1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 CurInst = nullptr; 1029 HasTailCall = false; 1030 SDNodeOrder = LowestSDNodeOrder; 1031 StatepointLowering.clear(); 1032 } 1033 1034 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1035 DanglingDebugInfoMap.clear(); 1036 } 1037 1038 SDValue SelectionDAGBuilder::getRoot() { 1039 if (PendingLoads.empty()) 1040 return DAG.getRoot(); 1041 1042 if (PendingLoads.size() == 1) { 1043 SDValue Root = PendingLoads[0]; 1044 DAG.setRoot(Root); 1045 PendingLoads.clear(); 1046 return Root; 1047 } 1048 1049 // Otherwise, we have to make a token factor node. 1050 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1051 PendingLoads.clear(); 1052 DAG.setRoot(Root); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getControlRoot() { 1057 SDValue Root = DAG.getRoot(); 1058 1059 if (PendingExports.empty()) 1060 return Root; 1061 1062 // Turn all of the CopyToReg chains into one factored node. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = PendingExports.size(); 1065 for (; i != e; ++i) { 1066 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1067 if (PendingExports[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 PendingExports.push_back(Root); 1073 } 1074 1075 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1076 PendingExports); 1077 PendingExports.clear(); 1078 DAG.setRoot(Root); 1079 return Root; 1080 } 1081 1082 void SelectionDAGBuilder::visit(const Instruction &I) { 1083 // Set up outgoing PHI node register values before emitting the terminator. 1084 if (I.isTerminator()) { 1085 HandlePHINodesInSuccessorBlocks(I.getParent()); 1086 } 1087 1088 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1089 if (!isa<DbgInfoIntrinsic>(I)) 1090 ++SDNodeOrder; 1091 1092 CurInst = &I; 1093 1094 visit(I.getOpcode(), I); 1095 1096 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1097 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1098 // maps to this instruction. 1099 // TODO: We could handle all flags (nsw, etc) here. 1100 // TODO: If an IR instruction maps to >1 node, only the final node will have 1101 // flags set. 1102 if (SDNode *Node = getNodeForIRValue(&I)) { 1103 SDNodeFlags IncomingFlags; 1104 IncomingFlags.copyFMF(*FPMO); 1105 if (!Node->getFlags().isDefined()) 1106 Node->setFlags(IncomingFlags); 1107 else 1108 Node->intersectFlagsWith(IncomingFlags); 1109 } 1110 } 1111 // Constrained FP intrinsics with fpexcept.ignore should also get 1112 // the NoFPExcept flag. 1113 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1114 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1115 if (SDNode *Node = getNodeForIRValue(&I)) { 1116 SDNodeFlags Flags = Node->getFlags(); 1117 Flags.setNoFPExcept(true); 1118 Node->setFlags(Flags); 1119 } 1120 1121 if (!I.isTerminator() && !HasTailCall && 1122 !isStatepoint(&I)) // statepoints handle their exports internally 1123 CopyToExportRegsIfNeeded(&I); 1124 1125 CurInst = nullptr; 1126 } 1127 1128 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1129 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1130 } 1131 1132 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1133 // Note: this doesn't use InstVisitor, because it has to work with 1134 // ConstantExpr's in addition to instructions. 1135 switch (Opcode) { 1136 default: llvm_unreachable("Unknown instruction type encountered!"); 1137 // Build the switch statement using the Instruction.def file. 1138 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1139 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1140 #include "llvm/IR/Instruction.def" 1141 } 1142 } 1143 1144 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1145 const DIExpression *Expr) { 1146 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1147 const DbgValueInst *DI = DDI.getDI(); 1148 DIVariable *DanglingVariable = DI->getVariable(); 1149 DIExpression *DanglingExpr = DI->getExpression(); 1150 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1151 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1152 return true; 1153 } 1154 return false; 1155 }; 1156 1157 for (auto &DDIMI : DanglingDebugInfoMap) { 1158 DanglingDebugInfoVector &DDIV = DDIMI.second; 1159 1160 // If debug info is to be dropped, run it through final checks to see 1161 // whether it can be salvaged. 1162 for (auto &DDI : DDIV) 1163 if (isMatchingDbgValue(DDI)) 1164 salvageUnresolvedDbgValue(DDI); 1165 1166 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1167 } 1168 } 1169 1170 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1171 // generate the debug data structures now that we've seen its definition. 1172 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1173 SDValue Val) { 1174 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1175 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1176 return; 1177 1178 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1179 for (auto &DDI : DDIV) { 1180 const DbgValueInst *DI = DDI.getDI(); 1181 assert(DI && "Ill-formed DanglingDebugInfo"); 1182 DebugLoc dl = DDI.getdl(); 1183 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1184 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1185 DILocalVariable *Variable = DI->getVariable(); 1186 DIExpression *Expr = DI->getExpression(); 1187 assert(Variable->isValidLocationForIntrinsic(dl) && 1188 "Expected inlined-at fields to agree"); 1189 SDDbgValue *SDV; 1190 if (Val.getNode()) { 1191 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1192 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1193 // we couldn't resolve it directly when examining the DbgValue intrinsic 1194 // in the first place we should not be more successful here). Unless we 1195 // have some test case that prove this to be correct we should avoid 1196 // calling EmitFuncArgumentDbgValue here. 1197 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1198 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1199 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1200 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1201 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1202 // inserted after the definition of Val when emitting the instructions 1203 // after ISel. An alternative could be to teach 1204 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1205 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1206 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1207 << ValSDNodeOrder << "\n"); 1208 SDV = getDbgValue(Val, Variable, Expr, dl, 1209 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1210 DAG.AddDbgValue(SDV, Val.getNode(), false); 1211 } else 1212 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1213 << "in EmitFuncArgumentDbgValue\n"); 1214 } else { 1215 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1216 auto Undef = 1217 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1218 auto SDV = 1219 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1220 DAG.AddDbgValue(SDV, nullptr, false); 1221 } 1222 } 1223 DDIV.clear(); 1224 } 1225 1226 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1227 Value *V = DDI.getDI()->getValue(); 1228 DILocalVariable *Var = DDI.getDI()->getVariable(); 1229 DIExpression *Expr = DDI.getDI()->getExpression(); 1230 DebugLoc DL = DDI.getdl(); 1231 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1232 unsigned SDOrder = DDI.getSDNodeOrder(); 1233 1234 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1235 // that DW_OP_stack_value is desired. 1236 assert(isa<DbgValueInst>(DDI.getDI())); 1237 bool StackValue = true; 1238 1239 // Can this Value can be encoded without any further work? 1240 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1241 return; 1242 1243 // Attempt to salvage back through as many instructions as possible. Bail if 1244 // a non-instruction is seen, such as a constant expression or global 1245 // variable. FIXME: Further work could recover those too. 1246 while (isa<Instruction>(V)) { 1247 Instruction &VAsInst = *cast<Instruction>(V); 1248 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1249 1250 // If we cannot salvage any further, and haven't yet found a suitable debug 1251 // expression, bail out. 1252 if (!NewExpr) 1253 break; 1254 1255 // New value and expr now represent this debuginfo. 1256 V = VAsInst.getOperand(0); 1257 Expr = NewExpr; 1258 1259 // Some kind of simplification occurred: check whether the operand of the 1260 // salvaged debug expression can be encoded in this DAG. 1261 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1262 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1263 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1264 return; 1265 } 1266 } 1267 1268 // This was the final opportunity to salvage this debug information, and it 1269 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1270 // any earlier variable location. 1271 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1272 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1273 DAG.AddDbgValue(SDV, nullptr, false); 1274 1275 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1276 << "\n"); 1277 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1278 << "\n"); 1279 } 1280 1281 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1282 DIExpression *Expr, DebugLoc dl, 1283 DebugLoc InstDL, unsigned Order) { 1284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1285 SDDbgValue *SDV; 1286 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1287 isa<ConstantPointerNull>(V)) { 1288 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 return true; 1291 } 1292 1293 // If the Value is a frame index, we can create a FrameIndex debug value 1294 // without relying on the DAG at all. 1295 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1296 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1297 if (SI != FuncInfo.StaticAllocaMap.end()) { 1298 auto SDV = 1299 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1300 /*IsIndirect*/ false, dl, SDNodeOrder); 1301 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1302 // is still available even if the SDNode gets optimized out. 1303 DAG.AddDbgValue(SDV, nullptr, false); 1304 return true; 1305 } 1306 } 1307 1308 // Do not use getValue() in here; we don't want to generate code at 1309 // this point if it hasn't been done yet. 1310 SDValue N = NodeMap[V]; 1311 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1312 N = UnusedArgNodeMap[V]; 1313 if (N.getNode()) { 1314 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1315 return true; 1316 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1317 DAG.AddDbgValue(SDV, N.getNode(), false); 1318 return true; 1319 } 1320 1321 // Special rules apply for the first dbg.values of parameter variables in a 1322 // function. Identify them by the fact they reference Argument Values, that 1323 // they're parameters, and they are parameters of the current function. We 1324 // need to let them dangle until they get an SDNode. 1325 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1326 !InstDL.getInlinedAt(); 1327 if (!IsParamOfFunc) { 1328 // The value is not used in this block yet (or it would have an SDNode). 1329 // We still want the value to appear for the user if possible -- if it has 1330 // an associated VReg, we can refer to that instead. 1331 auto VMI = FuncInfo.ValueMap.find(V); 1332 if (VMI != FuncInfo.ValueMap.end()) { 1333 unsigned Reg = VMI->second; 1334 // If this is a PHI node, it may be split up into several MI PHI nodes 1335 // (in FunctionLoweringInfo::set). 1336 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1337 V->getType(), None); 1338 if (RFV.occupiesMultipleRegs()) { 1339 unsigned Offset = 0; 1340 unsigned BitsToDescribe = 0; 1341 if (auto VarSize = Var->getSizeInBits()) 1342 BitsToDescribe = *VarSize; 1343 if (auto Fragment = Expr->getFragmentInfo()) 1344 BitsToDescribe = Fragment->SizeInBits; 1345 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1346 unsigned RegisterSize = RegAndSize.second; 1347 // Bail out if all bits are described already. 1348 if (Offset >= BitsToDescribe) 1349 break; 1350 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1351 ? BitsToDescribe - Offset 1352 : RegisterSize; 1353 auto FragmentExpr = DIExpression::createFragmentExpression( 1354 Expr, Offset, FragmentSize); 1355 if (!FragmentExpr) 1356 continue; 1357 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1358 false, dl, SDNodeOrder); 1359 DAG.AddDbgValue(SDV, nullptr, false); 1360 Offset += RegisterSize; 1361 } 1362 } else { 1363 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1364 DAG.AddDbgValue(SDV, nullptr, false); 1365 } 1366 return true; 1367 } 1368 } 1369 1370 return false; 1371 } 1372 1373 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1374 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1375 for (auto &Pair : DanglingDebugInfoMap) 1376 for (auto &DDI : Pair.second) 1377 salvageUnresolvedDbgValue(DDI); 1378 clearDanglingDebugInfo(); 1379 } 1380 1381 /// getCopyFromRegs - If there was virtual register allocated for the value V 1382 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1383 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1384 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1385 SDValue Result; 1386 1387 if (It != FuncInfo.ValueMap.end()) { 1388 unsigned InReg = It->second; 1389 1390 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1391 DAG.getDataLayout(), InReg, Ty, 1392 None); // This is not an ABI copy. 1393 SDValue Chain = DAG.getEntryNode(); 1394 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1395 V); 1396 resolveDanglingDebugInfo(V, Result); 1397 } 1398 1399 return Result; 1400 } 1401 1402 /// getValue - Return an SDValue for the given Value. 1403 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1404 // If we already have an SDValue for this value, use it. It's important 1405 // to do this first, so that we don't create a CopyFromReg if we already 1406 // have a regular SDValue. 1407 SDValue &N = NodeMap[V]; 1408 if (N.getNode()) return N; 1409 1410 // If there's a virtual register allocated and initialized for this 1411 // value, use it. 1412 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1413 return copyFromReg; 1414 1415 // Otherwise create a new SDValue and remember it. 1416 SDValue Val = getValueImpl(V); 1417 NodeMap[V] = Val; 1418 resolveDanglingDebugInfo(V, Val); 1419 return Val; 1420 } 1421 1422 // Return true if SDValue exists for the given Value 1423 bool SelectionDAGBuilder::findValue(const Value *V) const { 1424 return (NodeMap.find(V) != NodeMap.end()) || 1425 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1426 } 1427 1428 /// getNonRegisterValue - Return an SDValue for the given Value, but 1429 /// don't look in FuncInfo.ValueMap for a virtual register. 1430 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1431 // If we already have an SDValue for this value, use it. 1432 SDValue &N = NodeMap[V]; 1433 if (N.getNode()) { 1434 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1435 // Remove the debug location from the node as the node is about to be used 1436 // in a location which may differ from the original debug location. This 1437 // is relevant to Constant and ConstantFP nodes because they can appear 1438 // as constant expressions inside PHI nodes. 1439 N->setDebugLoc(DebugLoc()); 1440 } 1441 return N; 1442 } 1443 1444 // Otherwise create a new SDValue and remember it. 1445 SDValue Val = getValueImpl(V); 1446 NodeMap[V] = Val; 1447 resolveDanglingDebugInfo(V, Val); 1448 return Val; 1449 } 1450 1451 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1452 /// Create an SDValue for the given value. 1453 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1455 1456 if (const Constant *C = dyn_cast<Constant>(V)) { 1457 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1458 1459 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1460 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1461 1462 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1463 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1464 1465 if (isa<ConstantPointerNull>(C)) { 1466 unsigned AS = V->getType()->getPointerAddressSpace(); 1467 return DAG.getConstant(0, getCurSDLoc(), 1468 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1469 } 1470 1471 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1472 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1473 1474 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1475 return DAG.getUNDEF(VT); 1476 1477 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1478 visit(CE->getOpcode(), *CE); 1479 SDValue N1 = NodeMap[V]; 1480 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1481 return N1; 1482 } 1483 1484 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1485 SmallVector<SDValue, 4> Constants; 1486 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1487 OI != OE; ++OI) { 1488 SDNode *Val = getValue(*OI).getNode(); 1489 // If the operand is an empty aggregate, there are no values. 1490 if (!Val) continue; 1491 // Add each leaf value from the operand to the Constants list 1492 // to form a flattened list of all the values. 1493 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1494 Constants.push_back(SDValue(Val, i)); 1495 } 1496 1497 return DAG.getMergeValues(Constants, getCurSDLoc()); 1498 } 1499 1500 if (const ConstantDataSequential *CDS = 1501 dyn_cast<ConstantDataSequential>(C)) { 1502 SmallVector<SDValue, 4> Ops; 1503 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1504 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1505 // Add each leaf value from the operand to the Constants list 1506 // to form a flattened list of all the values. 1507 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1508 Ops.push_back(SDValue(Val, i)); 1509 } 1510 1511 if (isa<ArrayType>(CDS->getType())) 1512 return DAG.getMergeValues(Ops, getCurSDLoc()); 1513 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1514 } 1515 1516 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1517 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1518 "Unknown struct or array constant!"); 1519 1520 SmallVector<EVT, 4> ValueVTs; 1521 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1522 unsigned NumElts = ValueVTs.size(); 1523 if (NumElts == 0) 1524 return SDValue(); // empty struct 1525 SmallVector<SDValue, 4> Constants(NumElts); 1526 for (unsigned i = 0; i != NumElts; ++i) { 1527 EVT EltVT = ValueVTs[i]; 1528 if (isa<UndefValue>(C)) 1529 Constants[i] = DAG.getUNDEF(EltVT); 1530 else if (EltVT.isFloatingPoint()) 1531 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1532 else 1533 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1534 } 1535 1536 return DAG.getMergeValues(Constants, getCurSDLoc()); 1537 } 1538 1539 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1540 return DAG.getBlockAddress(BA, VT); 1541 1542 VectorType *VecTy = cast<VectorType>(V->getType()); 1543 unsigned NumElements = VecTy->getNumElements(); 1544 1545 // Now that we know the number and type of the elements, get that number of 1546 // elements into the Ops array based on what kind of constant it is. 1547 SmallVector<SDValue, 16> Ops; 1548 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1549 for (unsigned i = 0; i != NumElements; ++i) 1550 Ops.push_back(getValue(CV->getOperand(i))); 1551 } else { 1552 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1553 EVT EltVT = 1554 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1555 1556 SDValue Op; 1557 if (EltVT.isFloatingPoint()) 1558 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1559 else 1560 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1561 Ops.assign(NumElements, Op); 1562 } 1563 1564 // Create a BUILD_VECTOR node. 1565 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1566 } 1567 1568 // If this is a static alloca, generate it as the frameindex instead of 1569 // computation. 1570 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1571 DenseMap<const AllocaInst*, int>::iterator SI = 1572 FuncInfo.StaticAllocaMap.find(AI); 1573 if (SI != FuncInfo.StaticAllocaMap.end()) 1574 return DAG.getFrameIndex(SI->second, 1575 TLI.getFrameIndexTy(DAG.getDataLayout())); 1576 } 1577 1578 // If this is an instruction which fast-isel has deferred, select it now. 1579 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1580 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1581 1582 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1583 Inst->getType(), getABIRegCopyCC(V)); 1584 SDValue Chain = DAG.getEntryNode(); 1585 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1586 } 1587 1588 llvm_unreachable("Can't get register for value!"); 1589 } 1590 1591 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1592 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1593 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1594 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1595 bool IsSEH = isAsynchronousEHPersonality(Pers); 1596 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1597 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1598 if (!IsSEH) 1599 CatchPadMBB->setIsEHScopeEntry(); 1600 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1601 if (IsMSVCCXX || IsCoreCLR) 1602 CatchPadMBB->setIsEHFuncletEntry(); 1603 // Wasm does not need catchpads anymore 1604 if (!IsWasmCXX) 1605 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1606 getControlRoot())); 1607 } 1608 1609 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1610 // Update machine-CFG edge. 1611 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1612 FuncInfo.MBB->addSuccessor(TargetMBB); 1613 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsSEH = isAsynchronousEHPersonality(Pers); 1616 if (IsSEH) { 1617 // If this is not a fall-through branch or optimizations are switched off, 1618 // emit the branch. 1619 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1620 TM.getOptLevel() == CodeGenOpt::None) 1621 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1622 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1623 return; 1624 } 1625 1626 // Figure out the funclet membership for the catchret's successor. 1627 // This will be used by the FuncletLayout pass to determine how to order the 1628 // BB's. 1629 // A 'catchret' returns to the outer scope's color. 1630 Value *ParentPad = I.getCatchSwitchParentPad(); 1631 const BasicBlock *SuccessorColor; 1632 if (isa<ConstantTokenNone>(ParentPad)) 1633 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1634 else 1635 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1636 assert(SuccessorColor && "No parent funclet for catchret!"); 1637 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1638 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1639 1640 // Create the terminator node. 1641 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1642 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1643 DAG.getBasicBlock(SuccessorColorMBB)); 1644 DAG.setRoot(Ret); 1645 } 1646 1647 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1648 // Don't emit any special code for the cleanuppad instruction. It just marks 1649 // the start of an EH scope/funclet. 1650 FuncInfo.MBB->setIsEHScopeEntry(); 1651 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1652 if (Pers != EHPersonality::Wasm_CXX) { 1653 FuncInfo.MBB->setIsEHFuncletEntry(); 1654 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1655 } 1656 } 1657 1658 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1659 // the control flow always stops at the single catch pad, as it does for a 1660 // cleanup pad. In case the exception caught is not of the types the catch pad 1661 // catches, it will be rethrown by a rethrow. 1662 static void findWasmUnwindDestinations( 1663 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1664 BranchProbability Prob, 1665 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1666 &UnwindDests) { 1667 while (EHPadBB) { 1668 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1669 if (isa<CleanupPadInst>(Pad)) { 1670 // Stop on cleanup pads. 1671 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1672 UnwindDests.back().first->setIsEHScopeEntry(); 1673 break; 1674 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1675 // Add the catchpad handlers to the possible destinations. We don't 1676 // continue to the unwind destination of the catchswitch for wasm. 1677 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1678 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1679 UnwindDests.back().first->setIsEHScopeEntry(); 1680 } 1681 break; 1682 } else { 1683 continue; 1684 } 1685 } 1686 } 1687 1688 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1689 /// many places it could ultimately go. In the IR, we have a single unwind 1690 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1691 /// This function skips over imaginary basic blocks that hold catchswitch 1692 /// instructions, and finds all the "real" machine 1693 /// basic block destinations. As those destinations may not be successors of 1694 /// EHPadBB, here we also calculate the edge probability to those destinations. 1695 /// The passed-in Prob is the edge probability to EHPadBB. 1696 static void findUnwindDestinations( 1697 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1698 BranchProbability Prob, 1699 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1700 &UnwindDests) { 1701 EHPersonality Personality = 1702 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1703 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1704 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1705 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1706 bool IsSEH = isAsynchronousEHPersonality(Personality); 1707 1708 if (IsWasmCXX) { 1709 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1710 assert(UnwindDests.size() <= 1 && 1711 "There should be at most one unwind destination for wasm"); 1712 return; 1713 } 1714 1715 while (EHPadBB) { 1716 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1717 BasicBlock *NewEHPadBB = nullptr; 1718 if (isa<LandingPadInst>(Pad)) { 1719 // Stop on landingpads. They are not funclets. 1720 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1721 break; 1722 } else if (isa<CleanupPadInst>(Pad)) { 1723 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1724 // personalities. 1725 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1726 UnwindDests.back().first->setIsEHScopeEntry(); 1727 UnwindDests.back().first->setIsEHFuncletEntry(); 1728 break; 1729 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1730 // Add the catchpad handlers to the possible destinations. 1731 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1732 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1733 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1734 if (IsMSVCCXX || IsCoreCLR) 1735 UnwindDests.back().first->setIsEHFuncletEntry(); 1736 if (!IsSEH) 1737 UnwindDests.back().first->setIsEHScopeEntry(); 1738 } 1739 NewEHPadBB = CatchSwitch->getUnwindDest(); 1740 } else { 1741 continue; 1742 } 1743 1744 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1745 if (BPI && NewEHPadBB) 1746 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1747 EHPadBB = NewEHPadBB; 1748 } 1749 } 1750 1751 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1752 // Update successor info. 1753 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1754 auto UnwindDest = I.getUnwindDest(); 1755 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1756 BranchProbability UnwindDestProb = 1757 (BPI && UnwindDest) 1758 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1759 : BranchProbability::getZero(); 1760 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1761 for (auto &UnwindDest : UnwindDests) { 1762 UnwindDest.first->setIsEHPad(); 1763 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1764 } 1765 FuncInfo.MBB->normalizeSuccProbs(); 1766 1767 // Create the terminator node. 1768 SDValue Ret = 1769 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1770 DAG.setRoot(Ret); 1771 } 1772 1773 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1774 report_fatal_error("visitCatchSwitch not yet implemented!"); 1775 } 1776 1777 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1779 auto &DL = DAG.getDataLayout(); 1780 SDValue Chain = getControlRoot(); 1781 SmallVector<ISD::OutputArg, 8> Outs; 1782 SmallVector<SDValue, 8> OutVals; 1783 1784 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1785 // lower 1786 // 1787 // %val = call <ty> @llvm.experimental.deoptimize() 1788 // ret <ty> %val 1789 // 1790 // differently. 1791 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1792 LowerDeoptimizingReturn(); 1793 return; 1794 } 1795 1796 if (!FuncInfo.CanLowerReturn) { 1797 unsigned DemoteReg = FuncInfo.DemoteRegister; 1798 const Function *F = I.getParent()->getParent(); 1799 1800 // Emit a store of the return value through the virtual register. 1801 // Leave Outs empty so that LowerReturn won't try to load return 1802 // registers the usual way. 1803 SmallVector<EVT, 1> PtrValueVTs; 1804 ComputeValueVTs(TLI, DL, 1805 F->getReturnType()->getPointerTo( 1806 DAG.getDataLayout().getAllocaAddrSpace()), 1807 PtrValueVTs); 1808 1809 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1810 DemoteReg, PtrValueVTs[0]); 1811 SDValue RetOp = getValue(I.getOperand(0)); 1812 1813 SmallVector<EVT, 4> ValueVTs, MemVTs; 1814 SmallVector<uint64_t, 4> Offsets; 1815 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1816 &Offsets); 1817 unsigned NumValues = ValueVTs.size(); 1818 1819 SmallVector<SDValue, 4> Chains(NumValues); 1820 for (unsigned i = 0; i != NumValues; ++i) { 1821 // An aggregate return value cannot wrap around the address space, so 1822 // offsets to its parts don't wrap either. 1823 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1824 1825 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1826 if (MemVTs[i] != ValueVTs[i]) 1827 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1828 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1829 // FIXME: better loc info would be nice. 1830 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1831 } 1832 1833 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1834 MVT::Other, Chains); 1835 } else if (I.getNumOperands() != 0) { 1836 SmallVector<EVT, 4> ValueVTs; 1837 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1838 unsigned NumValues = ValueVTs.size(); 1839 if (NumValues) { 1840 SDValue RetOp = getValue(I.getOperand(0)); 1841 1842 const Function *F = I.getParent()->getParent(); 1843 1844 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1845 I.getOperand(0)->getType(), F->getCallingConv(), 1846 /*IsVarArg*/ false); 1847 1848 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1849 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1850 Attribute::SExt)) 1851 ExtendKind = ISD::SIGN_EXTEND; 1852 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1853 Attribute::ZExt)) 1854 ExtendKind = ISD::ZERO_EXTEND; 1855 1856 LLVMContext &Context = F->getContext(); 1857 bool RetInReg = F->getAttributes().hasAttribute( 1858 AttributeList::ReturnIndex, Attribute::InReg); 1859 1860 for (unsigned j = 0; j != NumValues; ++j) { 1861 EVT VT = ValueVTs[j]; 1862 1863 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1864 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1865 1866 CallingConv::ID CC = F->getCallingConv(); 1867 1868 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1869 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1870 SmallVector<SDValue, 4> Parts(NumParts); 1871 getCopyToParts(DAG, getCurSDLoc(), 1872 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1873 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1874 1875 // 'inreg' on function refers to return value 1876 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1877 if (RetInReg) 1878 Flags.setInReg(); 1879 1880 if (I.getOperand(0)->getType()->isPointerTy()) { 1881 Flags.setPointer(); 1882 Flags.setPointerAddrSpace( 1883 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1884 } 1885 1886 if (NeedsRegBlock) { 1887 Flags.setInConsecutiveRegs(); 1888 if (j == NumValues - 1) 1889 Flags.setInConsecutiveRegsLast(); 1890 } 1891 1892 // Propagate extension type if any 1893 if (ExtendKind == ISD::SIGN_EXTEND) 1894 Flags.setSExt(); 1895 else if (ExtendKind == ISD::ZERO_EXTEND) 1896 Flags.setZExt(); 1897 1898 for (unsigned i = 0; i < NumParts; ++i) { 1899 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1900 VT, /*isfixed=*/true, 0, 0)); 1901 OutVals.push_back(Parts[i]); 1902 } 1903 } 1904 } 1905 } 1906 1907 // Push in swifterror virtual register as the last element of Outs. This makes 1908 // sure swifterror virtual register will be returned in the swifterror 1909 // physical register. 1910 const Function *F = I.getParent()->getParent(); 1911 if (TLI.supportSwiftError() && 1912 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1913 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1914 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1915 Flags.setSwiftError(); 1916 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1917 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1918 true /*isfixed*/, 1 /*origidx*/, 1919 0 /*partOffs*/)); 1920 // Create SDNode for the swifterror virtual register. 1921 OutVals.push_back( 1922 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1923 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1924 EVT(TLI.getPointerTy(DL)))); 1925 } 1926 1927 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1928 CallingConv::ID CallConv = 1929 DAG.getMachineFunction().getFunction().getCallingConv(); 1930 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1931 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1932 1933 // Verify that the target's LowerReturn behaved as expected. 1934 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1935 "LowerReturn didn't return a valid chain!"); 1936 1937 // Update the DAG with the new chain value resulting from return lowering. 1938 DAG.setRoot(Chain); 1939 } 1940 1941 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1942 /// created for it, emit nodes to copy the value into the virtual 1943 /// registers. 1944 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1945 // Skip empty types 1946 if (V->getType()->isEmptyTy()) 1947 return; 1948 1949 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1950 if (VMI != FuncInfo.ValueMap.end()) { 1951 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1952 CopyValueToVirtualRegister(V, VMI->second); 1953 } 1954 } 1955 1956 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1957 /// the current basic block, add it to ValueMap now so that we'll get a 1958 /// CopyTo/FromReg. 1959 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1960 // No need to export constants. 1961 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1962 1963 // Already exported? 1964 if (FuncInfo.isExportedInst(V)) return; 1965 1966 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1967 CopyValueToVirtualRegister(V, Reg); 1968 } 1969 1970 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1971 const BasicBlock *FromBB) { 1972 // The operands of the setcc have to be in this block. We don't know 1973 // how to export them from some other block. 1974 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1975 // Can export from current BB. 1976 if (VI->getParent() == FromBB) 1977 return true; 1978 1979 // Is already exported, noop. 1980 return FuncInfo.isExportedInst(V); 1981 } 1982 1983 // If this is an argument, we can export it if the BB is the entry block or 1984 // if it is already exported. 1985 if (isa<Argument>(V)) { 1986 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1987 return true; 1988 1989 // Otherwise, can only export this if it is already exported. 1990 return FuncInfo.isExportedInst(V); 1991 } 1992 1993 // Otherwise, constants can always be exported. 1994 return true; 1995 } 1996 1997 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1998 BranchProbability 1999 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2000 const MachineBasicBlock *Dst) const { 2001 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2002 const BasicBlock *SrcBB = Src->getBasicBlock(); 2003 const BasicBlock *DstBB = Dst->getBasicBlock(); 2004 if (!BPI) { 2005 // If BPI is not available, set the default probability as 1 / N, where N is 2006 // the number of successors. 2007 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2008 return BranchProbability(1, SuccSize); 2009 } 2010 return BPI->getEdgeProbability(SrcBB, DstBB); 2011 } 2012 2013 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2014 MachineBasicBlock *Dst, 2015 BranchProbability Prob) { 2016 if (!FuncInfo.BPI) 2017 Src->addSuccessorWithoutProb(Dst); 2018 else { 2019 if (Prob.isUnknown()) 2020 Prob = getEdgeProbability(Src, Dst); 2021 Src->addSuccessor(Dst, Prob); 2022 } 2023 } 2024 2025 static bool InBlock(const Value *V, const BasicBlock *BB) { 2026 if (const Instruction *I = dyn_cast<Instruction>(V)) 2027 return I->getParent() == BB; 2028 return true; 2029 } 2030 2031 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2032 /// This function emits a branch and is used at the leaves of an OR or an 2033 /// AND operator tree. 2034 void 2035 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2036 MachineBasicBlock *TBB, 2037 MachineBasicBlock *FBB, 2038 MachineBasicBlock *CurBB, 2039 MachineBasicBlock *SwitchBB, 2040 BranchProbability TProb, 2041 BranchProbability FProb, 2042 bool InvertCond) { 2043 const BasicBlock *BB = CurBB->getBasicBlock(); 2044 2045 // If the leaf of the tree is a comparison, merge the condition into 2046 // the caseblock. 2047 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2048 // The operands of the cmp have to be in this block. We don't know 2049 // how to export them from some other block. If this is the first block 2050 // of the sequence, no exporting is needed. 2051 if (CurBB == SwitchBB || 2052 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2053 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2054 ISD::CondCode Condition; 2055 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2056 ICmpInst::Predicate Pred = 2057 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2058 Condition = getICmpCondCode(Pred); 2059 } else { 2060 const FCmpInst *FC = cast<FCmpInst>(Cond); 2061 FCmpInst::Predicate Pred = 2062 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2063 Condition = getFCmpCondCode(Pred); 2064 if (TM.Options.NoNaNsFPMath) 2065 Condition = getFCmpCodeWithoutNaN(Condition); 2066 } 2067 2068 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2069 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2070 SL->SwitchCases.push_back(CB); 2071 return; 2072 } 2073 } 2074 2075 // Create a CaseBlock record representing this branch. 2076 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2077 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2078 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2079 SL->SwitchCases.push_back(CB); 2080 } 2081 2082 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2083 MachineBasicBlock *TBB, 2084 MachineBasicBlock *FBB, 2085 MachineBasicBlock *CurBB, 2086 MachineBasicBlock *SwitchBB, 2087 Instruction::BinaryOps Opc, 2088 BranchProbability TProb, 2089 BranchProbability FProb, 2090 bool InvertCond) { 2091 // Skip over not part of the tree and remember to invert op and operands at 2092 // next level. 2093 Value *NotCond; 2094 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2095 InBlock(NotCond, CurBB->getBasicBlock())) { 2096 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2097 !InvertCond); 2098 return; 2099 } 2100 2101 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2102 // Compute the effective opcode for Cond, taking into account whether it needs 2103 // to be inverted, e.g. 2104 // and (not (or A, B)), C 2105 // gets lowered as 2106 // and (and (not A, not B), C) 2107 unsigned BOpc = 0; 2108 if (BOp) { 2109 BOpc = BOp->getOpcode(); 2110 if (InvertCond) { 2111 if (BOpc == Instruction::And) 2112 BOpc = Instruction::Or; 2113 else if (BOpc == Instruction::Or) 2114 BOpc = Instruction::And; 2115 } 2116 } 2117 2118 // If this node is not part of the or/and tree, emit it as a branch. 2119 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2120 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2121 BOp->getParent() != CurBB->getBasicBlock() || 2122 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2123 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2124 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2125 TProb, FProb, InvertCond); 2126 return; 2127 } 2128 2129 // Create TmpBB after CurBB. 2130 MachineFunction::iterator BBI(CurBB); 2131 MachineFunction &MF = DAG.getMachineFunction(); 2132 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2133 CurBB->getParent()->insert(++BBI, TmpBB); 2134 2135 if (Opc == Instruction::Or) { 2136 // Codegen X | Y as: 2137 // BB1: 2138 // jmp_if_X TBB 2139 // jmp TmpBB 2140 // TmpBB: 2141 // jmp_if_Y TBB 2142 // jmp FBB 2143 // 2144 2145 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2146 // The requirement is that 2147 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2148 // = TrueProb for original BB. 2149 // Assuming the original probabilities are A and B, one choice is to set 2150 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2151 // A/(1+B) and 2B/(1+B). This choice assumes that 2152 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2153 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2154 // TmpBB, but the math is more complicated. 2155 2156 auto NewTrueProb = TProb / 2; 2157 auto NewFalseProb = TProb / 2 + FProb; 2158 // Emit the LHS condition. 2159 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2160 NewTrueProb, NewFalseProb, InvertCond); 2161 2162 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2163 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2164 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2165 // Emit the RHS condition into TmpBB. 2166 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2167 Probs[0], Probs[1], InvertCond); 2168 } else { 2169 assert(Opc == Instruction::And && "Unknown merge op!"); 2170 // Codegen X & Y as: 2171 // BB1: 2172 // jmp_if_X TmpBB 2173 // jmp FBB 2174 // TmpBB: 2175 // jmp_if_Y TBB 2176 // jmp FBB 2177 // 2178 // This requires creation of TmpBB after CurBB. 2179 2180 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2181 // The requirement is that 2182 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2183 // = FalseProb for original BB. 2184 // Assuming the original probabilities are A and B, one choice is to set 2185 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2186 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2187 // TrueProb for BB1 * FalseProb for TmpBB. 2188 2189 auto NewTrueProb = TProb + FProb / 2; 2190 auto NewFalseProb = FProb / 2; 2191 // Emit the LHS condition. 2192 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2193 NewTrueProb, NewFalseProb, InvertCond); 2194 2195 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2196 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2197 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2198 // Emit the RHS condition into TmpBB. 2199 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2200 Probs[0], Probs[1], InvertCond); 2201 } 2202 } 2203 2204 /// If the set of cases should be emitted as a series of branches, return true. 2205 /// If we should emit this as a bunch of and/or'd together conditions, return 2206 /// false. 2207 bool 2208 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2209 if (Cases.size() != 2) return true; 2210 2211 // If this is two comparisons of the same values or'd or and'd together, they 2212 // will get folded into a single comparison, so don't emit two blocks. 2213 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2214 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2215 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2216 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2217 return false; 2218 } 2219 2220 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2221 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2222 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2223 Cases[0].CC == Cases[1].CC && 2224 isa<Constant>(Cases[0].CmpRHS) && 2225 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2226 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2227 return false; 2228 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2229 return false; 2230 } 2231 2232 return true; 2233 } 2234 2235 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2236 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2237 2238 // Update machine-CFG edges. 2239 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2240 2241 if (I.isUnconditional()) { 2242 // Update machine-CFG edges. 2243 BrMBB->addSuccessor(Succ0MBB); 2244 2245 // If this is not a fall-through branch or optimizations are switched off, 2246 // emit the branch. 2247 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2248 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2249 MVT::Other, getControlRoot(), 2250 DAG.getBasicBlock(Succ0MBB))); 2251 2252 return; 2253 } 2254 2255 // If this condition is one of the special cases we handle, do special stuff 2256 // now. 2257 const Value *CondVal = I.getCondition(); 2258 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2259 2260 // If this is a series of conditions that are or'd or and'd together, emit 2261 // this as a sequence of branches instead of setcc's with and/or operations. 2262 // As long as jumps are not expensive, this should improve performance. 2263 // For example, instead of something like: 2264 // cmp A, B 2265 // C = seteq 2266 // cmp D, E 2267 // F = setle 2268 // or C, F 2269 // jnz foo 2270 // Emit: 2271 // cmp A, B 2272 // je foo 2273 // cmp D, E 2274 // jle foo 2275 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2276 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2277 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2278 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2279 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2280 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2281 Opcode, 2282 getEdgeProbability(BrMBB, Succ0MBB), 2283 getEdgeProbability(BrMBB, Succ1MBB), 2284 /*InvertCond=*/false); 2285 // If the compares in later blocks need to use values not currently 2286 // exported from this block, export them now. This block should always 2287 // be the first entry. 2288 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2289 2290 // Allow some cases to be rejected. 2291 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2293 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2294 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2295 } 2296 2297 // Emit the branch for this block. 2298 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2299 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2300 return; 2301 } 2302 2303 // Okay, we decided not to do this, remove any inserted MBB's and clear 2304 // SwitchCases. 2305 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2306 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2307 2308 SL->SwitchCases.clear(); 2309 } 2310 } 2311 2312 // Create a CaseBlock record representing this branch. 2313 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2314 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2315 2316 // Use visitSwitchCase to actually insert the fast branch sequence for this 2317 // cond branch. 2318 visitSwitchCase(CB, BrMBB); 2319 } 2320 2321 /// visitSwitchCase - Emits the necessary code to represent a single node in 2322 /// the binary search tree resulting from lowering a switch instruction. 2323 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2324 MachineBasicBlock *SwitchBB) { 2325 SDValue Cond; 2326 SDValue CondLHS = getValue(CB.CmpLHS); 2327 SDLoc dl = CB.DL; 2328 2329 if (CB.CC == ISD::SETTRUE) { 2330 // Branch or fall through to TrueBB. 2331 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2332 SwitchBB->normalizeSuccProbs(); 2333 if (CB.TrueBB != NextBlock(SwitchBB)) { 2334 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2335 DAG.getBasicBlock(CB.TrueBB))); 2336 } 2337 return; 2338 } 2339 2340 auto &TLI = DAG.getTargetLoweringInfo(); 2341 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2342 2343 // Build the setcc now. 2344 if (!CB.CmpMHS) { 2345 // Fold "(X == true)" to X and "(X == false)" to !X to 2346 // handle common cases produced by branch lowering. 2347 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2348 CB.CC == ISD::SETEQ) 2349 Cond = CondLHS; 2350 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2351 CB.CC == ISD::SETEQ) { 2352 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2353 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2354 } else { 2355 SDValue CondRHS = getValue(CB.CmpRHS); 2356 2357 // If a pointer's DAG type is larger than its memory type then the DAG 2358 // values are zero-extended. This breaks signed comparisons so truncate 2359 // back to the underlying type before doing the compare. 2360 if (CondLHS.getValueType() != MemVT) { 2361 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2362 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2363 } 2364 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2365 } 2366 } else { 2367 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2368 2369 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2370 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2371 2372 SDValue CmpOp = getValue(CB.CmpMHS); 2373 EVT VT = CmpOp.getValueType(); 2374 2375 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2376 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2377 ISD::SETLE); 2378 } else { 2379 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2380 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2381 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2382 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2383 } 2384 } 2385 2386 // Update successor info 2387 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2388 // TrueBB and FalseBB are always different unless the incoming IR is 2389 // degenerate. This only happens when running llc on weird IR. 2390 if (CB.TrueBB != CB.FalseBB) 2391 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2392 SwitchBB->normalizeSuccProbs(); 2393 2394 // If the lhs block is the next block, invert the condition so that we can 2395 // fall through to the lhs instead of the rhs block. 2396 if (CB.TrueBB == NextBlock(SwitchBB)) { 2397 std::swap(CB.TrueBB, CB.FalseBB); 2398 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2399 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2400 } 2401 2402 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2403 MVT::Other, getControlRoot(), Cond, 2404 DAG.getBasicBlock(CB.TrueBB)); 2405 2406 // Insert the false branch. Do this even if it's a fall through branch, 2407 // this makes it easier to do DAG optimizations which require inverting 2408 // the branch condition. 2409 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2410 DAG.getBasicBlock(CB.FalseBB)); 2411 2412 DAG.setRoot(BrCond); 2413 } 2414 2415 /// visitJumpTable - Emit JumpTable node in the current MBB 2416 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2417 // Emit the code for the jump table 2418 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2419 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2420 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2421 JT.Reg, PTy); 2422 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2423 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2424 MVT::Other, Index.getValue(1), 2425 Table, Index); 2426 DAG.setRoot(BrJumpTable); 2427 } 2428 2429 /// visitJumpTableHeader - This function emits necessary code to produce index 2430 /// in the JumpTable from switch case. 2431 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2432 JumpTableHeader &JTH, 2433 MachineBasicBlock *SwitchBB) { 2434 SDLoc dl = getCurSDLoc(); 2435 2436 // Subtract the lowest switch case value from the value being switched on. 2437 SDValue SwitchOp = getValue(JTH.SValue); 2438 EVT VT = SwitchOp.getValueType(); 2439 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2440 DAG.getConstant(JTH.First, dl, VT)); 2441 2442 // The SDNode we just created, which holds the value being switched on minus 2443 // the smallest case value, needs to be copied to a virtual register so it 2444 // can be used as an index into the jump table in a subsequent basic block. 2445 // This value may be smaller or larger than the target's pointer type, and 2446 // therefore require extension or truncating. 2447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2448 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2449 2450 unsigned JumpTableReg = 2451 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2452 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2453 JumpTableReg, SwitchOp); 2454 JT.Reg = JumpTableReg; 2455 2456 if (!JTH.OmitRangeCheck) { 2457 // Emit the range check for the jump table, and branch to the default block 2458 // for the switch statement if the value being switched on exceeds the 2459 // largest case in the switch. 2460 SDValue CMP = DAG.getSetCC( 2461 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2462 Sub.getValueType()), 2463 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2464 2465 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2466 MVT::Other, CopyTo, CMP, 2467 DAG.getBasicBlock(JT.Default)); 2468 2469 // Avoid emitting unnecessary branches to the next block. 2470 if (JT.MBB != NextBlock(SwitchBB)) 2471 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2472 DAG.getBasicBlock(JT.MBB)); 2473 2474 DAG.setRoot(BrCond); 2475 } else { 2476 // Avoid emitting unnecessary branches to the next block. 2477 if (JT.MBB != NextBlock(SwitchBB)) 2478 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2479 DAG.getBasicBlock(JT.MBB))); 2480 else 2481 DAG.setRoot(CopyTo); 2482 } 2483 } 2484 2485 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2486 /// variable if there exists one. 2487 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2488 SDValue &Chain) { 2489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2490 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2491 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2492 MachineFunction &MF = DAG.getMachineFunction(); 2493 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2494 MachineSDNode *Node = 2495 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2496 if (Global) { 2497 MachinePointerInfo MPInfo(Global); 2498 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2499 MachineMemOperand::MODereferenceable; 2500 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2501 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2502 DAG.setNodeMemRefs(Node, {MemRef}); 2503 } 2504 if (PtrTy != PtrMemTy) 2505 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2506 return SDValue(Node, 0); 2507 } 2508 2509 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2510 /// tail spliced into a stack protector check success bb. 2511 /// 2512 /// For a high level explanation of how this fits into the stack protector 2513 /// generation see the comment on the declaration of class 2514 /// StackProtectorDescriptor. 2515 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2516 MachineBasicBlock *ParentBB) { 2517 2518 // First create the loads to the guard/stack slot for the comparison. 2519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2520 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2521 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2522 2523 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2524 int FI = MFI.getStackProtectorIndex(); 2525 2526 SDValue Guard; 2527 SDLoc dl = getCurSDLoc(); 2528 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2529 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2530 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2531 2532 // Generate code to load the content of the guard slot. 2533 SDValue GuardVal = DAG.getLoad( 2534 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2535 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2536 MachineMemOperand::MOVolatile); 2537 2538 if (TLI.useStackGuardXorFP()) 2539 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2540 2541 // Retrieve guard check function, nullptr if instrumentation is inlined. 2542 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2543 // The target provides a guard check function to validate the guard value. 2544 // Generate a call to that function with the content of the guard slot as 2545 // argument. 2546 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2547 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2548 2549 TargetLowering::ArgListTy Args; 2550 TargetLowering::ArgListEntry Entry; 2551 Entry.Node = GuardVal; 2552 Entry.Ty = FnTy->getParamType(0); 2553 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2554 Entry.IsInReg = true; 2555 Args.push_back(Entry); 2556 2557 TargetLowering::CallLoweringInfo CLI(DAG); 2558 CLI.setDebugLoc(getCurSDLoc()) 2559 .setChain(DAG.getEntryNode()) 2560 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2561 getValue(GuardCheckFn), std::move(Args)); 2562 2563 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2564 DAG.setRoot(Result.second); 2565 return; 2566 } 2567 2568 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2569 // Otherwise, emit a volatile load to retrieve the stack guard value. 2570 SDValue Chain = DAG.getEntryNode(); 2571 if (TLI.useLoadStackGuardNode()) { 2572 Guard = getLoadStackGuard(DAG, dl, Chain); 2573 } else { 2574 const Value *IRGuard = TLI.getSDagStackGuard(M); 2575 SDValue GuardPtr = getValue(IRGuard); 2576 2577 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2578 MachinePointerInfo(IRGuard, 0), Align, 2579 MachineMemOperand::MOVolatile); 2580 } 2581 2582 // Perform the comparison via a subtract/getsetcc. 2583 EVT VT = Guard.getValueType(); 2584 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2585 2586 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2587 *DAG.getContext(), 2588 Sub.getValueType()), 2589 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2590 2591 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2592 // branch to failure MBB. 2593 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2594 MVT::Other, GuardVal.getOperand(0), 2595 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2596 // Otherwise branch to success MBB. 2597 SDValue Br = DAG.getNode(ISD::BR, dl, 2598 MVT::Other, BrCond, 2599 DAG.getBasicBlock(SPD.getSuccessMBB())); 2600 2601 DAG.setRoot(Br); 2602 } 2603 2604 /// Codegen the failure basic block for a stack protector check. 2605 /// 2606 /// A failure stack protector machine basic block consists simply of a call to 2607 /// __stack_chk_fail(). 2608 /// 2609 /// For a high level explanation of how this fits into the stack protector 2610 /// generation see the comment on the declaration of class 2611 /// StackProtectorDescriptor. 2612 void 2613 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2615 TargetLowering::MakeLibCallOptions CallOptions; 2616 CallOptions.setDiscardResult(true); 2617 SDValue Chain = 2618 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2619 None, CallOptions, getCurSDLoc()).second; 2620 // On PS4, the "return address" must still be within the calling function, 2621 // even if it's at the very end, so emit an explicit TRAP here. 2622 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2623 if (TM.getTargetTriple().isPS4CPU()) 2624 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2625 2626 DAG.setRoot(Chain); 2627 } 2628 2629 /// visitBitTestHeader - This function emits necessary code to produce value 2630 /// suitable for "bit tests" 2631 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2632 MachineBasicBlock *SwitchBB) { 2633 SDLoc dl = getCurSDLoc(); 2634 2635 // Subtract the minimum value. 2636 SDValue SwitchOp = getValue(B.SValue); 2637 EVT VT = SwitchOp.getValueType(); 2638 SDValue RangeSub = 2639 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2640 2641 // Determine the type of the test operands. 2642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2643 bool UsePtrType = false; 2644 if (!TLI.isTypeLegal(VT)) { 2645 UsePtrType = true; 2646 } else { 2647 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2648 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2649 // Switch table case range are encoded into series of masks. 2650 // Just use pointer type, it's guaranteed to fit. 2651 UsePtrType = true; 2652 break; 2653 } 2654 } 2655 SDValue Sub = RangeSub; 2656 if (UsePtrType) { 2657 VT = TLI.getPointerTy(DAG.getDataLayout()); 2658 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2659 } 2660 2661 B.RegVT = VT.getSimpleVT(); 2662 B.Reg = FuncInfo.CreateReg(B.RegVT); 2663 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2664 2665 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2666 2667 if (!B.OmitRangeCheck) 2668 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2669 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2670 SwitchBB->normalizeSuccProbs(); 2671 2672 SDValue Root = CopyTo; 2673 if (!B.OmitRangeCheck) { 2674 // Conditional branch to the default block. 2675 SDValue RangeCmp = DAG.getSetCC(dl, 2676 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2677 RangeSub.getValueType()), 2678 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2679 ISD::SETUGT); 2680 2681 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2682 DAG.getBasicBlock(B.Default)); 2683 } 2684 2685 // Avoid emitting unnecessary branches to the next block. 2686 if (MBB != NextBlock(SwitchBB)) 2687 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2688 2689 DAG.setRoot(Root); 2690 } 2691 2692 /// visitBitTestCase - this function produces one "bit test" 2693 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2694 MachineBasicBlock* NextMBB, 2695 BranchProbability BranchProbToNext, 2696 unsigned Reg, 2697 BitTestCase &B, 2698 MachineBasicBlock *SwitchBB) { 2699 SDLoc dl = getCurSDLoc(); 2700 MVT VT = BB.RegVT; 2701 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2702 SDValue Cmp; 2703 unsigned PopCount = countPopulation(B.Mask); 2704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2705 if (PopCount == 1) { 2706 // Testing for a single bit; just compare the shift count with what it 2707 // would need to be to shift a 1 bit in that position. 2708 Cmp = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2710 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2711 ISD::SETEQ); 2712 } else if (PopCount == BB.Range) { 2713 // There is only one zero bit in the range, test for it directly. 2714 Cmp = DAG.getSetCC( 2715 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2716 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2717 ISD::SETNE); 2718 } else { 2719 // Make desired shift 2720 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2721 DAG.getConstant(1, dl, VT), ShiftOp); 2722 2723 // Emit bit tests and jumps 2724 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2725 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2726 Cmp = DAG.getSetCC( 2727 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2728 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2729 } 2730 2731 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2732 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2733 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2734 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2735 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2736 // one as they are relative probabilities (and thus work more like weights), 2737 // and hence we need to normalize them to let the sum of them become one. 2738 SwitchBB->normalizeSuccProbs(); 2739 2740 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2741 MVT::Other, getControlRoot(), 2742 Cmp, DAG.getBasicBlock(B.TargetBB)); 2743 2744 // Avoid emitting unnecessary branches to the next block. 2745 if (NextMBB != NextBlock(SwitchBB)) 2746 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2747 DAG.getBasicBlock(NextMBB)); 2748 2749 DAG.setRoot(BrAnd); 2750 } 2751 2752 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2753 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2754 2755 // Retrieve successors. Look through artificial IR level blocks like 2756 // catchswitch for successors. 2757 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2758 const BasicBlock *EHPadBB = I.getSuccessor(1); 2759 2760 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2761 // have to do anything here to lower funclet bundles. 2762 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2763 LLVMContext::OB_funclet, 2764 LLVMContext::OB_cfguardtarget}) && 2765 "Cannot lower invokes with arbitrary operand bundles yet!"); 2766 2767 const Value *Callee(I.getCalledValue()); 2768 const Function *Fn = dyn_cast<Function>(Callee); 2769 if (isa<InlineAsm>(Callee)) 2770 visitInlineAsm(&I); 2771 else if (Fn && Fn->isIntrinsic()) { 2772 switch (Fn->getIntrinsicID()) { 2773 default: 2774 llvm_unreachable("Cannot invoke this intrinsic"); 2775 case Intrinsic::donothing: 2776 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2777 break; 2778 case Intrinsic::experimental_patchpoint_void: 2779 case Intrinsic::experimental_patchpoint_i64: 2780 visitPatchpoint(&I, EHPadBB); 2781 break; 2782 case Intrinsic::experimental_gc_statepoint: 2783 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2784 break; 2785 case Intrinsic::wasm_rethrow_in_catch: { 2786 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2787 // special because it can be invoked, so we manually lower it to a DAG 2788 // node here. 2789 SmallVector<SDValue, 8> Ops; 2790 Ops.push_back(getRoot()); // inchain 2791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2792 Ops.push_back( 2793 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2794 TLI.getPointerTy(DAG.getDataLayout()))); 2795 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2796 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2797 break; 2798 } 2799 } 2800 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2801 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2802 // Eventually we will support lowering the @llvm.experimental.deoptimize 2803 // intrinsic, and right now there are no plans to support other intrinsics 2804 // with deopt state. 2805 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2806 } else { 2807 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2808 } 2809 2810 // If the value of the invoke is used outside of its defining block, make it 2811 // available as a virtual register. 2812 // We already took care of the exported value for the statepoint instruction 2813 // during call to the LowerStatepoint. 2814 if (!isStatepoint(I)) { 2815 CopyToExportRegsIfNeeded(&I); 2816 } 2817 2818 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2819 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2820 BranchProbability EHPadBBProb = 2821 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2822 : BranchProbability::getZero(); 2823 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2824 2825 // Update successor info. 2826 addSuccessorWithProb(InvokeMBB, Return); 2827 for (auto &UnwindDest : UnwindDests) { 2828 UnwindDest.first->setIsEHPad(); 2829 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2830 } 2831 InvokeMBB->normalizeSuccProbs(); 2832 2833 // Drop into normal successor. 2834 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2835 DAG.getBasicBlock(Return))); 2836 } 2837 2838 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2839 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2840 2841 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2842 // have to do anything here to lower funclet bundles. 2843 assert(!I.hasOperandBundlesOtherThan( 2844 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2845 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2846 2847 assert(isa<InlineAsm>(I.getCalledValue()) && 2848 "Only know how to handle inlineasm callbr"); 2849 visitInlineAsm(&I); 2850 CopyToExportRegsIfNeeded(&I); 2851 2852 // Retrieve successors. 2853 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2854 2855 // Update successor info. 2856 addSuccessorWithProb(CallBrMBB, Return); 2857 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2858 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2859 addSuccessorWithProb(CallBrMBB, Target); 2860 Target->setIsInlineAsmBrIndirectPad(); 2861 } 2862 CallBrMBB->normalizeSuccProbs(); 2863 2864 // Drop into default successor. 2865 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2866 MVT::Other, getControlRoot(), 2867 DAG.getBasicBlock(Return))); 2868 } 2869 2870 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2871 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2872 } 2873 2874 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2875 assert(FuncInfo.MBB->isEHPad() && 2876 "Call to landingpad not in landing pad!"); 2877 2878 // If there aren't registers to copy the values into (e.g., during SjLj 2879 // exceptions), then don't bother to create these DAG nodes. 2880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2881 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2882 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2883 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2884 return; 2885 2886 // If landingpad's return type is token type, we don't create DAG nodes 2887 // for its exception pointer and selector value. The extraction of exception 2888 // pointer or selector value from token type landingpads is not currently 2889 // supported. 2890 if (LP.getType()->isTokenTy()) 2891 return; 2892 2893 SmallVector<EVT, 2> ValueVTs; 2894 SDLoc dl = getCurSDLoc(); 2895 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2896 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2897 2898 // Get the two live-in registers as SDValues. The physregs have already been 2899 // copied into virtual registers. 2900 SDValue Ops[2]; 2901 if (FuncInfo.ExceptionPointerVirtReg) { 2902 Ops[0] = DAG.getZExtOrTrunc( 2903 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2904 FuncInfo.ExceptionPointerVirtReg, 2905 TLI.getPointerTy(DAG.getDataLayout())), 2906 dl, ValueVTs[0]); 2907 } else { 2908 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2909 } 2910 Ops[1] = DAG.getZExtOrTrunc( 2911 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2912 FuncInfo.ExceptionSelectorVirtReg, 2913 TLI.getPointerTy(DAG.getDataLayout())), 2914 dl, ValueVTs[1]); 2915 2916 // Merge into one. 2917 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2918 DAG.getVTList(ValueVTs), Ops); 2919 setValue(&LP, Res); 2920 } 2921 2922 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2923 MachineBasicBlock *Last) { 2924 // Update JTCases. 2925 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2926 if (SL->JTCases[i].first.HeaderBB == First) 2927 SL->JTCases[i].first.HeaderBB = Last; 2928 2929 // Update BitTestCases. 2930 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2931 if (SL->BitTestCases[i].Parent == First) 2932 SL->BitTestCases[i].Parent = Last; 2933 } 2934 2935 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2936 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2937 2938 // Update machine-CFG edges with unique successors. 2939 SmallSet<BasicBlock*, 32> Done; 2940 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2941 BasicBlock *BB = I.getSuccessor(i); 2942 bool Inserted = Done.insert(BB).second; 2943 if (!Inserted) 2944 continue; 2945 2946 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2947 addSuccessorWithProb(IndirectBrMBB, Succ); 2948 } 2949 IndirectBrMBB->normalizeSuccProbs(); 2950 2951 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2952 MVT::Other, getControlRoot(), 2953 getValue(I.getAddress()))); 2954 } 2955 2956 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2957 if (!DAG.getTarget().Options.TrapUnreachable) 2958 return; 2959 2960 // We may be able to ignore unreachable behind a noreturn call. 2961 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2962 const BasicBlock &BB = *I.getParent(); 2963 if (&I != &BB.front()) { 2964 BasicBlock::const_iterator PredI = 2965 std::prev(BasicBlock::const_iterator(&I)); 2966 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2967 if (Call->doesNotReturn()) 2968 return; 2969 } 2970 } 2971 } 2972 2973 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2974 } 2975 2976 void SelectionDAGBuilder::visitFSub(const User &I) { 2977 // -0.0 - X --> fneg 2978 Type *Ty = I.getType(); 2979 if (isa<Constant>(I.getOperand(0)) && 2980 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2981 SDValue Op2 = getValue(I.getOperand(1)); 2982 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2983 Op2.getValueType(), Op2)); 2984 return; 2985 } 2986 2987 visitBinary(I, ISD::FSUB); 2988 } 2989 2990 /// Checks if the given instruction performs a vector reduction, in which case 2991 /// we have the freedom to alter the elements in the result as long as the 2992 /// reduction of them stays unchanged. 2993 static bool isVectorReductionOp(const User *I) { 2994 const Instruction *Inst = dyn_cast<Instruction>(I); 2995 if (!Inst || !Inst->getType()->isVectorTy()) 2996 return false; 2997 2998 auto OpCode = Inst->getOpcode(); 2999 switch (OpCode) { 3000 case Instruction::Add: 3001 case Instruction::Mul: 3002 case Instruction::And: 3003 case Instruction::Or: 3004 case Instruction::Xor: 3005 break; 3006 case Instruction::FAdd: 3007 case Instruction::FMul: 3008 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3009 if (FPOp->getFastMathFlags().isFast()) 3010 break; 3011 LLVM_FALLTHROUGH; 3012 default: 3013 return false; 3014 } 3015 3016 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3017 // Ensure the reduction size is a power of 2. 3018 if (!isPowerOf2_32(ElemNum)) 3019 return false; 3020 3021 unsigned ElemNumToReduce = ElemNum; 3022 3023 // Do DFS search on the def-use chain from the given instruction. We only 3024 // allow four kinds of operations during the search until we reach the 3025 // instruction that extracts the first element from the vector: 3026 // 3027 // 1. The reduction operation of the same opcode as the given instruction. 3028 // 3029 // 2. PHI node. 3030 // 3031 // 3. ShuffleVector instruction together with a reduction operation that 3032 // does a partial reduction. 3033 // 3034 // 4. ExtractElement that extracts the first element from the vector, and we 3035 // stop searching the def-use chain here. 3036 // 3037 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3038 // from 1-3 to the stack to continue the DFS. The given instruction is not 3039 // a reduction operation if we meet any other instructions other than those 3040 // listed above. 3041 3042 SmallVector<const User *, 16> UsersToVisit{Inst}; 3043 SmallPtrSet<const User *, 16> Visited; 3044 bool ReduxExtracted = false; 3045 3046 while (!UsersToVisit.empty()) { 3047 auto User = UsersToVisit.back(); 3048 UsersToVisit.pop_back(); 3049 if (!Visited.insert(User).second) 3050 continue; 3051 3052 for (const auto *U : User->users()) { 3053 auto Inst = dyn_cast<Instruction>(U); 3054 if (!Inst) 3055 return false; 3056 3057 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3058 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3059 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3060 return false; 3061 UsersToVisit.push_back(U); 3062 } else if (const ShuffleVectorInst *ShufInst = 3063 dyn_cast<ShuffleVectorInst>(U)) { 3064 // Detect the following pattern: A ShuffleVector instruction together 3065 // with a reduction that do partial reduction on the first and second 3066 // ElemNumToReduce / 2 elements, and store the result in 3067 // ElemNumToReduce / 2 elements in another vector. 3068 3069 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3070 if (ResultElements < ElemNum) 3071 return false; 3072 3073 if (ElemNumToReduce == 1) 3074 return false; 3075 if (!isa<UndefValue>(U->getOperand(1))) 3076 return false; 3077 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3078 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3079 return false; 3080 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3081 if (ShufInst->getMaskValue(i) != -1) 3082 return false; 3083 3084 // There is only one user of this ShuffleVector instruction, which 3085 // must be a reduction operation. 3086 if (!U->hasOneUse()) 3087 return false; 3088 3089 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3090 if (!U2 || U2->getOpcode() != OpCode) 3091 return false; 3092 3093 // Check operands of the reduction operation. 3094 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3095 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3096 UsersToVisit.push_back(U2); 3097 ElemNumToReduce /= 2; 3098 } else 3099 return false; 3100 } else if (isa<ExtractElementInst>(U)) { 3101 // At this moment we should have reduced all elements in the vector. 3102 if (ElemNumToReduce != 1) 3103 return false; 3104 3105 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3106 if (!Val || !Val->isZero()) 3107 return false; 3108 3109 ReduxExtracted = true; 3110 } else 3111 return false; 3112 } 3113 } 3114 return ReduxExtracted; 3115 } 3116 3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3118 SDNodeFlags Flags; 3119 3120 SDValue Op = getValue(I.getOperand(0)); 3121 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3122 Op, Flags); 3123 setValue(&I, UnNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3129 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3130 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3131 } 3132 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3133 Flags.setExact(ExactOp->isExact()); 3134 } 3135 if (isVectorReductionOp(&I)) { 3136 Flags.setVectorReduction(true); 3137 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3138 3139 // If no flags are set we will propagate the incoming flags, if any flags 3140 // are set, we will intersect them with the incoming flag and so we need to 3141 // copy the FMF flags here. 3142 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3143 Flags.copyFMF(*FPOp); 3144 } 3145 } 3146 3147 SDValue Op1 = getValue(I.getOperand(0)); 3148 SDValue Op2 = getValue(I.getOperand(1)); 3149 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3150 Op1, Op2, Flags); 3151 setValue(&I, BinNodeValue); 3152 } 3153 3154 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3155 SDValue Op1 = getValue(I.getOperand(0)); 3156 SDValue Op2 = getValue(I.getOperand(1)); 3157 3158 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3159 Op1.getValueType(), DAG.getDataLayout()); 3160 3161 // Coerce the shift amount to the right type if we can. 3162 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3163 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3164 unsigned Op2Size = Op2.getValueSizeInBits(); 3165 SDLoc DL = getCurSDLoc(); 3166 3167 // If the operand is smaller than the shift count type, promote it. 3168 if (ShiftSize > Op2Size) 3169 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3170 3171 // If the operand is larger than the shift count type but the shift 3172 // count type has enough bits to represent any shift value, truncate 3173 // it now. This is a common case and it exposes the truncate to 3174 // optimization early. 3175 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3176 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3177 // Otherwise we'll need to temporarily settle for some other convenient 3178 // type. Type legalization will make adjustments once the shiftee is split. 3179 else 3180 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3181 } 3182 3183 bool nuw = false; 3184 bool nsw = false; 3185 bool exact = false; 3186 3187 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3188 3189 if (const OverflowingBinaryOperator *OFBinOp = 3190 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3191 nuw = OFBinOp->hasNoUnsignedWrap(); 3192 nsw = OFBinOp->hasNoSignedWrap(); 3193 } 3194 if (const PossiblyExactOperator *ExactOp = 3195 dyn_cast<const PossiblyExactOperator>(&I)) 3196 exact = ExactOp->isExact(); 3197 } 3198 SDNodeFlags Flags; 3199 Flags.setExact(exact); 3200 Flags.setNoSignedWrap(nsw); 3201 Flags.setNoUnsignedWrap(nuw); 3202 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3203 Flags); 3204 setValue(&I, Res); 3205 } 3206 3207 void SelectionDAGBuilder::visitSDiv(const User &I) { 3208 SDValue Op1 = getValue(I.getOperand(0)); 3209 SDValue Op2 = getValue(I.getOperand(1)); 3210 3211 SDNodeFlags Flags; 3212 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3213 cast<PossiblyExactOperator>(&I)->isExact()); 3214 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3215 Op2, Flags)); 3216 } 3217 3218 void SelectionDAGBuilder::visitICmp(const User &I) { 3219 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3220 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3221 predicate = IC->getPredicate(); 3222 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3223 predicate = ICmpInst::Predicate(IC->getPredicate()); 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 ISD::CondCode Opcode = getICmpCondCode(predicate); 3227 3228 auto &TLI = DAG.getTargetLoweringInfo(); 3229 EVT MemVT = 3230 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3231 3232 // If a pointer's DAG type is larger than its memory type then the DAG values 3233 // are zero-extended. This breaks signed comparisons so truncate back to the 3234 // underlying type before doing the compare. 3235 if (Op1.getValueType() != MemVT) { 3236 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3237 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3238 } 3239 3240 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3241 I.getType()); 3242 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3243 } 3244 3245 void SelectionDAGBuilder::visitFCmp(const User &I) { 3246 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3247 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3248 predicate = FC->getPredicate(); 3249 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3250 predicate = FCmpInst::Predicate(FC->getPredicate()); 3251 SDValue Op1 = getValue(I.getOperand(0)); 3252 SDValue Op2 = getValue(I.getOperand(1)); 3253 3254 ISD::CondCode Condition = getFCmpCondCode(predicate); 3255 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3256 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3257 Condition = getFCmpCodeWithoutNaN(Condition); 3258 3259 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3260 I.getType()); 3261 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3262 } 3263 3264 // Check if the condition of the select has one use or two users that are both 3265 // selects with the same condition. 3266 static bool hasOnlySelectUsers(const Value *Cond) { 3267 return llvm::all_of(Cond->users(), [](const Value *V) { 3268 return isa<SelectInst>(V); 3269 }); 3270 } 3271 3272 void SelectionDAGBuilder::visitSelect(const User &I) { 3273 SmallVector<EVT, 4> ValueVTs; 3274 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3275 ValueVTs); 3276 unsigned NumValues = ValueVTs.size(); 3277 if (NumValues == 0) return; 3278 3279 SmallVector<SDValue, 4> Values(NumValues); 3280 SDValue Cond = getValue(I.getOperand(0)); 3281 SDValue LHSVal = getValue(I.getOperand(1)); 3282 SDValue RHSVal = getValue(I.getOperand(2)); 3283 auto BaseOps = {Cond}; 3284 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3285 ISD::VSELECT : ISD::SELECT; 3286 3287 bool IsUnaryAbs = false; 3288 3289 // Min/max matching is only viable if all output VTs are the same. 3290 if (is_splat(ValueVTs)) { 3291 EVT VT = ValueVTs[0]; 3292 LLVMContext &Ctx = *DAG.getContext(); 3293 auto &TLI = DAG.getTargetLoweringInfo(); 3294 3295 // We care about the legality of the operation after it has been type 3296 // legalized. 3297 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3298 VT = TLI.getTypeToTransformTo(Ctx, VT); 3299 3300 // If the vselect is legal, assume we want to leave this as a vector setcc + 3301 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3302 // min/max is legal on the scalar type. 3303 bool UseScalarMinMax = VT.isVector() && 3304 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3305 3306 Value *LHS, *RHS; 3307 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3308 ISD::NodeType Opc = ISD::DELETED_NODE; 3309 switch (SPR.Flavor) { 3310 case SPF_UMAX: Opc = ISD::UMAX; break; 3311 case SPF_UMIN: Opc = ISD::UMIN; break; 3312 case SPF_SMAX: Opc = ISD::SMAX; break; 3313 case SPF_SMIN: Opc = ISD::SMIN; break; 3314 case SPF_FMINNUM: 3315 switch (SPR.NaNBehavior) { 3316 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3317 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3318 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3319 case SPNB_RETURNS_ANY: { 3320 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3321 Opc = ISD::FMINNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3323 Opc = ISD::FMINIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3326 ISD::FMINNUM : ISD::FMINIMUM; 3327 break; 3328 } 3329 } 3330 break; 3331 case SPF_FMAXNUM: 3332 switch (SPR.NaNBehavior) { 3333 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3334 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3335 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3336 case SPNB_RETURNS_ANY: 3337 3338 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3339 Opc = ISD::FMAXNUM; 3340 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3341 Opc = ISD::FMAXIMUM; 3342 else if (UseScalarMinMax) 3343 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3344 ISD::FMAXNUM : ISD::FMAXIMUM; 3345 break; 3346 } 3347 break; 3348 case SPF_ABS: 3349 IsUnaryAbs = true; 3350 Opc = ISD::ABS; 3351 break; 3352 case SPF_NABS: 3353 // TODO: we need to produce sub(0, abs(X)). 3354 default: break; 3355 } 3356 3357 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3358 (TLI.isOperationLegalOrCustom(Opc, VT) || 3359 (UseScalarMinMax && 3360 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3361 // If the underlying comparison instruction is used by any other 3362 // instruction, the consumed instructions won't be destroyed, so it is 3363 // not profitable to convert to a min/max. 3364 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3365 OpCode = Opc; 3366 LHSVal = getValue(LHS); 3367 RHSVal = getValue(RHS); 3368 BaseOps = {}; 3369 } 3370 3371 if (IsUnaryAbs) { 3372 OpCode = Opc; 3373 LHSVal = getValue(LHS); 3374 BaseOps = {}; 3375 } 3376 } 3377 3378 if (IsUnaryAbs) { 3379 for (unsigned i = 0; i != NumValues; ++i) { 3380 Values[i] = 3381 DAG.getNode(OpCode, getCurSDLoc(), 3382 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3383 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3384 } 3385 } else { 3386 for (unsigned i = 0; i != NumValues; ++i) { 3387 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3388 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3389 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3390 Values[i] = DAG.getNode( 3391 OpCode, getCurSDLoc(), 3392 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3393 } 3394 } 3395 3396 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3397 DAG.getVTList(ValueVTs), Values)); 3398 } 3399 3400 void SelectionDAGBuilder::visitTrunc(const User &I) { 3401 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3402 SDValue N = getValue(I.getOperand(0)); 3403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3404 I.getType()); 3405 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3406 } 3407 3408 void SelectionDAGBuilder::visitZExt(const User &I) { 3409 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3410 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3411 SDValue N = getValue(I.getOperand(0)); 3412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3413 I.getType()); 3414 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3415 } 3416 3417 void SelectionDAGBuilder::visitSExt(const User &I) { 3418 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3419 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3427 // FPTrunc is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 SDLoc dl = getCurSDLoc(); 3430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3431 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3433 DAG.getTargetConstant( 3434 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3435 } 3436 3437 void SelectionDAGBuilder::visitFPExt(const User &I) { 3438 // FPExt is never a no-op cast, no need to check 3439 SDValue N = getValue(I.getOperand(0)); 3440 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3441 I.getType()); 3442 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3443 } 3444 3445 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3446 // FPToUI is never a no-op cast, no need to check 3447 SDValue N = getValue(I.getOperand(0)); 3448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3449 I.getType()); 3450 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3451 } 3452 3453 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3454 // FPToSI is never a no-op cast, no need to check 3455 SDValue N = getValue(I.getOperand(0)); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3459 } 3460 3461 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3462 // UIToFP is never a no-op cast, no need to check 3463 SDValue N = getValue(I.getOperand(0)); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3467 } 3468 3469 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3470 // SIToFP is never a no-op cast, no need to check 3471 SDValue N = getValue(I.getOperand(0)); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3475 } 3476 3477 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3478 // What to do depends on the size of the integer and the size of the pointer. 3479 // We can either truncate, zero extend, or no-op, accordingly. 3480 SDValue N = getValue(I.getOperand(0)); 3481 auto &TLI = DAG.getTargetLoweringInfo(); 3482 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3483 I.getType()); 3484 EVT PtrMemVT = 3485 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3486 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3487 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3488 setValue(&I, N); 3489 } 3490 3491 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3492 // What to do depends on the size of the integer and the size of the pointer. 3493 // We can either truncate, zero extend, or no-op, accordingly. 3494 SDValue N = getValue(I.getOperand(0)); 3495 auto &TLI = DAG.getTargetLoweringInfo(); 3496 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3497 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3498 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3499 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3500 setValue(&I, N); 3501 } 3502 3503 void SelectionDAGBuilder::visitBitCast(const User &I) { 3504 SDValue N = getValue(I.getOperand(0)); 3505 SDLoc dl = getCurSDLoc(); 3506 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3507 I.getType()); 3508 3509 // BitCast assures us that source and destination are the same size so this is 3510 // either a BITCAST or a no-op. 3511 if (DestVT != N.getValueType()) 3512 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3513 DestVT, N)); // convert types. 3514 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3515 // might fold any kind of constant expression to an integer constant and that 3516 // is not what we are looking for. Only recognize a bitcast of a genuine 3517 // constant integer as an opaque constant. 3518 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3519 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3520 /*isOpaque*/true)); 3521 else 3522 setValue(&I, N); // noop cast. 3523 } 3524 3525 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3527 const Value *SV = I.getOperand(0); 3528 SDValue N = getValue(SV); 3529 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3530 3531 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3532 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3533 3534 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3535 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3536 3537 setValue(&I, N); 3538 } 3539 3540 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 SDValue InVec = getValue(I.getOperand(0)); 3543 SDValue InVal = getValue(I.getOperand(1)); 3544 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3545 TLI.getVectorIdxTy(DAG.getDataLayout())); 3546 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3547 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3548 InVec, InVal, InIdx)); 3549 } 3550 3551 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 SDValue InVec = getValue(I.getOperand(0)); 3554 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3555 TLI.getVectorIdxTy(DAG.getDataLayout())); 3556 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3557 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3558 InVec, InIdx)); 3559 } 3560 3561 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3562 SDValue Src1 = getValue(I.getOperand(0)); 3563 SDValue Src2 = getValue(I.getOperand(1)); 3564 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3565 SDLoc DL = getCurSDLoc(); 3566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3568 EVT SrcVT = Src1.getValueType(); 3569 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3570 3571 if (MaskV->isNullValue() && VT.isScalableVector()) { 3572 // Canonical splat form of first element of first input vector. 3573 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3574 SrcVT.getScalarType(), Src1, 3575 DAG.getConstant(0, DL, 3576 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3577 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3578 return; 3579 } 3580 3581 // For now, we only handle splats for scalable vectors. 3582 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3583 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3584 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3585 3586 SmallVector<int, 8> Mask; 3587 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3588 unsigned MaskNumElts = Mask.size(); 3589 3590 if (SrcNumElts == MaskNumElts) { 3591 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3592 return; 3593 } 3594 3595 // Normalize the shuffle vector since mask and vector length don't match. 3596 if (SrcNumElts < MaskNumElts) { 3597 // Mask is longer than the source vectors. We can use concatenate vector to 3598 // make the mask and vectors lengths match. 3599 3600 if (MaskNumElts % SrcNumElts == 0) { 3601 // Mask length is a multiple of the source vector length. 3602 // Check if the shuffle is some kind of concatenation of the input 3603 // vectors. 3604 unsigned NumConcat = MaskNumElts / SrcNumElts; 3605 bool IsConcat = true; 3606 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3607 for (unsigned i = 0; i != MaskNumElts; ++i) { 3608 int Idx = Mask[i]; 3609 if (Idx < 0) 3610 continue; 3611 // Ensure the indices in each SrcVT sized piece are sequential and that 3612 // the same source is used for the whole piece. 3613 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3614 (ConcatSrcs[i / SrcNumElts] >= 0 && 3615 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3616 IsConcat = false; 3617 break; 3618 } 3619 // Remember which source this index came from. 3620 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3621 } 3622 3623 // The shuffle is concatenating multiple vectors together. Just emit 3624 // a CONCAT_VECTORS operation. 3625 if (IsConcat) { 3626 SmallVector<SDValue, 8> ConcatOps; 3627 for (auto Src : ConcatSrcs) { 3628 if (Src < 0) 3629 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3630 else if (Src == 0) 3631 ConcatOps.push_back(Src1); 3632 else 3633 ConcatOps.push_back(Src2); 3634 } 3635 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3636 return; 3637 } 3638 } 3639 3640 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3641 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3642 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3643 PaddedMaskNumElts); 3644 3645 // Pad both vectors with undefs to make them the same length as the mask. 3646 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3647 3648 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3649 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3650 MOps1[0] = Src1; 3651 MOps2[0] = Src2; 3652 3653 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3654 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3655 3656 // Readjust mask for new input vector length. 3657 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3658 for (unsigned i = 0; i != MaskNumElts; ++i) { 3659 int Idx = Mask[i]; 3660 if (Idx >= (int)SrcNumElts) 3661 Idx -= SrcNumElts - PaddedMaskNumElts; 3662 MappedOps[i] = Idx; 3663 } 3664 3665 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3666 3667 // If the concatenated vector was padded, extract a subvector with the 3668 // correct number of elements. 3669 if (MaskNumElts != PaddedMaskNumElts) 3670 Result = DAG.getNode( 3671 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3672 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3673 3674 setValue(&I, Result); 3675 return; 3676 } 3677 3678 if (SrcNumElts > MaskNumElts) { 3679 // Analyze the access pattern of the vector to see if we can extract 3680 // two subvectors and do the shuffle. 3681 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3682 bool CanExtract = true; 3683 for (int Idx : Mask) { 3684 unsigned Input = 0; 3685 if (Idx < 0) 3686 continue; 3687 3688 if (Idx >= (int)SrcNumElts) { 3689 Input = 1; 3690 Idx -= SrcNumElts; 3691 } 3692 3693 // If all the indices come from the same MaskNumElts sized portion of 3694 // the sources we can use extract. Also make sure the extract wouldn't 3695 // extract past the end of the source. 3696 int NewStartIdx = alignDown(Idx, MaskNumElts); 3697 if (NewStartIdx + MaskNumElts > SrcNumElts || 3698 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3699 CanExtract = false; 3700 // Make sure we always update StartIdx as we use it to track if all 3701 // elements are undef. 3702 StartIdx[Input] = NewStartIdx; 3703 } 3704 3705 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3706 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3707 return; 3708 } 3709 if (CanExtract) { 3710 // Extract appropriate subvector and generate a vector shuffle 3711 for (unsigned Input = 0; Input < 2; ++Input) { 3712 SDValue &Src = Input == 0 ? Src1 : Src2; 3713 if (StartIdx[Input] < 0) 3714 Src = DAG.getUNDEF(VT); 3715 else { 3716 Src = DAG.getNode( 3717 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3718 DAG.getConstant(StartIdx[Input], DL, 3719 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3720 } 3721 } 3722 3723 // Calculate new mask. 3724 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3725 for (int &Idx : MappedOps) { 3726 if (Idx >= (int)SrcNumElts) 3727 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3728 else if (Idx >= 0) 3729 Idx -= StartIdx[0]; 3730 } 3731 3732 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3733 return; 3734 } 3735 } 3736 3737 // We can't use either concat vectors or extract subvectors so fall back to 3738 // replacing the shuffle with extract and build vector. 3739 // to insert and build vector. 3740 EVT EltVT = VT.getVectorElementType(); 3741 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3742 SmallVector<SDValue,8> Ops; 3743 for (int Idx : Mask) { 3744 SDValue Res; 3745 3746 if (Idx < 0) { 3747 Res = DAG.getUNDEF(EltVT); 3748 } else { 3749 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3750 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3751 3752 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3753 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3754 } 3755 3756 Ops.push_back(Res); 3757 } 3758 3759 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3760 } 3761 3762 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3763 ArrayRef<unsigned> Indices; 3764 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3765 Indices = IV->getIndices(); 3766 else 3767 Indices = cast<ConstantExpr>(&I)->getIndices(); 3768 3769 const Value *Op0 = I.getOperand(0); 3770 const Value *Op1 = I.getOperand(1); 3771 Type *AggTy = I.getType(); 3772 Type *ValTy = Op1->getType(); 3773 bool IntoUndef = isa<UndefValue>(Op0); 3774 bool FromUndef = isa<UndefValue>(Op1); 3775 3776 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3777 3778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3779 SmallVector<EVT, 4> AggValueVTs; 3780 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3781 SmallVector<EVT, 4> ValValueVTs; 3782 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3783 3784 unsigned NumAggValues = AggValueVTs.size(); 3785 unsigned NumValValues = ValValueVTs.size(); 3786 SmallVector<SDValue, 4> Values(NumAggValues); 3787 3788 // Ignore an insertvalue that produces an empty object 3789 if (!NumAggValues) { 3790 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3791 return; 3792 } 3793 3794 SDValue Agg = getValue(Op0); 3795 unsigned i = 0; 3796 // Copy the beginning value(s) from the original aggregate. 3797 for (; i != LinearIndex; ++i) 3798 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3799 SDValue(Agg.getNode(), Agg.getResNo() + i); 3800 // Copy values from the inserted value(s). 3801 if (NumValValues) { 3802 SDValue Val = getValue(Op1); 3803 for (; i != LinearIndex + NumValValues; ++i) 3804 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3805 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3806 } 3807 // Copy remaining value(s) from the original aggregate. 3808 for (; i != NumAggValues; ++i) 3809 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3810 SDValue(Agg.getNode(), Agg.getResNo() + i); 3811 3812 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3813 DAG.getVTList(AggValueVTs), Values)); 3814 } 3815 3816 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3817 ArrayRef<unsigned> Indices; 3818 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3819 Indices = EV->getIndices(); 3820 else 3821 Indices = cast<ConstantExpr>(&I)->getIndices(); 3822 3823 const Value *Op0 = I.getOperand(0); 3824 Type *AggTy = Op0->getType(); 3825 Type *ValTy = I.getType(); 3826 bool OutOfUndef = isa<UndefValue>(Op0); 3827 3828 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3829 3830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3831 SmallVector<EVT, 4> ValValueVTs; 3832 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3833 3834 unsigned NumValValues = ValValueVTs.size(); 3835 3836 // Ignore a extractvalue that produces an empty object 3837 if (!NumValValues) { 3838 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3839 return; 3840 } 3841 3842 SmallVector<SDValue, 4> Values(NumValValues); 3843 3844 SDValue Agg = getValue(Op0); 3845 // Copy out the selected value(s). 3846 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3847 Values[i - LinearIndex] = 3848 OutOfUndef ? 3849 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3850 SDValue(Agg.getNode(), Agg.getResNo() + i); 3851 3852 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3853 DAG.getVTList(ValValueVTs), Values)); 3854 } 3855 3856 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3857 Value *Op0 = I.getOperand(0); 3858 // Note that the pointer operand may be a vector of pointers. Take the scalar 3859 // element which holds a pointer. 3860 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3861 SDValue N = getValue(Op0); 3862 SDLoc dl = getCurSDLoc(); 3863 auto &TLI = DAG.getTargetLoweringInfo(); 3864 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3865 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3866 3867 // Normalize Vector GEP - all scalar operands should be converted to the 3868 // splat vector. 3869 unsigned VectorWidth = I.getType()->isVectorTy() ? 3870 I.getType()->getVectorNumElements() : 0; 3871 3872 if (VectorWidth && !N.getValueType().isVector()) { 3873 LLVMContext &Context = *DAG.getContext(); 3874 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3875 N = DAG.getSplatBuildVector(VT, dl, N); 3876 } 3877 3878 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3879 GTI != E; ++GTI) { 3880 const Value *Idx = GTI.getOperand(); 3881 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3882 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3883 if (Field) { 3884 // N = N + Offset 3885 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3886 3887 // In an inbounds GEP with an offset that is nonnegative even when 3888 // interpreted as signed, assume there is no unsigned overflow. 3889 SDNodeFlags Flags; 3890 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3891 Flags.setNoUnsignedWrap(true); 3892 3893 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3894 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3895 } 3896 } else { 3897 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3898 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3899 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3900 3901 // If this is a scalar constant or a splat vector of constants, 3902 // handle it quickly. 3903 const auto *C = dyn_cast<Constant>(Idx); 3904 if (C && isa<VectorType>(C->getType())) 3905 C = C->getSplatValue(); 3906 3907 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3908 if (CI->isZero()) 3909 continue; 3910 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3911 LLVMContext &Context = *DAG.getContext(); 3912 SDValue OffsVal = VectorWidth ? 3913 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3914 DAG.getConstant(Offs, dl, IdxTy); 3915 3916 // In an inbounds GEP with an offset that is nonnegative even when 3917 // interpreted as signed, assume there is no unsigned overflow. 3918 SDNodeFlags Flags; 3919 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3920 Flags.setNoUnsignedWrap(true); 3921 3922 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3923 3924 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3925 continue; 3926 } 3927 3928 // N = N + Idx * ElementSize; 3929 SDValue IdxN = getValue(Idx); 3930 3931 if (!IdxN.getValueType().isVector() && VectorWidth) { 3932 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3933 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3934 } 3935 3936 // If the index is smaller or larger than intptr_t, truncate or extend 3937 // it. 3938 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3939 3940 // If this is a multiply by a power of two, turn it into a shl 3941 // immediately. This is a very common case. 3942 if (ElementSize != 1) { 3943 if (ElementSize.isPowerOf2()) { 3944 unsigned Amt = ElementSize.logBase2(); 3945 IdxN = DAG.getNode(ISD::SHL, dl, 3946 N.getValueType(), IdxN, 3947 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3948 } else { 3949 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3950 IdxN.getValueType()); 3951 IdxN = DAG.getNode(ISD::MUL, dl, 3952 N.getValueType(), IdxN, Scale); 3953 } 3954 } 3955 3956 N = DAG.getNode(ISD::ADD, dl, 3957 N.getValueType(), N, IdxN); 3958 } 3959 } 3960 3961 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3962 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3963 3964 setValue(&I, N); 3965 } 3966 3967 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3968 // If this is a fixed sized alloca in the entry block of the function, 3969 // allocate it statically on the stack. 3970 if (FuncInfo.StaticAllocaMap.count(&I)) 3971 return; // getValue will auto-populate this. 3972 3973 SDLoc dl = getCurSDLoc(); 3974 Type *Ty = I.getAllocatedType(); 3975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3976 auto &DL = DAG.getDataLayout(); 3977 uint64_t TySize = DL.getTypeAllocSize(Ty); 3978 unsigned Align = 3979 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3980 3981 SDValue AllocSize = getValue(I.getArraySize()); 3982 3983 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3984 if (AllocSize.getValueType() != IntPtr) 3985 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3986 3987 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3988 AllocSize, 3989 DAG.getConstant(TySize, dl, IntPtr)); 3990 3991 // Handle alignment. If the requested alignment is less than or equal to 3992 // the stack alignment, ignore it. If the size is greater than or equal to 3993 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3994 unsigned StackAlign = 3995 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3996 if (Align <= StackAlign) 3997 Align = 0; 3998 3999 // Round the size of the allocation up to the stack alignment size 4000 // by add SA-1 to the size. This doesn't overflow because we're computing 4001 // an address inside an alloca. 4002 SDNodeFlags Flags; 4003 Flags.setNoUnsignedWrap(true); 4004 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4005 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4006 4007 // Mask out the low bits for alignment purposes. 4008 AllocSize = 4009 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4010 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4011 4012 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4013 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4014 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4015 setValue(&I, DSA); 4016 DAG.setRoot(DSA.getValue(1)); 4017 4018 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4019 } 4020 4021 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4022 if (I.isAtomic()) 4023 return visitAtomicLoad(I); 4024 4025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4026 const Value *SV = I.getOperand(0); 4027 if (TLI.supportSwiftError()) { 4028 // Swifterror values can come from either a function parameter with 4029 // swifterror attribute or an alloca with swifterror attribute. 4030 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4031 if (Arg->hasSwiftErrorAttr()) 4032 return visitLoadFromSwiftError(I); 4033 } 4034 4035 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4036 if (Alloca->isSwiftError()) 4037 return visitLoadFromSwiftError(I); 4038 } 4039 } 4040 4041 SDValue Ptr = getValue(SV); 4042 4043 Type *Ty = I.getType(); 4044 4045 bool isVolatile = I.isVolatile(); 4046 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4047 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4048 bool isDereferenceable = 4049 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4050 unsigned Alignment = I.getAlignment(); 4051 4052 AAMDNodes AAInfo; 4053 I.getAAMetadata(AAInfo); 4054 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4055 4056 SmallVector<EVT, 4> ValueVTs, MemVTs; 4057 SmallVector<uint64_t, 4> Offsets; 4058 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4059 unsigned NumValues = ValueVTs.size(); 4060 if (NumValues == 0) 4061 return; 4062 4063 SDValue Root; 4064 bool ConstantMemory = false; 4065 if (isVolatile || NumValues > MaxParallelChains) 4066 // Serialize volatile loads with other side effects. 4067 Root = getRoot(); 4068 else if (AA && 4069 AA->pointsToConstantMemory(MemoryLocation( 4070 SV, 4071 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4072 AAInfo))) { 4073 // Do not serialize (non-volatile) loads of constant memory with anything. 4074 Root = DAG.getEntryNode(); 4075 ConstantMemory = true; 4076 } else { 4077 // Do not serialize non-volatile loads against each other. 4078 Root = DAG.getRoot(); 4079 } 4080 4081 SDLoc dl = getCurSDLoc(); 4082 4083 if (isVolatile) 4084 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4085 4086 // An aggregate load cannot wrap around the address space, so offsets to its 4087 // parts don't wrap either. 4088 SDNodeFlags Flags; 4089 Flags.setNoUnsignedWrap(true); 4090 4091 SmallVector<SDValue, 4> Values(NumValues); 4092 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4093 EVT PtrVT = Ptr.getValueType(); 4094 unsigned ChainI = 0; 4095 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4096 // Serializing loads here may result in excessive register pressure, and 4097 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4098 // could recover a bit by hoisting nodes upward in the chain by recognizing 4099 // they are side-effect free or do not alias. The optimizer should really 4100 // avoid this case by converting large object/array copies to llvm.memcpy 4101 // (MaxParallelChains should always remain as failsafe). 4102 if (ChainI == MaxParallelChains) { 4103 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4104 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4105 makeArrayRef(Chains.data(), ChainI)); 4106 Root = Chain; 4107 ChainI = 0; 4108 } 4109 SDValue A = DAG.getNode(ISD::ADD, dl, 4110 PtrVT, Ptr, 4111 DAG.getConstant(Offsets[i], dl, PtrVT), 4112 Flags); 4113 auto MMOFlags = MachineMemOperand::MONone; 4114 if (isVolatile) 4115 MMOFlags |= MachineMemOperand::MOVolatile; 4116 if (isNonTemporal) 4117 MMOFlags |= MachineMemOperand::MONonTemporal; 4118 if (isInvariant) 4119 MMOFlags |= MachineMemOperand::MOInvariant; 4120 if (isDereferenceable) 4121 MMOFlags |= MachineMemOperand::MODereferenceable; 4122 MMOFlags |= TLI.getMMOFlags(I); 4123 4124 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4125 MachinePointerInfo(SV, Offsets[i]), Alignment, 4126 MMOFlags, AAInfo, Ranges); 4127 Chains[ChainI] = L.getValue(1); 4128 4129 if (MemVTs[i] != ValueVTs[i]) 4130 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4131 4132 Values[i] = L; 4133 } 4134 4135 if (!ConstantMemory) { 4136 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4137 makeArrayRef(Chains.data(), ChainI)); 4138 if (isVolatile) 4139 DAG.setRoot(Chain); 4140 else 4141 PendingLoads.push_back(Chain); 4142 } 4143 4144 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4145 DAG.getVTList(ValueVTs), Values)); 4146 } 4147 4148 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4149 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4150 "call visitStoreToSwiftError when backend supports swifterror"); 4151 4152 SmallVector<EVT, 4> ValueVTs; 4153 SmallVector<uint64_t, 4> Offsets; 4154 const Value *SrcV = I.getOperand(0); 4155 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4156 SrcV->getType(), ValueVTs, &Offsets); 4157 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4158 "expect a single EVT for swifterror"); 4159 4160 SDValue Src = getValue(SrcV); 4161 // Create a virtual register, then update the virtual register. 4162 Register VReg = 4163 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4164 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4165 // Chain can be getRoot or getControlRoot. 4166 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4167 SDValue(Src.getNode(), Src.getResNo())); 4168 DAG.setRoot(CopyNode); 4169 } 4170 4171 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4172 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4173 "call visitLoadFromSwiftError when backend supports swifterror"); 4174 4175 assert(!I.isVolatile() && 4176 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4177 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4178 "Support volatile, non temporal, invariant for load_from_swift_error"); 4179 4180 const Value *SV = I.getOperand(0); 4181 Type *Ty = I.getType(); 4182 AAMDNodes AAInfo; 4183 I.getAAMetadata(AAInfo); 4184 assert( 4185 (!AA || 4186 !AA->pointsToConstantMemory(MemoryLocation( 4187 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4188 AAInfo))) && 4189 "load_from_swift_error should not be constant memory"); 4190 4191 SmallVector<EVT, 4> ValueVTs; 4192 SmallVector<uint64_t, 4> Offsets; 4193 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4194 ValueVTs, &Offsets); 4195 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4196 "expect a single EVT for swifterror"); 4197 4198 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4199 SDValue L = DAG.getCopyFromReg( 4200 getRoot(), getCurSDLoc(), 4201 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4202 4203 setValue(&I, L); 4204 } 4205 4206 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4207 if (I.isAtomic()) 4208 return visitAtomicStore(I); 4209 4210 const Value *SrcV = I.getOperand(0); 4211 const Value *PtrV = I.getOperand(1); 4212 4213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4214 if (TLI.supportSwiftError()) { 4215 // Swifterror values can come from either a function parameter with 4216 // swifterror attribute or an alloca with swifterror attribute. 4217 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4218 if (Arg->hasSwiftErrorAttr()) 4219 return visitStoreToSwiftError(I); 4220 } 4221 4222 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4223 if (Alloca->isSwiftError()) 4224 return visitStoreToSwiftError(I); 4225 } 4226 } 4227 4228 SmallVector<EVT, 4> ValueVTs, MemVTs; 4229 SmallVector<uint64_t, 4> Offsets; 4230 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4231 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4232 unsigned NumValues = ValueVTs.size(); 4233 if (NumValues == 0) 4234 return; 4235 4236 // Get the lowered operands. Note that we do this after 4237 // checking if NumResults is zero, because with zero results 4238 // the operands won't have values in the map. 4239 SDValue Src = getValue(SrcV); 4240 SDValue Ptr = getValue(PtrV); 4241 4242 SDValue Root = getRoot(); 4243 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4244 SDLoc dl = getCurSDLoc(); 4245 unsigned Alignment = I.getAlignment(); 4246 AAMDNodes AAInfo; 4247 I.getAAMetadata(AAInfo); 4248 4249 auto MMOFlags = MachineMemOperand::MONone; 4250 if (I.isVolatile()) 4251 MMOFlags |= MachineMemOperand::MOVolatile; 4252 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4253 MMOFlags |= MachineMemOperand::MONonTemporal; 4254 MMOFlags |= TLI.getMMOFlags(I); 4255 4256 // An aggregate load cannot wrap around the address space, so offsets to its 4257 // parts don't wrap either. 4258 SDNodeFlags Flags; 4259 Flags.setNoUnsignedWrap(true); 4260 4261 unsigned ChainI = 0; 4262 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4263 // See visitLoad comments. 4264 if (ChainI == MaxParallelChains) { 4265 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4266 makeArrayRef(Chains.data(), ChainI)); 4267 Root = Chain; 4268 ChainI = 0; 4269 } 4270 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4271 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4272 if (MemVTs[i] != ValueVTs[i]) 4273 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4274 SDValue St = 4275 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4276 Alignment, MMOFlags, AAInfo); 4277 Chains[ChainI] = St; 4278 } 4279 4280 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4281 makeArrayRef(Chains.data(), ChainI)); 4282 DAG.setRoot(StoreNode); 4283 } 4284 4285 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4286 bool IsCompressing) { 4287 SDLoc sdl = getCurSDLoc(); 4288 4289 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4290 unsigned& Alignment) { 4291 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4292 Src0 = I.getArgOperand(0); 4293 Ptr = I.getArgOperand(1); 4294 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4295 Mask = I.getArgOperand(3); 4296 }; 4297 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4298 unsigned& Alignment) { 4299 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4300 Src0 = I.getArgOperand(0); 4301 Ptr = I.getArgOperand(1); 4302 Mask = I.getArgOperand(2); 4303 Alignment = 0; 4304 }; 4305 4306 Value *PtrOperand, *MaskOperand, *Src0Operand; 4307 unsigned Alignment; 4308 if (IsCompressing) 4309 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4310 else 4311 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4312 4313 SDValue Ptr = getValue(PtrOperand); 4314 SDValue Src0 = getValue(Src0Operand); 4315 SDValue Mask = getValue(MaskOperand); 4316 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4317 4318 EVT VT = Src0.getValueType(); 4319 if (!Alignment) 4320 Alignment = DAG.getEVTAlignment(VT); 4321 4322 AAMDNodes AAInfo; 4323 I.getAAMetadata(AAInfo); 4324 4325 MachineMemOperand *MMO = 4326 DAG.getMachineFunction(). 4327 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4328 MachineMemOperand::MOStore, 4329 // TODO: Make MachineMemOperands aware of scalable 4330 // vectors. 4331 VT.getStoreSize().getKnownMinSize(), 4332 Alignment, AAInfo); 4333 SDValue StoreNode = 4334 DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4335 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4336 DAG.setRoot(StoreNode); 4337 setValue(&I, StoreNode); 4338 } 4339 4340 // Get a uniform base for the Gather/Scatter intrinsic. 4341 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4342 // We try to represent it as a base pointer + vector of indices. 4343 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4344 // The first operand of the GEP may be a single pointer or a vector of pointers 4345 // Example: 4346 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4347 // or 4348 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4349 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4350 // 4351 // When the first GEP operand is a single pointer - it is the uniform base we 4352 // are looking for. If first operand of the GEP is a splat vector - we 4353 // extract the splat value and use it as a uniform base. 4354 // In all other cases the function returns 'false'. 4355 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4356 ISD::MemIndexType &IndexType, SDValue &Scale, 4357 SelectionDAGBuilder *SDB) { 4358 SelectionDAG& DAG = SDB->DAG; 4359 LLVMContext &Context = *DAG.getContext(); 4360 4361 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4362 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4363 if (!GEP) 4364 return false; 4365 4366 const Value *GEPPtr = GEP->getPointerOperand(); 4367 if (!GEPPtr->getType()->isVectorTy()) 4368 Ptr = GEPPtr; 4369 else if (!(Ptr = getSplatValue(GEPPtr))) 4370 return false; 4371 4372 unsigned FinalIndex = GEP->getNumOperands() - 1; 4373 Value *IndexVal = GEP->getOperand(FinalIndex); 4374 gep_type_iterator GTI = gep_type_begin(*GEP); 4375 4376 // Ensure all the other indices are 0. 4377 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4378 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4379 if (!C) 4380 return false; 4381 if (isa<VectorType>(C->getType())) 4382 C = C->getSplatValue(); 4383 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4384 if (!CI || !CI->isZero()) 4385 return false; 4386 } 4387 4388 // The operands of the GEP may be defined in another basic block. 4389 // In this case we'll not find nodes for the operands. 4390 if (!SDB->findValue(Ptr)) 4391 return false; 4392 Constant *C = dyn_cast<Constant>(IndexVal); 4393 if (!C && !SDB->findValue(IndexVal)) 4394 return false; 4395 4396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4397 const DataLayout &DL = DAG.getDataLayout(); 4398 StructType *STy = GTI.getStructTypeOrNull(); 4399 4400 if (STy) { 4401 const StructLayout *SL = DL.getStructLayout(STy); 4402 if (isa<VectorType>(C->getType())) { 4403 C = C->getSplatValue(); 4404 // FIXME: If getSplatValue may return nullptr for a structure? 4405 // If not, the following check can be removed. 4406 if (!C) 4407 return false; 4408 } 4409 auto *CI = cast<ConstantInt>(C); 4410 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4411 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4412 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4413 } else { 4414 Scale = DAG.getTargetConstant( 4415 DL.getTypeAllocSize(GEP->getResultElementType()), 4416 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4417 Index = SDB->getValue(IndexVal); 4418 } 4419 Base = SDB->getValue(Ptr); 4420 IndexType = ISD::SIGNED_SCALED; 4421 4422 if (STy || !Index.getValueType().isVector()) { 4423 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4424 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4425 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4426 } 4427 return true; 4428 } 4429 4430 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4431 SDLoc sdl = getCurSDLoc(); 4432 4433 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4434 const Value *Ptr = I.getArgOperand(1); 4435 SDValue Src0 = getValue(I.getArgOperand(0)); 4436 SDValue Mask = getValue(I.getArgOperand(3)); 4437 EVT VT = Src0.getValueType(); 4438 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4439 if (!Alignment) 4440 Alignment = DAG.getEVTAlignment(VT); 4441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4442 4443 AAMDNodes AAInfo; 4444 I.getAAMetadata(AAInfo); 4445 4446 SDValue Base; 4447 SDValue Index; 4448 ISD::MemIndexType IndexType; 4449 SDValue Scale; 4450 const Value *BasePtr = Ptr; 4451 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4452 this); 4453 4454 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4455 MachineMemOperand *MMO = DAG.getMachineFunction(). 4456 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4457 MachineMemOperand::MOStore, 4458 // TODO: Make MachineMemOperands aware of scalable 4459 // vectors. 4460 VT.getStoreSize().getKnownMinSize(), 4461 Alignment, AAInfo); 4462 if (!UniformBase) { 4463 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4464 Index = getValue(Ptr); 4465 IndexType = ISD::SIGNED_SCALED; 4466 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4467 } 4468 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4469 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4470 Ops, MMO, IndexType); 4471 DAG.setRoot(Scatter); 4472 setValue(&I, Scatter); 4473 } 4474 4475 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4476 SDLoc sdl = getCurSDLoc(); 4477 4478 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4479 unsigned& Alignment) { 4480 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4481 Ptr = I.getArgOperand(0); 4482 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4483 Mask = I.getArgOperand(2); 4484 Src0 = I.getArgOperand(3); 4485 }; 4486 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4487 unsigned& Alignment) { 4488 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4489 Ptr = I.getArgOperand(0); 4490 Alignment = 0; 4491 Mask = I.getArgOperand(1); 4492 Src0 = I.getArgOperand(2); 4493 }; 4494 4495 Value *PtrOperand, *MaskOperand, *Src0Operand; 4496 unsigned Alignment; 4497 if (IsExpanding) 4498 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4499 else 4500 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4501 4502 SDValue Ptr = getValue(PtrOperand); 4503 SDValue Src0 = getValue(Src0Operand); 4504 SDValue Mask = getValue(MaskOperand); 4505 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4506 4507 EVT VT = Src0.getValueType(); 4508 if (!Alignment) 4509 Alignment = DAG.getEVTAlignment(VT); 4510 4511 AAMDNodes AAInfo; 4512 I.getAAMetadata(AAInfo); 4513 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4514 4515 // Do not serialize masked loads of constant memory with anything. 4516 MemoryLocation ML; 4517 if (VT.isScalableVector()) 4518 ML = MemoryLocation(PtrOperand); 4519 else 4520 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4521 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4522 AAInfo); 4523 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4524 4525 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4526 4527 MachineMemOperand *MMO = 4528 DAG.getMachineFunction(). 4529 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4530 MachineMemOperand::MOLoad, 4531 // TODO: Make MachineMemOperands aware of scalable 4532 // vectors. 4533 VT.getStoreSize().getKnownMinSize(), 4534 Alignment, AAInfo, Ranges); 4535 4536 SDValue Load = 4537 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4538 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4539 if (AddToChain) 4540 PendingLoads.push_back(Load.getValue(1)); 4541 setValue(&I, Load); 4542 } 4543 4544 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4545 SDLoc sdl = getCurSDLoc(); 4546 4547 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4548 const Value *Ptr = I.getArgOperand(0); 4549 SDValue Src0 = getValue(I.getArgOperand(3)); 4550 SDValue Mask = getValue(I.getArgOperand(2)); 4551 4552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4554 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4555 if (!Alignment) 4556 Alignment = DAG.getEVTAlignment(VT); 4557 4558 AAMDNodes AAInfo; 4559 I.getAAMetadata(AAInfo); 4560 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4561 4562 SDValue Root = DAG.getRoot(); 4563 SDValue Base; 4564 SDValue Index; 4565 ISD::MemIndexType IndexType; 4566 SDValue Scale; 4567 const Value *BasePtr = Ptr; 4568 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4569 this); 4570 bool ConstantMemory = false; 4571 if (UniformBase && AA && 4572 AA->pointsToConstantMemory( 4573 MemoryLocation(BasePtr, 4574 LocationSize::precise( 4575 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4576 AAInfo))) { 4577 // Do not serialize (non-volatile) loads of constant memory with anything. 4578 Root = DAG.getEntryNode(); 4579 ConstantMemory = true; 4580 } 4581 4582 MachineMemOperand *MMO = 4583 DAG.getMachineFunction(). 4584 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4585 MachineMemOperand::MOLoad, 4586 // TODO: Make MachineMemOperands aware of scalable 4587 // vectors. 4588 VT.getStoreSize().getKnownMinSize(), 4589 Alignment, AAInfo, Ranges); 4590 4591 if (!UniformBase) { 4592 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4593 Index = getValue(Ptr); 4594 IndexType = ISD::SIGNED_SCALED; 4595 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4596 } 4597 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4598 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4599 Ops, MMO, IndexType); 4600 4601 SDValue OutChain = Gather.getValue(1); 4602 if (!ConstantMemory) 4603 PendingLoads.push_back(OutChain); 4604 setValue(&I, Gather); 4605 } 4606 4607 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4608 SDLoc dl = getCurSDLoc(); 4609 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4610 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4611 SyncScope::ID SSID = I.getSyncScopeID(); 4612 4613 SDValue InChain = getRoot(); 4614 4615 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4616 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4617 4618 auto Alignment = DAG.getEVTAlignment(MemVT); 4619 4620 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4621 if (I.isVolatile()) 4622 Flags |= MachineMemOperand::MOVolatile; 4623 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4624 4625 MachineFunction &MF = DAG.getMachineFunction(); 4626 MachineMemOperand *MMO = 4627 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4628 Flags, MemVT.getStoreSize(), Alignment, 4629 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4630 FailureOrdering); 4631 4632 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4633 dl, MemVT, VTs, InChain, 4634 getValue(I.getPointerOperand()), 4635 getValue(I.getCompareOperand()), 4636 getValue(I.getNewValOperand()), MMO); 4637 4638 SDValue OutChain = L.getValue(2); 4639 4640 setValue(&I, L); 4641 DAG.setRoot(OutChain); 4642 } 4643 4644 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4645 SDLoc dl = getCurSDLoc(); 4646 ISD::NodeType NT; 4647 switch (I.getOperation()) { 4648 default: llvm_unreachable("Unknown atomicrmw operation"); 4649 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4650 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4651 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4652 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4653 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4654 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4655 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4656 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4657 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4658 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4659 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4660 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4661 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4662 } 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4669 auto Alignment = DAG.getEVTAlignment(MemVT); 4670 4671 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4672 if (I.isVolatile()) 4673 Flags |= MachineMemOperand::MOVolatile; 4674 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4675 4676 MachineFunction &MF = DAG.getMachineFunction(); 4677 MachineMemOperand *MMO = 4678 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4679 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4680 nullptr, SSID, Ordering); 4681 4682 SDValue L = 4683 DAG.getAtomic(NT, dl, MemVT, InChain, 4684 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4685 MMO); 4686 4687 SDValue OutChain = L.getValue(1); 4688 4689 setValue(&I, L); 4690 DAG.setRoot(OutChain); 4691 } 4692 4693 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4694 SDLoc dl = getCurSDLoc(); 4695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4696 SDValue Ops[3]; 4697 Ops[0] = getRoot(); 4698 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4699 TLI.getFenceOperandTy(DAG.getDataLayout())); 4700 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4701 TLI.getFenceOperandTy(DAG.getDataLayout())); 4702 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4703 } 4704 4705 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4706 SDLoc dl = getCurSDLoc(); 4707 AtomicOrdering Order = I.getOrdering(); 4708 SyncScope::ID SSID = I.getSyncScopeID(); 4709 4710 SDValue InChain = getRoot(); 4711 4712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4713 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4714 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4715 4716 if (!TLI.supportsUnalignedAtomics() && 4717 I.getAlignment() < MemVT.getSizeInBits() / 8) 4718 report_fatal_error("Cannot generate unaligned atomic load"); 4719 4720 auto Flags = MachineMemOperand::MOLoad; 4721 if (I.isVolatile()) 4722 Flags |= MachineMemOperand::MOVolatile; 4723 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4724 Flags |= MachineMemOperand::MOInvariant; 4725 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4726 DAG.getDataLayout())) 4727 Flags |= MachineMemOperand::MODereferenceable; 4728 4729 Flags |= TLI.getMMOFlags(I); 4730 4731 MachineMemOperand *MMO = 4732 DAG.getMachineFunction(). 4733 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4734 Flags, MemVT.getStoreSize(), 4735 I.getAlignment() ? I.getAlignment() : 4736 DAG.getEVTAlignment(MemVT), 4737 AAMDNodes(), nullptr, SSID, Order); 4738 4739 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4740 4741 SDValue Ptr = getValue(I.getPointerOperand()); 4742 4743 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4744 // TODO: Once this is better exercised by tests, it should be merged with 4745 // the normal path for loads to prevent future divergence. 4746 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4747 if (MemVT != VT) 4748 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4749 4750 setValue(&I, L); 4751 SDValue OutChain = L.getValue(1); 4752 if (!I.isUnordered()) 4753 DAG.setRoot(OutChain); 4754 else 4755 PendingLoads.push_back(OutChain); 4756 return; 4757 } 4758 4759 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4760 Ptr, MMO); 4761 4762 SDValue OutChain = L.getValue(1); 4763 if (MemVT != VT) 4764 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4765 4766 setValue(&I, L); 4767 DAG.setRoot(OutChain); 4768 } 4769 4770 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4771 SDLoc dl = getCurSDLoc(); 4772 4773 AtomicOrdering Ordering = I.getOrdering(); 4774 SyncScope::ID SSID = I.getSyncScopeID(); 4775 4776 SDValue InChain = getRoot(); 4777 4778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4779 EVT MemVT = 4780 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4781 4782 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4783 report_fatal_error("Cannot generate unaligned atomic store"); 4784 4785 auto Flags = MachineMemOperand::MOStore; 4786 if (I.isVolatile()) 4787 Flags |= MachineMemOperand::MOVolatile; 4788 Flags |= TLI.getMMOFlags(I); 4789 4790 MachineFunction &MF = DAG.getMachineFunction(); 4791 MachineMemOperand *MMO = 4792 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4793 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4794 nullptr, SSID, Ordering); 4795 4796 SDValue Val = getValue(I.getValueOperand()); 4797 if (Val.getValueType() != MemVT) 4798 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4799 SDValue Ptr = getValue(I.getPointerOperand()); 4800 4801 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4802 // TODO: Once this is better exercised by tests, it should be merged with 4803 // the normal path for stores to prevent future divergence. 4804 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4805 DAG.setRoot(S); 4806 return; 4807 } 4808 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4809 Ptr, Val, MMO); 4810 4811 4812 DAG.setRoot(OutChain); 4813 } 4814 4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4816 /// node. 4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4818 unsigned Intrinsic) { 4819 // Ignore the callsite's attributes. A specific call site may be marked with 4820 // readnone, but the lowering code will expect the chain based on the 4821 // definition. 4822 const Function *F = I.getCalledFunction(); 4823 bool HasChain = !F->doesNotAccessMemory(); 4824 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4825 4826 // Build the operand list. 4827 SmallVector<SDValue, 8> Ops; 4828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4829 if (OnlyLoad) { 4830 // We don't need to serialize loads against other loads. 4831 Ops.push_back(DAG.getRoot()); 4832 } else { 4833 Ops.push_back(getRoot()); 4834 } 4835 } 4836 4837 // Info is set by getTgtMemInstrinsic 4838 TargetLowering::IntrinsicInfo Info; 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4841 DAG.getMachineFunction(), 4842 Intrinsic); 4843 4844 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4845 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4846 Info.opc == ISD::INTRINSIC_W_CHAIN) 4847 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4848 TLI.getPointerTy(DAG.getDataLayout()))); 4849 4850 // Add all operands of the call to the operand list. 4851 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4852 const Value *Arg = I.getArgOperand(i); 4853 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4854 Ops.push_back(getValue(Arg)); 4855 continue; 4856 } 4857 4858 // Use TargetConstant instead of a regular constant for immarg. 4859 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4860 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4861 assert(CI->getBitWidth() <= 64 && 4862 "large intrinsic immediates not handled"); 4863 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4864 } else { 4865 Ops.push_back( 4866 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4867 } 4868 } 4869 4870 SmallVector<EVT, 4> ValueVTs; 4871 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4872 4873 if (HasChain) 4874 ValueVTs.push_back(MVT::Other); 4875 4876 SDVTList VTs = DAG.getVTList(ValueVTs); 4877 4878 // Create the node. 4879 SDValue Result; 4880 if (IsTgtIntrinsic) { 4881 // This is target intrinsic that touches memory 4882 AAMDNodes AAInfo; 4883 I.getAAMetadata(AAInfo); 4884 Result = DAG.getMemIntrinsicNode( 4885 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4886 MachinePointerInfo(Info.ptrVal, Info.offset), 4887 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4888 } else if (!HasChain) { 4889 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4890 } else if (!I.getType()->isVoidTy()) { 4891 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4892 } else { 4893 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4894 } 4895 4896 if (HasChain) { 4897 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4898 if (OnlyLoad) 4899 PendingLoads.push_back(Chain); 4900 else 4901 DAG.setRoot(Chain); 4902 } 4903 4904 if (!I.getType()->isVoidTy()) { 4905 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4906 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4907 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4908 } else 4909 Result = lowerRangeToAssertZExt(DAG, I, Result); 4910 4911 setValue(&I, Result); 4912 } 4913 } 4914 4915 /// GetSignificand - Get the significand and build it into a floating-point 4916 /// number with exponent of 1: 4917 /// 4918 /// Op = (Op & 0x007fffff) | 0x3f800000; 4919 /// 4920 /// where Op is the hexadecimal representation of floating point value. 4921 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4922 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4923 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4924 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4925 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4926 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4927 } 4928 4929 /// GetExponent - Get the exponent: 4930 /// 4931 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4932 /// 4933 /// where Op is the hexadecimal representation of floating point value. 4934 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4935 const TargetLowering &TLI, const SDLoc &dl) { 4936 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4937 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4938 SDValue t1 = DAG.getNode( 4939 ISD::SRL, dl, MVT::i32, t0, 4940 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4941 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4942 DAG.getConstant(127, dl, MVT::i32)); 4943 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4944 } 4945 4946 /// getF32Constant - Get 32-bit floating point constant. 4947 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4948 const SDLoc &dl) { 4949 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4950 MVT::f32); 4951 } 4952 4953 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4954 SelectionDAG &DAG) { 4955 // TODO: What fast-math-flags should be set on the floating-point nodes? 4956 4957 // IntegerPartOfX = ((int32_t)(t0); 4958 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4959 4960 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4961 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4962 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4963 4964 // IntegerPartOfX <<= 23; 4965 IntegerPartOfX = DAG.getNode( 4966 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4967 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4968 DAG.getDataLayout()))); 4969 4970 SDValue TwoToFractionalPartOfX; 4971 if (LimitFloatPrecision <= 6) { 4972 // For floating-point precision of 6: 4973 // 4974 // TwoToFractionalPartOfX = 4975 // 0.997535578f + 4976 // (0.735607626f + 0.252464424f * x) * x; 4977 // 4978 // error 0.0144103317, which is 6 bits 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0x3e814304, dl)); 4981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4982 getF32Constant(DAG, 0x3f3c50c8, dl)); 4983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4984 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4985 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4986 } else if (LimitFloatPrecision <= 12) { 4987 // For floating-point precision of 12: 4988 // 4989 // TwoToFractionalPartOfX = 4990 // 0.999892986f + 4991 // (0.696457318f + 4992 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4993 // 4994 // error 0.000107046256, which is 13 to 14 bits 4995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4996 getF32Constant(DAG, 0x3da235e3, dl)); 4997 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4998 getF32Constant(DAG, 0x3e65b8f3, dl)); 4999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5001 getF32Constant(DAG, 0x3f324b07, dl)); 5002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5003 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5004 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5005 } else { // LimitFloatPrecision <= 18 5006 // For floating-point precision of 18: 5007 // 5008 // TwoToFractionalPartOfX = 5009 // 0.999999982f + 5010 // (0.693148872f + 5011 // (0.240227044f + 5012 // (0.554906021e-1f + 5013 // (0.961591928e-2f + 5014 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5015 // error 2.47208000*10^(-7), which is better than 18 bits 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5017 getF32Constant(DAG, 0x3924b03e, dl)); 5018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3ab24b87, dl)); 5020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5022 getF32Constant(DAG, 0x3c1d8c17, dl)); 5023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5024 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5025 getF32Constant(DAG, 0x3d634a1d, dl)); 5026 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5027 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5028 getF32Constant(DAG, 0x3e75fe14, dl)); 5029 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5030 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5031 getF32Constant(DAG, 0x3f317234, dl)); 5032 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5033 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5034 getF32Constant(DAG, 0x3f800000, dl)); 5035 } 5036 5037 // Add the exponent into the result in integer domain. 5038 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5039 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5040 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5041 } 5042 5043 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5044 /// limited-precision mode. 5045 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5046 const TargetLowering &TLI) { 5047 if (Op.getValueType() == MVT::f32 && 5048 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5049 5050 // Put the exponent in the right bit position for later addition to the 5051 // final result: 5052 // 5053 // t0 = Op * log2(e) 5054 5055 // TODO: What fast-math-flags should be set here? 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5057 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5058 return getLimitedPrecisionExp2(t0, dl, DAG); 5059 } 5060 5061 // No special expansion. 5062 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5063 } 5064 5065 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5066 /// limited-precision mode. 5067 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5068 const TargetLowering &TLI) { 5069 // TODO: What fast-math-flags should be set on the floating-point nodes? 5070 5071 if (Op.getValueType() == MVT::f32 && 5072 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5073 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5074 5075 // Scale the exponent by log(2). 5076 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5077 SDValue LogOfExponent = 5078 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5079 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5080 5081 // Get the significand and build it into a floating-point number with 5082 // exponent of 1. 5083 SDValue X = GetSignificand(DAG, Op1, dl); 5084 5085 SDValue LogOfMantissa; 5086 if (LimitFloatPrecision <= 6) { 5087 // For floating-point precision of 6: 5088 // 5089 // LogofMantissa = 5090 // -1.1609546f + 5091 // (1.4034025f - 0.23903021f * x) * x; 5092 // 5093 // error 0.0034276066, which is better than 8 bits 5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5095 getF32Constant(DAG, 0xbe74c456, dl)); 5096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5097 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5099 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5100 getF32Constant(DAG, 0x3f949a29, dl)); 5101 } else if (LimitFloatPrecision <= 12) { 5102 // For floating-point precision of 12: 5103 // 5104 // LogOfMantissa = 5105 // -1.7417939f + 5106 // (2.8212026f + 5107 // (-1.4699568f + 5108 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5109 // 5110 // error 0.000061011436, which is 14 bits 5111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5112 getF32Constant(DAG, 0xbd67b6d6, dl)); 5113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5114 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5116 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5117 getF32Constant(DAG, 0x3fbc278b, dl)); 5118 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5119 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5120 getF32Constant(DAG, 0x40348e95, dl)); 5121 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5122 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5123 getF32Constant(DAG, 0x3fdef31a, dl)); 5124 } else { // LimitFloatPrecision <= 18 5125 // For floating-point precision of 18: 5126 // 5127 // LogOfMantissa = 5128 // -2.1072184f + 5129 // (4.2372794f + 5130 // (-3.7029485f + 5131 // (2.2781945f + 5132 // (-0.87823314f + 5133 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5134 // 5135 // error 0.0000023660568, which is better than 18 bits 5136 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5137 getF32Constant(DAG, 0xbc91e5ac, dl)); 5138 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5139 getF32Constant(DAG, 0x3e4350aa, dl)); 5140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5141 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5142 getF32Constant(DAG, 0x3f60d3e3, dl)); 5143 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5144 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5145 getF32Constant(DAG, 0x4011cdf0, dl)); 5146 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5147 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5148 getF32Constant(DAG, 0x406cfd1c, dl)); 5149 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5150 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5151 getF32Constant(DAG, 0x408797cb, dl)); 5152 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5153 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5154 getF32Constant(DAG, 0x4006dcab, dl)); 5155 } 5156 5157 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5158 } 5159 5160 // No special expansion. 5161 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5162 } 5163 5164 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5165 /// limited-precision mode. 5166 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5167 const TargetLowering &TLI) { 5168 // TODO: What fast-math-flags should be set on the floating-point nodes? 5169 5170 if (Op.getValueType() == MVT::f32 && 5171 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5172 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5173 5174 // Get the exponent. 5175 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5176 5177 // Get the significand and build it into a floating-point number with 5178 // exponent of 1. 5179 SDValue X = GetSignificand(DAG, Op1, dl); 5180 5181 // Different possible minimax approximations of significand in 5182 // floating-point for various degrees of accuracy over [1,2]. 5183 SDValue Log2ofMantissa; 5184 if (LimitFloatPrecision <= 6) { 5185 // For floating-point precision of 6: 5186 // 5187 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5188 // 5189 // error 0.0049451742, which is more than 7 bits 5190 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5191 getF32Constant(DAG, 0xbeb08fe0, dl)); 5192 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5193 getF32Constant(DAG, 0x40019463, dl)); 5194 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5195 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5196 getF32Constant(DAG, 0x3fd6633d, dl)); 5197 } else if (LimitFloatPrecision <= 12) { 5198 // For floating-point precision of 12: 5199 // 5200 // Log2ofMantissa = 5201 // -2.51285454f + 5202 // (4.07009056f + 5203 // (-2.12067489f + 5204 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5205 // 5206 // error 0.0000876136000, which is better than 13 bits 5207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5208 getF32Constant(DAG, 0xbda7262e, dl)); 5209 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5210 getF32Constant(DAG, 0x3f25280b, dl)); 5211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5212 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5213 getF32Constant(DAG, 0x4007b923, dl)); 5214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5216 getF32Constant(DAG, 0x40823e2f, dl)); 5217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5218 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5219 getF32Constant(DAG, 0x4020d29c, dl)); 5220 } else { // LimitFloatPrecision <= 18 5221 // For floating-point precision of 18: 5222 // 5223 // Log2ofMantissa = 5224 // -3.0400495f + 5225 // (6.1129976f + 5226 // (-5.3420409f + 5227 // (3.2865683f + 5228 // (-1.2669343f + 5229 // (0.27515199f - 5230 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5231 // 5232 // error 0.0000018516, which is better than 18 bits 5233 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5234 getF32Constant(DAG, 0xbcd2769e, dl)); 5235 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5236 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5237 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5238 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5239 getF32Constant(DAG, 0x3fa22ae7, dl)); 5240 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5241 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5242 getF32Constant(DAG, 0x40525723, dl)); 5243 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5244 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5245 getF32Constant(DAG, 0x40aaf200, dl)); 5246 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5247 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5248 getF32Constant(DAG, 0x40c39dad, dl)); 5249 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5250 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5251 getF32Constant(DAG, 0x4042902c, dl)); 5252 } 5253 5254 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5255 } 5256 5257 // No special expansion. 5258 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5259 } 5260 5261 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5262 /// limited-precision mode. 5263 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5264 const TargetLowering &TLI) { 5265 // TODO: What fast-math-flags should be set on the floating-point nodes? 5266 5267 if (Op.getValueType() == MVT::f32 && 5268 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5269 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5270 5271 // Scale the exponent by log10(2) [0.30102999f]. 5272 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5273 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5274 getF32Constant(DAG, 0x3e9a209a, dl)); 5275 5276 // Get the significand and build it into a floating-point number with 5277 // exponent of 1. 5278 SDValue X = GetSignificand(DAG, Op1, dl); 5279 5280 SDValue Log10ofMantissa; 5281 if (LimitFloatPrecision <= 6) { 5282 // For floating-point precision of 6: 5283 // 5284 // Log10ofMantissa = 5285 // -0.50419619f + 5286 // (0.60948995f - 0.10380950f * x) * x; 5287 // 5288 // error 0.0014886165, which is 6 bits 5289 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5290 getF32Constant(DAG, 0xbdd49a13, dl)); 5291 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5292 getF32Constant(DAG, 0x3f1c0789, dl)); 5293 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5294 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5295 getF32Constant(DAG, 0x3f011300, dl)); 5296 } else if (LimitFloatPrecision <= 12) { 5297 // For floating-point precision of 12: 5298 // 5299 // Log10ofMantissa = 5300 // -0.64831180f + 5301 // (0.91751397f + 5302 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5303 // 5304 // error 0.00019228036, which is better than 12 bits 5305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5306 getF32Constant(DAG, 0x3d431f31, dl)); 5307 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5308 getF32Constant(DAG, 0x3ea21fb2, dl)); 5309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5310 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5311 getF32Constant(DAG, 0x3f6ae232, dl)); 5312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5313 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5314 getF32Constant(DAG, 0x3f25f7c3, dl)); 5315 } else { // LimitFloatPrecision <= 18 5316 // For floating-point precision of 18: 5317 // 5318 // Log10ofMantissa = 5319 // -0.84299375f + 5320 // (1.5327582f + 5321 // (-1.0688956f + 5322 // (0.49102474f + 5323 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5324 // 5325 // error 0.0000037995730, which is better than 18 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0x3c5d51ce, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3e00685a, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3efb6798, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x3f88d192, dl)); 5336 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5337 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5338 getF32Constant(DAG, 0x3fc4316c, dl)); 5339 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5340 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5341 getF32Constant(DAG, 0x3f57ce70, dl)); 5342 } 5343 5344 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5345 } 5346 5347 // No special expansion. 5348 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5349 } 5350 5351 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5352 /// limited-precision mode. 5353 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5354 const TargetLowering &TLI) { 5355 if (Op.getValueType() == MVT::f32 && 5356 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5357 return getLimitedPrecisionExp2(Op, dl, DAG); 5358 5359 // No special expansion. 5360 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5361 } 5362 5363 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5364 /// limited-precision mode with x == 10.0f. 5365 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5366 SelectionDAG &DAG, const TargetLowering &TLI) { 5367 bool IsExp10 = false; 5368 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5369 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5370 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5371 APFloat Ten(10.0f); 5372 IsExp10 = LHSC->isExactlyValue(Ten); 5373 } 5374 } 5375 5376 // TODO: What fast-math-flags should be set on the FMUL node? 5377 if (IsExp10) { 5378 // Put the exponent in the right bit position for later addition to the 5379 // final result: 5380 // 5381 // #define LOG2OF10 3.3219281f 5382 // t0 = Op * LOG2OF10; 5383 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5384 getF32Constant(DAG, 0x40549a78, dl)); 5385 return getLimitedPrecisionExp2(t0, dl, DAG); 5386 } 5387 5388 // No special expansion. 5389 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5390 } 5391 5392 /// ExpandPowI - Expand a llvm.powi intrinsic. 5393 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5394 SelectionDAG &DAG) { 5395 // If RHS is a constant, we can expand this out to a multiplication tree, 5396 // otherwise we end up lowering to a call to __powidf2 (for example). When 5397 // optimizing for size, we only want to do this if the expansion would produce 5398 // a small number of multiplies, otherwise we do the full expansion. 5399 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5400 // Get the exponent as a positive value. 5401 unsigned Val = RHSC->getSExtValue(); 5402 if ((int)Val < 0) Val = -Val; 5403 5404 // powi(x, 0) -> 1.0 5405 if (Val == 0) 5406 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5407 5408 bool OptForSize = DAG.shouldOptForSize(); 5409 if (!OptForSize || 5410 // If optimizing for size, don't insert too many multiplies. 5411 // This inserts up to 5 multiplies. 5412 countPopulation(Val) + Log2_32(Val) < 7) { 5413 // We use the simple binary decomposition method to generate the multiply 5414 // sequence. There are more optimal ways to do this (for example, 5415 // powi(x,15) generates one more multiply than it should), but this has 5416 // the benefit of being both really simple and much better than a libcall. 5417 SDValue Res; // Logically starts equal to 1.0 5418 SDValue CurSquare = LHS; 5419 // TODO: Intrinsics should have fast-math-flags that propagate to these 5420 // nodes. 5421 while (Val) { 5422 if (Val & 1) { 5423 if (Res.getNode()) 5424 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5425 else 5426 Res = CurSquare; // 1.0*CurSquare. 5427 } 5428 5429 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5430 CurSquare, CurSquare); 5431 Val >>= 1; 5432 } 5433 5434 // If the original was negative, invert the result, producing 1/(x*x*x). 5435 if (RHSC->getSExtValue() < 0) 5436 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5437 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5438 return Res; 5439 } 5440 } 5441 5442 // Otherwise, expand to a libcall. 5443 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5444 } 5445 5446 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5447 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5448 static void 5449 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5450 const SDValue &N) { 5451 switch (N.getOpcode()) { 5452 case ISD::CopyFromReg: { 5453 SDValue Op = N.getOperand(1); 5454 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5455 Op.getValueType().getSizeInBits()); 5456 return; 5457 } 5458 case ISD::BITCAST: 5459 case ISD::AssertZext: 5460 case ISD::AssertSext: 5461 case ISD::TRUNCATE: 5462 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5463 return; 5464 case ISD::BUILD_PAIR: 5465 case ISD::BUILD_VECTOR: 5466 case ISD::CONCAT_VECTORS: 5467 for (SDValue Op : N->op_values()) 5468 getUnderlyingArgRegs(Regs, Op); 5469 return; 5470 default: 5471 return; 5472 } 5473 } 5474 5475 /// If the DbgValueInst is a dbg_value of a function argument, create the 5476 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5477 /// instruction selection, they will be inserted to the entry BB. 5478 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5479 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5480 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5481 const Argument *Arg = dyn_cast<Argument>(V); 5482 if (!Arg) 5483 return false; 5484 5485 if (!IsDbgDeclare) { 5486 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5487 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5488 // the entry block. 5489 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5490 if (!IsInEntryBlock) 5491 return false; 5492 5493 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5494 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5495 // variable that also is a param. 5496 // 5497 // Although, if we are at the top of the entry block already, we can still 5498 // emit using ArgDbgValue. This might catch some situations when the 5499 // dbg.value refers to an argument that isn't used in the entry block, so 5500 // any CopyToReg node would be optimized out and the only way to express 5501 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5502 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5503 // we should only emit as ArgDbgValue if the Variable is an argument to the 5504 // current function, and the dbg.value intrinsic is found in the entry 5505 // block. 5506 bool VariableIsFunctionInputArg = Variable->isParameter() && 5507 !DL->getInlinedAt(); 5508 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5509 if (!IsInPrologue && !VariableIsFunctionInputArg) 5510 return false; 5511 5512 // Here we assume that a function argument on IR level only can be used to 5513 // describe one input parameter on source level. If we for example have 5514 // source code like this 5515 // 5516 // struct A { long x, y; }; 5517 // void foo(struct A a, long b) { 5518 // ... 5519 // b = a.x; 5520 // ... 5521 // } 5522 // 5523 // and IR like this 5524 // 5525 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5526 // entry: 5527 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5528 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5529 // call void @llvm.dbg.value(metadata i32 %b, "b", 5530 // ... 5531 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5532 // ... 5533 // 5534 // then the last dbg.value is describing a parameter "b" using a value that 5535 // is an argument. But since we already has used %a1 to describe a parameter 5536 // we should not handle that last dbg.value here (that would result in an 5537 // incorrect hoisting of the DBG_VALUE to the function entry). 5538 // Notice that we allow one dbg.value per IR level argument, to accommodate 5539 // for the situation with fragments above. 5540 if (VariableIsFunctionInputArg) { 5541 unsigned ArgNo = Arg->getArgNo(); 5542 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5543 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5544 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5545 return false; 5546 FuncInfo.DescribedArgs.set(ArgNo); 5547 } 5548 } 5549 5550 MachineFunction &MF = DAG.getMachineFunction(); 5551 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5552 5553 Optional<MachineOperand> Op; 5554 // Some arguments' frame index is recorded during argument lowering. 5555 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5556 if (FI != std::numeric_limits<int>::max()) 5557 Op = MachineOperand::CreateFI(FI); 5558 5559 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5560 if (!Op && N.getNode()) { 5561 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5562 Register Reg; 5563 if (ArgRegsAndSizes.size() == 1) 5564 Reg = ArgRegsAndSizes.front().first; 5565 5566 if (Reg && Reg.isVirtual()) { 5567 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5568 Register PR = RegInfo.getLiveInPhysReg(Reg); 5569 if (PR) 5570 Reg = PR; 5571 } 5572 if (Reg) { 5573 Op = MachineOperand::CreateReg(Reg, false); 5574 } 5575 } 5576 5577 if (!Op && N.getNode()) { 5578 // Check if frame index is available. 5579 SDValue LCandidate = peekThroughBitcasts(N); 5580 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5581 if (FrameIndexSDNode *FINode = 5582 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5583 Op = MachineOperand::CreateFI(FINode->getIndex()); 5584 } 5585 5586 if (!Op) { 5587 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5588 auto splitMultiRegDbgValue 5589 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5590 unsigned Offset = 0; 5591 for (auto RegAndSize : SplitRegs) { 5592 // If the expression is already a fragment, the current register 5593 // offset+size might extend beyond the fragment. In this case, only 5594 // the register bits that are inside the fragment are relevant. 5595 int RegFragmentSizeInBits = RegAndSize.second; 5596 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5597 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5598 // The register is entirely outside the expression fragment, 5599 // so is irrelevant for debug info. 5600 if (Offset >= ExprFragmentSizeInBits) 5601 break; 5602 // The register is partially outside the expression fragment, only 5603 // the low bits within the fragment are relevant for debug info. 5604 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5605 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5606 } 5607 } 5608 5609 auto FragmentExpr = DIExpression::createFragmentExpression( 5610 Expr, Offset, RegFragmentSizeInBits); 5611 Offset += RegAndSize.second; 5612 // If a valid fragment expression cannot be created, the variable's 5613 // correct value cannot be determined and so it is set as Undef. 5614 if (!FragmentExpr) { 5615 SDDbgValue *SDV = DAG.getConstantDbgValue( 5616 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5617 DAG.AddDbgValue(SDV, nullptr, false); 5618 continue; 5619 } 5620 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5621 FuncInfo.ArgDbgValues.push_back( 5622 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5623 RegAndSize.first, Variable, *FragmentExpr)); 5624 } 5625 }; 5626 5627 // Check if ValueMap has reg number. 5628 DenseMap<const Value *, unsigned>::const_iterator 5629 VMI = FuncInfo.ValueMap.find(V); 5630 if (VMI != FuncInfo.ValueMap.end()) { 5631 const auto &TLI = DAG.getTargetLoweringInfo(); 5632 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5633 V->getType(), getABIRegCopyCC(V)); 5634 if (RFV.occupiesMultipleRegs()) { 5635 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5636 return true; 5637 } 5638 5639 Op = MachineOperand::CreateReg(VMI->second, false); 5640 } else if (ArgRegsAndSizes.size() > 1) { 5641 // This was split due to the calling convention, and no virtual register 5642 // mapping exists for the value. 5643 splitMultiRegDbgValue(ArgRegsAndSizes); 5644 return true; 5645 } 5646 } 5647 5648 if (!Op) 5649 return false; 5650 5651 assert(Variable->isValidLocationForIntrinsic(DL) && 5652 "Expected inlined-at fields to agree"); 5653 5654 // If the argument arrives in a stack slot, then what the IR thought was a 5655 // normal Value is actually in memory, and we must add a deref to load it. 5656 if (Op->isFI()) { 5657 int FI = Op->getIndex(); 5658 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5659 if (Expr->isImplicit()) { 5660 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5661 Expr = DIExpression::prependOpcodes(Expr, Ops); 5662 } else { 5663 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5664 } 5665 } 5666 5667 // If this location was specified with a dbg.declare, then it and its 5668 // expression calculate the address of the variable. Append a deref to 5669 // force it to be a memory location. 5670 if (IsDbgDeclare) 5671 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5672 5673 FuncInfo.ArgDbgValues.push_back( 5674 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5675 *Op, Variable, Expr)); 5676 5677 return true; 5678 } 5679 5680 /// Return the appropriate SDDbgValue based on N. 5681 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5682 DILocalVariable *Variable, 5683 DIExpression *Expr, 5684 const DebugLoc &dl, 5685 unsigned DbgSDNodeOrder) { 5686 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5687 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5688 // stack slot locations. 5689 // 5690 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5691 // debug values here after optimization: 5692 // 5693 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5694 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5695 // 5696 // Both describe the direct values of their associated variables. 5697 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5698 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5699 } 5700 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5701 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5702 } 5703 5704 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5705 switch (Intrinsic) { 5706 case Intrinsic::smul_fix: 5707 return ISD::SMULFIX; 5708 case Intrinsic::umul_fix: 5709 return ISD::UMULFIX; 5710 default: 5711 llvm_unreachable("Unhandled fixed point intrinsic"); 5712 } 5713 } 5714 5715 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5716 const char *FunctionName) { 5717 assert(FunctionName && "FunctionName must not be nullptr"); 5718 SDValue Callee = DAG.getExternalSymbol( 5719 FunctionName, 5720 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5721 LowerCallTo(&I, Callee, I.isTailCall()); 5722 } 5723 5724 /// Lower the call to the specified intrinsic function. 5725 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5726 unsigned Intrinsic) { 5727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5728 SDLoc sdl = getCurSDLoc(); 5729 DebugLoc dl = getCurDebugLoc(); 5730 SDValue Res; 5731 5732 switch (Intrinsic) { 5733 default: 5734 // By default, turn this into a target intrinsic node. 5735 visitTargetIntrinsic(I, Intrinsic); 5736 return; 5737 case Intrinsic::vastart: visitVAStart(I); return; 5738 case Intrinsic::vaend: visitVAEnd(I); return; 5739 case Intrinsic::vacopy: visitVACopy(I); return; 5740 case Intrinsic::returnaddress: 5741 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5742 TLI.getPointerTy(DAG.getDataLayout()), 5743 getValue(I.getArgOperand(0)))); 5744 return; 5745 case Intrinsic::addressofreturnaddress: 5746 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5747 TLI.getPointerTy(DAG.getDataLayout()))); 5748 return; 5749 case Intrinsic::sponentry: 5750 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5751 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5752 return; 5753 case Intrinsic::frameaddress: 5754 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5755 TLI.getFrameIndexTy(DAG.getDataLayout()), 5756 getValue(I.getArgOperand(0)))); 5757 return; 5758 case Intrinsic::read_register: { 5759 Value *Reg = I.getArgOperand(0); 5760 SDValue Chain = getRoot(); 5761 SDValue RegName = 5762 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5763 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5764 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5765 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5766 setValue(&I, Res); 5767 DAG.setRoot(Res.getValue(1)); 5768 return; 5769 } 5770 case Intrinsic::write_register: { 5771 Value *Reg = I.getArgOperand(0); 5772 Value *RegValue = I.getArgOperand(1); 5773 SDValue Chain = getRoot(); 5774 SDValue RegName = 5775 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5776 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5777 RegName, getValue(RegValue))); 5778 return; 5779 } 5780 case Intrinsic::memcpy: { 5781 const auto &MCI = cast<MemCpyInst>(I); 5782 SDValue Op1 = getValue(I.getArgOperand(0)); 5783 SDValue Op2 = getValue(I.getArgOperand(1)); 5784 SDValue Op3 = getValue(I.getArgOperand(2)); 5785 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5786 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5787 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5788 unsigned Align = MinAlign(DstAlign, SrcAlign); 5789 bool isVol = MCI.isVolatile(); 5790 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5791 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5792 // node. 5793 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5794 false, isTC, 5795 MachinePointerInfo(I.getArgOperand(0)), 5796 MachinePointerInfo(I.getArgOperand(1))); 5797 updateDAGForMaybeTailCall(MC); 5798 return; 5799 } 5800 case Intrinsic::memset: { 5801 const auto &MSI = cast<MemSetInst>(I); 5802 SDValue Op1 = getValue(I.getArgOperand(0)); 5803 SDValue Op2 = getValue(I.getArgOperand(1)); 5804 SDValue Op3 = getValue(I.getArgOperand(2)); 5805 // @llvm.memset defines 0 and 1 to both mean no alignment. 5806 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5807 bool isVol = MSI.isVolatile(); 5808 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5809 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5810 isTC, MachinePointerInfo(I.getArgOperand(0))); 5811 updateDAGForMaybeTailCall(MS); 5812 return; 5813 } 5814 case Intrinsic::memmove: { 5815 const auto &MMI = cast<MemMoveInst>(I); 5816 SDValue Op1 = getValue(I.getArgOperand(0)); 5817 SDValue Op2 = getValue(I.getArgOperand(1)); 5818 SDValue Op3 = getValue(I.getArgOperand(2)); 5819 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5820 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5821 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5822 unsigned Align = MinAlign(DstAlign, SrcAlign); 5823 bool isVol = MMI.isVolatile(); 5824 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5825 // FIXME: Support passing different dest/src alignments to the memmove DAG 5826 // node. 5827 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5828 isTC, MachinePointerInfo(I.getArgOperand(0)), 5829 MachinePointerInfo(I.getArgOperand(1))); 5830 updateDAGForMaybeTailCall(MM); 5831 return; 5832 } 5833 case Intrinsic::memcpy_element_unordered_atomic: { 5834 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5835 SDValue Dst = getValue(MI.getRawDest()); 5836 SDValue Src = getValue(MI.getRawSource()); 5837 SDValue Length = getValue(MI.getLength()); 5838 5839 unsigned DstAlign = MI.getDestAlignment(); 5840 unsigned SrcAlign = MI.getSourceAlignment(); 5841 Type *LengthTy = MI.getLength()->getType(); 5842 unsigned ElemSz = MI.getElementSizeInBytes(); 5843 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5844 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5845 SrcAlign, Length, LengthTy, ElemSz, isTC, 5846 MachinePointerInfo(MI.getRawDest()), 5847 MachinePointerInfo(MI.getRawSource())); 5848 updateDAGForMaybeTailCall(MC); 5849 return; 5850 } 5851 case Intrinsic::memmove_element_unordered_atomic: { 5852 auto &MI = cast<AtomicMemMoveInst>(I); 5853 SDValue Dst = getValue(MI.getRawDest()); 5854 SDValue Src = getValue(MI.getRawSource()); 5855 SDValue Length = getValue(MI.getLength()); 5856 5857 unsigned DstAlign = MI.getDestAlignment(); 5858 unsigned SrcAlign = MI.getSourceAlignment(); 5859 Type *LengthTy = MI.getLength()->getType(); 5860 unsigned ElemSz = MI.getElementSizeInBytes(); 5861 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5862 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5863 SrcAlign, Length, LengthTy, ElemSz, isTC, 5864 MachinePointerInfo(MI.getRawDest()), 5865 MachinePointerInfo(MI.getRawSource())); 5866 updateDAGForMaybeTailCall(MC); 5867 return; 5868 } 5869 case Intrinsic::memset_element_unordered_atomic: { 5870 auto &MI = cast<AtomicMemSetInst>(I); 5871 SDValue Dst = getValue(MI.getRawDest()); 5872 SDValue Val = getValue(MI.getValue()); 5873 SDValue Length = getValue(MI.getLength()); 5874 5875 unsigned DstAlign = MI.getDestAlignment(); 5876 Type *LengthTy = MI.getLength()->getType(); 5877 unsigned ElemSz = MI.getElementSizeInBytes(); 5878 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5879 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5880 LengthTy, ElemSz, isTC, 5881 MachinePointerInfo(MI.getRawDest())); 5882 updateDAGForMaybeTailCall(MC); 5883 return; 5884 } 5885 case Intrinsic::dbg_addr: 5886 case Intrinsic::dbg_declare: { 5887 const auto &DI = cast<DbgVariableIntrinsic>(I); 5888 DILocalVariable *Variable = DI.getVariable(); 5889 DIExpression *Expression = DI.getExpression(); 5890 dropDanglingDebugInfo(Variable, Expression); 5891 assert(Variable && "Missing variable"); 5892 5893 // Check if address has undef value. 5894 const Value *Address = DI.getVariableLocation(); 5895 if (!Address || isa<UndefValue>(Address) || 5896 (Address->use_empty() && !isa<Argument>(Address))) { 5897 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5898 return; 5899 } 5900 5901 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5902 5903 // Check if this variable can be described by a frame index, typically 5904 // either as a static alloca or a byval parameter. 5905 int FI = std::numeric_limits<int>::max(); 5906 if (const auto *AI = 5907 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5908 if (AI->isStaticAlloca()) { 5909 auto I = FuncInfo.StaticAllocaMap.find(AI); 5910 if (I != FuncInfo.StaticAllocaMap.end()) 5911 FI = I->second; 5912 } 5913 } else if (const auto *Arg = dyn_cast<Argument>( 5914 Address->stripInBoundsConstantOffsets())) { 5915 FI = FuncInfo.getArgumentFrameIndex(Arg); 5916 } 5917 5918 // llvm.dbg.addr is control dependent and always generates indirect 5919 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5920 // the MachineFunction variable table. 5921 if (FI != std::numeric_limits<int>::max()) { 5922 if (Intrinsic == Intrinsic::dbg_addr) { 5923 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5924 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5925 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5926 } 5927 return; 5928 } 5929 5930 SDValue &N = NodeMap[Address]; 5931 if (!N.getNode() && isa<Argument>(Address)) 5932 // Check unused arguments map. 5933 N = UnusedArgNodeMap[Address]; 5934 SDDbgValue *SDV; 5935 if (N.getNode()) { 5936 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5937 Address = BCI->getOperand(0); 5938 // Parameters are handled specially. 5939 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5940 if (isParameter && FINode) { 5941 // Byval parameter. We have a frame index at this point. 5942 SDV = 5943 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5944 /*IsIndirect*/ true, dl, SDNodeOrder); 5945 } else if (isa<Argument>(Address)) { 5946 // Address is an argument, so try to emit its dbg value using 5947 // virtual register info from the FuncInfo.ValueMap. 5948 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5949 return; 5950 } else { 5951 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5952 true, dl, SDNodeOrder); 5953 } 5954 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5955 } else { 5956 // If Address is an argument then try to emit its dbg value using 5957 // virtual register info from the FuncInfo.ValueMap. 5958 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5959 N)) { 5960 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5961 } 5962 } 5963 return; 5964 } 5965 case Intrinsic::dbg_label: { 5966 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5967 DILabel *Label = DI.getLabel(); 5968 assert(Label && "Missing label"); 5969 5970 SDDbgLabel *SDV; 5971 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5972 DAG.AddDbgLabel(SDV); 5973 return; 5974 } 5975 case Intrinsic::dbg_value: { 5976 const DbgValueInst &DI = cast<DbgValueInst>(I); 5977 assert(DI.getVariable() && "Missing variable"); 5978 5979 DILocalVariable *Variable = DI.getVariable(); 5980 DIExpression *Expression = DI.getExpression(); 5981 dropDanglingDebugInfo(Variable, Expression); 5982 const Value *V = DI.getValue(); 5983 if (!V) 5984 return; 5985 5986 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5987 SDNodeOrder)) 5988 return; 5989 5990 // TODO: Dangling debug info will eventually either be resolved or produce 5991 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5992 // between the original dbg.value location and its resolved DBG_VALUE, which 5993 // we should ideally fill with an extra Undef DBG_VALUE. 5994 5995 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5996 return; 5997 } 5998 5999 case Intrinsic::eh_typeid_for: { 6000 // Find the type id for the given typeinfo. 6001 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6002 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6003 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6004 setValue(&I, Res); 6005 return; 6006 } 6007 6008 case Intrinsic::eh_return_i32: 6009 case Intrinsic::eh_return_i64: 6010 DAG.getMachineFunction().setCallsEHReturn(true); 6011 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6012 MVT::Other, 6013 getControlRoot(), 6014 getValue(I.getArgOperand(0)), 6015 getValue(I.getArgOperand(1)))); 6016 return; 6017 case Intrinsic::eh_unwind_init: 6018 DAG.getMachineFunction().setCallsUnwindInit(true); 6019 return; 6020 case Intrinsic::eh_dwarf_cfa: 6021 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6022 TLI.getPointerTy(DAG.getDataLayout()), 6023 getValue(I.getArgOperand(0)))); 6024 return; 6025 case Intrinsic::eh_sjlj_callsite: { 6026 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6027 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6028 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6029 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6030 6031 MMI.setCurrentCallSite(CI->getZExtValue()); 6032 return; 6033 } 6034 case Intrinsic::eh_sjlj_functioncontext: { 6035 // Get and store the index of the function context. 6036 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6037 AllocaInst *FnCtx = 6038 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6039 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6040 MFI.setFunctionContextIndex(FI); 6041 return; 6042 } 6043 case Intrinsic::eh_sjlj_setjmp: { 6044 SDValue Ops[2]; 6045 Ops[0] = getRoot(); 6046 Ops[1] = getValue(I.getArgOperand(0)); 6047 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6048 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6049 setValue(&I, Op.getValue(0)); 6050 DAG.setRoot(Op.getValue(1)); 6051 return; 6052 } 6053 case Intrinsic::eh_sjlj_longjmp: 6054 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6055 getRoot(), getValue(I.getArgOperand(0)))); 6056 return; 6057 case Intrinsic::eh_sjlj_setup_dispatch: 6058 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6059 getRoot())); 6060 return; 6061 case Intrinsic::masked_gather: 6062 visitMaskedGather(I); 6063 return; 6064 case Intrinsic::masked_load: 6065 visitMaskedLoad(I); 6066 return; 6067 case Intrinsic::masked_scatter: 6068 visitMaskedScatter(I); 6069 return; 6070 case Intrinsic::masked_store: 6071 visitMaskedStore(I); 6072 return; 6073 case Intrinsic::masked_expandload: 6074 visitMaskedLoad(I, true /* IsExpanding */); 6075 return; 6076 case Intrinsic::masked_compressstore: 6077 visitMaskedStore(I, true /* IsCompressing */); 6078 return; 6079 case Intrinsic::powi: 6080 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6081 getValue(I.getArgOperand(1)), DAG)); 6082 return; 6083 case Intrinsic::log: 6084 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6085 return; 6086 case Intrinsic::log2: 6087 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6088 return; 6089 case Intrinsic::log10: 6090 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6091 return; 6092 case Intrinsic::exp: 6093 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6094 return; 6095 case Intrinsic::exp2: 6096 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6097 return; 6098 case Intrinsic::pow: 6099 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6100 getValue(I.getArgOperand(1)), DAG, TLI)); 6101 return; 6102 case Intrinsic::sqrt: 6103 case Intrinsic::fabs: 6104 case Intrinsic::sin: 6105 case Intrinsic::cos: 6106 case Intrinsic::floor: 6107 case Intrinsic::ceil: 6108 case Intrinsic::trunc: 6109 case Intrinsic::rint: 6110 case Intrinsic::nearbyint: 6111 case Intrinsic::round: 6112 case Intrinsic::canonicalize: { 6113 unsigned Opcode; 6114 switch (Intrinsic) { 6115 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6116 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6117 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6118 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6119 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6120 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6121 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6122 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6123 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6124 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6125 case Intrinsic::round: Opcode = ISD::FROUND; break; 6126 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6127 } 6128 6129 setValue(&I, DAG.getNode(Opcode, sdl, 6130 getValue(I.getArgOperand(0)).getValueType(), 6131 getValue(I.getArgOperand(0)))); 6132 return; 6133 } 6134 case Intrinsic::lround: 6135 case Intrinsic::llround: 6136 case Intrinsic::lrint: 6137 case Intrinsic::llrint: { 6138 unsigned Opcode; 6139 switch (Intrinsic) { 6140 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6141 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6142 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6143 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6144 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6145 } 6146 6147 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6148 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6149 getValue(I.getArgOperand(0)))); 6150 return; 6151 } 6152 case Intrinsic::minnum: 6153 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6154 getValue(I.getArgOperand(0)).getValueType(), 6155 getValue(I.getArgOperand(0)), 6156 getValue(I.getArgOperand(1)))); 6157 return; 6158 case Intrinsic::maxnum: 6159 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6160 getValue(I.getArgOperand(0)).getValueType(), 6161 getValue(I.getArgOperand(0)), 6162 getValue(I.getArgOperand(1)))); 6163 return; 6164 case Intrinsic::minimum: 6165 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6166 getValue(I.getArgOperand(0)).getValueType(), 6167 getValue(I.getArgOperand(0)), 6168 getValue(I.getArgOperand(1)))); 6169 return; 6170 case Intrinsic::maximum: 6171 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6172 getValue(I.getArgOperand(0)).getValueType(), 6173 getValue(I.getArgOperand(0)), 6174 getValue(I.getArgOperand(1)))); 6175 return; 6176 case Intrinsic::copysign: 6177 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6178 getValue(I.getArgOperand(0)).getValueType(), 6179 getValue(I.getArgOperand(0)), 6180 getValue(I.getArgOperand(1)))); 6181 return; 6182 case Intrinsic::fma: 6183 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6184 getValue(I.getArgOperand(0)).getValueType(), 6185 getValue(I.getArgOperand(0)), 6186 getValue(I.getArgOperand(1)), 6187 getValue(I.getArgOperand(2)))); 6188 return; 6189 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6190 case Intrinsic::INTRINSIC: 6191 #include "llvm/IR/ConstrainedOps.def" 6192 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6193 return; 6194 case Intrinsic::fmuladd: { 6195 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6196 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6197 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6198 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6199 getValue(I.getArgOperand(0)).getValueType(), 6200 getValue(I.getArgOperand(0)), 6201 getValue(I.getArgOperand(1)), 6202 getValue(I.getArgOperand(2)))); 6203 } else { 6204 // TODO: Intrinsic calls should have fast-math-flags. 6205 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6206 getValue(I.getArgOperand(0)).getValueType(), 6207 getValue(I.getArgOperand(0)), 6208 getValue(I.getArgOperand(1))); 6209 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6210 getValue(I.getArgOperand(0)).getValueType(), 6211 Mul, 6212 getValue(I.getArgOperand(2))); 6213 setValue(&I, Add); 6214 } 6215 return; 6216 } 6217 case Intrinsic::convert_to_fp16: 6218 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6219 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6220 getValue(I.getArgOperand(0)), 6221 DAG.getTargetConstant(0, sdl, 6222 MVT::i32)))); 6223 return; 6224 case Intrinsic::convert_from_fp16: 6225 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6226 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6227 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6228 getValue(I.getArgOperand(0))))); 6229 return; 6230 case Intrinsic::pcmarker: { 6231 SDValue Tmp = getValue(I.getArgOperand(0)); 6232 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6233 return; 6234 } 6235 case Intrinsic::readcyclecounter: { 6236 SDValue Op = getRoot(); 6237 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6238 DAG.getVTList(MVT::i64, MVT::Other), Op); 6239 setValue(&I, Res); 6240 DAG.setRoot(Res.getValue(1)); 6241 return; 6242 } 6243 case Intrinsic::bitreverse: 6244 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6245 getValue(I.getArgOperand(0)).getValueType(), 6246 getValue(I.getArgOperand(0)))); 6247 return; 6248 case Intrinsic::bswap: 6249 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6250 getValue(I.getArgOperand(0)).getValueType(), 6251 getValue(I.getArgOperand(0)))); 6252 return; 6253 case Intrinsic::cttz: { 6254 SDValue Arg = getValue(I.getArgOperand(0)); 6255 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6256 EVT Ty = Arg.getValueType(); 6257 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6258 sdl, Ty, Arg)); 6259 return; 6260 } 6261 case Intrinsic::ctlz: { 6262 SDValue Arg = getValue(I.getArgOperand(0)); 6263 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6264 EVT Ty = Arg.getValueType(); 6265 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6266 sdl, Ty, Arg)); 6267 return; 6268 } 6269 case Intrinsic::ctpop: { 6270 SDValue Arg = getValue(I.getArgOperand(0)); 6271 EVT Ty = Arg.getValueType(); 6272 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6273 return; 6274 } 6275 case Intrinsic::fshl: 6276 case Intrinsic::fshr: { 6277 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6278 SDValue X = getValue(I.getArgOperand(0)); 6279 SDValue Y = getValue(I.getArgOperand(1)); 6280 SDValue Z = getValue(I.getArgOperand(2)); 6281 EVT VT = X.getValueType(); 6282 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6283 SDValue Zero = DAG.getConstant(0, sdl, VT); 6284 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6285 6286 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6287 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6288 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6289 return; 6290 } 6291 6292 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6293 // avoid the select that is necessary in the general case to filter out 6294 // the 0-shift possibility that leads to UB. 6295 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6296 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6297 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6298 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6299 return; 6300 } 6301 6302 // Some targets only rotate one way. Try the opposite direction. 6303 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6304 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6305 // Negate the shift amount because it is safe to ignore the high bits. 6306 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6307 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6308 return; 6309 } 6310 6311 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6312 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6313 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6314 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6315 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6316 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6317 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6318 return; 6319 } 6320 6321 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6322 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6323 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6324 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6325 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6326 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6327 6328 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6329 // and that is undefined. We must compare and select to avoid UB. 6330 EVT CCVT = MVT::i1; 6331 if (VT.isVector()) 6332 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6333 6334 // For fshl, 0-shift returns the 1st arg (X). 6335 // For fshr, 0-shift returns the 2nd arg (Y). 6336 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6337 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6338 return; 6339 } 6340 case Intrinsic::sadd_sat: { 6341 SDValue Op1 = getValue(I.getArgOperand(0)); 6342 SDValue Op2 = getValue(I.getArgOperand(1)); 6343 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6344 return; 6345 } 6346 case Intrinsic::uadd_sat: { 6347 SDValue Op1 = getValue(I.getArgOperand(0)); 6348 SDValue Op2 = getValue(I.getArgOperand(1)); 6349 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6350 return; 6351 } 6352 case Intrinsic::ssub_sat: { 6353 SDValue Op1 = getValue(I.getArgOperand(0)); 6354 SDValue Op2 = getValue(I.getArgOperand(1)); 6355 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6356 return; 6357 } 6358 case Intrinsic::usub_sat: { 6359 SDValue Op1 = getValue(I.getArgOperand(0)); 6360 SDValue Op2 = getValue(I.getArgOperand(1)); 6361 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6362 return; 6363 } 6364 case Intrinsic::smul_fix: 6365 case Intrinsic::umul_fix: { 6366 SDValue Op1 = getValue(I.getArgOperand(0)); 6367 SDValue Op2 = getValue(I.getArgOperand(1)); 6368 SDValue Op3 = getValue(I.getArgOperand(2)); 6369 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6370 Op1.getValueType(), Op1, Op2, Op3)); 6371 return; 6372 } 6373 case Intrinsic::smul_fix_sat: { 6374 SDValue Op1 = getValue(I.getArgOperand(0)); 6375 SDValue Op2 = getValue(I.getArgOperand(1)); 6376 SDValue Op3 = getValue(I.getArgOperand(2)); 6377 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6378 Op3)); 6379 return; 6380 } 6381 case Intrinsic::umul_fix_sat: { 6382 SDValue Op1 = getValue(I.getArgOperand(0)); 6383 SDValue Op2 = getValue(I.getArgOperand(1)); 6384 SDValue Op3 = getValue(I.getArgOperand(2)); 6385 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6386 Op3)); 6387 return; 6388 } 6389 case Intrinsic::stacksave: { 6390 SDValue Op = getRoot(); 6391 Res = DAG.getNode( 6392 ISD::STACKSAVE, sdl, 6393 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6394 setValue(&I, Res); 6395 DAG.setRoot(Res.getValue(1)); 6396 return; 6397 } 6398 case Intrinsic::stackrestore: 6399 Res = getValue(I.getArgOperand(0)); 6400 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6401 return; 6402 case Intrinsic::get_dynamic_area_offset: { 6403 SDValue Op = getRoot(); 6404 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6405 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6406 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6407 // target. 6408 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6409 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6410 " intrinsic!"); 6411 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6412 Op); 6413 DAG.setRoot(Op); 6414 setValue(&I, Res); 6415 return; 6416 } 6417 case Intrinsic::stackguard: { 6418 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6419 MachineFunction &MF = DAG.getMachineFunction(); 6420 const Module &M = *MF.getFunction().getParent(); 6421 SDValue Chain = getRoot(); 6422 if (TLI.useLoadStackGuardNode()) { 6423 Res = getLoadStackGuard(DAG, sdl, Chain); 6424 } else { 6425 const Value *Global = TLI.getSDagStackGuard(M); 6426 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6427 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6428 MachinePointerInfo(Global, 0), Align, 6429 MachineMemOperand::MOVolatile); 6430 } 6431 if (TLI.useStackGuardXorFP()) 6432 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6433 DAG.setRoot(Chain); 6434 setValue(&I, Res); 6435 return; 6436 } 6437 case Intrinsic::stackprotector: { 6438 // Emit code into the DAG to store the stack guard onto the stack. 6439 MachineFunction &MF = DAG.getMachineFunction(); 6440 MachineFrameInfo &MFI = MF.getFrameInfo(); 6441 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6442 SDValue Src, Chain = getRoot(); 6443 6444 if (TLI.useLoadStackGuardNode()) 6445 Src = getLoadStackGuard(DAG, sdl, Chain); 6446 else 6447 Src = getValue(I.getArgOperand(0)); // The guard's value. 6448 6449 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6450 6451 int FI = FuncInfo.StaticAllocaMap[Slot]; 6452 MFI.setStackProtectorIndex(FI); 6453 6454 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6455 6456 // Store the stack protector onto the stack. 6457 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6458 DAG.getMachineFunction(), FI), 6459 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6460 setValue(&I, Res); 6461 DAG.setRoot(Res); 6462 return; 6463 } 6464 case Intrinsic::objectsize: 6465 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6466 6467 case Intrinsic::is_constant: 6468 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6469 6470 case Intrinsic::annotation: 6471 case Intrinsic::ptr_annotation: 6472 case Intrinsic::launder_invariant_group: 6473 case Intrinsic::strip_invariant_group: 6474 // Drop the intrinsic, but forward the value 6475 setValue(&I, getValue(I.getOperand(0))); 6476 return; 6477 case Intrinsic::assume: 6478 case Intrinsic::var_annotation: 6479 case Intrinsic::sideeffect: 6480 // Discard annotate attributes, assumptions, and artificial side-effects. 6481 return; 6482 6483 case Intrinsic::codeview_annotation: { 6484 // Emit a label associated with this metadata. 6485 MachineFunction &MF = DAG.getMachineFunction(); 6486 MCSymbol *Label = 6487 MF.getMMI().getContext().createTempSymbol("annotation", true); 6488 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6489 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6490 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6491 DAG.setRoot(Res); 6492 return; 6493 } 6494 6495 case Intrinsic::init_trampoline: { 6496 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6497 6498 SDValue Ops[6]; 6499 Ops[0] = getRoot(); 6500 Ops[1] = getValue(I.getArgOperand(0)); 6501 Ops[2] = getValue(I.getArgOperand(1)); 6502 Ops[3] = getValue(I.getArgOperand(2)); 6503 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6504 Ops[5] = DAG.getSrcValue(F); 6505 6506 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6507 6508 DAG.setRoot(Res); 6509 return; 6510 } 6511 case Intrinsic::adjust_trampoline: 6512 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6513 TLI.getPointerTy(DAG.getDataLayout()), 6514 getValue(I.getArgOperand(0)))); 6515 return; 6516 case Intrinsic::gcroot: { 6517 assert(DAG.getMachineFunction().getFunction().hasGC() && 6518 "only valid in functions with gc specified, enforced by Verifier"); 6519 assert(GFI && "implied by previous"); 6520 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6521 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6522 6523 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6524 GFI->addStackRoot(FI->getIndex(), TypeMap); 6525 return; 6526 } 6527 case Intrinsic::gcread: 6528 case Intrinsic::gcwrite: 6529 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6530 case Intrinsic::flt_rounds: 6531 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6532 return; 6533 6534 case Intrinsic::expect: 6535 // Just replace __builtin_expect(exp, c) with EXP. 6536 setValue(&I, getValue(I.getArgOperand(0))); 6537 return; 6538 6539 case Intrinsic::debugtrap: 6540 case Intrinsic::trap: { 6541 StringRef TrapFuncName = 6542 I.getAttributes() 6543 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6544 .getValueAsString(); 6545 if (TrapFuncName.empty()) { 6546 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6547 ISD::TRAP : ISD::DEBUGTRAP; 6548 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6549 return; 6550 } 6551 TargetLowering::ArgListTy Args; 6552 6553 TargetLowering::CallLoweringInfo CLI(DAG); 6554 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6555 CallingConv::C, I.getType(), 6556 DAG.getExternalSymbol(TrapFuncName.data(), 6557 TLI.getPointerTy(DAG.getDataLayout())), 6558 std::move(Args)); 6559 6560 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6561 DAG.setRoot(Result.second); 6562 return; 6563 } 6564 6565 case Intrinsic::uadd_with_overflow: 6566 case Intrinsic::sadd_with_overflow: 6567 case Intrinsic::usub_with_overflow: 6568 case Intrinsic::ssub_with_overflow: 6569 case Intrinsic::umul_with_overflow: 6570 case Intrinsic::smul_with_overflow: { 6571 ISD::NodeType Op; 6572 switch (Intrinsic) { 6573 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6574 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6575 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6576 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6577 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6578 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6579 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6580 } 6581 SDValue Op1 = getValue(I.getArgOperand(0)); 6582 SDValue Op2 = getValue(I.getArgOperand(1)); 6583 6584 EVT ResultVT = Op1.getValueType(); 6585 EVT OverflowVT = MVT::i1; 6586 if (ResultVT.isVector()) 6587 OverflowVT = EVT::getVectorVT( 6588 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6589 6590 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6591 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6592 return; 6593 } 6594 case Intrinsic::prefetch: { 6595 SDValue Ops[5]; 6596 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6597 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6598 Ops[0] = DAG.getRoot(); 6599 Ops[1] = getValue(I.getArgOperand(0)); 6600 Ops[2] = getValue(I.getArgOperand(1)); 6601 Ops[3] = getValue(I.getArgOperand(2)); 6602 Ops[4] = getValue(I.getArgOperand(3)); 6603 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6604 DAG.getVTList(MVT::Other), Ops, 6605 EVT::getIntegerVT(*Context, 8), 6606 MachinePointerInfo(I.getArgOperand(0)), 6607 0, /* align */ 6608 Flags); 6609 6610 // Chain the prefetch in parallell with any pending loads, to stay out of 6611 // the way of later optimizations. 6612 PendingLoads.push_back(Result); 6613 Result = getRoot(); 6614 DAG.setRoot(Result); 6615 return; 6616 } 6617 case Intrinsic::lifetime_start: 6618 case Intrinsic::lifetime_end: { 6619 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6620 // Stack coloring is not enabled in O0, discard region information. 6621 if (TM.getOptLevel() == CodeGenOpt::None) 6622 return; 6623 6624 const int64_t ObjectSize = 6625 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6626 Value *const ObjectPtr = I.getArgOperand(1); 6627 SmallVector<const Value *, 4> Allocas; 6628 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6629 6630 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6631 E = Allocas.end(); Object != E; ++Object) { 6632 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6633 6634 // Could not find an Alloca. 6635 if (!LifetimeObject) 6636 continue; 6637 6638 // First check that the Alloca is static, otherwise it won't have a 6639 // valid frame index. 6640 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6641 if (SI == FuncInfo.StaticAllocaMap.end()) 6642 return; 6643 6644 const int FrameIndex = SI->second; 6645 int64_t Offset; 6646 if (GetPointerBaseWithConstantOffset( 6647 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6648 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6649 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6650 Offset); 6651 DAG.setRoot(Res); 6652 } 6653 return; 6654 } 6655 case Intrinsic::invariant_start: 6656 // Discard region information. 6657 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6658 return; 6659 case Intrinsic::invariant_end: 6660 // Discard region information. 6661 return; 6662 case Intrinsic::clear_cache: 6663 /// FunctionName may be null. 6664 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6665 lowerCallToExternalSymbol(I, FunctionName); 6666 return; 6667 case Intrinsic::donothing: 6668 // ignore 6669 return; 6670 case Intrinsic::experimental_stackmap: 6671 visitStackmap(I); 6672 return; 6673 case Intrinsic::experimental_patchpoint_void: 6674 case Intrinsic::experimental_patchpoint_i64: 6675 visitPatchpoint(&I); 6676 return; 6677 case Intrinsic::experimental_gc_statepoint: 6678 LowerStatepoint(ImmutableStatepoint(&I)); 6679 return; 6680 case Intrinsic::experimental_gc_result: 6681 visitGCResult(cast<GCResultInst>(I)); 6682 return; 6683 case Intrinsic::experimental_gc_relocate: 6684 visitGCRelocate(cast<GCRelocateInst>(I)); 6685 return; 6686 case Intrinsic::instrprof_increment: 6687 llvm_unreachable("instrprof failed to lower an increment"); 6688 case Intrinsic::instrprof_value_profile: 6689 llvm_unreachable("instrprof failed to lower a value profiling call"); 6690 case Intrinsic::localescape: { 6691 MachineFunction &MF = DAG.getMachineFunction(); 6692 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6693 6694 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6695 // is the same on all targets. 6696 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6697 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6698 if (isa<ConstantPointerNull>(Arg)) 6699 continue; // Skip null pointers. They represent a hole in index space. 6700 AllocaInst *Slot = cast<AllocaInst>(Arg); 6701 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6702 "can only escape static allocas"); 6703 int FI = FuncInfo.StaticAllocaMap[Slot]; 6704 MCSymbol *FrameAllocSym = 6705 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6706 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6707 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6708 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6709 .addSym(FrameAllocSym) 6710 .addFrameIndex(FI); 6711 } 6712 6713 return; 6714 } 6715 6716 case Intrinsic::localrecover: { 6717 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6718 MachineFunction &MF = DAG.getMachineFunction(); 6719 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6720 6721 // Get the symbol that defines the frame offset. 6722 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6723 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6724 unsigned IdxVal = 6725 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6726 MCSymbol *FrameAllocSym = 6727 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6728 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6729 6730 // Create a MCSymbol for the label to avoid any target lowering 6731 // that would make this PC relative. 6732 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6733 SDValue OffsetVal = 6734 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6735 6736 // Add the offset to the FP. 6737 Value *FP = I.getArgOperand(1); 6738 SDValue FPVal = getValue(FP); 6739 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6740 setValue(&I, Add); 6741 6742 return; 6743 } 6744 6745 case Intrinsic::eh_exceptionpointer: 6746 case Intrinsic::eh_exceptioncode: { 6747 // Get the exception pointer vreg, copy from it, and resize it to fit. 6748 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6749 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6750 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6751 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6752 SDValue N = 6753 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6754 if (Intrinsic == Intrinsic::eh_exceptioncode) 6755 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6756 setValue(&I, N); 6757 return; 6758 } 6759 case Intrinsic::xray_customevent: { 6760 // Here we want to make sure that the intrinsic behaves as if it has a 6761 // specific calling convention, and only for x86_64. 6762 // FIXME: Support other platforms later. 6763 const auto &Triple = DAG.getTarget().getTargetTriple(); 6764 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6765 return; 6766 6767 SDLoc DL = getCurSDLoc(); 6768 SmallVector<SDValue, 8> Ops; 6769 6770 // We want to say that we always want the arguments in registers. 6771 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6772 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6773 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6774 SDValue Chain = getRoot(); 6775 Ops.push_back(LogEntryVal); 6776 Ops.push_back(StrSizeVal); 6777 Ops.push_back(Chain); 6778 6779 // We need to enforce the calling convention for the callsite, so that 6780 // argument ordering is enforced correctly, and that register allocation can 6781 // see that some registers may be assumed clobbered and have to preserve 6782 // them across calls to the intrinsic. 6783 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6784 DL, NodeTys, Ops); 6785 SDValue patchableNode = SDValue(MN, 0); 6786 DAG.setRoot(patchableNode); 6787 setValue(&I, patchableNode); 6788 return; 6789 } 6790 case Intrinsic::xray_typedevent: { 6791 // Here we want to make sure that the intrinsic behaves as if it has a 6792 // specific calling convention, and only for x86_64. 6793 // FIXME: Support other platforms later. 6794 const auto &Triple = DAG.getTarget().getTargetTriple(); 6795 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6796 return; 6797 6798 SDLoc DL = getCurSDLoc(); 6799 SmallVector<SDValue, 8> Ops; 6800 6801 // We want to say that we always want the arguments in registers. 6802 // It's unclear to me how manipulating the selection DAG here forces callers 6803 // to provide arguments in registers instead of on the stack. 6804 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6805 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6806 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6807 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6808 SDValue Chain = getRoot(); 6809 Ops.push_back(LogTypeId); 6810 Ops.push_back(LogEntryVal); 6811 Ops.push_back(StrSizeVal); 6812 Ops.push_back(Chain); 6813 6814 // We need to enforce the calling convention for the callsite, so that 6815 // argument ordering is enforced correctly, and that register allocation can 6816 // see that some registers may be assumed clobbered and have to preserve 6817 // them across calls to the intrinsic. 6818 MachineSDNode *MN = DAG.getMachineNode( 6819 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6820 SDValue patchableNode = SDValue(MN, 0); 6821 DAG.setRoot(patchableNode); 6822 setValue(&I, patchableNode); 6823 return; 6824 } 6825 case Intrinsic::experimental_deoptimize: 6826 LowerDeoptimizeCall(&I); 6827 return; 6828 6829 case Intrinsic::experimental_vector_reduce_v2_fadd: 6830 case Intrinsic::experimental_vector_reduce_v2_fmul: 6831 case Intrinsic::experimental_vector_reduce_add: 6832 case Intrinsic::experimental_vector_reduce_mul: 6833 case Intrinsic::experimental_vector_reduce_and: 6834 case Intrinsic::experimental_vector_reduce_or: 6835 case Intrinsic::experimental_vector_reduce_xor: 6836 case Intrinsic::experimental_vector_reduce_smax: 6837 case Intrinsic::experimental_vector_reduce_smin: 6838 case Intrinsic::experimental_vector_reduce_umax: 6839 case Intrinsic::experimental_vector_reduce_umin: 6840 case Intrinsic::experimental_vector_reduce_fmax: 6841 case Intrinsic::experimental_vector_reduce_fmin: 6842 visitVectorReduce(I, Intrinsic); 6843 return; 6844 6845 case Intrinsic::icall_branch_funnel: { 6846 SmallVector<SDValue, 16> Ops; 6847 Ops.push_back(getValue(I.getArgOperand(0))); 6848 6849 int64_t Offset; 6850 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6851 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6852 if (!Base) 6853 report_fatal_error( 6854 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6855 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6856 6857 struct BranchFunnelTarget { 6858 int64_t Offset; 6859 SDValue Target; 6860 }; 6861 SmallVector<BranchFunnelTarget, 8> Targets; 6862 6863 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6864 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6865 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6866 if (ElemBase != Base) 6867 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6868 "to the same GlobalValue"); 6869 6870 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6871 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6872 if (!GA) 6873 report_fatal_error( 6874 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6875 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6876 GA->getGlobal(), getCurSDLoc(), 6877 Val.getValueType(), GA->getOffset())}); 6878 } 6879 llvm::sort(Targets, 6880 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6881 return T1.Offset < T2.Offset; 6882 }); 6883 6884 for (auto &T : Targets) { 6885 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6886 Ops.push_back(T.Target); 6887 } 6888 6889 Ops.push_back(DAG.getRoot()); // Chain 6890 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6891 getCurSDLoc(), MVT::Other, Ops), 6892 0); 6893 DAG.setRoot(N); 6894 setValue(&I, N); 6895 HasTailCall = true; 6896 return; 6897 } 6898 6899 case Intrinsic::wasm_landingpad_index: 6900 // Information this intrinsic contained has been transferred to 6901 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6902 // delete it now. 6903 return; 6904 6905 case Intrinsic::aarch64_settag: 6906 case Intrinsic::aarch64_settag_zero: { 6907 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6908 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6909 SDValue Val = TSI.EmitTargetCodeForSetTag( 6910 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6911 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6912 ZeroMemory); 6913 DAG.setRoot(Val); 6914 setValue(&I, Val); 6915 return; 6916 } 6917 case Intrinsic::ptrmask: { 6918 SDValue Ptr = getValue(I.getOperand(0)); 6919 SDValue Const = getValue(I.getOperand(1)); 6920 6921 EVT DestVT = 6922 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6923 6924 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6925 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6926 return; 6927 } 6928 } 6929 } 6930 6931 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6932 const ConstrainedFPIntrinsic &FPI) { 6933 SDLoc sdl = getCurSDLoc(); 6934 6935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6936 SmallVector<EVT, 4> ValueVTs; 6937 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6938 ValueVTs.push_back(MVT::Other); // Out chain 6939 6940 // We do not need to serialize constrained FP intrinsics against 6941 // each other or against (nonvolatile) loads, so they can be 6942 // chained like loads. 6943 SDValue Chain = DAG.getRoot(); 6944 SmallVector<SDValue, 4> Opers; 6945 Opers.push_back(Chain); 6946 if (FPI.isUnaryOp()) { 6947 Opers.push_back(getValue(FPI.getArgOperand(0))); 6948 } else if (FPI.isTernaryOp()) { 6949 Opers.push_back(getValue(FPI.getArgOperand(0))); 6950 Opers.push_back(getValue(FPI.getArgOperand(1))); 6951 Opers.push_back(getValue(FPI.getArgOperand(2))); 6952 } else { 6953 Opers.push_back(getValue(FPI.getArgOperand(0))); 6954 Opers.push_back(getValue(FPI.getArgOperand(1))); 6955 } 6956 6957 unsigned Opcode; 6958 switch (FPI.getIntrinsicID()) { 6959 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6960 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6961 case Intrinsic::INTRINSIC: \ 6962 Opcode = ISD::STRICT_##DAGN; \ 6963 break; 6964 #include "llvm/IR/ConstrainedOps.def" 6965 } 6966 6967 // A few strict DAG nodes carry additional operands that are not 6968 // set up by the default code above. 6969 switch (Opcode) { 6970 default: break; 6971 case ISD::STRICT_FP_ROUND: 6972 Opers.push_back( 6973 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6974 break; 6975 case ISD::STRICT_FSETCC: 6976 case ISD::STRICT_FSETCCS: { 6977 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6978 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6979 break; 6980 } 6981 } 6982 6983 SDVTList VTs = DAG.getVTList(ValueVTs); 6984 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 6985 6986 assert(Result.getNode()->getNumValues() == 2); 6987 // See above -- chain is handled like for loads here. 6988 SDValue OutChain = Result.getValue(1); 6989 PendingLoads.push_back(OutChain); 6990 SDValue FPResult = Result.getValue(0); 6991 setValue(&FPI, FPResult); 6992 } 6993 6994 std::pair<SDValue, SDValue> 6995 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6996 const BasicBlock *EHPadBB) { 6997 MachineFunction &MF = DAG.getMachineFunction(); 6998 MachineModuleInfo &MMI = MF.getMMI(); 6999 MCSymbol *BeginLabel = nullptr; 7000 7001 if (EHPadBB) { 7002 // Insert a label before the invoke call to mark the try range. This can be 7003 // used to detect deletion of the invoke via the MachineModuleInfo. 7004 BeginLabel = MMI.getContext().createTempSymbol(); 7005 7006 // For SjLj, keep track of which landing pads go with which invokes 7007 // so as to maintain the ordering of pads in the LSDA. 7008 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7009 if (CallSiteIndex) { 7010 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7011 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7012 7013 // Now that the call site is handled, stop tracking it. 7014 MMI.setCurrentCallSite(0); 7015 } 7016 7017 // Both PendingLoads and PendingExports must be flushed here; 7018 // this call might not return. 7019 (void)getRoot(); 7020 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7021 7022 CLI.setChain(getRoot()); 7023 } 7024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7025 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7026 7027 assert((CLI.IsTailCall || Result.second.getNode()) && 7028 "Non-null chain expected with non-tail call!"); 7029 assert((Result.second.getNode() || !Result.first.getNode()) && 7030 "Null value expected with tail call!"); 7031 7032 if (!Result.second.getNode()) { 7033 // As a special case, a null chain means that a tail call has been emitted 7034 // and the DAG root is already updated. 7035 HasTailCall = true; 7036 7037 // Since there's no actual continuation from this block, nothing can be 7038 // relying on us setting vregs for them. 7039 PendingExports.clear(); 7040 } else { 7041 DAG.setRoot(Result.second); 7042 } 7043 7044 if (EHPadBB) { 7045 // Insert a label at the end of the invoke call to mark the try range. This 7046 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7047 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7048 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7049 7050 // Inform MachineModuleInfo of range. 7051 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7052 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7053 // actually use outlined funclets and their LSDA info style. 7054 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7055 assert(CLI.CS); 7056 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7057 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7058 BeginLabel, EndLabel); 7059 } else if (!isScopedEHPersonality(Pers)) { 7060 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7061 } 7062 } 7063 7064 return Result; 7065 } 7066 7067 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7068 bool isTailCall, 7069 const BasicBlock *EHPadBB) { 7070 auto &DL = DAG.getDataLayout(); 7071 FunctionType *FTy = CS.getFunctionType(); 7072 Type *RetTy = CS.getType(); 7073 7074 TargetLowering::ArgListTy Args; 7075 Args.reserve(CS.arg_size()); 7076 7077 const Value *SwiftErrorVal = nullptr; 7078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7079 7080 if (isTailCall) { 7081 // Avoid emitting tail calls in functions with the disable-tail-calls 7082 // attribute. 7083 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7084 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7085 "true") 7086 isTailCall = false; 7087 7088 // We can't tail call inside a function with a swifterror argument. Lowering 7089 // does not support this yet. It would have to move into the swifterror 7090 // register before the call. 7091 if (TLI.supportSwiftError() && 7092 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7093 isTailCall = false; 7094 } 7095 7096 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7097 i != e; ++i) { 7098 TargetLowering::ArgListEntry Entry; 7099 const Value *V = *i; 7100 7101 // Skip empty types 7102 if (V->getType()->isEmptyTy()) 7103 continue; 7104 7105 SDValue ArgNode = getValue(V); 7106 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7107 7108 Entry.setAttributes(&CS, i - CS.arg_begin()); 7109 7110 // Use swifterror virtual register as input to the call. 7111 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7112 SwiftErrorVal = V; 7113 // We find the virtual register for the actual swifterror argument. 7114 // Instead of using the Value, we use the virtual register instead. 7115 Entry.Node = DAG.getRegister( 7116 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7117 EVT(TLI.getPointerTy(DL))); 7118 } 7119 7120 Args.push_back(Entry); 7121 7122 // If we have an explicit sret argument that is an Instruction, (i.e., it 7123 // might point to function-local memory), we can't meaningfully tail-call. 7124 if (Entry.IsSRet && isa<Instruction>(V)) 7125 isTailCall = false; 7126 } 7127 7128 // If call site has a cfguardtarget operand bundle, create and add an 7129 // additional ArgListEntry. 7130 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7131 TargetLowering::ArgListEntry Entry; 7132 Value *V = Bundle->Inputs[0]; 7133 SDValue ArgNode = getValue(V); 7134 Entry.Node = ArgNode; 7135 Entry.Ty = V->getType(); 7136 Entry.IsCFGuardTarget = true; 7137 Args.push_back(Entry); 7138 } 7139 7140 // Check if target-independent constraints permit a tail call here. 7141 // Target-dependent constraints are checked within TLI->LowerCallTo. 7142 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7143 isTailCall = false; 7144 7145 // Disable tail calls if there is an swifterror argument. Targets have not 7146 // been updated to support tail calls. 7147 if (TLI.supportSwiftError() && SwiftErrorVal) 7148 isTailCall = false; 7149 7150 TargetLowering::CallLoweringInfo CLI(DAG); 7151 CLI.setDebugLoc(getCurSDLoc()) 7152 .setChain(getRoot()) 7153 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7154 .setTailCall(isTailCall) 7155 .setConvergent(CS.isConvergent()); 7156 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7157 7158 if (Result.first.getNode()) { 7159 const Instruction *Inst = CS.getInstruction(); 7160 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7161 setValue(Inst, Result.first); 7162 } 7163 7164 // The last element of CLI.InVals has the SDValue for swifterror return. 7165 // Here we copy it to a virtual register and update SwiftErrorMap for 7166 // book-keeping. 7167 if (SwiftErrorVal && TLI.supportSwiftError()) { 7168 // Get the last element of InVals. 7169 SDValue Src = CLI.InVals.back(); 7170 Register VReg = SwiftError.getOrCreateVRegDefAt( 7171 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7172 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7173 DAG.setRoot(CopyNode); 7174 } 7175 } 7176 7177 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7178 SelectionDAGBuilder &Builder) { 7179 // Check to see if this load can be trivially constant folded, e.g. if the 7180 // input is from a string literal. 7181 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7182 // Cast pointer to the type we really want to load. 7183 Type *LoadTy = 7184 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7185 if (LoadVT.isVector()) 7186 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7187 7188 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7189 PointerType::getUnqual(LoadTy)); 7190 7191 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7192 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7193 return Builder.getValue(LoadCst); 7194 } 7195 7196 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7197 // still constant memory, the input chain can be the entry node. 7198 SDValue Root; 7199 bool ConstantMemory = false; 7200 7201 // Do not serialize (non-volatile) loads of constant memory with anything. 7202 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7203 Root = Builder.DAG.getEntryNode(); 7204 ConstantMemory = true; 7205 } else { 7206 // Do not serialize non-volatile loads against each other. 7207 Root = Builder.DAG.getRoot(); 7208 } 7209 7210 SDValue Ptr = Builder.getValue(PtrVal); 7211 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7212 Ptr, MachinePointerInfo(PtrVal), 7213 /* Alignment = */ 1); 7214 7215 if (!ConstantMemory) 7216 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7217 return LoadVal; 7218 } 7219 7220 /// Record the value for an instruction that produces an integer result, 7221 /// converting the type where necessary. 7222 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7223 SDValue Value, 7224 bool IsSigned) { 7225 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7226 I.getType(), true); 7227 if (IsSigned) 7228 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7229 else 7230 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7231 setValue(&I, Value); 7232 } 7233 7234 /// See if we can lower a memcmp call into an optimized form. If so, return 7235 /// true and lower it. Otherwise return false, and it will be lowered like a 7236 /// normal call. 7237 /// The caller already checked that \p I calls the appropriate LibFunc with a 7238 /// correct prototype. 7239 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7240 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7241 const Value *Size = I.getArgOperand(2); 7242 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7243 if (CSize && CSize->getZExtValue() == 0) { 7244 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7245 I.getType(), true); 7246 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7247 return true; 7248 } 7249 7250 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7251 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7252 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7253 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7254 if (Res.first.getNode()) { 7255 processIntegerCallValue(I, Res.first, true); 7256 PendingLoads.push_back(Res.second); 7257 return true; 7258 } 7259 7260 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7261 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7262 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7263 return false; 7264 7265 // If the target has a fast compare for the given size, it will return a 7266 // preferred load type for that size. Require that the load VT is legal and 7267 // that the target supports unaligned loads of that type. Otherwise, return 7268 // INVALID. 7269 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7271 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7272 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7273 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7274 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7275 // TODO: Check alignment of src and dest ptrs. 7276 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7277 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7278 if (!TLI.isTypeLegal(LVT) || 7279 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7280 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7281 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7282 } 7283 7284 return LVT; 7285 }; 7286 7287 // This turns into unaligned loads. We only do this if the target natively 7288 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7289 // we'll only produce a small number of byte loads. 7290 MVT LoadVT; 7291 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7292 switch (NumBitsToCompare) { 7293 default: 7294 return false; 7295 case 16: 7296 LoadVT = MVT::i16; 7297 break; 7298 case 32: 7299 LoadVT = MVT::i32; 7300 break; 7301 case 64: 7302 case 128: 7303 case 256: 7304 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7305 break; 7306 } 7307 7308 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7309 return false; 7310 7311 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7312 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7313 7314 // Bitcast to a wide integer type if the loads are vectors. 7315 if (LoadVT.isVector()) { 7316 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7317 LoadL = DAG.getBitcast(CmpVT, LoadL); 7318 LoadR = DAG.getBitcast(CmpVT, LoadR); 7319 } 7320 7321 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7322 processIntegerCallValue(I, Cmp, false); 7323 return true; 7324 } 7325 7326 /// See if we can lower a memchr call into an optimized form. If so, return 7327 /// true and lower it. Otherwise return false, and it will be lowered like a 7328 /// normal call. 7329 /// The caller already checked that \p I calls the appropriate LibFunc with a 7330 /// correct prototype. 7331 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7332 const Value *Src = I.getArgOperand(0); 7333 const Value *Char = I.getArgOperand(1); 7334 const Value *Length = I.getArgOperand(2); 7335 7336 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7337 std::pair<SDValue, SDValue> Res = 7338 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7339 getValue(Src), getValue(Char), getValue(Length), 7340 MachinePointerInfo(Src)); 7341 if (Res.first.getNode()) { 7342 setValue(&I, Res.first); 7343 PendingLoads.push_back(Res.second); 7344 return true; 7345 } 7346 7347 return false; 7348 } 7349 7350 /// See if we can lower a mempcpy call into an optimized form. If so, return 7351 /// true and lower it. Otherwise return false, and it will be lowered like a 7352 /// normal call. 7353 /// The caller already checked that \p I calls the appropriate LibFunc with a 7354 /// correct prototype. 7355 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7356 SDValue Dst = getValue(I.getArgOperand(0)); 7357 SDValue Src = getValue(I.getArgOperand(1)); 7358 SDValue Size = getValue(I.getArgOperand(2)); 7359 7360 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7361 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7362 unsigned Align = std::min(DstAlign, SrcAlign); 7363 if (Align == 0) // Alignment of one or both could not be inferred. 7364 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7365 7366 bool isVol = false; 7367 SDLoc sdl = getCurSDLoc(); 7368 7369 // In the mempcpy context we need to pass in a false value for isTailCall 7370 // because the return pointer needs to be adjusted by the size of 7371 // the copied memory. 7372 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7373 false, /*isTailCall=*/false, 7374 MachinePointerInfo(I.getArgOperand(0)), 7375 MachinePointerInfo(I.getArgOperand(1))); 7376 assert(MC.getNode() != nullptr && 7377 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7378 DAG.setRoot(MC); 7379 7380 // Check if Size needs to be truncated or extended. 7381 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7382 7383 // Adjust return pointer to point just past the last dst byte. 7384 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7385 Dst, Size); 7386 setValue(&I, DstPlusSize); 7387 return true; 7388 } 7389 7390 /// See if we can lower a strcpy call into an optimized form. If so, return 7391 /// true and lower it, otherwise return false and it will be lowered like a 7392 /// normal call. 7393 /// The caller already checked that \p I calls the appropriate LibFunc with a 7394 /// correct prototype. 7395 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7396 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7397 7398 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7399 std::pair<SDValue, SDValue> Res = 7400 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7401 getValue(Arg0), getValue(Arg1), 7402 MachinePointerInfo(Arg0), 7403 MachinePointerInfo(Arg1), isStpcpy); 7404 if (Res.first.getNode()) { 7405 setValue(&I, Res.first); 7406 DAG.setRoot(Res.second); 7407 return true; 7408 } 7409 7410 return false; 7411 } 7412 7413 /// See if we can lower a strcmp call into an optimized form. If so, return 7414 /// true and lower it, otherwise return false and it will be lowered like a 7415 /// normal call. 7416 /// The caller already checked that \p I calls the appropriate LibFunc with a 7417 /// correct prototype. 7418 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7419 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7420 7421 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7422 std::pair<SDValue, SDValue> Res = 7423 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7424 getValue(Arg0), getValue(Arg1), 7425 MachinePointerInfo(Arg0), 7426 MachinePointerInfo(Arg1)); 7427 if (Res.first.getNode()) { 7428 processIntegerCallValue(I, Res.first, true); 7429 PendingLoads.push_back(Res.second); 7430 return true; 7431 } 7432 7433 return false; 7434 } 7435 7436 /// See if we can lower a strlen call into an optimized form. If so, return 7437 /// true and lower it, otherwise return false and it will be lowered like a 7438 /// normal call. 7439 /// The caller already checked that \p I calls the appropriate LibFunc with a 7440 /// correct prototype. 7441 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7442 const Value *Arg0 = I.getArgOperand(0); 7443 7444 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7445 std::pair<SDValue, SDValue> Res = 7446 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7447 getValue(Arg0), MachinePointerInfo(Arg0)); 7448 if (Res.first.getNode()) { 7449 processIntegerCallValue(I, Res.first, false); 7450 PendingLoads.push_back(Res.second); 7451 return true; 7452 } 7453 7454 return false; 7455 } 7456 7457 /// See if we can lower a strnlen call into an optimized form. If so, return 7458 /// true and lower it, otherwise return false and it will be lowered like a 7459 /// normal call. 7460 /// The caller already checked that \p I calls the appropriate LibFunc with a 7461 /// correct prototype. 7462 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7463 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7464 7465 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7466 std::pair<SDValue, SDValue> Res = 7467 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7468 getValue(Arg0), getValue(Arg1), 7469 MachinePointerInfo(Arg0)); 7470 if (Res.first.getNode()) { 7471 processIntegerCallValue(I, Res.first, false); 7472 PendingLoads.push_back(Res.second); 7473 return true; 7474 } 7475 7476 return false; 7477 } 7478 7479 /// See if we can lower a unary floating-point operation into an SDNode with 7480 /// the specified Opcode. If so, return true and lower it, otherwise return 7481 /// false and it will be lowered like a normal call. 7482 /// The caller already checked that \p I calls the appropriate LibFunc with a 7483 /// correct prototype. 7484 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7485 unsigned Opcode) { 7486 // We already checked this call's prototype; verify it doesn't modify errno. 7487 if (!I.onlyReadsMemory()) 7488 return false; 7489 7490 SDValue Tmp = getValue(I.getArgOperand(0)); 7491 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7492 return true; 7493 } 7494 7495 /// See if we can lower a binary floating-point operation into an SDNode with 7496 /// the specified Opcode. If so, return true and lower it. Otherwise return 7497 /// false, and it will be lowered like a normal call. 7498 /// The caller already checked that \p I calls the appropriate LibFunc with a 7499 /// correct prototype. 7500 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7501 unsigned Opcode) { 7502 // We already checked this call's prototype; verify it doesn't modify errno. 7503 if (!I.onlyReadsMemory()) 7504 return false; 7505 7506 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7507 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7508 EVT VT = Tmp0.getValueType(); 7509 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7510 return true; 7511 } 7512 7513 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7514 // Handle inline assembly differently. 7515 if (isa<InlineAsm>(I.getCalledValue())) { 7516 visitInlineAsm(&I); 7517 return; 7518 } 7519 7520 if (Function *F = I.getCalledFunction()) { 7521 if (F->isDeclaration()) { 7522 // Is this an LLVM intrinsic or a target-specific intrinsic? 7523 unsigned IID = F->getIntrinsicID(); 7524 if (!IID) 7525 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7526 IID = II->getIntrinsicID(F); 7527 7528 if (IID) { 7529 visitIntrinsicCall(I, IID); 7530 return; 7531 } 7532 } 7533 7534 // Check for well-known libc/libm calls. If the function is internal, it 7535 // can't be a library call. Don't do the check if marked as nobuiltin for 7536 // some reason or the call site requires strict floating point semantics. 7537 LibFunc Func; 7538 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7539 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7540 LibInfo->hasOptimizedCodeGen(Func)) { 7541 switch (Func) { 7542 default: break; 7543 case LibFunc_copysign: 7544 case LibFunc_copysignf: 7545 case LibFunc_copysignl: 7546 // We already checked this call's prototype; verify it doesn't modify 7547 // errno. 7548 if (I.onlyReadsMemory()) { 7549 SDValue LHS = getValue(I.getArgOperand(0)); 7550 SDValue RHS = getValue(I.getArgOperand(1)); 7551 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7552 LHS.getValueType(), LHS, RHS)); 7553 return; 7554 } 7555 break; 7556 case LibFunc_fabs: 7557 case LibFunc_fabsf: 7558 case LibFunc_fabsl: 7559 if (visitUnaryFloatCall(I, ISD::FABS)) 7560 return; 7561 break; 7562 case LibFunc_fmin: 7563 case LibFunc_fminf: 7564 case LibFunc_fminl: 7565 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7566 return; 7567 break; 7568 case LibFunc_fmax: 7569 case LibFunc_fmaxf: 7570 case LibFunc_fmaxl: 7571 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7572 return; 7573 break; 7574 case LibFunc_sin: 7575 case LibFunc_sinf: 7576 case LibFunc_sinl: 7577 if (visitUnaryFloatCall(I, ISD::FSIN)) 7578 return; 7579 break; 7580 case LibFunc_cos: 7581 case LibFunc_cosf: 7582 case LibFunc_cosl: 7583 if (visitUnaryFloatCall(I, ISD::FCOS)) 7584 return; 7585 break; 7586 case LibFunc_sqrt: 7587 case LibFunc_sqrtf: 7588 case LibFunc_sqrtl: 7589 case LibFunc_sqrt_finite: 7590 case LibFunc_sqrtf_finite: 7591 case LibFunc_sqrtl_finite: 7592 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7593 return; 7594 break; 7595 case LibFunc_floor: 7596 case LibFunc_floorf: 7597 case LibFunc_floorl: 7598 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7599 return; 7600 break; 7601 case LibFunc_nearbyint: 7602 case LibFunc_nearbyintf: 7603 case LibFunc_nearbyintl: 7604 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7605 return; 7606 break; 7607 case LibFunc_ceil: 7608 case LibFunc_ceilf: 7609 case LibFunc_ceill: 7610 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7611 return; 7612 break; 7613 case LibFunc_rint: 7614 case LibFunc_rintf: 7615 case LibFunc_rintl: 7616 if (visitUnaryFloatCall(I, ISD::FRINT)) 7617 return; 7618 break; 7619 case LibFunc_round: 7620 case LibFunc_roundf: 7621 case LibFunc_roundl: 7622 if (visitUnaryFloatCall(I, ISD::FROUND)) 7623 return; 7624 break; 7625 case LibFunc_trunc: 7626 case LibFunc_truncf: 7627 case LibFunc_truncl: 7628 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7629 return; 7630 break; 7631 case LibFunc_log2: 7632 case LibFunc_log2f: 7633 case LibFunc_log2l: 7634 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7635 return; 7636 break; 7637 case LibFunc_exp2: 7638 case LibFunc_exp2f: 7639 case LibFunc_exp2l: 7640 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7641 return; 7642 break; 7643 case LibFunc_memcmp: 7644 if (visitMemCmpCall(I)) 7645 return; 7646 break; 7647 case LibFunc_mempcpy: 7648 if (visitMemPCpyCall(I)) 7649 return; 7650 break; 7651 case LibFunc_memchr: 7652 if (visitMemChrCall(I)) 7653 return; 7654 break; 7655 case LibFunc_strcpy: 7656 if (visitStrCpyCall(I, false)) 7657 return; 7658 break; 7659 case LibFunc_stpcpy: 7660 if (visitStrCpyCall(I, true)) 7661 return; 7662 break; 7663 case LibFunc_strcmp: 7664 if (visitStrCmpCall(I)) 7665 return; 7666 break; 7667 case LibFunc_strlen: 7668 if (visitStrLenCall(I)) 7669 return; 7670 break; 7671 case LibFunc_strnlen: 7672 if (visitStrNLenCall(I)) 7673 return; 7674 break; 7675 } 7676 } 7677 } 7678 7679 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7680 // have to do anything here to lower funclet bundles. 7681 // CFGuardTarget bundles are lowered in LowerCallTo. 7682 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7683 LLVMContext::OB_funclet, 7684 LLVMContext::OB_cfguardtarget}) && 7685 "Cannot lower calls with arbitrary operand bundles!"); 7686 7687 SDValue Callee = getValue(I.getCalledValue()); 7688 7689 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7690 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7691 else 7692 // Check if we can potentially perform a tail call. More detailed checking 7693 // is be done within LowerCallTo, after more information about the call is 7694 // known. 7695 LowerCallTo(&I, Callee, I.isTailCall()); 7696 } 7697 7698 namespace { 7699 7700 /// AsmOperandInfo - This contains information for each constraint that we are 7701 /// lowering. 7702 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7703 public: 7704 /// CallOperand - If this is the result output operand or a clobber 7705 /// this is null, otherwise it is the incoming operand to the CallInst. 7706 /// This gets modified as the asm is processed. 7707 SDValue CallOperand; 7708 7709 /// AssignedRegs - If this is a register or register class operand, this 7710 /// contains the set of register corresponding to the operand. 7711 RegsForValue AssignedRegs; 7712 7713 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7714 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7715 } 7716 7717 /// Whether or not this operand accesses memory 7718 bool hasMemory(const TargetLowering &TLI) const { 7719 // Indirect operand accesses access memory. 7720 if (isIndirect) 7721 return true; 7722 7723 for (const auto &Code : Codes) 7724 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7725 return true; 7726 7727 return false; 7728 } 7729 7730 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7731 /// corresponds to. If there is no Value* for this operand, it returns 7732 /// MVT::Other. 7733 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7734 const DataLayout &DL) const { 7735 if (!CallOperandVal) return MVT::Other; 7736 7737 if (isa<BasicBlock>(CallOperandVal)) 7738 return TLI.getPointerTy(DL); 7739 7740 llvm::Type *OpTy = CallOperandVal->getType(); 7741 7742 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7743 // If this is an indirect operand, the operand is a pointer to the 7744 // accessed type. 7745 if (isIndirect) { 7746 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7747 if (!PtrTy) 7748 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7749 OpTy = PtrTy->getElementType(); 7750 } 7751 7752 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7753 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7754 if (STy->getNumElements() == 1) 7755 OpTy = STy->getElementType(0); 7756 7757 // If OpTy is not a single value, it may be a struct/union that we 7758 // can tile with integers. 7759 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7760 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7761 switch (BitSize) { 7762 default: break; 7763 case 1: 7764 case 8: 7765 case 16: 7766 case 32: 7767 case 64: 7768 case 128: 7769 OpTy = IntegerType::get(Context, BitSize); 7770 break; 7771 } 7772 } 7773 7774 return TLI.getValueType(DL, OpTy, true); 7775 } 7776 }; 7777 7778 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7779 7780 } // end anonymous namespace 7781 7782 /// Make sure that the output operand \p OpInfo and its corresponding input 7783 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7784 /// out). 7785 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7786 SDISelAsmOperandInfo &MatchingOpInfo, 7787 SelectionDAG &DAG) { 7788 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7789 return; 7790 7791 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7792 const auto &TLI = DAG.getTargetLoweringInfo(); 7793 7794 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7795 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7796 OpInfo.ConstraintVT); 7797 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7798 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7799 MatchingOpInfo.ConstraintVT); 7800 if ((OpInfo.ConstraintVT.isInteger() != 7801 MatchingOpInfo.ConstraintVT.isInteger()) || 7802 (MatchRC.second != InputRC.second)) { 7803 // FIXME: error out in a more elegant fashion 7804 report_fatal_error("Unsupported asm: input constraint" 7805 " with a matching output constraint of" 7806 " incompatible type!"); 7807 } 7808 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7809 } 7810 7811 /// Get a direct memory input to behave well as an indirect operand. 7812 /// This may introduce stores, hence the need for a \p Chain. 7813 /// \return The (possibly updated) chain. 7814 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7815 SDISelAsmOperandInfo &OpInfo, 7816 SelectionDAG &DAG) { 7817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7818 7819 // If we don't have an indirect input, put it in the constpool if we can, 7820 // otherwise spill it to a stack slot. 7821 // TODO: This isn't quite right. We need to handle these according to 7822 // the addressing mode that the constraint wants. Also, this may take 7823 // an additional register for the computation and we don't want that 7824 // either. 7825 7826 // If the operand is a float, integer, or vector constant, spill to a 7827 // constant pool entry to get its address. 7828 const Value *OpVal = OpInfo.CallOperandVal; 7829 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7830 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7831 OpInfo.CallOperand = DAG.getConstantPool( 7832 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7833 return Chain; 7834 } 7835 7836 // Otherwise, create a stack slot and emit a store to it before the asm. 7837 Type *Ty = OpVal->getType(); 7838 auto &DL = DAG.getDataLayout(); 7839 uint64_t TySize = DL.getTypeAllocSize(Ty); 7840 unsigned Align = DL.getPrefTypeAlignment(Ty); 7841 MachineFunction &MF = DAG.getMachineFunction(); 7842 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7843 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7844 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7845 MachinePointerInfo::getFixedStack(MF, SSFI), 7846 TLI.getMemValueType(DL, Ty)); 7847 OpInfo.CallOperand = StackSlot; 7848 7849 return Chain; 7850 } 7851 7852 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7853 /// specified operand. We prefer to assign virtual registers, to allow the 7854 /// register allocator to handle the assignment process. However, if the asm 7855 /// uses features that we can't model on machineinstrs, we have SDISel do the 7856 /// allocation. This produces generally horrible, but correct, code. 7857 /// 7858 /// OpInfo describes the operand 7859 /// RefOpInfo describes the matching operand if any, the operand otherwise 7860 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7861 SDISelAsmOperandInfo &OpInfo, 7862 SDISelAsmOperandInfo &RefOpInfo) { 7863 LLVMContext &Context = *DAG.getContext(); 7864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7865 7866 MachineFunction &MF = DAG.getMachineFunction(); 7867 SmallVector<unsigned, 4> Regs; 7868 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7869 7870 // No work to do for memory operations. 7871 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7872 return; 7873 7874 // If this is a constraint for a single physreg, or a constraint for a 7875 // register class, find it. 7876 unsigned AssignedReg; 7877 const TargetRegisterClass *RC; 7878 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7879 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7880 // RC is unset only on failure. Return immediately. 7881 if (!RC) 7882 return; 7883 7884 // Get the actual register value type. This is important, because the user 7885 // may have asked for (e.g.) the AX register in i32 type. We need to 7886 // remember that AX is actually i16 to get the right extension. 7887 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7888 7889 if (OpInfo.ConstraintVT != MVT::Other) { 7890 // If this is an FP operand in an integer register (or visa versa), or more 7891 // generally if the operand value disagrees with the register class we plan 7892 // to stick it in, fix the operand type. 7893 // 7894 // If this is an input value, the bitcast to the new type is done now. 7895 // Bitcast for output value is done at the end of visitInlineAsm(). 7896 if ((OpInfo.Type == InlineAsm::isOutput || 7897 OpInfo.Type == InlineAsm::isInput) && 7898 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7899 // Try to convert to the first EVT that the reg class contains. If the 7900 // types are identical size, use a bitcast to convert (e.g. two differing 7901 // vector types). Note: output bitcast is done at the end of 7902 // visitInlineAsm(). 7903 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7904 // Exclude indirect inputs while they are unsupported because the code 7905 // to perform the load is missing and thus OpInfo.CallOperand still 7906 // refers to the input address rather than the pointed-to value. 7907 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7908 OpInfo.CallOperand = 7909 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7910 OpInfo.ConstraintVT = RegVT; 7911 // If the operand is an FP value and we want it in integer registers, 7912 // use the corresponding integer type. This turns an f64 value into 7913 // i64, which can be passed with two i32 values on a 32-bit machine. 7914 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7915 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7916 if (OpInfo.Type == InlineAsm::isInput) 7917 OpInfo.CallOperand = 7918 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7919 OpInfo.ConstraintVT = VT; 7920 } 7921 } 7922 } 7923 7924 // No need to allocate a matching input constraint since the constraint it's 7925 // matching to has already been allocated. 7926 if (OpInfo.isMatchingInputConstraint()) 7927 return; 7928 7929 EVT ValueVT = OpInfo.ConstraintVT; 7930 if (OpInfo.ConstraintVT == MVT::Other) 7931 ValueVT = RegVT; 7932 7933 // Initialize NumRegs. 7934 unsigned NumRegs = 1; 7935 if (OpInfo.ConstraintVT != MVT::Other) 7936 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7937 7938 // If this is a constraint for a specific physical register, like {r17}, 7939 // assign it now. 7940 7941 // If this associated to a specific register, initialize iterator to correct 7942 // place. If virtual, make sure we have enough registers 7943 7944 // Initialize iterator if necessary 7945 TargetRegisterClass::iterator I = RC->begin(); 7946 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7947 7948 // Do not check for single registers. 7949 if (AssignedReg) { 7950 for (; *I != AssignedReg; ++I) 7951 assert(I != RC->end() && "AssignedReg should be member of RC"); 7952 } 7953 7954 for (; NumRegs; --NumRegs, ++I) { 7955 assert(I != RC->end() && "Ran out of registers to allocate!"); 7956 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7957 Regs.push_back(R); 7958 } 7959 7960 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7961 } 7962 7963 static unsigned 7964 findMatchingInlineAsmOperand(unsigned OperandNo, 7965 const std::vector<SDValue> &AsmNodeOperands) { 7966 // Scan until we find the definition we already emitted of this operand. 7967 unsigned CurOp = InlineAsm::Op_FirstOperand; 7968 for (; OperandNo; --OperandNo) { 7969 // Advance to the next operand. 7970 unsigned OpFlag = 7971 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7972 assert((InlineAsm::isRegDefKind(OpFlag) || 7973 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7974 InlineAsm::isMemKind(OpFlag)) && 7975 "Skipped past definitions?"); 7976 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7977 } 7978 return CurOp; 7979 } 7980 7981 namespace { 7982 7983 class ExtraFlags { 7984 unsigned Flags = 0; 7985 7986 public: 7987 explicit ExtraFlags(ImmutableCallSite CS) { 7988 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7989 if (IA->hasSideEffects()) 7990 Flags |= InlineAsm::Extra_HasSideEffects; 7991 if (IA->isAlignStack()) 7992 Flags |= InlineAsm::Extra_IsAlignStack; 7993 if (CS.isConvergent()) 7994 Flags |= InlineAsm::Extra_IsConvergent; 7995 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7996 } 7997 7998 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7999 // Ideally, we would only check against memory constraints. However, the 8000 // meaning of an Other constraint can be target-specific and we can't easily 8001 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8002 // for Other constraints as well. 8003 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8004 OpInfo.ConstraintType == TargetLowering::C_Other) { 8005 if (OpInfo.Type == InlineAsm::isInput) 8006 Flags |= InlineAsm::Extra_MayLoad; 8007 else if (OpInfo.Type == InlineAsm::isOutput) 8008 Flags |= InlineAsm::Extra_MayStore; 8009 else if (OpInfo.Type == InlineAsm::isClobber) 8010 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8011 } 8012 } 8013 8014 unsigned get() const { return Flags; } 8015 }; 8016 8017 } // end anonymous namespace 8018 8019 /// visitInlineAsm - Handle a call to an InlineAsm object. 8020 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8021 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8022 8023 /// ConstraintOperands - Information about all of the constraints. 8024 SDISelAsmOperandInfoVector ConstraintOperands; 8025 8026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8027 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8028 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8029 8030 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8031 // AsmDialect, MayLoad, MayStore). 8032 bool HasSideEffect = IA->hasSideEffects(); 8033 ExtraFlags ExtraInfo(CS); 8034 8035 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8036 unsigned ResNo = 0; // ResNo - The result number of the next output. 8037 for (auto &T : TargetConstraints) { 8038 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8039 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8040 8041 // Compute the value type for each operand. 8042 if (OpInfo.Type == InlineAsm::isInput || 8043 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8044 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8045 8046 // Process the call argument. BasicBlocks are labels, currently appearing 8047 // only in asm's. 8048 const Instruction *I = CS.getInstruction(); 8049 if (isa<CallBrInst>(I) && 8050 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8051 cast<CallBrInst>(I)->getNumIndirectDests())) { 8052 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8053 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8054 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8055 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8056 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8057 } else { 8058 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8059 } 8060 8061 OpInfo.ConstraintVT = 8062 OpInfo 8063 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8064 .getSimpleVT(); 8065 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8066 // The return value of the call is this value. As such, there is no 8067 // corresponding argument. 8068 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8069 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8070 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8071 DAG.getDataLayout(), STy->getElementType(ResNo)); 8072 } else { 8073 assert(ResNo == 0 && "Asm only has one result!"); 8074 OpInfo.ConstraintVT = 8075 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8076 } 8077 ++ResNo; 8078 } else { 8079 OpInfo.ConstraintVT = MVT::Other; 8080 } 8081 8082 if (!HasSideEffect) 8083 HasSideEffect = OpInfo.hasMemory(TLI); 8084 8085 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8086 // FIXME: Could we compute this on OpInfo rather than T? 8087 8088 // Compute the constraint code and ConstraintType to use. 8089 TLI.ComputeConstraintToUse(T, SDValue()); 8090 8091 if (T.ConstraintType == TargetLowering::C_Immediate && 8092 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8093 // We've delayed emitting a diagnostic like the "n" constraint because 8094 // inlining could cause an integer showing up. 8095 return emitInlineAsmError( 8096 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8097 "integer constant expression"); 8098 8099 ExtraInfo.update(T); 8100 } 8101 8102 8103 // We won't need to flush pending loads if this asm doesn't touch 8104 // memory and is nonvolatile. 8105 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8106 8107 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8108 if (IsCallBr) { 8109 // If this is a callbr we need to flush pending exports since inlineasm_br 8110 // is a terminator. We need to do this before nodes are glued to 8111 // the inlineasm_br node. 8112 Chain = getControlRoot(); 8113 } 8114 8115 // Second pass over the constraints: compute which constraint option to use. 8116 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8117 // If this is an output operand with a matching input operand, look up the 8118 // matching input. If their types mismatch, e.g. one is an integer, the 8119 // other is floating point, or their sizes are different, flag it as an 8120 // error. 8121 if (OpInfo.hasMatchingInput()) { 8122 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8123 patchMatchingInput(OpInfo, Input, DAG); 8124 } 8125 8126 // Compute the constraint code and ConstraintType to use. 8127 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8128 8129 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8130 OpInfo.Type == InlineAsm::isClobber) 8131 continue; 8132 8133 // If this is a memory input, and if the operand is not indirect, do what we 8134 // need to provide an address for the memory input. 8135 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8136 !OpInfo.isIndirect) { 8137 assert((OpInfo.isMultipleAlternative || 8138 (OpInfo.Type == InlineAsm::isInput)) && 8139 "Can only indirectify direct input operands!"); 8140 8141 // Memory operands really want the address of the value. 8142 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8143 8144 // There is no longer a Value* corresponding to this operand. 8145 OpInfo.CallOperandVal = nullptr; 8146 8147 // It is now an indirect operand. 8148 OpInfo.isIndirect = true; 8149 } 8150 8151 } 8152 8153 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8154 std::vector<SDValue> AsmNodeOperands; 8155 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8156 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8157 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8158 8159 // If we have a !srcloc metadata node associated with it, we want to attach 8160 // this to the ultimately generated inline asm machineinstr. To do this, we 8161 // pass in the third operand as this (potentially null) inline asm MDNode. 8162 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8163 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8164 8165 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8166 // bits as operand 3. 8167 AsmNodeOperands.push_back(DAG.getTargetConstant( 8168 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8169 8170 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8171 // this, assign virtual and physical registers for inputs and otput. 8172 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8173 // Assign Registers. 8174 SDISelAsmOperandInfo &RefOpInfo = 8175 OpInfo.isMatchingInputConstraint() 8176 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8177 : OpInfo; 8178 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8179 8180 switch (OpInfo.Type) { 8181 case InlineAsm::isOutput: 8182 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8183 unsigned ConstraintID = 8184 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8185 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8186 "Failed to convert memory constraint code to constraint id."); 8187 8188 // Add information to the INLINEASM node to know about this output. 8189 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8190 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8191 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8192 MVT::i32)); 8193 AsmNodeOperands.push_back(OpInfo.CallOperand); 8194 } else { 8195 // Otherwise, this outputs to a register (directly for C_Register / 8196 // C_RegisterClass, and a target-defined fashion for 8197 // C_Immediate/C_Other). Find a register that we can use. 8198 if (OpInfo.AssignedRegs.Regs.empty()) { 8199 emitInlineAsmError( 8200 CS, "couldn't allocate output register for constraint '" + 8201 Twine(OpInfo.ConstraintCode) + "'"); 8202 return; 8203 } 8204 8205 // Add information to the INLINEASM node to know that this register is 8206 // set. 8207 OpInfo.AssignedRegs.AddInlineAsmOperands( 8208 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8209 : InlineAsm::Kind_RegDef, 8210 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8211 } 8212 break; 8213 8214 case InlineAsm::isInput: { 8215 SDValue InOperandVal = OpInfo.CallOperand; 8216 8217 if (OpInfo.isMatchingInputConstraint()) { 8218 // If this is required to match an output register we have already set, 8219 // just use its register. 8220 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8221 AsmNodeOperands); 8222 unsigned OpFlag = 8223 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8224 if (InlineAsm::isRegDefKind(OpFlag) || 8225 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8226 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8227 if (OpInfo.isIndirect) { 8228 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8229 emitInlineAsmError(CS, "inline asm not supported yet:" 8230 " don't know how to handle tied " 8231 "indirect register inputs"); 8232 return; 8233 } 8234 8235 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8236 SmallVector<unsigned, 4> Regs; 8237 8238 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8239 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8240 MachineRegisterInfo &RegInfo = 8241 DAG.getMachineFunction().getRegInfo(); 8242 for (unsigned i = 0; i != NumRegs; ++i) 8243 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8244 } else { 8245 emitInlineAsmError(CS, "inline asm error: This value type register " 8246 "class is not natively supported!"); 8247 return; 8248 } 8249 8250 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8251 8252 SDLoc dl = getCurSDLoc(); 8253 // Use the produced MatchedRegs object to 8254 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8255 CS.getInstruction()); 8256 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8257 true, OpInfo.getMatchedOperand(), dl, 8258 DAG, AsmNodeOperands); 8259 break; 8260 } 8261 8262 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8263 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8264 "Unexpected number of operands"); 8265 // Add information to the INLINEASM node to know about this input. 8266 // See InlineAsm.h isUseOperandTiedToDef. 8267 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8268 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8269 OpInfo.getMatchedOperand()); 8270 AsmNodeOperands.push_back(DAG.getTargetConstant( 8271 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8272 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8273 break; 8274 } 8275 8276 // Treat indirect 'X' constraint as memory. 8277 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8278 OpInfo.isIndirect) 8279 OpInfo.ConstraintType = TargetLowering::C_Memory; 8280 8281 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8282 OpInfo.ConstraintType == TargetLowering::C_Other) { 8283 std::vector<SDValue> Ops; 8284 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8285 Ops, DAG); 8286 if (Ops.empty()) { 8287 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8288 if (isa<ConstantSDNode>(InOperandVal)) { 8289 emitInlineAsmError(CS, "value out of range for constraint '" + 8290 Twine(OpInfo.ConstraintCode) + "'"); 8291 return; 8292 } 8293 8294 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8295 Twine(OpInfo.ConstraintCode) + "'"); 8296 return; 8297 } 8298 8299 // Add information to the INLINEASM node to know about this input. 8300 unsigned ResOpType = 8301 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8302 AsmNodeOperands.push_back(DAG.getTargetConstant( 8303 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8304 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8305 break; 8306 } 8307 8308 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8309 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8310 assert(InOperandVal.getValueType() == 8311 TLI.getPointerTy(DAG.getDataLayout()) && 8312 "Memory operands expect pointer values"); 8313 8314 unsigned ConstraintID = 8315 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8316 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8317 "Failed to convert memory constraint code to constraint id."); 8318 8319 // Add information to the INLINEASM node to know about this input. 8320 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8321 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8322 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8323 getCurSDLoc(), 8324 MVT::i32)); 8325 AsmNodeOperands.push_back(InOperandVal); 8326 break; 8327 } 8328 8329 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8330 OpInfo.ConstraintType == TargetLowering::C_Register) && 8331 "Unknown constraint type!"); 8332 8333 // TODO: Support this. 8334 if (OpInfo.isIndirect) { 8335 emitInlineAsmError( 8336 CS, "Don't know how to handle indirect register inputs yet " 8337 "for constraint '" + 8338 Twine(OpInfo.ConstraintCode) + "'"); 8339 return; 8340 } 8341 8342 // Copy the input into the appropriate registers. 8343 if (OpInfo.AssignedRegs.Regs.empty()) { 8344 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8345 Twine(OpInfo.ConstraintCode) + "'"); 8346 return; 8347 } 8348 8349 SDLoc dl = getCurSDLoc(); 8350 8351 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8352 Chain, &Flag, CS.getInstruction()); 8353 8354 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8355 dl, DAG, AsmNodeOperands); 8356 break; 8357 } 8358 case InlineAsm::isClobber: 8359 // Add the clobbered value to the operand list, so that the register 8360 // allocator is aware that the physreg got clobbered. 8361 if (!OpInfo.AssignedRegs.Regs.empty()) 8362 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8363 false, 0, getCurSDLoc(), DAG, 8364 AsmNodeOperands); 8365 break; 8366 } 8367 } 8368 8369 // Finish up input operands. Set the input chain and add the flag last. 8370 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8371 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8372 8373 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8374 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8375 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8376 Flag = Chain.getValue(1); 8377 8378 // Do additional work to generate outputs. 8379 8380 SmallVector<EVT, 1> ResultVTs; 8381 SmallVector<SDValue, 1> ResultValues; 8382 SmallVector<SDValue, 8> OutChains; 8383 8384 llvm::Type *CSResultType = CS.getType(); 8385 ArrayRef<Type *> ResultTypes; 8386 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8387 ResultTypes = StructResult->elements(); 8388 else if (!CSResultType->isVoidTy()) 8389 ResultTypes = makeArrayRef(CSResultType); 8390 8391 auto CurResultType = ResultTypes.begin(); 8392 auto handleRegAssign = [&](SDValue V) { 8393 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8394 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8395 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8396 ++CurResultType; 8397 // If the type of the inline asm call site return value is different but has 8398 // same size as the type of the asm output bitcast it. One example of this 8399 // is for vectors with different width / number of elements. This can 8400 // happen for register classes that can contain multiple different value 8401 // types. The preg or vreg allocated may not have the same VT as was 8402 // expected. 8403 // 8404 // This can also happen for a return value that disagrees with the register 8405 // class it is put in, eg. a double in a general-purpose register on a 8406 // 32-bit machine. 8407 if (ResultVT != V.getValueType() && 8408 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8409 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8410 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8411 V.getValueType().isInteger()) { 8412 // If a result value was tied to an input value, the computed result 8413 // may have a wider width than the expected result. Extract the 8414 // relevant portion. 8415 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8416 } 8417 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8418 ResultVTs.push_back(ResultVT); 8419 ResultValues.push_back(V); 8420 }; 8421 8422 // Deal with output operands. 8423 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8424 if (OpInfo.Type == InlineAsm::isOutput) { 8425 SDValue Val; 8426 // Skip trivial output operands. 8427 if (OpInfo.AssignedRegs.Regs.empty()) 8428 continue; 8429 8430 switch (OpInfo.ConstraintType) { 8431 case TargetLowering::C_Register: 8432 case TargetLowering::C_RegisterClass: 8433 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8434 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8435 break; 8436 case TargetLowering::C_Immediate: 8437 case TargetLowering::C_Other: 8438 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8439 OpInfo, DAG); 8440 break; 8441 case TargetLowering::C_Memory: 8442 break; // Already handled. 8443 case TargetLowering::C_Unknown: 8444 assert(false && "Unexpected unknown constraint"); 8445 } 8446 8447 // Indirect output manifest as stores. Record output chains. 8448 if (OpInfo.isIndirect) { 8449 const Value *Ptr = OpInfo.CallOperandVal; 8450 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8451 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8452 MachinePointerInfo(Ptr)); 8453 OutChains.push_back(Store); 8454 } else { 8455 // generate CopyFromRegs to associated registers. 8456 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8457 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8458 for (const SDValue &V : Val->op_values()) 8459 handleRegAssign(V); 8460 } else 8461 handleRegAssign(Val); 8462 } 8463 } 8464 } 8465 8466 // Set results. 8467 if (!ResultValues.empty()) { 8468 assert(CurResultType == ResultTypes.end() && 8469 "Mismatch in number of ResultTypes"); 8470 assert(ResultValues.size() == ResultTypes.size() && 8471 "Mismatch in number of output operands in asm result"); 8472 8473 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8474 DAG.getVTList(ResultVTs), ResultValues); 8475 setValue(CS.getInstruction(), V); 8476 } 8477 8478 // Collect store chains. 8479 if (!OutChains.empty()) 8480 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8481 8482 // Only Update Root if inline assembly has a memory effect. 8483 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8484 DAG.setRoot(Chain); 8485 } 8486 8487 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8488 const Twine &Message) { 8489 LLVMContext &Ctx = *DAG.getContext(); 8490 Ctx.emitError(CS.getInstruction(), Message); 8491 8492 // Make sure we leave the DAG in a valid state 8493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8494 SmallVector<EVT, 1> ValueVTs; 8495 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8496 8497 if (ValueVTs.empty()) 8498 return; 8499 8500 SmallVector<SDValue, 1> Ops; 8501 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8502 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8503 8504 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8505 } 8506 8507 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8508 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8509 MVT::Other, getRoot(), 8510 getValue(I.getArgOperand(0)), 8511 DAG.getSrcValue(I.getArgOperand(0)))); 8512 } 8513 8514 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8516 const DataLayout &DL = DAG.getDataLayout(); 8517 SDValue V = DAG.getVAArg( 8518 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8519 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8520 DL.getABITypeAlignment(I.getType())); 8521 DAG.setRoot(V.getValue(1)); 8522 8523 if (I.getType()->isPointerTy()) 8524 V = DAG.getPtrExtOrTrunc( 8525 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8526 setValue(&I, V); 8527 } 8528 8529 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8530 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8531 MVT::Other, getRoot(), 8532 getValue(I.getArgOperand(0)), 8533 DAG.getSrcValue(I.getArgOperand(0)))); 8534 } 8535 8536 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8537 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8538 MVT::Other, getRoot(), 8539 getValue(I.getArgOperand(0)), 8540 getValue(I.getArgOperand(1)), 8541 DAG.getSrcValue(I.getArgOperand(0)), 8542 DAG.getSrcValue(I.getArgOperand(1)))); 8543 } 8544 8545 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8546 const Instruction &I, 8547 SDValue Op) { 8548 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8549 if (!Range) 8550 return Op; 8551 8552 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8553 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8554 return Op; 8555 8556 APInt Lo = CR.getUnsignedMin(); 8557 if (!Lo.isMinValue()) 8558 return Op; 8559 8560 APInt Hi = CR.getUnsignedMax(); 8561 unsigned Bits = std::max(Hi.getActiveBits(), 8562 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8563 8564 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8565 8566 SDLoc SL = getCurSDLoc(); 8567 8568 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8569 DAG.getValueType(SmallVT)); 8570 unsigned NumVals = Op.getNode()->getNumValues(); 8571 if (NumVals == 1) 8572 return ZExt; 8573 8574 SmallVector<SDValue, 4> Ops; 8575 8576 Ops.push_back(ZExt); 8577 for (unsigned I = 1; I != NumVals; ++I) 8578 Ops.push_back(Op.getValue(I)); 8579 8580 return DAG.getMergeValues(Ops, SL); 8581 } 8582 8583 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8584 /// the call being lowered. 8585 /// 8586 /// This is a helper for lowering intrinsics that follow a target calling 8587 /// convention or require stack pointer adjustment. Only a subset of the 8588 /// intrinsic's operands need to participate in the calling convention. 8589 void SelectionDAGBuilder::populateCallLoweringInfo( 8590 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8591 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8592 bool IsPatchPoint) { 8593 TargetLowering::ArgListTy Args; 8594 Args.reserve(NumArgs); 8595 8596 // Populate the argument list. 8597 // Attributes for args start at offset 1, after the return attribute. 8598 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8599 ArgI != ArgE; ++ArgI) { 8600 const Value *V = Call->getOperand(ArgI); 8601 8602 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8603 8604 TargetLowering::ArgListEntry Entry; 8605 Entry.Node = getValue(V); 8606 Entry.Ty = V->getType(); 8607 Entry.setAttributes(Call, ArgI); 8608 Args.push_back(Entry); 8609 } 8610 8611 CLI.setDebugLoc(getCurSDLoc()) 8612 .setChain(getRoot()) 8613 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8614 .setDiscardResult(Call->use_empty()) 8615 .setIsPatchPoint(IsPatchPoint); 8616 } 8617 8618 /// Add a stack map intrinsic call's live variable operands to a stackmap 8619 /// or patchpoint target node's operand list. 8620 /// 8621 /// Constants are converted to TargetConstants purely as an optimization to 8622 /// avoid constant materialization and register allocation. 8623 /// 8624 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8625 /// generate addess computation nodes, and so FinalizeISel can convert the 8626 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8627 /// address materialization and register allocation, but may also be required 8628 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8629 /// alloca in the entry block, then the runtime may assume that the alloca's 8630 /// StackMap location can be read immediately after compilation and that the 8631 /// location is valid at any point during execution (this is similar to the 8632 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8633 /// only available in a register, then the runtime would need to trap when 8634 /// execution reaches the StackMap in order to read the alloca's location. 8635 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8636 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8637 SelectionDAGBuilder &Builder) { 8638 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8639 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8640 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8641 Ops.push_back( 8642 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8643 Ops.push_back( 8644 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8645 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8646 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8647 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8648 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8649 } else 8650 Ops.push_back(OpVal); 8651 } 8652 } 8653 8654 /// Lower llvm.experimental.stackmap directly to its target opcode. 8655 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8656 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8657 // [live variables...]) 8658 8659 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8660 8661 SDValue Chain, InFlag, Callee, NullPtr; 8662 SmallVector<SDValue, 32> Ops; 8663 8664 SDLoc DL = getCurSDLoc(); 8665 Callee = getValue(CI.getCalledValue()); 8666 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8667 8668 // The stackmap intrinsic only records the live variables (the arguments 8669 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8670 // intrinsic, this won't be lowered to a function call. This means we don't 8671 // have to worry about calling conventions and target specific lowering code. 8672 // Instead we perform the call lowering right here. 8673 // 8674 // chain, flag = CALLSEQ_START(chain, 0, 0) 8675 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8676 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8677 // 8678 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8679 InFlag = Chain.getValue(1); 8680 8681 // Add the <id> and <numBytes> constants. 8682 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8683 Ops.push_back(DAG.getTargetConstant( 8684 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8685 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8686 Ops.push_back(DAG.getTargetConstant( 8687 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8688 MVT::i32)); 8689 8690 // Push live variables for the stack map. 8691 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8692 8693 // We are not pushing any register mask info here on the operands list, 8694 // because the stackmap doesn't clobber anything. 8695 8696 // Push the chain and the glue flag. 8697 Ops.push_back(Chain); 8698 Ops.push_back(InFlag); 8699 8700 // Create the STACKMAP node. 8701 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8702 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8703 Chain = SDValue(SM, 0); 8704 InFlag = Chain.getValue(1); 8705 8706 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8707 8708 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8709 8710 // Set the root to the target-lowered call chain. 8711 DAG.setRoot(Chain); 8712 8713 // Inform the Frame Information that we have a stackmap in this function. 8714 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8715 } 8716 8717 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8718 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8719 const BasicBlock *EHPadBB) { 8720 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8721 // i32 <numBytes>, 8722 // i8* <target>, 8723 // i32 <numArgs>, 8724 // [Args...], 8725 // [live variables...]) 8726 8727 CallingConv::ID CC = CS.getCallingConv(); 8728 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8729 bool HasDef = !CS->getType()->isVoidTy(); 8730 SDLoc dl = getCurSDLoc(); 8731 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8732 8733 // Handle immediate and symbolic callees. 8734 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8735 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8736 /*isTarget=*/true); 8737 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8738 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8739 SDLoc(SymbolicCallee), 8740 SymbolicCallee->getValueType(0)); 8741 8742 // Get the real number of arguments participating in the call <numArgs> 8743 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8744 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8745 8746 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8747 // Intrinsics include all meta-operands up to but not including CC. 8748 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8749 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8750 "Not enough arguments provided to the patchpoint intrinsic"); 8751 8752 // For AnyRegCC the arguments are lowered later on manually. 8753 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8754 Type *ReturnTy = 8755 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8756 8757 TargetLowering::CallLoweringInfo CLI(DAG); 8758 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8759 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8760 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8761 8762 SDNode *CallEnd = Result.second.getNode(); 8763 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8764 CallEnd = CallEnd->getOperand(0).getNode(); 8765 8766 /// Get a call instruction from the call sequence chain. 8767 /// Tail calls are not allowed. 8768 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8769 "Expected a callseq node."); 8770 SDNode *Call = CallEnd->getOperand(0).getNode(); 8771 bool HasGlue = Call->getGluedNode(); 8772 8773 // Replace the target specific call node with the patchable intrinsic. 8774 SmallVector<SDValue, 8> Ops; 8775 8776 // Add the <id> and <numBytes> constants. 8777 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8778 Ops.push_back(DAG.getTargetConstant( 8779 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8780 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8781 Ops.push_back(DAG.getTargetConstant( 8782 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8783 MVT::i32)); 8784 8785 // Add the callee. 8786 Ops.push_back(Callee); 8787 8788 // Adjust <numArgs> to account for any arguments that have been passed on the 8789 // stack instead. 8790 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8791 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8792 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8793 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8794 8795 // Add the calling convention 8796 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8797 8798 // Add the arguments we omitted previously. The register allocator should 8799 // place these in any free register. 8800 if (IsAnyRegCC) 8801 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8802 Ops.push_back(getValue(CS.getArgument(i))); 8803 8804 // Push the arguments from the call instruction up to the register mask. 8805 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8806 Ops.append(Call->op_begin() + 2, e); 8807 8808 // Push live variables for the stack map. 8809 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8810 8811 // Push the register mask info. 8812 if (HasGlue) 8813 Ops.push_back(*(Call->op_end()-2)); 8814 else 8815 Ops.push_back(*(Call->op_end()-1)); 8816 8817 // Push the chain (this is originally the first operand of the call, but 8818 // becomes now the last or second to last operand). 8819 Ops.push_back(*(Call->op_begin())); 8820 8821 // Push the glue flag (last operand). 8822 if (HasGlue) 8823 Ops.push_back(*(Call->op_end()-1)); 8824 8825 SDVTList NodeTys; 8826 if (IsAnyRegCC && HasDef) { 8827 // Create the return types based on the intrinsic definition 8828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8829 SmallVector<EVT, 3> ValueVTs; 8830 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8831 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8832 8833 // There is always a chain and a glue type at the end 8834 ValueVTs.push_back(MVT::Other); 8835 ValueVTs.push_back(MVT::Glue); 8836 NodeTys = DAG.getVTList(ValueVTs); 8837 } else 8838 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8839 8840 // Replace the target specific call node with a PATCHPOINT node. 8841 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8842 dl, NodeTys, Ops); 8843 8844 // Update the NodeMap. 8845 if (HasDef) { 8846 if (IsAnyRegCC) 8847 setValue(CS.getInstruction(), SDValue(MN, 0)); 8848 else 8849 setValue(CS.getInstruction(), Result.first); 8850 } 8851 8852 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8853 // call sequence. Furthermore the location of the chain and glue can change 8854 // when the AnyReg calling convention is used and the intrinsic returns a 8855 // value. 8856 if (IsAnyRegCC && HasDef) { 8857 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8858 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8859 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8860 } else 8861 DAG.ReplaceAllUsesWith(Call, MN); 8862 DAG.DeleteNode(Call); 8863 8864 // Inform the Frame Information that we have a patchpoint in this function. 8865 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8866 } 8867 8868 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8869 unsigned Intrinsic) { 8870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8871 SDValue Op1 = getValue(I.getArgOperand(0)); 8872 SDValue Op2; 8873 if (I.getNumArgOperands() > 1) 8874 Op2 = getValue(I.getArgOperand(1)); 8875 SDLoc dl = getCurSDLoc(); 8876 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8877 SDValue Res; 8878 FastMathFlags FMF; 8879 if (isa<FPMathOperator>(I)) 8880 FMF = I.getFastMathFlags(); 8881 8882 switch (Intrinsic) { 8883 case Intrinsic::experimental_vector_reduce_v2_fadd: 8884 if (FMF.allowReassoc()) 8885 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8886 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8887 else 8888 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8889 break; 8890 case Intrinsic::experimental_vector_reduce_v2_fmul: 8891 if (FMF.allowReassoc()) 8892 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8893 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8894 else 8895 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8896 break; 8897 case Intrinsic::experimental_vector_reduce_add: 8898 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8899 break; 8900 case Intrinsic::experimental_vector_reduce_mul: 8901 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8902 break; 8903 case Intrinsic::experimental_vector_reduce_and: 8904 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8905 break; 8906 case Intrinsic::experimental_vector_reduce_or: 8907 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8908 break; 8909 case Intrinsic::experimental_vector_reduce_xor: 8910 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8911 break; 8912 case Intrinsic::experimental_vector_reduce_smax: 8913 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8914 break; 8915 case Intrinsic::experimental_vector_reduce_smin: 8916 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8917 break; 8918 case Intrinsic::experimental_vector_reduce_umax: 8919 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8920 break; 8921 case Intrinsic::experimental_vector_reduce_umin: 8922 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8923 break; 8924 case Intrinsic::experimental_vector_reduce_fmax: 8925 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8926 break; 8927 case Intrinsic::experimental_vector_reduce_fmin: 8928 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8929 break; 8930 default: 8931 llvm_unreachable("Unhandled vector reduce intrinsic"); 8932 } 8933 setValue(&I, Res); 8934 } 8935 8936 /// Returns an AttributeList representing the attributes applied to the return 8937 /// value of the given call. 8938 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8939 SmallVector<Attribute::AttrKind, 2> Attrs; 8940 if (CLI.RetSExt) 8941 Attrs.push_back(Attribute::SExt); 8942 if (CLI.RetZExt) 8943 Attrs.push_back(Attribute::ZExt); 8944 if (CLI.IsInReg) 8945 Attrs.push_back(Attribute::InReg); 8946 8947 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8948 Attrs); 8949 } 8950 8951 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8952 /// implementation, which just calls LowerCall. 8953 /// FIXME: When all targets are 8954 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8955 std::pair<SDValue, SDValue> 8956 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8957 // Handle the incoming return values from the call. 8958 CLI.Ins.clear(); 8959 Type *OrigRetTy = CLI.RetTy; 8960 SmallVector<EVT, 4> RetTys; 8961 SmallVector<uint64_t, 4> Offsets; 8962 auto &DL = CLI.DAG.getDataLayout(); 8963 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8964 8965 if (CLI.IsPostTypeLegalization) { 8966 // If we are lowering a libcall after legalization, split the return type. 8967 SmallVector<EVT, 4> OldRetTys; 8968 SmallVector<uint64_t, 4> OldOffsets; 8969 RetTys.swap(OldRetTys); 8970 Offsets.swap(OldOffsets); 8971 8972 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8973 EVT RetVT = OldRetTys[i]; 8974 uint64_t Offset = OldOffsets[i]; 8975 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8976 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8977 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8978 RetTys.append(NumRegs, RegisterVT); 8979 for (unsigned j = 0; j != NumRegs; ++j) 8980 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8981 } 8982 } 8983 8984 SmallVector<ISD::OutputArg, 4> Outs; 8985 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8986 8987 bool CanLowerReturn = 8988 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8989 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8990 8991 SDValue DemoteStackSlot; 8992 int DemoteStackIdx = -100; 8993 if (!CanLowerReturn) { 8994 // FIXME: equivalent assert? 8995 // assert(!CS.hasInAllocaArgument() && 8996 // "sret demotion is incompatible with inalloca"); 8997 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8998 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8999 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9000 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9001 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9002 DL.getAllocaAddrSpace()); 9003 9004 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9005 ArgListEntry Entry; 9006 Entry.Node = DemoteStackSlot; 9007 Entry.Ty = StackSlotPtrType; 9008 Entry.IsSExt = false; 9009 Entry.IsZExt = false; 9010 Entry.IsInReg = false; 9011 Entry.IsSRet = true; 9012 Entry.IsNest = false; 9013 Entry.IsByVal = false; 9014 Entry.IsReturned = false; 9015 Entry.IsSwiftSelf = false; 9016 Entry.IsSwiftError = false; 9017 Entry.IsCFGuardTarget = false; 9018 Entry.Alignment = Align; 9019 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9020 CLI.NumFixedArgs += 1; 9021 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9022 9023 // sret demotion isn't compatible with tail-calls, since the sret argument 9024 // points into the callers stack frame. 9025 CLI.IsTailCall = false; 9026 } else { 9027 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9028 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9029 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9030 ISD::ArgFlagsTy Flags; 9031 if (NeedsRegBlock) { 9032 Flags.setInConsecutiveRegs(); 9033 if (I == RetTys.size() - 1) 9034 Flags.setInConsecutiveRegsLast(); 9035 } 9036 EVT VT = RetTys[I]; 9037 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9038 CLI.CallConv, VT); 9039 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9040 CLI.CallConv, VT); 9041 for (unsigned i = 0; i != NumRegs; ++i) { 9042 ISD::InputArg MyFlags; 9043 MyFlags.Flags = Flags; 9044 MyFlags.VT = RegisterVT; 9045 MyFlags.ArgVT = VT; 9046 MyFlags.Used = CLI.IsReturnValueUsed; 9047 if (CLI.RetTy->isPointerTy()) { 9048 MyFlags.Flags.setPointer(); 9049 MyFlags.Flags.setPointerAddrSpace( 9050 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9051 } 9052 if (CLI.RetSExt) 9053 MyFlags.Flags.setSExt(); 9054 if (CLI.RetZExt) 9055 MyFlags.Flags.setZExt(); 9056 if (CLI.IsInReg) 9057 MyFlags.Flags.setInReg(); 9058 CLI.Ins.push_back(MyFlags); 9059 } 9060 } 9061 } 9062 9063 // We push in swifterror return as the last element of CLI.Ins. 9064 ArgListTy &Args = CLI.getArgs(); 9065 if (supportSwiftError()) { 9066 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9067 if (Args[i].IsSwiftError) { 9068 ISD::InputArg MyFlags; 9069 MyFlags.VT = getPointerTy(DL); 9070 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9071 MyFlags.Flags.setSwiftError(); 9072 CLI.Ins.push_back(MyFlags); 9073 } 9074 } 9075 } 9076 9077 // Handle all of the outgoing arguments. 9078 CLI.Outs.clear(); 9079 CLI.OutVals.clear(); 9080 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9081 SmallVector<EVT, 4> ValueVTs; 9082 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9083 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9084 Type *FinalType = Args[i].Ty; 9085 if (Args[i].IsByVal) 9086 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9087 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9088 FinalType, CLI.CallConv, CLI.IsVarArg); 9089 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9090 ++Value) { 9091 EVT VT = ValueVTs[Value]; 9092 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9093 SDValue Op = SDValue(Args[i].Node.getNode(), 9094 Args[i].Node.getResNo() + Value); 9095 ISD::ArgFlagsTy Flags; 9096 9097 // Certain targets (such as MIPS), may have a different ABI alignment 9098 // for a type depending on the context. Give the target a chance to 9099 // specify the alignment it wants. 9100 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9101 9102 if (Args[i].Ty->isPointerTy()) { 9103 Flags.setPointer(); 9104 Flags.setPointerAddrSpace( 9105 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9106 } 9107 if (Args[i].IsZExt) 9108 Flags.setZExt(); 9109 if (Args[i].IsSExt) 9110 Flags.setSExt(); 9111 if (Args[i].IsInReg) { 9112 // If we are using vectorcall calling convention, a structure that is 9113 // passed InReg - is surely an HVA 9114 if (CLI.CallConv == CallingConv::X86_VectorCall && 9115 isa<StructType>(FinalType)) { 9116 // The first value of a structure is marked 9117 if (0 == Value) 9118 Flags.setHvaStart(); 9119 Flags.setHva(); 9120 } 9121 // Set InReg Flag 9122 Flags.setInReg(); 9123 } 9124 if (Args[i].IsSRet) 9125 Flags.setSRet(); 9126 if (Args[i].IsSwiftSelf) 9127 Flags.setSwiftSelf(); 9128 if (Args[i].IsSwiftError) 9129 Flags.setSwiftError(); 9130 if (Args[i].IsCFGuardTarget) 9131 Flags.setCFGuardTarget(); 9132 if (Args[i].IsByVal) 9133 Flags.setByVal(); 9134 if (Args[i].IsInAlloca) { 9135 Flags.setInAlloca(); 9136 // Set the byval flag for CCAssignFn callbacks that don't know about 9137 // inalloca. This way we can know how many bytes we should've allocated 9138 // and how many bytes a callee cleanup function will pop. If we port 9139 // inalloca to more targets, we'll have to add custom inalloca handling 9140 // in the various CC lowering callbacks. 9141 Flags.setByVal(); 9142 } 9143 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9144 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9145 Type *ElementTy = Ty->getElementType(); 9146 9147 unsigned FrameSize = DL.getTypeAllocSize( 9148 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9149 Flags.setByValSize(FrameSize); 9150 9151 // info is not there but there are cases it cannot get right. 9152 unsigned FrameAlign; 9153 if (Args[i].Alignment) 9154 FrameAlign = Args[i].Alignment; 9155 else 9156 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9157 Flags.setByValAlign(Align(FrameAlign)); 9158 } 9159 if (Args[i].IsNest) 9160 Flags.setNest(); 9161 if (NeedsRegBlock) 9162 Flags.setInConsecutiveRegs(); 9163 Flags.setOrigAlign(OriginalAlignment); 9164 9165 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9166 CLI.CallConv, VT); 9167 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9168 CLI.CallConv, VT); 9169 SmallVector<SDValue, 4> Parts(NumParts); 9170 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9171 9172 if (Args[i].IsSExt) 9173 ExtendKind = ISD::SIGN_EXTEND; 9174 else if (Args[i].IsZExt) 9175 ExtendKind = ISD::ZERO_EXTEND; 9176 9177 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9178 // for now. 9179 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9180 CanLowerReturn) { 9181 assert((CLI.RetTy == Args[i].Ty || 9182 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9183 CLI.RetTy->getPointerAddressSpace() == 9184 Args[i].Ty->getPointerAddressSpace())) && 9185 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9186 // Before passing 'returned' to the target lowering code, ensure that 9187 // either the register MVT and the actual EVT are the same size or that 9188 // the return value and argument are extended in the same way; in these 9189 // cases it's safe to pass the argument register value unchanged as the 9190 // return register value (although it's at the target's option whether 9191 // to do so) 9192 // TODO: allow code generation to take advantage of partially preserved 9193 // registers rather than clobbering the entire register when the 9194 // parameter extension method is not compatible with the return 9195 // extension method 9196 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9197 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9198 CLI.RetZExt == Args[i].IsZExt)) 9199 Flags.setReturned(); 9200 } 9201 9202 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9203 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9204 9205 for (unsigned j = 0; j != NumParts; ++j) { 9206 // if it isn't first piece, alignment must be 1 9207 // For scalable vectors the scalable part is currently handled 9208 // by individual targets, so we just use the known minimum size here. 9209 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9210 i < CLI.NumFixedArgs, i, 9211 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9212 if (NumParts > 1 && j == 0) 9213 MyFlags.Flags.setSplit(); 9214 else if (j != 0) { 9215 MyFlags.Flags.setOrigAlign(Align::None()); 9216 if (j == NumParts - 1) 9217 MyFlags.Flags.setSplitEnd(); 9218 } 9219 9220 CLI.Outs.push_back(MyFlags); 9221 CLI.OutVals.push_back(Parts[j]); 9222 } 9223 9224 if (NeedsRegBlock && Value == NumValues - 1) 9225 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9226 } 9227 } 9228 9229 SmallVector<SDValue, 4> InVals; 9230 CLI.Chain = LowerCall(CLI, InVals); 9231 9232 // Update CLI.InVals to use outside of this function. 9233 CLI.InVals = InVals; 9234 9235 // Verify that the target's LowerCall behaved as expected. 9236 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9237 "LowerCall didn't return a valid chain!"); 9238 assert((!CLI.IsTailCall || InVals.empty()) && 9239 "LowerCall emitted a return value for a tail call!"); 9240 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9241 "LowerCall didn't emit the correct number of values!"); 9242 9243 // For a tail call, the return value is merely live-out and there aren't 9244 // any nodes in the DAG representing it. Return a special value to 9245 // indicate that a tail call has been emitted and no more Instructions 9246 // should be processed in the current block. 9247 if (CLI.IsTailCall) { 9248 CLI.DAG.setRoot(CLI.Chain); 9249 return std::make_pair(SDValue(), SDValue()); 9250 } 9251 9252 #ifndef NDEBUG 9253 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9254 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9255 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9256 "LowerCall emitted a value with the wrong type!"); 9257 } 9258 #endif 9259 9260 SmallVector<SDValue, 4> ReturnValues; 9261 if (!CanLowerReturn) { 9262 // The instruction result is the result of loading from the 9263 // hidden sret parameter. 9264 SmallVector<EVT, 1> PVTs; 9265 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9266 9267 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9268 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9269 EVT PtrVT = PVTs[0]; 9270 9271 unsigned NumValues = RetTys.size(); 9272 ReturnValues.resize(NumValues); 9273 SmallVector<SDValue, 4> Chains(NumValues); 9274 9275 // An aggregate return value cannot wrap around the address space, so 9276 // offsets to its parts don't wrap either. 9277 SDNodeFlags Flags; 9278 Flags.setNoUnsignedWrap(true); 9279 9280 for (unsigned i = 0; i < NumValues; ++i) { 9281 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9282 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9283 PtrVT), Flags); 9284 SDValue L = CLI.DAG.getLoad( 9285 RetTys[i], CLI.DL, CLI.Chain, Add, 9286 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9287 DemoteStackIdx, Offsets[i]), 9288 /* Alignment = */ 1); 9289 ReturnValues[i] = L; 9290 Chains[i] = L.getValue(1); 9291 } 9292 9293 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9294 } else { 9295 // Collect the legal value parts into potentially illegal values 9296 // that correspond to the original function's return values. 9297 Optional<ISD::NodeType> AssertOp; 9298 if (CLI.RetSExt) 9299 AssertOp = ISD::AssertSext; 9300 else if (CLI.RetZExt) 9301 AssertOp = ISD::AssertZext; 9302 unsigned CurReg = 0; 9303 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9304 EVT VT = RetTys[I]; 9305 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9306 CLI.CallConv, VT); 9307 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9308 CLI.CallConv, VT); 9309 9310 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9311 NumRegs, RegisterVT, VT, nullptr, 9312 CLI.CallConv, AssertOp)); 9313 CurReg += NumRegs; 9314 } 9315 9316 // For a function returning void, there is no return value. We can't create 9317 // such a node, so we just return a null return value in that case. In 9318 // that case, nothing will actually look at the value. 9319 if (ReturnValues.empty()) 9320 return std::make_pair(SDValue(), CLI.Chain); 9321 } 9322 9323 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9324 CLI.DAG.getVTList(RetTys), ReturnValues); 9325 return std::make_pair(Res, CLI.Chain); 9326 } 9327 9328 void TargetLowering::LowerOperationWrapper(SDNode *N, 9329 SmallVectorImpl<SDValue> &Results, 9330 SelectionDAG &DAG) const { 9331 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9332 Results.push_back(Res); 9333 } 9334 9335 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9336 llvm_unreachable("LowerOperation not implemented for this target!"); 9337 } 9338 9339 void 9340 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9341 SDValue Op = getNonRegisterValue(V); 9342 assert((Op.getOpcode() != ISD::CopyFromReg || 9343 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9344 "Copy from a reg to the same reg!"); 9345 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9346 9347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9348 // If this is an InlineAsm we have to match the registers required, not the 9349 // notional registers required by the type. 9350 9351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9352 None); // This is not an ABI copy. 9353 SDValue Chain = DAG.getEntryNode(); 9354 9355 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9356 FuncInfo.PreferredExtendType.end()) 9357 ? ISD::ANY_EXTEND 9358 : FuncInfo.PreferredExtendType[V]; 9359 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9360 PendingExports.push_back(Chain); 9361 } 9362 9363 #include "llvm/CodeGen/SelectionDAGISel.h" 9364 9365 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9366 /// entry block, return true. This includes arguments used by switches, since 9367 /// the switch may expand into multiple basic blocks. 9368 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9369 // With FastISel active, we may be splitting blocks, so force creation 9370 // of virtual registers for all non-dead arguments. 9371 if (FastISel) 9372 return A->use_empty(); 9373 9374 const BasicBlock &Entry = A->getParent()->front(); 9375 for (const User *U : A->users()) 9376 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9377 return false; // Use not in entry block. 9378 9379 return true; 9380 } 9381 9382 using ArgCopyElisionMapTy = 9383 DenseMap<const Argument *, 9384 std::pair<const AllocaInst *, const StoreInst *>>; 9385 9386 /// Scan the entry block of the function in FuncInfo for arguments that look 9387 /// like copies into a local alloca. Record any copied arguments in 9388 /// ArgCopyElisionCandidates. 9389 static void 9390 findArgumentCopyElisionCandidates(const DataLayout &DL, 9391 FunctionLoweringInfo *FuncInfo, 9392 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9393 // Record the state of every static alloca used in the entry block. Argument 9394 // allocas are all used in the entry block, so we need approximately as many 9395 // entries as we have arguments. 9396 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9397 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9398 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9399 StaticAllocas.reserve(NumArgs * 2); 9400 9401 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9402 if (!V) 9403 return nullptr; 9404 V = V->stripPointerCasts(); 9405 const auto *AI = dyn_cast<AllocaInst>(V); 9406 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9407 return nullptr; 9408 auto Iter = StaticAllocas.insert({AI, Unknown}); 9409 return &Iter.first->second; 9410 }; 9411 9412 // Look for stores of arguments to static allocas. Look through bitcasts and 9413 // GEPs to handle type coercions, as long as the alloca is fully initialized 9414 // by the store. Any non-store use of an alloca escapes it and any subsequent 9415 // unanalyzed store might write it. 9416 // FIXME: Handle structs initialized with multiple stores. 9417 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9418 // Look for stores, and handle non-store uses conservatively. 9419 const auto *SI = dyn_cast<StoreInst>(&I); 9420 if (!SI) { 9421 // We will look through cast uses, so ignore them completely. 9422 if (I.isCast()) 9423 continue; 9424 // Ignore debug info intrinsics, they don't escape or store to allocas. 9425 if (isa<DbgInfoIntrinsic>(I)) 9426 continue; 9427 // This is an unknown instruction. Assume it escapes or writes to all 9428 // static alloca operands. 9429 for (const Use &U : I.operands()) { 9430 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9431 *Info = StaticAllocaInfo::Clobbered; 9432 } 9433 continue; 9434 } 9435 9436 // If the stored value is a static alloca, mark it as escaped. 9437 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9438 *Info = StaticAllocaInfo::Clobbered; 9439 9440 // Check if the destination is a static alloca. 9441 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9442 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9443 if (!Info) 9444 continue; 9445 const AllocaInst *AI = cast<AllocaInst>(Dst); 9446 9447 // Skip allocas that have been initialized or clobbered. 9448 if (*Info != StaticAllocaInfo::Unknown) 9449 continue; 9450 9451 // Check if the stored value is an argument, and that this store fully 9452 // initializes the alloca. Don't elide copies from the same argument twice. 9453 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9454 const auto *Arg = dyn_cast<Argument>(Val); 9455 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9456 Arg->getType()->isEmptyTy() || 9457 DL.getTypeStoreSize(Arg->getType()) != 9458 DL.getTypeAllocSize(AI->getAllocatedType()) || 9459 ArgCopyElisionCandidates.count(Arg)) { 9460 *Info = StaticAllocaInfo::Clobbered; 9461 continue; 9462 } 9463 9464 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9465 << '\n'); 9466 9467 // Mark this alloca and store for argument copy elision. 9468 *Info = StaticAllocaInfo::Elidable; 9469 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9470 9471 // Stop scanning if we've seen all arguments. This will happen early in -O0 9472 // builds, which is useful, because -O0 builds have large entry blocks and 9473 // many allocas. 9474 if (ArgCopyElisionCandidates.size() == NumArgs) 9475 break; 9476 } 9477 } 9478 9479 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9480 /// ArgVal is a load from a suitable fixed stack object. 9481 static void tryToElideArgumentCopy( 9482 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9483 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9484 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9485 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9486 SDValue ArgVal, bool &ArgHasUses) { 9487 // Check if this is a load from a fixed stack object. 9488 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9489 if (!LNode) 9490 return; 9491 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9492 if (!FINode) 9493 return; 9494 9495 // Check that the fixed stack object is the right size and alignment. 9496 // Look at the alignment that the user wrote on the alloca instead of looking 9497 // at the stack object. 9498 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9499 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9500 const AllocaInst *AI = ArgCopyIter->second.first; 9501 int FixedIndex = FINode->getIndex(); 9502 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9503 int OldIndex = AllocaIndex; 9504 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9505 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9506 LLVM_DEBUG( 9507 dbgs() << " argument copy elision failed due to bad fixed stack " 9508 "object size\n"); 9509 return; 9510 } 9511 unsigned RequiredAlignment = AI->getAlignment(); 9512 if (!RequiredAlignment) { 9513 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9514 AI->getAllocatedType()); 9515 } 9516 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9517 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9518 "greater than stack argument alignment (" 9519 << RequiredAlignment << " vs " 9520 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9521 return; 9522 } 9523 9524 // Perform the elision. Delete the old stack object and replace its only use 9525 // in the variable info map. Mark the stack object as mutable. 9526 LLVM_DEBUG({ 9527 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9528 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9529 << '\n'; 9530 }); 9531 MFI.RemoveStackObject(OldIndex); 9532 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9533 AllocaIndex = FixedIndex; 9534 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9535 Chains.push_back(ArgVal.getValue(1)); 9536 9537 // Avoid emitting code for the store implementing the copy. 9538 const StoreInst *SI = ArgCopyIter->second.second; 9539 ElidedArgCopyInstrs.insert(SI); 9540 9541 // Check for uses of the argument again so that we can avoid exporting ArgVal 9542 // if it is't used by anything other than the store. 9543 for (const Value *U : Arg.users()) { 9544 if (U != SI) { 9545 ArgHasUses = true; 9546 break; 9547 } 9548 } 9549 } 9550 9551 void SelectionDAGISel::LowerArguments(const Function &F) { 9552 SelectionDAG &DAG = SDB->DAG; 9553 SDLoc dl = SDB->getCurSDLoc(); 9554 const DataLayout &DL = DAG.getDataLayout(); 9555 SmallVector<ISD::InputArg, 16> Ins; 9556 9557 if (!FuncInfo->CanLowerReturn) { 9558 // Put in an sret pointer parameter before all the other parameters. 9559 SmallVector<EVT, 1> ValueVTs; 9560 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9561 F.getReturnType()->getPointerTo( 9562 DAG.getDataLayout().getAllocaAddrSpace()), 9563 ValueVTs); 9564 9565 // NOTE: Assuming that a pointer will never break down to more than one VT 9566 // or one register. 9567 ISD::ArgFlagsTy Flags; 9568 Flags.setSRet(); 9569 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9570 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9571 ISD::InputArg::NoArgIndex, 0); 9572 Ins.push_back(RetArg); 9573 } 9574 9575 // Look for stores of arguments to static allocas. Mark such arguments with a 9576 // flag to ask the target to give us the memory location of that argument if 9577 // available. 9578 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9579 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9580 ArgCopyElisionCandidates); 9581 9582 // Set up the incoming argument description vector. 9583 for (const Argument &Arg : F.args()) { 9584 unsigned ArgNo = Arg.getArgNo(); 9585 SmallVector<EVT, 4> ValueVTs; 9586 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9587 bool isArgValueUsed = !Arg.use_empty(); 9588 unsigned PartBase = 0; 9589 Type *FinalType = Arg.getType(); 9590 if (Arg.hasAttribute(Attribute::ByVal)) 9591 FinalType = Arg.getParamByValType(); 9592 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9593 FinalType, F.getCallingConv(), F.isVarArg()); 9594 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9595 Value != NumValues; ++Value) { 9596 EVT VT = ValueVTs[Value]; 9597 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9598 ISD::ArgFlagsTy Flags; 9599 9600 // Certain targets (such as MIPS), may have a different ABI alignment 9601 // for a type depending on the context. Give the target a chance to 9602 // specify the alignment it wants. 9603 const Align OriginalAlignment( 9604 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9605 9606 if (Arg.getType()->isPointerTy()) { 9607 Flags.setPointer(); 9608 Flags.setPointerAddrSpace( 9609 cast<PointerType>(Arg.getType())->getAddressSpace()); 9610 } 9611 if (Arg.hasAttribute(Attribute::ZExt)) 9612 Flags.setZExt(); 9613 if (Arg.hasAttribute(Attribute::SExt)) 9614 Flags.setSExt(); 9615 if (Arg.hasAttribute(Attribute::InReg)) { 9616 // If we are using vectorcall calling convention, a structure that is 9617 // passed InReg - is surely an HVA 9618 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9619 isa<StructType>(Arg.getType())) { 9620 // The first value of a structure is marked 9621 if (0 == Value) 9622 Flags.setHvaStart(); 9623 Flags.setHva(); 9624 } 9625 // Set InReg Flag 9626 Flags.setInReg(); 9627 } 9628 if (Arg.hasAttribute(Attribute::StructRet)) 9629 Flags.setSRet(); 9630 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9631 Flags.setSwiftSelf(); 9632 if (Arg.hasAttribute(Attribute::SwiftError)) 9633 Flags.setSwiftError(); 9634 if (Arg.hasAttribute(Attribute::ByVal)) 9635 Flags.setByVal(); 9636 if (Arg.hasAttribute(Attribute::InAlloca)) { 9637 Flags.setInAlloca(); 9638 // Set the byval flag for CCAssignFn callbacks that don't know about 9639 // inalloca. This way we can know how many bytes we should've allocated 9640 // and how many bytes a callee cleanup function will pop. If we port 9641 // inalloca to more targets, we'll have to add custom inalloca handling 9642 // in the various CC lowering callbacks. 9643 Flags.setByVal(); 9644 } 9645 if (F.getCallingConv() == CallingConv::X86_INTR) { 9646 // IA Interrupt passes frame (1st parameter) by value in the stack. 9647 if (ArgNo == 0) 9648 Flags.setByVal(); 9649 } 9650 if (Flags.isByVal() || Flags.isInAlloca()) { 9651 Type *ElementTy = Arg.getParamByValType(); 9652 9653 // For ByVal, size and alignment should be passed from FE. BE will 9654 // guess if this info is not there but there are cases it cannot get 9655 // right. 9656 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9657 Flags.setByValSize(FrameSize); 9658 9659 unsigned FrameAlign; 9660 if (Arg.getParamAlignment()) 9661 FrameAlign = Arg.getParamAlignment(); 9662 else 9663 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9664 Flags.setByValAlign(Align(FrameAlign)); 9665 } 9666 if (Arg.hasAttribute(Attribute::Nest)) 9667 Flags.setNest(); 9668 if (NeedsRegBlock) 9669 Flags.setInConsecutiveRegs(); 9670 Flags.setOrigAlign(OriginalAlignment); 9671 if (ArgCopyElisionCandidates.count(&Arg)) 9672 Flags.setCopyElisionCandidate(); 9673 if (Arg.hasAttribute(Attribute::Returned)) 9674 Flags.setReturned(); 9675 9676 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9677 *CurDAG->getContext(), F.getCallingConv(), VT); 9678 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9679 *CurDAG->getContext(), F.getCallingConv(), VT); 9680 for (unsigned i = 0; i != NumRegs; ++i) { 9681 // For scalable vectors, use the minimum size; individual targets 9682 // are responsible for handling scalable vector arguments and 9683 // return values. 9684 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9685 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9686 if (NumRegs > 1 && i == 0) 9687 MyFlags.Flags.setSplit(); 9688 // if it isn't first piece, alignment must be 1 9689 else if (i > 0) { 9690 MyFlags.Flags.setOrigAlign(Align::None()); 9691 if (i == NumRegs - 1) 9692 MyFlags.Flags.setSplitEnd(); 9693 } 9694 Ins.push_back(MyFlags); 9695 } 9696 if (NeedsRegBlock && Value == NumValues - 1) 9697 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9698 PartBase += VT.getStoreSize().getKnownMinSize(); 9699 } 9700 } 9701 9702 // Call the target to set up the argument values. 9703 SmallVector<SDValue, 8> InVals; 9704 SDValue NewRoot = TLI->LowerFormalArguments( 9705 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9706 9707 // Verify that the target's LowerFormalArguments behaved as expected. 9708 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9709 "LowerFormalArguments didn't return a valid chain!"); 9710 assert(InVals.size() == Ins.size() && 9711 "LowerFormalArguments didn't emit the correct number of values!"); 9712 LLVM_DEBUG({ 9713 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9714 assert(InVals[i].getNode() && 9715 "LowerFormalArguments emitted a null value!"); 9716 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9717 "LowerFormalArguments emitted a value with the wrong type!"); 9718 } 9719 }); 9720 9721 // Update the DAG with the new chain value resulting from argument lowering. 9722 DAG.setRoot(NewRoot); 9723 9724 // Set up the argument values. 9725 unsigned i = 0; 9726 if (!FuncInfo->CanLowerReturn) { 9727 // Create a virtual register for the sret pointer, and put in a copy 9728 // from the sret argument into it. 9729 SmallVector<EVT, 1> ValueVTs; 9730 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9731 F.getReturnType()->getPointerTo( 9732 DAG.getDataLayout().getAllocaAddrSpace()), 9733 ValueVTs); 9734 MVT VT = ValueVTs[0].getSimpleVT(); 9735 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9736 Optional<ISD::NodeType> AssertOp = None; 9737 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9738 nullptr, F.getCallingConv(), AssertOp); 9739 9740 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9741 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9742 Register SRetReg = 9743 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9744 FuncInfo->DemoteRegister = SRetReg; 9745 NewRoot = 9746 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9747 DAG.setRoot(NewRoot); 9748 9749 // i indexes lowered arguments. Bump it past the hidden sret argument. 9750 ++i; 9751 } 9752 9753 SmallVector<SDValue, 4> Chains; 9754 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9755 for (const Argument &Arg : F.args()) { 9756 SmallVector<SDValue, 4> ArgValues; 9757 SmallVector<EVT, 4> ValueVTs; 9758 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9759 unsigned NumValues = ValueVTs.size(); 9760 if (NumValues == 0) 9761 continue; 9762 9763 bool ArgHasUses = !Arg.use_empty(); 9764 9765 // Elide the copying store if the target loaded this argument from a 9766 // suitable fixed stack object. 9767 if (Ins[i].Flags.isCopyElisionCandidate()) { 9768 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9769 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9770 InVals[i], ArgHasUses); 9771 } 9772 9773 // If this argument is unused then remember its value. It is used to generate 9774 // debugging information. 9775 bool isSwiftErrorArg = 9776 TLI->supportSwiftError() && 9777 Arg.hasAttribute(Attribute::SwiftError); 9778 if (!ArgHasUses && !isSwiftErrorArg) { 9779 SDB->setUnusedArgValue(&Arg, InVals[i]); 9780 9781 // Also remember any frame index for use in FastISel. 9782 if (FrameIndexSDNode *FI = 9783 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9784 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9785 } 9786 9787 for (unsigned Val = 0; Val != NumValues; ++Val) { 9788 EVT VT = ValueVTs[Val]; 9789 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9790 F.getCallingConv(), VT); 9791 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9792 *CurDAG->getContext(), F.getCallingConv(), VT); 9793 9794 // Even an apparent 'unused' swifterror argument needs to be returned. So 9795 // we do generate a copy for it that can be used on return from the 9796 // function. 9797 if (ArgHasUses || isSwiftErrorArg) { 9798 Optional<ISD::NodeType> AssertOp; 9799 if (Arg.hasAttribute(Attribute::SExt)) 9800 AssertOp = ISD::AssertSext; 9801 else if (Arg.hasAttribute(Attribute::ZExt)) 9802 AssertOp = ISD::AssertZext; 9803 9804 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9805 PartVT, VT, nullptr, 9806 F.getCallingConv(), AssertOp)); 9807 } 9808 9809 i += NumParts; 9810 } 9811 9812 // We don't need to do anything else for unused arguments. 9813 if (ArgValues.empty()) 9814 continue; 9815 9816 // Note down frame index. 9817 if (FrameIndexSDNode *FI = 9818 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9819 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9820 9821 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9822 SDB->getCurSDLoc()); 9823 9824 SDB->setValue(&Arg, Res); 9825 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9826 // We want to associate the argument with the frame index, among 9827 // involved operands, that correspond to the lowest address. The 9828 // getCopyFromParts function, called earlier, is swapping the order of 9829 // the operands to BUILD_PAIR depending on endianness. The result of 9830 // that swapping is that the least significant bits of the argument will 9831 // be in the first operand of the BUILD_PAIR node, and the most 9832 // significant bits will be in the second operand. 9833 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9834 if (LoadSDNode *LNode = 9835 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9836 if (FrameIndexSDNode *FI = 9837 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9838 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9839 } 9840 9841 // Analyses past this point are naive and don't expect an assertion. 9842 if (Res.getOpcode() == ISD::AssertZext) 9843 Res = Res.getOperand(0); 9844 9845 // Update the SwiftErrorVRegDefMap. 9846 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9847 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9848 if (Register::isVirtualRegister(Reg)) 9849 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9850 Reg); 9851 } 9852 9853 // If this argument is live outside of the entry block, insert a copy from 9854 // wherever we got it to the vreg that other BB's will reference it as. 9855 if (Res.getOpcode() == ISD::CopyFromReg) { 9856 // If we can, though, try to skip creating an unnecessary vreg. 9857 // FIXME: This isn't very clean... it would be nice to make this more 9858 // general. 9859 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9860 if (Register::isVirtualRegister(Reg)) { 9861 FuncInfo->ValueMap[&Arg] = Reg; 9862 continue; 9863 } 9864 } 9865 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9866 FuncInfo->InitializeRegForValue(&Arg); 9867 SDB->CopyToExportRegsIfNeeded(&Arg); 9868 } 9869 } 9870 9871 if (!Chains.empty()) { 9872 Chains.push_back(NewRoot); 9873 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9874 } 9875 9876 DAG.setRoot(NewRoot); 9877 9878 assert(i == InVals.size() && "Argument register count mismatch!"); 9879 9880 // If any argument copy elisions occurred and we have debug info, update the 9881 // stale frame indices used in the dbg.declare variable info table. 9882 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9883 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9884 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9885 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9886 if (I != ArgCopyElisionFrameIndexMap.end()) 9887 VI.Slot = I->second; 9888 } 9889 } 9890 9891 // Finally, if the target has anything special to do, allow it to do so. 9892 EmitFunctionEntryCode(); 9893 } 9894 9895 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9896 /// ensure constants are generated when needed. Remember the virtual registers 9897 /// that need to be added to the Machine PHI nodes as input. We cannot just 9898 /// directly add them, because expansion might result in multiple MBB's for one 9899 /// BB. As such, the start of the BB might correspond to a different MBB than 9900 /// the end. 9901 void 9902 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9903 const Instruction *TI = LLVMBB->getTerminator(); 9904 9905 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9906 9907 // Check PHI nodes in successors that expect a value to be available from this 9908 // block. 9909 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9910 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9911 if (!isa<PHINode>(SuccBB->begin())) continue; 9912 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9913 9914 // If this terminator has multiple identical successors (common for 9915 // switches), only handle each succ once. 9916 if (!SuccsHandled.insert(SuccMBB).second) 9917 continue; 9918 9919 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9920 9921 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9922 // nodes and Machine PHI nodes, but the incoming operands have not been 9923 // emitted yet. 9924 for (const PHINode &PN : SuccBB->phis()) { 9925 // Ignore dead phi's. 9926 if (PN.use_empty()) 9927 continue; 9928 9929 // Skip empty types 9930 if (PN.getType()->isEmptyTy()) 9931 continue; 9932 9933 unsigned Reg; 9934 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9935 9936 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9937 unsigned &RegOut = ConstantsOut[C]; 9938 if (RegOut == 0) { 9939 RegOut = FuncInfo.CreateRegs(C); 9940 CopyValueToVirtualRegister(C, RegOut); 9941 } 9942 Reg = RegOut; 9943 } else { 9944 DenseMap<const Value *, unsigned>::iterator I = 9945 FuncInfo.ValueMap.find(PHIOp); 9946 if (I != FuncInfo.ValueMap.end()) 9947 Reg = I->second; 9948 else { 9949 assert(isa<AllocaInst>(PHIOp) && 9950 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9951 "Didn't codegen value into a register!??"); 9952 Reg = FuncInfo.CreateRegs(PHIOp); 9953 CopyValueToVirtualRegister(PHIOp, Reg); 9954 } 9955 } 9956 9957 // Remember that this register needs to added to the machine PHI node as 9958 // the input for this MBB. 9959 SmallVector<EVT, 4> ValueVTs; 9960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9961 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9962 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9963 EVT VT = ValueVTs[vti]; 9964 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9965 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9966 FuncInfo.PHINodesToUpdate.push_back( 9967 std::make_pair(&*MBBI++, Reg + i)); 9968 Reg += NumRegisters; 9969 } 9970 } 9971 } 9972 9973 ConstantsOut.clear(); 9974 } 9975 9976 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9977 /// is 0. 9978 MachineBasicBlock * 9979 SelectionDAGBuilder::StackProtectorDescriptor:: 9980 AddSuccessorMBB(const BasicBlock *BB, 9981 MachineBasicBlock *ParentMBB, 9982 bool IsLikely, 9983 MachineBasicBlock *SuccMBB) { 9984 // If SuccBB has not been created yet, create it. 9985 if (!SuccMBB) { 9986 MachineFunction *MF = ParentMBB->getParent(); 9987 MachineFunction::iterator BBI(ParentMBB); 9988 SuccMBB = MF->CreateMachineBasicBlock(BB); 9989 MF->insert(++BBI, SuccMBB); 9990 } 9991 // Add it as a successor of ParentMBB. 9992 ParentMBB->addSuccessor( 9993 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9994 return SuccMBB; 9995 } 9996 9997 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9998 MachineFunction::iterator I(MBB); 9999 if (++I == FuncInfo.MF->end()) 10000 return nullptr; 10001 return &*I; 10002 } 10003 10004 /// During lowering new call nodes can be created (such as memset, etc.). 10005 /// Those will become new roots of the current DAG, but complications arise 10006 /// when they are tail calls. In such cases, the call lowering will update 10007 /// the root, but the builder still needs to know that a tail call has been 10008 /// lowered in order to avoid generating an additional return. 10009 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10010 // If the node is null, we do have a tail call. 10011 if (MaybeTC.getNode() != nullptr) 10012 DAG.setRoot(MaybeTC); 10013 else 10014 HasTailCall = true; 10015 } 10016 10017 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10018 MachineBasicBlock *SwitchMBB, 10019 MachineBasicBlock *DefaultMBB) { 10020 MachineFunction *CurMF = FuncInfo.MF; 10021 MachineBasicBlock *NextMBB = nullptr; 10022 MachineFunction::iterator BBI(W.MBB); 10023 if (++BBI != FuncInfo.MF->end()) 10024 NextMBB = &*BBI; 10025 10026 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10027 10028 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10029 10030 if (Size == 2 && W.MBB == SwitchMBB) { 10031 // If any two of the cases has the same destination, and if one value 10032 // is the same as the other, but has one bit unset that the other has set, 10033 // use bit manipulation to do two compares at once. For example: 10034 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10035 // TODO: This could be extended to merge any 2 cases in switches with 3 10036 // cases. 10037 // TODO: Handle cases where W.CaseBB != SwitchBB. 10038 CaseCluster &Small = *W.FirstCluster; 10039 CaseCluster &Big = *W.LastCluster; 10040 10041 if (Small.Low == Small.High && Big.Low == Big.High && 10042 Small.MBB == Big.MBB) { 10043 const APInt &SmallValue = Small.Low->getValue(); 10044 const APInt &BigValue = Big.Low->getValue(); 10045 10046 // Check that there is only one bit different. 10047 APInt CommonBit = BigValue ^ SmallValue; 10048 if (CommonBit.isPowerOf2()) { 10049 SDValue CondLHS = getValue(Cond); 10050 EVT VT = CondLHS.getValueType(); 10051 SDLoc DL = getCurSDLoc(); 10052 10053 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10054 DAG.getConstant(CommonBit, DL, VT)); 10055 SDValue Cond = DAG.getSetCC( 10056 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10057 ISD::SETEQ); 10058 10059 // Update successor info. 10060 // Both Small and Big will jump to Small.BB, so we sum up the 10061 // probabilities. 10062 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10063 if (BPI) 10064 addSuccessorWithProb( 10065 SwitchMBB, DefaultMBB, 10066 // The default destination is the first successor in IR. 10067 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10068 else 10069 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10070 10071 // Insert the true branch. 10072 SDValue BrCond = 10073 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10074 DAG.getBasicBlock(Small.MBB)); 10075 // Insert the false branch. 10076 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10077 DAG.getBasicBlock(DefaultMBB)); 10078 10079 DAG.setRoot(BrCond); 10080 return; 10081 } 10082 } 10083 } 10084 10085 if (TM.getOptLevel() != CodeGenOpt::None) { 10086 // Here, we order cases by probability so the most likely case will be 10087 // checked first. However, two clusters can have the same probability in 10088 // which case their relative ordering is non-deterministic. So we use Low 10089 // as a tie-breaker as clusters are guaranteed to never overlap. 10090 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10091 [](const CaseCluster &a, const CaseCluster &b) { 10092 return a.Prob != b.Prob ? 10093 a.Prob > b.Prob : 10094 a.Low->getValue().slt(b.Low->getValue()); 10095 }); 10096 10097 // Rearrange the case blocks so that the last one falls through if possible 10098 // without changing the order of probabilities. 10099 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10100 --I; 10101 if (I->Prob > W.LastCluster->Prob) 10102 break; 10103 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10104 std::swap(*I, *W.LastCluster); 10105 break; 10106 } 10107 } 10108 } 10109 10110 // Compute total probability. 10111 BranchProbability DefaultProb = W.DefaultProb; 10112 BranchProbability UnhandledProbs = DefaultProb; 10113 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10114 UnhandledProbs += I->Prob; 10115 10116 MachineBasicBlock *CurMBB = W.MBB; 10117 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10118 bool FallthroughUnreachable = false; 10119 MachineBasicBlock *Fallthrough; 10120 if (I == W.LastCluster) { 10121 // For the last cluster, fall through to the default destination. 10122 Fallthrough = DefaultMBB; 10123 FallthroughUnreachable = isa<UnreachableInst>( 10124 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10125 } else { 10126 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10127 CurMF->insert(BBI, Fallthrough); 10128 // Put Cond in a virtual register to make it available from the new blocks. 10129 ExportFromCurrentBlock(Cond); 10130 } 10131 UnhandledProbs -= I->Prob; 10132 10133 switch (I->Kind) { 10134 case CC_JumpTable: { 10135 // FIXME: Optimize away range check based on pivot comparisons. 10136 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10137 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10138 10139 // The jump block hasn't been inserted yet; insert it here. 10140 MachineBasicBlock *JumpMBB = JT->MBB; 10141 CurMF->insert(BBI, JumpMBB); 10142 10143 auto JumpProb = I->Prob; 10144 auto FallthroughProb = UnhandledProbs; 10145 10146 // If the default statement is a target of the jump table, we evenly 10147 // distribute the default probability to successors of CurMBB. Also 10148 // update the probability on the edge from JumpMBB to Fallthrough. 10149 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10150 SE = JumpMBB->succ_end(); 10151 SI != SE; ++SI) { 10152 if (*SI == DefaultMBB) { 10153 JumpProb += DefaultProb / 2; 10154 FallthroughProb -= DefaultProb / 2; 10155 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10156 JumpMBB->normalizeSuccProbs(); 10157 break; 10158 } 10159 } 10160 10161 if (FallthroughUnreachable) { 10162 // Skip the range check if the fallthrough block is unreachable. 10163 JTH->OmitRangeCheck = true; 10164 } 10165 10166 if (!JTH->OmitRangeCheck) 10167 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10168 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10169 CurMBB->normalizeSuccProbs(); 10170 10171 // The jump table header will be inserted in our current block, do the 10172 // range check, and fall through to our fallthrough block. 10173 JTH->HeaderBB = CurMBB; 10174 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10175 10176 // If we're in the right place, emit the jump table header right now. 10177 if (CurMBB == SwitchMBB) { 10178 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10179 JTH->Emitted = true; 10180 } 10181 break; 10182 } 10183 case CC_BitTests: { 10184 // FIXME: Optimize away range check based on pivot comparisons. 10185 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10186 10187 // The bit test blocks haven't been inserted yet; insert them here. 10188 for (BitTestCase &BTC : BTB->Cases) 10189 CurMF->insert(BBI, BTC.ThisBB); 10190 10191 // Fill in fields of the BitTestBlock. 10192 BTB->Parent = CurMBB; 10193 BTB->Default = Fallthrough; 10194 10195 BTB->DefaultProb = UnhandledProbs; 10196 // If the cases in bit test don't form a contiguous range, we evenly 10197 // distribute the probability on the edge to Fallthrough to two 10198 // successors of CurMBB. 10199 if (!BTB->ContiguousRange) { 10200 BTB->Prob += DefaultProb / 2; 10201 BTB->DefaultProb -= DefaultProb / 2; 10202 } 10203 10204 if (FallthroughUnreachable) { 10205 // Skip the range check if the fallthrough block is unreachable. 10206 BTB->OmitRangeCheck = true; 10207 } 10208 10209 // If we're in the right place, emit the bit test header right now. 10210 if (CurMBB == SwitchMBB) { 10211 visitBitTestHeader(*BTB, SwitchMBB); 10212 BTB->Emitted = true; 10213 } 10214 break; 10215 } 10216 case CC_Range: { 10217 const Value *RHS, *LHS, *MHS; 10218 ISD::CondCode CC; 10219 if (I->Low == I->High) { 10220 // Check Cond == I->Low. 10221 CC = ISD::SETEQ; 10222 LHS = Cond; 10223 RHS=I->Low; 10224 MHS = nullptr; 10225 } else { 10226 // Check I->Low <= Cond <= I->High. 10227 CC = ISD::SETLE; 10228 LHS = I->Low; 10229 MHS = Cond; 10230 RHS = I->High; 10231 } 10232 10233 // If Fallthrough is unreachable, fold away the comparison. 10234 if (FallthroughUnreachable) 10235 CC = ISD::SETTRUE; 10236 10237 // The false probability is the sum of all unhandled cases. 10238 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10239 getCurSDLoc(), I->Prob, UnhandledProbs); 10240 10241 if (CurMBB == SwitchMBB) 10242 visitSwitchCase(CB, SwitchMBB); 10243 else 10244 SL->SwitchCases.push_back(CB); 10245 10246 break; 10247 } 10248 } 10249 CurMBB = Fallthrough; 10250 } 10251 } 10252 10253 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10254 CaseClusterIt First, 10255 CaseClusterIt Last) { 10256 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10257 if (X.Prob != CC.Prob) 10258 return X.Prob > CC.Prob; 10259 10260 // Ties are broken by comparing the case value. 10261 return X.Low->getValue().slt(CC.Low->getValue()); 10262 }); 10263 } 10264 10265 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10266 const SwitchWorkListItem &W, 10267 Value *Cond, 10268 MachineBasicBlock *SwitchMBB) { 10269 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10270 "Clusters not sorted?"); 10271 10272 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10273 10274 // Balance the tree based on branch probabilities to create a near-optimal (in 10275 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10276 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10277 CaseClusterIt LastLeft = W.FirstCluster; 10278 CaseClusterIt FirstRight = W.LastCluster; 10279 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10280 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10281 10282 // Move LastLeft and FirstRight towards each other from opposite directions to 10283 // find a partitioning of the clusters which balances the probability on both 10284 // sides. If LeftProb and RightProb are equal, alternate which side is 10285 // taken to ensure 0-probability nodes are distributed evenly. 10286 unsigned I = 0; 10287 while (LastLeft + 1 < FirstRight) { 10288 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10289 LeftProb += (++LastLeft)->Prob; 10290 else 10291 RightProb += (--FirstRight)->Prob; 10292 I++; 10293 } 10294 10295 while (true) { 10296 // Our binary search tree differs from a typical BST in that ours can have up 10297 // to three values in each leaf. The pivot selection above doesn't take that 10298 // into account, which means the tree might require more nodes and be less 10299 // efficient. We compensate for this here. 10300 10301 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10302 unsigned NumRight = W.LastCluster - FirstRight + 1; 10303 10304 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10305 // If one side has less than 3 clusters, and the other has more than 3, 10306 // consider taking a cluster from the other side. 10307 10308 if (NumLeft < NumRight) { 10309 // Consider moving the first cluster on the right to the left side. 10310 CaseCluster &CC = *FirstRight; 10311 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10312 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10313 if (LeftSideRank <= RightSideRank) { 10314 // Moving the cluster to the left does not demote it. 10315 ++LastLeft; 10316 ++FirstRight; 10317 continue; 10318 } 10319 } else { 10320 assert(NumRight < NumLeft); 10321 // Consider moving the last element on the left to the right side. 10322 CaseCluster &CC = *LastLeft; 10323 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10324 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10325 if (RightSideRank <= LeftSideRank) { 10326 // Moving the cluster to the right does not demot it. 10327 --LastLeft; 10328 --FirstRight; 10329 continue; 10330 } 10331 } 10332 } 10333 break; 10334 } 10335 10336 assert(LastLeft + 1 == FirstRight); 10337 assert(LastLeft >= W.FirstCluster); 10338 assert(FirstRight <= W.LastCluster); 10339 10340 // Use the first element on the right as pivot since we will make less-than 10341 // comparisons against it. 10342 CaseClusterIt PivotCluster = FirstRight; 10343 assert(PivotCluster > W.FirstCluster); 10344 assert(PivotCluster <= W.LastCluster); 10345 10346 CaseClusterIt FirstLeft = W.FirstCluster; 10347 CaseClusterIt LastRight = W.LastCluster; 10348 10349 const ConstantInt *Pivot = PivotCluster->Low; 10350 10351 // New blocks will be inserted immediately after the current one. 10352 MachineFunction::iterator BBI(W.MBB); 10353 ++BBI; 10354 10355 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10356 // we can branch to its destination directly if it's squeezed exactly in 10357 // between the known lower bound and Pivot - 1. 10358 MachineBasicBlock *LeftMBB; 10359 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10360 FirstLeft->Low == W.GE && 10361 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10362 LeftMBB = FirstLeft->MBB; 10363 } else { 10364 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10365 FuncInfo.MF->insert(BBI, LeftMBB); 10366 WorkList.push_back( 10367 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10368 // Put Cond in a virtual register to make it available from the new blocks. 10369 ExportFromCurrentBlock(Cond); 10370 } 10371 10372 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10373 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10374 // directly if RHS.High equals the current upper bound. 10375 MachineBasicBlock *RightMBB; 10376 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10377 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10378 RightMBB = FirstRight->MBB; 10379 } else { 10380 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10381 FuncInfo.MF->insert(BBI, RightMBB); 10382 WorkList.push_back( 10383 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10384 // Put Cond in a virtual register to make it available from the new blocks. 10385 ExportFromCurrentBlock(Cond); 10386 } 10387 10388 // Create the CaseBlock record that will be used to lower the branch. 10389 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10390 getCurSDLoc(), LeftProb, RightProb); 10391 10392 if (W.MBB == SwitchMBB) 10393 visitSwitchCase(CB, SwitchMBB); 10394 else 10395 SL->SwitchCases.push_back(CB); 10396 } 10397 10398 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10399 // from the swith statement. 10400 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10401 BranchProbability PeeledCaseProb) { 10402 if (PeeledCaseProb == BranchProbability::getOne()) 10403 return BranchProbability::getZero(); 10404 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10405 10406 uint32_t Numerator = CaseProb.getNumerator(); 10407 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10408 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10409 } 10410 10411 // Try to peel the top probability case if it exceeds the threshold. 10412 // Return current MachineBasicBlock for the switch statement if the peeling 10413 // does not occur. 10414 // If the peeling is performed, return the newly created MachineBasicBlock 10415 // for the peeled switch statement. Also update Clusters to remove the peeled 10416 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10417 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10418 const SwitchInst &SI, CaseClusterVector &Clusters, 10419 BranchProbability &PeeledCaseProb) { 10420 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10421 // Don't perform if there is only one cluster or optimizing for size. 10422 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10423 TM.getOptLevel() == CodeGenOpt::None || 10424 SwitchMBB->getParent()->getFunction().hasMinSize()) 10425 return SwitchMBB; 10426 10427 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10428 unsigned PeeledCaseIndex = 0; 10429 bool SwitchPeeled = false; 10430 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10431 CaseCluster &CC = Clusters[Index]; 10432 if (CC.Prob < TopCaseProb) 10433 continue; 10434 TopCaseProb = CC.Prob; 10435 PeeledCaseIndex = Index; 10436 SwitchPeeled = true; 10437 } 10438 if (!SwitchPeeled) 10439 return SwitchMBB; 10440 10441 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10442 << TopCaseProb << "\n"); 10443 10444 // Record the MBB for the peeled switch statement. 10445 MachineFunction::iterator BBI(SwitchMBB); 10446 ++BBI; 10447 MachineBasicBlock *PeeledSwitchMBB = 10448 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10449 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10450 10451 ExportFromCurrentBlock(SI.getCondition()); 10452 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10453 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10454 nullptr, nullptr, TopCaseProb.getCompl()}; 10455 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10456 10457 Clusters.erase(PeeledCaseIt); 10458 for (CaseCluster &CC : Clusters) { 10459 LLVM_DEBUG( 10460 dbgs() << "Scale the probablity for one cluster, before scaling: " 10461 << CC.Prob << "\n"); 10462 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10463 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10464 } 10465 PeeledCaseProb = TopCaseProb; 10466 return PeeledSwitchMBB; 10467 } 10468 10469 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10470 // Extract cases from the switch. 10471 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10472 CaseClusterVector Clusters; 10473 Clusters.reserve(SI.getNumCases()); 10474 for (auto I : SI.cases()) { 10475 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10476 const ConstantInt *CaseVal = I.getCaseValue(); 10477 BranchProbability Prob = 10478 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10479 : BranchProbability(1, SI.getNumCases() + 1); 10480 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10481 } 10482 10483 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10484 10485 // Cluster adjacent cases with the same destination. We do this at all 10486 // optimization levels because it's cheap to do and will make codegen faster 10487 // if there are many clusters. 10488 sortAndRangeify(Clusters); 10489 10490 // The branch probablity of the peeled case. 10491 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10492 MachineBasicBlock *PeeledSwitchMBB = 10493 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10494 10495 // If there is only the default destination, jump there directly. 10496 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10497 if (Clusters.empty()) { 10498 assert(PeeledSwitchMBB == SwitchMBB); 10499 SwitchMBB->addSuccessor(DefaultMBB); 10500 if (DefaultMBB != NextBlock(SwitchMBB)) { 10501 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10502 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10503 } 10504 return; 10505 } 10506 10507 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10508 SL->findBitTestClusters(Clusters, &SI); 10509 10510 LLVM_DEBUG({ 10511 dbgs() << "Case clusters: "; 10512 for (const CaseCluster &C : Clusters) { 10513 if (C.Kind == CC_JumpTable) 10514 dbgs() << "JT:"; 10515 if (C.Kind == CC_BitTests) 10516 dbgs() << "BT:"; 10517 10518 C.Low->getValue().print(dbgs(), true); 10519 if (C.Low != C.High) { 10520 dbgs() << '-'; 10521 C.High->getValue().print(dbgs(), true); 10522 } 10523 dbgs() << ' '; 10524 } 10525 dbgs() << '\n'; 10526 }); 10527 10528 assert(!Clusters.empty()); 10529 SwitchWorkList WorkList; 10530 CaseClusterIt First = Clusters.begin(); 10531 CaseClusterIt Last = Clusters.end() - 1; 10532 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10533 // Scale the branchprobability for DefaultMBB if the peel occurs and 10534 // DefaultMBB is not replaced. 10535 if (PeeledCaseProb != BranchProbability::getZero() && 10536 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10537 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10538 WorkList.push_back( 10539 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10540 10541 while (!WorkList.empty()) { 10542 SwitchWorkListItem W = WorkList.back(); 10543 WorkList.pop_back(); 10544 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10545 10546 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10547 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10548 // For optimized builds, lower large range as a balanced binary tree. 10549 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10550 continue; 10551 } 10552 10553 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10554 } 10555 } 10556 10557 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10558 SDValue N = getValue(I.getOperand(0)); 10559 setValue(&I, N); 10560 } 10561