case LibFunc::roundf: 5872 case LibFunc::roundl: 5873 if (visitUnaryFloatCall(I, ISD::FROUND)) 5874 return; 5875 break; 5876 case LibFunc::trunc: 5877 case LibFunc::truncf: 5878 case LibFunc::truncl: 5879 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5880 return; 5881 break; 5882 case LibFunc::log2: 5883 case LibFunc::log2f: 5884 case LibFunc::log2l: 5885 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5886 return; 5887 break; 5888 case LibFunc::exp2: 5889 case LibFunc::exp2f: 5890 case LibFunc::exp2l: 5891 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5892 return; 5893 break; 5894 case LibFunc::memcmp: 5895 if (visitMemCmpCall(I)) 5896 return; 5897 break; 5898 case LibFunc::memchr: 5899 if (visitMemChrCall(I)) 5900 return; 5901 break; 5902 case LibFunc::strcpy: 5903 if (visitStrCpyCall(I, false)) 5904 return; 5905 break; 5906 case LibFunc::stpcpy: 5907 if (visitStrCpyCall(I, true)) 5908 return; 5909 break; 5910 case LibFunc::strcmp: 5911 if (visitStrCmpCall(I)) 5912 return; 5913 break; 5914 case LibFunc::strlen: 5915 if (visitStrLenCall(I)) 5916 return; 5917 break; 5918 case LibFunc::strnlen: 5919 if (visitStrNLenCall(I)) 5920 return; 5921 break; 5922 } 5923 } 5924 } 5925 5926 SDValue Callee; 5927 if (!RenameFn) 5928 Callee = getValue(I.getCalledValue()); 5929 else 5930 Callee = DAG.getExternalSymbol( 5931 RenameFn, 5932 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5933 5934 // Check if we can potentially perform a tail call. More detailed checking is 5935 // be done within LowerCallTo, after more information about the call is known. 5936 LowerCallTo(&I, Callee, I.isTailCall()); 5937 } 5938 5939 namespace { 5940 5941 /// AsmOperandInfo - This contains information for each constraint that we are 5942 /// lowering. 5943 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5944 public: 5945 /// CallOperand - If this is the result output operand or a clobber 5946 /// this is null, otherwise it is the incoming operand to the CallInst. 5947 /// This gets modified as the asm is processed. 5948 SDValue CallOperand; 5949 5950 /// AssignedRegs - If this is a register or register class operand, this 5951 /// contains the set of register corresponding to the operand. 5952 RegsForValue AssignedRegs; 5953 5954 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5955 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5956 } 5957 5958 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5959 /// corresponds to. If there is no Value* for this operand, it returns 5960 /// MVT::Other. 5961 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5962 const DataLayout &DL) const { 5963 if (!CallOperandVal) return MVT::Other; 5964 5965 if (isa<BasicBlock>(CallOperandVal)) 5966 return TLI.getPointerTy(DL); 5967 5968 llvm::Type *OpTy = CallOperandVal->getType(); 5969 5970 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5971 // If this is an indirect operand, the operand is a pointer to the 5972 // accessed type. 5973 if (isIndirect) { 5974 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5975 if (!PtrTy) 5976 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5977 OpTy = PtrTy->getElementType(); 5978 } 5979 5980 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5981 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5982 if (STy->getNumElements() == 1) 5983 OpTy = STy->getElementType(0); 5984 5985 // If OpTy is not a single value, it may be a struct/union that we 5986 // can tile with integers. 5987 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5988 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5989 switch (BitSize) { 5990 default: break; 5991 case 1: 5992 case 8: 5993 case 16: 5994 case 32: 5995 case 64: 5996 case 128: 5997 OpTy = IntegerType::get(Context, BitSize); 5998 break; 5999 } 6000 } 6001 6002 return TLI.getValueType(DL, OpTy, true); 6003 } 6004 }; 6005 6006 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6007 6008 } // end anonymous namespace 6009 6010 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6011 /// specified operand. We prefer to assign virtual registers, to allow the 6012 /// register allocator to handle the assignment process. However, if the asm 6013 /// uses features that we can't model on machineinstrs, we have SDISel do the 6014 /// allocation. This produces generally horrible, but correct, code. 6015 /// 6016 /// OpInfo describes the operand. 6017 /// 6018 static void GetRegistersForValue(SelectionDAG &DAG, 6019 const TargetLowering &TLI, 6020 SDLoc DL, 6021 SDISelAsmOperandInfo &OpInfo) { 6022 LLVMContext &Context = *DAG.getContext(); 6023 6024 MachineFunction &MF = DAG.getMachineFunction(); 6025 SmallVector<unsigned, 4> Regs; 6026 6027 // If this is a constraint for a single physreg, or a constraint for a 6028 // register class, find it. 6029 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6030 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6031 OpInfo.ConstraintCode, 6032 OpInfo.ConstraintVT); 6033 6034 unsigned NumRegs = 1; 6035 if (OpInfo.ConstraintVT != MVT::Other) { 6036 // If this is a FP input in an integer register (or visa versa) insert a bit 6037 // cast of the input value. More generally, handle any case where the input 6038 // value disagrees with the register class we plan to stick this in. 6039 if (OpInfo.Type == InlineAsm::isInput && 6040 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6041 // Try to convert to the first EVT that the reg class contains. If the 6042 // types are identical size, use a bitcast to convert (e.g. two differing 6043 // vector types). 6044 MVT RegVT = *PhysReg.second->vt_begin(); 6045 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6046 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6047 RegVT, OpInfo.CallOperand); 6048 OpInfo.ConstraintVT = RegVT; 6049 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6050 // If the input is a FP value and we want it in FP registers, do a 6051 // bitcast to the corresponding integer type. This turns an f64 value 6052 // into i64, which can be passed with two i32 values on a 32-bit 6053 // machine. 6054 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6055 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6056 RegVT, OpInfo.CallOperand); 6057 OpInfo.ConstraintVT = RegVT; 6058 } 6059 } 6060 6061 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6062 } 6063 6064 MVT RegVT; 6065 EVT ValueVT = OpInfo.ConstraintVT; 6066 6067 // If this is a constraint for a specific physical register, like {r17}, 6068 // assign it now. 6069 if (unsigned AssignedReg = PhysReg.first) { 6070 const TargetRegisterClass *RC = PhysReg.second; 6071 if (OpInfo.ConstraintVT == MVT::Other) 6072 ValueVT = *RC->vt_begin(); 6073 6074 // Get the actual register value type. This is important, because the user 6075 // may have asked for (e.g.) the AX register in i32 type. We need to 6076 // remember that AX is actually i16 to get the right extension. 6077 RegVT = *RC->vt_begin(); 6078 6079 // This is a explicit reference to a physical register. 6080 Regs.push_back(AssignedReg); 6081 6082 // If this is an expanded reference, add the rest of the regs to Regs. 6083 if (NumRegs != 1) { 6084 TargetRegisterClass::iterator I = RC->begin(); 6085 for (; *I != AssignedReg; ++I) 6086 assert(I != RC->end() && "Didn't find reg!"); 6087 6088 // Already added the first reg. 6089 --NumRegs; ++I; 6090 for (; NumRegs; --NumRegs, ++I) { 6091 assert(I != RC->end() && "Ran out of registers to allocate!"); 6092 Regs.push_back(*I); 6093 } 6094 } 6095 6096 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6097 return; 6098 } 6099 6100 // Otherwise, if this was a reference to an LLVM register class, create vregs 6101 // for this reference. 6102 if (const TargetRegisterClass *RC = PhysReg.second) { 6103 RegVT = *RC->vt_begin(); 6104 if (OpInfo.ConstraintVT == MVT::Other) 6105 ValueVT = RegVT; 6106 6107 // Create the appropriate number of virtual registers. 6108 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6109 for (; NumRegs; --NumRegs) 6110 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6111 6112 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6113 return; 6114 } 6115 6116 // Otherwise, we couldn't allocate enough registers for this. 6117 } 6118 6119 /// visitInlineAsm - Handle a call to an InlineAsm object. 6120 /// 6121 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6122 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6123 6124 /// ConstraintOperands - Information about all of the constraints. 6125 SDISelAsmOperandInfoVector ConstraintOperands; 6126 6127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6128 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6129 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6130 6131 bool hasMemory = false; 6132 6133 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6134 unsigned ResNo = 0; // ResNo - The result number of the next output. 6135 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6136 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6137 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6138 6139 MVT OpVT = MVT::Other; 6140 6141 // Compute the value type for each operand. 6142 switch (OpInfo.Type) { 6143 case InlineAsm::isOutput: 6144 // Indirect outputs just consume an argument. 6145 if (OpInfo.isIndirect) { 6146 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6147 break; 6148 } 6149 6150 // The return value of the call is this value. As such, there is no 6151 // corresponding argument. 6152 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6153 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6154 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6155 STy->getElementType(ResNo)); 6156 } else { 6157 assert(ResNo == 0 && "Asm only has one result!"); 6158 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6159 } 6160 ++ResNo; 6161 break; 6162 case InlineAsm::isInput: 6163 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6164 break; 6165 case InlineAsm::isClobber: 6166 // Nothing to do. 6167 break; 6168 } 6169 6170 // If this is an input or an indirect output, process the call argument. 6171 // BasicBlocks are labels, currently appearing only in asm's. 6172 if (OpInfo.CallOperandVal) { 6173 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6174 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6175 } else { 6176 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6177 } 6178 6179 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6180 DAG.getDataLayout()).getSimpleVT(); 6181 } 6182 6183 OpInfo.ConstraintVT = OpVT; 6184 6185 // Indirect operand accesses access memory. 6186 if (OpInfo.isIndirect) 6187 hasMemory = true; 6188 else { 6189 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6190 TargetLowering::ConstraintType 6191 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6192 if (CType == TargetLowering::C_Memory) { 6193 hasMemory = true; 6194 break; 6195 } 6196 } 6197 } 6198 } 6199 6200 SDValue Chain, Flag; 6201 6202 // We won't need to flush pending loads if this asm doesn't touch 6203 // memory and is nonvolatile. 6204 if (hasMemory || IA->hasSideEffects()) 6205 Chain = getRoot(); 6206 else 6207 Chain = DAG.getRoot(); 6208 6209 // Second pass over the constraints: compute which constraint option to use 6210 // and assign registers to constraints that want a specific physreg. 6211 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6212 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6213 6214 // If this is an output operand with a matching input operand, look up the 6215 // matching input. If their types mismatch, e.g. one is an integer, the 6216 // other is floating point, or their sizes are different, flag it as an 6217 // error. 6218 if (OpInfo.hasMatchingInput()) { 6219 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6220 6221 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6222 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6223 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6224 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6225 OpInfo.ConstraintVT); 6226 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6227 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6228 Input.ConstraintVT); 6229 if ((OpInfo.ConstraintVT.isInteger() != 6230 Input.ConstraintVT.isInteger()) || 6231 (MatchRC.second != InputRC.second)) { 6232 report_fatal_error("Unsupported asm: input constraint" 6233 " with a matching output constraint of" 6234 " incompatible type!"); 6235 } 6236 Input.ConstraintVT = OpInfo.ConstraintVT; 6237 } 6238 } 6239 6240 // Compute the constraint code and ConstraintType to use. 6241 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6242 6243 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6244 OpInfo.Type == InlineAsm::isClobber) 6245 continue; 6246 6247 // If this is a memory input, and if the operand is not indirect, do what we 6248 // need to to provide an address for the memory input. 6249 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6250 !OpInfo.isIndirect) { 6251 assert((OpInfo.isMultipleAlternative || 6252 (OpInfo.Type == InlineAsm::isInput)) && 6253 "Can only indirectify direct input operands!"); 6254 6255 // Memory operands really want the address of the value. If we don't have 6256 // an indirect input, put it in the constpool if we can, otherwise spill 6257 // it to a stack slot. 6258 // TODO: This isn't quite right. We need to handle these according to 6259 // the addressing mode that the constraint wants. Also, this may take 6260 // an additional register for the computation and we don't want that 6261 // either. 6262 6263 // If the operand is a float, integer, or vector constant, spill to a 6264 // constant pool entry to get its address. 6265 const Value *OpVal = OpInfo.CallOperandVal; 6266 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6267 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6268 OpInfo.CallOperand = DAG.getConstantPool( 6269 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6270 } else { 6271 // Otherwise, create a stack slot and emit a store to it before the 6272 // asm. 6273 Type *Ty = OpVal->getType(); 6274 auto &DL = DAG.getDataLayout(); 6275 uint64_t TySize = DL.getTypeAllocSize(Ty); 6276 unsigned Align = DL.getPrefTypeAlignment(Ty); 6277 MachineFunction &MF = DAG.getMachineFunction(); 6278 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6279 SDValue StackSlot = 6280 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6281 Chain = DAG.getStore( 6282 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6283 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6284 false, false, 0); 6285 OpInfo.CallOperand = StackSlot; 6286 } 6287 6288 // There is no longer a Value* corresponding to this operand. 6289 OpInfo.CallOperandVal = nullptr; 6290 6291 // It is now an indirect operand. 6292 OpInfo.isIndirect = true; 6293 } 6294 6295 // If this constraint is for a specific register, allocate it before 6296 // anything else. 6297 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6298 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6299 } 6300 6301 // Second pass - Loop over all of the operands, assigning virtual or physregs 6302 // to register class operands. 6303 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6304 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6305 6306 // C_Register operands have already been allocated, Other/Memory don't need 6307 // to be. 6308 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6309 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6310 } 6311 6312 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6313 std::vector<SDValue> AsmNodeOperands; 6314 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6315 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6316 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6317 6318 // If we have a !srcloc metadata node associated with it, we want to attach 6319 // this to the ultimately generated inline asm machineinstr. To do this, we 6320 // pass in the third operand as this (potentially null) inline asm MDNode. 6321 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6322 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6323 6324 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6325 // bits as operand 3. 6326 unsigned ExtraInfo = 0; 6327 if (IA->hasSideEffects()) 6328 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6329 if (IA->isAlignStack()) 6330 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6331 // Set the asm dialect. 6332 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6333 6334 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6335 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6336 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6337 6338 // Compute the constraint code and ConstraintType to use. 6339 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6340 6341 // Ideally, we would only check against memory constraints. However, the 6342 // meaning of an other constraint can be target-specific and we can't easily 6343 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6344 // for other constriants as well. 6345 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6346 OpInfo.ConstraintType == TargetLowering::C_Other) { 6347 if (OpInfo.Type == InlineAsm::isInput) 6348 ExtraInfo |= InlineAsm::Extra_MayLoad; 6349 else if (OpInfo.Type == InlineAsm::isOutput) 6350 ExtraInfo |= InlineAsm::Extra_MayStore; 6351 else if (OpInfo.Type == InlineAsm::isClobber) 6352 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6353 } 6354 } 6355 6356 AsmNodeOperands.push_back(DAG.getTargetConstant( 6357 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6358 6359 // Loop over all of the inputs, copying the operand values into the 6360 // appropriate registers and processing the output regs. 6361 RegsForValue RetValRegs; 6362 6363 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6364 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6365 6366 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6367 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6368 6369 switch (OpInfo.Type) { 6370 case InlineAsm::isOutput: { 6371 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6372 OpInfo.ConstraintType != TargetLowering::C_Register) { 6373 // Memory output, or 'other' output (e.g. 'X' constraint). 6374 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6375 6376 unsigned ConstraintID = 6377 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6378 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6379 "Failed to convert memory constraint code to constraint id."); 6380 6381 // Add information to the INLINEASM node to know about this output. 6382 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6383 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6384 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6385 MVT::i32)); 6386 AsmNodeOperands.push_back(OpInfo.CallOperand); 6387 break; 6388 } 6389 6390 // Otherwise, this is a register or register class output. 6391 6392 // Copy the output from the appropriate register. Find a register that 6393 // we can use. 6394 if (OpInfo.AssignedRegs.Regs.empty()) { 6395 LLVMContext &Ctx = *DAG.getContext(); 6396 Ctx.emitError(CS.getInstruction(), 6397 "couldn't allocate output register for constraint '" + 6398 Twine(OpInfo.ConstraintCode) + "'"); 6399 return; 6400 } 6401 6402 // If this is an indirect operand, store through the pointer after the 6403 // asm. 6404 if (OpInfo.isIndirect) { 6405 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6406 OpInfo.CallOperandVal)); 6407 } else { 6408 // This is the result value of the call. 6409 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6410 // Concatenate this output onto the outputs list. 6411 RetValRegs.append(OpInfo.AssignedRegs); 6412 } 6413 6414 // Add information to the INLINEASM node to know that this register is 6415 // set. 6416 OpInfo.AssignedRegs 6417 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6418 ? InlineAsm::Kind_RegDefEarlyClobber 6419 : InlineAsm::Kind_RegDef, 6420 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6421 break; 6422 } 6423 case InlineAsm::isInput: { 6424 SDValue InOperandVal = OpInfo.CallOperand; 6425 6426 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6427 // If this is required to match an output register we have already set, 6428 // just use its register. 6429 unsigned OperandNo = OpInfo.getMatchedOperand(); 6430 6431 // Scan until we find the definition we already emitted of this operand. 6432 // When we find it, create a RegsForValue operand. 6433 unsigned CurOp = InlineAsm::Op_FirstOperand; 6434 for (; OperandNo; --OperandNo) { 6435 // Advance to the next operand. 6436 unsigned OpFlag = 6437 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6438 assert((InlineAsm::isRegDefKind(OpFlag) || 6439 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6440 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6441 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6442 } 6443 6444 unsigned OpFlag = 6445 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6446 if (InlineAsm::isRegDefKind(OpFlag) || 6447 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6448 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6449 if (OpInfo.isIndirect) { 6450 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6451 LLVMContext &Ctx = *DAG.getContext(); 6452 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6453 " don't know how to handle tied " 6454 "indirect register inputs"); 6455 return; 6456 } 6457 6458 RegsForValue MatchedRegs; 6459 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6460 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6461 MatchedRegs.RegVTs.push_back(RegVT); 6462 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6463 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6464 i != e; ++i) { 6465 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6466 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6467 else { 6468 LLVMContext &Ctx = *DAG.getContext(); 6469 Ctx.emitError(CS.getInstruction(), 6470 "inline asm error: This value" 6471 " type register class is not natively supported!"); 6472 return; 6473 } 6474 } 6475 SDLoc dl = getCurSDLoc(); 6476 // Use the produced MatchedRegs object to 6477 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6478 Chain, &Flag, CS.getInstruction()); 6479 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6480 true, OpInfo.getMatchedOperand(), dl, 6481 DAG, AsmNodeOperands); 6482 break; 6483 } 6484 6485 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6486 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6487 "Unexpected number of operands"); 6488 // Add information to the INLINEASM node to know about this input. 6489 // See InlineAsm.h isUseOperandTiedToDef. 6490 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6491 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6492 OpInfo.getMatchedOperand()); 6493 AsmNodeOperands.push_back(DAG.getTargetConstant( 6494 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6495 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6496 break; 6497 } 6498 6499 // Treat indirect 'X' constraint as memory. 6500 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6501 OpInfo.isIndirect) 6502 OpInfo.ConstraintType = TargetLowering::C_Memory; 6503 6504 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6505 std::vector<SDValue> Ops; 6506 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6507 Ops, DAG); 6508 if (Ops.empty()) { 6509 LLVMContext &Ctx = *DAG.getContext(); 6510 Ctx.emitError(CS.getInstruction(), 6511 "invalid operand for inline asm constraint '" + 6512 Twine(OpInfo.ConstraintCode) + "'"); 6513 return; 6514 } 6515 6516 // Add information to the INLINEASM node to know about this input. 6517 unsigned ResOpType = 6518 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6519 AsmNodeOperands.push_back(DAG.getTargetConstant( 6520 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6521 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6522 break; 6523 } 6524 6525 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6526 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6527 assert(InOperandVal.getValueType() == 6528 TLI.getPointerTy(DAG.getDataLayout()) && 6529 "Memory operands expect pointer values"); 6530 6531 unsigned ConstraintID = 6532 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6533 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6534 "Failed to convert memory constraint code to constraint id."); 6535 6536 // Add information to the INLINEASM node to know about this input. 6537 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6538 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6539 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6540 getCurSDLoc(), 6541 MVT::i32)); 6542 AsmNodeOperands.push_back(InOperandVal); 6543 break; 6544 } 6545 6546 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6547 OpInfo.ConstraintType == TargetLowering::C_Register) && 6548 "Unknown constraint type!"); 6549 6550 // TODO: Support this. 6551 if (OpInfo.isIndirect) { 6552 LLVMContext &Ctx = *DAG.getContext(); 6553 Ctx.emitError(CS.getInstruction(), 6554 "Don't know how to handle indirect register inputs yet " 6555 "for constraint '" + 6556 Twine(OpInfo.ConstraintCode) + "'"); 6557 return; 6558 } 6559 6560 // Copy the input into the appropriate registers. 6561 if (OpInfo.AssignedRegs.Regs.empty()) { 6562 LLVMContext &Ctx = *DAG.getContext(); 6563 Ctx.emitError(CS.getInstruction(), 6564 "couldn't allocate input reg for constraint '" + 6565 Twine(OpInfo.ConstraintCode) + "'"); 6566 return; 6567 } 6568 6569 SDLoc dl = getCurSDLoc(); 6570 6571 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6572 Chain, &Flag, CS.getInstruction()); 6573 6574 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6575 dl, DAG, AsmNodeOperands); 6576 break; 6577 } 6578 case InlineAsm::isClobber: { 6579 // Add the clobbered value to the operand list, so that the register 6580 // allocator is aware that the physreg got clobbered. 6581 if (!OpInfo.AssignedRegs.Regs.empty()) 6582 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6583 false, 0, getCurSDLoc(), DAG, 6584 AsmNodeOperands); 6585 break; 6586 } 6587 } 6588 } 6589 6590 // Finish up input operands. Set the input chain and add the flag last. 6591 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6592 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6593 6594 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6595 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6596 Flag = Chain.getValue(1); 6597 6598 // If this asm returns a register value, copy the result from that register 6599 // and set it as the value of the call. 6600 if (!RetValRegs.Regs.empty()) { 6601 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6602 Chain, &Flag, CS.getInstruction()); 6603 6604 // FIXME: Why don't we do this for inline asms with MRVs? 6605 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6606 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6607 6608 // If any of the results of the inline asm is a vector, it may have the 6609 // wrong width/num elts. This can happen for register classes that can 6610 // contain multiple different value types. The preg or vreg allocated may 6611 // not have the same VT as was expected. Convert it to the right type 6612 // with bit_convert. 6613 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6614 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6615 ResultType, Val); 6616 6617 } else if (ResultType != Val.getValueType() && 6618 ResultType.isInteger() && Val.getValueType().isInteger()) { 6619 // If a result value was tied to an input value, the computed result may 6620 // have a wider width than the expected result. Extract the relevant 6621 // portion. 6622 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6623 } 6624 6625 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6626 } 6627 6628 setValue(CS.getInstruction(), Val); 6629 // Don't need to use this as a chain in this case. 6630 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6631 return; 6632 } 6633 6634 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6635 6636 // Process indirect outputs, first output all of the flagged copies out of 6637 // physregs. 6638 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6639 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6640 const Value *Ptr = IndirectStoresToEmit[i].second; 6641 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6642 Chain, &Flag, IA); 6643 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6644 } 6645 6646 // Emit the non-flagged stores from the physregs. 6647 SmallVector<SDValue, 8> OutChains; 6648 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6649 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6650 StoresToEmit[i].first, 6651 getValue(StoresToEmit[i].second), 6652 MachinePointerInfo(StoresToEmit[i].second), 6653 false, false, 0); 6654 OutChains.push_back(Val); 6655 } 6656 6657 if (!OutChains.empty()) 6658 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6659 6660 DAG.setRoot(Chain); 6661 } 6662 6663 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6664 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6665 MVT::Other, getRoot(), 6666 getValue(I.getArgOperand(0)), 6667 DAG.getSrcValue(I.getArgOperand(0)))); 6668 } 6669 6670 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6672 const DataLayout &DL = DAG.getDataLayout(); 6673 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6674 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6675 DAG.getSrcValue(I.getOperand(0)), 6676 DL.getABITypeAlignment(I.getType())); 6677 setValue(&I, V); 6678 DAG.setRoot(V.getValue(1)); 6679 } 6680 6681 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6682 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6683 MVT::Other, getRoot(), 6684 getValue(I.getArgOperand(0)), 6685 DAG.getSrcValue(I.getArgOperand(0)))); 6686 } 6687 6688 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6689 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6690 MVT::Other, getRoot(), 6691 getValue(I.getArgOperand(0)), 6692 getValue(I.getArgOperand(1)), 6693 DAG.getSrcValue(I.getArgOperand(0)), 6694 DAG.getSrcValue(I.getArgOperand(1)))); 6695 } 6696 6697 /// \brief Lower an argument list according to the target calling convention. 6698 /// 6699 /// \return A tuple of <return-value, token-chain> 6700 /// 6701 /// This is a helper for lowering intrinsics that follow a target calling 6702 /// convention or require stack pointer adjustment. Only a subset of the 6703 /// intrinsic's operands need to participate in the calling convention. 6704 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6705 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6706 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6707 TargetLowering::ArgListTy Args; 6708 Args.reserve(NumArgs); 6709 6710 // Populate the argument list. 6711 // Attributes for args start at offset 1, after the return attribute. 6712 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6713 ArgI != ArgE; ++ArgI) { 6714 const Value *V = CS->getOperand(ArgI); 6715 6716 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6717 6718 TargetLowering::ArgListEntry Entry; 6719 Entry.Node = getValue(V); 6720 Entry.Ty = V->getType(); 6721 Entry.setAttributes(&CS, AttrI); 6722 Args.push_back(Entry); 6723 } 6724 6725 TargetLowering::CallLoweringInfo CLI(DAG); 6726 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6727 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6728 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6729 6730 return lowerInvokable(CLI, EHPadBB); 6731 } 6732 6733 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6734 /// or patchpoint target node's operand list. 6735 /// 6736 /// Constants are converted to TargetConstants purely as an optimization to 6737 /// avoid constant materialization and register allocation. 6738 /// 6739 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6740 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6741 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6742 /// address materialization and register allocation, but may also be required 6743 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6744 /// alloca in the entry block, then the runtime may assume that the alloca's 6745 /// StackMap location can be read immediately after compilation and that the 6746 /// location is valid at any point during execution (this is similar to the 6747 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6748 /// only available in a register, then the runtime would need to trap when 6749 /// execution reaches the StackMap in order to read the alloca's location. 6750 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6751 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6752 SelectionDAGBuilder &Builder) { 6753 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6754 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6756 Ops.push_back( 6757 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6758 Ops.push_back( 6759 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6760 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6761 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6762 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6763 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6764 } else 6765 Ops.push_back(OpVal); 6766 } 6767 } 6768 6769 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6770 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6771 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6772 // [live variables...]) 6773 6774 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6775 6776 SDValue Chain, InFlag, Callee, NullPtr; 6777 SmallVector<SDValue, 32> Ops; 6778 6779 SDLoc DL = getCurSDLoc(); 6780 Callee = getValue(CI.getCalledValue()); 6781 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6782 6783 // The stackmap intrinsic only records the live variables (the arguemnts 6784 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6785 // intrinsic, this won't be lowered to a function call. This means we don't 6786 // have to worry about calling conventions and target specific lowering code. 6787 // Instead we perform the call lowering right here. 6788 // 6789 // chain, flag = CALLSEQ_START(chain, 0) 6790 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6791 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6792 // 6793 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6794 InFlag = Chain.getValue(1); 6795 6796 // Add the <id> and <numBytes> constants. 6797 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6798 Ops.push_back(DAG.getTargetConstant( 6799 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6800 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6801 Ops.push_back(DAG.getTargetConstant( 6802 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6803 MVT::i32)); 6804 6805 // Push live variables for the stack map. 6806 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6807 6808 // We are not pushing any register mask info here on the operands list, 6809 // because the stackmap doesn't clobber anything. 6810 6811 // Push the chain and the glue flag. 6812 Ops.push_back(Chain); 6813 Ops.push_back(InFlag); 6814 6815 // Create the STACKMAP node. 6816 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6817 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6818 Chain = SDValue(SM, 0); 6819 InFlag = Chain.getValue(1); 6820 6821 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6822 6823 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6824 6825 // Set the root to the target-lowered call chain. 6826 DAG.setRoot(Chain); 6827 6828 // Inform the Frame Information that we have a stackmap in this function. 6829 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6830 } 6831 6832 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6833 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6834 const BasicBlock *EHPadBB) { 6835 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6836 // i32 <numBytes>, 6837 // i8* <target>, 6838 // i32 <numArgs>, 6839 // [Args...], 6840 // [live variables...]) 6841 6842 CallingConv::ID CC = CS.getCallingConv(); 6843 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6844 bool HasDef = !CS->getType()->isVoidTy(); 6845 SDLoc dl = getCurSDLoc(); 6846 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6847 6848 // Handle immediate and symbolic callees. 6849 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6850 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6851 /*isTarget=*/true); 6852 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6853 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6854 SDLoc(SymbolicCallee), 6855 SymbolicCallee->getValueType(0)); 6856 6857 // Get the real number of arguments participating in the call <numArgs> 6858 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6859 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6860 6861 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6862 // Intrinsics include all meta-operands up to but not including CC. 6863 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6864 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6865 "Not enough arguments provided to the patchpoint intrinsic"); 6866 6867 // For AnyRegCC the arguments are lowered later on manually. 6868 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6869 Type *ReturnTy = 6870 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6871 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6872 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6873 6874 SDNode *CallEnd = Result.second.getNode(); 6875 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6876 CallEnd = CallEnd->getOperand(0).getNode(); 6877 6878 /// Get a call instruction from the call sequence chain. 6879 /// Tail calls are not allowed. 6880 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6881 "Expected a callseq node."); 6882 SDNode *Call = CallEnd->getOperand(0).getNode(); 6883 bool HasGlue = Call->getGluedNode(); 6884 6885 // Replace the target specific call node with the patchable intrinsic. 6886 SmallVector<SDValue, 8> Ops; 6887 6888 // Add the <id> and <numBytes> constants. 6889 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6890 Ops.push_back(DAG.getTargetConstant( 6891 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6892 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6893 Ops.push_back(DAG.getTargetConstant( 6894 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6895 MVT::i32)); 6896 6897 // Add the callee. 6898 Ops.push_back(Callee); 6899 6900 // Adjust <numArgs> to account for any arguments that have been passed on the 6901 // stack instead. 6902 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6903 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6904 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6905 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6906 6907 // Add the calling convention 6908 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6909 6910 // Add the arguments we omitted previously. The register allocator should 6911 // place these in any free register. 6912 if (IsAnyRegCC) 6913 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6914 Ops.push_back(getValue(CS.getArgument(i))); 6915 6916 // Push the arguments from the call instruction up to the register mask. 6917 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6918 Ops.append(Call->op_begin() + 2, e); 6919 6920 // Push live variables for the stack map. 6921 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6922 6923 // Push the register mask info. 6924 if (HasGlue) 6925 Ops.push_back(*(Call->op_end()-2)); 6926 else 6927 Ops.push_back(*(Call->op_end()-1)); 6928 6929 // Push the chain (this is originally the first operand of the call, but 6930 // becomes now the last or second to last operand). 6931 Ops.push_back(*(Call->op_begin())); 6932 6933 // Push the glue flag (last operand). 6934 if (HasGlue) 6935 Ops.push_back(*(Call->op_end()-1)); 6936 6937 SDVTList NodeTys; 6938 if (IsAnyRegCC && HasDef) { 6939 // Create the return types based on the intrinsic definition 6940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6941 SmallVector<EVT, 3> ValueVTs; 6942 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6943 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6944 6945 // There is always a chain and a glue type at the end 6946 ValueVTs.push_back(MVT::Other); 6947 ValueVTs.push_back(MVT::Glue); 6948 NodeTys = DAG.getVTList(ValueVTs); 6949 } else 6950 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6951 6952 // Replace the target specific call node with a PATCHPOINT node. 6953 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6954 dl, NodeTys, Ops); 6955 6956 // Update the NodeMap. 6957 if (HasDef) { 6958 if (IsAnyRegCC) 6959 setValue(CS.getInstruction(), SDValue(MN, 0)); 6960 else 6961 setValue(CS.getInstruction(), Result.first); 6962 } 6963 6964 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6965 // call sequence. Furthermore the location of the chain and glue can change 6966 // when the AnyReg calling convention is used and the intrinsic returns a 6967 // value. 6968 if (IsAnyRegCC && HasDef) { 6969 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6970 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6971 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6972 } else 6973 DAG.ReplaceAllUsesWith(Call, MN); 6974 DAG.DeleteNode(Call); 6975 6976 // Inform the Frame Information that we have a patchpoint in this function. 6977 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6978 } 6979 6980 /// Returns an AttributeSet representing the attributes applied to the return 6981 /// value of the given call. 6982 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6983 SmallVector<Attribute::AttrKind, 2> Attrs; 6984 if (CLI.RetSExt) 6985 Attrs.push_back(Attribute::SExt); 6986 if (CLI.RetZExt) 6987 Attrs.push_back(Attribute::ZExt); 6988 if (CLI.IsInReg) 6989 Attrs.push_back(Attribute::InReg); 6990 6991 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6992 Attrs); 6993 } 6994 6995 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6996 /// implementation, which just calls LowerCall. 6997 /// FIXME: When all targets are 6998 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6999 std::pair<SDValue, SDValue> 7000 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7001 // Handle the incoming return values from the call. 7002 CLI.Ins.clear(); 7003 Type *OrigRetTy = CLI.RetTy; 7004 SmallVector<EVT, 4> RetTys; 7005 SmallVector<uint64_t, 4> Offsets; 7006 auto &DL = CLI.DAG.getDataLayout(); 7007 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7008 7009 SmallVector<ISD::OutputArg, 4> Outs; 7010 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7011 7012 bool CanLowerReturn = 7013 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7014 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7015 7016 SDValue DemoteStackSlot; 7017 int DemoteStackIdx = -100; 7018 if (!CanLowerReturn) { 7019 // FIXME: equivalent assert? 7020 // assert(!CS.hasInAllocaArgument() && 7021 // "sret demotion is incompatible with inalloca"); 7022 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7023 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7024 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7025 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7026 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7027 7028 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7029 ArgListEntry Entry; 7030 Entry.Node = DemoteStackSlot; 7031 Entry.Ty = StackSlotPtrType; 7032 Entry.isSExt = false; 7033 Entry.isZExt = false; 7034 Entry.isInReg = false; 7035 Entry.isSRet = true; 7036 Entry.isNest = false; 7037 Entry.isByVal = false; 7038 Entry.isReturned = false; 7039 Entry.Alignment = Align; 7040 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7041 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7042 7043 // sret demotion isn't compatible with tail-calls, since the sret argument 7044 // points into the callers stack frame. 7045 CLI.IsTailCall = false; 7046 } else { 7047 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7048 EVT VT = RetTys[I]; 7049 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7050 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7051 for (unsigned i = 0; i != NumRegs; ++i) { 7052 ISD::InputArg MyFlags; 7053 MyFlags.VT = RegisterVT; 7054 MyFlags.ArgVT = VT; 7055 MyFlags.Used = CLI.IsReturnValueUsed; 7056 if (CLI.RetSExt) 7057 MyFlags.Flags.setSExt(); 7058 if (CLI.RetZExt) 7059 MyFlags.Flags.setZExt(); 7060 if (CLI.IsInReg) 7061 MyFlags.Flags.setInReg(); 7062 CLI.Ins.push_back(MyFlags); 7063 } 7064 } 7065 } 7066 7067 // Handle all of the outgoing arguments. 7068 CLI.Outs.clear(); 7069 CLI.OutVals.clear(); 7070 ArgListTy &Args = CLI.getArgs(); 7071 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7072 SmallVector<EVT, 4> ValueVTs; 7073 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7074 Type *FinalType = Args[i].Ty; 7075 if (Args[i].isByVal) 7076 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7077 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7078 FinalType, CLI.CallConv, CLI.IsVarArg); 7079 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7080 ++Value) { 7081 EVT VT = ValueVTs[Value]; 7082 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7083 SDValue Op = SDValue(Args[i].Node.getNode(), 7084 Args[i].Node.getResNo() + Value); 7085 ISD::ArgFlagsTy Flags; 7086 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7087 7088 if (Args[i].isZExt) 7089 Flags.setZExt(); 7090 if (Args[i].isSExt) 7091 Flags.setSExt(); 7092 if (Args[i].isInReg) 7093 Flags.setInReg(); 7094 if (Args[i].isSRet) 7095 Flags.setSRet(); 7096 if (Args[i].isByVal) 7097 Flags.setByVal(); 7098 if (Args[i].isInAlloca) { 7099 Flags.setInAlloca(); 7100 // Set the byval flag for CCAssignFn callbacks that don't know about 7101 // inalloca. This way we can know how many bytes we should've allocated 7102 // and how many bytes a callee cleanup function will pop. If we port 7103 // inalloca to more targets, we'll have to add custom inalloca handling 7104 // in the various CC lowering callbacks. 7105 Flags.setByVal(); 7106 } 7107 if (Args[i].isByVal || Args[i].isInAlloca) { 7108 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7109 Type *ElementTy = Ty->getElementType(); 7110 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7111 // For ByVal, alignment should come from FE. BE will guess if this 7112 // info is not there but there are cases it cannot get right. 7113 unsigned FrameAlign; 7114 if (Args[i].Alignment) 7115 FrameAlign = Args[i].Alignment; 7116 else 7117 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7118 Flags.setByValAlign(FrameAlign); 7119 } 7120 if (Args[i].isNest) 7121 Flags.setNest(); 7122 if (NeedsRegBlock) 7123 Flags.setInConsecutiveRegs(); 7124 Flags.setOrigAlign(OriginalAlignment); 7125 7126 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7127 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7128 SmallVector<SDValue, 4> Parts(NumParts); 7129 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7130 7131 if (Args[i].isSExt) 7132 ExtendKind = ISD::SIGN_EXTEND; 7133 else if (Args[i].isZExt) 7134 ExtendKind = ISD::ZERO_EXTEND; 7135 7136 // Conservatively only handle 'returned' on non-vectors for now 7137 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7138 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7139 "unexpected use of 'returned'"); 7140 // Before passing 'returned' to the target lowering code, ensure that 7141 // either the register MVT and the actual EVT are the same size or that 7142 // the return value and argument are extended in the same way; in these 7143 // cases it's safe to pass the argument register value unchanged as the 7144 // return register value (although it's at the target's option whether 7145 // to do so) 7146 // TODO: allow code generation to take advantage of partially preserved 7147 // registers rather than clobbering the entire register when the 7148 // parameter extension method is not compatible with the return 7149 // extension method 7150 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7151 (ExtendKind != ISD::ANY_EXTEND && 7152 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7153 Flags.setReturned(); 7154 } 7155 7156 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7157 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7158 7159 for (unsigned j = 0; j != NumParts; ++j) { 7160 // if it isn't first piece, alignment must be 1 7161 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7162 i < CLI.NumFixedArgs, 7163 i, j*Parts[j].getValueType().getStoreSize()); 7164 if (NumParts > 1 && j == 0) 7165 MyFlags.Flags.setSplit(); 7166 else if (j != 0) 7167 MyFlags.Flags.setOrigAlign(1); 7168 7169 CLI.Outs.push_back(MyFlags); 7170 CLI.OutVals.push_back(Parts[j]); 7171 } 7172 7173 if (NeedsRegBlock && Value == NumValues - 1) 7174 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7175 } 7176 } 7177 7178 SmallVector<SDValue, 4> InVals; 7179 CLI.Chain = LowerCall(CLI, InVals); 7180 7181 // Verify that the target's LowerCall behaved as expected. 7182 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7183 "LowerCall didn't return a valid chain!"); 7184 assert((!CLI.IsTailCall || InVals.empty()) && 7185 "LowerCall emitted a return value for a tail call!"); 7186 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7187 "LowerCall didn't emit the correct number of values!"); 7188 7189 // For a tail call, the return value is merely live-out and there aren't 7190 // any nodes in the DAG representing it. Return a special value to 7191 // indicate that a tail call has been emitted and no more Instructions 7192 // should be processed in the current block. 7193 if (CLI.IsTailCall) { 7194 CLI.DAG.setRoot(CLI.Chain); 7195 return std::make_pair(SDValue(), SDValue()); 7196 } 7197 7198 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7199 assert(InVals[i].getNode() && 7200 "LowerCall emitted a null value!"); 7201 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7202 "LowerCall emitted a value with the wrong type!"); 7203 }); 7204 7205 SmallVector<SDValue, 4> ReturnValues; 7206 if (!CanLowerReturn) { 7207 // The instruction result is the result of loading from the 7208 // hidden sret parameter. 7209 SmallVector<EVT, 1> PVTs; 7210 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7211 7212 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7213 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7214 EVT PtrVT = PVTs[0]; 7215 7216 unsigned NumValues = RetTys.size(); 7217 ReturnValues.resize(NumValues); 7218 SmallVector<SDValue, 4> Chains(NumValues); 7219 7220 for (unsigned i = 0; i < NumValues; ++i) { 7221 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7222 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7223 PtrVT)); 7224 SDValue L = CLI.DAG.getLoad( 7225 RetTys[i], CLI.DL, CLI.Chain, Add, 7226 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7227 DemoteStackIdx, Offsets[i]), 7228 false, false, false, 1); 7229 ReturnValues[i] = L; 7230 Chains[i] = L.getValue(1); 7231 } 7232 7233 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7234 } else { 7235 // Collect the legal value parts into potentially illegal values 7236 // that correspond to the original function's return values. 7237 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7238 if (CLI.RetSExt) 7239 AssertOp = ISD::AssertSext; 7240 else if (CLI.RetZExt) 7241 AssertOp = ISD::AssertZext; 7242 unsigned CurReg = 0; 7243 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7244 EVT VT = RetTys[I]; 7245 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7246 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7247 7248 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7249 NumRegs, RegisterVT, VT, nullptr, 7250 AssertOp)); 7251 CurReg += NumRegs; 7252 } 7253 7254 // For a function returning void, there is no return value. We can't create 7255 // such a node, so we just return a null return value in that case. In 7256 // that case, nothing will actually look at the value. 7257 if (ReturnValues.empty()) 7258 return std::make_pair(SDValue(), CLI.Chain); 7259 } 7260 7261 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7262 CLI.DAG.getVTList(RetTys), ReturnValues); 7263 return std::make_pair(Res, CLI.Chain); 7264 } 7265 7266 void TargetLowering::LowerOperationWrapper(SDNode *N, 7267 SmallVectorImpl<SDValue> &Results, 7268 SelectionDAG &DAG) const { 7269 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7270 if (Res.getNode()) 7271 Results.push_back(Res); 7272 } 7273 7274 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7275 llvm_unreachable("LowerOperation not implemented for this target!"); 7276 } 7277 7278 void 7279 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7280 SDValue Op = getNonRegisterValue(V); 7281 assert((Op.getOpcode() != ISD::CopyFromReg || 7282 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7283 "Copy from a reg to the same reg!"); 7284 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7285 7286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7287 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7288 V->getType()); 7289 SDValue Chain = DAG.getEntryNode(); 7290 7291 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7292 FuncInfo.PreferredExtendType.end()) 7293 ? ISD::ANY_EXTEND 7294 : FuncInfo.PreferredExtendType[V]; 7295 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7296 PendingExports.push_back(Chain); 7297 } 7298 7299 #include "llvm/CodeGen/SelectionDAGISel.h" 7300 7301 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7302 /// entry block, return true. This includes arguments used by switches, since 7303 /// the switch may expand into multiple basic blocks. 7304 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7305 // With FastISel active, we may be splitting blocks, so force creation 7306 // of virtual registers for all non-dead arguments. 7307 if (FastISel) 7308 return A->use_empty(); 7309 7310 const BasicBlock &Entry = A->getParent()->front(); 7311 for (const User *U : A->users()) 7312 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7313 return false; // Use not in entry block. 7314 7315 return true; 7316 } 7317 7318 void SelectionDAGISel::LowerArguments(const Function &F) { 7319 SelectionDAG &DAG = SDB->DAG; 7320 SDLoc dl = SDB->getCurSDLoc(); 7321 const DataLayout &DL = DAG.getDataLayout(); 7322 SmallVector<ISD::InputArg, 16> Ins; 7323 7324 if (!FuncInfo->CanLowerReturn) { 7325 // Put in an sret pointer parameter before all the other parameters. 7326 SmallVector<EVT, 1> ValueVTs; 7327 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7328 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7329 7330 // NOTE: Assuming that a pointer will never break down to more than one VT 7331 // or one register. 7332 ISD::ArgFlagsTy Flags; 7333 Flags.setSRet(); 7334 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7335 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7336 ISD::InputArg::NoArgIndex, 0); 7337 Ins.push_back(RetArg); 7338 } 7339 7340 // Set up the incoming argument description vector. 7341 unsigned Idx = 1; 7342 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7343 I != E; ++I, ++Idx) { 7344 SmallVector<EVT, 4> ValueVTs; 7345 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7346 bool isArgValueUsed = !I->use_empty(); 7347 unsigned PartBase = 0; 7348 Type *FinalType = I->getType(); 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7350 FinalType = cast<PointerType>(FinalType)->getElementType(); 7351 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7352 FinalType, F.getCallingConv(), F.isVarArg()); 7353 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7354 Value != NumValues; ++Value) { 7355 EVT VT = ValueVTs[Value]; 7356 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7357 ISD::ArgFlagsTy Flags; 7358 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7359 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7361 Flags.setZExt(); 7362 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7363 Flags.setSExt(); 7364 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7365 Flags.setInReg(); 7366 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7367 Flags.setSRet(); 7368 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7369 Flags.setByVal(); 7370 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7371 Flags.setInAlloca(); 7372 // Set the byval flag for CCAssignFn callbacks that don't know about 7373 // inalloca. This way we can know how many bytes we should've allocated 7374 // and how many bytes a callee cleanup function will pop. If we port 7375 // inalloca to more targets, we'll have to add custom inalloca handling 7376 // in the various CC lowering callbacks. 7377 Flags.setByVal(); 7378 } 7379 if (Flags.isByVal() || Flags.isInAlloca()) { 7380 PointerType *Ty = cast<PointerType>(I->getType()); 7381 Type *ElementTy = Ty->getElementType(); 7382 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7383 // For ByVal, alignment should be passed from FE. BE will guess if 7384 // this info is not there but there are cases it cannot get right. 7385 unsigned FrameAlign; 7386 if (F.getParamAlignment(Idx)) 7387 FrameAlign = F.getParamAlignment(Idx); 7388 else 7389 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7390 Flags.setByValAlign(FrameAlign); 7391 } 7392 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7393 Flags.setNest(); 7394 if (NeedsRegBlock) 7395 Flags.setInConsecutiveRegs(); 7396 Flags.setOrigAlign(OriginalAlignment); 7397 7398 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7399 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7400 for (unsigned i = 0; i != NumRegs; ++i) { 7401 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7402 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7403 if (NumRegs > 1 && i == 0) 7404 MyFlags.Flags.setSplit(); 7405 // if it isn't first piece, alignment must be 1 7406 else if (i > 0) 7407 MyFlags.Flags.setOrigAlign(1); 7408 Ins.push_back(MyFlags); 7409 } 7410 if (NeedsRegBlock && Value == NumValues - 1) 7411 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7412 PartBase += VT.getStoreSize(); 7413 } 7414 } 7415 7416 // Call the target to set up the argument values. 7417 SmallVector<SDValue, 8> InVals; 7418 SDValue NewRoot = TLI->LowerFormalArguments( 7419 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7420 7421 // Verify that the target's LowerFormalArguments behaved as expected. 7422 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7423 "LowerFormalArguments didn't return a valid chain!"); 7424 assert(InVals.size() == Ins.size() && 7425 "LowerFormalArguments didn't emit the correct number of values!"); 7426 DEBUG({ 7427 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7428 assert(InVals[i].getNode() && 7429 "LowerFormalArguments emitted a null value!"); 7430 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7431 "LowerFormalArguments emitted a value with the wrong type!"); 7432 } 7433 }); 7434 7435 // Update the DAG with the new chain value resulting from argument lowering. 7436 DAG.setRoot(NewRoot); 7437 7438 // Set up the argument values. 7439 unsigned i = 0; 7440 Idx = 1; 7441 if (!FuncInfo->CanLowerReturn) { 7442 // Create a virtual register for the sret pointer, and put in a copy 7443 // from the sret argument into it. 7444 SmallVector<EVT, 1> ValueVTs; 7445 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7446 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7447 MVT VT = ValueVTs[0].getSimpleVT(); 7448 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7449 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7450 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7451 RegVT, VT, nullptr, AssertOp); 7452 7453 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7454 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7455 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7456 FuncInfo->DemoteRegister = SRetReg; 7457 NewRoot = 7458 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7459 DAG.setRoot(NewRoot); 7460 7461 // i indexes lowered arguments. Bump it past the hidden sret argument. 7462 // Idx indexes LLVM arguments. Don't touch it. 7463 ++i; 7464 } 7465 7466 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7467 ++I, ++Idx) { 7468 SmallVector<SDValue, 4> ArgValues; 7469 SmallVector<EVT, 4> ValueVTs; 7470 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7471 unsigned NumValues = ValueVTs.size(); 7472 7473 // If this argument is unused then remember its value. It is used to generate 7474 // debugging information. 7475 if (I->use_empty() && NumValues) { 7476 SDB->setUnusedArgValue(&*I, InVals[i]); 7477 7478 // Also remember any frame index for use in FastISel. 7479 if (FrameIndexSDNode *FI = 7480 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7481 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7482 } 7483 7484 for (unsigned Val = 0; Val != NumValues; ++Val) { 7485 EVT VT = ValueVTs[Val]; 7486 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7487 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7488 7489 if (!I->use_empty()) { 7490 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7491 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7492 AssertOp = ISD::AssertSext; 7493 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7494 AssertOp = ISD::AssertZext; 7495 7496 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7497 NumParts, PartVT, VT, 7498 nullptr, AssertOp)); 7499 } 7500 7501 i += NumParts; 7502 } 7503 7504 // We don't need to do anything else for unused arguments. 7505 if (ArgValues.empty()) 7506 continue; 7507 7508 // Note down frame index. 7509 if (FrameIndexSDNode *FI = 7510 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7511 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7512 7513 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7514 SDB->getCurSDLoc()); 7515 7516 SDB->setValue(&*I, Res); 7517 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7518 if (LoadSDNode *LNode = 7519 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7520 if (FrameIndexSDNode *FI = 7521 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7522 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7523 } 7524 7525 // If this argument is live outside of the entry block, insert a copy from 7526 // wherever we got it to the vreg that other BB's will reference it as. 7527 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7528 // If we can, though, try to skip creating an unnecessary vreg. 7529 // FIXME: This isn't very clean... it would be nice to make this more 7530 // general. It's also subtly incompatible with the hacks FastISel 7531 // uses with vregs. 7532 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7533 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7534 FuncInfo->ValueMap[&*I] = Reg; 7535 continue; 7536 } 7537 } 7538 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7539 FuncInfo->InitializeRegForValue(&*I); 7540 SDB->CopyToExportRegsIfNeeded(&*I); 7541 } 7542 } 7543 7544 assert(i == InVals.size() && "Argument register count mismatch!"); 7545 7546 // Finally, if the target has anything special to do, allow it to do so. 7547 EmitFunctionEntryCode(); 7548 } 7549 7550 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7551 /// ensure constants are generated when needed. Remember the virtual registers 7552 /// that need to be added to the Machine PHI nodes as input. We cannot just 7553 /// directly add them, because expansion might result in multiple MBB's for one 7554 /// BB. As such, the start of the BB might correspond to a different MBB than 7555 /// the end. 7556 /// 7557 void 7558 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7559 const TerminatorInst *TI = LLVMBB->getTerminator(); 7560 7561 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7562 7563 // Check PHI nodes in successors that expect a value to be available from this 7564 // block. 7565 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7566 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7567 if (!isa<PHINode>(SuccBB->begin())) continue; 7568 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7569 7570 // If this terminator has multiple identical successors (common for 7571 // switches), only handle each succ once. 7572 if (!SuccsHandled.insert(SuccMBB).second) 7573 continue; 7574 7575 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7576 7577 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7578 // nodes and Machine PHI nodes, but the incoming operands have not been 7579 // emitted yet. 7580 for (BasicBlock::const_iterator I = SuccBB->begin(); 7581 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7582 // Ignore dead phi's. 7583 if (PN->use_empty()) continue; 7584 7585 // Skip empty types 7586 if (PN->getType()->isEmptyTy()) 7587 continue; 7588 7589 unsigned Reg; 7590 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7591 7592 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7593 unsigned &RegOut = ConstantsOut[C]; 7594 if (RegOut == 0) { 7595 RegOut = FuncInfo.CreateRegs(C->getType()); 7596 CopyValueToVirtualRegister(C, RegOut); 7597 } 7598 Reg = RegOut; 7599 } else { 7600 DenseMap<const Value *, unsigned>::iterator I = 7601 FuncInfo.ValueMap.find(PHIOp); 7602 if (I != FuncInfo.ValueMap.end()) 7603 Reg = I->second; 7604 else { 7605 assert(isa<AllocaInst>(PHIOp) && 7606 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7607 "Didn't codegen value into a register!??"); 7608 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7609 CopyValueToVirtualRegister(PHIOp, Reg); 7610 } 7611 } 7612 7613 // Remember that this register needs to added to the machine PHI node as 7614 // the input for this MBB. 7615 SmallVector<EVT, 4> ValueVTs; 7616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7617 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7618 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7619 EVT VT = ValueVTs[vti]; 7620 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7621 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7622 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7623 Reg += NumRegisters; 7624 } 7625 } 7626 } 7627 7628 ConstantsOut.clear(); 7629 } 7630 7631 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7632 /// is 0. 7633 MachineBasicBlock * 7634 SelectionDAGBuilder::StackProtectorDescriptor:: 7635 AddSuccessorMBB(const BasicBlock *BB, 7636 MachineBasicBlock *ParentMBB, 7637 bool IsLikely, 7638 MachineBasicBlock *SuccMBB) { 7639 // If SuccBB has not been created yet, create it. 7640 if (!SuccMBB) { 7641 MachineFunction *MF = ParentMBB->getParent(); 7642 MachineFunction::iterator BBI(ParentMBB); 7643 SuccMBB = MF->CreateMachineBasicBlock(BB); 7644 MF->insert(++BBI, SuccMBB); 7645 } 7646 // Add it as a successor of ParentMBB. 7647 ParentMBB->addSuccessor( 7648 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7649 return SuccMBB; 7650 } 7651 7652 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7653 MachineFunction::iterator I(MBB); 7654 if (++I == FuncInfo.MF->end()) 7655 return nullptr; 7656 return &*I; 7657 } 7658 7659 /// During lowering new call nodes can be created (such as memset, etc.). 7660 /// Those will become new roots of the current DAG, but complications arise 7661 /// when they are tail calls. In such cases, the call lowering will update 7662 /// the root, but the builder still needs to know that a tail call has been 7663 /// lowered in order to avoid generating an additional return. 7664 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7665 // If the node is null, we do have a tail call. 7666 if (MaybeTC.getNode() != nullptr) 7667 DAG.setRoot(MaybeTC); 7668 else 7669 HasTailCall = true; 7670 } 7671 7672 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7673 unsigned *TotalCases, unsigned First, 7674 unsigned Last) { 7675 assert(Last >= First); 7676 assert(TotalCases[Last] >= TotalCases[First]); 7677 7678 APInt LowCase = Clusters[First].Low->getValue(); 7679 APInt HighCase = Clusters[Last].High->getValue(); 7680 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7681 7682 // FIXME: A range of consecutive cases has 100% density, but only requires one 7683 // comparison to lower. We should discriminate against such consecutive ranges 7684 // in jump tables. 7685 7686 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7687 uint64_t Range = Diff + 1; 7688 7689 uint64_t NumCases = 7690 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7691 7692 assert(NumCases < UINT64_MAX / 100); 7693 assert(Range >= NumCases); 7694 7695 return NumCases * 100 >= Range * MinJumpTableDensity; 7696 } 7697 7698 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7699 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7700 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7701 } 7702 7703 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7704 unsigned First, unsigned Last, 7705 const SwitchInst *SI, 7706 MachineBasicBlock *DefaultMBB, 7707 CaseCluster &JTCluster) { 7708 assert(First <= Last); 7709 7710 uint32_t Weight = 0; 7711 unsigned NumCmps = 0; 7712 std::vector<MachineBasicBlock*> Table; 7713 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7714 for (unsigned I = First; I <= Last; ++I) { 7715 assert(Clusters[I].Kind == CC_Range); 7716 Weight += Clusters[I].Weight; 7717 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7718 APInt Low = Clusters[I].Low->getValue(); 7719 APInt High = Clusters[I].High->getValue(); 7720 NumCmps += (Low == High) ? 1 : 2; 7721 if (I != First) { 7722 // Fill the gap between this and the previous cluster. 7723 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7724 assert(PreviousHigh.slt(Low)); 7725 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7726 for (uint64_t J = 0; J < Gap; J++) 7727 Table.push_back(DefaultMBB); 7728 } 7729 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7730 for (uint64_t J = 0; J < ClusterSize; ++J) 7731 Table.push_back(Clusters[I].MBB); 7732 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7733 } 7734 7735 unsigned NumDests = JTWeights.size(); 7736 if (isSuitableForBitTests(NumDests, NumCmps, 7737 Clusters[First].Low->getValue(), 7738 Clusters[Last].High->getValue())) { 7739 // Clusters[First..Last] should be lowered as bit tests instead. 7740 return false; 7741 } 7742 7743 // Create the MBB that will load from and jump through the table. 7744 // Note: We create it here, but it's not inserted into the function yet. 7745 MachineFunction *CurMF = FuncInfo.MF; 7746 MachineBasicBlock *JumpTableMBB = 7747 CurMF->CreateMachineBasicBlock(SI->getParent()); 7748 7749 // Add successors. Note: use table order for determinism. 7750 SmallPtrSet<MachineBasicBlock *, 8> Done; 7751 for (MachineBasicBlock *Succ : Table) { 7752 if (Done.count(Succ)) 7753 continue; 7754 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7755 Done.insert(Succ); 7756 } 7757 7758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7759 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7760 ->createJumpTableIndex(Table); 7761 7762 // Set up the jump table info. 7763 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7764 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7765 Clusters[Last].High->getValue(), SI->getCondition(), 7766 nullptr, false); 7767 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7768 7769 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7770 JTCases.size() - 1, Weight); 7771 return true; 7772 } 7773 7774 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7775 const SwitchInst *SI, 7776 MachineBasicBlock *DefaultMBB) { 7777 #ifndef NDEBUG 7778 // Clusters must be non-empty, sorted, and only contain Range clusters. 7779 assert(!Clusters.empty()); 7780 for (CaseCluster &C : Clusters) 7781 assert(C.Kind == CC_Range); 7782 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7783 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7784 #endif 7785 7786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7787 if (!areJTsAllowed(TLI)) 7788 return; 7789 7790 const int64_t N = Clusters.size(); 7791 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7792 7793 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7794 SmallVector<unsigned, 8> TotalCases(N); 7795 7796 for (unsigned i = 0; i < N; ++i) { 7797 APInt Hi = Clusters[i].High->getValue(); 7798 APInt Lo = Clusters[i].Low->getValue(); 7799 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7800 if (i != 0) 7801 TotalCases[i] += TotalCases[i - 1]; 7802 } 7803 7804 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7805 // Cheap case: the whole range might be suitable for jump table. 7806 CaseCluster JTCluster; 7807 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7808 Clusters[0] = JTCluster; 7809 Clusters.resize(1); 7810 return; 7811 } 7812 } 7813 7814 // The algorithm below is not suitable for -O0. 7815 if (TM.getOptLevel() == CodeGenOpt::None) 7816 return; 7817 7818 // Split Clusters into minimum number of dense partitions. The algorithm uses 7819 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7820 // for the Case Statement'" (1994), but builds the MinPartitions array in 7821 // reverse order to make it easier to reconstruct the partitions in ascending 7822 // order. In the choice between two optimal partitionings, it picks the one 7823 // which yields more jump tables. 7824 7825 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7826 SmallVector<unsigned, 8> MinPartitions(N); 7827 // LastElement[i] is the last element of the partition starting at i. 7828 SmallVector<unsigned, 8> LastElement(N); 7829 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7830 SmallVector<unsigned, 8> NumTables(N); 7831 7832 // Base case: There is only one way to partition Clusters[N-1]. 7833 MinPartitions[N - 1] = 1; 7834 LastElement[N - 1] = N - 1; 7835 assert(MinJumpTableSize > 1); 7836 NumTables[N - 1] = 0; 7837 7838 // Note: loop indexes are signed to avoid underflow. 7839 for (int64_t i = N - 2; i >= 0; i--) { 7840 // Find optimal partitioning of Clusters[i..N-1]. 7841 // Baseline: Put Clusters[i] into a partition on its own. 7842 MinPartitions[i] = MinPartitions[i + 1] + 1; 7843 LastElement[i] = i; 7844 NumTables[i] = NumTables[i + 1]; 7845 7846 // Search for a solution that results in fewer partitions. 7847 for (int64_t j = N - 1; j > i; j--) { 7848 // Try building a partition from Clusters[i..j]. 7849 if (isDense(Clusters, &TotalCases[0], i, j)) { 7850 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7851 bool IsTable = j - i + 1 >= MinJumpTableSize; 7852 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7853 7854 // If this j leads to fewer partitions, or same number of partitions 7855 // with more lookup tables, it is a better partitioning. 7856 if (NumPartitions < MinPartitions[i] || 7857 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7858 MinPartitions[i] = NumPartitions; 7859 LastElement[i] = j; 7860 NumTables[i] = Tables; 7861 } 7862 } 7863 } 7864 } 7865 7866 // Iterate over the partitions, replacing some with jump tables in-place. 7867 unsigned DstIndex = 0; 7868 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7869 Last = LastElement[First]; 7870 assert(Last >= First); 7871 assert(DstIndex <= First); 7872 unsigned NumClusters = Last - First + 1; 7873 7874 CaseCluster JTCluster; 7875 if (NumClusters >= MinJumpTableSize && 7876 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7877 Clusters[DstIndex++] = JTCluster; 7878 } else { 7879 for (unsigned I = First; I <= Last; ++I) 7880 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7881 } 7882 } 7883 Clusters.resize(DstIndex); 7884 } 7885 7886 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7887 // FIXME: Using the pointer type doesn't seem ideal. 7888 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7889 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7890 return Range <= BW; 7891 } 7892 7893 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7894 unsigned NumCmps, 7895 const APInt &Low, 7896 const APInt &High) { 7897 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7898 // range of cases both require only one branch to lower. Just looking at the 7899 // number of clusters and destinations should be enough to decide whether to 7900 // build bit tests. 7901 7902 // To lower a range with bit tests, the range must fit the bitwidth of a 7903 // machine word. 7904 if (!rangeFitsInWord(Low, High)) 7905 return false; 7906 7907 // Decide whether it's profitable to lower this range with bit tests. Each 7908 // destination requires a bit test and branch, and there is an overall range 7909 // check branch. For a small number of clusters, separate comparisons might be 7910 // cheaper, and for many destinations, splitting the range might be better. 7911 return (NumDests == 1 && NumCmps >= 3) || 7912 (NumDests == 2 && NumCmps >= 5) || 7913 (NumDests == 3 && NumCmps >= 6); 7914 } 7915 7916 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7917 unsigned First, unsigned Last, 7918 const SwitchInst *SI, 7919 CaseCluster &BTCluster) { 7920 assert(First <= Last); 7921 if (First == Last) 7922 return false; 7923 7924 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7925 unsigned NumCmps = 0; 7926 for (int64_t I = First; I <= Last; ++I) { 7927 assert(Clusters[I].Kind == CC_Range); 7928 Dests.set(Clusters[I].MBB->getNumber()); 7929 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7930 } 7931 unsigned NumDests = Dests.count(); 7932 7933 APInt Low = Clusters[First].Low->getValue(); 7934 APInt High = Clusters[Last].High->getValue(); 7935 assert(Low.slt(High)); 7936 7937 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7938 return false; 7939 7940 APInt LowBound; 7941 APInt CmpRange; 7942 7943 const int BitWidth = DAG.getTargetLoweringInfo() 7944 .getPointerTy(DAG.getDataLayout()) 7945 .getSizeInBits(); 7946 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7947 7948 // Check if the clusters cover a contiguous range such that no value in the 7949 // range will jump to the default statement. 7950 bool ContiguousRange = true; 7951 for (int64_t I = First + 1; I <= Last; ++I) { 7952 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7953 ContiguousRange = false; 7954 break; 7955 } 7956 } 7957 7958 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7959 // Optimize the case where all the case values fit in a word without having 7960 // to subtract minValue. In this case, we can optimize away the subtraction. 7961 LowBound = APInt::getNullValue(Low.getBitWidth()); 7962 CmpRange = High; 7963 ContiguousRange = false; 7964 } else { 7965 LowBound = Low; 7966 CmpRange = High - Low; 7967 } 7968 7969 CaseBitsVector CBV; 7970 uint32_t TotalWeight = 0; 7971 for (unsigned i = First; i <= Last; ++i) { 7972 // Find the CaseBits for this destination. 7973 unsigned j; 7974 for (j = 0; j < CBV.size(); ++j) 7975 if (CBV[j].BB == Clusters[i].MBB) 7976 break; 7977 if (j == CBV.size()) 7978 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7979 CaseBits *CB = &CBV[j]; 7980 7981 // Update Mask, Bits and ExtraWeight. 7982 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7983 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7984 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7985 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7986 CB->Bits += Hi - Lo + 1; 7987 CB->ExtraWeight += Clusters[i].Weight; 7988 TotalWeight += Clusters[i].Weight; 7989 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7990 } 7991 7992 BitTestInfo BTI; 7993 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7994 // Sort by weight first, number of bits second. 7995 if (a.ExtraWeight != b.ExtraWeight) 7996 return a.ExtraWeight > b.ExtraWeight; 7997 return a.Bits > b.Bits; 7998 }); 7999 8000 for (auto &CB : CBV) { 8001 MachineBasicBlock *BitTestBB = 8002 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8003 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 8004 } 8005 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8006 SI->getCondition(), -1U, MVT::Other, false, 8007 ContiguousRange, nullptr, nullptr, std::move(BTI), 8008 TotalWeight); 8009 8010 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8011 BitTestCases.size() - 1, TotalWeight); 8012 return true; 8013 } 8014 8015 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8016 const SwitchInst *SI) { 8017 // Partition Clusters into as few subsets as possible, where each subset has a 8018 // range that fits in a machine word and has <= 3 unique destinations. 8019 8020 #ifndef NDEBUG 8021 // Clusters must be sorted and contain Range or JumpTable clusters. 8022 assert(!Clusters.empty()); 8023 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8024 for (const CaseCluster &C : Clusters) 8025 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8026 for (unsigned i = 1; i < Clusters.size(); ++i) 8027 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8028 #endif 8029 8030 // The algorithm below is not suitable for -O0. 8031 if (TM.getOptLevel() == CodeGenOpt::None) 8032 return; 8033 8034 // If target does not have legal shift left, do not emit bit tests at all. 8035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8036 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8037 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8038 return; 8039 8040 int BitWidth = PTy.getSizeInBits(); 8041 const int64_t N = Clusters.size(); 8042 8043 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8044 SmallVector<unsigned, 8> MinPartitions(N); 8045 // LastElement[i] is the last element of the partition starting at i. 8046 SmallVector<unsigned, 8> LastElement(N); 8047 8048 // FIXME: This might not be the best algorithm for finding bit test clusters. 8049 8050 // Base case: There is only one way to partition Clusters[N-1]. 8051 MinPartitions[N - 1] = 1; 8052 LastElement[N - 1] = N - 1; 8053 8054 // Note: loop indexes are signed to avoid underflow. 8055 for (int64_t i = N - 2; i >= 0; --i) { 8056 // Find optimal partitioning of Clusters[i..N-1]. 8057 // Baseline: Put Clusters[i] into a partition on its own. 8058 MinPartitions[i] = MinPartitions[i + 1] + 1; 8059 LastElement[i] = i; 8060 8061 // Search for a solution that results in fewer partitions. 8062 // Note: the search is limited by BitWidth, reducing time complexity. 8063 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8064 // Try building a partition from Clusters[i..j]. 8065 8066 // Check the range. 8067 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8068 Clusters[j].High->getValue())) 8069 continue; 8070 8071 // Check nbr of destinations and cluster types. 8072 // FIXME: This works, but doesn't seem very efficient. 8073 bool RangesOnly = true; 8074 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8075 for (int64_t k = i; k <= j; k++) { 8076 if (Clusters[k].Kind != CC_Range) { 8077 RangesOnly = false; 8078 break; 8079 } 8080 Dests.set(Clusters[k].MBB->getNumber()); 8081 } 8082 if (!RangesOnly || Dests.count() > 3) 8083 break; 8084 8085 // Check if it's a better partition. 8086 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8087 if (NumPartitions < MinPartitions[i]) { 8088 // Found a better partition. 8089 MinPartitions[i] = NumPartitions; 8090 LastElement[i] = j; 8091 } 8092 } 8093 } 8094 8095 // Iterate over the partitions, replacing with bit-test clusters in-place. 8096 unsigned DstIndex = 0; 8097 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8098 Last = LastElement[First]; 8099 assert(First <= Last); 8100 assert(DstIndex <= First); 8101 8102 CaseCluster BitTestCluster; 8103 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8104 Clusters[DstIndex++] = BitTestCluster; 8105 } else { 8106 size_t NumClusters = Last - First + 1; 8107 std::memmove(&Clusters[DstIndex], &Clusters[First], 8108 sizeof(Clusters[0]) * NumClusters); 8109 DstIndex += NumClusters; 8110 } 8111 } 8112 Clusters.resize(DstIndex); 8113 } 8114 8115 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8116 MachineBasicBlock *SwitchMBB, 8117 MachineBasicBlock *DefaultMBB) { 8118 MachineFunction *CurMF = FuncInfo.MF; 8119 MachineBasicBlock *NextMBB = nullptr; 8120 MachineFunction::iterator BBI(W.MBB); 8121 if (++BBI != FuncInfo.MF->end()) 8122 NextMBB = &*BBI; 8123 8124 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8125 8126 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8127 8128 if (Size == 2 && W.MBB == SwitchMBB) { 8129 // If any two of the cases has the same destination, and if one value 8130 // is the same as the other, but has one bit unset that the other has set, 8131 // use bit manipulation to do two compares at once. For example: 8132 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8133 // TODO: This could be extended to merge any 2 cases in switches with 3 8134 // cases. 8135 // TODO: Handle cases where W.CaseBB != SwitchBB. 8136 CaseCluster &Small = *W.FirstCluster; 8137 CaseCluster &Big = *W.LastCluster; 8138 8139 if (Small.Low == Small.High && Big.Low == Big.High && 8140 Small.MBB == Big.MBB) { 8141 const APInt &SmallValue = Small.Low->getValue(); 8142 const APInt &BigValue = Big.Low->getValue(); 8143 8144 // Check that there is only one bit different. 8145 APInt CommonBit = BigValue ^ SmallValue; 8146 if (CommonBit.isPowerOf2()) { 8147 SDValue CondLHS = getValue(Cond); 8148 EVT VT = CondLHS.getValueType(); 8149 SDLoc DL = getCurSDLoc(); 8150 8151 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8152 DAG.getConstant(CommonBit, DL, VT)); 8153 SDValue Cond = DAG.getSetCC( 8154 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8155 ISD::SETEQ); 8156 8157 // Update successor info. 8158 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8159 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8160 addSuccessorWithWeight( 8161 SwitchMBB, DefaultMBB, 8162 // The default destination is the first successor in IR. 8163 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8164 : 0); 8165 8166 // Insert the true branch. 8167 SDValue BrCond = 8168 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8169 DAG.getBasicBlock(Small.MBB)); 8170 // Insert the false branch. 8171 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8172 DAG.getBasicBlock(DefaultMBB)); 8173 8174 DAG.setRoot(BrCond); 8175 return; 8176 } 8177 } 8178 } 8179 8180 if (TM.getOptLevel() != CodeGenOpt::None) { 8181 // Order cases by weight so the most likely case will be checked first. 8182 std::sort(W.FirstCluster, W.LastCluster + 1, 8183 [](const CaseCluster &a, const CaseCluster &b) { 8184 return a.Weight > b.Weight; 8185 }); 8186 8187 // Rearrange the case blocks so that the last one falls through if possible 8188 // without without changing the order of weights. 8189 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8190 --I; 8191 if (I->Weight > W.LastCluster->Weight) 8192 break; 8193 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8194 std::swap(*I, *W.LastCluster); 8195 break; 8196 } 8197 } 8198 } 8199 8200 // Compute total weight. 8201 uint32_t DefaultWeight = W.DefaultWeight; 8202 uint32_t UnhandledWeights = DefaultWeight; 8203 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8204 UnhandledWeights += I->Weight; 8205 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8206 } 8207 8208 MachineBasicBlock *CurMBB = W.MBB; 8209 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8210 MachineBasicBlock *Fallthrough; 8211 if (I == W.LastCluster) { 8212 // For the last cluster, fall through to the default destination. 8213 Fallthrough = DefaultMBB; 8214 } else { 8215 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8216 CurMF->insert(BBI, Fallthrough); 8217 // Put Cond in a virtual register to make it available from the new blocks. 8218 ExportFromCurrentBlock(Cond); 8219 } 8220 UnhandledWeights -= I->Weight; 8221 8222 switch (I->Kind) { 8223 case CC_JumpTable: { 8224 // FIXME: Optimize away range check based on pivot comparisons. 8225 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8226 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8227 8228 // The jump block hasn't been inserted yet; insert it here. 8229 MachineBasicBlock *JumpMBB = JT->MBB; 8230 CurMF->insert(BBI, JumpMBB); 8231 8232 uint32_t JumpWeight = I->Weight; 8233 uint32_t FallthroughWeight = UnhandledWeights; 8234 8235 // If the default statement is a target of the jump table, we evenly 8236 // distribute the default weight to successors of CurMBB. Also update 8237 // the weight on the edge from JumpMBB to Fallthrough. 8238 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8239 SE = JumpMBB->succ_end(); 8240 SI != SE; ++SI) { 8241 if (*SI == DefaultMBB) { 8242 JumpWeight += DefaultWeight / 2; 8243 FallthroughWeight -= DefaultWeight / 2; 8244 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8245 break; 8246 } 8247 } 8248 8249 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8250 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8251 8252 // The jump table header will be inserted in our current block, do the 8253 // range check, and fall through to our fallthrough block. 8254 JTH->HeaderBB = CurMBB; 8255 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8256 8257 // If we're in the right place, emit the jump table header right now. 8258 if (CurMBB == SwitchMBB) { 8259 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8260 JTH->Emitted = true; 8261 } 8262 break; 8263 } 8264 case CC_BitTests: { 8265 // FIXME: Optimize away range check based on pivot comparisons. 8266 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8267 8268 // The bit test blocks haven't been inserted yet; insert them here. 8269 for (BitTestCase &BTC : BTB->Cases) 8270 CurMF->insert(BBI, BTC.ThisBB); 8271 8272 // Fill in fields of the BitTestBlock. 8273 BTB->Parent = CurMBB; 8274 BTB->Default = Fallthrough; 8275 8276 BTB->DefaultWeight = UnhandledWeights; 8277 // If the cases in bit test don't form a contiguous range, we evenly 8278 // distribute the weight on the edge to Fallthrough to two successors 8279 // of CurMBB. 8280 if (!BTB->ContiguousRange) { 8281 BTB->Weight += DefaultWeight / 2; 8282 BTB->DefaultWeight -= DefaultWeight / 2; 8283 } 8284 8285 // If we're in the right place, emit the bit test header right now. 8286 if (CurMBB == SwitchMBB) { 8287 visitBitTestHeader(*BTB, SwitchMBB); 8288 BTB->Emitted = true; 8289 } 8290 break; 8291 } 8292 case CC_Range: { 8293 const Value *RHS, *LHS, *MHS; 8294 ISD::CondCode CC; 8295 if (I->Low == I->High) { 8296 // Check Cond == I->Low. 8297 CC = ISD::SETEQ; 8298 LHS = Cond; 8299 RHS=I->Low; 8300 MHS = nullptr; 8301 } else { 8302 // Check I->Low <= Cond <= I->High. 8303 CC = ISD::SETLE; 8304 LHS = I->Low; 8305 MHS = Cond; 8306 RHS = I->High; 8307 } 8308 8309 // The false weight is the sum of all unhandled cases. 8310 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8311 UnhandledWeights); 8312 8313 if (CurMBB == SwitchMBB) 8314 visitSwitchCase(CB, SwitchMBB); 8315 else 8316 SwitchCases.push_back(CB); 8317 8318 break; 8319 } 8320 } 8321 CurMBB = Fallthrough; 8322 } 8323 } 8324 8325 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8326 CaseClusterIt First, 8327 CaseClusterIt Last) { 8328 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8329 if (X.Weight != CC.Weight) 8330 return X.Weight > CC.Weight; 8331 8332 // Ties are broken by comparing the case value. 8333 return X.Low->getValue().slt(CC.Low->getValue()); 8334 }); 8335 } 8336 8337 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8338 const SwitchWorkListItem &W, 8339 Value *Cond, 8340 MachineBasicBlock *SwitchMBB) { 8341 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8342 "Clusters not sorted?"); 8343 8344 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8345 8346 // Balance the tree based on branch weights to create a near-optimal (in terms 8347 // of search time given key frequency) binary search tree. See e.g. Kurt 8348 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8349 CaseClusterIt LastLeft = W.FirstCluster; 8350 CaseClusterIt FirstRight = W.LastCluster; 8351 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8352 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8353 8354 // Move LastLeft and FirstRight towards each other from opposite directions to 8355 // find a partitioning of the clusters which balances the weight on both 8356 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8357 // taken to ensure 0-weight nodes are distributed evenly. 8358 unsigned I = 0; 8359 while (LastLeft + 1 < FirstRight) { 8360 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8361 LeftWeight += (++LastLeft)->Weight; 8362 else 8363 RightWeight += (--FirstRight)->Weight; 8364 I++; 8365 } 8366 8367 for (;;) { 8368 // Our binary search tree differs from a typical BST in that ours can have up 8369 // to three values in each leaf. The pivot selection above doesn't take that 8370 // into account, which means the tree might require more nodes and be less 8371 // efficient. We compensate for this here. 8372 8373 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8374 unsigned NumRight = W.LastCluster - FirstRight + 1; 8375 8376 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8377 // If one side has less than 3 clusters, and the other has more than 3, 8378 // consider taking a cluster from the other side. 8379 8380 if (NumLeft < NumRight) { 8381 // Consider moving the first cluster on the right to the left side. 8382 CaseCluster &CC = *FirstRight; 8383 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8384 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8385 if (LeftSideRank <= RightSideRank) { 8386 // Moving the cluster to the left does not demote it. 8387 ++LastLeft; 8388 ++FirstRight; 8389 continue; 8390 } 8391 } else { 8392 assert(NumRight < NumLeft); 8393 // Consider moving the last element on the left to the right side. 8394 CaseCluster &CC = *LastLeft; 8395 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8396 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8397 if (RightSideRank <= LeftSideRank) { 8398 // Moving the cluster to the right does not demot it. 8399 --LastLeft; 8400 --FirstRight; 8401 continue; 8402 } 8403 } 8404 } 8405 break; 8406 } 8407 8408 assert(LastLeft + 1 == FirstRight); 8409 assert(LastLeft >= W.FirstCluster); 8410 assert(FirstRight <= W.LastCluster); 8411 8412 // Use the first element on the right as pivot since we will make less-than 8413 // comparisons against it. 8414 CaseClusterIt PivotCluster = FirstRight; 8415 assert(PivotCluster > W.FirstCluster); 8416 assert(PivotCluster <= W.LastCluster); 8417 8418 CaseClusterIt FirstLeft = W.FirstCluster; 8419 CaseClusterIt LastRight = W.LastCluster; 8420 8421 const ConstantInt *Pivot = PivotCluster->Low; 8422 8423 // New blocks will be inserted immediately after the current one. 8424 MachineFunction::iterator BBI(W.MBB); 8425 ++BBI; 8426 8427 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8428 // we can branch to its destination directly if it's squeezed exactly in 8429 // between the known lower bound and Pivot - 1. 8430 MachineBasicBlock *LeftMBB; 8431 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8432 FirstLeft->Low == W.GE && 8433 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8434 LeftMBB = FirstLeft->MBB; 8435 } else { 8436 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8437 FuncInfo.MF->insert(BBI, LeftMBB); 8438 WorkList.push_back( 8439 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8440 // Put Cond in a virtual register to make it available from the new blocks. 8441 ExportFromCurrentBlock(Cond); 8442 } 8443 8444 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8445 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8446 // directly if RHS.High equals the current upper bound. 8447 MachineBasicBlock *RightMBB; 8448 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8449 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8450 RightMBB = FirstRight->MBB; 8451 } else { 8452 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8453 FuncInfo.MF->insert(BBI, RightMBB); 8454 WorkList.push_back( 8455 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8456 // Put Cond in a virtual register to make it available from the new blocks. 8457 ExportFromCurrentBlock(Cond); 8458 } 8459 8460 // Create the CaseBlock record that will be used to lower the branch. 8461 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8462 LeftWeight, RightWeight); 8463 8464 if (W.MBB == SwitchMBB) 8465 visitSwitchCase(CB, SwitchMBB); 8466 else 8467 SwitchCases.push_back(CB); 8468 } 8469 8470 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8471 // Extract cases from the switch. 8472 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8473 CaseClusterVector Clusters; 8474 Clusters.reserve(SI.getNumCases()); 8475 for (auto I : SI.cases()) { 8476 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8477 const ConstantInt *CaseVal = I.getCaseValue(); 8478 uint32_t Weight = 8479 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8480 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8481 } 8482 8483 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8484 8485 // Cluster adjacent cases with the same destination. We do this at all 8486 // optimization levels because it's cheap to do and will make codegen faster 8487 // if there are many clusters. 8488 sortAndRangeify(Clusters); 8489 8490 if (TM.getOptLevel() != CodeGenOpt::None) { 8491 // Replace an unreachable default with the most popular destination. 8492 // FIXME: Exploit unreachable default more aggressively. 8493 bool UnreachableDefault = 8494 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8495 if (UnreachableDefault && !Clusters.empty()) { 8496 DenseMap<const BasicBlock *, unsigned> Popularity; 8497 unsigned MaxPop = 0; 8498 const BasicBlock *MaxBB = nullptr; 8499 for (auto I : SI.cases()) { 8500 const BasicBlock *BB = I.getCaseSuccessor(); 8501 if (++Popularity[BB] > MaxPop) { 8502 MaxPop = Popularity[BB]; 8503 MaxBB = BB; 8504 } 8505 } 8506 // Set new default. 8507 assert(MaxPop > 0 && MaxBB); 8508 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8509 8510 // Remove cases that were pointing to the destination that is now the 8511 // default. 8512 CaseClusterVector New; 8513 New.reserve(Clusters.size()); 8514 for (CaseCluster &CC : Clusters) { 8515 if (CC.MBB != DefaultMBB) 8516 New.push_back(CC); 8517 } 8518 Clusters = std::move(New); 8519 } 8520 } 8521 8522 // If there is only the default destination, jump there directly. 8523 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8524 if (Clusters.empty()) { 8525 SwitchMBB->addSuccessor(DefaultMBB); 8526 if (DefaultMBB != NextBlock(SwitchMBB)) { 8527 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8528 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8529 } 8530 return; 8531 } 8532 8533 findJumpTables(Clusters, &SI, DefaultMBB); 8534 findBitTestClusters(Clusters, &SI); 8535 8536 DEBUG({ 8537 dbgs() << "Case clusters: "; 8538 for (const CaseCluster &C : Clusters) { 8539 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8540 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8541 8542 C.Low->getValue().print(dbgs(), true); 8543 if (C.Low != C.High) { 8544 dbgs() << '-'; 8545 C.High->getValue().print(dbgs(), true); 8546 } 8547 dbgs() << ' '; 8548 } 8549 dbgs() << '\n'; 8550 }); 8551 8552 assert(!Clusters.empty()); 8553 SwitchWorkList WorkList; 8554 CaseClusterIt First = Clusters.begin(); 8555 CaseClusterIt Last = Clusters.end() - 1; 8556 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8557 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8558 8559 while (!WorkList.empty()) { 8560 SwitchWorkListItem W = WorkList.back(); 8561 WorkList.pop_back(); 8562 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8563 8564 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8565 // For optimized builds, lower large range as a balanced binary tree. 8566 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8567 continue; 8568 } 8569 8570 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8571 } 8572 } 8573