1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetRegisterInfo.h" 48 #include "llvm/Target/TargetData.h" 49 #include "llvm/Target/TargetFrameInfo.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetIntrinsicInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static cl::opt<unsigned> 89 MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"), 90 cl::init(64), cl::Hidden); 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 EVT PartVT, EVT ValueVT); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, EVT PartVT, EVT ValueVT, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getIntPtrConstant(1)); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 return SDValue(); 214 } 215 216 /// getCopyFromParts - Create a value that contains the specified legal parts 217 /// combined into the value they represent. If the parts combine to a type 218 /// larger then ValueVT then AssertOp can be used to specify whether the extra 219 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 220 /// (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 EVT PartVT, EVT ValueVT) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT, RegisterVT; 232 unsigned NumIntermediates; 233 unsigned NumRegs = 234 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 235 NumIntermediates, RegisterVT); 236 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 237 NumParts = NumRegs; // Silence a compiler warning. 238 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 239 assert(RegisterVT == Parts[0].getValueType() && 240 "Part type doesn't match part!"); 241 242 // Assemble the parts into intermediate operands. 243 SmallVector<SDValue, 8> Ops(NumIntermediates); 244 if (NumIntermediates == NumParts) { 245 // If the register was not expanded, truncate or copy the value, 246 // as appropriate. 247 for (unsigned i = 0; i != NumParts; ++i) 248 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 249 PartVT, IntermediateVT); 250 } else if (NumParts > 0) { 251 // If the intermediate type was expanded, build the intermediate 252 // operands from the parts. 253 assert(NumParts % NumIntermediates == 0 && 254 "Must expand into a divisible number of parts!"); 255 unsigned Factor = NumParts / NumIntermediates; 256 for (unsigned i = 0; i != NumIntermediates; ++i) 257 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 258 PartVT, IntermediateVT); 259 } 260 261 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 262 // intermediate operands. 263 Val = DAG.getNode(IntermediateVT.isVector() ? 264 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 265 ValueVT, &Ops[0], NumIntermediates); 266 } 267 268 // There is now one part, held in Val. Correct it to match ValueVT. 269 PartVT = Val.getValueType(); 270 271 if (PartVT == ValueVT) 272 return Val; 273 274 if (PartVT.isVector()) { 275 // If the element type of the source/dest vectors are the same, but the 276 // parts vector has more elements than the value vector, then we have a 277 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 278 // elements we want. 279 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 280 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 281 "Cannot narrow, it would be a lossy transformation"); 282 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 283 DAG.getIntPtrConstant(0)); 284 } 285 286 // Vector/Vector bitcast. 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 } 289 290 assert(ValueVT.getVectorElementType() == PartVT && 291 ValueVT.getVectorNumElements() == 1 && 292 "Only trivial scalar-to-vector conversions should get here!"); 293 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 294 } 295 296 297 298 299 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 300 SDValue Val, SDValue *Parts, unsigned NumParts, 301 EVT PartVT); 302 303 /// getCopyToParts - Create a series of nodes that contain the specified value 304 /// split into legal parts. If the parts contain more bits than Val, then, for 305 /// integers, ExtendKind can be used to specify how to generate the extra bits. 306 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 307 SDValue Val, SDValue *Parts, unsigned NumParts, 308 EVT PartVT, 309 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 310 EVT ValueVT = Val.getValueType(); 311 312 // Handle the vector case separately. 313 if (ValueVT.isVector()) 314 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 315 316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 317 unsigned PartBits = PartVT.getSizeInBits(); 318 unsigned OrigNumParts = NumParts; 319 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 320 321 if (NumParts == 0) 322 return; 323 324 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 325 if (PartVT == ValueVT) { 326 assert(NumParts == 1 && "No-op copy with multiple parts!"); 327 Parts[0] = Val; 328 return; 329 } 330 331 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 332 // If the parts cover more bits than the value has, promote the value. 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 assert(NumParts == 1 && "Do not know what to promote to!"); 335 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 336 } else { 337 assert(PartVT.isInteger() && ValueVT.isInteger() && 338 "Unknown mismatch!"); 339 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 340 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 341 } 342 } else if (PartBits == ValueVT.getSizeInBits()) { 343 // Different types of the same size. 344 assert(NumParts == 1 && PartVT != ValueVT); 345 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 346 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 347 // If the parts cover less bits than value has, truncate the value. 348 assert(PartVT.isInteger() && ValueVT.isInteger() && 349 "Unknown mismatch!"); 350 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 351 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 352 } 353 354 // The value may have changed - recompute ValueVT. 355 ValueVT = Val.getValueType(); 356 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 357 "Failed to tile the value with PartVT!"); 358 359 if (NumParts == 1) { 360 assert(PartVT == ValueVT && "Type conversion failed!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 // Expand the value into multiple parts. 366 if (NumParts & (NumParts - 1)) { 367 // The number of parts is not a power of 2. Split off and copy the tail. 368 assert(PartVT.isInteger() && ValueVT.isInteger() && 369 "Do not know what to expand to!"); 370 unsigned RoundParts = 1 << Log2_32(NumParts); 371 unsigned RoundBits = RoundParts * PartBits; 372 unsigned OddParts = NumParts - RoundParts; 373 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 374 DAG.getIntPtrConstant(RoundBits)); 375 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 376 377 if (TLI.isBigEndian()) 378 // The odd parts were reversed by getCopyToParts - unreverse them. 379 std::reverse(Parts + RoundParts, Parts + NumParts); 380 381 NumParts = RoundParts; 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 384 } 385 386 // The number of parts is a power of 2. Repeatedly bisect the value using 387 // EXTRACT_ELEMENT. 388 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 389 EVT::getIntegerVT(*DAG.getContext(), 390 ValueVT.getSizeInBits()), 391 Val); 392 393 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 394 for (unsigned i = 0; i < NumParts; i += StepSize) { 395 unsigned ThisBits = StepSize * PartBits / 2; 396 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 397 SDValue &Part0 = Parts[i]; 398 SDValue &Part1 = Parts[i+StepSize/2]; 399 400 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 401 ThisVT, Part0, DAG.getIntPtrConstant(1)); 402 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 403 ThisVT, Part0, DAG.getIntPtrConstant(0)); 404 405 if (ThisBits == PartBits && ThisVT != PartVT) { 406 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 407 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 408 } 409 } 410 } 411 412 if (TLI.isBigEndian()) 413 std::reverse(Parts, Parts + OrigNumParts); 414 } 415 416 417 /// getCopyToPartsVector - Create a series of nodes that contain the specified 418 /// value split into legal parts. 419 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 420 SDValue Val, SDValue *Parts, unsigned NumParts, 421 EVT PartVT) { 422 EVT ValueVT = Val.getValueType(); 423 assert(ValueVT.isVector() && "Not a vector"); 424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 425 426 if (NumParts == 1) { 427 if (PartVT == ValueVT) { 428 // Nothing to do. 429 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 430 // Bitconvert vector->vector case. 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (PartVT.isVector() && 433 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 434 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 435 EVT ElementVT = PartVT.getVectorElementType(); 436 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 437 // undef elements. 438 SmallVector<SDValue, 16> Ops; 439 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 440 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 441 ElementVT, Val, DAG.getIntPtrConstant(i))); 442 443 for (unsigned i = ValueVT.getVectorNumElements(), 444 e = PartVT.getVectorNumElements(); i != e; ++i) 445 Ops.push_back(DAG.getUNDEF(ElementVT)); 446 447 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 448 449 // FIXME: Use CONCAT for 2x -> 4x. 450 451 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 452 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 453 } else { 454 // Vector -> scalar conversion. 455 assert(ValueVT.getVectorElementType() == PartVT && 456 ValueVT.getVectorNumElements() == 1 && 457 "Only trivial vector-to-scalar conversions should get here!"); 458 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 PartVT, Val, DAG.getIntPtrConstant(0)); 460 } 461 462 Parts[0] = Val; 463 return; 464 } 465 466 // Handle a multi-element vector. 467 EVT IntermediateVT, RegisterVT; 468 unsigned NumIntermediates; 469 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 470 IntermediateVT, 471 NumIntermediates, RegisterVT); 472 unsigned NumElements = ValueVT.getVectorNumElements(); 473 474 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 475 NumParts = NumRegs; // Silence a compiler warning. 476 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 477 478 // Split the vector into intermediate operands. 479 SmallVector<SDValue, 8> Ops(NumIntermediates); 480 for (unsigned i = 0; i != NumIntermediates; ++i) { 481 if (IntermediateVT.isVector()) 482 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 483 IntermediateVT, Val, 484 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 485 else 486 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 487 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 488 } 489 490 // Split the intermediate operands into legal parts. 491 if (NumParts == NumIntermediates) { 492 // If the register was not expanded, promote or copy the value, 493 // as appropriate. 494 for (unsigned i = 0; i != NumParts; ++i) 495 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 496 } else if (NumParts > 0) { 497 // If the intermediate type was expanded, split each the value into 498 // legal parts. 499 assert(NumParts % NumIntermediates == 0 && 500 "Must expand into a divisible number of parts!"); 501 unsigned Factor = NumParts / NumIntermediates; 502 for (unsigned i = 0; i != NumIntermediates; ++i) 503 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 504 } 505 } 506 507 508 509 510 namespace { 511 /// RegsForValue - This struct represents the registers (physical or virtual) 512 /// that a particular set of values is assigned, and the type information 513 /// about the value. The most common situation is to represent one value at a 514 /// time, but struct or array values are handled element-wise as multiple 515 /// values. The splitting of aggregates is performed recursively, so that we 516 /// never have aggregate-typed registers. The values at this point do not 517 /// necessarily have legal types, so each value may require one or more 518 /// registers of some legal type. 519 /// 520 struct RegsForValue { 521 /// ValueVTs - The value types of the values, which may not be legal, and 522 /// may need be promoted or synthesized from one or more registers. 523 /// 524 SmallVector<EVT, 4> ValueVTs; 525 526 /// RegVTs - The value types of the registers. This is the same size as 527 /// ValueVTs and it records, for each value, what the type of the assigned 528 /// register or registers are. (Individual values are never synthesized 529 /// from more than one type of register.) 530 /// 531 /// With virtual registers, the contents of RegVTs is redundant with TLI's 532 /// getRegisterType member function, however when with physical registers 533 /// it is necessary to have a separate record of the types. 534 /// 535 SmallVector<EVT, 4> RegVTs; 536 537 /// Regs - This list holds the registers assigned to the values. 538 /// Each legal or promoted value requires one register, and each 539 /// expanded value requires multiple registers. 540 /// 541 SmallVector<unsigned, 4> Regs; 542 543 RegsForValue() {} 544 545 RegsForValue(const SmallVector<unsigned, 4> ®s, 546 EVT regvt, EVT valuevt) 547 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 548 549 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 550 unsigned Reg, const Type *Ty) { 551 ComputeValueVTs(tli, Ty, ValueVTs); 552 553 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 554 EVT ValueVT = ValueVTs[Value]; 555 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 556 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 557 for (unsigned i = 0; i != NumRegs; ++i) 558 Regs.push_back(Reg + i); 559 RegVTs.push_back(RegisterVT); 560 Reg += NumRegs; 561 } 562 } 563 564 /// areValueTypesLegal - Return true if types of all the values are legal. 565 bool areValueTypesLegal(const TargetLowering &TLI) { 566 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 567 EVT RegisterVT = RegVTs[Value]; 568 if (!TLI.isTypeLegal(RegisterVT)) 569 return false; 570 } 571 return true; 572 } 573 574 /// append - Add the specified values to this one. 575 void append(const RegsForValue &RHS) { 576 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 577 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 578 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 579 } 580 581 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 582 /// this value and returns the result as a ValueVTs value. This uses 583 /// Chain/Flag as the input and updates them for the output Chain/Flag. 584 /// If the Flag pointer is NULL, no flag is used. 585 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 586 DebugLoc dl, 587 SDValue &Chain, SDValue *Flag) const; 588 589 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 590 /// specified value into the registers specified by this object. This uses 591 /// Chain/Flag as the input and updates them for the output Chain/Flag. 592 /// If the Flag pointer is NULL, no flag is used. 593 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const; 595 596 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 597 /// operand list. This adds the code marker, matching input operand index 598 /// (if applicable), and includes the number of values added into it. 599 void AddInlineAsmOperands(unsigned Kind, 600 bool HasMatching, unsigned MatchingIdx, 601 SelectionDAG &DAG, 602 std::vector<SDValue> &Ops) const; 603 }; 604 } 605 606 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 607 /// this value and returns the result as a ValueVT value. This uses 608 /// Chain/Flag as the input and updates them for the output Chain/Flag. 609 /// If the Flag pointer is NULL, no flag is used. 610 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 611 FunctionLoweringInfo &FuncInfo, 612 DebugLoc dl, 613 SDValue &Chain, SDValue *Flag) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 EVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (Flag == 0) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 641 // If the source register was virtual and if we know something about it, 642 // add an assert node. 643 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 644 RegisterVT.isInteger() && !RegisterVT.isVector()) { 645 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 646 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 647 const FunctionLoweringInfo::LiveOutInfo &LOI = 648 FuncInfo.LiveOutRegInfo[SlotNo]; 649 650 unsigned RegSize = RegisterVT.getSizeInBits(); 651 unsigned NumSignBits = LOI.NumSignBits; 652 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 653 654 // FIXME: We capture more information than the dag can represent. For 655 // now, just use the tightest assertzext/assertsext possible. 656 bool isSExt = true; 657 EVT FromVT(MVT::Other); 658 if (NumSignBits == RegSize) 659 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 660 else if (NumZeroBits >= RegSize-1) 661 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 662 else if (NumSignBits > RegSize-8) 663 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 664 else if (NumZeroBits >= RegSize-8) 665 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 666 else if (NumSignBits > RegSize-16) 667 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 668 else if (NumZeroBits >= RegSize-16) 669 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 670 else if (NumSignBits > RegSize-32) 671 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 672 else if (NumZeroBits >= RegSize-32) 673 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 674 675 if (FromVT != MVT::Other) 676 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 677 RegisterVT, P, DAG.getValueType(FromVT)); 678 } 679 } 680 681 Parts[i] = P; 682 } 683 684 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 685 NumRegs, RegisterVT, ValueVT); 686 Part += NumRegs; 687 Parts.clear(); 688 } 689 690 return DAG.getNode(ISD::MERGE_VALUES, dl, 691 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 692 &Values[0], ValueVTs.size()); 693 } 694 695 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 696 /// specified value into the registers specified by this object. This uses 697 /// Chain/Flag as the input and updates them for the output Chain/Flag. 698 /// If the Flag pointer is NULL, no flag is used. 699 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 700 SDValue &Chain, SDValue *Flag) const { 701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 702 703 // Get the list of the values's legal parts. 704 unsigned NumRegs = Regs.size(); 705 SmallVector<SDValue, 8> Parts(NumRegs); 706 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 707 EVT ValueVT = ValueVTs[Value]; 708 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 709 EVT RegisterVT = RegVTs[Value]; 710 711 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 712 &Parts[Part], NumParts, RegisterVT); 713 Part += NumParts; 714 } 715 716 // Copy the parts into the registers. 717 SmallVector<SDValue, 8> Chains(NumRegs); 718 for (unsigned i = 0; i != NumRegs; ++i) { 719 SDValue Part; 720 if (Flag == 0) { 721 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 722 } else { 723 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 724 *Flag = Part.getValue(1); 725 } 726 727 Chains[i] = Part.getValue(0); 728 } 729 730 if (NumRegs == 1 || Flag) 731 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 732 // flagged to it. That is the CopyToReg nodes and the user are considered 733 // a single scheduling unit. If we create a TokenFactor and return it as 734 // chain, then the TokenFactor is both a predecessor (operand) of the 735 // user as well as a successor (the TF operands are flagged to the user). 736 // c1, f1 = CopyToReg 737 // c2, f2 = CopyToReg 738 // c3 = TokenFactor c1, c2 739 // ... 740 // = op c3, ..., f2 741 Chain = Chains[NumRegs-1]; 742 else 743 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 744 } 745 746 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 747 /// operand list. This adds the code marker and includes the number of 748 /// values added into it. 749 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 750 unsigned MatchingIdx, 751 SelectionDAG &DAG, 752 std::vector<SDValue> &Ops) const { 753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 754 755 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 756 if (HasMatching) 757 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 758 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 759 Ops.push_back(Res); 760 761 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 762 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 763 EVT RegisterVT = RegVTs[Value]; 764 for (unsigned i = 0; i != NumRegs; ++i) { 765 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 766 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 767 } 768 } 769 } 770 771 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 772 AA = &aa; 773 GFI = gfi; 774 TD = DAG.getTarget().getTargetData(); 775 } 776 777 /// clear - Clear out the current SelectionDAG and the associated 778 /// state and prepare this SelectionDAGBuilder object to be used 779 /// for a new block. This doesn't clear out information about 780 /// additional blocks that are needed to complete switch lowering 781 /// or PHI node updating; that information is cleared out as it is 782 /// consumed. 783 void SelectionDAGBuilder::clear() { 784 NodeMap.clear(); 785 UnusedArgNodeMap.clear(); 786 PendingLoads.clear(); 787 PendingExports.clear(); 788 DanglingDebugInfoMap.clear(); 789 CurDebugLoc = DebugLoc(); 790 HasTailCall = false; 791 } 792 793 /// getRoot - Return the current virtual root of the Selection DAG, 794 /// flushing any PendingLoad items. This must be done before emitting 795 /// a store or any other node that may need to be ordered after any 796 /// prior load instructions. 797 /// 798 SDValue SelectionDAGBuilder::getRoot() { 799 if (PendingLoads.empty()) 800 return DAG.getRoot(); 801 802 if (PendingLoads.size() == 1) { 803 SDValue Root = PendingLoads[0]; 804 DAG.setRoot(Root); 805 PendingLoads.clear(); 806 return Root; 807 } 808 809 // Otherwise, we have to make a token factor node. 810 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 811 &PendingLoads[0], PendingLoads.size()); 812 PendingLoads.clear(); 813 DAG.setRoot(Root); 814 return Root; 815 } 816 817 /// getControlRoot - Similar to getRoot, but instead of flushing all the 818 /// PendingLoad items, flush all the PendingExports items. It is necessary 819 /// to do this before emitting a terminator instruction. 820 /// 821 SDValue SelectionDAGBuilder::getControlRoot() { 822 SDValue Root = DAG.getRoot(); 823 824 if (PendingExports.empty()) 825 return Root; 826 827 // Turn all of the CopyToReg chains into one factored node. 828 if (Root.getOpcode() != ISD::EntryToken) { 829 unsigned i = 0, e = PendingExports.size(); 830 for (; i != e; ++i) { 831 assert(PendingExports[i].getNode()->getNumOperands() > 1); 832 if (PendingExports[i].getNode()->getOperand(0) == Root) 833 break; // Don't add the root if we already indirectly depend on it. 834 } 835 836 if (i == e) 837 PendingExports.push_back(Root); 838 } 839 840 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 841 &PendingExports[0], 842 PendingExports.size()); 843 PendingExports.clear(); 844 DAG.setRoot(Root); 845 return Root; 846 } 847 848 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 849 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 850 DAG.AssignOrdering(Node, SDNodeOrder); 851 852 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 853 AssignOrderingToNode(Node->getOperand(I).getNode()); 854 } 855 856 void SelectionDAGBuilder::visit(const Instruction &I) { 857 // Set up outgoing PHI node register values before emitting the terminator. 858 if (isa<TerminatorInst>(&I)) 859 HandlePHINodesInSuccessorBlocks(I.getParent()); 860 861 CurDebugLoc = I.getDebugLoc(); 862 863 visit(I.getOpcode(), I); 864 865 if (!isa<TerminatorInst>(&I) && !HasTailCall) 866 CopyToExportRegsIfNeeded(&I); 867 868 CurDebugLoc = DebugLoc(); 869 } 870 871 void SelectionDAGBuilder::visitPHI(const PHINode &) { 872 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 873 } 874 875 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 876 // Note: this doesn't use InstVisitor, because it has to work with 877 // ConstantExpr's in addition to instructions. 878 switch (Opcode) { 879 default: llvm_unreachable("Unknown instruction type encountered!"); 880 // Build the switch statement using the Instruction.def file. 881 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 882 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 883 #include "llvm/Instruction.def" 884 } 885 886 // Assign the ordering to the freshly created DAG nodes. 887 if (NodeMap.count(&I)) { 888 ++SDNodeOrder; 889 AssignOrderingToNode(getValue(&I).getNode()); 890 } 891 } 892 893 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 894 // generate the debug data structures now that we've seen its definition. 895 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 896 SDValue Val) { 897 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 898 if (DDI.getDI()) { 899 const DbgValueInst *DI = DDI.getDI(); 900 DebugLoc dl = DDI.getdl(); 901 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 902 MDNode *Variable = DI->getVariable(); 903 uint64_t Offset = DI->getOffset(); 904 SDDbgValue *SDV; 905 if (Val.getNode()) { 906 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 907 SDV = DAG.getDbgValue(Variable, Val.getNode(), 908 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 909 DAG.AddDbgValue(SDV, Val.getNode(), false); 910 } 911 } else { 912 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 913 Offset, dl, SDNodeOrder); 914 DAG.AddDbgValue(SDV, 0, false); 915 } 916 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 917 } 918 } 919 920 // getValue - Return an SDValue for the given Value. 921 SDValue SelectionDAGBuilder::getValue(const Value *V) { 922 // If we already have an SDValue for this value, use it. It's important 923 // to do this first, so that we don't create a CopyFromReg if we already 924 // have a regular SDValue. 925 SDValue &N = NodeMap[V]; 926 if (N.getNode()) return N; 927 928 // If there's a virtual register allocated and initialized for this 929 // value, use it. 930 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 931 if (It != FuncInfo.ValueMap.end()) { 932 unsigned InReg = It->second; 933 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 934 SDValue Chain = DAG.getEntryNode(); 935 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 936 } 937 938 // Otherwise create a new SDValue and remember it. 939 SDValue Val = getValueImpl(V); 940 NodeMap[V] = Val; 941 resolveDanglingDebugInfo(V, Val); 942 return Val; 943 } 944 945 /// getNonRegisterValue - Return an SDValue for the given Value, but 946 /// don't look in FuncInfo.ValueMap for a virtual register. 947 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 948 // If we already have an SDValue for this value, use it. 949 SDValue &N = NodeMap[V]; 950 if (N.getNode()) return N; 951 952 // Otherwise create a new SDValue and remember it. 953 SDValue Val = getValueImpl(V); 954 NodeMap[V] = Val; 955 resolveDanglingDebugInfo(V, Val); 956 return Val; 957 } 958 959 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 960 /// Create an SDValue for the given value. 961 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 962 if (const Constant *C = dyn_cast<Constant>(V)) { 963 EVT VT = TLI.getValueType(V->getType(), true); 964 965 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 966 return DAG.getConstant(*CI, VT); 967 968 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 969 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 970 971 if (isa<ConstantPointerNull>(C)) 972 return DAG.getConstant(0, TLI.getPointerTy()); 973 974 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 975 return DAG.getConstantFP(*CFP, VT); 976 977 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 978 return DAG.getUNDEF(VT); 979 980 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 981 visit(CE->getOpcode(), *CE); 982 SDValue N1 = NodeMap[V]; 983 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 984 return N1; 985 } 986 987 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 988 SmallVector<SDValue, 4> Constants; 989 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 990 OI != OE; ++OI) { 991 SDNode *Val = getValue(*OI).getNode(); 992 // If the operand is an empty aggregate, there are no values. 993 if (!Val) continue; 994 // Add each leaf value from the operand to the Constants list 995 // to form a flattened list of all the values. 996 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 997 Constants.push_back(SDValue(Val, i)); 998 } 999 1000 return DAG.getMergeValues(&Constants[0], Constants.size(), 1001 getCurDebugLoc()); 1002 } 1003 1004 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1005 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1006 "Unknown struct or array constant!"); 1007 1008 SmallVector<EVT, 4> ValueVTs; 1009 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1010 unsigned NumElts = ValueVTs.size(); 1011 if (NumElts == 0) 1012 return SDValue(); // empty struct 1013 SmallVector<SDValue, 4> Constants(NumElts); 1014 for (unsigned i = 0; i != NumElts; ++i) { 1015 EVT EltVT = ValueVTs[i]; 1016 if (isa<UndefValue>(C)) 1017 Constants[i] = DAG.getUNDEF(EltVT); 1018 else if (EltVT.isFloatingPoint()) 1019 Constants[i] = DAG.getConstantFP(0, EltVT); 1020 else 1021 Constants[i] = DAG.getConstant(0, EltVT); 1022 } 1023 1024 return DAG.getMergeValues(&Constants[0], NumElts, 1025 getCurDebugLoc()); 1026 } 1027 1028 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1029 return DAG.getBlockAddress(BA, VT); 1030 1031 const VectorType *VecTy = cast<VectorType>(V->getType()); 1032 unsigned NumElements = VecTy->getNumElements(); 1033 1034 // Now that we know the number and type of the elements, get that number of 1035 // elements into the Ops array based on what kind of constant it is. 1036 SmallVector<SDValue, 16> Ops; 1037 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1038 for (unsigned i = 0; i != NumElements; ++i) 1039 Ops.push_back(getValue(CP->getOperand(i))); 1040 } else { 1041 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1042 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1043 1044 SDValue Op; 1045 if (EltVT.isFloatingPoint()) 1046 Op = DAG.getConstantFP(0, EltVT); 1047 else 1048 Op = DAG.getConstant(0, EltVT); 1049 Ops.assign(NumElements, Op); 1050 } 1051 1052 // Create a BUILD_VECTOR node. 1053 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1054 VT, &Ops[0], Ops.size()); 1055 } 1056 1057 // If this is a static alloca, generate it as the frameindex instead of 1058 // computation. 1059 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1060 DenseMap<const AllocaInst*, int>::iterator SI = 1061 FuncInfo.StaticAllocaMap.find(AI); 1062 if (SI != FuncInfo.StaticAllocaMap.end()) 1063 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1064 } 1065 1066 // If this is an instruction which fast-isel has deferred, select it now. 1067 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1068 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1069 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1070 SDValue Chain = DAG.getEntryNode(); 1071 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1072 } 1073 1074 llvm_unreachable("Can't get register for value!"); 1075 return SDValue(); 1076 } 1077 1078 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1079 SDValue Chain = getControlRoot(); 1080 SmallVector<ISD::OutputArg, 8> Outs; 1081 SmallVector<SDValue, 8> OutVals; 1082 1083 if (!FuncInfo.CanLowerReturn) { 1084 unsigned DemoteReg = FuncInfo.DemoteRegister; 1085 const Function *F = I.getParent()->getParent(); 1086 1087 // Emit a store of the return value through the virtual register. 1088 // Leave Outs empty so that LowerReturn won't try to load return 1089 // registers the usual way. 1090 SmallVector<EVT, 1> PtrValueVTs; 1091 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1092 PtrValueVTs); 1093 1094 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1095 SDValue RetOp = getValue(I.getOperand(0)); 1096 1097 SmallVector<EVT, 4> ValueVTs; 1098 SmallVector<uint64_t, 4> Offsets; 1099 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1100 unsigned NumValues = ValueVTs.size(); 1101 1102 SmallVector<SDValue, 4> Chains(NumValues); 1103 for (unsigned i = 0; i != NumValues; ++i) { 1104 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1105 RetPtr.getValueType(), RetPtr, 1106 DAG.getIntPtrConstant(Offsets[i])); 1107 Chains[i] = 1108 DAG.getStore(Chain, getCurDebugLoc(), 1109 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1110 // FIXME: better loc info would be nice. 1111 Add, MachinePointerInfo(), false, false, 0); 1112 } 1113 1114 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1115 MVT::Other, &Chains[0], NumValues); 1116 } else if (I.getNumOperands() != 0) { 1117 SmallVector<EVT, 4> ValueVTs; 1118 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1119 unsigned NumValues = ValueVTs.size(); 1120 if (NumValues) { 1121 SDValue RetOp = getValue(I.getOperand(0)); 1122 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1123 EVT VT = ValueVTs[j]; 1124 1125 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1126 1127 const Function *F = I.getParent()->getParent(); 1128 if (F->paramHasAttr(0, Attribute::SExt)) 1129 ExtendKind = ISD::SIGN_EXTEND; 1130 else if (F->paramHasAttr(0, Attribute::ZExt)) 1131 ExtendKind = ISD::ZERO_EXTEND; 1132 1133 // FIXME: C calling convention requires the return type to be promoted 1134 // to at least 32-bit. But this is not necessary for non-C calling 1135 // conventions. The frontend should mark functions whose return values 1136 // require promoting with signext or zeroext attributes. 1137 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1138 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1139 if (VT.bitsLT(MinVT)) 1140 VT = MinVT; 1141 } 1142 1143 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1144 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1145 SmallVector<SDValue, 4> Parts(NumParts); 1146 getCopyToParts(DAG, getCurDebugLoc(), 1147 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1148 &Parts[0], NumParts, PartVT, ExtendKind); 1149 1150 // 'inreg' on function refers to return value 1151 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1152 if (F->paramHasAttr(0, Attribute::InReg)) 1153 Flags.setInReg(); 1154 1155 // Propagate extension type if any 1156 if (F->paramHasAttr(0, Attribute::SExt)) 1157 Flags.setSExt(); 1158 else if (F->paramHasAttr(0, Attribute::ZExt)) 1159 Flags.setZExt(); 1160 1161 for (unsigned i = 0; i < NumParts; ++i) { 1162 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1163 /*isfixed=*/true)); 1164 OutVals.push_back(Parts[i]); 1165 } 1166 } 1167 } 1168 } 1169 1170 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1171 CallingConv::ID CallConv = 1172 DAG.getMachineFunction().getFunction()->getCallingConv(); 1173 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1174 Outs, OutVals, getCurDebugLoc(), DAG); 1175 1176 // Verify that the target's LowerReturn behaved as expected. 1177 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1178 "LowerReturn didn't return a valid chain!"); 1179 1180 // Update the DAG with the new chain value resulting from return lowering. 1181 DAG.setRoot(Chain); 1182 } 1183 1184 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1185 /// created for it, emit nodes to copy the value into the virtual 1186 /// registers. 1187 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1188 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1189 if (VMI != FuncInfo.ValueMap.end()) { 1190 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1191 CopyValueToVirtualRegister(V, VMI->second); 1192 } 1193 } 1194 1195 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1196 /// the current basic block, add it to ValueMap now so that we'll get a 1197 /// CopyTo/FromReg. 1198 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1199 // No need to export constants. 1200 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1201 1202 // Already exported? 1203 if (FuncInfo.isExportedInst(V)) return; 1204 1205 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1206 CopyValueToVirtualRegister(V, Reg); 1207 } 1208 1209 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1210 const BasicBlock *FromBB) { 1211 // The operands of the setcc have to be in this block. We don't know 1212 // how to export them from some other block. 1213 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1214 // Can export from current BB. 1215 if (VI->getParent() == FromBB) 1216 return true; 1217 1218 // Is already exported, noop. 1219 return FuncInfo.isExportedInst(V); 1220 } 1221 1222 // If this is an argument, we can export it if the BB is the entry block or 1223 // if it is already exported. 1224 if (isa<Argument>(V)) { 1225 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1226 return true; 1227 1228 // Otherwise, can only export this if it is already exported. 1229 return FuncInfo.isExportedInst(V); 1230 } 1231 1232 // Otherwise, constants can always be exported. 1233 return true; 1234 } 1235 1236 static bool InBlock(const Value *V, const BasicBlock *BB) { 1237 if (const Instruction *I = dyn_cast<Instruction>(V)) 1238 return I->getParent() == BB; 1239 return true; 1240 } 1241 1242 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1243 /// This function emits a branch and is used at the leaves of an OR or an 1244 /// AND operator tree. 1245 /// 1246 void 1247 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1248 MachineBasicBlock *TBB, 1249 MachineBasicBlock *FBB, 1250 MachineBasicBlock *CurBB, 1251 MachineBasicBlock *SwitchBB) { 1252 const BasicBlock *BB = CurBB->getBasicBlock(); 1253 1254 // If the leaf of the tree is a comparison, merge the condition into 1255 // the caseblock. 1256 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1257 // The operands of the cmp have to be in this block. We don't know 1258 // how to export them from some other block. If this is the first block 1259 // of the sequence, no exporting is needed. 1260 if (CurBB == SwitchBB || 1261 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1262 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1263 ISD::CondCode Condition; 1264 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1265 Condition = getICmpCondCode(IC->getPredicate()); 1266 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1267 Condition = getFCmpCondCode(FC->getPredicate()); 1268 } else { 1269 Condition = ISD::SETEQ; // silence warning. 1270 llvm_unreachable("Unknown compare instruction"); 1271 } 1272 1273 CaseBlock CB(Condition, BOp->getOperand(0), 1274 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1275 SwitchCases.push_back(CB); 1276 return; 1277 } 1278 } 1279 1280 // Create a CaseBlock record representing this branch. 1281 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1282 NULL, TBB, FBB, CurBB); 1283 SwitchCases.push_back(CB); 1284 } 1285 1286 /// FindMergedConditions - If Cond is an expression like 1287 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1288 MachineBasicBlock *TBB, 1289 MachineBasicBlock *FBB, 1290 MachineBasicBlock *CurBB, 1291 MachineBasicBlock *SwitchBB, 1292 unsigned Opc) { 1293 // If this node is not part of the or/and tree, emit it as a branch. 1294 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1295 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1296 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1297 BOp->getParent() != CurBB->getBasicBlock() || 1298 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1299 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1300 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1301 return; 1302 } 1303 1304 // Create TmpBB after CurBB. 1305 MachineFunction::iterator BBI = CurBB; 1306 MachineFunction &MF = DAG.getMachineFunction(); 1307 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1308 CurBB->getParent()->insert(++BBI, TmpBB); 1309 1310 if (Opc == Instruction::Or) { 1311 // Codegen X | Y as: 1312 // jmp_if_X TBB 1313 // jmp TmpBB 1314 // TmpBB: 1315 // jmp_if_Y TBB 1316 // jmp FBB 1317 // 1318 1319 // Emit the LHS condition. 1320 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1321 1322 // Emit the RHS condition into TmpBB. 1323 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1324 } else { 1325 assert(Opc == Instruction::And && "Unknown merge op!"); 1326 // Codegen X & Y as: 1327 // jmp_if_X TmpBB 1328 // jmp FBB 1329 // TmpBB: 1330 // jmp_if_Y TBB 1331 // jmp FBB 1332 // 1333 // This requires creation of TmpBB after CurBB. 1334 1335 // Emit the LHS condition. 1336 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1337 1338 // Emit the RHS condition into TmpBB. 1339 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1340 } 1341 } 1342 1343 /// If the set of cases should be emitted as a series of branches, return true. 1344 /// If we should emit this as a bunch of and/or'd together conditions, return 1345 /// false. 1346 bool 1347 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1348 if (Cases.size() != 2) return true; 1349 1350 // If this is two comparisons of the same values or'd or and'd together, they 1351 // will get folded into a single comparison, so don't emit two blocks. 1352 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1353 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1354 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1355 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1356 return false; 1357 } 1358 1359 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1360 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1361 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1362 Cases[0].CC == Cases[1].CC && 1363 isa<Constant>(Cases[0].CmpRHS) && 1364 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1365 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1366 return false; 1367 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1368 return false; 1369 } 1370 1371 return true; 1372 } 1373 1374 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1375 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1376 1377 // Update machine-CFG edges. 1378 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1379 1380 // Figure out which block is immediately after the current one. 1381 MachineBasicBlock *NextBlock = 0; 1382 MachineFunction::iterator BBI = BrMBB; 1383 if (++BBI != FuncInfo.MF->end()) 1384 NextBlock = BBI; 1385 1386 if (I.isUnconditional()) { 1387 // Update machine-CFG edges. 1388 BrMBB->addSuccessor(Succ0MBB); 1389 1390 // If this is not a fall-through branch, emit the branch. 1391 if (Succ0MBB != NextBlock) 1392 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1393 MVT::Other, getControlRoot(), 1394 DAG.getBasicBlock(Succ0MBB))); 1395 1396 return; 1397 } 1398 1399 // If this condition is one of the special cases we handle, do special stuff 1400 // now. 1401 const Value *CondVal = I.getCondition(); 1402 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1403 1404 // If this is a series of conditions that are or'd or and'd together, emit 1405 // this as a sequence of branches instead of setcc's with and/or operations. 1406 // For example, instead of something like: 1407 // cmp A, B 1408 // C = seteq 1409 // cmp D, E 1410 // F = setle 1411 // or C, F 1412 // jnz foo 1413 // Emit: 1414 // cmp A, B 1415 // je foo 1416 // cmp D, E 1417 // jle foo 1418 // 1419 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1420 if (BOp->hasOneUse() && 1421 (BOp->getOpcode() == Instruction::And || 1422 BOp->getOpcode() == Instruction::Or)) { 1423 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1424 BOp->getOpcode()); 1425 // If the compares in later blocks need to use values not currently 1426 // exported from this block, export them now. This block should always 1427 // be the first entry. 1428 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1429 1430 // Allow some cases to be rejected. 1431 if (ShouldEmitAsBranches(SwitchCases)) { 1432 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1433 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1434 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1435 } 1436 1437 // Emit the branch for this block. 1438 visitSwitchCase(SwitchCases[0], BrMBB); 1439 SwitchCases.erase(SwitchCases.begin()); 1440 return; 1441 } 1442 1443 // Okay, we decided not to do this, remove any inserted MBB's and clear 1444 // SwitchCases. 1445 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1446 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1447 1448 SwitchCases.clear(); 1449 } 1450 } 1451 1452 // Create a CaseBlock record representing this branch. 1453 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1454 NULL, Succ0MBB, Succ1MBB, BrMBB); 1455 1456 // Use visitSwitchCase to actually insert the fast branch sequence for this 1457 // cond branch. 1458 visitSwitchCase(CB, BrMBB); 1459 } 1460 1461 /// visitSwitchCase - Emits the necessary code to represent a single node in 1462 /// the binary search tree resulting from lowering a switch instruction. 1463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1464 MachineBasicBlock *SwitchBB) { 1465 SDValue Cond; 1466 SDValue CondLHS = getValue(CB.CmpLHS); 1467 DebugLoc dl = getCurDebugLoc(); 1468 1469 // Build the setcc now. 1470 if (CB.CmpMHS == NULL) { 1471 // Fold "(X == true)" to X and "(X == false)" to !X to 1472 // handle common cases produced by branch lowering. 1473 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1474 CB.CC == ISD::SETEQ) 1475 Cond = CondLHS; 1476 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1477 CB.CC == ISD::SETEQ) { 1478 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1479 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1480 } else 1481 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1482 } else { 1483 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1484 1485 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1486 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1487 1488 SDValue CmpOp = getValue(CB.CmpMHS); 1489 EVT VT = CmpOp.getValueType(); 1490 1491 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1492 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1493 ISD::SETLE); 1494 } else { 1495 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1496 VT, CmpOp, DAG.getConstant(Low, VT)); 1497 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1498 DAG.getConstant(High-Low, VT), ISD::SETULE); 1499 } 1500 } 1501 1502 // Update successor info 1503 SwitchBB->addSuccessor(CB.TrueBB); 1504 SwitchBB->addSuccessor(CB.FalseBB); 1505 1506 // Set NextBlock to be the MBB immediately after the current one, if any. 1507 // This is used to avoid emitting unnecessary branches to the next block. 1508 MachineBasicBlock *NextBlock = 0; 1509 MachineFunction::iterator BBI = SwitchBB; 1510 if (++BBI != FuncInfo.MF->end()) 1511 NextBlock = BBI; 1512 1513 // If the lhs block is the next block, invert the condition so that we can 1514 // fall through to the lhs instead of the rhs block. 1515 if (CB.TrueBB == NextBlock) { 1516 std::swap(CB.TrueBB, CB.FalseBB); 1517 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1518 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1519 } 1520 1521 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1522 MVT::Other, getControlRoot(), Cond, 1523 DAG.getBasicBlock(CB.TrueBB)); 1524 1525 // Insert the false branch. Do this even if it's a fall through branch, 1526 // this makes it easier to do DAG optimizations which require inverting 1527 // the branch condition. 1528 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1529 DAG.getBasicBlock(CB.FalseBB)); 1530 1531 DAG.setRoot(BrCond); 1532 } 1533 1534 /// visitJumpTable - Emit JumpTable node in the current MBB 1535 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1536 // Emit the code for the jump table 1537 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1538 EVT PTy = TLI.getPointerTy(); 1539 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1540 JT.Reg, PTy); 1541 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1542 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1543 MVT::Other, Index.getValue(1), 1544 Table, Index); 1545 DAG.setRoot(BrJumpTable); 1546 } 1547 1548 /// visitJumpTableHeader - This function emits necessary code to produce index 1549 /// in the JumpTable from switch case. 1550 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1551 JumpTableHeader &JTH, 1552 MachineBasicBlock *SwitchBB) { 1553 // Subtract the lowest switch case value from the value being switched on and 1554 // conditional branch to default mbb if the result is greater than the 1555 // difference between smallest and largest cases. 1556 SDValue SwitchOp = getValue(JTH.SValue); 1557 EVT VT = SwitchOp.getValueType(); 1558 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1559 DAG.getConstant(JTH.First, VT)); 1560 1561 // The SDNode we just created, which holds the value being switched on minus 1562 // the smallest case value, needs to be copied to a virtual register so it 1563 // can be used as an index into the jump table in a subsequent basic block. 1564 // This value may be smaller or larger than the target's pointer type, and 1565 // therefore require extension or truncating. 1566 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1567 1568 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1569 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1570 JumpTableReg, SwitchOp); 1571 JT.Reg = JumpTableReg; 1572 1573 // Emit the range check for the jump table, and branch to the default block 1574 // for the switch statement if the value being switched on exceeds the largest 1575 // case in the switch. 1576 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1577 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1578 DAG.getConstant(JTH.Last-JTH.First,VT), 1579 ISD::SETUGT); 1580 1581 // Set NextBlock to be the MBB immediately after the current one, if any. 1582 // This is used to avoid emitting unnecessary branches to the next block. 1583 MachineBasicBlock *NextBlock = 0; 1584 MachineFunction::iterator BBI = SwitchBB; 1585 1586 if (++BBI != FuncInfo.MF->end()) 1587 NextBlock = BBI; 1588 1589 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1590 MVT::Other, CopyTo, CMP, 1591 DAG.getBasicBlock(JT.Default)); 1592 1593 if (JT.MBB != NextBlock) 1594 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1595 DAG.getBasicBlock(JT.MBB)); 1596 1597 DAG.setRoot(BrCond); 1598 } 1599 1600 /// visitBitTestHeader - This function emits necessary code to produce value 1601 /// suitable for "bit tests" 1602 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1603 MachineBasicBlock *SwitchBB) { 1604 // Subtract the minimum value 1605 SDValue SwitchOp = getValue(B.SValue); 1606 EVT VT = SwitchOp.getValueType(); 1607 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1608 DAG.getConstant(B.First, VT)); 1609 1610 // Check range 1611 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1612 TLI.getSetCCResultType(Sub.getValueType()), 1613 Sub, DAG.getConstant(B.Range, VT), 1614 ISD::SETUGT); 1615 1616 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1617 TLI.getPointerTy()); 1618 1619 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1621 B.Reg, ShiftOp); 1622 1623 // Set NextBlock to be the MBB immediately after the current one, if any. 1624 // This is used to avoid emitting unnecessary branches to the next block. 1625 MachineBasicBlock *NextBlock = 0; 1626 MachineFunction::iterator BBI = SwitchBB; 1627 if (++BBI != FuncInfo.MF->end()) 1628 NextBlock = BBI; 1629 1630 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1631 1632 SwitchBB->addSuccessor(B.Default); 1633 SwitchBB->addSuccessor(MBB); 1634 1635 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1636 MVT::Other, CopyTo, RangeCmp, 1637 DAG.getBasicBlock(B.Default)); 1638 1639 if (MBB != NextBlock) 1640 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1641 DAG.getBasicBlock(MBB)); 1642 1643 DAG.setRoot(BrRange); 1644 } 1645 1646 /// visitBitTestCase - this function produces one "bit test" 1647 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1648 unsigned Reg, 1649 BitTestCase &B, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1652 TLI.getPointerTy()); 1653 SDValue Cmp; 1654 if (CountPopulation_64(B.Mask) == 1) { 1655 // Testing for a single bit; just compare the shift count with what it 1656 // would need to be to shift a 1 bit in that position. 1657 Cmp = DAG.getSetCC(getCurDebugLoc(), 1658 TLI.getSetCCResultType(ShiftOp.getValueType()), 1659 ShiftOp, 1660 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1661 TLI.getPointerTy()), 1662 ISD::SETEQ); 1663 } else { 1664 // Make desired shift 1665 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1666 TLI.getPointerTy(), 1667 DAG.getConstant(1, TLI.getPointerTy()), 1668 ShiftOp); 1669 1670 // Emit bit tests and jumps 1671 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1672 TLI.getPointerTy(), SwitchVal, 1673 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1674 Cmp = DAG.getSetCC(getCurDebugLoc(), 1675 TLI.getSetCCResultType(AndOp.getValueType()), 1676 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1677 ISD::SETNE); 1678 } 1679 1680 SwitchBB->addSuccessor(B.TargetBB); 1681 SwitchBB->addSuccessor(NextMBB); 1682 1683 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1684 MVT::Other, getControlRoot(), 1685 Cmp, DAG.getBasicBlock(B.TargetBB)); 1686 1687 // Set NextBlock to be the MBB immediately after the current one, if any. 1688 // This is used to avoid emitting unnecessary branches to the next block. 1689 MachineBasicBlock *NextBlock = 0; 1690 MachineFunction::iterator BBI = SwitchBB; 1691 if (++BBI != FuncInfo.MF->end()) 1692 NextBlock = BBI; 1693 1694 if (NextMBB != NextBlock) 1695 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1696 DAG.getBasicBlock(NextMBB)); 1697 1698 DAG.setRoot(BrAnd); 1699 } 1700 1701 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1702 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1703 1704 // Retrieve successors. 1705 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1706 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1707 1708 const Value *Callee(I.getCalledValue()); 1709 if (isa<InlineAsm>(Callee)) 1710 visitInlineAsm(&I); 1711 else 1712 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1713 1714 // If the value of the invoke is used outside of its defining block, make it 1715 // available as a virtual register. 1716 CopyToExportRegsIfNeeded(&I); 1717 1718 // Update successor info 1719 InvokeMBB->addSuccessor(Return); 1720 InvokeMBB->addSuccessor(LandingPad); 1721 1722 // Drop into normal successor. 1723 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1724 MVT::Other, getControlRoot(), 1725 DAG.getBasicBlock(Return))); 1726 } 1727 1728 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1729 } 1730 1731 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1732 /// small case ranges). 1733 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1734 CaseRecVector& WorkList, 1735 const Value* SV, 1736 MachineBasicBlock *Default, 1737 MachineBasicBlock *SwitchBB) { 1738 Case& BackCase = *(CR.Range.second-1); 1739 1740 // Size is the number of Cases represented by this range. 1741 size_t Size = CR.Range.second - CR.Range.first; 1742 if (Size > 3) 1743 return false; 1744 1745 // Get the MachineFunction which holds the current MBB. This is used when 1746 // inserting any additional MBBs necessary to represent the switch. 1747 MachineFunction *CurMF = FuncInfo.MF; 1748 1749 // Figure out which block is immediately after the current one. 1750 MachineBasicBlock *NextBlock = 0; 1751 MachineFunction::iterator BBI = CR.CaseBB; 1752 1753 if (++BBI != FuncInfo.MF->end()) 1754 NextBlock = BBI; 1755 1756 // If any two of the cases has the same destination, and if one value 1757 // is the same as the other, but has one bit unset that the other has set, 1758 // use bit manipulation to do two compares at once. For example: 1759 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1760 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1761 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1762 if (Size == 2 && CR.CaseBB == SwitchBB) { 1763 Case &Small = *CR.Range.first; 1764 Case &Big = *(CR.Range.second-1); 1765 1766 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1767 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1768 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1769 1770 // Check that there is only one bit different. 1771 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1772 (SmallValue | BigValue) == BigValue) { 1773 // Isolate the common bit. 1774 APInt CommonBit = BigValue & ~SmallValue; 1775 assert((SmallValue | CommonBit) == BigValue && 1776 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1777 1778 SDValue CondLHS = getValue(SV); 1779 EVT VT = CondLHS.getValueType(); 1780 DebugLoc DL = getCurDebugLoc(); 1781 1782 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1783 DAG.getConstant(CommonBit, VT)); 1784 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1785 Or, DAG.getConstant(BigValue, VT), 1786 ISD::SETEQ); 1787 1788 // Update successor info. 1789 SwitchBB->addSuccessor(Small.BB); 1790 SwitchBB->addSuccessor(Default); 1791 1792 // Insert the true branch. 1793 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1794 getControlRoot(), Cond, 1795 DAG.getBasicBlock(Small.BB)); 1796 1797 // Insert the false branch. 1798 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1799 DAG.getBasicBlock(Default)); 1800 1801 DAG.setRoot(BrCond); 1802 return true; 1803 } 1804 } 1805 } 1806 1807 // Rearrange the case blocks so that the last one falls through if possible. 1808 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1809 // The last case block won't fall through into 'NextBlock' if we emit the 1810 // branches in this order. See if rearranging a case value would help. 1811 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1812 if (I->BB == NextBlock) { 1813 std::swap(*I, BackCase); 1814 break; 1815 } 1816 } 1817 } 1818 1819 // Create a CaseBlock record representing a conditional branch to 1820 // the Case's target mbb if the value being switched on SV is equal 1821 // to C. 1822 MachineBasicBlock *CurBlock = CR.CaseBB; 1823 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1824 MachineBasicBlock *FallThrough; 1825 if (I != E-1) { 1826 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1827 CurMF->insert(BBI, FallThrough); 1828 1829 // Put SV in a virtual register to make it available from the new blocks. 1830 ExportFromCurrentBlock(SV); 1831 } else { 1832 // If the last case doesn't match, go to the default block. 1833 FallThrough = Default; 1834 } 1835 1836 const Value *RHS, *LHS, *MHS; 1837 ISD::CondCode CC; 1838 if (I->High == I->Low) { 1839 // This is just small small case range :) containing exactly 1 case 1840 CC = ISD::SETEQ; 1841 LHS = SV; RHS = I->High; MHS = NULL; 1842 } else { 1843 CC = ISD::SETLE; 1844 LHS = I->Low; MHS = SV; RHS = I->High; 1845 } 1846 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1847 1848 // If emitting the first comparison, just call visitSwitchCase to emit the 1849 // code into the current block. Otherwise, push the CaseBlock onto the 1850 // vector to be later processed by SDISel, and insert the node's MBB 1851 // before the next MBB. 1852 if (CurBlock == SwitchBB) 1853 visitSwitchCase(CB, SwitchBB); 1854 else 1855 SwitchCases.push_back(CB); 1856 1857 CurBlock = FallThrough; 1858 } 1859 1860 return true; 1861 } 1862 1863 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1864 return !DisableJumpTables && 1865 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1866 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1867 } 1868 1869 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1870 APInt LastExt(Last), FirstExt(First); 1871 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1872 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1873 return (LastExt - FirstExt + 1ULL); 1874 } 1875 1876 /// handleJTSwitchCase - Emit jumptable for current switch case range 1877 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1878 CaseRecVector& WorkList, 1879 const Value* SV, 1880 MachineBasicBlock* Default, 1881 MachineBasicBlock *SwitchBB) { 1882 Case& FrontCase = *CR.Range.first; 1883 Case& BackCase = *(CR.Range.second-1); 1884 1885 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1886 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1887 1888 APInt TSize(First.getBitWidth(), 0); 1889 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1890 I!=E; ++I) 1891 TSize += I->size(); 1892 1893 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1894 return false; 1895 1896 APInt Range = ComputeRange(First, Last); 1897 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1898 if (Density < 0.4) 1899 return false; 1900 1901 DEBUG(dbgs() << "Lowering jump table\n" 1902 << "First entry: " << First << ". Last entry: " << Last << '\n' 1903 << "Range: " << Range 1904 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1905 1906 // Get the MachineFunction which holds the current MBB. This is used when 1907 // inserting any additional MBBs necessary to represent the switch. 1908 MachineFunction *CurMF = FuncInfo.MF; 1909 1910 // Figure out which block is immediately after the current one. 1911 MachineFunction::iterator BBI = CR.CaseBB; 1912 ++BBI; 1913 1914 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1915 1916 // Create a new basic block to hold the code for loading the address 1917 // of the jump table, and jumping to it. Update successor information; 1918 // we will either branch to the default case for the switch, or the jump 1919 // table. 1920 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1921 CurMF->insert(BBI, JumpTableBB); 1922 CR.CaseBB->addSuccessor(Default); 1923 CR.CaseBB->addSuccessor(JumpTableBB); 1924 1925 // Build a vector of destination BBs, corresponding to each target 1926 // of the jump table. If the value of the jump table slot corresponds to 1927 // a case statement, push the case's BB onto the vector, otherwise, push 1928 // the default BB. 1929 std::vector<MachineBasicBlock*> DestBBs; 1930 APInt TEI = First; 1931 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1932 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1933 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1934 1935 if (Low.sle(TEI) && TEI.sle(High)) { 1936 DestBBs.push_back(I->BB); 1937 if (TEI==High) 1938 ++I; 1939 } else { 1940 DestBBs.push_back(Default); 1941 } 1942 } 1943 1944 // Update successor info. Add one edge to each unique successor. 1945 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1946 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1947 E = DestBBs.end(); I != E; ++I) { 1948 if (!SuccsHandled[(*I)->getNumber()]) { 1949 SuccsHandled[(*I)->getNumber()] = true; 1950 JumpTableBB->addSuccessor(*I); 1951 } 1952 } 1953 1954 // Create a jump table index for this jump table. 1955 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1956 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1957 ->createJumpTableIndex(DestBBs); 1958 1959 // Set the jump table information so that we can codegen it as a second 1960 // MachineBasicBlock 1961 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1962 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1963 if (CR.CaseBB == SwitchBB) 1964 visitJumpTableHeader(JT, JTH, SwitchBB); 1965 1966 JTCases.push_back(JumpTableBlock(JTH, JT)); 1967 1968 return true; 1969 } 1970 1971 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1972 /// 2 subtrees. 1973 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1974 CaseRecVector& WorkList, 1975 const Value* SV, 1976 MachineBasicBlock *Default, 1977 MachineBasicBlock *SwitchBB) { 1978 // Get the MachineFunction which holds the current MBB. This is used when 1979 // inserting any additional MBBs necessary to represent the switch. 1980 MachineFunction *CurMF = FuncInfo.MF; 1981 1982 // Figure out which block is immediately after the current one. 1983 MachineFunction::iterator BBI = CR.CaseBB; 1984 ++BBI; 1985 1986 Case& FrontCase = *CR.Range.first; 1987 Case& BackCase = *(CR.Range.second-1); 1988 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1989 1990 // Size is the number of Cases represented by this range. 1991 unsigned Size = CR.Range.second - CR.Range.first; 1992 1993 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1994 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1995 double FMetric = 0; 1996 CaseItr Pivot = CR.Range.first + Size/2; 1997 1998 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1999 // (heuristically) allow us to emit JumpTable's later. 2000 APInt TSize(First.getBitWidth(), 0); 2001 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2002 I!=E; ++I) 2003 TSize += I->size(); 2004 2005 APInt LSize = FrontCase.size(); 2006 APInt RSize = TSize-LSize; 2007 DEBUG(dbgs() << "Selecting best pivot: \n" 2008 << "First: " << First << ", Last: " << Last <<'\n' 2009 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2010 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2011 J!=E; ++I, ++J) { 2012 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2013 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2014 APInt Range = ComputeRange(LEnd, RBegin); 2015 assert((Range - 2ULL).isNonNegative() && 2016 "Invalid case distance"); 2017 double LDensity = (double)LSize.roundToDouble() / 2018 (LEnd - First + 1ULL).roundToDouble(); 2019 double RDensity = (double)RSize.roundToDouble() / 2020 (Last - RBegin + 1ULL).roundToDouble(); 2021 double Metric = Range.logBase2()*(LDensity+RDensity); 2022 // Should always split in some non-trivial place 2023 DEBUG(dbgs() <<"=>Step\n" 2024 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2025 << "LDensity: " << LDensity 2026 << ", RDensity: " << RDensity << '\n' 2027 << "Metric: " << Metric << '\n'); 2028 if (FMetric < Metric) { 2029 Pivot = J; 2030 FMetric = Metric; 2031 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2032 } 2033 2034 LSize += J->size(); 2035 RSize -= J->size(); 2036 } 2037 if (areJTsAllowed(TLI)) { 2038 // If our case is dense we *really* should handle it earlier! 2039 assert((FMetric > 0) && "Should handle dense range earlier!"); 2040 } else { 2041 Pivot = CR.Range.first + Size/2; 2042 } 2043 2044 CaseRange LHSR(CR.Range.first, Pivot); 2045 CaseRange RHSR(Pivot, CR.Range.second); 2046 Constant *C = Pivot->Low; 2047 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2048 2049 // We know that we branch to the LHS if the Value being switched on is 2050 // less than the Pivot value, C. We use this to optimize our binary 2051 // tree a bit, by recognizing that if SV is greater than or equal to the 2052 // LHS's Case Value, and that Case Value is exactly one less than the 2053 // Pivot's Value, then we can branch directly to the LHS's Target, 2054 // rather than creating a leaf node for it. 2055 if ((LHSR.second - LHSR.first) == 1 && 2056 LHSR.first->High == CR.GE && 2057 cast<ConstantInt>(C)->getValue() == 2058 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2059 TrueBB = LHSR.first->BB; 2060 } else { 2061 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2062 CurMF->insert(BBI, TrueBB); 2063 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2064 2065 // Put SV in a virtual register to make it available from the new blocks. 2066 ExportFromCurrentBlock(SV); 2067 } 2068 2069 // Similar to the optimization above, if the Value being switched on is 2070 // known to be less than the Constant CR.LT, and the current Case Value 2071 // is CR.LT - 1, then we can branch directly to the target block for 2072 // the current Case Value, rather than emitting a RHS leaf node for it. 2073 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2074 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2075 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2076 FalseBB = RHSR.first->BB; 2077 } else { 2078 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2079 CurMF->insert(BBI, FalseBB); 2080 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2081 2082 // Put SV in a virtual register to make it available from the new blocks. 2083 ExportFromCurrentBlock(SV); 2084 } 2085 2086 // Create a CaseBlock record representing a conditional branch to 2087 // the LHS node if the value being switched on SV is less than C. 2088 // Otherwise, branch to LHS. 2089 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2090 2091 if (CR.CaseBB == SwitchBB) 2092 visitSwitchCase(CB, SwitchBB); 2093 else 2094 SwitchCases.push_back(CB); 2095 2096 return true; 2097 } 2098 2099 /// handleBitTestsSwitchCase - if current case range has few destination and 2100 /// range span less, than machine word bitwidth, encode case range into series 2101 /// of masks and emit bit tests with these masks. 2102 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2103 CaseRecVector& WorkList, 2104 const Value* SV, 2105 MachineBasicBlock* Default, 2106 MachineBasicBlock *SwitchBB){ 2107 EVT PTy = TLI.getPointerTy(); 2108 unsigned IntPtrBits = PTy.getSizeInBits(); 2109 2110 Case& FrontCase = *CR.Range.first; 2111 Case& BackCase = *(CR.Range.second-1); 2112 2113 // Get the MachineFunction which holds the current MBB. This is used when 2114 // inserting any additional MBBs necessary to represent the switch. 2115 MachineFunction *CurMF = FuncInfo.MF; 2116 2117 // If target does not have legal shift left, do not emit bit tests at all. 2118 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2119 return false; 2120 2121 size_t numCmps = 0; 2122 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2123 I!=E; ++I) { 2124 // Single case counts one, case range - two. 2125 numCmps += (I->Low == I->High ? 1 : 2); 2126 } 2127 2128 // Count unique destinations 2129 SmallSet<MachineBasicBlock*, 4> Dests; 2130 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2131 Dests.insert(I->BB); 2132 if (Dests.size() > 3) 2133 // Don't bother the code below, if there are too much unique destinations 2134 return false; 2135 } 2136 DEBUG(dbgs() << "Total number of unique destinations: " 2137 << Dests.size() << '\n' 2138 << "Total number of comparisons: " << numCmps << '\n'); 2139 2140 // Compute span of values. 2141 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2142 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2143 APInt cmpRange = maxValue - minValue; 2144 2145 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2146 << "Low bound: " << minValue << '\n' 2147 << "High bound: " << maxValue << '\n'); 2148 2149 if (cmpRange.uge(IntPtrBits) || 2150 (!(Dests.size() == 1 && numCmps >= 3) && 2151 !(Dests.size() == 2 && numCmps >= 5) && 2152 !(Dests.size() >= 3 && numCmps >= 6))) 2153 return false; 2154 2155 DEBUG(dbgs() << "Emitting bit tests\n"); 2156 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2157 2158 // Optimize the case where all the case values fit in a 2159 // word without having to subtract minValue. In this case, 2160 // we can optimize away the subtraction. 2161 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2162 cmpRange = maxValue; 2163 } else { 2164 lowBound = minValue; 2165 } 2166 2167 CaseBitsVector CasesBits; 2168 unsigned i, count = 0; 2169 2170 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2171 MachineBasicBlock* Dest = I->BB; 2172 for (i = 0; i < count; ++i) 2173 if (Dest == CasesBits[i].BB) 2174 break; 2175 2176 if (i == count) { 2177 assert((count < 3) && "Too much destinations to test!"); 2178 CasesBits.push_back(CaseBits(0, Dest, 0)); 2179 count++; 2180 } 2181 2182 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2183 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2184 2185 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2186 uint64_t hi = (highValue - lowBound).getZExtValue(); 2187 2188 for (uint64_t j = lo; j <= hi; j++) { 2189 CasesBits[i].Mask |= 1ULL << j; 2190 CasesBits[i].Bits++; 2191 } 2192 2193 } 2194 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2195 2196 BitTestInfo BTC; 2197 2198 // Figure out which block is immediately after the current one. 2199 MachineFunction::iterator BBI = CR.CaseBB; 2200 ++BBI; 2201 2202 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2203 2204 DEBUG(dbgs() << "Cases:\n"); 2205 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2206 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2207 << ", Bits: " << CasesBits[i].Bits 2208 << ", BB: " << CasesBits[i].BB << '\n'); 2209 2210 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2211 CurMF->insert(BBI, CaseBB); 2212 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2213 CaseBB, 2214 CasesBits[i].BB)); 2215 2216 // Put SV in a virtual register to make it available from the new blocks. 2217 ExportFromCurrentBlock(SV); 2218 } 2219 2220 BitTestBlock BTB(lowBound, cmpRange, SV, 2221 -1U, (CR.CaseBB == SwitchBB), 2222 CR.CaseBB, Default, BTC); 2223 2224 if (CR.CaseBB == SwitchBB) 2225 visitBitTestHeader(BTB, SwitchBB); 2226 2227 BitTestCases.push_back(BTB); 2228 2229 return true; 2230 } 2231 2232 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2233 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2234 const SwitchInst& SI) { 2235 size_t numCmps = 0; 2236 2237 // Start with "simple" cases 2238 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2239 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2240 Cases.push_back(Case(SI.getSuccessorValue(i), 2241 SI.getSuccessorValue(i), 2242 SMBB)); 2243 } 2244 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2245 2246 // Merge case into clusters 2247 if (Cases.size() >= 2) 2248 // Must recompute end() each iteration because it may be 2249 // invalidated by erase if we hold on to it 2250 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2251 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2252 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2253 MachineBasicBlock* nextBB = J->BB; 2254 MachineBasicBlock* currentBB = I->BB; 2255 2256 // If the two neighboring cases go to the same destination, merge them 2257 // into a single case. 2258 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2259 I->High = J->High; 2260 J = Cases.erase(J); 2261 } else { 2262 I = J++; 2263 } 2264 } 2265 2266 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2267 if (I->Low != I->High) 2268 // A range counts double, since it requires two compares. 2269 ++numCmps; 2270 } 2271 2272 return numCmps; 2273 } 2274 2275 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2276 MachineBasicBlock *Last) { 2277 // Update JTCases. 2278 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2279 if (JTCases[i].first.HeaderBB == First) 2280 JTCases[i].first.HeaderBB = Last; 2281 2282 // Update BitTestCases. 2283 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2284 if (BitTestCases[i].Parent == First) 2285 BitTestCases[i].Parent = Last; 2286 } 2287 2288 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2289 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2290 2291 // Figure out which block is immediately after the current one. 2292 MachineBasicBlock *NextBlock = 0; 2293 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2294 2295 // If there is only the default destination, branch to it if it is not the 2296 // next basic block. Otherwise, just fall through. 2297 if (SI.getNumOperands() == 2) { 2298 // Update machine-CFG edges. 2299 2300 // If this is not a fall-through branch, emit the branch. 2301 SwitchMBB->addSuccessor(Default); 2302 if (Default != NextBlock) 2303 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2304 MVT::Other, getControlRoot(), 2305 DAG.getBasicBlock(Default))); 2306 2307 return; 2308 } 2309 2310 // If there are any non-default case statements, create a vector of Cases 2311 // representing each one, and sort the vector so that we can efficiently 2312 // create a binary search tree from them. 2313 CaseVector Cases; 2314 size_t numCmps = Clusterify(Cases, SI); 2315 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2316 << ". Total compares: " << numCmps << '\n'); 2317 numCmps = 0; 2318 2319 // Get the Value to be switched on and default basic blocks, which will be 2320 // inserted into CaseBlock records, representing basic blocks in the binary 2321 // search tree. 2322 const Value *SV = SI.getOperand(0); 2323 2324 // Push the initial CaseRec onto the worklist 2325 CaseRecVector WorkList; 2326 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2327 CaseRange(Cases.begin(),Cases.end()))); 2328 2329 while (!WorkList.empty()) { 2330 // Grab a record representing a case range to process off the worklist 2331 CaseRec CR = WorkList.back(); 2332 WorkList.pop_back(); 2333 2334 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2335 continue; 2336 2337 // If the range has few cases (two or less) emit a series of specific 2338 // tests. 2339 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2340 continue; 2341 2342 // If the switch has more than 5 blocks, and at least 40% dense, and the 2343 // target supports indirect branches, then emit a jump table rather than 2344 // lowering the switch to a binary tree of conditional branches. 2345 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2346 continue; 2347 2348 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2349 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2350 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2351 } 2352 } 2353 2354 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2355 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2356 2357 // Update machine-CFG edges with unique successors. 2358 SmallVector<BasicBlock*, 32> succs; 2359 succs.reserve(I.getNumSuccessors()); 2360 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2361 succs.push_back(I.getSuccessor(i)); 2362 array_pod_sort(succs.begin(), succs.end()); 2363 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2364 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2365 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2366 2367 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2368 MVT::Other, getControlRoot(), 2369 getValue(I.getAddress()))); 2370 } 2371 2372 void SelectionDAGBuilder::visitFSub(const User &I) { 2373 // -0.0 - X --> fneg 2374 const Type *Ty = I.getType(); 2375 if (Ty->isVectorTy()) { 2376 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2377 const VectorType *DestTy = cast<VectorType>(I.getType()); 2378 const Type *ElTy = DestTy->getElementType(); 2379 unsigned VL = DestTy->getNumElements(); 2380 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2381 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2382 if (CV == CNZ) { 2383 SDValue Op2 = getValue(I.getOperand(1)); 2384 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2385 Op2.getValueType(), Op2)); 2386 return; 2387 } 2388 } 2389 } 2390 2391 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2392 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2393 SDValue Op2 = getValue(I.getOperand(1)); 2394 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2395 Op2.getValueType(), Op2)); 2396 return; 2397 } 2398 2399 visitBinary(I, ISD::FSUB); 2400 } 2401 2402 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2403 SDValue Op1 = getValue(I.getOperand(0)); 2404 SDValue Op2 = getValue(I.getOperand(1)); 2405 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2406 Op1.getValueType(), Op1, Op2)); 2407 } 2408 2409 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2410 SDValue Op1 = getValue(I.getOperand(0)); 2411 SDValue Op2 = getValue(I.getOperand(1)); 2412 if (!I.getType()->isVectorTy() && 2413 Op2.getValueType() != TLI.getShiftAmountTy()) { 2414 // If the operand is smaller than the shift count type, promote it. 2415 EVT PTy = TLI.getPointerTy(); 2416 EVT STy = TLI.getShiftAmountTy(); 2417 if (STy.bitsGT(Op2.getValueType())) 2418 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2419 TLI.getShiftAmountTy(), Op2); 2420 // If the operand is larger than the shift count type but the shift 2421 // count type has enough bits to represent any shift value, truncate 2422 // it now. This is a common case and it exposes the truncate to 2423 // optimization early. 2424 else if (STy.getSizeInBits() >= 2425 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2426 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2427 TLI.getShiftAmountTy(), Op2); 2428 // Otherwise we'll need to temporarily settle for some other 2429 // convenient type; type legalization will make adjustments as 2430 // needed. 2431 else if (PTy.bitsLT(Op2.getValueType())) 2432 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2433 TLI.getPointerTy(), Op2); 2434 else if (PTy.bitsGT(Op2.getValueType())) 2435 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2436 TLI.getPointerTy(), Op2); 2437 } 2438 2439 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2440 Op1.getValueType(), Op1, Op2)); 2441 } 2442 2443 void SelectionDAGBuilder::visitICmp(const User &I) { 2444 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2445 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2446 predicate = IC->getPredicate(); 2447 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2448 predicate = ICmpInst::Predicate(IC->getPredicate()); 2449 SDValue Op1 = getValue(I.getOperand(0)); 2450 SDValue Op2 = getValue(I.getOperand(1)); 2451 ISD::CondCode Opcode = getICmpCondCode(predicate); 2452 2453 EVT DestVT = TLI.getValueType(I.getType()); 2454 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2455 } 2456 2457 void SelectionDAGBuilder::visitFCmp(const User &I) { 2458 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2459 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2460 predicate = FC->getPredicate(); 2461 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2462 predicate = FCmpInst::Predicate(FC->getPredicate()); 2463 SDValue Op1 = getValue(I.getOperand(0)); 2464 SDValue Op2 = getValue(I.getOperand(1)); 2465 ISD::CondCode Condition = getFCmpCondCode(predicate); 2466 EVT DestVT = TLI.getValueType(I.getType()); 2467 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2468 } 2469 2470 void SelectionDAGBuilder::visitSelect(const User &I) { 2471 SmallVector<EVT, 4> ValueVTs; 2472 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2473 unsigned NumValues = ValueVTs.size(); 2474 if (NumValues == 0) return; 2475 2476 SmallVector<SDValue, 4> Values(NumValues); 2477 SDValue Cond = getValue(I.getOperand(0)); 2478 SDValue TrueVal = getValue(I.getOperand(1)); 2479 SDValue FalseVal = getValue(I.getOperand(2)); 2480 2481 for (unsigned i = 0; i != NumValues; ++i) 2482 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2483 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2484 Cond, 2485 SDValue(TrueVal.getNode(), 2486 TrueVal.getResNo() + i), 2487 SDValue(FalseVal.getNode(), 2488 FalseVal.getResNo() + i)); 2489 2490 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2491 DAG.getVTList(&ValueVTs[0], NumValues), 2492 &Values[0], NumValues)); 2493 } 2494 2495 void SelectionDAGBuilder::visitTrunc(const User &I) { 2496 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = TLI.getValueType(I.getType()); 2499 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2500 } 2501 2502 void SelectionDAGBuilder::visitZExt(const User &I) { 2503 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2504 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2505 SDValue N = getValue(I.getOperand(0)); 2506 EVT DestVT = TLI.getValueType(I.getType()); 2507 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2508 } 2509 2510 void SelectionDAGBuilder::visitSExt(const User &I) { 2511 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2512 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2513 SDValue N = getValue(I.getOperand(0)); 2514 EVT DestVT = TLI.getValueType(I.getType()); 2515 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2516 } 2517 2518 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2519 // FPTrunc is never a no-op cast, no need to check 2520 SDValue N = getValue(I.getOperand(0)); 2521 EVT DestVT = TLI.getValueType(I.getType()); 2522 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2523 DestVT, N, DAG.getIntPtrConstant(0))); 2524 } 2525 2526 void SelectionDAGBuilder::visitFPExt(const User &I){ 2527 // FPTrunc is never a no-op cast, no need to check 2528 SDValue N = getValue(I.getOperand(0)); 2529 EVT DestVT = TLI.getValueType(I.getType()); 2530 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2531 } 2532 2533 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2534 // FPToUI is never a no-op cast, no need to check 2535 SDValue N = getValue(I.getOperand(0)); 2536 EVT DestVT = TLI.getValueType(I.getType()); 2537 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2538 } 2539 2540 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2541 // FPToSI is never a no-op cast, no need to check 2542 SDValue N = getValue(I.getOperand(0)); 2543 EVT DestVT = TLI.getValueType(I.getType()); 2544 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2545 } 2546 2547 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2548 // UIToFP is never a no-op cast, no need to check 2549 SDValue N = getValue(I.getOperand(0)); 2550 EVT DestVT = TLI.getValueType(I.getType()); 2551 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2552 } 2553 2554 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2555 // SIToFP is never a no-op cast, no need to check 2556 SDValue N = getValue(I.getOperand(0)); 2557 EVT DestVT = TLI.getValueType(I.getType()); 2558 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2559 } 2560 2561 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2562 // What to do depends on the size of the integer and the size of the pointer. 2563 // We can either truncate, zero extend, or no-op, accordingly. 2564 SDValue N = getValue(I.getOperand(0)); 2565 EVT DestVT = TLI.getValueType(I.getType()); 2566 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2567 } 2568 2569 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2570 // What to do depends on the size of the integer and the size of the pointer. 2571 // We can either truncate, zero extend, or no-op, accordingly. 2572 SDValue N = getValue(I.getOperand(0)); 2573 EVT DestVT = TLI.getValueType(I.getType()); 2574 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2575 } 2576 2577 void SelectionDAGBuilder::visitBitCast(const User &I) { 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = TLI.getValueType(I.getType()); 2580 2581 // BitCast assures us that source and destination are the same size so this is 2582 // either a BITCAST or a no-op. 2583 if (DestVT != N.getValueType()) 2584 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2585 DestVT, N)); // convert types. 2586 else 2587 setValue(&I, N); // noop cast. 2588 } 2589 2590 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2591 SDValue InVec = getValue(I.getOperand(0)); 2592 SDValue InVal = getValue(I.getOperand(1)); 2593 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2594 TLI.getPointerTy(), 2595 getValue(I.getOperand(2))); 2596 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2597 TLI.getValueType(I.getType()), 2598 InVec, InVal, InIdx)); 2599 } 2600 2601 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2602 SDValue InVec = getValue(I.getOperand(0)); 2603 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2604 TLI.getPointerTy(), 2605 getValue(I.getOperand(1))); 2606 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2607 TLI.getValueType(I.getType()), InVec, InIdx)); 2608 } 2609 2610 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2611 // from SIndx and increasing to the element length (undefs are allowed). 2612 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2613 unsigned MaskNumElts = Mask.size(); 2614 for (unsigned i = 0; i != MaskNumElts; ++i) 2615 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2616 return false; 2617 return true; 2618 } 2619 2620 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2621 SmallVector<int, 8> Mask; 2622 SDValue Src1 = getValue(I.getOperand(0)); 2623 SDValue Src2 = getValue(I.getOperand(1)); 2624 2625 // Convert the ConstantVector mask operand into an array of ints, with -1 2626 // representing undef values. 2627 SmallVector<Constant*, 8> MaskElts; 2628 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2629 unsigned MaskNumElts = MaskElts.size(); 2630 for (unsigned i = 0; i != MaskNumElts; ++i) { 2631 if (isa<UndefValue>(MaskElts[i])) 2632 Mask.push_back(-1); 2633 else 2634 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2635 } 2636 2637 EVT VT = TLI.getValueType(I.getType()); 2638 EVT SrcVT = Src1.getValueType(); 2639 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2640 2641 if (SrcNumElts == MaskNumElts) { 2642 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2643 &Mask[0])); 2644 return; 2645 } 2646 2647 // Normalize the shuffle vector since mask and vector length don't match. 2648 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2649 // Mask is longer than the source vectors and is a multiple of the source 2650 // vectors. We can use concatenate vector to make the mask and vectors 2651 // lengths match. 2652 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2653 // The shuffle is concatenating two vectors together. 2654 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2655 VT, Src1, Src2)); 2656 return; 2657 } 2658 2659 // Pad both vectors with undefs to make them the same length as the mask. 2660 unsigned NumConcat = MaskNumElts / SrcNumElts; 2661 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2662 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2663 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2664 2665 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2666 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2667 MOps1[0] = Src1; 2668 MOps2[0] = Src2; 2669 2670 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2671 getCurDebugLoc(), VT, 2672 &MOps1[0], NumConcat); 2673 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2674 getCurDebugLoc(), VT, 2675 &MOps2[0], NumConcat); 2676 2677 // Readjust mask for new input vector length. 2678 SmallVector<int, 8> MappedOps; 2679 for (unsigned i = 0; i != MaskNumElts; ++i) { 2680 int Idx = Mask[i]; 2681 if (Idx < (int)SrcNumElts) 2682 MappedOps.push_back(Idx); 2683 else 2684 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2685 } 2686 2687 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2688 &MappedOps[0])); 2689 return; 2690 } 2691 2692 if (SrcNumElts > MaskNumElts) { 2693 // Analyze the access pattern of the vector to see if we can extract 2694 // two subvectors and do the shuffle. The analysis is done by calculating 2695 // the range of elements the mask access on both vectors. 2696 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2697 int MaxRange[2] = {-1, -1}; 2698 2699 for (unsigned i = 0; i != MaskNumElts; ++i) { 2700 int Idx = Mask[i]; 2701 int Input = 0; 2702 if (Idx < 0) 2703 continue; 2704 2705 if (Idx >= (int)SrcNumElts) { 2706 Input = 1; 2707 Idx -= SrcNumElts; 2708 } 2709 if (Idx > MaxRange[Input]) 2710 MaxRange[Input] = Idx; 2711 if (Idx < MinRange[Input]) 2712 MinRange[Input] = Idx; 2713 } 2714 2715 // Check if the access is smaller than the vector size and can we find 2716 // a reasonable extract index. 2717 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2718 // Extract. 2719 int StartIdx[2]; // StartIdx to extract from 2720 for (int Input=0; Input < 2; ++Input) { 2721 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2722 RangeUse[Input] = 0; // Unused 2723 StartIdx[Input] = 0; 2724 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2725 // Fits within range but we should see if we can find a good 2726 // start index that is a multiple of the mask length. 2727 if (MaxRange[Input] < (int)MaskNumElts) { 2728 RangeUse[Input] = 1; // Extract from beginning of the vector 2729 StartIdx[Input] = 0; 2730 } else { 2731 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2732 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2733 StartIdx[Input] + MaskNumElts < SrcNumElts) 2734 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2735 } 2736 } 2737 } 2738 2739 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2740 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2741 return; 2742 } 2743 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2744 // Extract appropriate subvector and generate a vector shuffle 2745 for (int Input=0; Input < 2; ++Input) { 2746 SDValue &Src = Input == 0 ? Src1 : Src2; 2747 if (RangeUse[Input] == 0) 2748 Src = DAG.getUNDEF(VT); 2749 else 2750 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2751 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2752 } 2753 2754 // Calculate new mask. 2755 SmallVector<int, 8> MappedOps; 2756 for (unsigned i = 0; i != MaskNumElts; ++i) { 2757 int Idx = Mask[i]; 2758 if (Idx < 0) 2759 MappedOps.push_back(Idx); 2760 else if (Idx < (int)SrcNumElts) 2761 MappedOps.push_back(Idx - StartIdx[0]); 2762 else 2763 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2764 } 2765 2766 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2767 &MappedOps[0])); 2768 return; 2769 } 2770 } 2771 2772 // We can't use either concat vectors or extract subvectors so fall back to 2773 // replacing the shuffle with extract and build vector. 2774 // to insert and build vector. 2775 EVT EltVT = VT.getVectorElementType(); 2776 EVT PtrVT = TLI.getPointerTy(); 2777 SmallVector<SDValue,8> Ops; 2778 for (unsigned i = 0; i != MaskNumElts; ++i) { 2779 if (Mask[i] < 0) { 2780 Ops.push_back(DAG.getUNDEF(EltVT)); 2781 } else { 2782 int Idx = Mask[i]; 2783 SDValue Res; 2784 2785 if (Idx < (int)SrcNumElts) 2786 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2787 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2788 else 2789 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2790 EltVT, Src2, 2791 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2792 2793 Ops.push_back(Res); 2794 } 2795 } 2796 2797 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2798 VT, &Ops[0], Ops.size())); 2799 } 2800 2801 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2802 const Value *Op0 = I.getOperand(0); 2803 const Value *Op1 = I.getOperand(1); 2804 const Type *AggTy = I.getType(); 2805 const Type *ValTy = Op1->getType(); 2806 bool IntoUndef = isa<UndefValue>(Op0); 2807 bool FromUndef = isa<UndefValue>(Op1); 2808 2809 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2810 2811 SmallVector<EVT, 4> AggValueVTs; 2812 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2813 SmallVector<EVT, 4> ValValueVTs; 2814 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2815 2816 unsigned NumAggValues = AggValueVTs.size(); 2817 unsigned NumValValues = ValValueVTs.size(); 2818 SmallVector<SDValue, 4> Values(NumAggValues); 2819 2820 SDValue Agg = getValue(Op0); 2821 SDValue Val = getValue(Op1); 2822 unsigned i = 0; 2823 // Copy the beginning value(s) from the original aggregate. 2824 for (; i != LinearIndex; ++i) 2825 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2826 SDValue(Agg.getNode(), Agg.getResNo() + i); 2827 // Copy values from the inserted value(s). 2828 for (; i != LinearIndex + NumValValues; ++i) 2829 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2830 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2831 // Copy remaining value(s) from the original aggregate. 2832 for (; i != NumAggValues; ++i) 2833 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2834 SDValue(Agg.getNode(), Agg.getResNo() + i); 2835 2836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2837 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2838 &Values[0], NumAggValues)); 2839 } 2840 2841 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2842 const Value *Op0 = I.getOperand(0); 2843 const Type *AggTy = Op0->getType(); 2844 const Type *ValTy = I.getType(); 2845 bool OutOfUndef = isa<UndefValue>(Op0); 2846 2847 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2848 2849 SmallVector<EVT, 4> ValValueVTs; 2850 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2851 2852 unsigned NumValValues = ValValueVTs.size(); 2853 SmallVector<SDValue, 4> Values(NumValValues); 2854 2855 SDValue Agg = getValue(Op0); 2856 // Copy out the selected value(s). 2857 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2858 Values[i - LinearIndex] = 2859 OutOfUndef ? 2860 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2861 SDValue(Agg.getNode(), Agg.getResNo() + i); 2862 2863 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2864 DAG.getVTList(&ValValueVTs[0], NumValValues), 2865 &Values[0], NumValValues)); 2866 } 2867 2868 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2869 SDValue N = getValue(I.getOperand(0)); 2870 const Type *Ty = I.getOperand(0)->getType(); 2871 2872 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2873 OI != E; ++OI) { 2874 const Value *Idx = *OI; 2875 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2876 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2877 if (Field) { 2878 // N = N + Offset 2879 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2880 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2881 DAG.getIntPtrConstant(Offset)); 2882 } 2883 2884 Ty = StTy->getElementType(Field); 2885 } else { 2886 Ty = cast<SequentialType>(Ty)->getElementType(); 2887 2888 // If this is a constant subscript, handle it quickly. 2889 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2890 if (CI->isZero()) continue; 2891 uint64_t Offs = 2892 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2893 SDValue OffsVal; 2894 EVT PTy = TLI.getPointerTy(); 2895 unsigned PtrBits = PTy.getSizeInBits(); 2896 if (PtrBits < 64) 2897 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2898 TLI.getPointerTy(), 2899 DAG.getConstant(Offs, MVT::i64)); 2900 else 2901 OffsVal = DAG.getIntPtrConstant(Offs); 2902 2903 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2904 OffsVal); 2905 continue; 2906 } 2907 2908 // N = N + Idx * ElementSize; 2909 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2910 TD->getTypeAllocSize(Ty)); 2911 SDValue IdxN = getValue(Idx); 2912 2913 // If the index is smaller or larger than intptr_t, truncate or extend 2914 // it. 2915 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2916 2917 // If this is a multiply by a power of two, turn it into a shl 2918 // immediately. This is a very common case. 2919 if (ElementSize != 1) { 2920 if (ElementSize.isPowerOf2()) { 2921 unsigned Amt = ElementSize.logBase2(); 2922 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2923 N.getValueType(), IdxN, 2924 DAG.getConstant(Amt, TLI.getPointerTy())); 2925 } else { 2926 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2927 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2928 N.getValueType(), IdxN, Scale); 2929 } 2930 } 2931 2932 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2933 N.getValueType(), N, IdxN); 2934 } 2935 } 2936 2937 setValue(&I, N); 2938 } 2939 2940 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2941 // If this is a fixed sized alloca in the entry block of the function, 2942 // allocate it statically on the stack. 2943 if (FuncInfo.StaticAllocaMap.count(&I)) 2944 return; // getValue will auto-populate this. 2945 2946 const Type *Ty = I.getAllocatedType(); 2947 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2948 unsigned Align = 2949 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2950 I.getAlignment()); 2951 2952 SDValue AllocSize = getValue(I.getArraySize()); 2953 2954 EVT IntPtr = TLI.getPointerTy(); 2955 if (AllocSize.getValueType() != IntPtr) 2956 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2957 2958 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2959 AllocSize, 2960 DAG.getConstant(TySize, IntPtr)); 2961 2962 // Handle alignment. If the requested alignment is less than or equal to 2963 // the stack alignment, ignore it. If the size is greater than or equal to 2964 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2965 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2966 if (Align <= StackAlign) 2967 Align = 0; 2968 2969 // Round the size of the allocation up to the stack alignment size 2970 // by add SA-1 to the size. 2971 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2972 AllocSize.getValueType(), AllocSize, 2973 DAG.getIntPtrConstant(StackAlign-1)); 2974 2975 // Mask out the low bits for alignment purposes. 2976 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2977 AllocSize.getValueType(), AllocSize, 2978 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2979 2980 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2981 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2982 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2983 VTs, Ops, 3); 2984 setValue(&I, DSA); 2985 DAG.setRoot(DSA.getValue(1)); 2986 2987 // Inform the Frame Information that we have just allocated a variable-sized 2988 // object. 2989 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2990 } 2991 2992 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2993 const Value *SV = I.getOperand(0); 2994 SDValue Ptr = getValue(SV); 2995 2996 const Type *Ty = I.getType(); 2997 2998 bool isVolatile = I.isVolatile(); 2999 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3000 unsigned Alignment = I.getAlignment(); 3001 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3002 3003 SmallVector<EVT, 4> ValueVTs; 3004 SmallVector<uint64_t, 4> Offsets; 3005 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3006 unsigned NumValues = ValueVTs.size(); 3007 if (NumValues == 0) 3008 return; 3009 3010 SDValue Root; 3011 bool ConstantMemory = false; 3012 if (I.isVolatile() || NumValues > MaxParallelChains) 3013 // Serialize volatile loads with other side effects. 3014 Root = getRoot(); 3015 else if (AA->pointsToConstantMemory( 3016 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3017 // Do not serialize (non-volatile) loads of constant memory with anything. 3018 Root = DAG.getEntryNode(); 3019 ConstantMemory = true; 3020 } else { 3021 // Do not serialize non-volatile loads against each other. 3022 Root = DAG.getRoot(); 3023 } 3024 3025 SmallVector<SDValue, 4> Values(NumValues); 3026 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3027 NumValues)); 3028 EVT PtrVT = Ptr.getValueType(); 3029 unsigned ChainI = 0; 3030 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3031 // Serializing loads here may result in excessive register pressure, and 3032 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3033 // could recover a bit by hoisting nodes upward in the chain by recognizing 3034 // they are side-effect free or do not alias. The optimizer should really 3035 // avoid this case by converting large object/array copies to llvm.memcpy 3036 // (MaxParallelChains should always remain as failsafe). 3037 if (ChainI == MaxParallelChains) { 3038 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3039 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3040 MVT::Other, &Chains[0], ChainI); 3041 Root = Chain; 3042 ChainI = 0; 3043 } 3044 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3045 PtrVT, Ptr, 3046 DAG.getConstant(Offsets[i], PtrVT)); 3047 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3048 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3049 isNonTemporal, Alignment, TBAAInfo); 3050 3051 Values[i] = L; 3052 Chains[ChainI] = L.getValue(1); 3053 } 3054 3055 if (!ConstantMemory) { 3056 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3057 MVT::Other, &Chains[0], ChainI); 3058 if (isVolatile) 3059 DAG.setRoot(Chain); 3060 else 3061 PendingLoads.push_back(Chain); 3062 } 3063 3064 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3065 DAG.getVTList(&ValueVTs[0], NumValues), 3066 &Values[0], NumValues)); 3067 } 3068 3069 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3070 const Value *SrcV = I.getOperand(0); 3071 const Value *PtrV = I.getOperand(1); 3072 3073 SmallVector<EVT, 4> ValueVTs; 3074 SmallVector<uint64_t, 4> Offsets; 3075 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3076 unsigned NumValues = ValueVTs.size(); 3077 if (NumValues == 0) 3078 return; 3079 3080 // Get the lowered operands. Note that we do this after 3081 // checking if NumResults is zero, because with zero results 3082 // the operands won't have values in the map. 3083 SDValue Src = getValue(SrcV); 3084 SDValue Ptr = getValue(PtrV); 3085 3086 SDValue Root = getRoot(); 3087 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3088 NumValues)); 3089 EVT PtrVT = Ptr.getValueType(); 3090 bool isVolatile = I.isVolatile(); 3091 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3092 unsigned Alignment = I.getAlignment(); 3093 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3094 3095 unsigned ChainI = 0; 3096 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3097 // See visitLoad comments. 3098 if (ChainI == MaxParallelChains) { 3099 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3100 MVT::Other, &Chains[0], ChainI); 3101 Root = Chain; 3102 ChainI = 0; 3103 } 3104 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3105 DAG.getConstant(Offsets[i], PtrVT)); 3106 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3107 SDValue(Src.getNode(), Src.getResNo() + i), 3108 Add, MachinePointerInfo(PtrV, Offsets[i]), 3109 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3110 Chains[ChainI] = St; 3111 } 3112 3113 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3114 MVT::Other, &Chains[0], ChainI); 3115 ++SDNodeOrder; 3116 AssignOrderingToNode(StoreNode.getNode()); 3117 DAG.setRoot(StoreNode); 3118 } 3119 3120 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3121 /// node. 3122 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3123 unsigned Intrinsic) { 3124 bool HasChain = !I.doesNotAccessMemory(); 3125 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3126 3127 // Build the operand list. 3128 SmallVector<SDValue, 8> Ops; 3129 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3130 if (OnlyLoad) { 3131 // We don't need to serialize loads against other loads. 3132 Ops.push_back(DAG.getRoot()); 3133 } else { 3134 Ops.push_back(getRoot()); 3135 } 3136 } 3137 3138 // Info is set by getTgtMemInstrinsic 3139 TargetLowering::IntrinsicInfo Info; 3140 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3141 3142 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3143 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3144 Info.opc == ISD::INTRINSIC_W_CHAIN) 3145 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3146 3147 // Add all operands of the call to the operand list. 3148 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3149 SDValue Op = getValue(I.getArgOperand(i)); 3150 assert(TLI.isTypeLegal(Op.getValueType()) && 3151 "Intrinsic uses a non-legal type?"); 3152 Ops.push_back(Op); 3153 } 3154 3155 SmallVector<EVT, 4> ValueVTs; 3156 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3157 #ifndef NDEBUG 3158 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3159 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3160 "Intrinsic uses a non-legal type?"); 3161 } 3162 #endif // NDEBUG 3163 3164 if (HasChain) 3165 ValueVTs.push_back(MVT::Other); 3166 3167 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3168 3169 // Create the node. 3170 SDValue Result; 3171 if (IsTgtIntrinsic) { 3172 // This is target intrinsic that touches memory 3173 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3174 VTs, &Ops[0], Ops.size(), 3175 Info.memVT, 3176 MachinePointerInfo(Info.ptrVal, Info.offset), 3177 Info.align, Info.vol, 3178 Info.readMem, Info.writeMem); 3179 } else if (!HasChain) { 3180 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3181 VTs, &Ops[0], Ops.size()); 3182 } else if (!I.getType()->isVoidTy()) { 3183 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3184 VTs, &Ops[0], Ops.size()); 3185 } else { 3186 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3187 VTs, &Ops[0], Ops.size()); 3188 } 3189 3190 if (HasChain) { 3191 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3192 if (OnlyLoad) 3193 PendingLoads.push_back(Chain); 3194 else 3195 DAG.setRoot(Chain); 3196 } 3197 3198 if (!I.getType()->isVoidTy()) { 3199 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3200 EVT VT = TLI.getValueType(PTy); 3201 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3202 } 3203 3204 setValue(&I, Result); 3205 } 3206 } 3207 3208 /// GetSignificand - Get the significand and build it into a floating-point 3209 /// number with exponent of 1: 3210 /// 3211 /// Op = (Op & 0x007fffff) | 0x3f800000; 3212 /// 3213 /// where Op is the hexidecimal representation of floating point value. 3214 static SDValue 3215 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3216 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3217 DAG.getConstant(0x007fffff, MVT::i32)); 3218 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3219 DAG.getConstant(0x3f800000, MVT::i32)); 3220 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3221 } 3222 3223 /// GetExponent - Get the exponent: 3224 /// 3225 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3226 /// 3227 /// where Op is the hexidecimal representation of floating point value. 3228 static SDValue 3229 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3230 DebugLoc dl) { 3231 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3232 DAG.getConstant(0x7f800000, MVT::i32)); 3233 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3234 DAG.getConstant(23, TLI.getPointerTy())); 3235 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3236 DAG.getConstant(127, MVT::i32)); 3237 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3238 } 3239 3240 /// getF32Constant - Get 32-bit floating point constant. 3241 static SDValue 3242 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3243 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3244 } 3245 3246 /// Inlined utility function to implement binary input atomic intrinsics for 3247 /// visitIntrinsicCall: I is a call instruction 3248 /// Op is the associated NodeType for I 3249 const char * 3250 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3251 ISD::NodeType Op) { 3252 SDValue Root = getRoot(); 3253 SDValue L = 3254 DAG.getAtomic(Op, getCurDebugLoc(), 3255 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3256 Root, 3257 getValue(I.getArgOperand(0)), 3258 getValue(I.getArgOperand(1)), 3259 I.getArgOperand(0)); 3260 setValue(&I, L); 3261 DAG.setRoot(L.getValue(1)); 3262 return 0; 3263 } 3264 3265 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3266 const char * 3267 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3268 SDValue Op1 = getValue(I.getArgOperand(0)); 3269 SDValue Op2 = getValue(I.getArgOperand(1)); 3270 3271 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3272 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3273 return 0; 3274 } 3275 3276 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3277 /// limited-precision mode. 3278 void 3279 SelectionDAGBuilder::visitExp(const CallInst &I) { 3280 SDValue result; 3281 DebugLoc dl = getCurDebugLoc(); 3282 3283 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3284 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3285 SDValue Op = getValue(I.getArgOperand(0)); 3286 3287 // Put the exponent in the right bit position for later addition to the 3288 // final result: 3289 // 3290 // #define LOG2OFe 1.4426950f 3291 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3292 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3293 getF32Constant(DAG, 0x3fb8aa3b)); 3294 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3295 3296 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3297 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3298 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3299 3300 // IntegerPartOfX <<= 23; 3301 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3302 DAG.getConstant(23, TLI.getPointerTy())); 3303 3304 if (LimitFloatPrecision <= 6) { 3305 // For floating-point precision of 6: 3306 // 3307 // TwoToFractionalPartOfX = 3308 // 0.997535578f + 3309 // (0.735607626f + 0.252464424f * x) * x; 3310 // 3311 // error 0.0144103317, which is 6 bits 3312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3313 getF32Constant(DAG, 0x3e814304)); 3314 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3315 getF32Constant(DAG, 0x3f3c50c8)); 3316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3317 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3318 getF32Constant(DAG, 0x3f7f5e7e)); 3319 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3320 3321 // Add the exponent into the result in integer domain. 3322 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3323 TwoToFracPartOfX, IntegerPartOfX); 3324 3325 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3326 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3327 // For floating-point precision of 12: 3328 // 3329 // TwoToFractionalPartOfX = 3330 // 0.999892986f + 3331 // (0.696457318f + 3332 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3333 // 3334 // 0.000107046256 error, which is 13 to 14 bits 3335 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3336 getF32Constant(DAG, 0x3da235e3)); 3337 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3338 getF32Constant(DAG, 0x3e65b8f3)); 3339 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3340 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3341 getF32Constant(DAG, 0x3f324b07)); 3342 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3343 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3344 getF32Constant(DAG, 0x3f7ff8fd)); 3345 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3346 3347 // Add the exponent into the result in integer domain. 3348 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3349 TwoToFracPartOfX, IntegerPartOfX); 3350 3351 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3352 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3353 // For floating-point precision of 18: 3354 // 3355 // TwoToFractionalPartOfX = 3356 // 0.999999982f + 3357 // (0.693148872f + 3358 // (0.240227044f + 3359 // (0.554906021e-1f + 3360 // (0.961591928e-2f + 3361 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3362 // 3363 // error 2.47208000*10^(-7), which is better than 18 bits 3364 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3365 getF32Constant(DAG, 0x3924b03e)); 3366 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3367 getF32Constant(DAG, 0x3ab24b87)); 3368 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3369 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3370 getF32Constant(DAG, 0x3c1d8c17)); 3371 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3372 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3373 getF32Constant(DAG, 0x3d634a1d)); 3374 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3375 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3376 getF32Constant(DAG, 0x3e75fe14)); 3377 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3378 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3379 getF32Constant(DAG, 0x3f317234)); 3380 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3381 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3382 getF32Constant(DAG, 0x3f800000)); 3383 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3384 MVT::i32, t13); 3385 3386 // Add the exponent into the result in integer domain. 3387 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3388 TwoToFracPartOfX, IntegerPartOfX); 3389 3390 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3391 } 3392 } else { 3393 // No special expansion. 3394 result = DAG.getNode(ISD::FEXP, dl, 3395 getValue(I.getArgOperand(0)).getValueType(), 3396 getValue(I.getArgOperand(0))); 3397 } 3398 3399 setValue(&I, result); 3400 } 3401 3402 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3403 /// limited-precision mode. 3404 void 3405 SelectionDAGBuilder::visitLog(const CallInst &I) { 3406 SDValue result; 3407 DebugLoc dl = getCurDebugLoc(); 3408 3409 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3410 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3411 SDValue Op = getValue(I.getArgOperand(0)); 3412 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3413 3414 // Scale the exponent by log(2) [0.69314718f]. 3415 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3416 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3417 getF32Constant(DAG, 0x3f317218)); 3418 3419 // Get the significand and build it into a floating-point number with 3420 // exponent of 1. 3421 SDValue X = GetSignificand(DAG, Op1, dl); 3422 3423 if (LimitFloatPrecision <= 6) { 3424 // For floating-point precision of 6: 3425 // 3426 // LogofMantissa = 3427 // -1.1609546f + 3428 // (1.4034025f - 0.23903021f * x) * x; 3429 // 3430 // error 0.0034276066, which is better than 8 bits 3431 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3432 getF32Constant(DAG, 0xbe74c456)); 3433 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3434 getF32Constant(DAG, 0x3fb3a2b1)); 3435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3436 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3437 getF32Constant(DAG, 0x3f949a29)); 3438 3439 result = DAG.getNode(ISD::FADD, dl, 3440 MVT::f32, LogOfExponent, LogOfMantissa); 3441 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3442 // For floating-point precision of 12: 3443 // 3444 // LogOfMantissa = 3445 // -1.7417939f + 3446 // (2.8212026f + 3447 // (-1.4699568f + 3448 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3449 // 3450 // error 0.000061011436, which is 14 bits 3451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0xbd67b6d6)); 3453 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3454 getF32Constant(DAG, 0x3ee4f4b8)); 3455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3456 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3457 getF32Constant(DAG, 0x3fbc278b)); 3458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3460 getF32Constant(DAG, 0x40348e95)); 3461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3462 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3463 getF32Constant(DAG, 0x3fdef31a)); 3464 3465 result = DAG.getNode(ISD::FADD, dl, 3466 MVT::f32, LogOfExponent, LogOfMantissa); 3467 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3468 // For floating-point precision of 18: 3469 // 3470 // LogOfMantissa = 3471 // -2.1072184f + 3472 // (4.2372794f + 3473 // (-3.7029485f + 3474 // (2.2781945f + 3475 // (-0.87823314f + 3476 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3477 // 3478 // error 0.0000023660568, which is better than 18 bits 3479 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3480 getF32Constant(DAG, 0xbc91e5ac)); 3481 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3482 getF32Constant(DAG, 0x3e4350aa)); 3483 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3484 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3485 getF32Constant(DAG, 0x3f60d3e3)); 3486 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3487 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3488 getF32Constant(DAG, 0x4011cdf0)); 3489 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3490 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3491 getF32Constant(DAG, 0x406cfd1c)); 3492 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3493 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3494 getF32Constant(DAG, 0x408797cb)); 3495 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3496 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3497 getF32Constant(DAG, 0x4006dcab)); 3498 3499 result = DAG.getNode(ISD::FADD, dl, 3500 MVT::f32, LogOfExponent, LogOfMantissa); 3501 } 3502 } else { 3503 // No special expansion. 3504 result = DAG.getNode(ISD::FLOG, dl, 3505 getValue(I.getArgOperand(0)).getValueType(), 3506 getValue(I.getArgOperand(0))); 3507 } 3508 3509 setValue(&I, result); 3510 } 3511 3512 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3513 /// limited-precision mode. 3514 void 3515 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3516 SDValue result; 3517 DebugLoc dl = getCurDebugLoc(); 3518 3519 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3520 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3521 SDValue Op = getValue(I.getArgOperand(0)); 3522 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3523 3524 // Get the exponent. 3525 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3526 3527 // Get the significand and build it into a floating-point number with 3528 // exponent of 1. 3529 SDValue X = GetSignificand(DAG, Op1, dl); 3530 3531 // Different possible minimax approximations of significand in 3532 // floating-point for various degrees of accuracy over [1,2]. 3533 if (LimitFloatPrecision <= 6) { 3534 // For floating-point precision of 6: 3535 // 3536 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3537 // 3538 // error 0.0049451742, which is more than 7 bits 3539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3540 getF32Constant(DAG, 0xbeb08fe0)); 3541 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3542 getF32Constant(DAG, 0x40019463)); 3543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3544 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3545 getF32Constant(DAG, 0x3fd6633d)); 3546 3547 result = DAG.getNode(ISD::FADD, dl, 3548 MVT::f32, LogOfExponent, Log2ofMantissa); 3549 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3550 // For floating-point precision of 12: 3551 // 3552 // Log2ofMantissa = 3553 // -2.51285454f + 3554 // (4.07009056f + 3555 // (-2.12067489f + 3556 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3557 // 3558 // error 0.0000876136000, which is better than 13 bits 3559 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3560 getF32Constant(DAG, 0xbda7262e)); 3561 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3562 getF32Constant(DAG, 0x3f25280b)); 3563 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3564 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3565 getF32Constant(DAG, 0x4007b923)); 3566 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3567 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3568 getF32Constant(DAG, 0x40823e2f)); 3569 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3570 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3571 getF32Constant(DAG, 0x4020d29c)); 3572 3573 result = DAG.getNode(ISD::FADD, dl, 3574 MVT::f32, LogOfExponent, Log2ofMantissa); 3575 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3576 // For floating-point precision of 18: 3577 // 3578 // Log2ofMantissa = 3579 // -3.0400495f + 3580 // (6.1129976f + 3581 // (-5.3420409f + 3582 // (3.2865683f + 3583 // (-1.2669343f + 3584 // (0.27515199f - 3585 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3586 // 3587 // error 0.0000018516, which is better than 18 bits 3588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3589 getF32Constant(DAG, 0xbcd2769e)); 3590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3591 getF32Constant(DAG, 0x3e8ce0b9)); 3592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3593 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3594 getF32Constant(DAG, 0x3fa22ae7)); 3595 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3596 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3597 getF32Constant(DAG, 0x40525723)); 3598 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3599 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3600 getF32Constant(DAG, 0x40aaf200)); 3601 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3602 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3603 getF32Constant(DAG, 0x40c39dad)); 3604 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3605 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3606 getF32Constant(DAG, 0x4042902c)); 3607 3608 result = DAG.getNode(ISD::FADD, dl, 3609 MVT::f32, LogOfExponent, Log2ofMantissa); 3610 } 3611 } else { 3612 // No special expansion. 3613 result = DAG.getNode(ISD::FLOG2, dl, 3614 getValue(I.getArgOperand(0)).getValueType(), 3615 getValue(I.getArgOperand(0))); 3616 } 3617 3618 setValue(&I, result); 3619 } 3620 3621 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3622 /// limited-precision mode. 3623 void 3624 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3625 SDValue result; 3626 DebugLoc dl = getCurDebugLoc(); 3627 3628 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3629 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3630 SDValue Op = getValue(I.getArgOperand(0)); 3631 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3632 3633 // Scale the exponent by log10(2) [0.30102999f]. 3634 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3635 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3636 getF32Constant(DAG, 0x3e9a209a)); 3637 3638 // Get the significand and build it into a floating-point number with 3639 // exponent of 1. 3640 SDValue X = GetSignificand(DAG, Op1, dl); 3641 3642 if (LimitFloatPrecision <= 6) { 3643 // For floating-point precision of 6: 3644 // 3645 // Log10ofMantissa = 3646 // -0.50419619f + 3647 // (0.60948995f - 0.10380950f * x) * x; 3648 // 3649 // error 0.0014886165, which is 6 bits 3650 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3651 getF32Constant(DAG, 0xbdd49a13)); 3652 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3653 getF32Constant(DAG, 0x3f1c0789)); 3654 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3655 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3656 getF32Constant(DAG, 0x3f011300)); 3657 3658 result = DAG.getNode(ISD::FADD, dl, 3659 MVT::f32, LogOfExponent, Log10ofMantissa); 3660 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3661 // For floating-point precision of 12: 3662 // 3663 // Log10ofMantissa = 3664 // -0.64831180f + 3665 // (0.91751397f + 3666 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3667 // 3668 // error 0.00019228036, which is better than 12 bits 3669 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3670 getF32Constant(DAG, 0x3d431f31)); 3671 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3672 getF32Constant(DAG, 0x3ea21fb2)); 3673 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3674 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3675 getF32Constant(DAG, 0x3f6ae232)); 3676 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3677 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3678 getF32Constant(DAG, 0x3f25f7c3)); 3679 3680 result = DAG.getNode(ISD::FADD, dl, 3681 MVT::f32, LogOfExponent, Log10ofMantissa); 3682 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3683 // For floating-point precision of 18: 3684 // 3685 // Log10ofMantissa = 3686 // -0.84299375f + 3687 // (1.5327582f + 3688 // (-1.0688956f + 3689 // (0.49102474f + 3690 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3691 // 3692 // error 0.0000037995730, which is better than 18 bits 3693 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3694 getF32Constant(DAG, 0x3c5d51ce)); 3695 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3696 getF32Constant(DAG, 0x3e00685a)); 3697 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3698 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3699 getF32Constant(DAG, 0x3efb6798)); 3700 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3701 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3702 getF32Constant(DAG, 0x3f88d192)); 3703 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3704 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3705 getF32Constant(DAG, 0x3fc4316c)); 3706 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3707 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3708 getF32Constant(DAG, 0x3f57ce70)); 3709 3710 result = DAG.getNode(ISD::FADD, dl, 3711 MVT::f32, LogOfExponent, Log10ofMantissa); 3712 } 3713 } else { 3714 // No special expansion. 3715 result = DAG.getNode(ISD::FLOG10, dl, 3716 getValue(I.getArgOperand(0)).getValueType(), 3717 getValue(I.getArgOperand(0))); 3718 } 3719 3720 setValue(&I, result); 3721 } 3722 3723 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3724 /// limited-precision mode. 3725 void 3726 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3727 SDValue result; 3728 DebugLoc dl = getCurDebugLoc(); 3729 3730 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3731 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3732 SDValue Op = getValue(I.getArgOperand(0)); 3733 3734 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3735 3736 // FractionalPartOfX = x - (float)IntegerPartOfX; 3737 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3738 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3739 3740 // IntegerPartOfX <<= 23; 3741 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3742 DAG.getConstant(23, TLI.getPointerTy())); 3743 3744 if (LimitFloatPrecision <= 6) { 3745 // For floating-point precision of 6: 3746 // 3747 // TwoToFractionalPartOfX = 3748 // 0.997535578f + 3749 // (0.735607626f + 0.252464424f * x) * x; 3750 // 3751 // error 0.0144103317, which is 6 bits 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0x3e814304)); 3754 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3755 getF32Constant(DAG, 0x3f3c50c8)); 3756 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3757 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3758 getF32Constant(DAG, 0x3f7f5e7e)); 3759 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3760 SDValue TwoToFractionalPartOfX = 3761 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3762 3763 result = DAG.getNode(ISD::BITCAST, dl, 3764 MVT::f32, TwoToFractionalPartOfX); 3765 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3766 // For floating-point precision of 12: 3767 // 3768 // TwoToFractionalPartOfX = 3769 // 0.999892986f + 3770 // (0.696457318f + 3771 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3772 // 3773 // error 0.000107046256, which is 13 to 14 bits 3774 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3775 getF32Constant(DAG, 0x3da235e3)); 3776 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3777 getF32Constant(DAG, 0x3e65b8f3)); 3778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3779 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3780 getF32Constant(DAG, 0x3f324b07)); 3781 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3782 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3783 getF32Constant(DAG, 0x3f7ff8fd)); 3784 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3785 SDValue TwoToFractionalPartOfX = 3786 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3787 3788 result = DAG.getNode(ISD::BITCAST, dl, 3789 MVT::f32, TwoToFractionalPartOfX); 3790 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3791 // For floating-point precision of 18: 3792 // 3793 // TwoToFractionalPartOfX = 3794 // 0.999999982f + 3795 // (0.693148872f + 3796 // (0.240227044f + 3797 // (0.554906021e-1f + 3798 // (0.961591928e-2f + 3799 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3800 // error 2.47208000*10^(-7), which is better than 18 bits 3801 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3802 getF32Constant(DAG, 0x3924b03e)); 3803 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3804 getF32Constant(DAG, 0x3ab24b87)); 3805 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3806 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3807 getF32Constant(DAG, 0x3c1d8c17)); 3808 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3809 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3810 getF32Constant(DAG, 0x3d634a1d)); 3811 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3812 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3813 getF32Constant(DAG, 0x3e75fe14)); 3814 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3815 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3816 getF32Constant(DAG, 0x3f317234)); 3817 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3818 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3819 getF32Constant(DAG, 0x3f800000)); 3820 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3821 SDValue TwoToFractionalPartOfX = 3822 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3823 3824 result = DAG.getNode(ISD::BITCAST, dl, 3825 MVT::f32, TwoToFractionalPartOfX); 3826 } 3827 } else { 3828 // No special expansion. 3829 result = DAG.getNode(ISD::FEXP2, dl, 3830 getValue(I.getArgOperand(0)).getValueType(), 3831 getValue(I.getArgOperand(0))); 3832 } 3833 3834 setValue(&I, result); 3835 } 3836 3837 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3838 /// limited-precision mode with x == 10.0f. 3839 void 3840 SelectionDAGBuilder::visitPow(const CallInst &I) { 3841 SDValue result; 3842 const Value *Val = I.getArgOperand(0); 3843 DebugLoc dl = getCurDebugLoc(); 3844 bool IsExp10 = false; 3845 3846 if (getValue(Val).getValueType() == MVT::f32 && 3847 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3848 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3849 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3850 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3851 APFloat Ten(10.0f); 3852 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3853 } 3854 } 3855 } 3856 3857 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3858 SDValue Op = getValue(I.getArgOperand(1)); 3859 3860 // Put the exponent in the right bit position for later addition to the 3861 // final result: 3862 // 3863 // #define LOG2OF10 3.3219281f 3864 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3865 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3866 getF32Constant(DAG, 0x40549a78)); 3867 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3868 3869 // FractionalPartOfX = x - (float)IntegerPartOfX; 3870 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3871 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3872 3873 // IntegerPartOfX <<= 23; 3874 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3875 DAG.getConstant(23, TLI.getPointerTy())); 3876 3877 if (LimitFloatPrecision <= 6) { 3878 // For floating-point precision of 6: 3879 // 3880 // twoToFractionalPartOfX = 3881 // 0.997535578f + 3882 // (0.735607626f + 0.252464424f * x) * x; 3883 // 3884 // error 0.0144103317, which is 6 bits 3885 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3886 getF32Constant(DAG, 0x3e814304)); 3887 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3888 getF32Constant(DAG, 0x3f3c50c8)); 3889 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3890 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3891 getF32Constant(DAG, 0x3f7f5e7e)); 3892 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3893 SDValue TwoToFractionalPartOfX = 3894 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3895 3896 result = DAG.getNode(ISD::BITCAST, dl, 3897 MVT::f32, TwoToFractionalPartOfX); 3898 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3899 // For floating-point precision of 12: 3900 // 3901 // TwoToFractionalPartOfX = 3902 // 0.999892986f + 3903 // (0.696457318f + 3904 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3905 // 3906 // error 0.000107046256, which is 13 to 14 bits 3907 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3908 getF32Constant(DAG, 0x3da235e3)); 3909 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3910 getF32Constant(DAG, 0x3e65b8f3)); 3911 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3912 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3913 getF32Constant(DAG, 0x3f324b07)); 3914 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3915 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3916 getF32Constant(DAG, 0x3f7ff8fd)); 3917 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3918 SDValue TwoToFractionalPartOfX = 3919 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3920 3921 result = DAG.getNode(ISD::BITCAST, dl, 3922 MVT::f32, TwoToFractionalPartOfX); 3923 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3924 // For floating-point precision of 18: 3925 // 3926 // TwoToFractionalPartOfX = 3927 // 0.999999982f + 3928 // (0.693148872f + 3929 // (0.240227044f + 3930 // (0.554906021e-1f + 3931 // (0.961591928e-2f + 3932 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3933 // error 2.47208000*10^(-7), which is better than 18 bits 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3935 getF32Constant(DAG, 0x3924b03e)); 3936 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3937 getF32Constant(DAG, 0x3ab24b87)); 3938 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3939 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3940 getF32Constant(DAG, 0x3c1d8c17)); 3941 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3942 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3943 getF32Constant(DAG, 0x3d634a1d)); 3944 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3945 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3946 getF32Constant(DAG, 0x3e75fe14)); 3947 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3948 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3949 getF32Constant(DAG, 0x3f317234)); 3950 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3951 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3952 getF32Constant(DAG, 0x3f800000)); 3953 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3954 SDValue TwoToFractionalPartOfX = 3955 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3956 3957 result = DAG.getNode(ISD::BITCAST, dl, 3958 MVT::f32, TwoToFractionalPartOfX); 3959 } 3960 } else { 3961 // No special expansion. 3962 result = DAG.getNode(ISD::FPOW, dl, 3963 getValue(I.getArgOperand(0)).getValueType(), 3964 getValue(I.getArgOperand(0)), 3965 getValue(I.getArgOperand(1))); 3966 } 3967 3968 setValue(&I, result); 3969 } 3970 3971 3972 /// ExpandPowI - Expand a llvm.powi intrinsic. 3973 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3974 SelectionDAG &DAG) { 3975 // If RHS is a constant, we can expand this out to a multiplication tree, 3976 // otherwise we end up lowering to a call to __powidf2 (for example). When 3977 // optimizing for size, we only want to do this if the expansion would produce 3978 // a small number of multiplies, otherwise we do the full expansion. 3979 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3980 // Get the exponent as a positive value. 3981 unsigned Val = RHSC->getSExtValue(); 3982 if ((int)Val < 0) Val = -Val; 3983 3984 // powi(x, 0) -> 1.0 3985 if (Val == 0) 3986 return DAG.getConstantFP(1.0, LHS.getValueType()); 3987 3988 const Function *F = DAG.getMachineFunction().getFunction(); 3989 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3990 // If optimizing for size, don't insert too many multiplies. This 3991 // inserts up to 5 multiplies. 3992 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3993 // We use the simple binary decomposition method to generate the multiply 3994 // sequence. There are more optimal ways to do this (for example, 3995 // powi(x,15) generates one more multiply than it should), but this has 3996 // the benefit of being both really simple and much better than a libcall. 3997 SDValue Res; // Logically starts equal to 1.0 3998 SDValue CurSquare = LHS; 3999 while (Val) { 4000 if (Val & 1) { 4001 if (Res.getNode()) 4002 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4003 else 4004 Res = CurSquare; // 1.0*CurSquare. 4005 } 4006 4007 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4008 CurSquare, CurSquare); 4009 Val >>= 1; 4010 } 4011 4012 // If the original was negative, invert the result, producing 1/(x*x*x). 4013 if (RHSC->getSExtValue() < 0) 4014 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4015 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4016 return Res; 4017 } 4018 } 4019 4020 // Otherwise, expand to a libcall. 4021 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4022 } 4023 4024 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4025 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4026 /// At the end of instruction selection, they will be inserted to the entry BB. 4027 bool 4028 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4029 int64_t Offset, 4030 const SDValue &N) { 4031 const Argument *Arg = dyn_cast<Argument>(V); 4032 if (!Arg) 4033 return false; 4034 4035 MachineFunction &MF = DAG.getMachineFunction(); 4036 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4037 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4038 4039 // Ignore inlined function arguments here. 4040 DIVariable DV(Variable); 4041 if (DV.isInlinedFnArgument(MF.getFunction())) 4042 return false; 4043 4044 MachineBasicBlock *MBB = FuncInfo.MBB; 4045 if (MBB != &MF.front()) 4046 return false; 4047 4048 unsigned Reg = 0; 4049 if (Arg->hasByValAttr()) { 4050 // Byval arguments' frame index is recorded during argument lowering. 4051 // Use this info directly. 4052 Reg = TRI->getFrameRegister(MF); 4053 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4054 // If byval argument ofset is not recorded then ignore this. 4055 if (!Offset) 4056 Reg = 0; 4057 } 4058 4059 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 4060 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4061 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4062 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4063 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4064 if (PR) 4065 Reg = PR; 4066 } 4067 } 4068 4069 if (!Reg) { 4070 // Check if ValueMap has reg number. 4071 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4072 if (VMI != FuncInfo.ValueMap.end()) 4073 Reg = VMI->second; 4074 } 4075 4076 if (!Reg && N.getNode()) { 4077 // Check if frame index is available. 4078 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4079 if (FrameIndexSDNode *FINode = 4080 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4081 Reg = TRI->getFrameRegister(MF); 4082 Offset = FINode->getIndex(); 4083 } 4084 } 4085 4086 if (!Reg) 4087 return false; 4088 4089 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4090 TII->get(TargetOpcode::DBG_VALUE)) 4091 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4092 FuncInfo.ArgDbgValues.push_back(&*MIB); 4093 return true; 4094 } 4095 4096 // VisualStudio defines setjmp as _setjmp 4097 #if defined(_MSC_VER) && defined(setjmp) && \ 4098 !defined(setjmp_undefined_for_msvc) 4099 # pragma push_macro("setjmp") 4100 # undef setjmp 4101 # define setjmp_undefined_for_msvc 4102 #endif 4103 4104 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4105 /// we want to emit this as a call to a named external function, return the name 4106 /// otherwise lower it and return null. 4107 const char * 4108 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4109 DebugLoc dl = getCurDebugLoc(); 4110 SDValue Res; 4111 4112 switch (Intrinsic) { 4113 default: 4114 // By default, turn this into a target intrinsic node. 4115 visitTargetIntrinsic(I, Intrinsic); 4116 return 0; 4117 case Intrinsic::vastart: visitVAStart(I); return 0; 4118 case Intrinsic::vaend: visitVAEnd(I); return 0; 4119 case Intrinsic::vacopy: visitVACopy(I); return 0; 4120 case Intrinsic::returnaddress: 4121 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4122 getValue(I.getArgOperand(0)))); 4123 return 0; 4124 case Intrinsic::frameaddress: 4125 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4126 getValue(I.getArgOperand(0)))); 4127 return 0; 4128 case Intrinsic::setjmp: 4129 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4130 case Intrinsic::longjmp: 4131 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4132 case Intrinsic::memcpy: { 4133 // Assert for address < 256 since we support only user defined address 4134 // spaces. 4135 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4136 < 256 && 4137 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4138 < 256 && 4139 "Unknown address space"); 4140 SDValue Op1 = getValue(I.getArgOperand(0)); 4141 SDValue Op2 = getValue(I.getArgOperand(1)); 4142 SDValue Op3 = getValue(I.getArgOperand(2)); 4143 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4144 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4145 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4146 MachinePointerInfo(I.getArgOperand(0)), 4147 MachinePointerInfo(I.getArgOperand(1)))); 4148 return 0; 4149 } 4150 case Intrinsic::memset: { 4151 // Assert for address < 256 since we support only user defined address 4152 // spaces. 4153 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4154 < 256 && 4155 "Unknown address space"); 4156 SDValue Op1 = getValue(I.getArgOperand(0)); 4157 SDValue Op2 = getValue(I.getArgOperand(1)); 4158 SDValue Op3 = getValue(I.getArgOperand(2)); 4159 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4160 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4161 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4162 MachinePointerInfo(I.getArgOperand(0)))); 4163 return 0; 4164 } 4165 case Intrinsic::memmove: { 4166 // Assert for address < 256 since we support only user defined address 4167 // spaces. 4168 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4169 < 256 && 4170 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4171 < 256 && 4172 "Unknown address space"); 4173 SDValue Op1 = getValue(I.getArgOperand(0)); 4174 SDValue Op2 = getValue(I.getArgOperand(1)); 4175 SDValue Op3 = getValue(I.getArgOperand(2)); 4176 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4177 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4178 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4179 MachinePointerInfo(I.getArgOperand(0)), 4180 MachinePointerInfo(I.getArgOperand(1)))); 4181 return 0; 4182 } 4183 case Intrinsic::dbg_declare: { 4184 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4185 MDNode *Variable = DI.getVariable(); 4186 const Value *Address = DI.getAddress(); 4187 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4188 return 0; 4189 4190 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4191 // but do not always have a corresponding SDNode built. The SDNodeOrder 4192 // absolute, but not relative, values are different depending on whether 4193 // debug info exists. 4194 ++SDNodeOrder; 4195 4196 // Check if address has undef value. 4197 if (isa<UndefValue>(Address) || 4198 (Address->use_empty() && !isa<Argument>(Address))) { 4199 SDDbgValue*SDV = 4200 DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4201 0, dl, SDNodeOrder); 4202 DAG.AddDbgValue(SDV, 0, false); 4203 return 0; 4204 } 4205 4206 SDValue &N = NodeMap[Address]; 4207 if (!N.getNode() && isa<Argument>(Address)) 4208 // Check unused arguments map. 4209 N = UnusedArgNodeMap[Address]; 4210 SDDbgValue *SDV; 4211 if (N.getNode()) { 4212 // Parameters are handled specially. 4213 bool isParameter = 4214 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4215 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4216 Address = BCI->getOperand(0); 4217 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4218 4219 if (isParameter && !AI) { 4220 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4221 if (FINode) 4222 // Byval parameter. We have a frame index at this point. 4223 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4224 0, dl, SDNodeOrder); 4225 else 4226 // Can't do anything with other non-AI cases yet. This might be a 4227 // parameter of a callee function that got inlined, for example. 4228 return 0; 4229 } else if (AI) 4230 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4231 0, dl, SDNodeOrder); 4232 else 4233 // Can't do anything with other non-AI cases yet. 4234 return 0; 4235 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4236 } else { 4237 // If Address is an argument then try to emit its dbg value using 4238 // virtual register info from the FuncInfo.ValueMap. 4239 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4240 // If variable is pinned by a alloca in dominating bb then 4241 // use StaticAllocaMap. 4242 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4243 if (AI->getParent() != DI.getParent()) { 4244 DenseMap<const AllocaInst*, int>::iterator SI = 4245 FuncInfo.StaticAllocaMap.find(AI); 4246 if (SI != FuncInfo.StaticAllocaMap.end()) { 4247 SDV = DAG.getDbgValue(Variable, SI->second, 4248 0, dl, SDNodeOrder); 4249 DAG.AddDbgValue(SDV, 0, false); 4250 return 0; 4251 } 4252 } 4253 } 4254 // Otherwise add undef to help track missing debug info. 4255 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4256 0, dl, SDNodeOrder); 4257 DAG.AddDbgValue(SDV, 0, false); 4258 } 4259 } 4260 return 0; 4261 } 4262 case Intrinsic::dbg_value: { 4263 const DbgValueInst &DI = cast<DbgValueInst>(I); 4264 if (!DIVariable(DI.getVariable()).Verify()) 4265 return 0; 4266 4267 MDNode *Variable = DI.getVariable(); 4268 uint64_t Offset = DI.getOffset(); 4269 const Value *V = DI.getValue(); 4270 if (!V) 4271 return 0; 4272 4273 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4274 // but do not always have a corresponding SDNode built. The SDNodeOrder 4275 // absolute, but not relative, values are different depending on whether 4276 // debug info exists. 4277 ++SDNodeOrder; 4278 SDDbgValue *SDV; 4279 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4280 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4281 DAG.AddDbgValue(SDV, 0, false); 4282 } else { 4283 // Do not use getValue() in here; we don't want to generate code at 4284 // this point if it hasn't been done yet. 4285 SDValue N = NodeMap[V]; 4286 if (!N.getNode() && isa<Argument>(V)) 4287 // Check unused arguments map. 4288 N = UnusedArgNodeMap[V]; 4289 if (N.getNode()) { 4290 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4291 SDV = DAG.getDbgValue(Variable, N.getNode(), 4292 N.getResNo(), Offset, dl, SDNodeOrder); 4293 DAG.AddDbgValue(SDV, N.getNode(), false); 4294 } 4295 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4296 // Do not call getValue(V) yet, as we don't want to generate code. 4297 // Remember it for later. 4298 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4299 DanglingDebugInfoMap[V] = DDI; 4300 } else { 4301 // We may expand this to cover more cases. One case where we have no 4302 // data available is an unreferenced parameter; we need this fallback. 4303 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4304 Offset, dl, SDNodeOrder); 4305 DAG.AddDbgValue(SDV, 0, false); 4306 } 4307 } 4308 4309 // Build a debug info table entry. 4310 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4311 V = BCI->getOperand(0); 4312 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4313 // Don't handle byval struct arguments or VLAs, for example. 4314 if (!AI) 4315 return 0; 4316 DenseMap<const AllocaInst*, int>::iterator SI = 4317 FuncInfo.StaticAllocaMap.find(AI); 4318 if (SI == FuncInfo.StaticAllocaMap.end()) 4319 return 0; // VLAs. 4320 int FI = SI->second; 4321 4322 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4323 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4324 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4325 return 0; 4326 } 4327 case Intrinsic::eh_exception: { 4328 // Insert the EXCEPTIONADDR instruction. 4329 assert(FuncInfo.MBB->isLandingPad() && 4330 "Call to eh.exception not in landing pad!"); 4331 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4332 SDValue Ops[1]; 4333 Ops[0] = DAG.getRoot(); 4334 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4335 setValue(&I, Op); 4336 DAG.setRoot(Op.getValue(1)); 4337 return 0; 4338 } 4339 4340 case Intrinsic::eh_selector: { 4341 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4342 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4343 if (CallMBB->isLandingPad()) 4344 AddCatchInfo(I, &MMI, CallMBB); 4345 else { 4346 #ifndef NDEBUG 4347 FuncInfo.CatchInfoLost.insert(&I); 4348 #endif 4349 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4350 unsigned Reg = TLI.getExceptionSelectorRegister(); 4351 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4352 } 4353 4354 // Insert the EHSELECTION instruction. 4355 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4356 SDValue Ops[2]; 4357 Ops[0] = getValue(I.getArgOperand(0)); 4358 Ops[1] = getRoot(); 4359 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4360 DAG.setRoot(Op.getValue(1)); 4361 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4362 return 0; 4363 } 4364 4365 case Intrinsic::eh_typeid_for: { 4366 // Find the type id for the given typeinfo. 4367 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4368 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4369 Res = DAG.getConstant(TypeID, MVT::i32); 4370 setValue(&I, Res); 4371 return 0; 4372 } 4373 4374 case Intrinsic::eh_return_i32: 4375 case Intrinsic::eh_return_i64: 4376 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4377 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4378 MVT::Other, 4379 getControlRoot(), 4380 getValue(I.getArgOperand(0)), 4381 getValue(I.getArgOperand(1)))); 4382 return 0; 4383 case Intrinsic::eh_unwind_init: 4384 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4385 return 0; 4386 case Intrinsic::eh_dwarf_cfa: { 4387 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4388 TLI.getPointerTy()); 4389 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4390 TLI.getPointerTy(), 4391 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4392 TLI.getPointerTy()), 4393 CfaArg); 4394 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4395 TLI.getPointerTy(), 4396 DAG.getConstant(0, TLI.getPointerTy())); 4397 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4398 FA, Offset)); 4399 return 0; 4400 } 4401 case Intrinsic::eh_sjlj_callsite: { 4402 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4403 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4404 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4405 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4406 4407 MMI.setCurrentCallSite(CI->getZExtValue()); 4408 return 0; 4409 } 4410 case Intrinsic::eh_sjlj_setjmp: { 4411 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4412 getValue(I.getArgOperand(0)))); 4413 return 0; 4414 } 4415 case Intrinsic::eh_sjlj_longjmp: { 4416 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4417 getRoot(), getValue(I.getArgOperand(0)))); 4418 return 0; 4419 } 4420 case Intrinsic::eh_sjlj_dispatch_setup: { 4421 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4422 getRoot(), getValue(I.getArgOperand(0)))); 4423 return 0; 4424 } 4425 4426 case Intrinsic::x86_mmx_pslli_w: 4427 case Intrinsic::x86_mmx_pslli_d: 4428 case Intrinsic::x86_mmx_pslli_q: 4429 case Intrinsic::x86_mmx_psrli_w: 4430 case Intrinsic::x86_mmx_psrli_d: 4431 case Intrinsic::x86_mmx_psrli_q: 4432 case Intrinsic::x86_mmx_psrai_w: 4433 case Intrinsic::x86_mmx_psrai_d: { 4434 SDValue ShAmt = getValue(I.getArgOperand(1)); 4435 if (isa<ConstantSDNode>(ShAmt)) { 4436 visitTargetIntrinsic(I, Intrinsic); 4437 return 0; 4438 } 4439 unsigned NewIntrinsic = 0; 4440 EVT ShAmtVT = MVT::v2i32; 4441 switch (Intrinsic) { 4442 case Intrinsic::x86_mmx_pslli_w: 4443 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4444 break; 4445 case Intrinsic::x86_mmx_pslli_d: 4446 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4447 break; 4448 case Intrinsic::x86_mmx_pslli_q: 4449 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4450 break; 4451 case Intrinsic::x86_mmx_psrli_w: 4452 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4453 break; 4454 case Intrinsic::x86_mmx_psrli_d: 4455 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4456 break; 4457 case Intrinsic::x86_mmx_psrli_q: 4458 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4459 break; 4460 case Intrinsic::x86_mmx_psrai_w: 4461 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4462 break; 4463 case Intrinsic::x86_mmx_psrai_d: 4464 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4465 break; 4466 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4467 } 4468 4469 // The vector shift intrinsics with scalars uses 32b shift amounts but 4470 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4471 // to be zero. 4472 // We must do this early because v2i32 is not a legal type. 4473 DebugLoc dl = getCurDebugLoc(); 4474 SDValue ShOps[2]; 4475 ShOps[0] = ShAmt; 4476 ShOps[1] = DAG.getConstant(0, MVT::i32); 4477 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4478 EVT DestVT = TLI.getValueType(I.getType()); 4479 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4480 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4481 DAG.getConstant(NewIntrinsic, MVT::i32), 4482 getValue(I.getArgOperand(0)), ShAmt); 4483 setValue(&I, Res); 4484 return 0; 4485 } 4486 case Intrinsic::convertff: 4487 case Intrinsic::convertfsi: 4488 case Intrinsic::convertfui: 4489 case Intrinsic::convertsif: 4490 case Intrinsic::convertuif: 4491 case Intrinsic::convertss: 4492 case Intrinsic::convertsu: 4493 case Intrinsic::convertus: 4494 case Intrinsic::convertuu: { 4495 ISD::CvtCode Code = ISD::CVT_INVALID; 4496 switch (Intrinsic) { 4497 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4498 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4499 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4500 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4501 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4502 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4503 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4504 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4505 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4506 } 4507 EVT DestVT = TLI.getValueType(I.getType()); 4508 const Value *Op1 = I.getArgOperand(0); 4509 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4510 DAG.getValueType(DestVT), 4511 DAG.getValueType(getValue(Op1).getValueType()), 4512 getValue(I.getArgOperand(1)), 4513 getValue(I.getArgOperand(2)), 4514 Code); 4515 setValue(&I, Res); 4516 return 0; 4517 } 4518 case Intrinsic::sqrt: 4519 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4520 getValue(I.getArgOperand(0)).getValueType(), 4521 getValue(I.getArgOperand(0)))); 4522 return 0; 4523 case Intrinsic::powi: 4524 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4525 getValue(I.getArgOperand(1)), DAG)); 4526 return 0; 4527 case Intrinsic::sin: 4528 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4529 getValue(I.getArgOperand(0)).getValueType(), 4530 getValue(I.getArgOperand(0)))); 4531 return 0; 4532 case Intrinsic::cos: 4533 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4534 getValue(I.getArgOperand(0)).getValueType(), 4535 getValue(I.getArgOperand(0)))); 4536 return 0; 4537 case Intrinsic::log: 4538 visitLog(I); 4539 return 0; 4540 case Intrinsic::log2: 4541 visitLog2(I); 4542 return 0; 4543 case Intrinsic::log10: 4544 visitLog10(I); 4545 return 0; 4546 case Intrinsic::exp: 4547 visitExp(I); 4548 return 0; 4549 case Intrinsic::exp2: 4550 visitExp2(I); 4551 return 0; 4552 case Intrinsic::pow: 4553 visitPow(I); 4554 return 0; 4555 case Intrinsic::convert_to_fp16: 4556 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4557 MVT::i16, getValue(I.getArgOperand(0)))); 4558 return 0; 4559 case Intrinsic::convert_from_fp16: 4560 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4561 MVT::f32, getValue(I.getArgOperand(0)))); 4562 return 0; 4563 case Intrinsic::pcmarker: { 4564 SDValue Tmp = getValue(I.getArgOperand(0)); 4565 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4566 return 0; 4567 } 4568 case Intrinsic::readcyclecounter: { 4569 SDValue Op = getRoot(); 4570 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4571 DAG.getVTList(MVT::i64, MVT::Other), 4572 &Op, 1); 4573 setValue(&I, Res); 4574 DAG.setRoot(Res.getValue(1)); 4575 return 0; 4576 } 4577 case Intrinsic::bswap: 4578 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4579 getValue(I.getArgOperand(0)).getValueType(), 4580 getValue(I.getArgOperand(0)))); 4581 return 0; 4582 case Intrinsic::cttz: { 4583 SDValue Arg = getValue(I.getArgOperand(0)); 4584 EVT Ty = Arg.getValueType(); 4585 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4586 return 0; 4587 } 4588 case Intrinsic::ctlz: { 4589 SDValue Arg = getValue(I.getArgOperand(0)); 4590 EVT Ty = Arg.getValueType(); 4591 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4592 return 0; 4593 } 4594 case Intrinsic::ctpop: { 4595 SDValue Arg = getValue(I.getArgOperand(0)); 4596 EVT Ty = Arg.getValueType(); 4597 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4598 return 0; 4599 } 4600 case Intrinsic::stacksave: { 4601 SDValue Op = getRoot(); 4602 Res = DAG.getNode(ISD::STACKSAVE, dl, 4603 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4604 setValue(&I, Res); 4605 DAG.setRoot(Res.getValue(1)); 4606 return 0; 4607 } 4608 case Intrinsic::stackrestore: { 4609 Res = getValue(I.getArgOperand(0)); 4610 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4611 return 0; 4612 } 4613 case Intrinsic::stackprotector: { 4614 // Emit code into the DAG to store the stack guard onto the stack. 4615 MachineFunction &MF = DAG.getMachineFunction(); 4616 MachineFrameInfo *MFI = MF.getFrameInfo(); 4617 EVT PtrTy = TLI.getPointerTy(); 4618 4619 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4620 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4621 4622 int FI = FuncInfo.StaticAllocaMap[Slot]; 4623 MFI->setStackProtectorIndex(FI); 4624 4625 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4626 4627 // Store the stack protector onto the stack. 4628 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4629 MachinePointerInfo::getFixedStack(FI), 4630 true, false, 0); 4631 setValue(&I, Res); 4632 DAG.setRoot(Res); 4633 return 0; 4634 } 4635 case Intrinsic::objectsize: { 4636 // If we don't know by now, we're never going to know. 4637 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4638 4639 assert(CI && "Non-constant type in __builtin_object_size?"); 4640 4641 SDValue Arg = getValue(I.getCalledValue()); 4642 EVT Ty = Arg.getValueType(); 4643 4644 if (CI->isZero()) 4645 Res = DAG.getConstant(-1ULL, Ty); 4646 else 4647 Res = DAG.getConstant(0, Ty); 4648 4649 setValue(&I, Res); 4650 return 0; 4651 } 4652 case Intrinsic::var_annotation: 4653 // Discard annotate attributes 4654 return 0; 4655 4656 case Intrinsic::init_trampoline: { 4657 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4658 4659 SDValue Ops[6]; 4660 Ops[0] = getRoot(); 4661 Ops[1] = getValue(I.getArgOperand(0)); 4662 Ops[2] = getValue(I.getArgOperand(1)); 4663 Ops[3] = getValue(I.getArgOperand(2)); 4664 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4665 Ops[5] = DAG.getSrcValue(F); 4666 4667 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4668 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4669 Ops, 6); 4670 4671 setValue(&I, Res); 4672 DAG.setRoot(Res.getValue(1)); 4673 return 0; 4674 } 4675 case Intrinsic::gcroot: 4676 if (GFI) { 4677 const Value *Alloca = I.getArgOperand(0); 4678 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4679 4680 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4681 GFI->addStackRoot(FI->getIndex(), TypeMap); 4682 } 4683 return 0; 4684 case Intrinsic::gcread: 4685 case Intrinsic::gcwrite: 4686 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4687 return 0; 4688 case Intrinsic::flt_rounds: 4689 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4690 return 0; 4691 case Intrinsic::trap: 4692 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4693 return 0; 4694 case Intrinsic::uadd_with_overflow: 4695 return implVisitAluOverflow(I, ISD::UADDO); 4696 case Intrinsic::sadd_with_overflow: 4697 return implVisitAluOverflow(I, ISD::SADDO); 4698 case Intrinsic::usub_with_overflow: 4699 return implVisitAluOverflow(I, ISD::USUBO); 4700 case Intrinsic::ssub_with_overflow: 4701 return implVisitAluOverflow(I, ISD::SSUBO); 4702 case Intrinsic::umul_with_overflow: 4703 return implVisitAluOverflow(I, ISD::UMULO); 4704 case Intrinsic::smul_with_overflow: 4705 return implVisitAluOverflow(I, ISD::SMULO); 4706 4707 case Intrinsic::prefetch: { 4708 SDValue Ops[4]; 4709 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4710 Ops[0] = getRoot(); 4711 Ops[1] = getValue(I.getArgOperand(0)); 4712 Ops[2] = getValue(I.getArgOperand(1)); 4713 Ops[3] = getValue(I.getArgOperand(2)); 4714 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4715 DAG.getVTList(MVT::Other), 4716 &Ops[0], 4, 4717 EVT::getIntegerVT(*Context, 8), 4718 MachinePointerInfo(I.getArgOperand(0)), 4719 0, /* align */ 4720 false, /* volatile */ 4721 rw==0, /* read */ 4722 rw==1)); /* write */ 4723 return 0; 4724 } 4725 case Intrinsic::memory_barrier: { 4726 SDValue Ops[6]; 4727 Ops[0] = getRoot(); 4728 for (int x = 1; x < 6; ++x) 4729 Ops[x] = getValue(I.getArgOperand(x - 1)); 4730 4731 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4732 return 0; 4733 } 4734 case Intrinsic::atomic_cmp_swap: { 4735 SDValue Root = getRoot(); 4736 SDValue L = 4737 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4738 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4739 Root, 4740 getValue(I.getArgOperand(0)), 4741 getValue(I.getArgOperand(1)), 4742 getValue(I.getArgOperand(2)), 4743 MachinePointerInfo(I.getArgOperand(0))); 4744 setValue(&I, L); 4745 DAG.setRoot(L.getValue(1)); 4746 return 0; 4747 } 4748 case Intrinsic::atomic_load_add: 4749 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4750 case Intrinsic::atomic_load_sub: 4751 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4752 case Intrinsic::atomic_load_or: 4753 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4754 case Intrinsic::atomic_load_xor: 4755 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4756 case Intrinsic::atomic_load_and: 4757 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4758 case Intrinsic::atomic_load_nand: 4759 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4760 case Intrinsic::atomic_load_max: 4761 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4762 case Intrinsic::atomic_load_min: 4763 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4764 case Intrinsic::atomic_load_umin: 4765 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4766 case Intrinsic::atomic_load_umax: 4767 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4768 case Intrinsic::atomic_swap: 4769 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4770 4771 case Intrinsic::invariant_start: 4772 case Intrinsic::lifetime_start: 4773 // Discard region information. 4774 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4775 return 0; 4776 case Intrinsic::invariant_end: 4777 case Intrinsic::lifetime_end: 4778 // Discard region information. 4779 return 0; 4780 } 4781 } 4782 4783 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4784 bool isTailCall, 4785 MachineBasicBlock *LandingPad) { 4786 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4787 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4788 const Type *RetTy = FTy->getReturnType(); 4789 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4790 MCSymbol *BeginLabel = 0; 4791 4792 TargetLowering::ArgListTy Args; 4793 TargetLowering::ArgListEntry Entry; 4794 Args.reserve(CS.arg_size()); 4795 4796 // Check whether the function can return without sret-demotion. 4797 SmallVector<ISD::OutputArg, 4> Outs; 4798 SmallVector<uint64_t, 4> Offsets; 4799 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4800 Outs, TLI, &Offsets); 4801 4802 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4803 FTy->isVarArg(), Outs, FTy->getContext()); 4804 4805 SDValue DemoteStackSlot; 4806 int DemoteStackIdx = -100; 4807 4808 if (!CanLowerReturn) { 4809 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4810 FTy->getReturnType()); 4811 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4812 FTy->getReturnType()); 4813 MachineFunction &MF = DAG.getMachineFunction(); 4814 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4815 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4816 4817 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4818 Entry.Node = DemoteStackSlot; 4819 Entry.Ty = StackSlotPtrType; 4820 Entry.isSExt = false; 4821 Entry.isZExt = false; 4822 Entry.isInReg = false; 4823 Entry.isSRet = true; 4824 Entry.isNest = false; 4825 Entry.isByVal = false; 4826 Entry.Alignment = Align; 4827 Args.push_back(Entry); 4828 RetTy = Type::getVoidTy(FTy->getContext()); 4829 } 4830 4831 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4832 i != e; ++i) { 4833 SDValue ArgNode = getValue(*i); 4834 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4835 4836 unsigned attrInd = i - CS.arg_begin() + 1; 4837 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4838 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4839 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4840 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4841 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4842 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4843 Entry.Alignment = CS.getParamAlignment(attrInd); 4844 Args.push_back(Entry); 4845 } 4846 4847 if (LandingPad) { 4848 // Insert a label before the invoke call to mark the try range. This can be 4849 // used to detect deletion of the invoke via the MachineModuleInfo. 4850 BeginLabel = MMI.getContext().CreateTempSymbol(); 4851 4852 // For SjLj, keep track of which landing pads go with which invokes 4853 // so as to maintain the ordering of pads in the LSDA. 4854 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4855 if (CallSiteIndex) { 4856 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4857 // Now that the call site is handled, stop tracking it. 4858 MMI.setCurrentCallSite(0); 4859 } 4860 4861 // Both PendingLoads and PendingExports must be flushed here; 4862 // this call might not return. 4863 (void)getRoot(); 4864 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4865 } 4866 4867 // Check if target-independent constraints permit a tail call here. 4868 // Target-dependent constraints are checked within TLI.LowerCallTo. 4869 if (isTailCall && 4870 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4871 isTailCall = false; 4872 4873 // If there's a possibility that fast-isel has already selected some amount 4874 // of the current basic block, don't emit a tail call. 4875 if (isTailCall && EnableFastISel) 4876 isTailCall = false; 4877 4878 std::pair<SDValue,SDValue> Result = 4879 TLI.LowerCallTo(getRoot(), RetTy, 4880 CS.paramHasAttr(0, Attribute::SExt), 4881 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4882 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4883 CS.getCallingConv(), 4884 isTailCall, 4885 !CS.getInstruction()->use_empty(), 4886 Callee, Args, DAG, getCurDebugLoc()); 4887 assert((isTailCall || Result.second.getNode()) && 4888 "Non-null chain expected with non-tail call!"); 4889 assert((Result.second.getNode() || !Result.first.getNode()) && 4890 "Null value expected with tail call!"); 4891 if (Result.first.getNode()) { 4892 setValue(CS.getInstruction(), Result.first); 4893 } else if (!CanLowerReturn && Result.second.getNode()) { 4894 // The instruction result is the result of loading from the 4895 // hidden sret parameter. 4896 SmallVector<EVT, 1> PVTs; 4897 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4898 4899 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4900 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4901 EVT PtrVT = PVTs[0]; 4902 unsigned NumValues = Outs.size(); 4903 SmallVector<SDValue, 4> Values(NumValues); 4904 SmallVector<SDValue, 4> Chains(NumValues); 4905 4906 for (unsigned i = 0; i < NumValues; ++i) { 4907 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4908 DemoteStackSlot, 4909 DAG.getConstant(Offsets[i], PtrVT)); 4910 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4911 Add, 4912 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4913 false, false, 1); 4914 Values[i] = L; 4915 Chains[i] = L.getValue(1); 4916 } 4917 4918 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4919 MVT::Other, &Chains[0], NumValues); 4920 PendingLoads.push_back(Chain); 4921 4922 // Collect the legal value parts into potentially illegal values 4923 // that correspond to the original function's return values. 4924 SmallVector<EVT, 4> RetTys; 4925 RetTy = FTy->getReturnType(); 4926 ComputeValueVTs(TLI, RetTy, RetTys); 4927 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4928 SmallVector<SDValue, 4> ReturnValues; 4929 unsigned CurReg = 0; 4930 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4931 EVT VT = RetTys[I]; 4932 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4933 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4934 4935 SDValue ReturnValue = 4936 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4937 RegisterVT, VT, AssertOp); 4938 ReturnValues.push_back(ReturnValue); 4939 CurReg += NumRegs; 4940 } 4941 4942 setValue(CS.getInstruction(), 4943 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4944 DAG.getVTList(&RetTys[0], RetTys.size()), 4945 &ReturnValues[0], ReturnValues.size())); 4946 4947 } 4948 4949 // As a special case, a null chain means that a tail call has been emitted and 4950 // the DAG root is already updated. 4951 if (Result.second.getNode()) 4952 DAG.setRoot(Result.second); 4953 else 4954 HasTailCall = true; 4955 4956 if (LandingPad) { 4957 // Insert a label at the end of the invoke call to mark the try range. This 4958 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4959 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4960 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4961 4962 // Inform MachineModuleInfo of range. 4963 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4964 } 4965 } 4966 4967 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4968 /// value is equal or not-equal to zero. 4969 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4970 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4971 UI != E; ++UI) { 4972 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4973 if (IC->isEquality()) 4974 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4975 if (C->isNullValue()) 4976 continue; 4977 // Unknown instruction. 4978 return false; 4979 } 4980 return true; 4981 } 4982 4983 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4984 const Type *LoadTy, 4985 SelectionDAGBuilder &Builder) { 4986 4987 // Check to see if this load can be trivially constant folded, e.g. if the 4988 // input is from a string literal. 4989 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4990 // Cast pointer to the type we really want to load. 4991 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4992 PointerType::getUnqual(LoadTy)); 4993 4994 if (const Constant *LoadCst = 4995 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4996 Builder.TD)) 4997 return Builder.getValue(LoadCst); 4998 } 4999 5000 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5001 // still constant memory, the input chain can be the entry node. 5002 SDValue Root; 5003 bool ConstantMemory = false; 5004 5005 // Do not serialize (non-volatile) loads of constant memory with anything. 5006 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5007 Root = Builder.DAG.getEntryNode(); 5008 ConstantMemory = true; 5009 } else { 5010 // Do not serialize non-volatile loads against each other. 5011 Root = Builder.DAG.getRoot(); 5012 } 5013 5014 SDValue Ptr = Builder.getValue(PtrVal); 5015 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5016 Ptr, MachinePointerInfo(PtrVal), 5017 false /*volatile*/, 5018 false /*nontemporal*/, 1 /* align=1 */); 5019 5020 if (!ConstantMemory) 5021 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5022 return LoadVal; 5023 } 5024 5025 5026 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5027 /// If so, return true and lower it, otherwise return false and it will be 5028 /// lowered like a normal call. 5029 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5030 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5031 if (I.getNumArgOperands() != 3) 5032 return false; 5033 5034 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5035 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5036 !I.getArgOperand(2)->getType()->isIntegerTy() || 5037 !I.getType()->isIntegerTy()) 5038 return false; 5039 5040 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5041 5042 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5043 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5044 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5045 bool ActuallyDoIt = true; 5046 MVT LoadVT; 5047 const Type *LoadTy; 5048 switch (Size->getZExtValue()) { 5049 default: 5050 LoadVT = MVT::Other; 5051 LoadTy = 0; 5052 ActuallyDoIt = false; 5053 break; 5054 case 2: 5055 LoadVT = MVT::i16; 5056 LoadTy = Type::getInt16Ty(Size->getContext()); 5057 break; 5058 case 4: 5059 LoadVT = MVT::i32; 5060 LoadTy = Type::getInt32Ty(Size->getContext()); 5061 break; 5062 case 8: 5063 LoadVT = MVT::i64; 5064 LoadTy = Type::getInt64Ty(Size->getContext()); 5065 break; 5066 /* 5067 case 16: 5068 LoadVT = MVT::v4i32; 5069 LoadTy = Type::getInt32Ty(Size->getContext()); 5070 LoadTy = VectorType::get(LoadTy, 4); 5071 break; 5072 */ 5073 } 5074 5075 // This turns into unaligned loads. We only do this if the target natively 5076 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5077 // we'll only produce a small number of byte loads. 5078 5079 // Require that we can find a legal MVT, and only do this if the target 5080 // supports unaligned loads of that type. Expanding into byte loads would 5081 // bloat the code. 5082 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5083 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5084 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5085 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5086 ActuallyDoIt = false; 5087 } 5088 5089 if (ActuallyDoIt) { 5090 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5091 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5092 5093 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5094 ISD::SETNE); 5095 EVT CallVT = TLI.getValueType(I.getType(), true); 5096 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5097 return true; 5098 } 5099 } 5100 5101 5102 return false; 5103 } 5104 5105 5106 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5107 // Handle inline assembly differently. 5108 if (isa<InlineAsm>(I.getCalledValue())) { 5109 visitInlineAsm(&I); 5110 return; 5111 } 5112 5113 // See if any floating point values are being passed to this function. This is 5114 // used to emit an undefined reference to fltused on Windows. 5115 const FunctionType *FT = 5116 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5117 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5118 if (FT->isVarArg() && 5119 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5120 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5121 const Type* T = I.getArgOperand(i)->getType(); 5122 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5123 i != e; ++i) { 5124 if (!i->isFloatingPointTy()) continue; 5125 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5126 break; 5127 } 5128 } 5129 } 5130 5131 const char *RenameFn = 0; 5132 if (Function *F = I.getCalledFunction()) { 5133 if (F->isDeclaration()) { 5134 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5135 if (unsigned IID = II->getIntrinsicID(F)) { 5136 RenameFn = visitIntrinsicCall(I, IID); 5137 if (!RenameFn) 5138 return; 5139 } 5140 } 5141 if (unsigned IID = F->getIntrinsicID()) { 5142 RenameFn = visitIntrinsicCall(I, IID); 5143 if (!RenameFn) 5144 return; 5145 } 5146 } 5147 5148 // Check for well-known libc/libm calls. If the function is internal, it 5149 // can't be a library call. 5150 if (!F->hasLocalLinkage() && F->hasName()) { 5151 StringRef Name = F->getName(); 5152 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5153 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5154 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5155 I.getType() == I.getArgOperand(0)->getType() && 5156 I.getType() == I.getArgOperand(1)->getType()) { 5157 SDValue LHS = getValue(I.getArgOperand(0)); 5158 SDValue RHS = getValue(I.getArgOperand(1)); 5159 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5160 LHS.getValueType(), LHS, RHS)); 5161 return; 5162 } 5163 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5164 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5165 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5166 I.getType() == I.getArgOperand(0)->getType()) { 5167 SDValue Tmp = getValue(I.getArgOperand(0)); 5168 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5169 Tmp.getValueType(), Tmp)); 5170 return; 5171 } 5172 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5173 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5174 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5175 I.getType() == I.getArgOperand(0)->getType() && 5176 I.onlyReadsMemory()) { 5177 SDValue Tmp = getValue(I.getArgOperand(0)); 5178 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5179 Tmp.getValueType(), Tmp)); 5180 return; 5181 } 5182 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5183 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5184 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5185 I.getType() == I.getArgOperand(0)->getType() && 5186 I.onlyReadsMemory()) { 5187 SDValue Tmp = getValue(I.getArgOperand(0)); 5188 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5189 Tmp.getValueType(), Tmp)); 5190 return; 5191 } 5192 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5193 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5194 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5195 I.getType() == I.getArgOperand(0)->getType() && 5196 I.onlyReadsMemory()) { 5197 SDValue Tmp = getValue(I.getArgOperand(0)); 5198 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5199 Tmp.getValueType(), Tmp)); 5200 return; 5201 } 5202 } else if (Name == "memcmp") { 5203 if (visitMemCmpCall(I)) 5204 return; 5205 } 5206 } 5207 } 5208 5209 SDValue Callee; 5210 if (!RenameFn) 5211 Callee = getValue(I.getCalledValue()); 5212 else 5213 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5214 5215 // Check if we can potentially perform a tail call. More detailed checking is 5216 // be done within LowerCallTo, after more information about the call is known. 5217 LowerCallTo(&I, Callee, I.isTailCall()); 5218 } 5219 5220 namespace llvm { 5221 5222 /// AsmOperandInfo - This contains information for each constraint that we are 5223 /// lowering. 5224 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5225 public TargetLowering::AsmOperandInfo { 5226 public: 5227 /// CallOperand - If this is the result output operand or a clobber 5228 /// this is null, otherwise it is the incoming operand to the CallInst. 5229 /// This gets modified as the asm is processed. 5230 SDValue CallOperand; 5231 5232 /// AssignedRegs - If this is a register or register class operand, this 5233 /// contains the set of register corresponding to the operand. 5234 RegsForValue AssignedRegs; 5235 5236 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5237 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5238 } 5239 5240 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5241 /// busy in OutputRegs/InputRegs. 5242 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5243 std::set<unsigned> &OutputRegs, 5244 std::set<unsigned> &InputRegs, 5245 const TargetRegisterInfo &TRI) const { 5246 if (isOutReg) { 5247 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5248 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5249 } 5250 if (isInReg) { 5251 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5252 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5253 } 5254 } 5255 5256 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5257 /// corresponds to. If there is no Value* for this operand, it returns 5258 /// MVT::Other. 5259 EVT getCallOperandValEVT(LLVMContext &Context, 5260 const TargetLowering &TLI, 5261 const TargetData *TD) const { 5262 if (CallOperandVal == 0) return MVT::Other; 5263 5264 if (isa<BasicBlock>(CallOperandVal)) 5265 return TLI.getPointerTy(); 5266 5267 const llvm::Type *OpTy = CallOperandVal->getType(); 5268 5269 // If this is an indirect operand, the operand is a pointer to the 5270 // accessed type. 5271 if (isIndirect) { 5272 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5273 if (!PtrTy) 5274 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5275 OpTy = PtrTy->getElementType(); 5276 } 5277 5278 // If OpTy is not a single value, it may be a struct/union that we 5279 // can tile with integers. 5280 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5281 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5282 switch (BitSize) { 5283 default: break; 5284 case 1: 5285 case 8: 5286 case 16: 5287 case 32: 5288 case 64: 5289 case 128: 5290 OpTy = IntegerType::get(Context, BitSize); 5291 break; 5292 } 5293 } 5294 5295 return TLI.getValueType(OpTy, true); 5296 } 5297 5298 private: 5299 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5300 /// specified set. 5301 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5302 const TargetRegisterInfo &TRI) { 5303 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5304 Regs.insert(Reg); 5305 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5306 for (; *Aliases; ++Aliases) 5307 Regs.insert(*Aliases); 5308 } 5309 }; 5310 5311 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5312 5313 } // end llvm namespace. 5314 5315 /// isAllocatableRegister - If the specified register is safe to allocate, 5316 /// i.e. it isn't a stack pointer or some other special register, return the 5317 /// register class for the register. Otherwise, return null. 5318 static const TargetRegisterClass * 5319 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5320 const TargetLowering &TLI, 5321 const TargetRegisterInfo *TRI) { 5322 EVT FoundVT = MVT::Other; 5323 const TargetRegisterClass *FoundRC = 0; 5324 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5325 E = TRI->regclass_end(); RCI != E; ++RCI) { 5326 EVT ThisVT = MVT::Other; 5327 5328 const TargetRegisterClass *RC = *RCI; 5329 // If none of the value types for this register class are valid, we 5330 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5331 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5332 I != E; ++I) { 5333 if (TLI.isTypeLegal(*I)) { 5334 // If we have already found this register in a different register class, 5335 // choose the one with the largest VT specified. For example, on 5336 // PowerPC, we favor f64 register classes over f32. 5337 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5338 ThisVT = *I; 5339 break; 5340 } 5341 } 5342 } 5343 5344 if (ThisVT == MVT::Other) continue; 5345 5346 // NOTE: This isn't ideal. In particular, this might allocate the 5347 // frame pointer in functions that need it (due to them not being taken 5348 // out of allocation, because a variable sized allocation hasn't been seen 5349 // yet). This is a slight code pessimization, but should still work. 5350 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5351 E = RC->allocation_order_end(MF); I != E; ++I) 5352 if (*I == Reg) { 5353 // We found a matching register class. Keep looking at others in case 5354 // we find one with larger registers that this physreg is also in. 5355 FoundRC = RC; 5356 FoundVT = ThisVT; 5357 break; 5358 } 5359 } 5360 return FoundRC; 5361 } 5362 5363 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5364 /// specified operand. We prefer to assign virtual registers, to allow the 5365 /// register allocator to handle the assignment process. However, if the asm 5366 /// uses features that we can't model on machineinstrs, we have SDISel do the 5367 /// allocation. This produces generally horrible, but correct, code. 5368 /// 5369 /// OpInfo describes the operand. 5370 /// Input and OutputRegs are the set of already allocated physical registers. 5371 /// 5372 void SelectionDAGBuilder:: 5373 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5374 std::set<unsigned> &OutputRegs, 5375 std::set<unsigned> &InputRegs) { 5376 LLVMContext &Context = FuncInfo.Fn->getContext(); 5377 5378 // Compute whether this value requires an input register, an output register, 5379 // or both. 5380 bool isOutReg = false; 5381 bool isInReg = false; 5382 switch (OpInfo.Type) { 5383 case InlineAsm::isOutput: 5384 isOutReg = true; 5385 5386 // If there is an input constraint that matches this, we need to reserve 5387 // the input register so no other inputs allocate to it. 5388 isInReg = OpInfo.hasMatchingInput(); 5389 break; 5390 case InlineAsm::isInput: 5391 isInReg = true; 5392 isOutReg = false; 5393 break; 5394 case InlineAsm::isClobber: 5395 isOutReg = true; 5396 isInReg = true; 5397 break; 5398 } 5399 5400 5401 MachineFunction &MF = DAG.getMachineFunction(); 5402 SmallVector<unsigned, 4> Regs; 5403 5404 // If this is a constraint for a single physreg, or a constraint for a 5405 // register class, find it. 5406 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5407 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5408 OpInfo.ConstraintVT); 5409 5410 unsigned NumRegs = 1; 5411 if (OpInfo.ConstraintVT != MVT::Other) { 5412 // If this is a FP input in an integer register (or visa versa) insert a bit 5413 // cast of the input value. More generally, handle any case where the input 5414 // value disagrees with the register class we plan to stick this in. 5415 if (OpInfo.Type == InlineAsm::isInput && 5416 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5417 // Try to convert to the first EVT that the reg class contains. If the 5418 // types are identical size, use a bitcast to convert (e.g. two differing 5419 // vector types). 5420 EVT RegVT = *PhysReg.second->vt_begin(); 5421 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5422 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5423 RegVT, OpInfo.CallOperand); 5424 OpInfo.ConstraintVT = RegVT; 5425 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5426 // If the input is a FP value and we want it in FP registers, do a 5427 // bitcast to the corresponding integer type. This turns an f64 value 5428 // into i64, which can be passed with two i32 values on a 32-bit 5429 // machine. 5430 RegVT = EVT::getIntegerVT(Context, 5431 OpInfo.ConstraintVT.getSizeInBits()); 5432 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5433 RegVT, OpInfo.CallOperand); 5434 OpInfo.ConstraintVT = RegVT; 5435 } 5436 } 5437 5438 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5439 } 5440 5441 EVT RegVT; 5442 EVT ValueVT = OpInfo.ConstraintVT; 5443 5444 // If this is a constraint for a specific physical register, like {r17}, 5445 // assign it now. 5446 if (unsigned AssignedReg = PhysReg.first) { 5447 const TargetRegisterClass *RC = PhysReg.second; 5448 if (OpInfo.ConstraintVT == MVT::Other) 5449 ValueVT = *RC->vt_begin(); 5450 5451 // Get the actual register value type. This is important, because the user 5452 // may have asked for (e.g.) the AX register in i32 type. We need to 5453 // remember that AX is actually i16 to get the right extension. 5454 RegVT = *RC->vt_begin(); 5455 5456 // This is a explicit reference to a physical register. 5457 Regs.push_back(AssignedReg); 5458 5459 // If this is an expanded reference, add the rest of the regs to Regs. 5460 if (NumRegs != 1) { 5461 TargetRegisterClass::iterator I = RC->begin(); 5462 for (; *I != AssignedReg; ++I) 5463 assert(I != RC->end() && "Didn't find reg!"); 5464 5465 // Already added the first reg. 5466 --NumRegs; ++I; 5467 for (; NumRegs; --NumRegs, ++I) { 5468 assert(I != RC->end() && "Ran out of registers to allocate!"); 5469 Regs.push_back(*I); 5470 } 5471 } 5472 5473 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5474 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5475 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5476 return; 5477 } 5478 5479 // Otherwise, if this was a reference to an LLVM register class, create vregs 5480 // for this reference. 5481 if (const TargetRegisterClass *RC = PhysReg.second) { 5482 RegVT = *RC->vt_begin(); 5483 if (OpInfo.ConstraintVT == MVT::Other) 5484 ValueVT = RegVT; 5485 5486 // Create the appropriate number of virtual registers. 5487 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5488 for (; NumRegs; --NumRegs) 5489 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5490 5491 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5492 return; 5493 } 5494 5495 // This is a reference to a register class that doesn't directly correspond 5496 // to an LLVM register class. Allocate NumRegs consecutive, available, 5497 // registers from the class. 5498 std::vector<unsigned> RegClassRegs 5499 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5500 OpInfo.ConstraintVT); 5501 5502 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5503 unsigned NumAllocated = 0; 5504 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5505 unsigned Reg = RegClassRegs[i]; 5506 // See if this register is available. 5507 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5508 (isInReg && InputRegs.count(Reg))) { // Already used. 5509 // Make sure we find consecutive registers. 5510 NumAllocated = 0; 5511 continue; 5512 } 5513 5514 // Check to see if this register is allocatable (i.e. don't give out the 5515 // stack pointer). 5516 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5517 if (!RC) { // Couldn't allocate this register. 5518 // Reset NumAllocated to make sure we return consecutive registers. 5519 NumAllocated = 0; 5520 continue; 5521 } 5522 5523 // Okay, this register is good, we can use it. 5524 ++NumAllocated; 5525 5526 // If we allocated enough consecutive registers, succeed. 5527 if (NumAllocated == NumRegs) { 5528 unsigned RegStart = (i-NumAllocated)+1; 5529 unsigned RegEnd = i+1; 5530 // Mark all of the allocated registers used. 5531 for (unsigned i = RegStart; i != RegEnd; ++i) 5532 Regs.push_back(RegClassRegs[i]); 5533 5534 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5535 OpInfo.ConstraintVT); 5536 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5537 return; 5538 } 5539 } 5540 5541 // Otherwise, we couldn't allocate enough registers for this. 5542 } 5543 5544 /// visitInlineAsm - Handle a call to an InlineAsm object. 5545 /// 5546 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5547 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5548 5549 /// ConstraintOperands - Information about all of the constraints. 5550 SDISelAsmOperandInfoVector ConstraintOperands; 5551 5552 std::set<unsigned> OutputRegs, InputRegs; 5553 5554 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS); 5555 bool hasMemory = false; 5556 5557 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5558 unsigned ResNo = 0; // ResNo - The result number of the next output. 5559 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5560 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5561 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5562 5563 EVT OpVT = MVT::Other; 5564 5565 // Compute the value type for each operand. 5566 switch (OpInfo.Type) { 5567 case InlineAsm::isOutput: 5568 // Indirect outputs just consume an argument. 5569 if (OpInfo.isIndirect) { 5570 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5571 break; 5572 } 5573 5574 // The return value of the call is this value. As such, there is no 5575 // corresponding argument. 5576 assert(!CS.getType()->isVoidTy() && 5577 "Bad inline asm!"); 5578 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5579 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5580 } else { 5581 assert(ResNo == 0 && "Asm only has one result!"); 5582 OpVT = TLI.getValueType(CS.getType()); 5583 } 5584 ++ResNo; 5585 break; 5586 case InlineAsm::isInput: 5587 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5588 break; 5589 case InlineAsm::isClobber: 5590 // Nothing to do. 5591 break; 5592 } 5593 5594 // If this is an input or an indirect output, process the call argument. 5595 // BasicBlocks are labels, currently appearing only in asm's. 5596 if (OpInfo.CallOperandVal) { 5597 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5598 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5599 } else { 5600 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5601 } 5602 5603 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5604 } 5605 5606 OpInfo.ConstraintVT = OpVT; 5607 5608 // Indirect operand accesses access memory. 5609 if (OpInfo.isIndirect) 5610 hasMemory = true; 5611 else { 5612 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5613 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5614 if (CType == TargetLowering::C_Memory) { 5615 hasMemory = true; 5616 break; 5617 } 5618 } 5619 } 5620 } 5621 5622 SDValue Chain, Flag; 5623 5624 // We won't need to flush pending loads if this asm doesn't touch 5625 // memory and is nonvolatile. 5626 if (hasMemory || IA->hasSideEffects()) 5627 Chain = getRoot(); 5628 else 5629 Chain = DAG.getRoot(); 5630 5631 // Second pass over the constraints: compute which constraint option to use 5632 // and assign registers to constraints that want a specific physreg. 5633 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5634 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5635 5636 // If this is an output operand with a matching input operand, look up the 5637 // matching input. If their types mismatch, e.g. one is an integer, the 5638 // other is floating point, or their sizes are different, flag it as an 5639 // error. 5640 if (OpInfo.hasMatchingInput()) { 5641 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5642 5643 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5644 if ((OpInfo.ConstraintVT.isInteger() != 5645 Input.ConstraintVT.isInteger()) || 5646 (OpInfo.ConstraintVT.getSizeInBits() != 5647 Input.ConstraintVT.getSizeInBits())) { 5648 report_fatal_error("Unsupported asm: input constraint" 5649 " with a matching output constraint of" 5650 " incompatible type!"); 5651 } 5652 Input.ConstraintVT = OpInfo.ConstraintVT; 5653 } 5654 } 5655 5656 // Compute the constraint code and ConstraintType to use. 5657 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5658 5659 // If this is a memory input, and if the operand is not indirect, do what we 5660 // need to to provide an address for the memory input. 5661 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5662 !OpInfo.isIndirect) { 5663 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5664 "Can only indirectify direct input operands!"); 5665 5666 // Memory operands really want the address of the value. If we don't have 5667 // an indirect input, put it in the constpool if we can, otherwise spill 5668 // it to a stack slot. 5669 5670 // If the operand is a float, integer, or vector constant, spill to a 5671 // constant pool entry to get its address. 5672 const Value *OpVal = OpInfo.CallOperandVal; 5673 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5674 isa<ConstantVector>(OpVal)) { 5675 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5676 TLI.getPointerTy()); 5677 } else { 5678 // Otherwise, create a stack slot and emit a store to it before the 5679 // asm. 5680 const Type *Ty = OpVal->getType(); 5681 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5682 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5683 MachineFunction &MF = DAG.getMachineFunction(); 5684 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5685 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5686 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5687 OpInfo.CallOperand, StackSlot, 5688 MachinePointerInfo::getFixedStack(SSFI), 5689 false, false, 0); 5690 OpInfo.CallOperand = StackSlot; 5691 } 5692 5693 // There is no longer a Value* corresponding to this operand. 5694 OpInfo.CallOperandVal = 0; 5695 5696 // It is now an indirect operand. 5697 OpInfo.isIndirect = true; 5698 } 5699 5700 // If this constraint is for a specific register, allocate it before 5701 // anything else. 5702 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5703 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5704 } 5705 5706 // Second pass - Loop over all of the operands, assigning virtual or physregs 5707 // to register class operands. 5708 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5709 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5710 5711 // C_Register operands have already been allocated, Other/Memory don't need 5712 // to be. 5713 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5714 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5715 } 5716 5717 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5718 std::vector<SDValue> AsmNodeOperands; 5719 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5720 AsmNodeOperands.push_back( 5721 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5722 TLI.getPointerTy())); 5723 5724 // If we have a !srcloc metadata node associated with it, we want to attach 5725 // this to the ultimately generated inline asm machineinstr. To do this, we 5726 // pass in the third operand as this (potentially null) inline asm MDNode. 5727 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5728 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5729 5730 // Remember the AlignStack bit as operand 3. 5731 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5732 MVT::i1)); 5733 5734 // Loop over all of the inputs, copying the operand values into the 5735 // appropriate registers and processing the output regs. 5736 RegsForValue RetValRegs; 5737 5738 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5739 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5740 5741 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5742 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5743 5744 switch (OpInfo.Type) { 5745 case InlineAsm::isOutput: { 5746 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5747 OpInfo.ConstraintType != TargetLowering::C_Register) { 5748 // Memory output, or 'other' output (e.g. 'X' constraint). 5749 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5750 5751 // Add information to the INLINEASM node to know about this output. 5752 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5753 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5754 TLI.getPointerTy())); 5755 AsmNodeOperands.push_back(OpInfo.CallOperand); 5756 break; 5757 } 5758 5759 // Otherwise, this is a register or register class output. 5760 5761 // Copy the output from the appropriate register. Find a register that 5762 // we can use. 5763 if (OpInfo.AssignedRegs.Regs.empty()) 5764 report_fatal_error("Couldn't allocate output reg for constraint '" + 5765 Twine(OpInfo.ConstraintCode) + "'!"); 5766 5767 // If this is an indirect operand, store through the pointer after the 5768 // asm. 5769 if (OpInfo.isIndirect) { 5770 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5771 OpInfo.CallOperandVal)); 5772 } else { 5773 // This is the result value of the call. 5774 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5775 // Concatenate this output onto the outputs list. 5776 RetValRegs.append(OpInfo.AssignedRegs); 5777 } 5778 5779 // Add information to the INLINEASM node to know that this register is 5780 // set. 5781 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5782 InlineAsm::Kind_RegDefEarlyClobber : 5783 InlineAsm::Kind_RegDef, 5784 false, 5785 0, 5786 DAG, 5787 AsmNodeOperands); 5788 break; 5789 } 5790 case InlineAsm::isInput: { 5791 SDValue InOperandVal = OpInfo.CallOperand; 5792 5793 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5794 // If this is required to match an output register we have already set, 5795 // just use its register. 5796 unsigned OperandNo = OpInfo.getMatchedOperand(); 5797 5798 // Scan until we find the definition we already emitted of this operand. 5799 // When we find it, create a RegsForValue operand. 5800 unsigned CurOp = InlineAsm::Op_FirstOperand; 5801 for (; OperandNo; --OperandNo) { 5802 // Advance to the next operand. 5803 unsigned OpFlag = 5804 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5805 assert((InlineAsm::isRegDefKind(OpFlag) || 5806 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5807 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5808 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5809 } 5810 5811 unsigned OpFlag = 5812 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5813 if (InlineAsm::isRegDefKind(OpFlag) || 5814 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5815 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5816 if (OpInfo.isIndirect) { 5817 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5818 LLVMContext &Ctx = *DAG.getContext(); 5819 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5820 " don't know how to handle tied " 5821 "indirect register inputs"); 5822 } 5823 5824 RegsForValue MatchedRegs; 5825 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5826 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5827 MatchedRegs.RegVTs.push_back(RegVT); 5828 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5829 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5830 i != e; ++i) 5831 MatchedRegs.Regs.push_back 5832 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5833 5834 // Use the produced MatchedRegs object to 5835 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5836 Chain, &Flag); 5837 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5838 true, OpInfo.getMatchedOperand(), 5839 DAG, AsmNodeOperands); 5840 break; 5841 } 5842 5843 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5844 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5845 "Unexpected number of operands"); 5846 // Add information to the INLINEASM node to know about this input. 5847 // See InlineAsm.h isUseOperandTiedToDef. 5848 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5849 OpInfo.getMatchedOperand()); 5850 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5851 TLI.getPointerTy())); 5852 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5853 break; 5854 } 5855 5856 // Treat indirect 'X' constraint as memory. 5857 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5858 OpInfo.isIndirect) 5859 OpInfo.ConstraintType = TargetLowering::C_Memory; 5860 5861 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5862 std::vector<SDValue> Ops; 5863 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5864 Ops, DAG); 5865 if (Ops.empty()) 5866 report_fatal_error("Invalid operand for inline asm constraint '" + 5867 Twine(OpInfo.ConstraintCode) + "'!"); 5868 5869 // Add information to the INLINEASM node to know about this input. 5870 unsigned ResOpType = 5871 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5872 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5873 TLI.getPointerTy())); 5874 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5875 break; 5876 } 5877 5878 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5879 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5880 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5881 "Memory operands expect pointer values"); 5882 5883 // Add information to the INLINEASM node to know about this input. 5884 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5885 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5886 TLI.getPointerTy())); 5887 AsmNodeOperands.push_back(InOperandVal); 5888 break; 5889 } 5890 5891 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5892 OpInfo.ConstraintType == TargetLowering::C_Register) && 5893 "Unknown constraint type!"); 5894 assert(!OpInfo.isIndirect && 5895 "Don't know how to handle indirect register inputs yet!"); 5896 5897 // Copy the input into the appropriate registers. 5898 if (OpInfo.AssignedRegs.Regs.empty() || 5899 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5900 report_fatal_error("Couldn't allocate input reg for constraint '" + 5901 Twine(OpInfo.ConstraintCode) + "'!"); 5902 5903 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5904 Chain, &Flag); 5905 5906 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5907 DAG, AsmNodeOperands); 5908 break; 5909 } 5910 case InlineAsm::isClobber: { 5911 // Add the clobbered value to the operand list, so that the register 5912 // allocator is aware that the physreg got clobbered. 5913 if (!OpInfo.AssignedRegs.Regs.empty()) 5914 OpInfo.AssignedRegs.AddInlineAsmOperands( 5915 InlineAsm::Kind_RegDefEarlyClobber, 5916 false, 0, DAG, 5917 AsmNodeOperands); 5918 break; 5919 } 5920 } 5921 } 5922 5923 // Finish up input operands. Set the input chain and add the flag last. 5924 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5925 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5926 5927 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5928 DAG.getVTList(MVT::Other, MVT::Flag), 5929 &AsmNodeOperands[0], AsmNodeOperands.size()); 5930 Flag = Chain.getValue(1); 5931 5932 // If this asm returns a register value, copy the result from that register 5933 // and set it as the value of the call. 5934 if (!RetValRegs.Regs.empty()) { 5935 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5936 Chain, &Flag); 5937 5938 // FIXME: Why don't we do this for inline asms with MRVs? 5939 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5940 EVT ResultType = TLI.getValueType(CS.getType()); 5941 5942 // If any of the results of the inline asm is a vector, it may have the 5943 // wrong width/num elts. This can happen for register classes that can 5944 // contain multiple different value types. The preg or vreg allocated may 5945 // not have the same VT as was expected. Convert it to the right type 5946 // with bit_convert. 5947 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5948 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5949 ResultType, Val); 5950 5951 } else if (ResultType != Val.getValueType() && 5952 ResultType.isInteger() && Val.getValueType().isInteger()) { 5953 // If a result value was tied to an input value, the computed result may 5954 // have a wider width than the expected result. Extract the relevant 5955 // portion. 5956 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5957 } 5958 5959 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5960 } 5961 5962 setValue(CS.getInstruction(), Val); 5963 // Don't need to use this as a chain in this case. 5964 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5965 return; 5966 } 5967 5968 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5969 5970 // Process indirect outputs, first output all of the flagged copies out of 5971 // physregs. 5972 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5973 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5974 const Value *Ptr = IndirectStoresToEmit[i].second; 5975 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5976 Chain, &Flag); 5977 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5978 } 5979 5980 // Emit the non-flagged stores from the physregs. 5981 SmallVector<SDValue, 8> OutChains; 5982 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5983 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5984 StoresToEmit[i].first, 5985 getValue(StoresToEmit[i].second), 5986 MachinePointerInfo(StoresToEmit[i].second), 5987 false, false, 0); 5988 OutChains.push_back(Val); 5989 } 5990 5991 if (!OutChains.empty()) 5992 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5993 &OutChains[0], OutChains.size()); 5994 5995 DAG.setRoot(Chain); 5996 } 5997 5998 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5999 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6000 MVT::Other, getRoot(), 6001 getValue(I.getArgOperand(0)), 6002 DAG.getSrcValue(I.getArgOperand(0)))); 6003 } 6004 6005 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6006 const TargetData &TD = *TLI.getTargetData(); 6007 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6008 getRoot(), getValue(I.getOperand(0)), 6009 DAG.getSrcValue(I.getOperand(0)), 6010 TD.getABITypeAlignment(I.getType())); 6011 setValue(&I, V); 6012 DAG.setRoot(V.getValue(1)); 6013 } 6014 6015 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6016 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6017 MVT::Other, getRoot(), 6018 getValue(I.getArgOperand(0)), 6019 DAG.getSrcValue(I.getArgOperand(0)))); 6020 } 6021 6022 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6023 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6024 MVT::Other, getRoot(), 6025 getValue(I.getArgOperand(0)), 6026 getValue(I.getArgOperand(1)), 6027 DAG.getSrcValue(I.getArgOperand(0)), 6028 DAG.getSrcValue(I.getArgOperand(1)))); 6029 } 6030 6031 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6032 /// implementation, which just calls LowerCall. 6033 /// FIXME: When all targets are 6034 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6035 std::pair<SDValue, SDValue> 6036 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6037 bool RetSExt, bool RetZExt, bool isVarArg, 6038 bool isInreg, unsigned NumFixedArgs, 6039 CallingConv::ID CallConv, bool isTailCall, 6040 bool isReturnValueUsed, 6041 SDValue Callee, 6042 ArgListTy &Args, SelectionDAG &DAG, 6043 DebugLoc dl) const { 6044 // Handle all of the outgoing arguments. 6045 SmallVector<ISD::OutputArg, 32> Outs; 6046 SmallVector<SDValue, 32> OutVals; 6047 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6048 SmallVector<EVT, 4> ValueVTs; 6049 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6050 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6051 Value != NumValues; ++Value) { 6052 EVT VT = ValueVTs[Value]; 6053 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6054 SDValue Op = SDValue(Args[i].Node.getNode(), 6055 Args[i].Node.getResNo() + Value); 6056 ISD::ArgFlagsTy Flags; 6057 unsigned OriginalAlignment = 6058 getTargetData()->getABITypeAlignment(ArgTy); 6059 6060 if (Args[i].isZExt) 6061 Flags.setZExt(); 6062 if (Args[i].isSExt) 6063 Flags.setSExt(); 6064 if (Args[i].isInReg) 6065 Flags.setInReg(); 6066 if (Args[i].isSRet) 6067 Flags.setSRet(); 6068 if (Args[i].isByVal) { 6069 Flags.setByVal(); 6070 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6071 const Type *ElementTy = Ty->getElementType(); 6072 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6073 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6074 // For ByVal, alignment should come from FE. BE will guess if this 6075 // info is not there but there are cases it cannot get right. 6076 if (Args[i].Alignment) 6077 FrameAlign = Args[i].Alignment; 6078 Flags.setByValAlign(FrameAlign); 6079 Flags.setByValSize(FrameSize); 6080 } 6081 if (Args[i].isNest) 6082 Flags.setNest(); 6083 Flags.setOrigAlign(OriginalAlignment); 6084 6085 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6086 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6087 SmallVector<SDValue, 4> Parts(NumParts); 6088 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6089 6090 if (Args[i].isSExt) 6091 ExtendKind = ISD::SIGN_EXTEND; 6092 else if (Args[i].isZExt) 6093 ExtendKind = ISD::ZERO_EXTEND; 6094 6095 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6096 PartVT, ExtendKind); 6097 6098 for (unsigned j = 0; j != NumParts; ++j) { 6099 // if it isn't first piece, alignment must be 1 6100 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6101 i < NumFixedArgs); 6102 if (NumParts > 1 && j == 0) 6103 MyFlags.Flags.setSplit(); 6104 else if (j != 0) 6105 MyFlags.Flags.setOrigAlign(1); 6106 6107 Outs.push_back(MyFlags); 6108 OutVals.push_back(Parts[j]); 6109 } 6110 } 6111 } 6112 6113 // Handle the incoming return values from the call. 6114 SmallVector<ISD::InputArg, 32> Ins; 6115 SmallVector<EVT, 4> RetTys; 6116 ComputeValueVTs(*this, RetTy, RetTys); 6117 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6118 EVT VT = RetTys[I]; 6119 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6120 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6121 for (unsigned i = 0; i != NumRegs; ++i) { 6122 ISD::InputArg MyFlags; 6123 MyFlags.VT = RegisterVT.getSimpleVT(); 6124 MyFlags.Used = isReturnValueUsed; 6125 if (RetSExt) 6126 MyFlags.Flags.setSExt(); 6127 if (RetZExt) 6128 MyFlags.Flags.setZExt(); 6129 if (isInreg) 6130 MyFlags.Flags.setInReg(); 6131 Ins.push_back(MyFlags); 6132 } 6133 } 6134 6135 SmallVector<SDValue, 4> InVals; 6136 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6137 Outs, OutVals, Ins, dl, DAG, InVals); 6138 6139 // Verify that the target's LowerCall behaved as expected. 6140 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6141 "LowerCall didn't return a valid chain!"); 6142 assert((!isTailCall || InVals.empty()) && 6143 "LowerCall emitted a return value for a tail call!"); 6144 assert((isTailCall || InVals.size() == Ins.size()) && 6145 "LowerCall didn't emit the correct number of values!"); 6146 6147 // For a tail call, the return value is merely live-out and there aren't 6148 // any nodes in the DAG representing it. Return a special value to 6149 // indicate that a tail call has been emitted and no more Instructions 6150 // should be processed in the current block. 6151 if (isTailCall) { 6152 DAG.setRoot(Chain); 6153 return std::make_pair(SDValue(), SDValue()); 6154 } 6155 6156 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6157 assert(InVals[i].getNode() && 6158 "LowerCall emitted a null value!"); 6159 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6160 "LowerCall emitted a value with the wrong type!"); 6161 }); 6162 6163 // Collect the legal value parts into potentially illegal values 6164 // that correspond to the original function's return values. 6165 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6166 if (RetSExt) 6167 AssertOp = ISD::AssertSext; 6168 else if (RetZExt) 6169 AssertOp = ISD::AssertZext; 6170 SmallVector<SDValue, 4> ReturnValues; 6171 unsigned CurReg = 0; 6172 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6173 EVT VT = RetTys[I]; 6174 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6175 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6176 6177 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6178 NumRegs, RegisterVT, VT, 6179 AssertOp)); 6180 CurReg += NumRegs; 6181 } 6182 6183 // For a function returning void, there is no return value. We can't create 6184 // such a node, so we just return a null return value in that case. In 6185 // that case, nothing will actualy look at the value. 6186 if (ReturnValues.empty()) 6187 return std::make_pair(SDValue(), Chain); 6188 6189 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6190 DAG.getVTList(&RetTys[0], RetTys.size()), 6191 &ReturnValues[0], ReturnValues.size()); 6192 return std::make_pair(Res, Chain); 6193 } 6194 6195 void TargetLowering::LowerOperationWrapper(SDNode *N, 6196 SmallVectorImpl<SDValue> &Results, 6197 SelectionDAG &DAG) const { 6198 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6199 if (Res.getNode()) 6200 Results.push_back(Res); 6201 } 6202 6203 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6204 llvm_unreachable("LowerOperation not implemented for this target!"); 6205 return SDValue(); 6206 } 6207 6208 void 6209 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6210 SDValue Op = getNonRegisterValue(V); 6211 assert((Op.getOpcode() != ISD::CopyFromReg || 6212 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6213 "Copy from a reg to the same reg!"); 6214 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6215 6216 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6217 SDValue Chain = DAG.getEntryNode(); 6218 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6219 PendingExports.push_back(Chain); 6220 } 6221 6222 #include "llvm/CodeGen/SelectionDAGISel.h" 6223 6224 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6225 // If this is the entry block, emit arguments. 6226 const Function &F = *LLVMBB->getParent(); 6227 SelectionDAG &DAG = SDB->DAG; 6228 DebugLoc dl = SDB->getCurDebugLoc(); 6229 const TargetData *TD = TLI.getTargetData(); 6230 SmallVector<ISD::InputArg, 16> Ins; 6231 6232 // Check whether the function can return without sret-demotion. 6233 SmallVector<ISD::OutputArg, 4> Outs; 6234 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6235 Outs, TLI); 6236 6237 if (!FuncInfo->CanLowerReturn) { 6238 // Put in an sret pointer parameter before all the other parameters. 6239 SmallVector<EVT, 1> ValueVTs; 6240 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6241 6242 // NOTE: Assuming that a pointer will never break down to more than one VT 6243 // or one register. 6244 ISD::ArgFlagsTy Flags; 6245 Flags.setSRet(); 6246 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6247 ISD::InputArg RetArg(Flags, RegisterVT, true); 6248 Ins.push_back(RetArg); 6249 } 6250 6251 // Set up the incoming argument description vector. 6252 unsigned Idx = 1; 6253 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6254 I != E; ++I, ++Idx) { 6255 SmallVector<EVT, 4> ValueVTs; 6256 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6257 bool isArgValueUsed = !I->use_empty(); 6258 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6259 Value != NumValues; ++Value) { 6260 EVT VT = ValueVTs[Value]; 6261 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6262 ISD::ArgFlagsTy Flags; 6263 unsigned OriginalAlignment = 6264 TD->getABITypeAlignment(ArgTy); 6265 6266 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6267 Flags.setZExt(); 6268 if (F.paramHasAttr(Idx, Attribute::SExt)) 6269 Flags.setSExt(); 6270 if (F.paramHasAttr(Idx, Attribute::InReg)) 6271 Flags.setInReg(); 6272 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6273 Flags.setSRet(); 6274 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6275 Flags.setByVal(); 6276 const PointerType *Ty = cast<PointerType>(I->getType()); 6277 const Type *ElementTy = Ty->getElementType(); 6278 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6279 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6280 // For ByVal, alignment should be passed from FE. BE will guess if 6281 // this info is not there but there are cases it cannot get right. 6282 if (F.getParamAlignment(Idx)) 6283 FrameAlign = F.getParamAlignment(Idx); 6284 Flags.setByValAlign(FrameAlign); 6285 Flags.setByValSize(FrameSize); 6286 } 6287 if (F.paramHasAttr(Idx, Attribute::Nest)) 6288 Flags.setNest(); 6289 Flags.setOrigAlign(OriginalAlignment); 6290 6291 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6292 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6293 for (unsigned i = 0; i != NumRegs; ++i) { 6294 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6295 if (NumRegs > 1 && i == 0) 6296 MyFlags.Flags.setSplit(); 6297 // if it isn't first piece, alignment must be 1 6298 else if (i > 0) 6299 MyFlags.Flags.setOrigAlign(1); 6300 Ins.push_back(MyFlags); 6301 } 6302 } 6303 } 6304 6305 // Call the target to set up the argument values. 6306 SmallVector<SDValue, 8> InVals; 6307 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6308 F.isVarArg(), Ins, 6309 dl, DAG, InVals); 6310 6311 // Verify that the target's LowerFormalArguments behaved as expected. 6312 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6313 "LowerFormalArguments didn't return a valid chain!"); 6314 assert(InVals.size() == Ins.size() && 6315 "LowerFormalArguments didn't emit the correct number of values!"); 6316 DEBUG({ 6317 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6318 assert(InVals[i].getNode() && 6319 "LowerFormalArguments emitted a null value!"); 6320 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6321 "LowerFormalArguments emitted a value with the wrong type!"); 6322 } 6323 }); 6324 6325 // Update the DAG with the new chain value resulting from argument lowering. 6326 DAG.setRoot(NewRoot); 6327 6328 // Set up the argument values. 6329 unsigned i = 0; 6330 Idx = 1; 6331 if (!FuncInfo->CanLowerReturn) { 6332 // Create a virtual register for the sret pointer, and put in a copy 6333 // from the sret argument into it. 6334 SmallVector<EVT, 1> ValueVTs; 6335 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6336 EVT VT = ValueVTs[0]; 6337 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6338 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6339 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6340 RegVT, VT, AssertOp); 6341 6342 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6343 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6344 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6345 FuncInfo->DemoteRegister = SRetReg; 6346 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6347 SRetReg, ArgValue); 6348 DAG.setRoot(NewRoot); 6349 6350 // i indexes lowered arguments. Bump it past the hidden sret argument. 6351 // Idx indexes LLVM arguments. Don't touch it. 6352 ++i; 6353 } 6354 6355 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6356 ++I, ++Idx) { 6357 SmallVector<SDValue, 4> ArgValues; 6358 SmallVector<EVT, 4> ValueVTs; 6359 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6360 unsigned NumValues = ValueVTs.size(); 6361 6362 // If this argument is unused then remember its value. It is used to generate 6363 // debugging information. 6364 if (I->use_empty() && NumValues) 6365 SDB->setUnusedArgValue(I, InVals[i]); 6366 6367 for (unsigned Value = 0; Value != NumValues; ++Value) { 6368 EVT VT = ValueVTs[Value]; 6369 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6370 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6371 6372 if (!I->use_empty()) { 6373 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6374 if (F.paramHasAttr(Idx, Attribute::SExt)) 6375 AssertOp = ISD::AssertSext; 6376 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6377 AssertOp = ISD::AssertZext; 6378 6379 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6380 NumParts, PartVT, VT, 6381 AssertOp)); 6382 } 6383 6384 i += NumParts; 6385 } 6386 6387 // Note down frame index for byval arguments. 6388 if (I->hasByValAttr() && !ArgValues.empty()) 6389 if (FrameIndexSDNode *FI = 6390 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6391 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6392 6393 if (!I->use_empty()) { 6394 SDValue Res; 6395 if (!ArgValues.empty()) 6396 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6397 SDB->getCurDebugLoc()); 6398 SDB->setValue(I, Res); 6399 6400 // If this argument is live outside of the entry block, insert a copy from 6401 // whereever we got it to the vreg that other BB's will reference it as. 6402 SDB->CopyToExportRegsIfNeeded(I); 6403 } 6404 } 6405 6406 assert(i == InVals.size() && "Argument register count mismatch!"); 6407 6408 // Finally, if the target has anything special to do, allow it to do so. 6409 // FIXME: this should insert code into the DAG! 6410 EmitFunctionEntryCode(); 6411 } 6412 6413 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6414 /// ensure constants are generated when needed. Remember the virtual registers 6415 /// that need to be added to the Machine PHI nodes as input. We cannot just 6416 /// directly add them, because expansion might result in multiple MBB's for one 6417 /// BB. As such, the start of the BB might correspond to a different MBB than 6418 /// the end. 6419 /// 6420 void 6421 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6422 const TerminatorInst *TI = LLVMBB->getTerminator(); 6423 6424 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6425 6426 // Check successor nodes' PHI nodes that expect a constant to be available 6427 // from this block. 6428 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6429 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6430 if (!isa<PHINode>(SuccBB->begin())) continue; 6431 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6432 6433 // If this terminator has multiple identical successors (common for 6434 // switches), only handle each succ once. 6435 if (!SuccsHandled.insert(SuccMBB)) continue; 6436 6437 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6438 6439 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6440 // nodes and Machine PHI nodes, but the incoming operands have not been 6441 // emitted yet. 6442 for (BasicBlock::const_iterator I = SuccBB->begin(); 6443 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6444 // Ignore dead phi's. 6445 if (PN->use_empty()) continue; 6446 6447 unsigned Reg; 6448 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6449 6450 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6451 unsigned &RegOut = ConstantsOut[C]; 6452 if (RegOut == 0) { 6453 RegOut = FuncInfo.CreateRegs(C->getType()); 6454 CopyValueToVirtualRegister(C, RegOut); 6455 } 6456 Reg = RegOut; 6457 } else { 6458 DenseMap<const Value *, unsigned>::iterator I = 6459 FuncInfo.ValueMap.find(PHIOp); 6460 if (I != FuncInfo.ValueMap.end()) 6461 Reg = I->second; 6462 else { 6463 assert(isa<AllocaInst>(PHIOp) && 6464 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6465 "Didn't codegen value into a register!??"); 6466 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6467 CopyValueToVirtualRegister(PHIOp, Reg); 6468 } 6469 } 6470 6471 // Remember that this register needs to added to the machine PHI node as 6472 // the input for this MBB. 6473 SmallVector<EVT, 4> ValueVTs; 6474 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6475 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6476 EVT VT = ValueVTs[vti]; 6477 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6478 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6479 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6480 Reg += NumRegisters; 6481 } 6482 } 6483 } 6484 ConstantsOut.clear(); 6485 } 6486