1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 168 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 169 TLI.getPointerTy())); 170 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 171 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 172 } 173 } else if (PartVT.isFloatingPoint()) { 174 // FP split into multiple FP parts (for ppcf128) 175 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 176 "Unexpected split"); 177 SDValue Lo, Hi; 178 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 179 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 180 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 181 std::swap(Lo, Hi); 182 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 183 } else { 184 // FP split into integer parts (soft fp) 185 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 186 !PartVT.isVector() && "Unexpected split"); 187 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 188 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 189 } 190 } 191 192 // There is now one part, held in Val. Correct it to match ValueVT. 193 EVT PartEVT = Val.getValueType(); 194 195 if (PartEVT == ValueVT) 196 return Val; 197 198 if (PartEVT.isInteger() && ValueVT.isInteger()) { 199 if (ValueVT.bitsLT(PartEVT)) { 200 // For a truncate, see if we have any information to 201 // indicate whether the truncated bits will always be 202 // zero or sign-extension. 203 if (AssertOp != ISD::DELETED_NODE) 204 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 205 DAG.getValueType(ValueVT)); 206 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 207 } 208 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 212 // FP_ROUND's are always exact here. 213 if (ValueVT.bitsLT(Val.getValueType())) 214 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 215 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 216 217 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 218 } 219 220 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 221 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 222 223 llvm_unreachable("Unknown mismatch!"); 224 } 225 226 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 227 const Twine &ErrMsg) { 228 const Instruction *I = dyn_cast_or_null<Instruction>(V); 229 if (!V) 230 return Ctx.emitError(ErrMsg); 231 232 const char *AsmError = ", possible invalid constraint for vector type"; 233 if (const CallInst *CI = dyn_cast<CallInst>(I)) 234 if (isa<InlineAsm>(CI->getCalledValue())) 235 return Ctx.emitError(I, ErrMsg + AsmError); 236 237 return Ctx.emitError(I, ErrMsg); 238 } 239 240 /// getCopyFromPartsVector - Create a value that contains the specified legal 241 /// parts combined into the value they represent. If the parts combine to a 242 /// type larger then ValueVT then AssertOp can be used to specify whether the 243 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 244 /// ValueVT (ISD::AssertSext). 245 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 246 const SDValue *Parts, unsigned NumParts, 247 MVT PartVT, EVT ValueVT, const Value *V) { 248 assert(ValueVT.isVector() && "Not a vector value"); 249 assert(NumParts > 0 && "No parts to assemble!"); 250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 251 SDValue Val = Parts[0]; 252 253 // Handle a multi-element vector. 254 if (NumParts > 1) { 255 EVT IntermediateVT; 256 MVT RegisterVT; 257 unsigned NumIntermediates; 258 unsigned NumRegs = 259 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 260 NumIntermediates, RegisterVT); 261 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 262 NumParts = NumRegs; // Silence a compiler warning. 263 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 264 assert(RegisterVT.getSizeInBits() == 265 Parts[0].getSimpleValueType().getSizeInBits() && 266 "Part type sizes don't match!"); 267 268 // Assemble the parts into intermediate operands. 269 SmallVector<SDValue, 8> Ops(NumIntermediates); 270 if (NumIntermediates == NumParts) { 271 // If the register was not expanded, truncate or copy the value, 272 // as appropriate. 273 for (unsigned i = 0; i != NumParts; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 275 PartVT, IntermediateVT, V); 276 } else if (NumParts > 0) { 277 // If the intermediate type was expanded, build the intermediate 278 // operands from the parts. 279 assert(NumParts % NumIntermediates == 0 && 280 "Must expand into a divisible number of parts!"); 281 unsigned Factor = NumParts / NumIntermediates; 282 for (unsigned i = 0; i != NumIntermediates; ++i) 283 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 284 PartVT, IntermediateVT, V); 285 } 286 287 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 288 // intermediate operands. 289 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 290 : ISD::BUILD_VECTOR, 291 DL, ValueVT, Ops); 292 } 293 294 // There is now one part, held in Val. Correct it to match ValueVT. 295 EVT PartEVT = Val.getValueType(); 296 297 if (PartEVT == ValueVT) 298 return Val; 299 300 if (PartEVT.isVector()) { 301 // If the element type of the source/dest vectors are the same, but the 302 // parts vector has more elements than the value vector, then we have a 303 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 304 // elements we want. 305 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 306 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 307 "Cannot narrow, it would be a lossy transformation"); 308 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 309 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 310 } 311 312 // Vector/Vector bitcast. 313 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 314 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 315 316 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 317 "Cannot handle this kind of promotion"); 318 // Promoted vector extract 319 bool Smaller = ValueVT.bitsLE(PartEVT); 320 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 321 DL, ValueVT, Val); 322 323 } 324 325 // Trivial bitcast if the types are the same size and the destination 326 // vector type is legal. 327 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 328 TLI.isTypeLegal(ValueVT)) 329 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 330 331 // Handle cases such as i8 -> <1 x i1> 332 if (ValueVT.getVectorNumElements() != 1) { 333 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 334 "non-trivial scalar-to-vector conversion"); 335 return DAG.getUNDEF(ValueVT); 336 } 337 338 if (ValueVT.getVectorNumElements() == 1 && 339 ValueVT.getVectorElementType() != PartEVT) { 340 bool Smaller = ValueVT.bitsLE(PartEVT); 341 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 342 DL, ValueVT.getScalarType(), Val); 343 } 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 368 "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (DAG.getDataLayout().isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (DAG.getDataLayout().isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 501 ElementVT, Val, DAG.getConstant(i, DL, 502 TLI.getVectorIdxTy()))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 bool Smaller = PartEVT.bitsLE(ValueVT); 521 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 522 DL, PartVT, Val); 523 } else{ 524 // Vector -> scalar conversion. 525 assert(ValueVT.getVectorNumElements() == 1 && 526 "Only trivial vector-to-scalar conversions should get here!"); 527 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 528 PartVT, Val, 529 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 530 531 bool Smaller = ValueVT.bitsLE(PartVT); 532 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 533 DL, PartVT, Val); 534 } 535 536 Parts[0] = Val; 537 return; 538 } 539 540 // Handle a multi-element vector. 541 EVT IntermediateVT; 542 MVT RegisterVT; 543 unsigned NumIntermediates; 544 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 545 IntermediateVT, 546 NumIntermediates, RegisterVT); 547 unsigned NumElements = ValueVT.getVectorNumElements(); 548 549 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 550 NumParts = NumRegs; // Silence a compiler warning. 551 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 552 553 // Split the vector into intermediate operands. 554 SmallVector<SDValue, 8> Ops(NumIntermediates); 555 for (unsigned i = 0; i != NumIntermediates; ++i) { 556 if (IntermediateVT.isVector()) 557 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 560 TLI.getVectorIdxTy())); 561 else 562 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 563 IntermediateVT, Val, 564 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 565 } 566 567 // Split the intermediate operands into legal parts. 568 if (NumParts == NumIntermediates) { 569 // If the register was not expanded, promote or copy the value, 570 // as appropriate. 571 for (unsigned i = 0; i != NumParts; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 573 } else if (NumParts > 0) { 574 // If the intermediate type was expanded, split each the value into 575 // legal parts. 576 assert(NumIntermediates != 0 && "division by zero"); 577 assert(NumParts % NumIntermediates == 0 && 578 "Must expand into a divisible number of parts!"); 579 unsigned Factor = NumParts / NumIntermediates; 580 for (unsigned i = 0; i != NumIntermediates; ++i) 581 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 582 } 583 } 584 585 RegsForValue::RegsForValue() {} 586 587 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 588 EVT valuevt) 589 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 590 591 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 592 const DataLayout &DL, unsigned Reg, Type *Ty) { 593 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 594 595 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 596 EVT ValueVT = ValueVTs[Value]; 597 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 598 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 599 for (unsigned i = 0; i != NumRegs; ++i) 600 Regs.push_back(Reg + i); 601 RegVTs.push_back(RegisterVT); 602 Reg += NumRegs; 603 } 604 } 605 606 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 607 /// this value and returns the result as a ValueVT value. This uses 608 /// Chain/Flag as the input and updates them for the output Chain/Flag. 609 /// If the Flag pointer is NULL, no flag is used. 610 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 611 FunctionLoweringInfo &FuncInfo, 612 SDLoc dl, 613 SDValue &Chain, SDValue *Flag, 614 const Value *V) const { 615 // A Value with type {} or [0 x %t] needs no registers. 616 if (ValueVTs.empty()) 617 return SDValue(); 618 619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 620 621 // Assemble the legal parts into the final values. 622 SmallVector<SDValue, 4> Values(ValueVTs.size()); 623 SmallVector<SDValue, 8> Parts; 624 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 625 // Copy the legal parts from the registers. 626 EVT ValueVT = ValueVTs[Value]; 627 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 628 MVT RegisterVT = RegVTs[Value]; 629 630 Parts.resize(NumRegs); 631 for (unsigned i = 0; i != NumRegs; ++i) { 632 SDValue P; 633 if (!Flag) { 634 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 635 } else { 636 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 637 *Flag = P.getValue(2); 638 } 639 640 Chain = P.getValue(1); 641 Parts[i] = P; 642 643 // If the source register was virtual and if we know something about it, 644 // add an assert node. 645 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 646 !RegisterVT.isInteger() || RegisterVT.isVector()) 647 continue; 648 649 const FunctionLoweringInfo::LiveOutInfo *LOI = 650 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 651 if (!LOI) 652 continue; 653 654 unsigned RegSize = RegisterVT.getSizeInBits(); 655 unsigned NumSignBits = LOI->NumSignBits; 656 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 657 658 if (NumZeroBits == RegSize) { 659 // The current value is a zero. 660 // Explicitly express that as it would be easier for 661 // optimizations to kick in. 662 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 663 continue; 664 } 665 666 // FIXME: We capture more information than the dag can represent. For 667 // now, just use the tightest assertzext/assertsext possible. 668 bool isSExt = true; 669 EVT FromVT(MVT::Other); 670 if (NumSignBits == RegSize) 671 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 672 else if (NumZeroBits >= RegSize-1) 673 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 674 else if (NumSignBits > RegSize-8) 675 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 676 else if (NumZeroBits >= RegSize-8) 677 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 678 else if (NumSignBits > RegSize-16) 679 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 680 else if (NumZeroBits >= RegSize-16) 681 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 682 else if (NumSignBits > RegSize-32) 683 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 684 else if (NumZeroBits >= RegSize-32) 685 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 686 else 687 continue; 688 689 // Add an assertion node. 690 assert(FromVT != MVT::Other); 691 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 692 RegisterVT, P, DAG.getValueType(FromVT)); 693 } 694 695 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 696 NumRegs, RegisterVT, ValueVT, V); 697 Part += NumRegs; 698 Parts.clear(); 699 } 700 701 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 702 } 703 704 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 705 /// specified value into the registers specified by this object. This uses 706 /// Chain/Flag as the input and updates them for the output Chain/Flag. 707 /// If the Flag pointer is NULL, no flag is used. 708 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 709 SDValue &Chain, SDValue *Flag, const Value *V, 710 ISD::NodeType PreferredExtendType) const { 711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 712 ISD::NodeType ExtendKind = PreferredExtendType; 713 714 // Get the list of the values's legal parts. 715 unsigned NumRegs = Regs.size(); 716 SmallVector<SDValue, 8> Parts(NumRegs); 717 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 718 EVT ValueVT = ValueVTs[Value]; 719 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 720 MVT RegisterVT = RegVTs[Value]; 721 722 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 723 ExtendKind = ISD::ZERO_EXTEND; 724 725 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 726 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 727 Part += NumParts; 728 } 729 730 // Copy the parts into the registers. 731 SmallVector<SDValue, 8> Chains(NumRegs); 732 for (unsigned i = 0; i != NumRegs; ++i) { 733 SDValue Part; 734 if (!Flag) { 735 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 736 } else { 737 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 738 *Flag = Part.getValue(1); 739 } 740 741 Chains[i] = Part.getValue(0); 742 } 743 744 if (NumRegs == 1 || Flag) 745 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 746 // flagged to it. That is the CopyToReg nodes and the user are considered 747 // a single scheduling unit. If we create a TokenFactor and return it as 748 // chain, then the TokenFactor is both a predecessor (operand) of the 749 // user as well as a successor (the TF operands are flagged to the user). 750 // c1, f1 = CopyToReg 751 // c2, f2 = CopyToReg 752 // c3 = TokenFactor c1, c2 753 // ... 754 // = op c3, ..., f2 755 Chain = Chains[NumRegs-1]; 756 else 757 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 758 } 759 760 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 761 /// operand list. This adds the code marker and includes the number of 762 /// values added into it. 763 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 764 unsigned MatchingIdx, SDLoc dl, 765 SelectionDAG &DAG, 766 std::vector<SDValue> &Ops) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 770 if (HasMatching) 771 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 772 else if (!Regs.empty() && 773 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 774 // Put the register class of the virtual registers in the flag word. That 775 // way, later passes can recompute register class constraints for inline 776 // assembly as well as normal instructions. 777 // Don't do this for tied operands that can use the regclass information 778 // from the def. 779 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 780 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 781 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 782 } 783 784 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 785 Ops.push_back(Res); 786 787 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 788 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 789 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 790 MVT RegisterVT = RegVTs[Value]; 791 for (unsigned i = 0; i != NumRegs; ++i) { 792 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 793 unsigned TheReg = Regs[Reg++]; 794 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 795 796 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 797 // If we clobbered the stack pointer, MFI should know about it. 798 assert(DAG.getMachineFunction().getFrameInfo()-> 799 hasOpaqueSPAdjustment()); 800 } 801 } 802 } 803 } 804 805 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 806 const TargetLibraryInfo *li) { 807 AA = &aa; 808 GFI = gfi; 809 LibInfo = li; 810 DL = &DAG.getDataLayout(); 811 Context = DAG.getContext(); 812 LPadToCallSiteMap.clear(); 813 } 814 815 /// clear - Clear out the current SelectionDAG and the associated 816 /// state and prepare this SelectionDAGBuilder object to be used 817 /// for a new block. This doesn't clear out information about 818 /// additional blocks that are needed to complete switch lowering 819 /// or PHI node updating; that information is cleared out as it is 820 /// consumed. 821 void SelectionDAGBuilder::clear() { 822 NodeMap.clear(); 823 UnusedArgNodeMap.clear(); 824 PendingLoads.clear(); 825 PendingExports.clear(); 826 CurInst = nullptr; 827 HasTailCall = false; 828 SDNodeOrder = LowestSDNodeOrder; 829 StatepointLowering.clear(); 830 } 831 832 /// clearDanglingDebugInfo - Clear the dangling debug information 833 /// map. This function is separated from the clear so that debug 834 /// information that is dangling in a basic block can be properly 835 /// resolved in a different basic block. This allows the 836 /// SelectionDAG to resolve dangling debug information attached 837 /// to PHI nodes. 838 void SelectionDAGBuilder::clearDanglingDebugInfo() { 839 DanglingDebugInfoMap.clear(); 840 } 841 842 /// getRoot - Return the current virtual root of the Selection DAG, 843 /// flushing any PendingLoad items. This must be done before emitting 844 /// a store or any other node that may need to be ordered after any 845 /// prior load instructions. 846 /// 847 SDValue SelectionDAGBuilder::getRoot() { 848 if (PendingLoads.empty()) 849 return DAG.getRoot(); 850 851 if (PendingLoads.size() == 1) { 852 SDValue Root = PendingLoads[0]; 853 DAG.setRoot(Root); 854 PendingLoads.clear(); 855 return Root; 856 } 857 858 // Otherwise, we have to make a token factor node. 859 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 860 PendingLoads); 861 PendingLoads.clear(); 862 DAG.setRoot(Root); 863 return Root; 864 } 865 866 /// getControlRoot - Similar to getRoot, but instead of flushing all the 867 /// PendingLoad items, flush all the PendingExports items. It is necessary 868 /// to do this before emitting a terminator instruction. 869 /// 870 SDValue SelectionDAGBuilder::getControlRoot() { 871 SDValue Root = DAG.getRoot(); 872 873 if (PendingExports.empty()) 874 return Root; 875 876 // Turn all of the CopyToReg chains into one factored node. 877 if (Root.getOpcode() != ISD::EntryToken) { 878 unsigned i = 0, e = PendingExports.size(); 879 for (; i != e; ++i) { 880 assert(PendingExports[i].getNode()->getNumOperands() > 1); 881 if (PendingExports[i].getNode()->getOperand(0) == Root) 882 break; // Don't add the root if we already indirectly depend on it. 883 } 884 885 if (i == e) 886 PendingExports.push_back(Root); 887 } 888 889 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 890 PendingExports); 891 PendingExports.clear(); 892 DAG.setRoot(Root); 893 return Root; 894 } 895 896 void SelectionDAGBuilder::visit(const Instruction &I) { 897 // Set up outgoing PHI node register values before emitting the terminator. 898 if (isa<TerminatorInst>(&I)) 899 HandlePHINodesInSuccessorBlocks(I.getParent()); 900 901 ++SDNodeOrder; 902 903 CurInst = &I; 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurInst = nullptr; 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 918 // Note: this doesn't use InstVisitor, because it has to work with 919 // ConstantExpr's in addition to instructions. 920 switch (Opcode) { 921 default: llvm_unreachable("Unknown instruction type encountered!"); 922 // Build the switch statement using the Instruction.def file. 923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 924 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 925 #include "llvm/IR/Instruction.def" 926 } 927 } 928 929 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 930 // generate the debug data structures now that we've seen its definition. 931 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 932 SDValue Val) { 933 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 934 if (DDI.getDI()) { 935 const DbgValueInst *DI = DDI.getDI(); 936 DebugLoc dl = DDI.getdl(); 937 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 938 DILocalVariable *Variable = DI->getVariable(); 939 DIExpression *Expr = DI->getExpression(); 940 assert(Variable->isValidLocationForIntrinsic(dl) && 941 "Expected inlined-at fields to agree"); 942 uint64_t Offset = DI->getOffset(); 943 // A dbg.value for an alloca is always indirect. 944 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 945 SDDbgValue *SDV; 946 if (Val.getNode()) { 947 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 948 Val)) { 949 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 950 IsIndirect, Offset, dl, DbgSDNodeOrder); 951 DAG.AddDbgValue(SDV, Val.getNode(), false); 952 } 953 } else 954 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 955 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 956 } 957 } 958 959 /// getCopyFromRegs - If there was virtual register allocated for the value V 960 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 961 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 962 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 963 SDValue Result; 964 965 if (It != FuncInfo.ValueMap.end()) { 966 unsigned InReg = It->second; 967 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 968 DAG.getDataLayout(), InReg, Ty); 969 SDValue Chain = DAG.getEntryNode(); 970 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 971 resolveDanglingDebugInfo(V, Result); 972 } 973 974 return Result; 975 } 976 977 /// getValue - Return an SDValue for the given Value. 978 SDValue SelectionDAGBuilder::getValue(const Value *V) { 979 // If we already have an SDValue for this value, use it. It's important 980 // to do this first, so that we don't create a CopyFromReg if we already 981 // have a regular SDValue. 982 SDValue &N = NodeMap[V]; 983 if (N.getNode()) return N; 984 985 // If there's a virtual register allocated and initialized for this 986 // value, use it. 987 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 988 if (copyFromReg.getNode()) { 989 return copyFromReg; 990 } 991 992 // Otherwise create a new SDValue and remember it. 993 SDValue Val = getValueImpl(V); 994 NodeMap[V] = Val; 995 resolveDanglingDebugInfo(V, Val); 996 return Val; 997 } 998 999 // Return true if SDValue exists for the given Value 1000 bool SelectionDAGBuilder::findValue(const Value *V) const { 1001 return (NodeMap.find(V) != NodeMap.end()) || 1002 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1003 } 1004 1005 /// getNonRegisterValue - Return an SDValue for the given Value, but 1006 /// don't look in FuncInfo.ValueMap for a virtual register. 1007 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1008 // If we already have an SDValue for this value, use it. 1009 SDValue &N = NodeMap[V]; 1010 if (N.getNode()) { 1011 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1012 // Remove the debug location from the node as the node is about to be used 1013 // in a location which may differ from the original debug location. This 1014 // is relevant to Constant and ConstantFP nodes because they can appear 1015 // as constant expressions inside PHI nodes. 1016 N->setDebugLoc(DebugLoc()); 1017 } 1018 return N; 1019 } 1020 1021 // Otherwise create a new SDValue and remember it. 1022 SDValue Val = getValueImpl(V); 1023 NodeMap[V] = Val; 1024 resolveDanglingDebugInfo(V, Val); 1025 return Val; 1026 } 1027 1028 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1029 /// Create an SDValue for the given value. 1030 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1032 1033 if (const Constant *C = dyn_cast<Constant>(V)) { 1034 EVT VT = TLI.getValueType(V->getType(), true); 1035 1036 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1037 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1038 1039 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1040 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1041 1042 if (isa<ConstantPointerNull>(C)) { 1043 unsigned AS = V->getType()->getPointerAddressSpace(); 1044 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1045 } 1046 1047 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1048 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1049 1050 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1051 return DAG.getUNDEF(VT); 1052 1053 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1054 visit(CE->getOpcode(), *CE); 1055 SDValue N1 = NodeMap[V]; 1056 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1057 return N1; 1058 } 1059 1060 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1061 SmallVector<SDValue, 4> Constants; 1062 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1063 OI != OE; ++OI) { 1064 SDNode *Val = getValue(*OI).getNode(); 1065 // If the operand is an empty aggregate, there are no values. 1066 if (!Val) continue; 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Constants.push_back(SDValue(Val, i)); 1071 } 1072 1073 return DAG.getMergeValues(Constants, getCurSDLoc()); 1074 } 1075 1076 if (const ConstantDataSequential *CDS = 1077 dyn_cast<ConstantDataSequential>(C)) { 1078 SmallVector<SDValue, 4> Ops; 1079 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1080 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1081 // Add each leaf value from the operand to the Constants list 1082 // to form a flattened list of all the values. 1083 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1084 Ops.push_back(SDValue(Val, i)); 1085 } 1086 1087 if (isa<ArrayType>(CDS->getType())) 1088 return DAG.getMergeValues(Ops, getCurSDLoc()); 1089 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1090 VT, Ops); 1091 } 1092 1093 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1094 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1095 "Unknown struct or array constant!"); 1096 1097 SmallVector<EVT, 4> ValueVTs; 1098 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1099 unsigned NumElts = ValueVTs.size(); 1100 if (NumElts == 0) 1101 return SDValue(); // empty struct 1102 SmallVector<SDValue, 4> Constants(NumElts); 1103 for (unsigned i = 0; i != NumElts; ++i) { 1104 EVT EltVT = ValueVTs[i]; 1105 if (isa<UndefValue>(C)) 1106 Constants[i] = DAG.getUNDEF(EltVT); 1107 else if (EltVT.isFloatingPoint()) 1108 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1109 else 1110 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1111 } 1112 1113 return DAG.getMergeValues(Constants, getCurSDLoc()); 1114 } 1115 1116 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1117 return DAG.getBlockAddress(BA, VT); 1118 1119 VectorType *VecTy = cast<VectorType>(V->getType()); 1120 unsigned NumElements = VecTy->getNumElements(); 1121 1122 // Now that we know the number and type of the elements, get that number of 1123 // elements into the Ops array based on what kind of constant it is. 1124 SmallVector<SDValue, 16> Ops; 1125 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1126 for (unsigned i = 0; i != NumElements; ++i) 1127 Ops.push_back(getValue(CV->getOperand(i))); 1128 } else { 1129 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1130 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1131 1132 SDValue Op; 1133 if (EltVT.isFloatingPoint()) 1134 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1135 else 1136 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1137 Ops.assign(NumElements, Op); 1138 } 1139 1140 // Create a BUILD_VECTOR node. 1141 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1142 } 1143 1144 // If this is a static alloca, generate it as the frameindex instead of 1145 // computation. 1146 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1147 DenseMap<const AllocaInst*, int>::iterator SI = 1148 FuncInfo.StaticAllocaMap.find(AI); 1149 if (SI != FuncInfo.StaticAllocaMap.end()) 1150 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1151 } 1152 1153 // If this is an instruction which fast-isel has deferred, select it now. 1154 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1155 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1156 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1157 Inst->getType()); 1158 SDValue Chain = DAG.getEntryNode(); 1159 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1160 } 1161 1162 llvm_unreachable("Can't get register for value!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1167 auto &DL = DAG.getDataLayout(); 1168 SDValue Chain = getControlRoot(); 1169 SmallVector<ISD::OutputArg, 8> Outs; 1170 SmallVector<SDValue, 8> OutVals; 1171 1172 if (!FuncInfo.CanLowerReturn) { 1173 unsigned DemoteReg = FuncInfo.DemoteRegister; 1174 const Function *F = I.getParent()->getParent(); 1175 1176 // Emit a store of the return value through the virtual register. 1177 // Leave Outs empty so that LowerReturn won't try to load return 1178 // registers the usual way. 1179 SmallVector<EVT, 1> PtrValueVTs; 1180 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1181 PtrValueVTs); 1182 1183 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1184 SDValue RetOp = getValue(I.getOperand(0)); 1185 1186 SmallVector<EVT, 4> ValueVTs; 1187 SmallVector<uint64_t, 4> Offsets; 1188 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1189 unsigned NumValues = ValueVTs.size(); 1190 1191 SmallVector<SDValue, 4> Chains(NumValues); 1192 for (unsigned i = 0; i != NumValues; ++i) { 1193 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1194 RetPtr.getValueType(), RetPtr, 1195 DAG.getIntPtrConstant(Offsets[i], 1196 getCurSDLoc())); 1197 Chains[i] = 1198 DAG.getStore(Chain, getCurSDLoc(), 1199 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1200 // FIXME: better loc info would be nice. 1201 Add, MachinePointerInfo(), false, false, 0); 1202 } 1203 1204 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1205 MVT::Other, Chains); 1206 } else if (I.getNumOperands() != 0) { 1207 SmallVector<EVT, 4> ValueVTs; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1209 unsigned NumValues = ValueVTs.size(); 1210 if (NumValues) { 1211 SDValue RetOp = getValue(I.getOperand(0)); 1212 1213 const Function *F = I.getParent()->getParent(); 1214 1215 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1216 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1217 Attribute::SExt)) 1218 ExtendKind = ISD::SIGN_EXTEND; 1219 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1220 Attribute::ZExt)) 1221 ExtendKind = ISD::ZERO_EXTEND; 1222 1223 LLVMContext &Context = F->getContext(); 1224 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1225 Attribute::InReg); 1226 1227 for (unsigned j = 0; j != NumValues; ++j) { 1228 EVT VT = ValueVTs[j]; 1229 1230 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1231 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1232 1233 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1234 MVT PartVT = TLI.getRegisterType(Context, VT); 1235 SmallVector<SDValue, 4> Parts(NumParts); 1236 getCopyToParts(DAG, getCurSDLoc(), 1237 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1238 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1239 1240 // 'inreg' on function refers to return value 1241 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1242 if (RetInReg) 1243 Flags.setInReg(); 1244 1245 // Propagate extension type if any 1246 if (ExtendKind == ISD::SIGN_EXTEND) 1247 Flags.setSExt(); 1248 else if (ExtendKind == ISD::ZERO_EXTEND) 1249 Flags.setZExt(); 1250 1251 for (unsigned i = 0; i < NumParts; ++i) { 1252 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1253 VT, /*isfixed=*/true, 0, 0)); 1254 OutVals.push_back(Parts[i]); 1255 } 1256 } 1257 } 1258 } 1259 1260 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1261 CallingConv::ID CallConv = 1262 DAG.getMachineFunction().getFunction()->getCallingConv(); 1263 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1264 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1265 1266 // Verify that the target's LowerReturn behaved as expected. 1267 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1268 "LowerReturn didn't return a valid chain!"); 1269 1270 // Update the DAG with the new chain value resulting from return lowering. 1271 DAG.setRoot(Chain); 1272 } 1273 1274 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1275 /// created for it, emit nodes to copy the value into the virtual 1276 /// registers. 1277 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1278 // Skip empty types 1279 if (V->getType()->isEmptyTy()) 1280 return; 1281 1282 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1283 if (VMI != FuncInfo.ValueMap.end()) { 1284 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1285 CopyValueToVirtualRegister(V, VMI->second); 1286 } 1287 } 1288 1289 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1290 /// the current basic block, add it to ValueMap now so that we'll get a 1291 /// CopyTo/FromReg. 1292 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1293 // No need to export constants. 1294 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1295 1296 // Already exported? 1297 if (FuncInfo.isExportedInst(V)) return; 1298 1299 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1300 CopyValueToVirtualRegister(V, Reg); 1301 } 1302 1303 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1304 const BasicBlock *FromBB) { 1305 // The operands of the setcc have to be in this block. We don't know 1306 // how to export them from some other block. 1307 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1308 // Can export from current BB. 1309 if (VI->getParent() == FromBB) 1310 return true; 1311 1312 // Is already exported, noop. 1313 return FuncInfo.isExportedInst(V); 1314 } 1315 1316 // If this is an argument, we can export it if the BB is the entry block or 1317 // if it is already exported. 1318 if (isa<Argument>(V)) { 1319 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1320 return true; 1321 1322 // Otherwise, can only export this if it is already exported. 1323 return FuncInfo.isExportedInst(V); 1324 } 1325 1326 // Otherwise, constants can always be exported. 1327 return true; 1328 } 1329 1330 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1331 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1332 const MachineBasicBlock *Dst) const { 1333 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1334 if (!BPI) 1335 return 0; 1336 const BasicBlock *SrcBB = Src->getBasicBlock(); 1337 const BasicBlock *DstBB = Dst->getBasicBlock(); 1338 return BPI->getEdgeWeight(SrcBB, DstBB); 1339 } 1340 1341 void SelectionDAGBuilder:: 1342 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1343 uint32_t Weight /* = 0 */) { 1344 if (!Weight) 1345 Weight = getEdgeWeight(Src, Dst); 1346 Src->addSuccessor(Dst, Weight); 1347 } 1348 1349 1350 static bool InBlock(const Value *V, const BasicBlock *BB) { 1351 if (const Instruction *I = dyn_cast<Instruction>(V)) 1352 return I->getParent() == BB; 1353 return true; 1354 } 1355 1356 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1357 /// This function emits a branch and is used at the leaves of an OR or an 1358 /// AND operator tree. 1359 /// 1360 void 1361 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1362 MachineBasicBlock *TBB, 1363 MachineBasicBlock *FBB, 1364 MachineBasicBlock *CurBB, 1365 MachineBasicBlock *SwitchBB, 1366 uint32_t TWeight, 1367 uint32_t FWeight) { 1368 const BasicBlock *BB = CurBB->getBasicBlock(); 1369 1370 // If the leaf of the tree is a comparison, merge the condition into 1371 // the caseblock. 1372 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1373 // The operands of the cmp have to be in this block. We don't know 1374 // how to export them from some other block. If this is the first block 1375 // of the sequence, no exporting is needed. 1376 if (CurBB == SwitchBB || 1377 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1378 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1379 ISD::CondCode Condition; 1380 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1381 Condition = getICmpCondCode(IC->getPredicate()); 1382 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1383 Condition = getFCmpCondCode(FC->getPredicate()); 1384 if (TM.Options.NoNaNsFPMath) 1385 Condition = getFCmpCodeWithoutNaN(Condition); 1386 } else { 1387 (void)Condition; // silence warning. 1388 llvm_unreachable("Unknown compare instruction"); 1389 } 1390 1391 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1392 TBB, FBB, CurBB, TWeight, FWeight); 1393 SwitchCases.push_back(CB); 1394 return; 1395 } 1396 } 1397 1398 // Create a CaseBlock record representing this branch. 1399 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1400 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1401 SwitchCases.push_back(CB); 1402 } 1403 1404 /// Scale down both weights to fit into uint32_t. 1405 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1406 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1407 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1408 NewTrue = NewTrue / Scale; 1409 NewFalse = NewFalse / Scale; 1410 } 1411 1412 /// FindMergedConditions - If Cond is an expression like 1413 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1414 MachineBasicBlock *TBB, 1415 MachineBasicBlock *FBB, 1416 MachineBasicBlock *CurBB, 1417 MachineBasicBlock *SwitchBB, 1418 unsigned Opc, uint32_t TWeight, 1419 uint32_t FWeight) { 1420 // If this node is not part of the or/and tree, emit it as a branch. 1421 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1422 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1423 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1424 BOp->getParent() != CurBB->getBasicBlock() || 1425 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1426 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1427 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1428 TWeight, FWeight); 1429 return; 1430 } 1431 1432 // Create TmpBB after CurBB. 1433 MachineFunction::iterator BBI = CurBB; 1434 MachineFunction &MF = DAG.getMachineFunction(); 1435 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1436 CurBB->getParent()->insert(++BBI, TmpBB); 1437 1438 if (Opc == Instruction::Or) { 1439 // Codegen X | Y as: 1440 // BB1: 1441 // jmp_if_X TBB 1442 // jmp TmpBB 1443 // TmpBB: 1444 // jmp_if_Y TBB 1445 // jmp FBB 1446 // 1447 1448 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1449 // The requirement is that 1450 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1451 // = TrueProb for original BB. 1452 // Assuming the original weights are A and B, one choice is to set BB1's 1453 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1454 // assumes that 1455 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1456 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1457 // TmpBB, but the math is more complicated. 1458 1459 uint64_t NewTrueWeight = TWeight; 1460 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1461 ScaleWeights(NewTrueWeight, NewFalseWeight); 1462 // Emit the LHS condition. 1463 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1464 NewTrueWeight, NewFalseWeight); 1465 1466 NewTrueWeight = TWeight; 1467 NewFalseWeight = 2 * (uint64_t)FWeight; 1468 ScaleWeights(NewTrueWeight, NewFalseWeight); 1469 // Emit the RHS condition into TmpBB. 1470 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1471 NewTrueWeight, NewFalseWeight); 1472 } else { 1473 assert(Opc == Instruction::And && "Unknown merge op!"); 1474 // Codegen X & Y as: 1475 // BB1: 1476 // jmp_if_X TmpBB 1477 // jmp FBB 1478 // TmpBB: 1479 // jmp_if_Y TBB 1480 // jmp FBB 1481 // 1482 // This requires creation of TmpBB after CurBB. 1483 1484 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1485 // The requirement is that 1486 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1487 // = FalseProb for original BB. 1488 // Assuming the original weights are A and B, one choice is to set BB1's 1489 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1490 // assumes that 1491 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1492 1493 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1494 uint64_t NewFalseWeight = FWeight; 1495 ScaleWeights(NewTrueWeight, NewFalseWeight); 1496 // Emit the LHS condition. 1497 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1498 NewTrueWeight, NewFalseWeight); 1499 1500 NewTrueWeight = 2 * (uint64_t)TWeight; 1501 NewFalseWeight = FWeight; 1502 ScaleWeights(NewTrueWeight, NewFalseWeight); 1503 // Emit the RHS condition into TmpBB. 1504 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1505 NewTrueWeight, NewFalseWeight); 1506 } 1507 } 1508 1509 /// If the set of cases should be emitted as a series of branches, return true. 1510 /// If we should emit this as a bunch of and/or'd together conditions, return 1511 /// false. 1512 bool 1513 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1514 if (Cases.size() != 2) return true; 1515 1516 // If this is two comparisons of the same values or'd or and'd together, they 1517 // will get folded into a single comparison, so don't emit two blocks. 1518 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1519 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1520 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1521 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1522 return false; 1523 } 1524 1525 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1526 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1527 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1528 Cases[0].CC == Cases[1].CC && 1529 isa<Constant>(Cases[0].CmpRHS) && 1530 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1531 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1532 return false; 1533 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1534 return false; 1535 } 1536 1537 return true; 1538 } 1539 1540 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1541 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1542 1543 // Update machine-CFG edges. 1544 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1545 1546 if (I.isUnconditional()) { 1547 // Update machine-CFG edges. 1548 BrMBB->addSuccessor(Succ0MBB); 1549 1550 // If this is not a fall-through branch or optimizations are switched off, 1551 // emit the branch. 1552 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1553 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1554 MVT::Other, getControlRoot(), 1555 DAG.getBasicBlock(Succ0MBB))); 1556 1557 return; 1558 } 1559 1560 // If this condition is one of the special cases we handle, do special stuff 1561 // now. 1562 const Value *CondVal = I.getCondition(); 1563 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1564 1565 // If this is a series of conditions that are or'd or and'd together, emit 1566 // this as a sequence of branches instead of setcc's with and/or operations. 1567 // As long as jumps are not expensive, this should improve performance. 1568 // For example, instead of something like: 1569 // cmp A, B 1570 // C = seteq 1571 // cmp D, E 1572 // F = setle 1573 // or C, F 1574 // jnz foo 1575 // Emit: 1576 // cmp A, B 1577 // je foo 1578 // cmp D, E 1579 // jle foo 1580 // 1581 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1582 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1583 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1584 BOp->getOpcode() == Instruction::Or)) { 1585 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1586 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1587 getEdgeWeight(BrMBB, Succ1MBB)); 1588 // If the compares in later blocks need to use values not currently 1589 // exported from this block, export them now. This block should always 1590 // be the first entry. 1591 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1592 1593 // Allow some cases to be rejected. 1594 if (ShouldEmitAsBranches(SwitchCases)) { 1595 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1596 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1597 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1598 } 1599 1600 // Emit the branch for this block. 1601 visitSwitchCase(SwitchCases[0], BrMBB); 1602 SwitchCases.erase(SwitchCases.begin()); 1603 return; 1604 } 1605 1606 // Okay, we decided not to do this, remove any inserted MBB's and clear 1607 // SwitchCases. 1608 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1609 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1610 1611 SwitchCases.clear(); 1612 } 1613 } 1614 1615 // Create a CaseBlock record representing this branch. 1616 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1617 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1618 1619 // Use visitSwitchCase to actually insert the fast branch sequence for this 1620 // cond branch. 1621 visitSwitchCase(CB, BrMBB); 1622 } 1623 1624 /// visitSwitchCase - Emits the necessary code to represent a single node in 1625 /// the binary search tree resulting from lowering a switch instruction. 1626 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1627 MachineBasicBlock *SwitchBB) { 1628 SDValue Cond; 1629 SDValue CondLHS = getValue(CB.CmpLHS); 1630 SDLoc dl = getCurSDLoc(); 1631 1632 // Build the setcc now. 1633 if (!CB.CmpMHS) { 1634 // Fold "(X == true)" to X and "(X == false)" to !X to 1635 // handle common cases produced by branch lowering. 1636 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1637 CB.CC == ISD::SETEQ) 1638 Cond = CondLHS; 1639 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1640 CB.CC == ISD::SETEQ) { 1641 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1642 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1643 } else 1644 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1645 } else { 1646 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1647 1648 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1649 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1650 1651 SDValue CmpOp = getValue(CB.CmpMHS); 1652 EVT VT = CmpOp.getValueType(); 1653 1654 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1655 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1656 ISD::SETLE); 1657 } else { 1658 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1659 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1660 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1661 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1662 } 1663 } 1664 1665 // Update successor info 1666 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1667 // TrueBB and FalseBB are always different unless the incoming IR is 1668 // degenerate. This only happens when running llc on weird IR. 1669 if (CB.TrueBB != CB.FalseBB) 1670 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1671 1672 // If the lhs block is the next block, invert the condition so that we can 1673 // fall through to the lhs instead of the rhs block. 1674 if (CB.TrueBB == NextBlock(SwitchBB)) { 1675 std::swap(CB.TrueBB, CB.FalseBB); 1676 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1677 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1678 } 1679 1680 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1681 MVT::Other, getControlRoot(), Cond, 1682 DAG.getBasicBlock(CB.TrueBB)); 1683 1684 // Insert the false branch. Do this even if it's a fall through branch, 1685 // this makes it easier to do DAG optimizations which require inverting 1686 // the branch condition. 1687 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1688 DAG.getBasicBlock(CB.FalseBB)); 1689 1690 DAG.setRoot(BrCond); 1691 } 1692 1693 /// visitJumpTable - Emit JumpTable node in the current MBB 1694 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1695 // Emit the code for the jump table 1696 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1697 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1698 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1699 JT.Reg, PTy); 1700 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1701 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1702 MVT::Other, Index.getValue(1), 1703 Table, Index); 1704 DAG.setRoot(BrJumpTable); 1705 } 1706 1707 /// visitJumpTableHeader - This function emits necessary code to produce index 1708 /// in the JumpTable from switch case. 1709 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1710 JumpTableHeader &JTH, 1711 MachineBasicBlock *SwitchBB) { 1712 SDLoc dl = getCurSDLoc(); 1713 1714 // Subtract the lowest switch case value from the value being switched on and 1715 // conditional branch to default mbb if the result is greater than the 1716 // difference between smallest and largest cases. 1717 SDValue SwitchOp = getValue(JTH.SValue); 1718 EVT VT = SwitchOp.getValueType(); 1719 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1720 DAG.getConstant(JTH.First, dl, VT)); 1721 1722 // The SDNode we just created, which holds the value being switched on minus 1723 // the smallest case value, needs to be copied to a virtual register so it 1724 // can be used as an index into the jump table in a subsequent basic block. 1725 // This value may be smaller or larger than the target's pointer type, and 1726 // therefore require extension or truncating. 1727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1728 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1729 1730 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1731 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1732 JumpTableReg, SwitchOp); 1733 JT.Reg = JumpTableReg; 1734 1735 // Emit the range check for the jump table, and branch to the default block 1736 // for the switch statement if the value being switched on exceeds the largest 1737 // case in the switch. 1738 SDValue CMP = 1739 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1740 Sub.getValueType()), 1741 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1742 ISD::SETUGT); 1743 1744 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1745 MVT::Other, CopyTo, CMP, 1746 DAG.getBasicBlock(JT.Default)); 1747 1748 // Avoid emitting unnecessary branches to the next block. 1749 if (JT.MBB != NextBlock(SwitchBB)) 1750 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1751 DAG.getBasicBlock(JT.MBB)); 1752 1753 DAG.setRoot(BrCond); 1754 } 1755 1756 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1757 /// tail spliced into a stack protector check success bb. 1758 /// 1759 /// For a high level explanation of how this fits into the stack protector 1760 /// generation see the comment on the declaration of class 1761 /// StackProtectorDescriptor. 1762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1763 MachineBasicBlock *ParentBB) { 1764 1765 // First create the loads to the guard/stack slot for the comparison. 1766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1767 EVT PtrTy = TLI.getPointerTy(); 1768 1769 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1770 int FI = MFI->getStackProtectorIndex(); 1771 1772 const Value *IRGuard = SPD.getGuard(); 1773 SDValue GuardPtr = getValue(IRGuard); 1774 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1775 1776 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1777 1778 SDValue Guard; 1779 SDLoc dl = getCurSDLoc(); 1780 1781 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1782 // guard value from the virtual register holding the value. Otherwise, emit a 1783 // volatile load to retrieve the stack guard value. 1784 unsigned GuardReg = SPD.getGuardReg(); 1785 1786 if (GuardReg && TLI.useLoadStackGuardNode()) 1787 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1788 PtrTy); 1789 else 1790 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1791 GuardPtr, MachinePointerInfo(IRGuard, 0), 1792 true, false, false, Align); 1793 1794 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1795 StackSlotPtr, 1796 MachinePointerInfo::getFixedStack(FI), 1797 true, false, false, Align); 1798 1799 // Perform the comparison via a subtract/getsetcc. 1800 EVT VT = Guard.getValueType(); 1801 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1802 1803 SDValue Cmp = 1804 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1805 Sub.getValueType()), 1806 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1807 1808 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1809 // branch to failure MBB. 1810 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1811 MVT::Other, StackSlot.getOperand(0), 1812 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1813 // Otherwise branch to success MBB. 1814 SDValue Br = DAG.getNode(ISD::BR, dl, 1815 MVT::Other, BrCond, 1816 DAG.getBasicBlock(SPD.getSuccessMBB())); 1817 1818 DAG.setRoot(Br); 1819 } 1820 1821 /// Codegen the failure basic block for a stack protector check. 1822 /// 1823 /// A failure stack protector machine basic block consists simply of a call to 1824 /// __stack_chk_fail(). 1825 /// 1826 /// For a high level explanation of how this fits into the stack protector 1827 /// generation see the comment on the declaration of class 1828 /// StackProtectorDescriptor. 1829 void 1830 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1832 SDValue Chain = 1833 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1834 nullptr, 0, false, getCurSDLoc(), false, false).second; 1835 DAG.setRoot(Chain); 1836 } 1837 1838 /// visitBitTestHeader - This function emits necessary code to produce value 1839 /// suitable for "bit tests" 1840 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1841 MachineBasicBlock *SwitchBB) { 1842 SDLoc dl = getCurSDLoc(); 1843 1844 // Subtract the minimum value 1845 SDValue SwitchOp = getValue(B.SValue); 1846 EVT VT = SwitchOp.getValueType(); 1847 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1848 DAG.getConstant(B.First, dl, VT)); 1849 1850 // Check range 1851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1852 SDValue RangeCmp = 1853 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1854 Sub.getValueType()), 1855 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1856 1857 // Determine the type of the test operands. 1858 bool UsePtrType = false; 1859 if (!TLI.isTypeLegal(VT)) 1860 UsePtrType = true; 1861 else { 1862 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1863 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1864 // Switch table case range are encoded into series of masks. 1865 // Just use pointer type, it's guaranteed to fit. 1866 UsePtrType = true; 1867 break; 1868 } 1869 } 1870 if (UsePtrType) { 1871 VT = TLI.getPointerTy(); 1872 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1873 } 1874 1875 B.RegVT = VT.getSimpleVT(); 1876 B.Reg = FuncInfo.CreateReg(B.RegVT); 1877 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1878 1879 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1880 1881 addSuccessorWithWeight(SwitchBB, B.Default); 1882 addSuccessorWithWeight(SwitchBB, MBB); 1883 1884 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1885 MVT::Other, CopyTo, RangeCmp, 1886 DAG.getBasicBlock(B.Default)); 1887 1888 // Avoid emitting unnecessary branches to the next block. 1889 if (MBB != NextBlock(SwitchBB)) 1890 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1891 DAG.getBasicBlock(MBB)); 1892 1893 DAG.setRoot(BrRange); 1894 } 1895 1896 /// visitBitTestCase - this function produces one "bit test" 1897 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1898 MachineBasicBlock* NextMBB, 1899 uint32_t BranchWeightToNext, 1900 unsigned Reg, 1901 BitTestCase &B, 1902 MachineBasicBlock *SwitchBB) { 1903 SDLoc dl = getCurSDLoc(); 1904 MVT VT = BB.RegVT; 1905 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1906 SDValue Cmp; 1907 unsigned PopCount = countPopulation(B.Mask); 1908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1909 if (PopCount == 1) { 1910 // Testing for a single bit; just compare the shift count with what it 1911 // would need to be to shift a 1 bit in that position. 1912 Cmp = DAG.getSetCC( 1913 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1914 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1915 } else if (PopCount == BB.Range) { 1916 // There is only one zero bit in the range, test for it directly. 1917 Cmp = DAG.getSetCC( 1918 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1919 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1920 } else { 1921 // Make desired shift 1922 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1923 DAG.getConstant(1, dl, VT), ShiftOp); 1924 1925 // Emit bit tests and jumps 1926 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1927 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1928 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1929 DAG.getConstant(0, dl, VT), ISD::SETNE); 1930 } 1931 1932 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1933 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1934 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1935 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1936 1937 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1938 MVT::Other, getControlRoot(), 1939 Cmp, DAG.getBasicBlock(B.TargetBB)); 1940 1941 // Avoid emitting unnecessary branches to the next block. 1942 if (NextMBB != NextBlock(SwitchBB)) 1943 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1944 DAG.getBasicBlock(NextMBB)); 1945 1946 DAG.setRoot(BrAnd); 1947 } 1948 1949 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1950 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1951 1952 // Retrieve successors. 1953 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1954 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1955 1956 const Value *Callee(I.getCalledValue()); 1957 const Function *Fn = dyn_cast<Function>(Callee); 1958 if (isa<InlineAsm>(Callee)) 1959 visitInlineAsm(&I); 1960 else if (Fn && Fn->isIntrinsic()) { 1961 switch (Fn->getIntrinsicID()) { 1962 default: 1963 llvm_unreachable("Cannot invoke this intrinsic"); 1964 case Intrinsic::donothing: 1965 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1966 break; 1967 case Intrinsic::experimental_patchpoint_void: 1968 case Intrinsic::experimental_patchpoint_i64: 1969 visitPatchpoint(&I, LandingPad); 1970 break; 1971 case Intrinsic::experimental_gc_statepoint: 1972 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1973 break; 1974 } 1975 } else 1976 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1977 1978 // If the value of the invoke is used outside of its defining block, make it 1979 // available as a virtual register. 1980 // We already took care of the exported value for the statepoint instruction 1981 // during call to the LowerStatepoint. 1982 if (!isStatepoint(I)) { 1983 CopyToExportRegsIfNeeded(&I); 1984 } 1985 1986 // Update successor info 1987 addSuccessorWithWeight(InvokeMBB, Return); 1988 addSuccessorWithWeight(InvokeMBB, LandingPad); 1989 1990 // Drop into normal successor. 1991 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1992 MVT::Other, getControlRoot(), 1993 DAG.getBasicBlock(Return))); 1994 } 1995 1996 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1997 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1998 } 1999 2000 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2001 assert(FuncInfo.MBB->isLandingPad() && 2002 "Call to landingpad not in landing pad!"); 2003 2004 MachineBasicBlock *MBB = FuncInfo.MBB; 2005 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2006 AddLandingPadInfo(LP, MMI, MBB); 2007 2008 // If there aren't registers to copy the values into (e.g., during SjLj 2009 // exceptions), then don't bother to create these DAG nodes. 2010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2011 if (TLI.getExceptionPointerRegister() == 0 && 2012 TLI.getExceptionSelectorRegister() == 0) 2013 return; 2014 2015 SmallVector<EVT, 2> ValueVTs; 2016 SDLoc dl = getCurSDLoc(); 2017 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2018 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2019 2020 // Get the two live-in registers as SDValues. The physregs have already been 2021 // copied into virtual registers. 2022 SDValue Ops[2]; 2023 if (FuncInfo.ExceptionPointerVirtReg) { 2024 Ops[0] = DAG.getZExtOrTrunc( 2025 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2026 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2027 dl, ValueVTs[0]); 2028 } else { 2029 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2030 } 2031 Ops[1] = DAG.getZExtOrTrunc( 2032 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2033 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2034 dl, ValueVTs[1]); 2035 2036 // Merge into one. 2037 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2038 DAG.getVTList(ValueVTs), Ops); 2039 setValue(&LP, Res); 2040 } 2041 2042 unsigned 2043 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2044 MachineBasicBlock *LPadBB) { 2045 SDValue Chain = getControlRoot(); 2046 SDLoc dl = getCurSDLoc(); 2047 2048 // Get the typeid that we will dispatch on later. 2049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2050 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2051 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2052 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2053 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2054 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2055 2056 // Branch to the main landing pad block. 2057 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2058 ClauseMBB->addSuccessor(LPadBB); 2059 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2060 DAG.getBasicBlock(LPadBB))); 2061 return VReg; 2062 } 2063 2064 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2065 #ifndef NDEBUG 2066 for (const CaseCluster &CC : Clusters) 2067 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2068 #endif 2069 2070 std::sort(Clusters.begin(), Clusters.end(), 2071 [](const CaseCluster &a, const CaseCluster &b) { 2072 return a.Low->getValue().slt(b.Low->getValue()); 2073 }); 2074 2075 // Merge adjacent clusters with the same destination. 2076 const unsigned N = Clusters.size(); 2077 unsigned DstIndex = 0; 2078 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2079 CaseCluster &CC = Clusters[SrcIndex]; 2080 const ConstantInt *CaseVal = CC.Low; 2081 MachineBasicBlock *Succ = CC.MBB; 2082 2083 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2084 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2085 // If this case has the same successor and is a neighbour, merge it into 2086 // the previous cluster. 2087 Clusters[DstIndex - 1].High = CaseVal; 2088 Clusters[DstIndex - 1].Weight += CC.Weight; 2089 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2090 } else { 2091 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2092 sizeof(Clusters[SrcIndex])); 2093 } 2094 } 2095 Clusters.resize(DstIndex); 2096 } 2097 2098 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2099 MachineBasicBlock *Last) { 2100 // Update JTCases. 2101 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2102 if (JTCases[i].first.HeaderBB == First) 2103 JTCases[i].first.HeaderBB = Last; 2104 2105 // Update BitTestCases. 2106 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2107 if (BitTestCases[i].Parent == First) 2108 BitTestCases[i].Parent = Last; 2109 } 2110 2111 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2112 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2113 2114 // Update machine-CFG edges with unique successors. 2115 SmallSet<BasicBlock*, 32> Done; 2116 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2117 BasicBlock *BB = I.getSuccessor(i); 2118 bool Inserted = Done.insert(BB).second; 2119 if (!Inserted) 2120 continue; 2121 2122 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2123 addSuccessorWithWeight(IndirectBrMBB, Succ); 2124 } 2125 2126 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2127 MVT::Other, getControlRoot(), 2128 getValue(I.getAddress()))); 2129 } 2130 2131 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2132 if (DAG.getTarget().Options.TrapUnreachable) 2133 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2134 } 2135 2136 void SelectionDAGBuilder::visitFSub(const User &I) { 2137 // -0.0 - X --> fneg 2138 Type *Ty = I.getType(); 2139 if (isa<Constant>(I.getOperand(0)) && 2140 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2141 SDValue Op2 = getValue(I.getOperand(1)); 2142 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2143 Op2.getValueType(), Op2)); 2144 return; 2145 } 2146 2147 visitBinary(I, ISD::FSUB); 2148 } 2149 2150 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2151 SDValue Op1 = getValue(I.getOperand(0)); 2152 SDValue Op2 = getValue(I.getOperand(1)); 2153 2154 bool nuw = false; 2155 bool nsw = false; 2156 bool exact = false; 2157 FastMathFlags FMF; 2158 2159 if (const OverflowingBinaryOperator *OFBinOp = 2160 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2161 nuw = OFBinOp->hasNoUnsignedWrap(); 2162 nsw = OFBinOp->hasNoSignedWrap(); 2163 } 2164 if (const PossiblyExactOperator *ExactOp = 2165 dyn_cast<const PossiblyExactOperator>(&I)) 2166 exact = ExactOp->isExact(); 2167 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2168 FMF = FPOp->getFastMathFlags(); 2169 2170 SDNodeFlags Flags; 2171 Flags.setExact(exact); 2172 Flags.setNoSignedWrap(nsw); 2173 Flags.setNoUnsignedWrap(nuw); 2174 if (EnableFMFInDAG) { 2175 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2176 Flags.setNoInfs(FMF.noInfs()); 2177 Flags.setNoNaNs(FMF.noNaNs()); 2178 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2179 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2180 } 2181 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2182 Op1, Op2, &Flags); 2183 setValue(&I, BinNodeValue); 2184 } 2185 2186 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2187 SDValue Op1 = getValue(I.getOperand(0)); 2188 SDValue Op2 = getValue(I.getOperand(1)); 2189 2190 EVT ShiftTy = 2191 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2192 2193 // Coerce the shift amount to the right type if we can. 2194 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2195 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2196 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2197 SDLoc DL = getCurSDLoc(); 2198 2199 // If the operand is smaller than the shift count type, promote it. 2200 if (ShiftSize > Op2Size) 2201 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2202 2203 // If the operand is larger than the shift count type but the shift 2204 // count type has enough bits to represent any shift value, truncate 2205 // it now. This is a common case and it exposes the truncate to 2206 // optimization early. 2207 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2208 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2209 // Otherwise we'll need to temporarily settle for some other convenient 2210 // type. Type legalization will make adjustments once the shiftee is split. 2211 else 2212 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2213 } 2214 2215 bool nuw = false; 2216 bool nsw = false; 2217 bool exact = false; 2218 2219 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2220 2221 if (const OverflowingBinaryOperator *OFBinOp = 2222 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2223 nuw = OFBinOp->hasNoUnsignedWrap(); 2224 nsw = OFBinOp->hasNoSignedWrap(); 2225 } 2226 if (const PossiblyExactOperator *ExactOp = 2227 dyn_cast<const PossiblyExactOperator>(&I)) 2228 exact = ExactOp->isExact(); 2229 } 2230 SDNodeFlags Flags; 2231 Flags.setExact(exact); 2232 Flags.setNoSignedWrap(nsw); 2233 Flags.setNoUnsignedWrap(nuw); 2234 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2235 &Flags); 2236 setValue(&I, Res); 2237 } 2238 2239 void SelectionDAGBuilder::visitSDiv(const User &I) { 2240 SDValue Op1 = getValue(I.getOperand(0)); 2241 SDValue Op2 = getValue(I.getOperand(1)); 2242 2243 SDNodeFlags Flags; 2244 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2245 cast<PossiblyExactOperator>(&I)->isExact()); 2246 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2247 Op2, &Flags)); 2248 } 2249 2250 void SelectionDAGBuilder::visitICmp(const User &I) { 2251 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2252 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2253 predicate = IC->getPredicate(); 2254 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2255 predicate = ICmpInst::Predicate(IC->getPredicate()); 2256 SDValue Op1 = getValue(I.getOperand(0)); 2257 SDValue Op2 = getValue(I.getOperand(1)); 2258 ISD::CondCode Opcode = getICmpCondCode(predicate); 2259 2260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2261 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2262 } 2263 2264 void SelectionDAGBuilder::visitFCmp(const User &I) { 2265 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2266 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2267 predicate = FC->getPredicate(); 2268 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2269 predicate = FCmpInst::Predicate(FC->getPredicate()); 2270 SDValue Op1 = getValue(I.getOperand(0)); 2271 SDValue Op2 = getValue(I.getOperand(1)); 2272 ISD::CondCode Condition = getFCmpCondCode(predicate); 2273 if (TM.Options.NoNaNsFPMath) 2274 Condition = getFCmpCodeWithoutNaN(Condition); 2275 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2276 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2277 } 2278 2279 void SelectionDAGBuilder::visitSelect(const User &I) { 2280 SmallVector<EVT, 4> ValueVTs; 2281 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2282 ValueVTs); 2283 unsigned NumValues = ValueVTs.size(); 2284 if (NumValues == 0) return; 2285 2286 SmallVector<SDValue, 4> Values(NumValues); 2287 SDValue Cond = getValue(I.getOperand(0)); 2288 SDValue LHSVal = getValue(I.getOperand(1)); 2289 SDValue RHSVal = getValue(I.getOperand(2)); 2290 auto BaseOps = {Cond}; 2291 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2292 ISD::VSELECT : ISD::SELECT; 2293 2294 // Min/max matching is only viable if all output VTs are the same. 2295 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2296 Value *LHS, *RHS; 2297 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2298 ISD::NodeType Opc = ISD::DELETED_NODE; 2299 switch (SPF) { 2300 case SPF_UMAX: Opc = ISD::UMAX; break; 2301 case SPF_UMIN: Opc = ISD::UMIN; break; 2302 case SPF_SMAX: Opc = ISD::SMAX; break; 2303 case SPF_SMIN: Opc = ISD::SMIN; break; 2304 default: break; 2305 } 2306 2307 EVT VT = ValueVTs[0]; 2308 LLVMContext &Ctx = *DAG.getContext(); 2309 auto &TLI = DAG.getTargetLoweringInfo(); 2310 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2311 VT = TLI.getTypeToTransformTo(Ctx, VT); 2312 2313 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2314 // If the underlying comparison instruction is used by any other instruction, 2315 // the consumed instructions won't be destroyed, so it is not profitable 2316 // to convert to a min/max. 2317 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2318 OpCode = Opc; 2319 LHSVal = getValue(LHS); 2320 RHSVal = getValue(RHS); 2321 BaseOps = {}; 2322 } 2323 } 2324 2325 for (unsigned i = 0; i != NumValues; ++i) { 2326 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2327 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2328 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2329 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2330 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2331 Ops); 2332 } 2333 2334 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2335 DAG.getVTList(ValueVTs), Values)); 2336 } 2337 2338 void SelectionDAGBuilder::visitTrunc(const User &I) { 2339 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2340 SDValue N = getValue(I.getOperand(0)); 2341 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2342 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2343 } 2344 2345 void SelectionDAGBuilder::visitZExt(const User &I) { 2346 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2347 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2348 SDValue N = getValue(I.getOperand(0)); 2349 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2350 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2351 } 2352 2353 void SelectionDAGBuilder::visitSExt(const User &I) { 2354 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2355 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2356 SDValue N = getValue(I.getOperand(0)); 2357 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2358 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2359 } 2360 2361 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2362 // FPTrunc is never a no-op cast, no need to check 2363 SDValue N = getValue(I.getOperand(0)); 2364 SDLoc dl = getCurSDLoc(); 2365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2366 EVT DestVT = TLI.getValueType(I.getType()); 2367 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2368 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2369 } 2370 2371 void SelectionDAGBuilder::visitFPExt(const User &I) { 2372 // FPExt is never a no-op cast, no need to check 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2375 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2376 } 2377 2378 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2379 // FPToUI is never a no-op cast, no need to check 2380 SDValue N = getValue(I.getOperand(0)); 2381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2382 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2383 } 2384 2385 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2386 // FPToSI is never a no-op cast, no need to check 2387 SDValue N = getValue(I.getOperand(0)); 2388 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2389 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2390 } 2391 2392 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2393 // UIToFP is never a no-op cast, no need to check 2394 SDValue N = getValue(I.getOperand(0)); 2395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2396 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2397 } 2398 2399 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2400 // SIToFP is never a no-op cast, no need to check 2401 SDValue N = getValue(I.getOperand(0)); 2402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2403 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2404 } 2405 2406 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2407 // What to do depends on the size of the integer and the size of the pointer. 2408 // We can either truncate, zero extend, or no-op, accordingly. 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2411 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2412 } 2413 2414 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2415 // What to do depends on the size of the integer and the size of the pointer. 2416 // We can either truncate, zero extend, or no-op, accordingly. 2417 SDValue N = getValue(I.getOperand(0)); 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2419 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2420 } 2421 2422 void SelectionDAGBuilder::visitBitCast(const User &I) { 2423 SDValue N = getValue(I.getOperand(0)); 2424 SDLoc dl = getCurSDLoc(); 2425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2426 2427 // BitCast assures us that source and destination are the same size so this is 2428 // either a BITCAST or a no-op. 2429 if (DestVT != N.getValueType()) 2430 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2431 DestVT, N)); // convert types. 2432 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2433 // might fold any kind of constant expression to an integer constant and that 2434 // is not what we are looking for. Only regcognize a bitcast of a genuine 2435 // constant integer as an opaque constant. 2436 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2437 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2438 /*isOpaque*/true)); 2439 else 2440 setValue(&I, N); // noop cast. 2441 } 2442 2443 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2445 const Value *SV = I.getOperand(0); 2446 SDValue N = getValue(SV); 2447 EVT DestVT = TLI.getValueType(I.getType()); 2448 2449 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2450 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2451 2452 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2453 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2454 2455 setValue(&I, N); 2456 } 2457 2458 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2460 SDValue InVec = getValue(I.getOperand(0)); 2461 SDValue InVal = getValue(I.getOperand(1)); 2462 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2463 getCurSDLoc(), TLI.getVectorIdxTy()); 2464 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2465 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2466 } 2467 2468 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2470 SDValue InVec = getValue(I.getOperand(0)); 2471 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2472 getCurSDLoc(), TLI.getVectorIdxTy()); 2473 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2474 TLI.getValueType(I.getType()), InVec, InIdx)); 2475 } 2476 2477 // Utility for visitShuffleVector - Return true if every element in Mask, 2478 // beginning from position Pos and ending in Pos+Size, falls within the 2479 // specified sequential range [L, L+Pos). or is undef. 2480 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2481 unsigned Pos, unsigned Size, int Low) { 2482 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2483 if (Mask[i] >= 0 && Mask[i] != Low) 2484 return false; 2485 return true; 2486 } 2487 2488 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2489 SDValue Src1 = getValue(I.getOperand(0)); 2490 SDValue Src2 = getValue(I.getOperand(1)); 2491 2492 SmallVector<int, 8> Mask; 2493 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2494 unsigned MaskNumElts = Mask.size(); 2495 2496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2497 EVT VT = TLI.getValueType(I.getType()); 2498 EVT SrcVT = Src1.getValueType(); 2499 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2500 2501 if (SrcNumElts == MaskNumElts) { 2502 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2503 &Mask[0])); 2504 return; 2505 } 2506 2507 // Normalize the shuffle vector since mask and vector length don't match. 2508 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2509 // Mask is longer than the source vectors and is a multiple of the source 2510 // vectors. We can use concatenate vector to make the mask and vectors 2511 // lengths match. 2512 if (SrcNumElts*2 == MaskNumElts) { 2513 // First check for Src1 in low and Src2 in high 2514 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2515 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2516 // The shuffle is concatenating two vectors together. 2517 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2518 VT, Src1, Src2)); 2519 return; 2520 } 2521 // Then check for Src2 in low and Src1 in high 2522 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2523 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2524 // The shuffle is concatenating two vectors together. 2525 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2526 VT, Src2, Src1)); 2527 return; 2528 } 2529 } 2530 2531 // Pad both vectors with undefs to make them the same length as the mask. 2532 unsigned NumConcat = MaskNumElts / SrcNumElts; 2533 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2534 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2535 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2536 2537 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2538 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2539 MOps1[0] = Src1; 2540 MOps2[0] = Src2; 2541 2542 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2543 getCurSDLoc(), VT, MOps1); 2544 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2545 getCurSDLoc(), VT, MOps2); 2546 2547 // Readjust mask for new input vector length. 2548 SmallVector<int, 8> MappedOps; 2549 for (unsigned i = 0; i != MaskNumElts; ++i) { 2550 int Idx = Mask[i]; 2551 if (Idx >= (int)SrcNumElts) 2552 Idx -= SrcNumElts - MaskNumElts; 2553 MappedOps.push_back(Idx); 2554 } 2555 2556 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2557 &MappedOps[0])); 2558 return; 2559 } 2560 2561 if (SrcNumElts > MaskNumElts) { 2562 // Analyze the access pattern of the vector to see if we can extract 2563 // two subvectors and do the shuffle. The analysis is done by calculating 2564 // the range of elements the mask access on both vectors. 2565 int MinRange[2] = { static_cast<int>(SrcNumElts), 2566 static_cast<int>(SrcNumElts)}; 2567 int MaxRange[2] = {-1, -1}; 2568 2569 for (unsigned i = 0; i != MaskNumElts; ++i) { 2570 int Idx = Mask[i]; 2571 unsigned Input = 0; 2572 if (Idx < 0) 2573 continue; 2574 2575 if (Idx >= (int)SrcNumElts) { 2576 Input = 1; 2577 Idx -= SrcNumElts; 2578 } 2579 if (Idx > MaxRange[Input]) 2580 MaxRange[Input] = Idx; 2581 if (Idx < MinRange[Input]) 2582 MinRange[Input] = Idx; 2583 } 2584 2585 // Check if the access is smaller than the vector size and can we find 2586 // a reasonable extract index. 2587 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2588 // Extract. 2589 int StartIdx[2]; // StartIdx to extract from 2590 for (unsigned Input = 0; Input < 2; ++Input) { 2591 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2592 RangeUse[Input] = 0; // Unused 2593 StartIdx[Input] = 0; 2594 continue; 2595 } 2596 2597 // Find a good start index that is a multiple of the mask length. Then 2598 // see if the rest of the elements are in range. 2599 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2600 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2601 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2602 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2603 } 2604 2605 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2606 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2607 return; 2608 } 2609 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2610 // Extract appropriate subvector and generate a vector shuffle 2611 for (unsigned Input = 0; Input < 2; ++Input) { 2612 SDValue &Src = Input == 0 ? Src1 : Src2; 2613 if (RangeUse[Input] == 0) 2614 Src = DAG.getUNDEF(VT); 2615 else { 2616 SDLoc dl = getCurSDLoc(); 2617 Src = DAG.getNode( 2618 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2619 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2620 } 2621 } 2622 2623 // Calculate new mask. 2624 SmallVector<int, 8> MappedOps; 2625 for (unsigned i = 0; i != MaskNumElts; ++i) { 2626 int Idx = Mask[i]; 2627 if (Idx >= 0) { 2628 if (Idx < (int)SrcNumElts) 2629 Idx -= StartIdx[0]; 2630 else 2631 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2632 } 2633 MappedOps.push_back(Idx); 2634 } 2635 2636 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2637 &MappedOps[0])); 2638 return; 2639 } 2640 } 2641 2642 // We can't use either concat vectors or extract subvectors so fall back to 2643 // replacing the shuffle with extract and build vector. 2644 // to insert and build vector. 2645 EVT EltVT = VT.getVectorElementType(); 2646 EVT IdxVT = TLI.getVectorIdxTy(); 2647 SDLoc dl = getCurSDLoc(); 2648 SmallVector<SDValue,8> Ops; 2649 for (unsigned i = 0; i != MaskNumElts; ++i) { 2650 int Idx = Mask[i]; 2651 SDValue Res; 2652 2653 if (Idx < 0) { 2654 Res = DAG.getUNDEF(EltVT); 2655 } else { 2656 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2657 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2658 2659 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2660 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2661 } 2662 2663 Ops.push_back(Res); 2664 } 2665 2666 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2667 } 2668 2669 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2670 const Value *Op0 = I.getOperand(0); 2671 const Value *Op1 = I.getOperand(1); 2672 Type *AggTy = I.getType(); 2673 Type *ValTy = Op1->getType(); 2674 bool IntoUndef = isa<UndefValue>(Op0); 2675 bool FromUndef = isa<UndefValue>(Op1); 2676 2677 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2678 2679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2680 SmallVector<EVT, 4> AggValueVTs; 2681 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2682 SmallVector<EVT, 4> ValValueVTs; 2683 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2684 2685 unsigned NumAggValues = AggValueVTs.size(); 2686 unsigned NumValValues = ValValueVTs.size(); 2687 SmallVector<SDValue, 4> Values(NumAggValues); 2688 2689 // Ignore an insertvalue that produces an empty object 2690 if (!NumAggValues) { 2691 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2692 return; 2693 } 2694 2695 SDValue Agg = getValue(Op0); 2696 unsigned i = 0; 2697 // Copy the beginning value(s) from the original aggregate. 2698 for (; i != LinearIndex; ++i) 2699 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2700 SDValue(Agg.getNode(), Agg.getResNo() + i); 2701 // Copy values from the inserted value(s). 2702 if (NumValValues) { 2703 SDValue Val = getValue(Op1); 2704 for (; i != LinearIndex + NumValValues; ++i) 2705 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2706 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2707 } 2708 // Copy remaining value(s) from the original aggregate. 2709 for (; i != NumAggValues; ++i) 2710 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2711 SDValue(Agg.getNode(), Agg.getResNo() + i); 2712 2713 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2714 DAG.getVTList(AggValueVTs), Values)); 2715 } 2716 2717 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2718 const Value *Op0 = I.getOperand(0); 2719 Type *AggTy = Op0->getType(); 2720 Type *ValTy = I.getType(); 2721 bool OutOfUndef = isa<UndefValue>(Op0); 2722 2723 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2724 2725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2726 SmallVector<EVT, 4> ValValueVTs; 2727 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2728 2729 unsigned NumValValues = ValValueVTs.size(); 2730 2731 // Ignore a extractvalue that produces an empty object 2732 if (!NumValValues) { 2733 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2734 return; 2735 } 2736 2737 SmallVector<SDValue, 4> Values(NumValValues); 2738 2739 SDValue Agg = getValue(Op0); 2740 // Copy out the selected value(s). 2741 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2742 Values[i - LinearIndex] = 2743 OutOfUndef ? 2744 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2745 SDValue(Agg.getNode(), Agg.getResNo() + i); 2746 2747 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2748 DAG.getVTList(ValValueVTs), Values)); 2749 } 2750 2751 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2752 Value *Op0 = I.getOperand(0); 2753 // Note that the pointer operand may be a vector of pointers. Take the scalar 2754 // element which holds a pointer. 2755 Type *Ty = Op0->getType()->getScalarType(); 2756 unsigned AS = Ty->getPointerAddressSpace(); 2757 SDValue N = getValue(Op0); 2758 SDLoc dl = getCurSDLoc(); 2759 2760 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2761 OI != E; ++OI) { 2762 const Value *Idx = *OI; 2763 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2764 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2765 if (Field) { 2766 // N = N + Offset 2767 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2768 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2769 DAG.getConstant(Offset, dl, N.getValueType())); 2770 } 2771 2772 Ty = StTy->getElementType(Field); 2773 } else { 2774 Ty = cast<SequentialType>(Ty)->getElementType(); 2775 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2776 unsigned PtrSize = PtrTy.getSizeInBits(); 2777 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2778 2779 // If this is a constant subscript, handle it quickly. 2780 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2781 if (CI->isZero()) 2782 continue; 2783 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2784 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2785 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2786 continue; 2787 } 2788 2789 // N = N + Idx * ElementSize; 2790 SDValue IdxN = getValue(Idx); 2791 2792 // If the index is smaller or larger than intptr_t, truncate or extend 2793 // it. 2794 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2795 2796 // If this is a multiply by a power of two, turn it into a shl 2797 // immediately. This is a very common case. 2798 if (ElementSize != 1) { 2799 if (ElementSize.isPowerOf2()) { 2800 unsigned Amt = ElementSize.logBase2(); 2801 IdxN = DAG.getNode(ISD::SHL, dl, 2802 N.getValueType(), IdxN, 2803 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2804 } else { 2805 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2806 IdxN = DAG.getNode(ISD::MUL, dl, 2807 N.getValueType(), IdxN, Scale); 2808 } 2809 } 2810 2811 N = DAG.getNode(ISD::ADD, dl, 2812 N.getValueType(), N, IdxN); 2813 } 2814 } 2815 2816 setValue(&I, N); 2817 } 2818 2819 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2820 // If this is a fixed sized alloca in the entry block of the function, 2821 // allocate it statically on the stack. 2822 if (FuncInfo.StaticAllocaMap.count(&I)) 2823 return; // getValue will auto-populate this. 2824 2825 SDLoc dl = getCurSDLoc(); 2826 Type *Ty = I.getAllocatedType(); 2827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2828 auto &DL = DAG.getDataLayout(); 2829 uint64_t TySize = DL.getTypeAllocSize(Ty); 2830 unsigned Align = 2831 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2832 2833 SDValue AllocSize = getValue(I.getArraySize()); 2834 2835 EVT IntPtr = TLI.getPointerTy(); 2836 if (AllocSize.getValueType() != IntPtr) 2837 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2838 2839 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2840 AllocSize, 2841 DAG.getConstant(TySize, dl, IntPtr)); 2842 2843 // Handle alignment. If the requested alignment is less than or equal to 2844 // the stack alignment, ignore it. If the size is greater than or equal to 2845 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2846 unsigned StackAlign = 2847 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2848 if (Align <= StackAlign) 2849 Align = 0; 2850 2851 // Round the size of the allocation up to the stack alignment size 2852 // by add SA-1 to the size. 2853 AllocSize = DAG.getNode(ISD::ADD, dl, 2854 AllocSize.getValueType(), AllocSize, 2855 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2856 2857 // Mask out the low bits for alignment purposes. 2858 AllocSize = DAG.getNode(ISD::AND, dl, 2859 AllocSize.getValueType(), AllocSize, 2860 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2861 dl)); 2862 2863 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2864 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2865 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2866 setValue(&I, DSA); 2867 DAG.setRoot(DSA.getValue(1)); 2868 2869 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2870 } 2871 2872 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2873 if (I.isAtomic()) 2874 return visitAtomicLoad(I); 2875 2876 const Value *SV = I.getOperand(0); 2877 SDValue Ptr = getValue(SV); 2878 2879 Type *Ty = I.getType(); 2880 2881 bool isVolatile = I.isVolatile(); 2882 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2883 2884 // The IR notion of invariant_load only guarantees that all *non-faulting* 2885 // invariant loads result in the same value. The MI notion of invariant load 2886 // guarantees that the load can be legally moved to any location within its 2887 // containing function. The MI notion of invariant_load is stronger than the 2888 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2889 // with a guarantee that the location being loaded from is dereferenceable 2890 // throughout the function's lifetime. 2891 2892 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2893 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2894 unsigned Alignment = I.getAlignment(); 2895 2896 AAMDNodes AAInfo; 2897 I.getAAMetadata(AAInfo); 2898 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2899 2900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2901 SmallVector<EVT, 4> ValueVTs; 2902 SmallVector<uint64_t, 4> Offsets; 2903 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2904 unsigned NumValues = ValueVTs.size(); 2905 if (NumValues == 0) 2906 return; 2907 2908 SDValue Root; 2909 bool ConstantMemory = false; 2910 if (isVolatile || NumValues > MaxParallelChains) 2911 // Serialize volatile loads with other side effects. 2912 Root = getRoot(); 2913 else if (AA->pointsToConstantMemory( 2914 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2915 // Do not serialize (non-volatile) loads of constant memory with anything. 2916 Root = DAG.getEntryNode(); 2917 ConstantMemory = true; 2918 } else { 2919 // Do not serialize non-volatile loads against each other. 2920 Root = DAG.getRoot(); 2921 } 2922 2923 SDLoc dl = getCurSDLoc(); 2924 2925 if (isVolatile) 2926 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2927 2928 SmallVector<SDValue, 4> Values(NumValues); 2929 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2930 EVT PtrVT = Ptr.getValueType(); 2931 unsigned ChainI = 0; 2932 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2933 // Serializing loads here may result in excessive register pressure, and 2934 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2935 // could recover a bit by hoisting nodes upward in the chain by recognizing 2936 // they are side-effect free or do not alias. The optimizer should really 2937 // avoid this case by converting large object/array copies to llvm.memcpy 2938 // (MaxParallelChains should always remain as failsafe). 2939 if (ChainI == MaxParallelChains) { 2940 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2941 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2942 makeArrayRef(Chains.data(), ChainI)); 2943 Root = Chain; 2944 ChainI = 0; 2945 } 2946 SDValue A = DAG.getNode(ISD::ADD, dl, 2947 PtrVT, Ptr, 2948 DAG.getConstant(Offsets[i], dl, PtrVT)); 2949 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2950 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2951 isNonTemporal, isInvariant, Alignment, AAInfo, 2952 Ranges); 2953 2954 Values[i] = L; 2955 Chains[ChainI] = L.getValue(1); 2956 } 2957 2958 if (!ConstantMemory) { 2959 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2960 makeArrayRef(Chains.data(), ChainI)); 2961 if (isVolatile) 2962 DAG.setRoot(Chain); 2963 else 2964 PendingLoads.push_back(Chain); 2965 } 2966 2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2968 DAG.getVTList(ValueVTs), Values)); 2969 } 2970 2971 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2972 if (I.isAtomic()) 2973 return visitAtomicStore(I); 2974 2975 const Value *SrcV = I.getOperand(0); 2976 const Value *PtrV = I.getOperand(1); 2977 2978 SmallVector<EVT, 4> ValueVTs; 2979 SmallVector<uint64_t, 4> Offsets; 2980 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 2981 SrcV->getType(), ValueVTs, &Offsets); 2982 unsigned NumValues = ValueVTs.size(); 2983 if (NumValues == 0) 2984 return; 2985 2986 // Get the lowered operands. Note that we do this after 2987 // checking if NumResults is zero, because with zero results 2988 // the operands won't have values in the map. 2989 SDValue Src = getValue(SrcV); 2990 SDValue Ptr = getValue(PtrV); 2991 2992 SDValue Root = getRoot(); 2993 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2994 EVT PtrVT = Ptr.getValueType(); 2995 bool isVolatile = I.isVolatile(); 2996 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2997 unsigned Alignment = I.getAlignment(); 2998 SDLoc dl = getCurSDLoc(); 2999 3000 AAMDNodes AAInfo; 3001 I.getAAMetadata(AAInfo); 3002 3003 unsigned ChainI = 0; 3004 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3005 // See visitLoad comments. 3006 if (ChainI == MaxParallelChains) { 3007 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3008 makeArrayRef(Chains.data(), ChainI)); 3009 Root = Chain; 3010 ChainI = 0; 3011 } 3012 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3013 DAG.getConstant(Offsets[i], dl, PtrVT)); 3014 SDValue St = DAG.getStore(Root, dl, 3015 SDValue(Src.getNode(), Src.getResNo() + i), 3016 Add, MachinePointerInfo(PtrV, Offsets[i]), 3017 isVolatile, isNonTemporal, Alignment, AAInfo); 3018 Chains[ChainI] = St; 3019 } 3020 3021 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3022 makeArrayRef(Chains.data(), ChainI)); 3023 DAG.setRoot(StoreNode); 3024 } 3025 3026 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3027 SDLoc sdl = getCurSDLoc(); 3028 3029 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3030 Value *PtrOperand = I.getArgOperand(1); 3031 SDValue Ptr = getValue(PtrOperand); 3032 SDValue Src0 = getValue(I.getArgOperand(0)); 3033 SDValue Mask = getValue(I.getArgOperand(3)); 3034 EVT VT = Src0.getValueType(); 3035 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3036 if (!Alignment) 3037 Alignment = DAG.getEVTAlignment(VT); 3038 3039 AAMDNodes AAInfo; 3040 I.getAAMetadata(AAInfo); 3041 3042 MachineMemOperand *MMO = 3043 DAG.getMachineFunction(). 3044 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3045 MachineMemOperand::MOStore, VT.getStoreSize(), 3046 Alignment, AAInfo); 3047 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3048 MMO, false); 3049 DAG.setRoot(StoreNode); 3050 setValue(&I, StoreNode); 3051 } 3052 3053 // Gather/scatter receive a vector of pointers. 3054 // This vector of pointers may be represented as a base pointer + vector of 3055 // indices, it depends on GEP and instruction preceeding GEP 3056 // that calculates indices 3057 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3058 SelectionDAGBuilder* SDB) { 3059 3060 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3061 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3062 if (!Gep || Gep->getNumOperands() > 2) 3063 return false; 3064 ShuffleVectorInst *ShuffleInst = 3065 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3066 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3067 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3068 Instruction::InsertElement) 3069 return false; 3070 3071 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3072 3073 SelectionDAG& DAG = SDB->DAG; 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 // Check is the Ptr is inside current basic block 3076 // If not, look for the shuffle instruction 3077 if (SDB->findValue(Ptr)) 3078 Base = SDB->getValue(Ptr); 3079 else if (SDB->findValue(ShuffleInst)) { 3080 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3081 SDLoc sdl = ShuffleNode; 3082 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3083 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3084 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3085 SDB->setValue(Ptr, Base); 3086 } 3087 else 3088 return false; 3089 3090 Value *IndexVal = Gep->getOperand(1); 3091 if (SDB->findValue(IndexVal)) { 3092 Index = SDB->getValue(IndexVal); 3093 3094 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3095 IndexVal = Sext->getOperand(0); 3096 if (SDB->findValue(IndexVal)) 3097 Index = SDB->getValue(IndexVal); 3098 } 3099 return true; 3100 } 3101 return false; 3102 } 3103 3104 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3105 SDLoc sdl = getCurSDLoc(); 3106 3107 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3108 Value *Ptr = I.getArgOperand(1); 3109 SDValue Src0 = getValue(I.getArgOperand(0)); 3110 SDValue Mask = getValue(I.getArgOperand(3)); 3111 EVT VT = Src0.getValueType(); 3112 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3113 if (!Alignment) 3114 Alignment = DAG.getEVTAlignment(VT); 3115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3116 3117 AAMDNodes AAInfo; 3118 I.getAAMetadata(AAInfo); 3119 3120 SDValue Base; 3121 SDValue Index; 3122 Value *BasePtr = Ptr; 3123 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3124 3125 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3126 MachineMemOperand *MMO = DAG.getMachineFunction(). 3127 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3128 MachineMemOperand::MOStore, VT.getStoreSize(), 3129 Alignment, AAInfo); 3130 if (!UniformBase) { 3131 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3132 Index = getValue(Ptr); 3133 } 3134 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3135 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3136 Ops, MMO); 3137 DAG.setRoot(Scatter); 3138 setValue(&I, Scatter); 3139 } 3140 3141 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3142 SDLoc sdl = getCurSDLoc(); 3143 3144 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3145 Value *PtrOperand = I.getArgOperand(0); 3146 SDValue Ptr = getValue(PtrOperand); 3147 SDValue Src0 = getValue(I.getArgOperand(3)); 3148 SDValue Mask = getValue(I.getArgOperand(2)); 3149 3150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3151 EVT VT = TLI.getValueType(I.getType()); 3152 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3153 if (!Alignment) 3154 Alignment = DAG.getEVTAlignment(VT); 3155 3156 AAMDNodes AAInfo; 3157 I.getAAMetadata(AAInfo); 3158 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3159 3160 SDValue InChain = DAG.getRoot(); 3161 if (AA->pointsToConstantMemory(MemoryLocation( 3162 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3163 // Do not serialize (non-volatile) loads of constant memory with anything. 3164 InChain = DAG.getEntryNode(); 3165 } 3166 3167 MachineMemOperand *MMO = 3168 DAG.getMachineFunction(). 3169 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3170 MachineMemOperand::MOLoad, VT.getStoreSize(), 3171 Alignment, AAInfo, Ranges); 3172 3173 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3174 ISD::NON_EXTLOAD); 3175 SDValue OutChain = Load.getValue(1); 3176 DAG.setRoot(OutChain); 3177 setValue(&I, Load); 3178 } 3179 3180 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3181 SDLoc sdl = getCurSDLoc(); 3182 3183 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3184 Value *Ptr = I.getArgOperand(0); 3185 SDValue Src0 = getValue(I.getArgOperand(3)); 3186 SDValue Mask = getValue(I.getArgOperand(2)); 3187 3188 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3189 EVT VT = TLI.getValueType(I.getType()); 3190 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3191 if (!Alignment) 3192 Alignment = DAG.getEVTAlignment(VT); 3193 3194 AAMDNodes AAInfo; 3195 I.getAAMetadata(AAInfo); 3196 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3197 3198 SDValue Root = DAG.getRoot(); 3199 SDValue Base; 3200 SDValue Index; 3201 Value *BasePtr = Ptr; 3202 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3203 bool ConstantMemory = false; 3204 if (UniformBase && 3205 AA->pointsToConstantMemory( 3206 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3207 // Do not serialize (non-volatile) loads of constant memory with anything. 3208 Root = DAG.getEntryNode(); 3209 ConstantMemory = true; 3210 } 3211 3212 MachineMemOperand *MMO = 3213 DAG.getMachineFunction(). 3214 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3215 MachineMemOperand::MOLoad, VT.getStoreSize(), 3216 Alignment, AAInfo, Ranges); 3217 3218 if (!UniformBase) { 3219 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3220 Index = getValue(Ptr); 3221 } 3222 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3223 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3224 Ops, MMO); 3225 3226 SDValue OutChain = Gather.getValue(1); 3227 if (!ConstantMemory) 3228 PendingLoads.push_back(OutChain); 3229 setValue(&I, Gather); 3230 } 3231 3232 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3233 SDLoc dl = getCurSDLoc(); 3234 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3235 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3236 SynchronizationScope Scope = I.getSynchScope(); 3237 3238 SDValue InChain = getRoot(); 3239 3240 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3241 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3242 SDValue L = DAG.getAtomicCmpSwap( 3243 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3244 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3245 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3246 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3247 3248 SDValue OutChain = L.getValue(2); 3249 3250 setValue(&I, L); 3251 DAG.setRoot(OutChain); 3252 } 3253 3254 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3255 SDLoc dl = getCurSDLoc(); 3256 ISD::NodeType NT; 3257 switch (I.getOperation()) { 3258 default: llvm_unreachable("Unknown atomicrmw operation"); 3259 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3260 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3261 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3262 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3263 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3264 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3265 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3266 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3267 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3268 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3269 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3270 } 3271 AtomicOrdering Order = I.getOrdering(); 3272 SynchronizationScope Scope = I.getSynchScope(); 3273 3274 SDValue InChain = getRoot(); 3275 3276 SDValue L = 3277 DAG.getAtomic(NT, dl, 3278 getValue(I.getValOperand()).getSimpleValueType(), 3279 InChain, 3280 getValue(I.getPointerOperand()), 3281 getValue(I.getValOperand()), 3282 I.getPointerOperand(), 3283 /* Alignment=*/ 0, Order, Scope); 3284 3285 SDValue OutChain = L.getValue(1); 3286 3287 setValue(&I, L); 3288 DAG.setRoot(OutChain); 3289 } 3290 3291 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3292 SDLoc dl = getCurSDLoc(); 3293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3294 SDValue Ops[3]; 3295 Ops[0] = getRoot(); 3296 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3297 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3298 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3299 } 3300 3301 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3302 SDLoc dl = getCurSDLoc(); 3303 AtomicOrdering Order = I.getOrdering(); 3304 SynchronizationScope Scope = I.getSynchScope(); 3305 3306 SDValue InChain = getRoot(); 3307 3308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3309 EVT VT = TLI.getValueType(I.getType()); 3310 3311 if (I.getAlignment() < VT.getSizeInBits() / 8) 3312 report_fatal_error("Cannot generate unaligned atomic load"); 3313 3314 MachineMemOperand *MMO = 3315 DAG.getMachineFunction(). 3316 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3317 MachineMemOperand::MOVolatile | 3318 MachineMemOperand::MOLoad, 3319 VT.getStoreSize(), 3320 I.getAlignment() ? I.getAlignment() : 3321 DAG.getEVTAlignment(VT)); 3322 3323 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3324 SDValue L = 3325 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3326 getValue(I.getPointerOperand()), MMO, 3327 Order, Scope); 3328 3329 SDValue OutChain = L.getValue(1); 3330 3331 setValue(&I, L); 3332 DAG.setRoot(OutChain); 3333 } 3334 3335 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3336 SDLoc dl = getCurSDLoc(); 3337 3338 AtomicOrdering Order = I.getOrdering(); 3339 SynchronizationScope Scope = I.getSynchScope(); 3340 3341 SDValue InChain = getRoot(); 3342 3343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3344 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3345 3346 if (I.getAlignment() < VT.getSizeInBits() / 8) 3347 report_fatal_error("Cannot generate unaligned atomic store"); 3348 3349 SDValue OutChain = 3350 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3351 InChain, 3352 getValue(I.getPointerOperand()), 3353 getValue(I.getValueOperand()), 3354 I.getPointerOperand(), I.getAlignment(), 3355 Order, Scope); 3356 3357 DAG.setRoot(OutChain); 3358 } 3359 3360 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3361 /// node. 3362 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3363 unsigned Intrinsic) { 3364 bool HasChain = !I.doesNotAccessMemory(); 3365 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3366 3367 // Build the operand list. 3368 SmallVector<SDValue, 8> Ops; 3369 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3370 if (OnlyLoad) { 3371 // We don't need to serialize loads against other loads. 3372 Ops.push_back(DAG.getRoot()); 3373 } else { 3374 Ops.push_back(getRoot()); 3375 } 3376 } 3377 3378 // Info is set by getTgtMemInstrinsic 3379 TargetLowering::IntrinsicInfo Info; 3380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3381 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3382 3383 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3384 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3385 Info.opc == ISD::INTRINSIC_W_CHAIN) 3386 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3387 TLI.getPointerTy())); 3388 3389 // Add all operands of the call to the operand list. 3390 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3391 SDValue Op = getValue(I.getArgOperand(i)); 3392 Ops.push_back(Op); 3393 } 3394 3395 SmallVector<EVT, 4> ValueVTs; 3396 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3397 3398 if (HasChain) 3399 ValueVTs.push_back(MVT::Other); 3400 3401 SDVTList VTs = DAG.getVTList(ValueVTs); 3402 3403 // Create the node. 3404 SDValue Result; 3405 if (IsTgtIntrinsic) { 3406 // This is target intrinsic that touches memory 3407 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3408 VTs, Ops, Info.memVT, 3409 MachinePointerInfo(Info.ptrVal, Info.offset), 3410 Info.align, Info.vol, 3411 Info.readMem, Info.writeMem, Info.size); 3412 } else if (!HasChain) { 3413 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3414 } else if (!I.getType()->isVoidTy()) { 3415 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3416 } else { 3417 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3418 } 3419 3420 if (HasChain) { 3421 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3422 if (OnlyLoad) 3423 PendingLoads.push_back(Chain); 3424 else 3425 DAG.setRoot(Chain); 3426 } 3427 3428 if (!I.getType()->isVoidTy()) { 3429 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3430 EVT VT = TLI.getValueType(PTy); 3431 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3432 } 3433 3434 setValue(&I, Result); 3435 } 3436 } 3437 3438 /// GetSignificand - Get the significand and build it into a floating-point 3439 /// number with exponent of 1: 3440 /// 3441 /// Op = (Op & 0x007fffff) | 0x3f800000; 3442 /// 3443 /// where Op is the hexadecimal representation of floating point value. 3444 static SDValue 3445 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3446 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3447 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3448 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3449 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3450 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3451 } 3452 3453 /// GetExponent - Get the exponent: 3454 /// 3455 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3456 /// 3457 /// where Op is the hexadecimal representation of floating point value. 3458 static SDValue 3459 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3460 SDLoc dl) { 3461 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3462 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3463 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3464 DAG.getConstant(23, dl, TLI.getPointerTy())); 3465 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3466 DAG.getConstant(127, dl, MVT::i32)); 3467 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3468 } 3469 3470 /// getF32Constant - Get 32-bit floating point constant. 3471 static SDValue 3472 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3473 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3474 MVT::f32); 3475 } 3476 3477 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3478 SelectionDAG &DAG) { 3479 // IntegerPartOfX = ((int32_t)(t0); 3480 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3481 3482 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3483 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3484 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3485 3486 // IntegerPartOfX <<= 23; 3487 IntegerPartOfX = DAG.getNode( 3488 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3489 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3490 3491 SDValue TwoToFractionalPartOfX; 3492 if (LimitFloatPrecision <= 6) { 3493 // For floating-point precision of 6: 3494 // 3495 // TwoToFractionalPartOfX = 3496 // 0.997535578f + 3497 // (0.735607626f + 0.252464424f * x) * x; 3498 // 3499 // error 0.0144103317, which is 6 bits 3500 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3501 getF32Constant(DAG, 0x3e814304, dl)); 3502 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3503 getF32Constant(DAG, 0x3f3c50c8, dl)); 3504 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3505 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3506 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3507 } else if (LimitFloatPrecision <= 12) { 3508 // For floating-point precision of 12: 3509 // 3510 // TwoToFractionalPartOfX = 3511 // 0.999892986f + 3512 // (0.696457318f + 3513 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3514 // 3515 // error 0.000107046256, which is 13 to 14 bits 3516 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3517 getF32Constant(DAG, 0x3da235e3, dl)); 3518 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3519 getF32Constant(DAG, 0x3e65b8f3, dl)); 3520 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3521 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3522 getF32Constant(DAG, 0x3f324b07, dl)); 3523 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3524 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3525 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3526 } else { // LimitFloatPrecision <= 18 3527 // For floating-point precision of 18: 3528 // 3529 // TwoToFractionalPartOfX = 3530 // 0.999999982f + 3531 // (0.693148872f + 3532 // (0.240227044f + 3533 // (0.554906021e-1f + 3534 // (0.961591928e-2f + 3535 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3536 // error 2.47208000*10^(-7), which is better than 18 bits 3537 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3538 getF32Constant(DAG, 0x3924b03e, dl)); 3539 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3540 getF32Constant(DAG, 0x3ab24b87, dl)); 3541 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3542 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3543 getF32Constant(DAG, 0x3c1d8c17, dl)); 3544 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3545 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3546 getF32Constant(DAG, 0x3d634a1d, dl)); 3547 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3548 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3549 getF32Constant(DAG, 0x3e75fe14, dl)); 3550 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3551 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3552 getF32Constant(DAG, 0x3f317234, dl)); 3553 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3554 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3555 getF32Constant(DAG, 0x3f800000, dl)); 3556 } 3557 3558 // Add the exponent into the result in integer domain. 3559 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3560 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3561 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3562 } 3563 3564 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3565 /// limited-precision mode. 3566 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3567 const TargetLowering &TLI) { 3568 if (Op.getValueType() == MVT::f32 && 3569 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3570 3571 // Put the exponent in the right bit position for later addition to the 3572 // final result: 3573 // 3574 // #define LOG2OFe 1.4426950f 3575 // t0 = Op * LOG2OFe 3576 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3577 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3578 return getLimitedPrecisionExp2(t0, dl, DAG); 3579 } 3580 3581 // No special expansion. 3582 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3583 } 3584 3585 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3586 /// limited-precision mode. 3587 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3588 const TargetLowering &TLI) { 3589 if (Op.getValueType() == MVT::f32 && 3590 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3591 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3592 3593 // Scale the exponent by log(2) [0.69314718f]. 3594 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3595 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3596 getF32Constant(DAG, 0x3f317218, dl)); 3597 3598 // Get the significand and build it into a floating-point number with 3599 // exponent of 1. 3600 SDValue X = GetSignificand(DAG, Op1, dl); 3601 3602 SDValue LogOfMantissa; 3603 if (LimitFloatPrecision <= 6) { 3604 // For floating-point precision of 6: 3605 // 3606 // LogofMantissa = 3607 // -1.1609546f + 3608 // (1.4034025f - 0.23903021f * x) * x; 3609 // 3610 // error 0.0034276066, which is better than 8 bits 3611 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3612 getF32Constant(DAG, 0xbe74c456, dl)); 3613 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3614 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3615 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3616 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3617 getF32Constant(DAG, 0x3f949a29, dl)); 3618 } else if (LimitFloatPrecision <= 12) { 3619 // For floating-point precision of 12: 3620 // 3621 // LogOfMantissa = 3622 // -1.7417939f + 3623 // (2.8212026f + 3624 // (-1.4699568f + 3625 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3626 // 3627 // error 0.000061011436, which is 14 bits 3628 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3629 getF32Constant(DAG, 0xbd67b6d6, dl)); 3630 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3631 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3632 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3633 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3634 getF32Constant(DAG, 0x3fbc278b, dl)); 3635 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3636 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3637 getF32Constant(DAG, 0x40348e95, dl)); 3638 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3639 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3640 getF32Constant(DAG, 0x3fdef31a, dl)); 3641 } else { // LimitFloatPrecision <= 18 3642 // For floating-point precision of 18: 3643 // 3644 // LogOfMantissa = 3645 // -2.1072184f + 3646 // (4.2372794f + 3647 // (-3.7029485f + 3648 // (2.2781945f + 3649 // (-0.87823314f + 3650 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3651 // 3652 // error 0.0000023660568, which is better than 18 bits 3653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3654 getF32Constant(DAG, 0xbc91e5ac, dl)); 3655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3656 getF32Constant(DAG, 0x3e4350aa, dl)); 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3658 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3659 getF32Constant(DAG, 0x3f60d3e3, dl)); 3660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3662 getF32Constant(DAG, 0x4011cdf0, dl)); 3663 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3664 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3665 getF32Constant(DAG, 0x406cfd1c, dl)); 3666 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3667 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3668 getF32Constant(DAG, 0x408797cb, dl)); 3669 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3670 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3671 getF32Constant(DAG, 0x4006dcab, dl)); 3672 } 3673 3674 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3675 } 3676 3677 // No special expansion. 3678 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3679 } 3680 3681 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3682 /// limited-precision mode. 3683 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3684 const TargetLowering &TLI) { 3685 if (Op.getValueType() == MVT::f32 && 3686 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3687 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3688 3689 // Get the exponent. 3690 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3691 3692 // Get the significand and build it into a floating-point number with 3693 // exponent of 1. 3694 SDValue X = GetSignificand(DAG, Op1, dl); 3695 3696 // Different possible minimax approximations of significand in 3697 // floating-point for various degrees of accuracy over [1,2]. 3698 SDValue Log2ofMantissa; 3699 if (LimitFloatPrecision <= 6) { 3700 // For floating-point precision of 6: 3701 // 3702 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3703 // 3704 // error 0.0049451742, which is more than 7 bits 3705 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3706 getF32Constant(DAG, 0xbeb08fe0, dl)); 3707 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3708 getF32Constant(DAG, 0x40019463, dl)); 3709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3710 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3711 getF32Constant(DAG, 0x3fd6633d, dl)); 3712 } else if (LimitFloatPrecision <= 12) { 3713 // For floating-point precision of 12: 3714 // 3715 // Log2ofMantissa = 3716 // -2.51285454f + 3717 // (4.07009056f + 3718 // (-2.12067489f + 3719 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3720 // 3721 // error 0.0000876136000, which is better than 13 bits 3722 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3723 getF32Constant(DAG, 0xbda7262e, dl)); 3724 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3725 getF32Constant(DAG, 0x3f25280b, dl)); 3726 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3727 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3728 getF32Constant(DAG, 0x4007b923, dl)); 3729 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3730 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3731 getF32Constant(DAG, 0x40823e2f, dl)); 3732 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3733 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3734 getF32Constant(DAG, 0x4020d29c, dl)); 3735 } else { // LimitFloatPrecision <= 18 3736 // For floating-point precision of 18: 3737 // 3738 // Log2ofMantissa = 3739 // -3.0400495f + 3740 // (6.1129976f + 3741 // (-5.3420409f + 3742 // (3.2865683f + 3743 // (-1.2669343f + 3744 // (0.27515199f - 3745 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3746 // 3747 // error 0.0000018516, which is better than 18 bits 3748 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3749 getF32Constant(DAG, 0xbcd2769e, dl)); 3750 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3751 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3753 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3754 getF32Constant(DAG, 0x3fa22ae7, dl)); 3755 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3756 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3757 getF32Constant(DAG, 0x40525723, dl)); 3758 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3759 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3760 getF32Constant(DAG, 0x40aaf200, dl)); 3761 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3762 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3763 getF32Constant(DAG, 0x40c39dad, dl)); 3764 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3765 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3766 getF32Constant(DAG, 0x4042902c, dl)); 3767 } 3768 3769 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3770 } 3771 3772 // No special expansion. 3773 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3774 } 3775 3776 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3777 /// limited-precision mode. 3778 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3779 const TargetLowering &TLI) { 3780 if (Op.getValueType() == MVT::f32 && 3781 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3782 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3783 3784 // Scale the exponent by log10(2) [0.30102999f]. 3785 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3786 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3787 getF32Constant(DAG, 0x3e9a209a, dl)); 3788 3789 // Get the significand and build it into a floating-point number with 3790 // exponent of 1. 3791 SDValue X = GetSignificand(DAG, Op1, dl); 3792 3793 SDValue Log10ofMantissa; 3794 if (LimitFloatPrecision <= 6) { 3795 // For floating-point precision of 6: 3796 // 3797 // Log10ofMantissa = 3798 // -0.50419619f + 3799 // (0.60948995f - 0.10380950f * x) * x; 3800 // 3801 // error 0.0014886165, which is 6 bits 3802 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3803 getF32Constant(DAG, 0xbdd49a13, dl)); 3804 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3805 getF32Constant(DAG, 0x3f1c0789, dl)); 3806 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3807 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3808 getF32Constant(DAG, 0x3f011300, dl)); 3809 } else if (LimitFloatPrecision <= 12) { 3810 // For floating-point precision of 12: 3811 // 3812 // Log10ofMantissa = 3813 // -0.64831180f + 3814 // (0.91751397f + 3815 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3816 // 3817 // error 0.00019228036, which is better than 12 bits 3818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3819 getF32Constant(DAG, 0x3d431f31, dl)); 3820 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3821 getF32Constant(DAG, 0x3ea21fb2, dl)); 3822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3823 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3824 getF32Constant(DAG, 0x3f6ae232, dl)); 3825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3826 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3827 getF32Constant(DAG, 0x3f25f7c3, dl)); 3828 } else { // LimitFloatPrecision <= 18 3829 // For floating-point precision of 18: 3830 // 3831 // Log10ofMantissa = 3832 // -0.84299375f + 3833 // (1.5327582f + 3834 // (-1.0688956f + 3835 // (0.49102474f + 3836 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3837 // 3838 // error 0.0000037995730, which is better than 18 bits 3839 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3840 getF32Constant(DAG, 0x3c5d51ce, dl)); 3841 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3842 getF32Constant(DAG, 0x3e00685a, dl)); 3843 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3844 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3845 getF32Constant(DAG, 0x3efb6798, dl)); 3846 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3847 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3848 getF32Constant(DAG, 0x3f88d192, dl)); 3849 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3850 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3851 getF32Constant(DAG, 0x3fc4316c, dl)); 3852 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3853 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3854 getF32Constant(DAG, 0x3f57ce70, dl)); 3855 } 3856 3857 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3858 } 3859 3860 // No special expansion. 3861 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3862 } 3863 3864 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3865 /// limited-precision mode. 3866 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3867 const TargetLowering &TLI) { 3868 if (Op.getValueType() == MVT::f32 && 3869 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3870 return getLimitedPrecisionExp2(Op, dl, DAG); 3871 3872 // No special expansion. 3873 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3874 } 3875 3876 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3877 /// limited-precision mode with x == 10.0f. 3878 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3879 SelectionDAG &DAG, const TargetLowering &TLI) { 3880 bool IsExp10 = false; 3881 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3882 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3883 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3884 APFloat Ten(10.0f); 3885 IsExp10 = LHSC->isExactlyValue(Ten); 3886 } 3887 } 3888 3889 if (IsExp10) { 3890 // Put the exponent in the right bit position for later addition to the 3891 // final result: 3892 // 3893 // #define LOG2OF10 3.3219281f 3894 // t0 = Op * LOG2OF10; 3895 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3896 getF32Constant(DAG, 0x40549a78, dl)); 3897 return getLimitedPrecisionExp2(t0, dl, DAG); 3898 } 3899 3900 // No special expansion. 3901 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3902 } 3903 3904 3905 /// ExpandPowI - Expand a llvm.powi intrinsic. 3906 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3907 SelectionDAG &DAG) { 3908 // If RHS is a constant, we can expand this out to a multiplication tree, 3909 // otherwise we end up lowering to a call to __powidf2 (for example). When 3910 // optimizing for size, we only want to do this if the expansion would produce 3911 // a small number of multiplies, otherwise we do the full expansion. 3912 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3913 // Get the exponent as a positive value. 3914 unsigned Val = RHSC->getSExtValue(); 3915 if ((int)Val < 0) Val = -Val; 3916 3917 // powi(x, 0) -> 1.0 3918 if (Val == 0) 3919 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3920 3921 const Function *F = DAG.getMachineFunction().getFunction(); 3922 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3923 // If optimizing for size, don't insert too many multiplies. This 3924 // inserts up to 5 multiplies. 3925 countPopulation(Val) + Log2_32(Val) < 7) { 3926 // We use the simple binary decomposition method to generate the multiply 3927 // sequence. There are more optimal ways to do this (for example, 3928 // powi(x,15) generates one more multiply than it should), but this has 3929 // the benefit of being both really simple and much better than a libcall. 3930 SDValue Res; // Logically starts equal to 1.0 3931 SDValue CurSquare = LHS; 3932 while (Val) { 3933 if (Val & 1) { 3934 if (Res.getNode()) 3935 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3936 else 3937 Res = CurSquare; // 1.0*CurSquare. 3938 } 3939 3940 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3941 CurSquare, CurSquare); 3942 Val >>= 1; 3943 } 3944 3945 // If the original was negative, invert the result, producing 1/(x*x*x). 3946 if (RHSC->getSExtValue() < 0) 3947 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3948 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3949 return Res; 3950 } 3951 } 3952 3953 // Otherwise, expand to a libcall. 3954 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3955 } 3956 3957 // getTruncatedArgReg - Find underlying register used for an truncated 3958 // argument. 3959 static unsigned getTruncatedArgReg(const SDValue &N) { 3960 if (N.getOpcode() != ISD::TRUNCATE) 3961 return 0; 3962 3963 const SDValue &Ext = N.getOperand(0); 3964 if (Ext.getOpcode() == ISD::AssertZext || 3965 Ext.getOpcode() == ISD::AssertSext) { 3966 const SDValue &CFR = Ext.getOperand(0); 3967 if (CFR.getOpcode() == ISD::CopyFromReg) 3968 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3969 if (CFR.getOpcode() == ISD::TRUNCATE) 3970 return getTruncatedArgReg(CFR); 3971 } 3972 return 0; 3973 } 3974 3975 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3976 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3977 /// At the end of instruction selection, they will be inserted to the entry BB. 3978 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3979 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3980 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3981 const Argument *Arg = dyn_cast<Argument>(V); 3982 if (!Arg) 3983 return false; 3984 3985 MachineFunction &MF = DAG.getMachineFunction(); 3986 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3987 3988 // Ignore inlined function arguments here. 3989 // 3990 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3991 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3992 return false; 3993 3994 Optional<MachineOperand> Op; 3995 // Some arguments' frame index is recorded during argument lowering. 3996 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3997 Op = MachineOperand::CreateFI(FI); 3998 3999 if (!Op && N.getNode()) { 4000 unsigned Reg; 4001 if (N.getOpcode() == ISD::CopyFromReg) 4002 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4003 else 4004 Reg = getTruncatedArgReg(N); 4005 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4006 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4007 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4008 if (PR) 4009 Reg = PR; 4010 } 4011 if (Reg) 4012 Op = MachineOperand::CreateReg(Reg, false); 4013 } 4014 4015 if (!Op) { 4016 // Check if ValueMap has reg number. 4017 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4018 if (VMI != FuncInfo.ValueMap.end()) 4019 Op = MachineOperand::CreateReg(VMI->second, false); 4020 } 4021 4022 if (!Op && N.getNode()) 4023 // Check if frame index is available. 4024 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4025 if (FrameIndexSDNode *FINode = 4026 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4027 Op = MachineOperand::CreateFI(FINode->getIndex()); 4028 4029 if (!Op) 4030 return false; 4031 4032 assert(Variable->isValidLocationForIntrinsic(DL) && 4033 "Expected inlined-at fields to agree"); 4034 if (Op->isReg()) 4035 FuncInfo.ArgDbgValues.push_back( 4036 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4037 Op->getReg(), Offset, Variable, Expr)); 4038 else 4039 FuncInfo.ArgDbgValues.push_back( 4040 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4041 .addOperand(*Op) 4042 .addImm(Offset) 4043 .addMetadata(Variable) 4044 .addMetadata(Expr)); 4045 4046 return true; 4047 } 4048 4049 // VisualStudio defines setjmp as _setjmp 4050 #if defined(_MSC_VER) && defined(setjmp) && \ 4051 !defined(setjmp_undefined_for_msvc) 4052 # pragma push_macro("setjmp") 4053 # undef setjmp 4054 # define setjmp_undefined_for_msvc 4055 #endif 4056 4057 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4058 /// we want to emit this as a call to a named external function, return the name 4059 /// otherwise lower it and return null. 4060 const char * 4061 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4063 SDLoc sdl = getCurSDLoc(); 4064 DebugLoc dl = getCurDebugLoc(); 4065 SDValue Res; 4066 4067 switch (Intrinsic) { 4068 default: 4069 // By default, turn this into a target intrinsic node. 4070 visitTargetIntrinsic(I, Intrinsic); 4071 return nullptr; 4072 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4073 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4074 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4075 case Intrinsic::returnaddress: 4076 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4077 getValue(I.getArgOperand(0)))); 4078 return nullptr; 4079 case Intrinsic::frameaddress: 4080 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4081 getValue(I.getArgOperand(0)))); 4082 return nullptr; 4083 case Intrinsic::read_register: { 4084 Value *Reg = I.getArgOperand(0); 4085 SDValue Chain = getRoot(); 4086 SDValue RegName = 4087 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4088 EVT VT = TLI.getValueType(I.getType()); 4089 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4090 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4091 setValue(&I, Res); 4092 DAG.setRoot(Res.getValue(1)); 4093 return nullptr; 4094 } 4095 case Intrinsic::write_register: { 4096 Value *Reg = I.getArgOperand(0); 4097 Value *RegValue = I.getArgOperand(1); 4098 SDValue Chain = getRoot(); 4099 SDValue RegName = 4100 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4101 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4102 RegName, getValue(RegValue))); 4103 return nullptr; 4104 } 4105 case Intrinsic::setjmp: 4106 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4107 case Intrinsic::longjmp: 4108 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4109 case Intrinsic::memcpy: { 4110 // FIXME: this definition of "user defined address space" is x86-specific 4111 // Assert for address < 256 since we support only user defined address 4112 // spaces. 4113 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4114 < 256 && 4115 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4116 < 256 && 4117 "Unknown address space"); 4118 SDValue Op1 = getValue(I.getArgOperand(0)); 4119 SDValue Op2 = getValue(I.getArgOperand(1)); 4120 SDValue Op3 = getValue(I.getArgOperand(2)); 4121 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4122 if (!Align) 4123 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4124 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4125 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4126 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4127 false, isTC, 4128 MachinePointerInfo(I.getArgOperand(0)), 4129 MachinePointerInfo(I.getArgOperand(1))); 4130 updateDAGForMaybeTailCall(MC); 4131 return nullptr; 4132 } 4133 case Intrinsic::memset: { 4134 // FIXME: this definition of "user defined address space" is x86-specific 4135 // Assert for address < 256 since we support only user defined address 4136 // spaces. 4137 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4138 < 256 && 4139 "Unknown address space"); 4140 SDValue Op1 = getValue(I.getArgOperand(0)); 4141 SDValue Op2 = getValue(I.getArgOperand(1)); 4142 SDValue Op3 = getValue(I.getArgOperand(2)); 4143 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4144 if (!Align) 4145 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4146 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4147 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4148 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4149 isTC, MachinePointerInfo(I.getArgOperand(0))); 4150 updateDAGForMaybeTailCall(MS); 4151 return nullptr; 4152 } 4153 case Intrinsic::memmove: { 4154 // FIXME: this definition of "user defined address space" is x86-specific 4155 // Assert for address < 256 since we support only user defined address 4156 // spaces. 4157 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4158 < 256 && 4159 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4160 < 256 && 4161 "Unknown address space"); 4162 SDValue Op1 = getValue(I.getArgOperand(0)); 4163 SDValue Op2 = getValue(I.getArgOperand(1)); 4164 SDValue Op3 = getValue(I.getArgOperand(2)); 4165 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4166 if (!Align) 4167 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4168 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4169 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4170 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4171 isTC, MachinePointerInfo(I.getArgOperand(0)), 4172 MachinePointerInfo(I.getArgOperand(1))); 4173 updateDAGForMaybeTailCall(MM); 4174 return nullptr; 4175 } 4176 case Intrinsic::dbg_declare: { 4177 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4178 DILocalVariable *Variable = DI.getVariable(); 4179 DIExpression *Expression = DI.getExpression(); 4180 const Value *Address = DI.getAddress(); 4181 assert(Variable && "Missing variable"); 4182 if (!Address) { 4183 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4184 return nullptr; 4185 } 4186 4187 // Check if address has undef value. 4188 if (isa<UndefValue>(Address) || 4189 (Address->use_empty() && !isa<Argument>(Address))) { 4190 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4191 return nullptr; 4192 } 4193 4194 SDValue &N = NodeMap[Address]; 4195 if (!N.getNode() && isa<Argument>(Address)) 4196 // Check unused arguments map. 4197 N = UnusedArgNodeMap[Address]; 4198 SDDbgValue *SDV; 4199 if (N.getNode()) { 4200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4201 Address = BCI->getOperand(0); 4202 // Parameters are handled specially. 4203 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4204 isa<Argument>(Address); 4205 4206 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4207 4208 if (isParameter && !AI) { 4209 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4210 if (FINode) 4211 // Byval parameter. We have a frame index at this point. 4212 SDV = DAG.getFrameIndexDbgValue( 4213 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4214 else { 4215 // Address is an argument, so try to emit its dbg value using 4216 // virtual register info from the FuncInfo.ValueMap. 4217 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4218 N); 4219 return nullptr; 4220 } 4221 } else if (AI) 4222 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4223 true, 0, dl, SDNodeOrder); 4224 else { 4225 // Can't do anything with other non-AI cases yet. 4226 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4227 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4228 DEBUG(Address->dump()); 4229 return nullptr; 4230 } 4231 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4232 } else { 4233 // If Address is an argument then try to emit its dbg value using 4234 // virtual register info from the FuncInfo.ValueMap. 4235 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4236 N)) { 4237 // If variable is pinned by a alloca in dominating bb then 4238 // use StaticAllocaMap. 4239 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4240 if (AI->getParent() != DI.getParent()) { 4241 DenseMap<const AllocaInst*, int>::iterator SI = 4242 FuncInfo.StaticAllocaMap.find(AI); 4243 if (SI != FuncInfo.StaticAllocaMap.end()) { 4244 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4245 0, dl, SDNodeOrder); 4246 DAG.AddDbgValue(SDV, nullptr, false); 4247 return nullptr; 4248 } 4249 } 4250 } 4251 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4252 } 4253 } 4254 return nullptr; 4255 } 4256 case Intrinsic::dbg_value: { 4257 const DbgValueInst &DI = cast<DbgValueInst>(I); 4258 assert(DI.getVariable() && "Missing variable"); 4259 4260 DILocalVariable *Variable = DI.getVariable(); 4261 DIExpression *Expression = DI.getExpression(); 4262 uint64_t Offset = DI.getOffset(); 4263 const Value *V = DI.getValue(); 4264 if (!V) 4265 return nullptr; 4266 4267 SDDbgValue *SDV; 4268 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4269 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4270 SDNodeOrder); 4271 DAG.AddDbgValue(SDV, nullptr, false); 4272 } else { 4273 // Do not use getValue() in here; we don't want to generate code at 4274 // this point if it hasn't been done yet. 4275 SDValue N = NodeMap[V]; 4276 if (!N.getNode() && isa<Argument>(V)) 4277 // Check unused arguments map. 4278 N = UnusedArgNodeMap[V]; 4279 if (N.getNode()) { 4280 // A dbg.value for an alloca is always indirect. 4281 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4282 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4283 IsIndirect, N)) { 4284 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4285 IsIndirect, Offset, dl, SDNodeOrder); 4286 DAG.AddDbgValue(SDV, N.getNode(), false); 4287 } 4288 } else if (!V->use_empty() ) { 4289 // Do not call getValue(V) yet, as we don't want to generate code. 4290 // Remember it for later. 4291 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4292 DanglingDebugInfoMap[V] = DDI; 4293 } else { 4294 // We may expand this to cover more cases. One case where we have no 4295 // data available is an unreferenced parameter. 4296 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4297 } 4298 } 4299 4300 // Build a debug info table entry. 4301 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4302 V = BCI->getOperand(0); 4303 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4304 // Don't handle byval struct arguments or VLAs, for example. 4305 if (!AI) { 4306 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4307 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4308 return nullptr; 4309 } 4310 DenseMap<const AllocaInst*, int>::iterator SI = 4311 FuncInfo.StaticAllocaMap.find(AI); 4312 if (SI == FuncInfo.StaticAllocaMap.end()) 4313 return nullptr; // VLAs. 4314 return nullptr; 4315 } 4316 4317 case Intrinsic::eh_typeid_for: { 4318 // Find the type id for the given typeinfo. 4319 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4320 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4321 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4322 setValue(&I, Res); 4323 return nullptr; 4324 } 4325 4326 case Intrinsic::eh_return_i32: 4327 case Intrinsic::eh_return_i64: 4328 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4329 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4330 MVT::Other, 4331 getControlRoot(), 4332 getValue(I.getArgOperand(0)), 4333 getValue(I.getArgOperand(1)))); 4334 return nullptr; 4335 case Intrinsic::eh_unwind_init: 4336 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4337 return nullptr; 4338 case Intrinsic::eh_dwarf_cfa: { 4339 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4340 TLI.getPointerTy()); 4341 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4342 CfaArg.getValueType(), 4343 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4344 CfaArg.getValueType()), 4345 CfaArg); 4346 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4347 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4348 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4349 FA, Offset)); 4350 return nullptr; 4351 } 4352 case Intrinsic::eh_sjlj_callsite: { 4353 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4354 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4355 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4356 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4357 4358 MMI.setCurrentCallSite(CI->getZExtValue()); 4359 return nullptr; 4360 } 4361 case Intrinsic::eh_sjlj_functioncontext: { 4362 // Get and store the index of the function context. 4363 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4364 AllocaInst *FnCtx = 4365 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4366 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4367 MFI->setFunctionContextIndex(FI); 4368 return nullptr; 4369 } 4370 case Intrinsic::eh_sjlj_setjmp: { 4371 SDValue Ops[2]; 4372 Ops[0] = getRoot(); 4373 Ops[1] = getValue(I.getArgOperand(0)); 4374 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4375 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4376 setValue(&I, Op.getValue(0)); 4377 DAG.setRoot(Op.getValue(1)); 4378 return nullptr; 4379 } 4380 case Intrinsic::eh_sjlj_longjmp: { 4381 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4382 getRoot(), getValue(I.getArgOperand(0)))); 4383 return nullptr; 4384 } 4385 4386 case Intrinsic::masked_gather: 4387 visitMaskedGather(I); 4388 return nullptr; 4389 case Intrinsic::masked_load: 4390 visitMaskedLoad(I); 4391 return nullptr; 4392 case Intrinsic::masked_scatter: 4393 visitMaskedScatter(I); 4394 return nullptr; 4395 case Intrinsic::masked_store: 4396 visitMaskedStore(I); 4397 return nullptr; 4398 case Intrinsic::x86_mmx_pslli_w: 4399 case Intrinsic::x86_mmx_pslli_d: 4400 case Intrinsic::x86_mmx_pslli_q: 4401 case Intrinsic::x86_mmx_psrli_w: 4402 case Intrinsic::x86_mmx_psrli_d: 4403 case Intrinsic::x86_mmx_psrli_q: 4404 case Intrinsic::x86_mmx_psrai_w: 4405 case Intrinsic::x86_mmx_psrai_d: { 4406 SDValue ShAmt = getValue(I.getArgOperand(1)); 4407 if (isa<ConstantSDNode>(ShAmt)) { 4408 visitTargetIntrinsic(I, Intrinsic); 4409 return nullptr; 4410 } 4411 unsigned NewIntrinsic = 0; 4412 EVT ShAmtVT = MVT::v2i32; 4413 switch (Intrinsic) { 4414 case Intrinsic::x86_mmx_pslli_w: 4415 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4416 break; 4417 case Intrinsic::x86_mmx_pslli_d: 4418 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4419 break; 4420 case Intrinsic::x86_mmx_pslli_q: 4421 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4422 break; 4423 case Intrinsic::x86_mmx_psrli_w: 4424 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4425 break; 4426 case Intrinsic::x86_mmx_psrli_d: 4427 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4428 break; 4429 case Intrinsic::x86_mmx_psrli_q: 4430 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4431 break; 4432 case Intrinsic::x86_mmx_psrai_w: 4433 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4434 break; 4435 case Intrinsic::x86_mmx_psrai_d: 4436 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4437 break; 4438 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4439 } 4440 4441 // The vector shift intrinsics with scalars uses 32b shift amounts but 4442 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4443 // to be zero. 4444 // We must do this early because v2i32 is not a legal type. 4445 SDValue ShOps[2]; 4446 ShOps[0] = ShAmt; 4447 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4448 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4449 EVT DestVT = TLI.getValueType(I.getType()); 4450 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4451 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4452 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4453 getValue(I.getArgOperand(0)), ShAmt); 4454 setValue(&I, Res); 4455 return nullptr; 4456 } 4457 case Intrinsic::convertff: 4458 case Intrinsic::convertfsi: 4459 case Intrinsic::convertfui: 4460 case Intrinsic::convertsif: 4461 case Intrinsic::convertuif: 4462 case Intrinsic::convertss: 4463 case Intrinsic::convertsu: 4464 case Intrinsic::convertus: 4465 case Intrinsic::convertuu: { 4466 ISD::CvtCode Code = ISD::CVT_INVALID; 4467 switch (Intrinsic) { 4468 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4469 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4470 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4471 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4472 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4473 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4474 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4475 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4476 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4477 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4478 } 4479 EVT DestVT = TLI.getValueType(I.getType()); 4480 const Value *Op1 = I.getArgOperand(0); 4481 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4482 DAG.getValueType(DestVT), 4483 DAG.getValueType(getValue(Op1).getValueType()), 4484 getValue(I.getArgOperand(1)), 4485 getValue(I.getArgOperand(2)), 4486 Code); 4487 setValue(&I, Res); 4488 return nullptr; 4489 } 4490 case Intrinsic::powi: 4491 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4492 getValue(I.getArgOperand(1)), DAG)); 4493 return nullptr; 4494 case Intrinsic::log: 4495 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4496 return nullptr; 4497 case Intrinsic::log2: 4498 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4499 return nullptr; 4500 case Intrinsic::log10: 4501 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4502 return nullptr; 4503 case Intrinsic::exp: 4504 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4505 return nullptr; 4506 case Intrinsic::exp2: 4507 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4508 return nullptr; 4509 case Intrinsic::pow: 4510 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4511 getValue(I.getArgOperand(1)), DAG, TLI)); 4512 return nullptr; 4513 case Intrinsic::sqrt: 4514 case Intrinsic::fabs: 4515 case Intrinsic::sin: 4516 case Intrinsic::cos: 4517 case Intrinsic::floor: 4518 case Intrinsic::ceil: 4519 case Intrinsic::trunc: 4520 case Intrinsic::rint: 4521 case Intrinsic::nearbyint: 4522 case Intrinsic::round: { 4523 unsigned Opcode; 4524 switch (Intrinsic) { 4525 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4526 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4527 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4528 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4529 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4530 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4531 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4532 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4533 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4534 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4535 case Intrinsic::round: Opcode = ISD::FROUND; break; 4536 } 4537 4538 setValue(&I, DAG.getNode(Opcode, sdl, 4539 getValue(I.getArgOperand(0)).getValueType(), 4540 getValue(I.getArgOperand(0)))); 4541 return nullptr; 4542 } 4543 case Intrinsic::minnum: 4544 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4545 getValue(I.getArgOperand(0)).getValueType(), 4546 getValue(I.getArgOperand(0)), 4547 getValue(I.getArgOperand(1)))); 4548 return nullptr; 4549 case Intrinsic::maxnum: 4550 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4551 getValue(I.getArgOperand(0)).getValueType(), 4552 getValue(I.getArgOperand(0)), 4553 getValue(I.getArgOperand(1)))); 4554 return nullptr; 4555 case Intrinsic::copysign: 4556 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4557 getValue(I.getArgOperand(0)).getValueType(), 4558 getValue(I.getArgOperand(0)), 4559 getValue(I.getArgOperand(1)))); 4560 return nullptr; 4561 case Intrinsic::fma: 4562 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4563 getValue(I.getArgOperand(0)).getValueType(), 4564 getValue(I.getArgOperand(0)), 4565 getValue(I.getArgOperand(1)), 4566 getValue(I.getArgOperand(2)))); 4567 return nullptr; 4568 case Intrinsic::fmuladd: { 4569 EVT VT = TLI.getValueType(I.getType()); 4570 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4571 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4572 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4573 getValue(I.getArgOperand(0)).getValueType(), 4574 getValue(I.getArgOperand(0)), 4575 getValue(I.getArgOperand(1)), 4576 getValue(I.getArgOperand(2)))); 4577 } else { 4578 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4579 getValue(I.getArgOperand(0)).getValueType(), 4580 getValue(I.getArgOperand(0)), 4581 getValue(I.getArgOperand(1))); 4582 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4583 getValue(I.getArgOperand(0)).getValueType(), 4584 Mul, 4585 getValue(I.getArgOperand(2))); 4586 setValue(&I, Add); 4587 } 4588 return nullptr; 4589 } 4590 case Intrinsic::convert_to_fp16: 4591 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4592 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4593 getValue(I.getArgOperand(0)), 4594 DAG.getTargetConstant(0, sdl, 4595 MVT::i32)))); 4596 return nullptr; 4597 case Intrinsic::convert_from_fp16: 4598 setValue(&I, 4599 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4600 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4601 getValue(I.getArgOperand(0))))); 4602 return nullptr; 4603 case Intrinsic::pcmarker: { 4604 SDValue Tmp = getValue(I.getArgOperand(0)); 4605 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4606 return nullptr; 4607 } 4608 case Intrinsic::readcyclecounter: { 4609 SDValue Op = getRoot(); 4610 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4611 DAG.getVTList(MVT::i64, MVT::Other), Op); 4612 setValue(&I, Res); 4613 DAG.setRoot(Res.getValue(1)); 4614 return nullptr; 4615 } 4616 case Intrinsic::bswap: 4617 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4618 getValue(I.getArgOperand(0)).getValueType(), 4619 getValue(I.getArgOperand(0)))); 4620 return nullptr; 4621 case Intrinsic::cttz: { 4622 SDValue Arg = getValue(I.getArgOperand(0)); 4623 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4624 EVT Ty = Arg.getValueType(); 4625 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4626 sdl, Ty, Arg)); 4627 return nullptr; 4628 } 4629 case Intrinsic::ctlz: { 4630 SDValue Arg = getValue(I.getArgOperand(0)); 4631 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4632 EVT Ty = Arg.getValueType(); 4633 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4634 sdl, Ty, Arg)); 4635 return nullptr; 4636 } 4637 case Intrinsic::ctpop: { 4638 SDValue Arg = getValue(I.getArgOperand(0)); 4639 EVT Ty = Arg.getValueType(); 4640 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4641 return nullptr; 4642 } 4643 case Intrinsic::stacksave: { 4644 SDValue Op = getRoot(); 4645 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4646 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4647 setValue(&I, Res); 4648 DAG.setRoot(Res.getValue(1)); 4649 return nullptr; 4650 } 4651 case Intrinsic::stackrestore: { 4652 Res = getValue(I.getArgOperand(0)); 4653 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4654 return nullptr; 4655 } 4656 case Intrinsic::stackprotector: { 4657 // Emit code into the DAG to store the stack guard onto the stack. 4658 MachineFunction &MF = DAG.getMachineFunction(); 4659 MachineFrameInfo *MFI = MF.getFrameInfo(); 4660 EVT PtrTy = TLI.getPointerTy(); 4661 SDValue Src, Chain = getRoot(); 4662 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4663 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4664 4665 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4666 // global variable __stack_chk_guard. 4667 if (!GV) 4668 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4669 if (BC->getOpcode() == Instruction::BitCast) 4670 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4671 4672 if (GV && TLI.useLoadStackGuardNode()) { 4673 // Emit a LOAD_STACK_GUARD node. 4674 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4675 sdl, PtrTy, Chain); 4676 MachinePointerInfo MPInfo(GV); 4677 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4678 unsigned Flags = MachineMemOperand::MOLoad | 4679 MachineMemOperand::MOInvariant; 4680 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4681 PtrTy.getSizeInBits() / 8, 4682 DAG.getEVTAlignment(PtrTy)); 4683 Node->setMemRefs(MemRefs, MemRefs + 1); 4684 4685 // Copy the guard value to a virtual register so that it can be 4686 // retrieved in the epilogue. 4687 Src = SDValue(Node, 0); 4688 const TargetRegisterClass *RC = 4689 TLI.getRegClassFor(Src.getSimpleValueType()); 4690 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4691 4692 SPDescriptor.setGuardReg(Reg); 4693 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4694 } else { 4695 Src = getValue(I.getArgOperand(0)); // The guard's value. 4696 } 4697 4698 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4699 4700 int FI = FuncInfo.StaticAllocaMap[Slot]; 4701 MFI->setStackProtectorIndex(FI); 4702 4703 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4704 4705 // Store the stack protector onto the stack. 4706 Res = DAG.getStore(Chain, sdl, Src, FIN, 4707 MachinePointerInfo::getFixedStack(FI), 4708 true, false, 0); 4709 setValue(&I, Res); 4710 DAG.setRoot(Res); 4711 return nullptr; 4712 } 4713 case Intrinsic::objectsize: { 4714 // If we don't know by now, we're never going to know. 4715 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4716 4717 assert(CI && "Non-constant type in __builtin_object_size?"); 4718 4719 SDValue Arg = getValue(I.getCalledValue()); 4720 EVT Ty = Arg.getValueType(); 4721 4722 if (CI->isZero()) 4723 Res = DAG.getConstant(-1ULL, sdl, Ty); 4724 else 4725 Res = DAG.getConstant(0, sdl, Ty); 4726 4727 setValue(&I, Res); 4728 return nullptr; 4729 } 4730 case Intrinsic::annotation: 4731 case Intrinsic::ptr_annotation: 4732 // Drop the intrinsic, but forward the value 4733 setValue(&I, getValue(I.getOperand(0))); 4734 return nullptr; 4735 case Intrinsic::assume: 4736 case Intrinsic::var_annotation: 4737 // Discard annotate attributes and assumptions 4738 return nullptr; 4739 4740 case Intrinsic::init_trampoline: { 4741 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4742 4743 SDValue Ops[6]; 4744 Ops[0] = getRoot(); 4745 Ops[1] = getValue(I.getArgOperand(0)); 4746 Ops[2] = getValue(I.getArgOperand(1)); 4747 Ops[3] = getValue(I.getArgOperand(2)); 4748 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4749 Ops[5] = DAG.getSrcValue(F); 4750 4751 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4752 4753 DAG.setRoot(Res); 4754 return nullptr; 4755 } 4756 case Intrinsic::adjust_trampoline: { 4757 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4758 TLI.getPointerTy(), 4759 getValue(I.getArgOperand(0)))); 4760 return nullptr; 4761 } 4762 case Intrinsic::gcroot: 4763 if (GFI) { 4764 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4765 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4766 4767 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4768 GFI->addStackRoot(FI->getIndex(), TypeMap); 4769 } 4770 return nullptr; 4771 case Intrinsic::gcread: 4772 case Intrinsic::gcwrite: 4773 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4774 case Intrinsic::flt_rounds: 4775 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4776 return nullptr; 4777 4778 case Intrinsic::expect: { 4779 // Just replace __builtin_expect(exp, c) with EXP. 4780 setValue(&I, getValue(I.getArgOperand(0))); 4781 return nullptr; 4782 } 4783 4784 case Intrinsic::debugtrap: 4785 case Intrinsic::trap: { 4786 StringRef TrapFuncName = 4787 I.getAttributes() 4788 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4789 .getValueAsString(); 4790 if (TrapFuncName.empty()) { 4791 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4792 ISD::TRAP : ISD::DEBUGTRAP; 4793 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4794 return nullptr; 4795 } 4796 TargetLowering::ArgListTy Args; 4797 4798 TargetLowering::CallLoweringInfo CLI(DAG); 4799 CLI.setDebugLoc(sdl).setChain(getRoot()) 4800 .setCallee(CallingConv::C, I.getType(), 4801 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4802 std::move(Args), 0); 4803 4804 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4805 DAG.setRoot(Result.second); 4806 return nullptr; 4807 } 4808 4809 case Intrinsic::uadd_with_overflow: 4810 case Intrinsic::sadd_with_overflow: 4811 case Intrinsic::usub_with_overflow: 4812 case Intrinsic::ssub_with_overflow: 4813 case Intrinsic::umul_with_overflow: 4814 case Intrinsic::smul_with_overflow: { 4815 ISD::NodeType Op; 4816 switch (Intrinsic) { 4817 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4818 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4819 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4820 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4821 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4822 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4823 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4824 } 4825 SDValue Op1 = getValue(I.getArgOperand(0)); 4826 SDValue Op2 = getValue(I.getArgOperand(1)); 4827 4828 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4829 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4830 return nullptr; 4831 } 4832 case Intrinsic::prefetch: { 4833 SDValue Ops[5]; 4834 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4835 Ops[0] = getRoot(); 4836 Ops[1] = getValue(I.getArgOperand(0)); 4837 Ops[2] = getValue(I.getArgOperand(1)); 4838 Ops[3] = getValue(I.getArgOperand(2)); 4839 Ops[4] = getValue(I.getArgOperand(3)); 4840 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4841 DAG.getVTList(MVT::Other), Ops, 4842 EVT::getIntegerVT(*Context, 8), 4843 MachinePointerInfo(I.getArgOperand(0)), 4844 0, /* align */ 4845 false, /* volatile */ 4846 rw==0, /* read */ 4847 rw==1)); /* write */ 4848 return nullptr; 4849 } 4850 case Intrinsic::lifetime_start: 4851 case Intrinsic::lifetime_end: { 4852 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4853 // Stack coloring is not enabled in O0, discard region information. 4854 if (TM.getOptLevel() == CodeGenOpt::None) 4855 return nullptr; 4856 4857 SmallVector<Value *, 4> Allocas; 4858 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4859 4860 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4861 E = Allocas.end(); Object != E; ++Object) { 4862 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4863 4864 // Could not find an Alloca. 4865 if (!LifetimeObject) 4866 continue; 4867 4868 // First check that the Alloca is static, otherwise it won't have a 4869 // valid frame index. 4870 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4871 if (SI == FuncInfo.StaticAllocaMap.end()) 4872 return nullptr; 4873 4874 int FI = SI->second; 4875 4876 SDValue Ops[2]; 4877 Ops[0] = getRoot(); 4878 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4879 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4880 4881 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4882 DAG.setRoot(Res); 4883 } 4884 return nullptr; 4885 } 4886 case Intrinsic::invariant_start: 4887 // Discard region information. 4888 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4889 return nullptr; 4890 case Intrinsic::invariant_end: 4891 // Discard region information. 4892 return nullptr; 4893 case Intrinsic::stackprotectorcheck: { 4894 // Do not actually emit anything for this basic block. Instead we initialize 4895 // the stack protector descriptor and export the guard variable so we can 4896 // access it in FinishBasicBlock. 4897 const BasicBlock *BB = I.getParent(); 4898 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4899 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4900 4901 // Flush our exports since we are going to process a terminator. 4902 (void)getControlRoot(); 4903 return nullptr; 4904 } 4905 case Intrinsic::clear_cache: 4906 return TLI.getClearCacheBuiltinName(); 4907 case Intrinsic::eh_actions: 4908 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4909 return nullptr; 4910 case Intrinsic::donothing: 4911 // ignore 4912 return nullptr; 4913 case Intrinsic::experimental_stackmap: { 4914 visitStackmap(I); 4915 return nullptr; 4916 } 4917 case Intrinsic::experimental_patchpoint_void: 4918 case Intrinsic::experimental_patchpoint_i64: { 4919 visitPatchpoint(&I); 4920 return nullptr; 4921 } 4922 case Intrinsic::experimental_gc_statepoint: { 4923 visitStatepoint(I); 4924 return nullptr; 4925 } 4926 case Intrinsic::experimental_gc_result_int: 4927 case Intrinsic::experimental_gc_result_float: 4928 case Intrinsic::experimental_gc_result_ptr: 4929 case Intrinsic::experimental_gc_result: { 4930 visitGCResult(I); 4931 return nullptr; 4932 } 4933 case Intrinsic::experimental_gc_relocate: { 4934 visitGCRelocate(I); 4935 return nullptr; 4936 } 4937 case Intrinsic::instrprof_increment: 4938 llvm_unreachable("instrprof failed to lower an increment"); 4939 4940 case Intrinsic::localescape: { 4941 MachineFunction &MF = DAG.getMachineFunction(); 4942 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4943 4944 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4945 // is the same on all targets. 4946 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4947 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4948 if (isa<ConstantPointerNull>(Arg)) 4949 continue; // Skip null pointers. They represent a hole in index space. 4950 AllocaInst *Slot = cast<AllocaInst>(Arg); 4951 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4952 "can only escape static allocas"); 4953 int FI = FuncInfo.StaticAllocaMap[Slot]; 4954 MCSymbol *FrameAllocSym = 4955 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4956 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4958 TII->get(TargetOpcode::LOCAL_ESCAPE)) 4959 .addSym(FrameAllocSym) 4960 .addFrameIndex(FI); 4961 } 4962 4963 return nullptr; 4964 } 4965 4966 case Intrinsic::localrecover: { 4967 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 4968 MachineFunction &MF = DAG.getMachineFunction(); 4969 MVT PtrVT = TLI.getPointerTy(0); 4970 4971 // Get the symbol that defines the frame offset. 4972 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4973 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4974 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4975 MCSymbol *FrameAllocSym = 4976 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4977 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4978 4979 // Create a MCSymbol for the label to avoid any target lowering 4980 // that would make this PC relative. 4981 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 4982 SDValue OffsetVal = 4983 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 4984 4985 // Add the offset to the FP. 4986 Value *FP = I.getArgOperand(1); 4987 SDValue FPVal = getValue(FP); 4988 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4989 setValue(&I, Add); 4990 4991 return nullptr; 4992 } 4993 case Intrinsic::eh_begincatch: 4994 case Intrinsic::eh_endcatch: 4995 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4996 case Intrinsic::eh_exceptioncode: { 4997 unsigned Reg = TLI.getExceptionPointerRegister(); 4998 assert(Reg && "cannot get exception code on this platform"); 4999 MVT PtrVT = TLI.getPointerTy(); 5000 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5001 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5002 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5003 SDValue N = 5004 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5005 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5006 setValue(&I, N); 5007 return nullptr; 5008 } 5009 } 5010 } 5011 5012 std::pair<SDValue, SDValue> 5013 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5014 MachineBasicBlock *LandingPad) { 5015 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5016 MCSymbol *BeginLabel = nullptr; 5017 5018 if (LandingPad) { 5019 // Insert a label before the invoke call to mark the try range. This can be 5020 // used to detect deletion of the invoke via the MachineModuleInfo. 5021 BeginLabel = MMI.getContext().createTempSymbol(); 5022 5023 // For SjLj, keep track of which landing pads go with which invokes 5024 // so as to maintain the ordering of pads in the LSDA. 5025 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5026 if (CallSiteIndex) { 5027 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5028 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5029 5030 // Now that the call site is handled, stop tracking it. 5031 MMI.setCurrentCallSite(0); 5032 } 5033 5034 // Both PendingLoads and PendingExports must be flushed here; 5035 // this call might not return. 5036 (void)getRoot(); 5037 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5038 5039 CLI.setChain(getRoot()); 5040 } 5041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5042 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5043 5044 assert((CLI.IsTailCall || Result.second.getNode()) && 5045 "Non-null chain expected with non-tail call!"); 5046 assert((Result.second.getNode() || !Result.first.getNode()) && 5047 "Null value expected with tail call!"); 5048 5049 if (!Result.second.getNode()) { 5050 // As a special case, a null chain means that a tail call has been emitted 5051 // and the DAG root is already updated. 5052 HasTailCall = true; 5053 5054 // Since there's no actual continuation from this block, nothing can be 5055 // relying on us setting vregs for them. 5056 PendingExports.clear(); 5057 } else { 5058 DAG.setRoot(Result.second); 5059 } 5060 5061 if (LandingPad) { 5062 // Insert a label at the end of the invoke call to mark the try range. This 5063 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5064 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5065 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5066 5067 // Inform MachineModuleInfo of range. 5068 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5069 } 5070 5071 return Result; 5072 } 5073 5074 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5075 bool isTailCall, 5076 MachineBasicBlock *LandingPad) { 5077 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5078 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5079 Type *RetTy = FTy->getReturnType(); 5080 5081 TargetLowering::ArgListTy Args; 5082 TargetLowering::ArgListEntry Entry; 5083 Args.reserve(CS.arg_size()); 5084 5085 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5086 i != e; ++i) { 5087 const Value *V = *i; 5088 5089 // Skip empty types 5090 if (V->getType()->isEmptyTy()) 5091 continue; 5092 5093 SDValue ArgNode = getValue(V); 5094 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5095 5096 // Skip the first return-type Attribute to get to params. 5097 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5098 Args.push_back(Entry); 5099 5100 // If we have an explicit sret argument that is an Instruction, (i.e., it 5101 // might point to function-local memory), we can't meaningfully tail-call. 5102 if (Entry.isSRet && isa<Instruction>(V)) 5103 isTailCall = false; 5104 } 5105 5106 // Check if target-independent constraints permit a tail call here. 5107 // Target-dependent constraints are checked within TLI->LowerCallTo. 5108 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5109 isTailCall = false; 5110 5111 TargetLowering::CallLoweringInfo CLI(DAG); 5112 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5113 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5114 .setTailCall(isTailCall); 5115 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5116 5117 if (Result.first.getNode()) 5118 setValue(CS.getInstruction(), Result.first); 5119 } 5120 5121 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5122 /// value is equal or not-equal to zero. 5123 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5124 for (const User *U : V->users()) { 5125 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5126 if (IC->isEquality()) 5127 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5128 if (C->isNullValue()) 5129 continue; 5130 // Unknown instruction. 5131 return false; 5132 } 5133 return true; 5134 } 5135 5136 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5137 Type *LoadTy, 5138 SelectionDAGBuilder &Builder) { 5139 5140 // Check to see if this load can be trivially constant folded, e.g. if the 5141 // input is from a string literal. 5142 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5143 // Cast pointer to the type we really want to load. 5144 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5145 PointerType::getUnqual(LoadTy)); 5146 5147 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5148 const_cast<Constant *>(LoadInput), *Builder.DL)) 5149 return Builder.getValue(LoadCst); 5150 } 5151 5152 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5153 // still constant memory, the input chain can be the entry node. 5154 SDValue Root; 5155 bool ConstantMemory = false; 5156 5157 // Do not serialize (non-volatile) loads of constant memory with anything. 5158 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5159 Root = Builder.DAG.getEntryNode(); 5160 ConstantMemory = true; 5161 } else { 5162 // Do not serialize non-volatile loads against each other. 5163 Root = Builder.DAG.getRoot(); 5164 } 5165 5166 SDValue Ptr = Builder.getValue(PtrVal); 5167 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5168 Ptr, MachinePointerInfo(PtrVal), 5169 false /*volatile*/, 5170 false /*nontemporal*/, 5171 false /*isinvariant*/, 1 /* align=1 */); 5172 5173 if (!ConstantMemory) 5174 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5175 return LoadVal; 5176 } 5177 5178 /// processIntegerCallValue - Record the value for an instruction that 5179 /// produces an integer result, converting the type where necessary. 5180 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5181 SDValue Value, 5182 bool IsSigned) { 5183 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5184 if (IsSigned) 5185 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5186 else 5187 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5188 setValue(&I, Value); 5189 } 5190 5191 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5192 /// If so, return true and lower it, otherwise return false and it will be 5193 /// lowered like a normal call. 5194 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5195 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5196 if (I.getNumArgOperands() != 3) 5197 return false; 5198 5199 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5200 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5201 !I.getArgOperand(2)->getType()->isIntegerTy() || 5202 !I.getType()->isIntegerTy()) 5203 return false; 5204 5205 const Value *Size = I.getArgOperand(2); 5206 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5207 if (CSize && CSize->getZExtValue() == 0) { 5208 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5209 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5210 return true; 5211 } 5212 5213 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5214 std::pair<SDValue, SDValue> Res = 5215 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5216 getValue(LHS), getValue(RHS), getValue(Size), 5217 MachinePointerInfo(LHS), 5218 MachinePointerInfo(RHS)); 5219 if (Res.first.getNode()) { 5220 processIntegerCallValue(I, Res.first, true); 5221 PendingLoads.push_back(Res.second); 5222 return true; 5223 } 5224 5225 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5226 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5227 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5228 bool ActuallyDoIt = true; 5229 MVT LoadVT; 5230 Type *LoadTy; 5231 switch (CSize->getZExtValue()) { 5232 default: 5233 LoadVT = MVT::Other; 5234 LoadTy = nullptr; 5235 ActuallyDoIt = false; 5236 break; 5237 case 2: 5238 LoadVT = MVT::i16; 5239 LoadTy = Type::getInt16Ty(CSize->getContext()); 5240 break; 5241 case 4: 5242 LoadVT = MVT::i32; 5243 LoadTy = Type::getInt32Ty(CSize->getContext()); 5244 break; 5245 case 8: 5246 LoadVT = MVT::i64; 5247 LoadTy = Type::getInt64Ty(CSize->getContext()); 5248 break; 5249 /* 5250 case 16: 5251 LoadVT = MVT::v4i32; 5252 LoadTy = Type::getInt32Ty(CSize->getContext()); 5253 LoadTy = VectorType::get(LoadTy, 4); 5254 break; 5255 */ 5256 } 5257 5258 // This turns into unaligned loads. We only do this if the target natively 5259 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5260 // we'll only produce a small number of byte loads. 5261 5262 // Require that we can find a legal MVT, and only do this if the target 5263 // supports unaligned loads of that type. Expanding into byte loads would 5264 // bloat the code. 5265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5266 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5267 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5268 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5269 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5270 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5271 // TODO: Check alignment of src and dest ptrs. 5272 if (!TLI.isTypeLegal(LoadVT) || 5273 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5274 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5275 ActuallyDoIt = false; 5276 } 5277 5278 if (ActuallyDoIt) { 5279 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5280 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5281 5282 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5283 ISD::SETNE); 5284 processIntegerCallValue(I, Res, false); 5285 return true; 5286 } 5287 } 5288 5289 5290 return false; 5291 } 5292 5293 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5294 /// form. If so, return true and lower it, otherwise return false and it 5295 /// will be lowered like a normal call. 5296 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5297 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5298 if (I.getNumArgOperands() != 3) 5299 return false; 5300 5301 const Value *Src = I.getArgOperand(0); 5302 const Value *Char = I.getArgOperand(1); 5303 const Value *Length = I.getArgOperand(2); 5304 if (!Src->getType()->isPointerTy() || 5305 !Char->getType()->isIntegerTy() || 5306 !Length->getType()->isIntegerTy() || 5307 !I.getType()->isPointerTy()) 5308 return false; 5309 5310 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5311 std::pair<SDValue, SDValue> Res = 5312 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5313 getValue(Src), getValue(Char), getValue(Length), 5314 MachinePointerInfo(Src)); 5315 if (Res.first.getNode()) { 5316 setValue(&I, Res.first); 5317 PendingLoads.push_back(Res.second); 5318 return true; 5319 } 5320 5321 return false; 5322 } 5323 5324 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5325 /// optimized form. If so, return true and lower it, otherwise return false 5326 /// and it will be lowered like a normal call. 5327 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5328 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5329 if (I.getNumArgOperands() != 2) 5330 return false; 5331 5332 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5333 if (!Arg0->getType()->isPointerTy() || 5334 !Arg1->getType()->isPointerTy() || 5335 !I.getType()->isPointerTy()) 5336 return false; 5337 5338 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5339 std::pair<SDValue, SDValue> Res = 5340 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5341 getValue(Arg0), getValue(Arg1), 5342 MachinePointerInfo(Arg0), 5343 MachinePointerInfo(Arg1), isStpcpy); 5344 if (Res.first.getNode()) { 5345 setValue(&I, Res.first); 5346 DAG.setRoot(Res.second); 5347 return true; 5348 } 5349 5350 return false; 5351 } 5352 5353 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5354 /// If so, return true and lower it, otherwise return false and it will be 5355 /// lowered like a normal call. 5356 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5357 // Verify that the prototype makes sense. int strcmp(void*,void*) 5358 if (I.getNumArgOperands() != 2) 5359 return false; 5360 5361 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5362 if (!Arg0->getType()->isPointerTy() || 5363 !Arg1->getType()->isPointerTy() || 5364 !I.getType()->isIntegerTy()) 5365 return false; 5366 5367 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5368 std::pair<SDValue, SDValue> Res = 5369 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5370 getValue(Arg0), getValue(Arg1), 5371 MachinePointerInfo(Arg0), 5372 MachinePointerInfo(Arg1)); 5373 if (Res.first.getNode()) { 5374 processIntegerCallValue(I, Res.first, true); 5375 PendingLoads.push_back(Res.second); 5376 return true; 5377 } 5378 5379 return false; 5380 } 5381 5382 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5383 /// form. If so, return true and lower it, otherwise return false and it 5384 /// will be lowered like a normal call. 5385 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5386 // Verify that the prototype makes sense. size_t strlen(char *) 5387 if (I.getNumArgOperands() != 1) 5388 return false; 5389 5390 const Value *Arg0 = I.getArgOperand(0); 5391 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5392 return false; 5393 5394 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5395 std::pair<SDValue, SDValue> Res = 5396 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5397 getValue(Arg0), MachinePointerInfo(Arg0)); 5398 if (Res.first.getNode()) { 5399 processIntegerCallValue(I, Res.first, false); 5400 PendingLoads.push_back(Res.second); 5401 return true; 5402 } 5403 5404 return false; 5405 } 5406 5407 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5408 /// form. If so, return true and lower it, otherwise return false and it 5409 /// will be lowered like a normal call. 5410 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5411 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5412 if (I.getNumArgOperands() != 2) 5413 return false; 5414 5415 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5416 if (!Arg0->getType()->isPointerTy() || 5417 !Arg1->getType()->isIntegerTy() || 5418 !I.getType()->isIntegerTy()) 5419 return false; 5420 5421 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5422 std::pair<SDValue, SDValue> Res = 5423 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5424 getValue(Arg0), getValue(Arg1), 5425 MachinePointerInfo(Arg0)); 5426 if (Res.first.getNode()) { 5427 processIntegerCallValue(I, Res.first, false); 5428 PendingLoads.push_back(Res.second); 5429 return true; 5430 } 5431 5432 return false; 5433 } 5434 5435 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5436 /// operation (as expected), translate it to an SDNode with the specified opcode 5437 /// and return true. 5438 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5439 unsigned Opcode) { 5440 // Sanity check that it really is a unary floating-point call. 5441 if (I.getNumArgOperands() != 1 || 5442 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5443 I.getType() != I.getArgOperand(0)->getType() || 5444 !I.onlyReadsMemory()) 5445 return false; 5446 5447 SDValue Tmp = getValue(I.getArgOperand(0)); 5448 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5449 return true; 5450 } 5451 5452 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5453 /// operation (as expected), translate it to an SDNode with the specified opcode 5454 /// and return true. 5455 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5456 unsigned Opcode) { 5457 // Sanity check that it really is a binary floating-point call. 5458 if (I.getNumArgOperands() != 2 || 5459 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5460 I.getType() != I.getArgOperand(0)->getType() || 5461 I.getType() != I.getArgOperand(1)->getType() || 5462 !I.onlyReadsMemory()) 5463 return false; 5464 5465 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5466 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5467 EVT VT = Tmp0.getValueType(); 5468 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5469 return true; 5470 } 5471 5472 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5473 // Handle inline assembly differently. 5474 if (isa<InlineAsm>(I.getCalledValue())) { 5475 visitInlineAsm(&I); 5476 return; 5477 } 5478 5479 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5480 ComputeUsesVAFloatArgument(I, &MMI); 5481 5482 const char *RenameFn = nullptr; 5483 if (Function *F = I.getCalledFunction()) { 5484 if (F->isDeclaration()) { 5485 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5486 if (unsigned IID = II->getIntrinsicID(F)) { 5487 RenameFn = visitIntrinsicCall(I, IID); 5488 if (!RenameFn) 5489 return; 5490 } 5491 } 5492 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5493 RenameFn = visitIntrinsicCall(I, IID); 5494 if (!RenameFn) 5495 return; 5496 } 5497 } 5498 5499 // Check for well-known libc/libm calls. If the function is internal, it 5500 // can't be a library call. 5501 LibFunc::Func Func; 5502 if (!F->hasLocalLinkage() && F->hasName() && 5503 LibInfo->getLibFunc(F->getName(), Func) && 5504 LibInfo->hasOptimizedCodeGen(Func)) { 5505 switch (Func) { 5506 default: break; 5507 case LibFunc::copysign: 5508 case LibFunc::copysignf: 5509 case LibFunc::copysignl: 5510 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5511 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5512 I.getType() == I.getArgOperand(0)->getType() && 5513 I.getType() == I.getArgOperand(1)->getType() && 5514 I.onlyReadsMemory()) { 5515 SDValue LHS = getValue(I.getArgOperand(0)); 5516 SDValue RHS = getValue(I.getArgOperand(1)); 5517 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5518 LHS.getValueType(), LHS, RHS)); 5519 return; 5520 } 5521 break; 5522 case LibFunc::fabs: 5523 case LibFunc::fabsf: 5524 case LibFunc::fabsl: 5525 if (visitUnaryFloatCall(I, ISD::FABS)) 5526 return; 5527 break; 5528 case LibFunc::fmin: 5529 case LibFunc::fminf: 5530 case LibFunc::fminl: 5531 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5532 return; 5533 break; 5534 case LibFunc::fmax: 5535 case LibFunc::fmaxf: 5536 case LibFunc::fmaxl: 5537 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5538 return; 5539 break; 5540 case LibFunc::sin: 5541 case LibFunc::sinf: 5542 case LibFunc::sinl: 5543 if (visitUnaryFloatCall(I, ISD::FSIN)) 5544 return; 5545 break; 5546 case LibFunc::cos: 5547 case LibFunc::cosf: 5548 case LibFunc::cosl: 5549 if (visitUnaryFloatCall(I, ISD::FCOS)) 5550 return; 5551 break; 5552 case LibFunc::sqrt: 5553 case LibFunc::sqrtf: 5554 case LibFunc::sqrtl: 5555 case LibFunc::sqrt_finite: 5556 case LibFunc::sqrtf_finite: 5557 case LibFunc::sqrtl_finite: 5558 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5559 return; 5560 break; 5561 case LibFunc::floor: 5562 case LibFunc::floorf: 5563 case LibFunc::floorl: 5564 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5565 return; 5566 break; 5567 case LibFunc::nearbyint: 5568 case LibFunc::nearbyintf: 5569 case LibFunc::nearbyintl: 5570 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5571 return; 5572 break; 5573 case LibFunc::ceil: 5574 case LibFunc::ceilf: 5575 case LibFunc::ceill: 5576 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5577 return; 5578 break; 5579 case LibFunc::rint: 5580 case LibFunc::rintf: 5581 case LibFunc::rintl: 5582 if (visitUnaryFloatCall(I, ISD::FRINT)) 5583 return; 5584 break; 5585 case LibFunc::round: 5586 case LibFunc::roundf: 5587 case LibFunc::roundl: 5588 if (visitUnaryFloatCall(I, ISD::FROUND)) 5589 return; 5590 break; 5591 case LibFunc::trunc: 5592 case LibFunc::truncf: 5593 case LibFunc::truncl: 5594 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5595 return; 5596 break; 5597 case LibFunc::log2: 5598 case LibFunc::log2f: 5599 case LibFunc::log2l: 5600 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5601 return; 5602 break; 5603 case LibFunc::exp2: 5604 case LibFunc::exp2f: 5605 case LibFunc::exp2l: 5606 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5607 return; 5608 break; 5609 case LibFunc::memcmp: 5610 if (visitMemCmpCall(I)) 5611 return; 5612 break; 5613 case LibFunc::memchr: 5614 if (visitMemChrCall(I)) 5615 return; 5616 break; 5617 case LibFunc::strcpy: 5618 if (visitStrCpyCall(I, false)) 5619 return; 5620 break; 5621 case LibFunc::stpcpy: 5622 if (visitStrCpyCall(I, true)) 5623 return; 5624 break; 5625 case LibFunc::strcmp: 5626 if (visitStrCmpCall(I)) 5627 return; 5628 break; 5629 case LibFunc::strlen: 5630 if (visitStrLenCall(I)) 5631 return; 5632 break; 5633 case LibFunc::strnlen: 5634 if (visitStrNLenCall(I)) 5635 return; 5636 break; 5637 } 5638 } 5639 } 5640 5641 SDValue Callee; 5642 if (!RenameFn) 5643 Callee = getValue(I.getCalledValue()); 5644 else 5645 Callee = DAG.getExternalSymbol(RenameFn, 5646 DAG.getTargetLoweringInfo().getPointerTy()); 5647 5648 // Check if we can potentially perform a tail call. More detailed checking is 5649 // be done within LowerCallTo, after more information about the call is known. 5650 LowerCallTo(&I, Callee, I.isTailCall()); 5651 } 5652 5653 namespace { 5654 5655 /// AsmOperandInfo - This contains information for each constraint that we are 5656 /// lowering. 5657 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5658 public: 5659 /// CallOperand - If this is the result output operand or a clobber 5660 /// this is null, otherwise it is the incoming operand to the CallInst. 5661 /// This gets modified as the asm is processed. 5662 SDValue CallOperand; 5663 5664 /// AssignedRegs - If this is a register or register class operand, this 5665 /// contains the set of register corresponding to the operand. 5666 RegsForValue AssignedRegs; 5667 5668 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5669 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5670 } 5671 5672 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5673 /// corresponds to. If there is no Value* for this operand, it returns 5674 /// MVT::Other. 5675 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5676 const DataLayout &DL) const { 5677 if (!CallOperandVal) return MVT::Other; 5678 5679 if (isa<BasicBlock>(CallOperandVal)) 5680 return TLI.getPointerTy(); 5681 5682 llvm::Type *OpTy = CallOperandVal->getType(); 5683 5684 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5685 // If this is an indirect operand, the operand is a pointer to the 5686 // accessed type. 5687 if (isIndirect) { 5688 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5689 if (!PtrTy) 5690 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5691 OpTy = PtrTy->getElementType(); 5692 } 5693 5694 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5695 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5696 if (STy->getNumElements() == 1) 5697 OpTy = STy->getElementType(0); 5698 5699 // If OpTy is not a single value, it may be a struct/union that we 5700 // can tile with integers. 5701 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5702 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5703 switch (BitSize) { 5704 default: break; 5705 case 1: 5706 case 8: 5707 case 16: 5708 case 32: 5709 case 64: 5710 case 128: 5711 OpTy = IntegerType::get(Context, BitSize); 5712 break; 5713 } 5714 } 5715 5716 return TLI.getValueType(OpTy, true); 5717 } 5718 }; 5719 5720 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5721 5722 } // end anonymous namespace 5723 5724 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5725 /// specified operand. We prefer to assign virtual registers, to allow the 5726 /// register allocator to handle the assignment process. However, if the asm 5727 /// uses features that we can't model on machineinstrs, we have SDISel do the 5728 /// allocation. This produces generally horrible, but correct, code. 5729 /// 5730 /// OpInfo describes the operand. 5731 /// 5732 static void GetRegistersForValue(SelectionDAG &DAG, 5733 const TargetLowering &TLI, 5734 SDLoc DL, 5735 SDISelAsmOperandInfo &OpInfo) { 5736 LLVMContext &Context = *DAG.getContext(); 5737 5738 MachineFunction &MF = DAG.getMachineFunction(); 5739 SmallVector<unsigned, 4> Regs; 5740 5741 // If this is a constraint for a single physreg, or a constraint for a 5742 // register class, find it. 5743 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5744 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5745 OpInfo.ConstraintCode, 5746 OpInfo.ConstraintVT); 5747 5748 unsigned NumRegs = 1; 5749 if (OpInfo.ConstraintVT != MVT::Other) { 5750 // If this is a FP input in an integer register (or visa versa) insert a bit 5751 // cast of the input value. More generally, handle any case where the input 5752 // value disagrees with the register class we plan to stick this in. 5753 if (OpInfo.Type == InlineAsm::isInput && 5754 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5755 // Try to convert to the first EVT that the reg class contains. If the 5756 // types are identical size, use a bitcast to convert (e.g. two differing 5757 // vector types). 5758 MVT RegVT = *PhysReg.second->vt_begin(); 5759 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5760 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5761 RegVT, OpInfo.CallOperand); 5762 OpInfo.ConstraintVT = RegVT; 5763 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5764 // If the input is a FP value and we want it in FP registers, do a 5765 // bitcast to the corresponding integer type. This turns an f64 value 5766 // into i64, which can be passed with two i32 values on a 32-bit 5767 // machine. 5768 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5769 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5770 RegVT, OpInfo.CallOperand); 5771 OpInfo.ConstraintVT = RegVT; 5772 } 5773 } 5774 5775 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5776 } 5777 5778 MVT RegVT; 5779 EVT ValueVT = OpInfo.ConstraintVT; 5780 5781 // If this is a constraint for a specific physical register, like {r17}, 5782 // assign it now. 5783 if (unsigned AssignedReg = PhysReg.first) { 5784 const TargetRegisterClass *RC = PhysReg.second; 5785 if (OpInfo.ConstraintVT == MVT::Other) 5786 ValueVT = *RC->vt_begin(); 5787 5788 // Get the actual register value type. This is important, because the user 5789 // may have asked for (e.g.) the AX register in i32 type. We need to 5790 // remember that AX is actually i16 to get the right extension. 5791 RegVT = *RC->vt_begin(); 5792 5793 // This is a explicit reference to a physical register. 5794 Regs.push_back(AssignedReg); 5795 5796 // If this is an expanded reference, add the rest of the regs to Regs. 5797 if (NumRegs != 1) { 5798 TargetRegisterClass::iterator I = RC->begin(); 5799 for (; *I != AssignedReg; ++I) 5800 assert(I != RC->end() && "Didn't find reg!"); 5801 5802 // Already added the first reg. 5803 --NumRegs; ++I; 5804 for (; NumRegs; --NumRegs, ++I) { 5805 assert(I != RC->end() && "Ran out of registers to allocate!"); 5806 Regs.push_back(*I); 5807 } 5808 } 5809 5810 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5811 return; 5812 } 5813 5814 // Otherwise, if this was a reference to an LLVM register class, create vregs 5815 // for this reference. 5816 if (const TargetRegisterClass *RC = PhysReg.second) { 5817 RegVT = *RC->vt_begin(); 5818 if (OpInfo.ConstraintVT == MVT::Other) 5819 ValueVT = RegVT; 5820 5821 // Create the appropriate number of virtual registers. 5822 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5823 for (; NumRegs; --NumRegs) 5824 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5825 5826 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5827 return; 5828 } 5829 5830 // Otherwise, we couldn't allocate enough registers for this. 5831 } 5832 5833 /// visitInlineAsm - Handle a call to an InlineAsm object. 5834 /// 5835 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5836 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5837 5838 /// ConstraintOperands - Information about all of the constraints. 5839 SDISelAsmOperandInfoVector ConstraintOperands; 5840 5841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5842 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5843 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5844 5845 bool hasMemory = false; 5846 5847 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5848 unsigned ResNo = 0; // ResNo - The result number of the next output. 5849 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5850 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5851 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5852 5853 MVT OpVT = MVT::Other; 5854 5855 // Compute the value type for each operand. 5856 switch (OpInfo.Type) { 5857 case InlineAsm::isOutput: 5858 // Indirect outputs just consume an argument. 5859 if (OpInfo.isIndirect) { 5860 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5861 break; 5862 } 5863 5864 // The return value of the call is this value. As such, there is no 5865 // corresponding argument. 5866 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5867 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5868 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5869 } else { 5870 assert(ResNo == 0 && "Asm only has one result!"); 5871 OpVT = TLI.getSimpleValueType(CS.getType()); 5872 } 5873 ++ResNo; 5874 break; 5875 case InlineAsm::isInput: 5876 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5877 break; 5878 case InlineAsm::isClobber: 5879 // Nothing to do. 5880 break; 5881 } 5882 5883 // If this is an input or an indirect output, process the call argument. 5884 // BasicBlocks are labels, currently appearing only in asm's. 5885 if (OpInfo.CallOperandVal) { 5886 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5887 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5888 } else { 5889 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5890 } 5891 5892 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5893 DAG.getDataLayout()).getSimpleVT(); 5894 } 5895 5896 OpInfo.ConstraintVT = OpVT; 5897 5898 // Indirect operand accesses access memory. 5899 if (OpInfo.isIndirect) 5900 hasMemory = true; 5901 else { 5902 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5903 TargetLowering::ConstraintType 5904 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5905 if (CType == TargetLowering::C_Memory) { 5906 hasMemory = true; 5907 break; 5908 } 5909 } 5910 } 5911 } 5912 5913 SDValue Chain, Flag; 5914 5915 // We won't need to flush pending loads if this asm doesn't touch 5916 // memory and is nonvolatile. 5917 if (hasMemory || IA->hasSideEffects()) 5918 Chain = getRoot(); 5919 else 5920 Chain = DAG.getRoot(); 5921 5922 // Second pass over the constraints: compute which constraint option to use 5923 // and assign registers to constraints that want a specific physreg. 5924 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5925 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5926 5927 // If this is an output operand with a matching input operand, look up the 5928 // matching input. If their types mismatch, e.g. one is an integer, the 5929 // other is floating point, or their sizes are different, flag it as an 5930 // error. 5931 if (OpInfo.hasMatchingInput()) { 5932 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5933 5934 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5935 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5936 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5937 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5938 OpInfo.ConstraintVT); 5939 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5940 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5941 Input.ConstraintVT); 5942 if ((OpInfo.ConstraintVT.isInteger() != 5943 Input.ConstraintVT.isInteger()) || 5944 (MatchRC.second != InputRC.second)) { 5945 report_fatal_error("Unsupported asm: input constraint" 5946 " with a matching output constraint of" 5947 " incompatible type!"); 5948 } 5949 Input.ConstraintVT = OpInfo.ConstraintVT; 5950 } 5951 } 5952 5953 // Compute the constraint code and ConstraintType to use. 5954 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5955 5956 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5957 OpInfo.Type == InlineAsm::isClobber) 5958 continue; 5959 5960 // If this is a memory input, and if the operand is not indirect, do what we 5961 // need to to provide an address for the memory input. 5962 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5963 !OpInfo.isIndirect) { 5964 assert((OpInfo.isMultipleAlternative || 5965 (OpInfo.Type == InlineAsm::isInput)) && 5966 "Can only indirectify direct input operands!"); 5967 5968 // Memory operands really want the address of the value. If we don't have 5969 // an indirect input, put it in the constpool if we can, otherwise spill 5970 // it to a stack slot. 5971 // TODO: This isn't quite right. We need to handle these according to 5972 // the addressing mode that the constraint wants. Also, this may take 5973 // an additional register for the computation and we don't want that 5974 // either. 5975 5976 // If the operand is a float, integer, or vector constant, spill to a 5977 // constant pool entry to get its address. 5978 const Value *OpVal = OpInfo.CallOperandVal; 5979 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5980 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5981 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5982 TLI.getPointerTy()); 5983 } else { 5984 // Otherwise, create a stack slot and emit a store to it before the 5985 // asm. 5986 Type *Ty = OpVal->getType(); 5987 auto &DL = DAG.getDataLayout(); 5988 uint64_t TySize = DL.getTypeAllocSize(Ty); 5989 unsigned Align = DL.getPrefTypeAlignment(Ty); 5990 MachineFunction &MF = DAG.getMachineFunction(); 5991 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5992 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5993 Chain = DAG.getStore(Chain, getCurSDLoc(), 5994 OpInfo.CallOperand, StackSlot, 5995 MachinePointerInfo::getFixedStack(SSFI), 5996 false, false, 0); 5997 OpInfo.CallOperand = StackSlot; 5998 } 5999 6000 // There is no longer a Value* corresponding to this operand. 6001 OpInfo.CallOperandVal = nullptr; 6002 6003 // It is now an indirect operand. 6004 OpInfo.isIndirect = true; 6005 } 6006 6007 // If this constraint is for a specific register, allocate it before 6008 // anything else. 6009 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6010 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6011 } 6012 6013 // Second pass - Loop over all of the operands, assigning virtual or physregs 6014 // to register class operands. 6015 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6016 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6017 6018 // C_Register operands have already been allocated, Other/Memory don't need 6019 // to be. 6020 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6021 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6022 } 6023 6024 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6025 std::vector<SDValue> AsmNodeOperands; 6026 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6027 AsmNodeOperands.push_back( 6028 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6029 TLI.getPointerTy())); 6030 6031 // If we have a !srcloc metadata node associated with it, we want to attach 6032 // this to the ultimately generated inline asm machineinstr. To do this, we 6033 // pass in the third operand as this (potentially null) inline asm MDNode. 6034 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6035 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6036 6037 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6038 // bits as operand 3. 6039 unsigned ExtraInfo = 0; 6040 if (IA->hasSideEffects()) 6041 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6042 if (IA->isAlignStack()) 6043 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6044 // Set the asm dialect. 6045 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6046 6047 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6048 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6049 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6050 6051 // Compute the constraint code and ConstraintType to use. 6052 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6053 6054 // Ideally, we would only check against memory constraints. However, the 6055 // meaning of an other constraint can be target-specific and we can't easily 6056 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6057 // for other constriants as well. 6058 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6059 OpInfo.ConstraintType == TargetLowering::C_Other) { 6060 if (OpInfo.Type == InlineAsm::isInput) 6061 ExtraInfo |= InlineAsm::Extra_MayLoad; 6062 else if (OpInfo.Type == InlineAsm::isOutput) 6063 ExtraInfo |= InlineAsm::Extra_MayStore; 6064 else if (OpInfo.Type == InlineAsm::isClobber) 6065 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6066 } 6067 } 6068 6069 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6070 TLI.getPointerTy())); 6071 6072 // Loop over all of the inputs, copying the operand values into the 6073 // appropriate registers and processing the output regs. 6074 RegsForValue RetValRegs; 6075 6076 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6077 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6078 6079 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6080 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6081 6082 switch (OpInfo.Type) { 6083 case InlineAsm::isOutput: { 6084 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6085 OpInfo.ConstraintType != TargetLowering::C_Register) { 6086 // Memory output, or 'other' output (e.g. 'X' constraint). 6087 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6088 6089 unsigned ConstraintID = 6090 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6091 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6092 "Failed to convert memory constraint code to constraint id."); 6093 6094 // Add information to the INLINEASM node to know about this output. 6095 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6096 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6097 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6098 MVT::i32)); 6099 AsmNodeOperands.push_back(OpInfo.CallOperand); 6100 break; 6101 } 6102 6103 // Otherwise, this is a register or register class output. 6104 6105 // Copy the output from the appropriate register. Find a register that 6106 // we can use. 6107 if (OpInfo.AssignedRegs.Regs.empty()) { 6108 LLVMContext &Ctx = *DAG.getContext(); 6109 Ctx.emitError(CS.getInstruction(), 6110 "couldn't allocate output register for constraint '" + 6111 Twine(OpInfo.ConstraintCode) + "'"); 6112 return; 6113 } 6114 6115 // If this is an indirect operand, store through the pointer after the 6116 // asm. 6117 if (OpInfo.isIndirect) { 6118 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6119 OpInfo.CallOperandVal)); 6120 } else { 6121 // This is the result value of the call. 6122 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6123 // Concatenate this output onto the outputs list. 6124 RetValRegs.append(OpInfo.AssignedRegs); 6125 } 6126 6127 // Add information to the INLINEASM node to know that this register is 6128 // set. 6129 OpInfo.AssignedRegs 6130 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6131 ? InlineAsm::Kind_RegDefEarlyClobber 6132 : InlineAsm::Kind_RegDef, 6133 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6134 break; 6135 } 6136 case InlineAsm::isInput: { 6137 SDValue InOperandVal = OpInfo.CallOperand; 6138 6139 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6140 // If this is required to match an output register we have already set, 6141 // just use its register. 6142 unsigned OperandNo = OpInfo.getMatchedOperand(); 6143 6144 // Scan until we find the definition we already emitted of this operand. 6145 // When we find it, create a RegsForValue operand. 6146 unsigned CurOp = InlineAsm::Op_FirstOperand; 6147 for (; OperandNo; --OperandNo) { 6148 // Advance to the next operand. 6149 unsigned OpFlag = 6150 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6151 assert((InlineAsm::isRegDefKind(OpFlag) || 6152 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6153 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6154 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6155 } 6156 6157 unsigned OpFlag = 6158 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6159 if (InlineAsm::isRegDefKind(OpFlag) || 6160 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6161 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6162 if (OpInfo.isIndirect) { 6163 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6164 LLVMContext &Ctx = *DAG.getContext(); 6165 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6166 " don't know how to handle tied " 6167 "indirect register inputs"); 6168 return; 6169 } 6170 6171 RegsForValue MatchedRegs; 6172 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6173 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6174 MatchedRegs.RegVTs.push_back(RegVT); 6175 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6176 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6177 i != e; ++i) { 6178 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6179 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6180 else { 6181 LLVMContext &Ctx = *DAG.getContext(); 6182 Ctx.emitError(CS.getInstruction(), 6183 "inline asm error: This value" 6184 " type register class is not natively supported!"); 6185 return; 6186 } 6187 } 6188 SDLoc dl = getCurSDLoc(); 6189 // Use the produced MatchedRegs object to 6190 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6191 Chain, &Flag, CS.getInstruction()); 6192 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6193 true, OpInfo.getMatchedOperand(), dl, 6194 DAG, AsmNodeOperands); 6195 break; 6196 } 6197 6198 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6199 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6200 "Unexpected number of operands"); 6201 // Add information to the INLINEASM node to know about this input. 6202 // See InlineAsm.h isUseOperandTiedToDef. 6203 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6204 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6205 OpInfo.getMatchedOperand()); 6206 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6207 TLI.getPointerTy())); 6208 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6209 break; 6210 } 6211 6212 // Treat indirect 'X' constraint as memory. 6213 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6214 OpInfo.isIndirect) 6215 OpInfo.ConstraintType = TargetLowering::C_Memory; 6216 6217 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6218 std::vector<SDValue> Ops; 6219 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6220 Ops, DAG); 6221 if (Ops.empty()) { 6222 LLVMContext &Ctx = *DAG.getContext(); 6223 Ctx.emitError(CS.getInstruction(), 6224 "invalid operand for inline asm constraint '" + 6225 Twine(OpInfo.ConstraintCode) + "'"); 6226 return; 6227 } 6228 6229 // Add information to the INLINEASM node to know about this input. 6230 unsigned ResOpType = 6231 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6232 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6233 getCurSDLoc(), 6234 TLI.getPointerTy())); 6235 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6236 break; 6237 } 6238 6239 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6240 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6241 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6242 "Memory operands expect pointer values"); 6243 6244 unsigned ConstraintID = 6245 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6246 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6247 "Failed to convert memory constraint code to constraint id."); 6248 6249 // Add information to the INLINEASM node to know about this input. 6250 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6251 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6252 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6253 getCurSDLoc(), 6254 MVT::i32)); 6255 AsmNodeOperands.push_back(InOperandVal); 6256 break; 6257 } 6258 6259 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6260 OpInfo.ConstraintType == TargetLowering::C_Register) && 6261 "Unknown constraint type!"); 6262 6263 // TODO: Support this. 6264 if (OpInfo.isIndirect) { 6265 LLVMContext &Ctx = *DAG.getContext(); 6266 Ctx.emitError(CS.getInstruction(), 6267 "Don't know how to handle indirect register inputs yet " 6268 "for constraint '" + 6269 Twine(OpInfo.ConstraintCode) + "'"); 6270 return; 6271 } 6272 6273 // Copy the input into the appropriate registers. 6274 if (OpInfo.AssignedRegs.Regs.empty()) { 6275 LLVMContext &Ctx = *DAG.getContext(); 6276 Ctx.emitError(CS.getInstruction(), 6277 "couldn't allocate input reg for constraint '" + 6278 Twine(OpInfo.ConstraintCode) + "'"); 6279 return; 6280 } 6281 6282 SDLoc dl = getCurSDLoc(); 6283 6284 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6285 Chain, &Flag, CS.getInstruction()); 6286 6287 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6288 dl, DAG, AsmNodeOperands); 6289 break; 6290 } 6291 case InlineAsm::isClobber: { 6292 // Add the clobbered value to the operand list, so that the register 6293 // allocator is aware that the physreg got clobbered. 6294 if (!OpInfo.AssignedRegs.Regs.empty()) 6295 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6296 false, 0, getCurSDLoc(), DAG, 6297 AsmNodeOperands); 6298 break; 6299 } 6300 } 6301 } 6302 6303 // Finish up input operands. Set the input chain and add the flag last. 6304 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6305 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6306 6307 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6308 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6309 Flag = Chain.getValue(1); 6310 6311 // If this asm returns a register value, copy the result from that register 6312 // and set it as the value of the call. 6313 if (!RetValRegs.Regs.empty()) { 6314 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6315 Chain, &Flag, CS.getInstruction()); 6316 6317 // FIXME: Why don't we do this for inline asms with MRVs? 6318 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6319 EVT ResultType = TLI.getValueType(CS.getType()); 6320 6321 // If any of the results of the inline asm is a vector, it may have the 6322 // wrong width/num elts. This can happen for register classes that can 6323 // contain multiple different value types. The preg or vreg allocated may 6324 // not have the same VT as was expected. Convert it to the right type 6325 // with bit_convert. 6326 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6327 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6328 ResultType, Val); 6329 6330 } else if (ResultType != Val.getValueType() && 6331 ResultType.isInteger() && Val.getValueType().isInteger()) { 6332 // If a result value was tied to an input value, the computed result may 6333 // have a wider width than the expected result. Extract the relevant 6334 // portion. 6335 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6336 } 6337 6338 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6339 } 6340 6341 setValue(CS.getInstruction(), Val); 6342 // Don't need to use this as a chain in this case. 6343 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6344 return; 6345 } 6346 6347 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6348 6349 // Process indirect outputs, first output all of the flagged copies out of 6350 // physregs. 6351 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6352 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6353 const Value *Ptr = IndirectStoresToEmit[i].second; 6354 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6355 Chain, &Flag, IA); 6356 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6357 } 6358 6359 // Emit the non-flagged stores from the physregs. 6360 SmallVector<SDValue, 8> OutChains; 6361 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6362 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6363 StoresToEmit[i].first, 6364 getValue(StoresToEmit[i].second), 6365 MachinePointerInfo(StoresToEmit[i].second), 6366 false, false, 0); 6367 OutChains.push_back(Val); 6368 } 6369 6370 if (!OutChains.empty()) 6371 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6372 6373 DAG.setRoot(Chain); 6374 } 6375 6376 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6377 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6378 MVT::Other, getRoot(), 6379 getValue(I.getArgOperand(0)), 6380 DAG.getSrcValue(I.getArgOperand(0)))); 6381 } 6382 6383 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6385 const DataLayout &DL = DAG.getDataLayout(); 6386 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6387 getRoot(), getValue(I.getOperand(0)), 6388 DAG.getSrcValue(I.getOperand(0)), 6389 DL.getABITypeAlignment(I.getType())); 6390 setValue(&I, V); 6391 DAG.setRoot(V.getValue(1)); 6392 } 6393 6394 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6395 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6396 MVT::Other, getRoot(), 6397 getValue(I.getArgOperand(0)), 6398 DAG.getSrcValue(I.getArgOperand(0)))); 6399 } 6400 6401 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6402 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6403 MVT::Other, getRoot(), 6404 getValue(I.getArgOperand(0)), 6405 getValue(I.getArgOperand(1)), 6406 DAG.getSrcValue(I.getArgOperand(0)), 6407 DAG.getSrcValue(I.getArgOperand(1)))); 6408 } 6409 6410 /// \brief Lower an argument list according to the target calling convention. 6411 /// 6412 /// \return A tuple of <return-value, token-chain> 6413 /// 6414 /// This is a helper for lowering intrinsics that follow a target calling 6415 /// convention or require stack pointer adjustment. Only a subset of the 6416 /// intrinsic's operands need to participate in the calling convention. 6417 std::pair<SDValue, SDValue> 6418 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6419 unsigned NumArgs, SDValue Callee, 6420 Type *ReturnTy, 6421 MachineBasicBlock *LandingPad, 6422 bool IsPatchPoint) { 6423 TargetLowering::ArgListTy Args; 6424 Args.reserve(NumArgs); 6425 6426 // Populate the argument list. 6427 // Attributes for args start at offset 1, after the return attribute. 6428 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6429 ArgI != ArgE; ++ArgI) { 6430 const Value *V = CS->getOperand(ArgI); 6431 6432 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6433 6434 TargetLowering::ArgListEntry Entry; 6435 Entry.Node = getValue(V); 6436 Entry.Ty = V->getType(); 6437 Entry.setAttributes(&CS, AttrI); 6438 Args.push_back(Entry); 6439 } 6440 6441 TargetLowering::CallLoweringInfo CLI(DAG); 6442 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6443 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6444 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6445 6446 return lowerInvokable(CLI, LandingPad); 6447 } 6448 6449 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6450 /// or patchpoint target node's operand list. 6451 /// 6452 /// Constants are converted to TargetConstants purely as an optimization to 6453 /// avoid constant materialization and register allocation. 6454 /// 6455 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6456 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6457 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6458 /// address materialization and register allocation, but may also be required 6459 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6460 /// alloca in the entry block, then the runtime may assume that the alloca's 6461 /// StackMap location can be read immediately after compilation and that the 6462 /// location is valid at any point during execution (this is similar to the 6463 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6464 /// only available in a register, then the runtime would need to trap when 6465 /// execution reaches the StackMap in order to read the alloca's location. 6466 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6467 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6468 SelectionDAGBuilder &Builder) { 6469 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6470 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6471 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6472 Ops.push_back( 6473 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6474 Ops.push_back( 6475 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6476 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6477 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6478 Ops.push_back( 6479 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6480 } else 6481 Ops.push_back(OpVal); 6482 } 6483 } 6484 6485 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6486 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6487 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6488 // [live variables...]) 6489 6490 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6491 6492 SDValue Chain, InFlag, Callee, NullPtr; 6493 SmallVector<SDValue, 32> Ops; 6494 6495 SDLoc DL = getCurSDLoc(); 6496 Callee = getValue(CI.getCalledValue()); 6497 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6498 6499 // The stackmap intrinsic only records the live variables (the arguemnts 6500 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6501 // intrinsic, this won't be lowered to a function call. This means we don't 6502 // have to worry about calling conventions and target specific lowering code. 6503 // Instead we perform the call lowering right here. 6504 // 6505 // chain, flag = CALLSEQ_START(chain, 0) 6506 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6507 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6508 // 6509 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6510 InFlag = Chain.getValue(1); 6511 6512 // Add the <id> and <numBytes> constants. 6513 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6514 Ops.push_back(DAG.getTargetConstant( 6515 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6516 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6517 Ops.push_back(DAG.getTargetConstant( 6518 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6519 MVT::i32)); 6520 6521 // Push live variables for the stack map. 6522 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6523 6524 // We are not pushing any register mask info here on the operands list, 6525 // because the stackmap doesn't clobber anything. 6526 6527 // Push the chain and the glue flag. 6528 Ops.push_back(Chain); 6529 Ops.push_back(InFlag); 6530 6531 // Create the STACKMAP node. 6532 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6533 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6534 Chain = SDValue(SM, 0); 6535 InFlag = Chain.getValue(1); 6536 6537 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6538 6539 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6540 6541 // Set the root to the target-lowered call chain. 6542 DAG.setRoot(Chain); 6543 6544 // Inform the Frame Information that we have a stackmap in this function. 6545 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6546 } 6547 6548 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6549 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6550 MachineBasicBlock *LandingPad) { 6551 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6552 // i32 <numBytes>, 6553 // i8* <target>, 6554 // i32 <numArgs>, 6555 // [Args...], 6556 // [live variables...]) 6557 6558 CallingConv::ID CC = CS.getCallingConv(); 6559 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6560 bool HasDef = !CS->getType()->isVoidTy(); 6561 SDLoc dl = getCurSDLoc(); 6562 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6563 6564 // Handle immediate and symbolic callees. 6565 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6566 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6567 /*isTarget=*/true); 6568 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6569 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6570 SDLoc(SymbolicCallee), 6571 SymbolicCallee->getValueType(0)); 6572 6573 // Get the real number of arguments participating in the call <numArgs> 6574 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6575 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6576 6577 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6578 // Intrinsics include all meta-operands up to but not including CC. 6579 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6580 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6581 "Not enough arguments provided to the patchpoint intrinsic"); 6582 6583 // For AnyRegCC the arguments are lowered later on manually. 6584 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6585 Type *ReturnTy = 6586 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6587 std::pair<SDValue, SDValue> Result = 6588 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6589 LandingPad, true); 6590 6591 SDNode *CallEnd = Result.second.getNode(); 6592 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6593 CallEnd = CallEnd->getOperand(0).getNode(); 6594 6595 /// Get a call instruction from the call sequence chain. 6596 /// Tail calls are not allowed. 6597 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6598 "Expected a callseq node."); 6599 SDNode *Call = CallEnd->getOperand(0).getNode(); 6600 bool HasGlue = Call->getGluedNode(); 6601 6602 // Replace the target specific call node with the patchable intrinsic. 6603 SmallVector<SDValue, 8> Ops; 6604 6605 // Add the <id> and <numBytes> constants. 6606 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6607 Ops.push_back(DAG.getTargetConstant( 6608 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6609 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6610 Ops.push_back(DAG.getTargetConstant( 6611 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6612 MVT::i32)); 6613 6614 // Add the callee. 6615 Ops.push_back(Callee); 6616 6617 // Adjust <numArgs> to account for any arguments that have been passed on the 6618 // stack instead. 6619 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6620 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6621 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6622 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6623 6624 // Add the calling convention 6625 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6626 6627 // Add the arguments we omitted previously. The register allocator should 6628 // place these in any free register. 6629 if (IsAnyRegCC) 6630 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6631 Ops.push_back(getValue(CS.getArgument(i))); 6632 6633 // Push the arguments from the call instruction up to the register mask. 6634 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6635 Ops.append(Call->op_begin() + 2, e); 6636 6637 // Push live variables for the stack map. 6638 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6639 6640 // Push the register mask info. 6641 if (HasGlue) 6642 Ops.push_back(*(Call->op_end()-2)); 6643 else 6644 Ops.push_back(*(Call->op_end()-1)); 6645 6646 // Push the chain (this is originally the first operand of the call, but 6647 // becomes now the last or second to last operand). 6648 Ops.push_back(*(Call->op_begin())); 6649 6650 // Push the glue flag (last operand). 6651 if (HasGlue) 6652 Ops.push_back(*(Call->op_end()-1)); 6653 6654 SDVTList NodeTys; 6655 if (IsAnyRegCC && HasDef) { 6656 // Create the return types based on the intrinsic definition 6657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6658 SmallVector<EVT, 3> ValueVTs; 6659 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6660 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6661 6662 // There is always a chain and a glue type at the end 6663 ValueVTs.push_back(MVT::Other); 6664 ValueVTs.push_back(MVT::Glue); 6665 NodeTys = DAG.getVTList(ValueVTs); 6666 } else 6667 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6668 6669 // Replace the target specific call node with a PATCHPOINT node. 6670 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6671 dl, NodeTys, Ops); 6672 6673 // Update the NodeMap. 6674 if (HasDef) { 6675 if (IsAnyRegCC) 6676 setValue(CS.getInstruction(), SDValue(MN, 0)); 6677 else 6678 setValue(CS.getInstruction(), Result.first); 6679 } 6680 6681 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6682 // call sequence. Furthermore the location of the chain and glue can change 6683 // when the AnyReg calling convention is used and the intrinsic returns a 6684 // value. 6685 if (IsAnyRegCC && HasDef) { 6686 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6687 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6688 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6689 } else 6690 DAG.ReplaceAllUsesWith(Call, MN); 6691 DAG.DeleteNode(Call); 6692 6693 // Inform the Frame Information that we have a patchpoint in this function. 6694 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6695 } 6696 6697 /// Returns an AttributeSet representing the attributes applied to the return 6698 /// value of the given call. 6699 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6700 SmallVector<Attribute::AttrKind, 2> Attrs; 6701 if (CLI.RetSExt) 6702 Attrs.push_back(Attribute::SExt); 6703 if (CLI.RetZExt) 6704 Attrs.push_back(Attribute::ZExt); 6705 if (CLI.IsInReg) 6706 Attrs.push_back(Attribute::InReg); 6707 6708 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6709 Attrs); 6710 } 6711 6712 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6713 /// implementation, which just calls LowerCall. 6714 /// FIXME: When all targets are 6715 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6716 std::pair<SDValue, SDValue> 6717 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6718 // Handle the incoming return values from the call. 6719 CLI.Ins.clear(); 6720 Type *OrigRetTy = CLI.RetTy; 6721 SmallVector<EVT, 4> RetTys; 6722 SmallVector<uint64_t, 4> Offsets; 6723 auto &DL = CLI.DAG.getDataLayout(); 6724 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6725 6726 SmallVector<ISD::OutputArg, 4> Outs; 6727 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6728 6729 bool CanLowerReturn = 6730 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6731 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6732 6733 SDValue DemoteStackSlot; 6734 int DemoteStackIdx = -100; 6735 if (!CanLowerReturn) { 6736 // FIXME: equivalent assert? 6737 // assert(!CS.hasInAllocaArgument() && 6738 // "sret demotion is incompatible with inalloca"); 6739 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6740 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6741 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6742 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6743 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6744 6745 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6746 ArgListEntry Entry; 6747 Entry.Node = DemoteStackSlot; 6748 Entry.Ty = StackSlotPtrType; 6749 Entry.isSExt = false; 6750 Entry.isZExt = false; 6751 Entry.isInReg = false; 6752 Entry.isSRet = true; 6753 Entry.isNest = false; 6754 Entry.isByVal = false; 6755 Entry.isReturned = false; 6756 Entry.Alignment = Align; 6757 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6758 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6759 6760 // sret demotion isn't compatible with tail-calls, since the sret argument 6761 // points into the callers stack frame. 6762 CLI.IsTailCall = false; 6763 } else { 6764 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6765 EVT VT = RetTys[I]; 6766 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6767 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6768 for (unsigned i = 0; i != NumRegs; ++i) { 6769 ISD::InputArg MyFlags; 6770 MyFlags.VT = RegisterVT; 6771 MyFlags.ArgVT = VT; 6772 MyFlags.Used = CLI.IsReturnValueUsed; 6773 if (CLI.RetSExt) 6774 MyFlags.Flags.setSExt(); 6775 if (CLI.RetZExt) 6776 MyFlags.Flags.setZExt(); 6777 if (CLI.IsInReg) 6778 MyFlags.Flags.setInReg(); 6779 CLI.Ins.push_back(MyFlags); 6780 } 6781 } 6782 } 6783 6784 // Handle all of the outgoing arguments. 6785 CLI.Outs.clear(); 6786 CLI.OutVals.clear(); 6787 ArgListTy &Args = CLI.getArgs(); 6788 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6789 SmallVector<EVT, 4> ValueVTs; 6790 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6791 Type *FinalType = Args[i].Ty; 6792 if (Args[i].isByVal) 6793 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6794 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6795 FinalType, CLI.CallConv, CLI.IsVarArg); 6796 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6797 ++Value) { 6798 EVT VT = ValueVTs[Value]; 6799 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6800 SDValue Op = SDValue(Args[i].Node.getNode(), 6801 Args[i].Node.getResNo() + Value); 6802 ISD::ArgFlagsTy Flags; 6803 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6804 6805 if (Args[i].isZExt) 6806 Flags.setZExt(); 6807 if (Args[i].isSExt) 6808 Flags.setSExt(); 6809 if (Args[i].isInReg) 6810 Flags.setInReg(); 6811 if (Args[i].isSRet) 6812 Flags.setSRet(); 6813 if (Args[i].isByVal) 6814 Flags.setByVal(); 6815 if (Args[i].isInAlloca) { 6816 Flags.setInAlloca(); 6817 // Set the byval flag for CCAssignFn callbacks that don't know about 6818 // inalloca. This way we can know how many bytes we should've allocated 6819 // and how many bytes a callee cleanup function will pop. If we port 6820 // inalloca to more targets, we'll have to add custom inalloca handling 6821 // in the various CC lowering callbacks. 6822 Flags.setByVal(); 6823 } 6824 if (Args[i].isByVal || Args[i].isInAlloca) { 6825 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6826 Type *ElementTy = Ty->getElementType(); 6827 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6828 // For ByVal, alignment should come from FE. BE will guess if this 6829 // info is not there but there are cases it cannot get right. 6830 unsigned FrameAlign; 6831 if (Args[i].Alignment) 6832 FrameAlign = Args[i].Alignment; 6833 else 6834 FrameAlign = getByValTypeAlignment(ElementTy); 6835 Flags.setByValAlign(FrameAlign); 6836 } 6837 if (Args[i].isNest) 6838 Flags.setNest(); 6839 if (NeedsRegBlock) 6840 Flags.setInConsecutiveRegs(); 6841 Flags.setOrigAlign(OriginalAlignment); 6842 6843 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6844 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6845 SmallVector<SDValue, 4> Parts(NumParts); 6846 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6847 6848 if (Args[i].isSExt) 6849 ExtendKind = ISD::SIGN_EXTEND; 6850 else if (Args[i].isZExt) 6851 ExtendKind = ISD::ZERO_EXTEND; 6852 6853 // Conservatively only handle 'returned' on non-vectors for now 6854 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6855 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6856 "unexpected use of 'returned'"); 6857 // Before passing 'returned' to the target lowering code, ensure that 6858 // either the register MVT and the actual EVT are the same size or that 6859 // the return value and argument are extended in the same way; in these 6860 // cases it's safe to pass the argument register value unchanged as the 6861 // return register value (although it's at the target's option whether 6862 // to do so) 6863 // TODO: allow code generation to take advantage of partially preserved 6864 // registers rather than clobbering the entire register when the 6865 // parameter extension method is not compatible with the return 6866 // extension method 6867 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6868 (ExtendKind != ISD::ANY_EXTEND && 6869 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6870 Flags.setReturned(); 6871 } 6872 6873 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6874 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6875 6876 for (unsigned j = 0; j != NumParts; ++j) { 6877 // if it isn't first piece, alignment must be 1 6878 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6879 i < CLI.NumFixedArgs, 6880 i, j*Parts[j].getValueType().getStoreSize()); 6881 if (NumParts > 1 && j == 0) 6882 MyFlags.Flags.setSplit(); 6883 else if (j != 0) 6884 MyFlags.Flags.setOrigAlign(1); 6885 6886 CLI.Outs.push_back(MyFlags); 6887 CLI.OutVals.push_back(Parts[j]); 6888 } 6889 6890 if (NeedsRegBlock && Value == NumValues - 1) 6891 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6892 } 6893 } 6894 6895 SmallVector<SDValue, 4> InVals; 6896 CLI.Chain = LowerCall(CLI, InVals); 6897 6898 // Verify that the target's LowerCall behaved as expected. 6899 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6900 "LowerCall didn't return a valid chain!"); 6901 assert((!CLI.IsTailCall || InVals.empty()) && 6902 "LowerCall emitted a return value for a tail call!"); 6903 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6904 "LowerCall didn't emit the correct number of values!"); 6905 6906 // For a tail call, the return value is merely live-out and there aren't 6907 // any nodes in the DAG representing it. Return a special value to 6908 // indicate that a tail call has been emitted and no more Instructions 6909 // should be processed in the current block. 6910 if (CLI.IsTailCall) { 6911 CLI.DAG.setRoot(CLI.Chain); 6912 return std::make_pair(SDValue(), SDValue()); 6913 } 6914 6915 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6916 assert(InVals[i].getNode() && 6917 "LowerCall emitted a null value!"); 6918 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6919 "LowerCall emitted a value with the wrong type!"); 6920 }); 6921 6922 SmallVector<SDValue, 4> ReturnValues; 6923 if (!CanLowerReturn) { 6924 // The instruction result is the result of loading from the 6925 // hidden sret parameter. 6926 SmallVector<EVT, 1> PVTs; 6927 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6928 6929 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6930 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6931 EVT PtrVT = PVTs[0]; 6932 6933 unsigned NumValues = RetTys.size(); 6934 ReturnValues.resize(NumValues); 6935 SmallVector<SDValue, 4> Chains(NumValues); 6936 6937 for (unsigned i = 0; i < NumValues; ++i) { 6938 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6939 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6940 PtrVT)); 6941 SDValue L = CLI.DAG.getLoad( 6942 RetTys[i], CLI.DL, CLI.Chain, Add, 6943 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6944 false, false, 1); 6945 ReturnValues[i] = L; 6946 Chains[i] = L.getValue(1); 6947 } 6948 6949 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6950 } else { 6951 // Collect the legal value parts into potentially illegal values 6952 // that correspond to the original function's return values. 6953 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6954 if (CLI.RetSExt) 6955 AssertOp = ISD::AssertSext; 6956 else if (CLI.RetZExt) 6957 AssertOp = ISD::AssertZext; 6958 unsigned CurReg = 0; 6959 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6960 EVT VT = RetTys[I]; 6961 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6962 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6963 6964 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6965 NumRegs, RegisterVT, VT, nullptr, 6966 AssertOp)); 6967 CurReg += NumRegs; 6968 } 6969 6970 // For a function returning void, there is no return value. We can't create 6971 // such a node, so we just return a null return value in that case. In 6972 // that case, nothing will actually look at the value. 6973 if (ReturnValues.empty()) 6974 return std::make_pair(SDValue(), CLI.Chain); 6975 } 6976 6977 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6978 CLI.DAG.getVTList(RetTys), ReturnValues); 6979 return std::make_pair(Res, CLI.Chain); 6980 } 6981 6982 void TargetLowering::LowerOperationWrapper(SDNode *N, 6983 SmallVectorImpl<SDValue> &Results, 6984 SelectionDAG &DAG) const { 6985 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6986 if (Res.getNode()) 6987 Results.push_back(Res); 6988 } 6989 6990 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6991 llvm_unreachable("LowerOperation not implemented for this target!"); 6992 } 6993 6994 void 6995 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6996 SDValue Op = getNonRegisterValue(V); 6997 assert((Op.getOpcode() != ISD::CopyFromReg || 6998 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6999 "Copy from a reg to the same reg!"); 7000 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7001 7002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7003 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7004 V->getType()); 7005 SDValue Chain = DAG.getEntryNode(); 7006 7007 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7008 FuncInfo.PreferredExtendType.end()) 7009 ? ISD::ANY_EXTEND 7010 : FuncInfo.PreferredExtendType[V]; 7011 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7012 PendingExports.push_back(Chain); 7013 } 7014 7015 #include "llvm/CodeGen/SelectionDAGISel.h" 7016 7017 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7018 /// entry block, return true. This includes arguments used by switches, since 7019 /// the switch may expand into multiple basic blocks. 7020 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7021 // With FastISel active, we may be splitting blocks, so force creation 7022 // of virtual registers for all non-dead arguments. 7023 if (FastISel) 7024 return A->use_empty(); 7025 7026 const BasicBlock *Entry = A->getParent()->begin(); 7027 for (const User *U : A->users()) 7028 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7029 return false; // Use not in entry block. 7030 7031 return true; 7032 } 7033 7034 void SelectionDAGISel::LowerArguments(const Function &F) { 7035 SelectionDAG &DAG = SDB->DAG; 7036 SDLoc dl = SDB->getCurSDLoc(); 7037 const DataLayout &DL = DAG.getDataLayout(); 7038 SmallVector<ISD::InputArg, 16> Ins; 7039 7040 if (!FuncInfo->CanLowerReturn) { 7041 // Put in an sret pointer parameter before all the other parameters. 7042 SmallVector<EVT, 1> ValueVTs; 7043 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7044 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7045 7046 // NOTE: Assuming that a pointer will never break down to more than one VT 7047 // or one register. 7048 ISD::ArgFlagsTy Flags; 7049 Flags.setSRet(); 7050 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7051 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7052 ISD::InputArg::NoArgIndex, 0); 7053 Ins.push_back(RetArg); 7054 } 7055 7056 // Set up the incoming argument description vector. 7057 unsigned Idx = 1; 7058 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7059 I != E; ++I, ++Idx) { 7060 SmallVector<EVT, 4> ValueVTs; 7061 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7062 bool isArgValueUsed = !I->use_empty(); 7063 unsigned PartBase = 0; 7064 Type *FinalType = I->getType(); 7065 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7066 FinalType = cast<PointerType>(FinalType)->getElementType(); 7067 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7068 FinalType, F.getCallingConv(), F.isVarArg()); 7069 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7070 Value != NumValues; ++Value) { 7071 EVT VT = ValueVTs[Value]; 7072 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7073 ISD::ArgFlagsTy Flags; 7074 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7075 7076 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7077 Flags.setZExt(); 7078 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7079 Flags.setSExt(); 7080 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7081 Flags.setInReg(); 7082 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7083 Flags.setSRet(); 7084 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7085 Flags.setByVal(); 7086 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7087 Flags.setInAlloca(); 7088 // Set the byval flag for CCAssignFn callbacks that don't know about 7089 // inalloca. This way we can know how many bytes we should've allocated 7090 // and how many bytes a callee cleanup function will pop. If we port 7091 // inalloca to more targets, we'll have to add custom inalloca handling 7092 // in the various CC lowering callbacks. 7093 Flags.setByVal(); 7094 } 7095 if (Flags.isByVal() || Flags.isInAlloca()) { 7096 PointerType *Ty = cast<PointerType>(I->getType()); 7097 Type *ElementTy = Ty->getElementType(); 7098 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7099 // For ByVal, alignment should be passed from FE. BE will guess if 7100 // this info is not there but there are cases it cannot get right. 7101 unsigned FrameAlign; 7102 if (F.getParamAlignment(Idx)) 7103 FrameAlign = F.getParamAlignment(Idx); 7104 else 7105 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7106 Flags.setByValAlign(FrameAlign); 7107 } 7108 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7109 Flags.setNest(); 7110 if (NeedsRegBlock) 7111 Flags.setInConsecutiveRegs(); 7112 Flags.setOrigAlign(OriginalAlignment); 7113 7114 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7115 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7116 for (unsigned i = 0; i != NumRegs; ++i) { 7117 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7118 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7119 if (NumRegs > 1 && i == 0) 7120 MyFlags.Flags.setSplit(); 7121 // if it isn't first piece, alignment must be 1 7122 else if (i > 0) 7123 MyFlags.Flags.setOrigAlign(1); 7124 Ins.push_back(MyFlags); 7125 } 7126 if (NeedsRegBlock && Value == NumValues - 1) 7127 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7128 PartBase += VT.getStoreSize(); 7129 } 7130 } 7131 7132 // Call the target to set up the argument values. 7133 SmallVector<SDValue, 8> InVals; 7134 SDValue NewRoot = TLI->LowerFormalArguments( 7135 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7136 7137 // Verify that the target's LowerFormalArguments behaved as expected. 7138 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7139 "LowerFormalArguments didn't return a valid chain!"); 7140 assert(InVals.size() == Ins.size() && 7141 "LowerFormalArguments didn't emit the correct number of values!"); 7142 DEBUG({ 7143 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7144 assert(InVals[i].getNode() && 7145 "LowerFormalArguments emitted a null value!"); 7146 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7147 "LowerFormalArguments emitted a value with the wrong type!"); 7148 } 7149 }); 7150 7151 // Update the DAG with the new chain value resulting from argument lowering. 7152 DAG.setRoot(NewRoot); 7153 7154 // Set up the argument values. 7155 unsigned i = 0; 7156 Idx = 1; 7157 if (!FuncInfo->CanLowerReturn) { 7158 // Create a virtual register for the sret pointer, and put in a copy 7159 // from the sret argument into it. 7160 SmallVector<EVT, 1> ValueVTs; 7161 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7162 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7163 MVT VT = ValueVTs[0].getSimpleVT(); 7164 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7165 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7166 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7167 RegVT, VT, nullptr, AssertOp); 7168 7169 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7170 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7171 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7172 FuncInfo->DemoteRegister = SRetReg; 7173 NewRoot = 7174 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7175 DAG.setRoot(NewRoot); 7176 7177 // i indexes lowered arguments. Bump it past the hidden sret argument. 7178 // Idx indexes LLVM arguments. Don't touch it. 7179 ++i; 7180 } 7181 7182 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7183 ++I, ++Idx) { 7184 SmallVector<SDValue, 4> ArgValues; 7185 SmallVector<EVT, 4> ValueVTs; 7186 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7187 unsigned NumValues = ValueVTs.size(); 7188 7189 // If this argument is unused then remember its value. It is used to generate 7190 // debugging information. 7191 if (I->use_empty() && NumValues) { 7192 SDB->setUnusedArgValue(I, InVals[i]); 7193 7194 // Also remember any frame index for use in FastISel. 7195 if (FrameIndexSDNode *FI = 7196 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7197 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7198 } 7199 7200 for (unsigned Val = 0; Val != NumValues; ++Val) { 7201 EVT VT = ValueVTs[Val]; 7202 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7203 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7204 7205 if (!I->use_empty()) { 7206 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7207 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7208 AssertOp = ISD::AssertSext; 7209 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7210 AssertOp = ISD::AssertZext; 7211 7212 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7213 NumParts, PartVT, VT, 7214 nullptr, AssertOp)); 7215 } 7216 7217 i += NumParts; 7218 } 7219 7220 // We don't need to do anything else for unused arguments. 7221 if (ArgValues.empty()) 7222 continue; 7223 7224 // Note down frame index. 7225 if (FrameIndexSDNode *FI = 7226 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7227 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7228 7229 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7230 SDB->getCurSDLoc()); 7231 7232 SDB->setValue(I, Res); 7233 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7234 if (LoadSDNode *LNode = 7235 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7236 if (FrameIndexSDNode *FI = 7237 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7238 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7239 } 7240 7241 // If this argument is live outside of the entry block, insert a copy from 7242 // wherever we got it to the vreg that other BB's will reference it as. 7243 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7244 // If we can, though, try to skip creating an unnecessary vreg. 7245 // FIXME: This isn't very clean... it would be nice to make this more 7246 // general. It's also subtly incompatible with the hacks FastISel 7247 // uses with vregs. 7248 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7249 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7250 FuncInfo->ValueMap[I] = Reg; 7251 continue; 7252 } 7253 } 7254 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7255 FuncInfo->InitializeRegForValue(I); 7256 SDB->CopyToExportRegsIfNeeded(I); 7257 } 7258 } 7259 7260 assert(i == InVals.size() && "Argument register count mismatch!"); 7261 7262 // Finally, if the target has anything special to do, allow it to do so. 7263 EmitFunctionEntryCode(); 7264 } 7265 7266 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7267 /// ensure constants are generated when needed. Remember the virtual registers 7268 /// that need to be added to the Machine PHI nodes as input. We cannot just 7269 /// directly add them, because expansion might result in multiple MBB's for one 7270 /// BB. As such, the start of the BB might correspond to a different MBB than 7271 /// the end. 7272 /// 7273 void 7274 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7275 const TerminatorInst *TI = LLVMBB->getTerminator(); 7276 7277 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7278 7279 // Check PHI nodes in successors that expect a value to be available from this 7280 // block. 7281 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7282 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7283 if (!isa<PHINode>(SuccBB->begin())) continue; 7284 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7285 7286 // If this terminator has multiple identical successors (common for 7287 // switches), only handle each succ once. 7288 if (!SuccsHandled.insert(SuccMBB).second) 7289 continue; 7290 7291 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7292 7293 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7294 // nodes and Machine PHI nodes, but the incoming operands have not been 7295 // emitted yet. 7296 for (BasicBlock::const_iterator I = SuccBB->begin(); 7297 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7298 // Ignore dead phi's. 7299 if (PN->use_empty()) continue; 7300 7301 // Skip empty types 7302 if (PN->getType()->isEmptyTy()) 7303 continue; 7304 7305 unsigned Reg; 7306 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7307 7308 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7309 unsigned &RegOut = ConstantsOut[C]; 7310 if (RegOut == 0) { 7311 RegOut = FuncInfo.CreateRegs(C->getType()); 7312 CopyValueToVirtualRegister(C, RegOut); 7313 } 7314 Reg = RegOut; 7315 } else { 7316 DenseMap<const Value *, unsigned>::iterator I = 7317 FuncInfo.ValueMap.find(PHIOp); 7318 if (I != FuncInfo.ValueMap.end()) 7319 Reg = I->second; 7320 else { 7321 assert(isa<AllocaInst>(PHIOp) && 7322 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7323 "Didn't codegen value into a register!??"); 7324 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7325 CopyValueToVirtualRegister(PHIOp, Reg); 7326 } 7327 } 7328 7329 // Remember that this register needs to added to the machine PHI node as 7330 // the input for this MBB. 7331 SmallVector<EVT, 4> ValueVTs; 7332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7333 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7334 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7335 EVT VT = ValueVTs[vti]; 7336 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7337 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7338 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7339 Reg += NumRegisters; 7340 } 7341 } 7342 } 7343 7344 ConstantsOut.clear(); 7345 } 7346 7347 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7348 /// is 0. 7349 MachineBasicBlock * 7350 SelectionDAGBuilder::StackProtectorDescriptor:: 7351 AddSuccessorMBB(const BasicBlock *BB, 7352 MachineBasicBlock *ParentMBB, 7353 bool IsLikely, 7354 MachineBasicBlock *SuccMBB) { 7355 // If SuccBB has not been created yet, create it. 7356 if (!SuccMBB) { 7357 MachineFunction *MF = ParentMBB->getParent(); 7358 MachineFunction::iterator BBI = ParentMBB; 7359 SuccMBB = MF->CreateMachineBasicBlock(BB); 7360 MF->insert(++BBI, SuccMBB); 7361 } 7362 // Add it as a successor of ParentMBB. 7363 ParentMBB->addSuccessor( 7364 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7365 return SuccMBB; 7366 } 7367 7368 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7369 MachineFunction::iterator I = MBB; 7370 if (++I == FuncInfo.MF->end()) 7371 return nullptr; 7372 return I; 7373 } 7374 7375 /// During lowering new call nodes can be created (such as memset, etc.). 7376 /// Those will become new roots of the current DAG, but complications arise 7377 /// when they are tail calls. In such cases, the call lowering will update 7378 /// the root, but the builder still needs to know that a tail call has been 7379 /// lowered in order to avoid generating an additional return. 7380 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7381 // If the node is null, we do have a tail call. 7382 if (MaybeTC.getNode() != nullptr) 7383 DAG.setRoot(MaybeTC); 7384 else 7385 HasTailCall = true; 7386 } 7387 7388 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7389 unsigned *TotalCases, unsigned First, 7390 unsigned Last) { 7391 assert(Last >= First); 7392 assert(TotalCases[Last] >= TotalCases[First]); 7393 7394 APInt LowCase = Clusters[First].Low->getValue(); 7395 APInt HighCase = Clusters[Last].High->getValue(); 7396 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7397 7398 // FIXME: A range of consecutive cases has 100% density, but only requires one 7399 // comparison to lower. We should discriminate against such consecutive ranges 7400 // in jump tables. 7401 7402 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7403 uint64_t Range = Diff + 1; 7404 7405 uint64_t NumCases = 7406 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7407 7408 assert(NumCases < UINT64_MAX / 100); 7409 assert(Range >= NumCases); 7410 7411 return NumCases * 100 >= Range * MinJumpTableDensity; 7412 } 7413 7414 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7415 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7416 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7417 } 7418 7419 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7420 unsigned First, unsigned Last, 7421 const SwitchInst *SI, 7422 MachineBasicBlock *DefaultMBB, 7423 CaseCluster &JTCluster) { 7424 assert(First <= Last); 7425 7426 uint32_t Weight = 0; 7427 unsigned NumCmps = 0; 7428 std::vector<MachineBasicBlock*> Table; 7429 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7430 for (unsigned I = First; I <= Last; ++I) { 7431 assert(Clusters[I].Kind == CC_Range); 7432 Weight += Clusters[I].Weight; 7433 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7434 APInt Low = Clusters[I].Low->getValue(); 7435 APInt High = Clusters[I].High->getValue(); 7436 NumCmps += (Low == High) ? 1 : 2; 7437 if (I != First) { 7438 // Fill the gap between this and the previous cluster. 7439 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7440 assert(PreviousHigh.slt(Low)); 7441 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7442 for (uint64_t J = 0; J < Gap; J++) 7443 Table.push_back(DefaultMBB); 7444 } 7445 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7446 for (uint64_t J = 0; J < ClusterSize; ++J) 7447 Table.push_back(Clusters[I].MBB); 7448 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7449 } 7450 7451 unsigned NumDests = JTWeights.size(); 7452 if (isSuitableForBitTests(NumDests, NumCmps, 7453 Clusters[First].Low->getValue(), 7454 Clusters[Last].High->getValue())) { 7455 // Clusters[First..Last] should be lowered as bit tests instead. 7456 return false; 7457 } 7458 7459 // Create the MBB that will load from and jump through the table. 7460 // Note: We create it here, but it's not inserted into the function yet. 7461 MachineFunction *CurMF = FuncInfo.MF; 7462 MachineBasicBlock *JumpTableMBB = 7463 CurMF->CreateMachineBasicBlock(SI->getParent()); 7464 7465 // Add successors. Note: use table order for determinism. 7466 SmallPtrSet<MachineBasicBlock *, 8> Done; 7467 for (MachineBasicBlock *Succ : Table) { 7468 if (Done.count(Succ)) 7469 continue; 7470 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7471 Done.insert(Succ); 7472 } 7473 7474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7475 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7476 ->createJumpTableIndex(Table); 7477 7478 // Set up the jump table info. 7479 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7480 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7481 Clusters[Last].High->getValue(), SI->getCondition(), 7482 nullptr, false); 7483 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7484 7485 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7486 JTCases.size() - 1, Weight); 7487 return true; 7488 } 7489 7490 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7491 const SwitchInst *SI, 7492 MachineBasicBlock *DefaultMBB) { 7493 #ifndef NDEBUG 7494 // Clusters must be non-empty, sorted, and only contain Range clusters. 7495 assert(!Clusters.empty()); 7496 for (CaseCluster &C : Clusters) 7497 assert(C.Kind == CC_Range); 7498 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7499 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7500 #endif 7501 7502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7503 if (!areJTsAllowed(TLI)) 7504 return; 7505 7506 const int64_t N = Clusters.size(); 7507 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7508 7509 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7510 SmallVector<unsigned, 8> TotalCases(N); 7511 7512 for (unsigned i = 0; i < N; ++i) { 7513 APInt Hi = Clusters[i].High->getValue(); 7514 APInt Lo = Clusters[i].Low->getValue(); 7515 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7516 if (i != 0) 7517 TotalCases[i] += TotalCases[i - 1]; 7518 } 7519 7520 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7521 // Cheap case: the whole range might be suitable for jump table. 7522 CaseCluster JTCluster; 7523 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7524 Clusters[0] = JTCluster; 7525 Clusters.resize(1); 7526 return; 7527 } 7528 } 7529 7530 // The algorithm below is not suitable for -O0. 7531 if (TM.getOptLevel() == CodeGenOpt::None) 7532 return; 7533 7534 // Split Clusters into minimum number of dense partitions. The algorithm uses 7535 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7536 // for the Case Statement'" (1994), but builds the MinPartitions array in 7537 // reverse order to make it easier to reconstruct the partitions in ascending 7538 // order. In the choice between two optimal partitionings, it picks the one 7539 // which yields more jump tables. 7540 7541 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7542 SmallVector<unsigned, 8> MinPartitions(N); 7543 // LastElement[i] is the last element of the partition starting at i. 7544 SmallVector<unsigned, 8> LastElement(N); 7545 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7546 SmallVector<unsigned, 8> NumTables(N); 7547 7548 // Base case: There is only one way to partition Clusters[N-1]. 7549 MinPartitions[N - 1] = 1; 7550 LastElement[N - 1] = N - 1; 7551 assert(MinJumpTableSize > 1); 7552 NumTables[N - 1] = 0; 7553 7554 // Note: loop indexes are signed to avoid underflow. 7555 for (int64_t i = N - 2; i >= 0; i--) { 7556 // Find optimal partitioning of Clusters[i..N-1]. 7557 // Baseline: Put Clusters[i] into a partition on its own. 7558 MinPartitions[i] = MinPartitions[i + 1] + 1; 7559 LastElement[i] = i; 7560 NumTables[i] = NumTables[i + 1]; 7561 7562 // Search for a solution that results in fewer partitions. 7563 for (int64_t j = N - 1; j > i; j--) { 7564 // Try building a partition from Clusters[i..j]. 7565 if (isDense(Clusters, &TotalCases[0], i, j)) { 7566 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7567 bool IsTable = j - i + 1 >= MinJumpTableSize; 7568 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7569 7570 // If this j leads to fewer partitions, or same number of partitions 7571 // with more lookup tables, it is a better partitioning. 7572 if (NumPartitions < MinPartitions[i] || 7573 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7574 MinPartitions[i] = NumPartitions; 7575 LastElement[i] = j; 7576 NumTables[i] = Tables; 7577 } 7578 } 7579 } 7580 } 7581 7582 // Iterate over the partitions, replacing some with jump tables in-place. 7583 unsigned DstIndex = 0; 7584 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7585 Last = LastElement[First]; 7586 assert(Last >= First); 7587 assert(DstIndex <= First); 7588 unsigned NumClusters = Last - First + 1; 7589 7590 CaseCluster JTCluster; 7591 if (NumClusters >= MinJumpTableSize && 7592 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7593 Clusters[DstIndex++] = JTCluster; 7594 } else { 7595 for (unsigned I = First; I <= Last; ++I) 7596 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7597 } 7598 } 7599 Clusters.resize(DstIndex); 7600 } 7601 7602 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7603 // FIXME: Using the pointer type doesn't seem ideal. 7604 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7605 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7606 return Range <= BW; 7607 } 7608 7609 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7610 unsigned NumCmps, 7611 const APInt &Low, 7612 const APInt &High) { 7613 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7614 // range of cases both require only one branch to lower. Just looking at the 7615 // number of clusters and destinations should be enough to decide whether to 7616 // build bit tests. 7617 7618 // To lower a range with bit tests, the range must fit the bitwidth of a 7619 // machine word. 7620 if (!rangeFitsInWord(Low, High)) 7621 return false; 7622 7623 // Decide whether it's profitable to lower this range with bit tests. Each 7624 // destination requires a bit test and branch, and there is an overall range 7625 // check branch. For a small number of clusters, separate comparisons might be 7626 // cheaper, and for many destinations, splitting the range might be better. 7627 return (NumDests == 1 && NumCmps >= 3) || 7628 (NumDests == 2 && NumCmps >= 5) || 7629 (NumDests == 3 && NumCmps >= 6); 7630 } 7631 7632 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7633 unsigned First, unsigned Last, 7634 const SwitchInst *SI, 7635 CaseCluster &BTCluster) { 7636 assert(First <= Last); 7637 if (First == Last) 7638 return false; 7639 7640 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7641 unsigned NumCmps = 0; 7642 for (int64_t I = First; I <= Last; ++I) { 7643 assert(Clusters[I].Kind == CC_Range); 7644 Dests.set(Clusters[I].MBB->getNumber()); 7645 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7646 } 7647 unsigned NumDests = Dests.count(); 7648 7649 APInt Low = Clusters[First].Low->getValue(); 7650 APInt High = Clusters[Last].High->getValue(); 7651 assert(Low.slt(High)); 7652 7653 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7654 return false; 7655 7656 APInt LowBound; 7657 APInt CmpRange; 7658 7659 const int BitWidth = 7660 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7661 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7662 7663 if (Low.isNonNegative() && High.slt(BitWidth)) { 7664 // Optimize the case where all the case values fit in a 7665 // word without having to subtract minValue. In this case, 7666 // we can optimize away the subtraction. 7667 LowBound = APInt::getNullValue(Low.getBitWidth()); 7668 CmpRange = High; 7669 } else { 7670 LowBound = Low; 7671 CmpRange = High - Low; 7672 } 7673 7674 CaseBitsVector CBV; 7675 uint32_t TotalWeight = 0; 7676 for (unsigned i = First; i <= Last; ++i) { 7677 // Find the CaseBits for this destination. 7678 unsigned j; 7679 for (j = 0; j < CBV.size(); ++j) 7680 if (CBV[j].BB == Clusters[i].MBB) 7681 break; 7682 if (j == CBV.size()) 7683 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7684 CaseBits *CB = &CBV[j]; 7685 7686 // Update Mask, Bits and ExtraWeight. 7687 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7688 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7689 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7690 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7691 CB->Bits += Hi - Lo + 1; 7692 CB->ExtraWeight += Clusters[i].Weight; 7693 TotalWeight += Clusters[i].Weight; 7694 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7695 } 7696 7697 BitTestInfo BTI; 7698 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7699 // Sort by weight first, number of bits second. 7700 if (a.ExtraWeight != b.ExtraWeight) 7701 return a.ExtraWeight > b.ExtraWeight; 7702 return a.Bits > b.Bits; 7703 }); 7704 7705 for (auto &CB : CBV) { 7706 MachineBasicBlock *BitTestBB = 7707 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7708 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7709 } 7710 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7711 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7712 nullptr, std::move(BTI)); 7713 7714 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7715 BitTestCases.size() - 1, TotalWeight); 7716 return true; 7717 } 7718 7719 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7720 const SwitchInst *SI) { 7721 // Partition Clusters into as few subsets as possible, where each subset has a 7722 // range that fits in a machine word and has <= 3 unique destinations. 7723 7724 #ifndef NDEBUG 7725 // Clusters must be sorted and contain Range or JumpTable clusters. 7726 assert(!Clusters.empty()); 7727 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7728 for (const CaseCluster &C : Clusters) 7729 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7730 for (unsigned i = 1; i < Clusters.size(); ++i) 7731 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7732 #endif 7733 7734 // The algorithm below is not suitable for -O0. 7735 if (TM.getOptLevel() == CodeGenOpt::None) 7736 return; 7737 7738 // If target does not have legal shift left, do not emit bit tests at all. 7739 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7740 EVT PTy = TLI.getPointerTy(); 7741 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7742 return; 7743 7744 int BitWidth = PTy.getSizeInBits(); 7745 const int64_t N = Clusters.size(); 7746 7747 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7748 SmallVector<unsigned, 8> MinPartitions(N); 7749 // LastElement[i] is the last element of the partition starting at i. 7750 SmallVector<unsigned, 8> LastElement(N); 7751 7752 // FIXME: This might not be the best algorithm for finding bit test clusters. 7753 7754 // Base case: There is only one way to partition Clusters[N-1]. 7755 MinPartitions[N - 1] = 1; 7756 LastElement[N - 1] = N - 1; 7757 7758 // Note: loop indexes are signed to avoid underflow. 7759 for (int64_t i = N - 2; i >= 0; --i) { 7760 // Find optimal partitioning of Clusters[i..N-1]. 7761 // Baseline: Put Clusters[i] into a partition on its own. 7762 MinPartitions[i] = MinPartitions[i + 1] + 1; 7763 LastElement[i] = i; 7764 7765 // Search for a solution that results in fewer partitions. 7766 // Note: the search is limited by BitWidth, reducing time complexity. 7767 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7768 // Try building a partition from Clusters[i..j]. 7769 7770 // Check the range. 7771 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7772 Clusters[j].High->getValue())) 7773 continue; 7774 7775 // Check nbr of destinations and cluster types. 7776 // FIXME: This works, but doesn't seem very efficient. 7777 bool RangesOnly = true; 7778 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7779 for (int64_t k = i; k <= j; k++) { 7780 if (Clusters[k].Kind != CC_Range) { 7781 RangesOnly = false; 7782 break; 7783 } 7784 Dests.set(Clusters[k].MBB->getNumber()); 7785 } 7786 if (!RangesOnly || Dests.count() > 3) 7787 break; 7788 7789 // Check if it's a better partition. 7790 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7791 if (NumPartitions < MinPartitions[i]) { 7792 // Found a better partition. 7793 MinPartitions[i] = NumPartitions; 7794 LastElement[i] = j; 7795 } 7796 } 7797 } 7798 7799 // Iterate over the partitions, replacing with bit-test clusters in-place. 7800 unsigned DstIndex = 0; 7801 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7802 Last = LastElement[First]; 7803 assert(First <= Last); 7804 assert(DstIndex <= First); 7805 7806 CaseCluster BitTestCluster; 7807 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7808 Clusters[DstIndex++] = BitTestCluster; 7809 } else { 7810 size_t NumClusters = Last - First + 1; 7811 std::memmove(&Clusters[DstIndex], &Clusters[First], 7812 sizeof(Clusters[0]) * NumClusters); 7813 DstIndex += NumClusters; 7814 } 7815 } 7816 Clusters.resize(DstIndex); 7817 } 7818 7819 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7820 MachineBasicBlock *SwitchMBB, 7821 MachineBasicBlock *DefaultMBB) { 7822 MachineFunction *CurMF = FuncInfo.MF; 7823 MachineBasicBlock *NextMBB = nullptr; 7824 MachineFunction::iterator BBI = W.MBB; 7825 if (++BBI != FuncInfo.MF->end()) 7826 NextMBB = BBI; 7827 7828 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7829 7830 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7831 7832 if (Size == 2 && W.MBB == SwitchMBB) { 7833 // If any two of the cases has the same destination, and if one value 7834 // is the same as the other, but has one bit unset that the other has set, 7835 // use bit manipulation to do two compares at once. For example: 7836 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7837 // TODO: This could be extended to merge any 2 cases in switches with 3 7838 // cases. 7839 // TODO: Handle cases where W.CaseBB != SwitchBB. 7840 CaseCluster &Small = *W.FirstCluster; 7841 CaseCluster &Big = *W.LastCluster; 7842 7843 if (Small.Low == Small.High && Big.Low == Big.High && 7844 Small.MBB == Big.MBB) { 7845 const APInt &SmallValue = Small.Low->getValue(); 7846 const APInt &BigValue = Big.Low->getValue(); 7847 7848 // Check that there is only one bit different. 7849 APInt CommonBit = BigValue ^ SmallValue; 7850 if (CommonBit.isPowerOf2()) { 7851 SDValue CondLHS = getValue(Cond); 7852 EVT VT = CondLHS.getValueType(); 7853 SDLoc DL = getCurSDLoc(); 7854 7855 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7856 DAG.getConstant(CommonBit, DL, VT)); 7857 SDValue Cond = DAG.getSetCC( 7858 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7859 ISD::SETEQ); 7860 7861 // Update successor info. 7862 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7863 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7864 addSuccessorWithWeight( 7865 SwitchMBB, DefaultMBB, 7866 // The default destination is the first successor in IR. 7867 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7868 : 0); 7869 7870 // Insert the true branch. 7871 SDValue BrCond = 7872 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7873 DAG.getBasicBlock(Small.MBB)); 7874 // Insert the false branch. 7875 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7876 DAG.getBasicBlock(DefaultMBB)); 7877 7878 DAG.setRoot(BrCond); 7879 return; 7880 } 7881 } 7882 } 7883 7884 if (TM.getOptLevel() != CodeGenOpt::None) { 7885 // Order cases by weight so the most likely case will be checked first. 7886 std::sort(W.FirstCluster, W.LastCluster + 1, 7887 [](const CaseCluster &a, const CaseCluster &b) { 7888 return a.Weight > b.Weight; 7889 }); 7890 7891 // Rearrange the case blocks so that the last one falls through if possible 7892 // without without changing the order of weights. 7893 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7894 --I; 7895 if (I->Weight > W.LastCluster->Weight) 7896 break; 7897 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7898 std::swap(*I, *W.LastCluster); 7899 break; 7900 } 7901 } 7902 } 7903 7904 // Compute total weight. 7905 uint32_t UnhandledWeights = 0; 7906 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7907 UnhandledWeights += I->Weight; 7908 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7909 } 7910 7911 MachineBasicBlock *CurMBB = W.MBB; 7912 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7913 MachineBasicBlock *Fallthrough; 7914 if (I == W.LastCluster) { 7915 // For the last cluster, fall through to the default destination. 7916 Fallthrough = DefaultMBB; 7917 } else { 7918 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7919 CurMF->insert(BBI, Fallthrough); 7920 // Put Cond in a virtual register to make it available from the new blocks. 7921 ExportFromCurrentBlock(Cond); 7922 } 7923 7924 switch (I->Kind) { 7925 case CC_JumpTable: { 7926 // FIXME: Optimize away range check based on pivot comparisons. 7927 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7928 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7929 7930 // The jump block hasn't been inserted yet; insert it here. 7931 MachineBasicBlock *JumpMBB = JT->MBB; 7932 CurMF->insert(BBI, JumpMBB); 7933 addSuccessorWithWeight(CurMBB, Fallthrough); 7934 addSuccessorWithWeight(CurMBB, JumpMBB); 7935 7936 // The jump table header will be inserted in our current block, do the 7937 // range check, and fall through to our fallthrough block. 7938 JTH->HeaderBB = CurMBB; 7939 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7940 7941 // If we're in the right place, emit the jump table header right now. 7942 if (CurMBB == SwitchMBB) { 7943 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7944 JTH->Emitted = true; 7945 } 7946 break; 7947 } 7948 case CC_BitTests: { 7949 // FIXME: Optimize away range check based on pivot comparisons. 7950 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7951 7952 // The bit test blocks haven't been inserted yet; insert them here. 7953 for (BitTestCase &BTC : BTB->Cases) 7954 CurMF->insert(BBI, BTC.ThisBB); 7955 7956 // Fill in fields of the BitTestBlock. 7957 BTB->Parent = CurMBB; 7958 BTB->Default = Fallthrough; 7959 7960 // If we're in the right place, emit the bit test header header right now. 7961 if (CurMBB ==SwitchMBB) { 7962 visitBitTestHeader(*BTB, SwitchMBB); 7963 BTB->Emitted = true; 7964 } 7965 break; 7966 } 7967 case CC_Range: { 7968 const Value *RHS, *LHS, *MHS; 7969 ISD::CondCode CC; 7970 if (I->Low == I->High) { 7971 // Check Cond == I->Low. 7972 CC = ISD::SETEQ; 7973 LHS = Cond; 7974 RHS=I->Low; 7975 MHS = nullptr; 7976 } else { 7977 // Check I->Low <= Cond <= I->High. 7978 CC = ISD::SETLE; 7979 LHS = I->Low; 7980 MHS = Cond; 7981 RHS = I->High; 7982 } 7983 7984 // The false weight is the sum of all unhandled cases. 7985 UnhandledWeights -= I->Weight; 7986 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7987 UnhandledWeights); 7988 7989 if (CurMBB == SwitchMBB) 7990 visitSwitchCase(CB, SwitchMBB); 7991 else 7992 SwitchCases.push_back(CB); 7993 7994 break; 7995 } 7996 } 7997 CurMBB = Fallthrough; 7998 } 7999 } 8000 8001 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8002 CaseClusterIt First, 8003 CaseClusterIt Last) { 8004 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8005 if (X.Weight != CC.Weight) 8006 return X.Weight > CC.Weight; 8007 8008 // Ties are broken by comparing the case value. 8009 return X.Low->getValue().slt(CC.Low->getValue()); 8010 }); 8011 } 8012 8013 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8014 const SwitchWorkListItem &W, 8015 Value *Cond, 8016 MachineBasicBlock *SwitchMBB) { 8017 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8018 "Clusters not sorted?"); 8019 8020 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8021 8022 // Balance the tree based on branch weights to create a near-optimal (in terms 8023 // of search time given key frequency) binary search tree. See e.g. Kurt 8024 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8025 CaseClusterIt LastLeft = W.FirstCluster; 8026 CaseClusterIt FirstRight = W.LastCluster; 8027 uint32_t LeftWeight = LastLeft->Weight; 8028 uint32_t RightWeight = FirstRight->Weight; 8029 8030 // Move LastLeft and FirstRight towards each other from opposite directions to 8031 // find a partitioning of the clusters which balances the weight on both 8032 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8033 // taken to ensure 0-weight nodes are distributed evenly. 8034 unsigned I = 0; 8035 while (LastLeft + 1 < FirstRight) { 8036 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8037 LeftWeight += (++LastLeft)->Weight; 8038 else 8039 RightWeight += (--FirstRight)->Weight; 8040 I++; 8041 } 8042 8043 for (;;) { 8044 // Our binary search tree differs from a typical BST in that ours can have up 8045 // to three values in each leaf. The pivot selection above doesn't take that 8046 // into account, which means the tree might require more nodes and be less 8047 // efficient. We compensate for this here. 8048 8049 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8050 unsigned NumRight = W.LastCluster - FirstRight + 1; 8051 8052 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8053 // If one side has less than 3 clusters, and the other has more than 3, 8054 // consider taking a cluster from the other side. 8055 8056 if (NumLeft < NumRight) { 8057 // Consider moving the first cluster on the right to the left side. 8058 CaseCluster &CC = *FirstRight; 8059 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8060 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8061 if (LeftSideRank <= RightSideRank) { 8062 // Moving the cluster to the left does not demote it. 8063 ++LastLeft; 8064 ++FirstRight; 8065 continue; 8066 } 8067 } else { 8068 assert(NumRight < NumLeft); 8069 // Consider moving the last element on the left to the right side. 8070 CaseCluster &CC = *LastLeft; 8071 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8072 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8073 if (RightSideRank <= LeftSideRank) { 8074 // Moving the cluster to the right does not demot it. 8075 --LastLeft; 8076 --FirstRight; 8077 continue; 8078 } 8079 } 8080 } 8081 break; 8082 } 8083 8084 assert(LastLeft + 1 == FirstRight); 8085 assert(LastLeft >= W.FirstCluster); 8086 assert(FirstRight <= W.LastCluster); 8087 8088 // Use the first element on the right as pivot since we will make less-than 8089 // comparisons against it. 8090 CaseClusterIt PivotCluster = FirstRight; 8091 assert(PivotCluster > W.FirstCluster); 8092 assert(PivotCluster <= W.LastCluster); 8093 8094 CaseClusterIt FirstLeft = W.FirstCluster; 8095 CaseClusterIt LastRight = W.LastCluster; 8096 8097 const ConstantInt *Pivot = PivotCluster->Low; 8098 8099 // New blocks will be inserted immediately after the current one. 8100 MachineFunction::iterator BBI = W.MBB; 8101 ++BBI; 8102 8103 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8104 // we can branch to its destination directly if it's squeezed exactly in 8105 // between the known lower bound and Pivot - 1. 8106 MachineBasicBlock *LeftMBB; 8107 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8108 FirstLeft->Low == W.GE && 8109 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8110 LeftMBB = FirstLeft->MBB; 8111 } else { 8112 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8113 FuncInfo.MF->insert(BBI, LeftMBB); 8114 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8115 // Put Cond in a virtual register to make it available from the new blocks. 8116 ExportFromCurrentBlock(Cond); 8117 } 8118 8119 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8120 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8121 // directly if RHS.High equals the current upper bound. 8122 MachineBasicBlock *RightMBB; 8123 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8124 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8125 RightMBB = FirstRight->MBB; 8126 } else { 8127 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8128 FuncInfo.MF->insert(BBI, RightMBB); 8129 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8130 // Put Cond in a virtual register to make it available from the new blocks. 8131 ExportFromCurrentBlock(Cond); 8132 } 8133 8134 // Create the CaseBlock record that will be used to lower the branch. 8135 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8136 LeftWeight, RightWeight); 8137 8138 if (W.MBB == SwitchMBB) 8139 visitSwitchCase(CB, SwitchMBB); 8140 else 8141 SwitchCases.push_back(CB); 8142 } 8143 8144 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8145 // Extract cases from the switch. 8146 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8147 CaseClusterVector Clusters; 8148 Clusters.reserve(SI.getNumCases()); 8149 for (auto I : SI.cases()) { 8150 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8151 const ConstantInt *CaseVal = I.getCaseValue(); 8152 uint32_t Weight = 8153 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8154 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8155 } 8156 8157 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8158 8159 // Cluster adjacent cases with the same destination. We do this at all 8160 // optimization levels because it's cheap to do and will make codegen faster 8161 // if there are many clusters. 8162 sortAndRangeify(Clusters); 8163 8164 if (TM.getOptLevel() != CodeGenOpt::None) { 8165 // Replace an unreachable default with the most popular destination. 8166 // FIXME: Exploit unreachable default more aggressively. 8167 bool UnreachableDefault = 8168 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8169 if (UnreachableDefault && !Clusters.empty()) { 8170 DenseMap<const BasicBlock *, unsigned> Popularity; 8171 unsigned MaxPop = 0; 8172 const BasicBlock *MaxBB = nullptr; 8173 for (auto I : SI.cases()) { 8174 const BasicBlock *BB = I.getCaseSuccessor(); 8175 if (++Popularity[BB] > MaxPop) { 8176 MaxPop = Popularity[BB]; 8177 MaxBB = BB; 8178 } 8179 } 8180 // Set new default. 8181 assert(MaxPop > 0 && MaxBB); 8182 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8183 8184 // Remove cases that were pointing to the destination that is now the 8185 // default. 8186 CaseClusterVector New; 8187 New.reserve(Clusters.size()); 8188 for (CaseCluster &CC : Clusters) { 8189 if (CC.MBB != DefaultMBB) 8190 New.push_back(CC); 8191 } 8192 Clusters = std::move(New); 8193 } 8194 } 8195 8196 // If there is only the default destination, jump there directly. 8197 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8198 if (Clusters.empty()) { 8199 SwitchMBB->addSuccessor(DefaultMBB); 8200 if (DefaultMBB != NextBlock(SwitchMBB)) { 8201 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8202 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8203 } 8204 return; 8205 } 8206 8207 findJumpTables(Clusters, &SI, DefaultMBB); 8208 findBitTestClusters(Clusters, &SI); 8209 8210 DEBUG({ 8211 dbgs() << "Case clusters: "; 8212 for (const CaseCluster &C : Clusters) { 8213 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8214 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8215 8216 C.Low->getValue().print(dbgs(), true); 8217 if (C.Low != C.High) { 8218 dbgs() << '-'; 8219 C.High->getValue().print(dbgs(), true); 8220 } 8221 dbgs() << ' '; 8222 } 8223 dbgs() << '\n'; 8224 }); 8225 8226 assert(!Clusters.empty()); 8227 SwitchWorkList WorkList; 8228 CaseClusterIt First = Clusters.begin(); 8229 CaseClusterIt Last = Clusters.end() - 1; 8230 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8231 8232 while (!WorkList.empty()) { 8233 SwitchWorkListItem W = WorkList.back(); 8234 WorkList.pop_back(); 8235 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8236 8237 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8238 // For optimized builds, lower large range as a balanced binary tree. 8239 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8240 continue; 8241 } 8242 8243 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8244 } 8245 } 8246