1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 if (const OverflowingBinaryOperator *OFBinOp = 2143 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2144 nuw = OFBinOp->hasNoUnsignedWrap(); 2145 nsw = OFBinOp->hasNoSignedWrap(); 2146 } 2147 if (const PossiblyExactOperator *ExactOp = 2148 dyn_cast<const PossiblyExactOperator>(&I)) 2149 exact = ExactOp->isExact(); 2150 2151 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2152 Op1, Op2, nuw, nsw, exact); 2153 setValue(&I, BinNodeValue); 2154 } 2155 2156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2157 SDValue Op1 = getValue(I.getOperand(0)); 2158 SDValue Op2 = getValue(I.getOperand(1)); 2159 2160 EVT ShiftTy = 2161 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2162 2163 // Coerce the shift amount to the right type if we can. 2164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2165 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2166 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2167 SDLoc DL = getCurSDLoc(); 2168 2169 // If the operand is smaller than the shift count type, promote it. 2170 if (ShiftSize > Op2Size) 2171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2172 2173 // If the operand is larger than the shift count type but the shift 2174 // count type has enough bits to represent any shift value, truncate 2175 // it now. This is a common case and it exposes the truncate to 2176 // optimization early. 2177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2179 // Otherwise we'll need to temporarily settle for some other convenient 2180 // type. Type legalization will make adjustments once the shiftee is split. 2181 else 2182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2183 } 2184 2185 bool nuw = false; 2186 bool nsw = false; 2187 bool exact = false; 2188 2189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2190 2191 if (const OverflowingBinaryOperator *OFBinOp = 2192 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2193 nuw = OFBinOp->hasNoUnsignedWrap(); 2194 nsw = OFBinOp->hasNoSignedWrap(); 2195 } 2196 if (const PossiblyExactOperator *ExactOp = 2197 dyn_cast<const PossiblyExactOperator>(&I)) 2198 exact = ExactOp->isExact(); 2199 } 2200 2201 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2202 nuw, nsw, exact); 2203 setValue(&I, Res); 2204 } 2205 2206 void SelectionDAGBuilder::visitSDiv(const User &I) { 2207 SDValue Op1 = getValue(I.getOperand(0)); 2208 SDValue Op2 = getValue(I.getOperand(1)); 2209 2210 // Turn exact SDivs into multiplications. 2211 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2212 // exact bit. 2213 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2214 !isa<ConstantSDNode>(Op1) && 2215 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2216 setValue(&I, DAG.getTargetLoweringInfo() 2217 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2218 else 2219 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2220 Op1, Op2)); 2221 } 2222 2223 void SelectionDAGBuilder::visitICmp(const User &I) { 2224 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2225 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2226 predicate = IC->getPredicate(); 2227 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2228 predicate = ICmpInst::Predicate(IC->getPredicate()); 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 ISD::CondCode Opcode = getICmpCondCode(predicate); 2232 2233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2235 } 2236 2237 void SelectionDAGBuilder::visitFCmp(const User &I) { 2238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2240 predicate = FC->getPredicate(); 2241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2242 predicate = FCmpInst::Predicate(FC->getPredicate()); 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 ISD::CondCode Condition = getFCmpCondCode(predicate); 2246 if (TM.Options.NoNaNsFPMath) 2247 Condition = getFCmpCodeWithoutNaN(Condition); 2248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2249 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2250 } 2251 2252 void SelectionDAGBuilder::visitSelect(const User &I) { 2253 SmallVector<EVT, 4> ValueVTs; 2254 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2255 unsigned NumValues = ValueVTs.size(); 2256 if (NumValues == 0) return; 2257 2258 SmallVector<SDValue, 4> Values(NumValues); 2259 SDValue Cond = getValue(I.getOperand(0)); 2260 SDValue LHSVal = getValue(I.getOperand(1)); 2261 SDValue RHSVal = getValue(I.getOperand(2)); 2262 auto BaseOps = {Cond}; 2263 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2264 ISD::VSELECT : ISD::SELECT; 2265 2266 // Min/max matching is only viable if all output VTs are the same. 2267 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2268 Value *LHS, *RHS; 2269 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2270 ISD::NodeType Opc = ISD::DELETED_NODE; 2271 switch (SPF) { 2272 case SPF_UMAX: Opc = ISD::UMAX; break; 2273 case SPF_UMIN: Opc = ISD::UMIN; break; 2274 case SPF_SMAX: Opc = ISD::SMAX; break; 2275 case SPF_SMIN: Opc = ISD::SMIN; break; 2276 default: break; 2277 } 2278 2279 EVT VT = ValueVTs[0]; 2280 LLVMContext &Ctx = *DAG.getContext(); 2281 auto &TLI = DAG.getTargetLoweringInfo(); 2282 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2283 VT = TLI.getTypeToTransformTo(Ctx, VT); 2284 2285 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT)) { 2286 OpCode = Opc; 2287 LHSVal = getValue(LHS); 2288 RHSVal = getValue(RHS); 2289 BaseOps = {}; 2290 } 2291 } 2292 2293 for (unsigned i = 0; i != NumValues; ++i) { 2294 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2295 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2296 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2297 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2298 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2299 Ops); 2300 } 2301 2302 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2303 DAG.getVTList(ValueVTs), Values)); 2304 } 2305 2306 void SelectionDAGBuilder::visitTrunc(const User &I) { 2307 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2308 SDValue N = getValue(I.getOperand(0)); 2309 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2310 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2311 } 2312 2313 void SelectionDAGBuilder::visitZExt(const User &I) { 2314 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2315 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2316 SDValue N = getValue(I.getOperand(0)); 2317 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2318 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2319 } 2320 2321 void SelectionDAGBuilder::visitSExt(const User &I) { 2322 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2323 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2324 SDValue N = getValue(I.getOperand(0)); 2325 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2326 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2327 } 2328 2329 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2330 // FPTrunc is never a no-op cast, no need to check 2331 SDValue N = getValue(I.getOperand(0)); 2332 SDLoc dl = getCurSDLoc(); 2333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2334 EVT DestVT = TLI.getValueType(I.getType()); 2335 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2336 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2337 } 2338 2339 void SelectionDAGBuilder::visitFPExt(const User &I) { 2340 // FPExt is never a no-op cast, no need to check 2341 SDValue N = getValue(I.getOperand(0)); 2342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2343 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2347 // FPToUI is never a no-op cast, no need to check 2348 SDValue N = getValue(I.getOperand(0)); 2349 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2350 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2351 } 2352 2353 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2354 // FPToSI is never a no-op cast, no need to check 2355 SDValue N = getValue(I.getOperand(0)); 2356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2357 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2358 } 2359 2360 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2361 // UIToFP is never a no-op cast, no need to check 2362 SDValue N = getValue(I.getOperand(0)); 2363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2364 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2365 } 2366 2367 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2368 // SIToFP is never a no-op cast, no need to check 2369 SDValue N = getValue(I.getOperand(0)); 2370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2371 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2372 } 2373 2374 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2375 // What to do depends on the size of the integer and the size of the pointer. 2376 // We can either truncate, zero extend, or no-op, accordingly. 2377 SDValue N = getValue(I.getOperand(0)); 2378 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2379 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2380 } 2381 2382 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2383 // What to do depends on the size of the integer and the size of the pointer. 2384 // We can either truncate, zero extend, or no-op, accordingly. 2385 SDValue N = getValue(I.getOperand(0)); 2386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2387 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2388 } 2389 2390 void SelectionDAGBuilder::visitBitCast(const User &I) { 2391 SDValue N = getValue(I.getOperand(0)); 2392 SDLoc dl = getCurSDLoc(); 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2394 2395 // BitCast assures us that source and destination are the same size so this is 2396 // either a BITCAST or a no-op. 2397 if (DestVT != N.getValueType()) 2398 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2399 DestVT, N)); // convert types. 2400 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2401 // might fold any kind of constant expression to an integer constant and that 2402 // is not what we are looking for. Only regcognize a bitcast of a genuine 2403 // constant integer as an opaque constant. 2404 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2405 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2406 /*isOpaque*/true)); 2407 else 2408 setValue(&I, N); // noop cast. 2409 } 2410 2411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2413 const Value *SV = I.getOperand(0); 2414 SDValue N = getValue(SV); 2415 EVT DestVT = TLI.getValueType(I.getType()); 2416 2417 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2418 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2419 2420 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2421 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2422 2423 setValue(&I, N); 2424 } 2425 2426 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2428 SDValue InVec = getValue(I.getOperand(0)); 2429 SDValue InVal = getValue(I.getOperand(1)); 2430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2431 getCurSDLoc(), TLI.getVectorIdxTy()); 2432 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2433 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2434 } 2435 2436 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2438 SDValue InVec = getValue(I.getOperand(0)); 2439 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2440 getCurSDLoc(), TLI.getVectorIdxTy()); 2441 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2442 TLI.getValueType(I.getType()), InVec, InIdx)); 2443 } 2444 2445 // Utility for visitShuffleVector - Return true if every element in Mask, 2446 // beginning from position Pos and ending in Pos+Size, falls within the 2447 // specified sequential range [L, L+Pos). or is undef. 2448 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2449 unsigned Pos, unsigned Size, int Low) { 2450 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2451 if (Mask[i] >= 0 && Mask[i] != Low) 2452 return false; 2453 return true; 2454 } 2455 2456 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2457 SDValue Src1 = getValue(I.getOperand(0)); 2458 SDValue Src2 = getValue(I.getOperand(1)); 2459 2460 SmallVector<int, 8> Mask; 2461 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2462 unsigned MaskNumElts = Mask.size(); 2463 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 EVT VT = TLI.getValueType(I.getType()); 2466 EVT SrcVT = Src1.getValueType(); 2467 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2468 2469 if (SrcNumElts == MaskNumElts) { 2470 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2471 &Mask[0])); 2472 return; 2473 } 2474 2475 // Normalize the shuffle vector since mask and vector length don't match. 2476 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2477 // Mask is longer than the source vectors and is a multiple of the source 2478 // vectors. We can use concatenate vector to make the mask and vectors 2479 // lengths match. 2480 if (SrcNumElts*2 == MaskNumElts) { 2481 // First check for Src1 in low and Src2 in high 2482 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2483 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2484 // The shuffle is concatenating two vectors together. 2485 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2486 VT, Src1, Src2)); 2487 return; 2488 } 2489 // Then check for Src2 in low and Src1 in high 2490 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2491 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2492 // The shuffle is concatenating two vectors together. 2493 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2494 VT, Src2, Src1)); 2495 return; 2496 } 2497 } 2498 2499 // Pad both vectors with undefs to make them the same length as the mask. 2500 unsigned NumConcat = MaskNumElts / SrcNumElts; 2501 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2502 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2503 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2504 2505 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2506 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2507 MOps1[0] = Src1; 2508 MOps2[0] = Src2; 2509 2510 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2511 getCurSDLoc(), VT, MOps1); 2512 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2513 getCurSDLoc(), VT, MOps2); 2514 2515 // Readjust mask for new input vector length. 2516 SmallVector<int, 8> MappedOps; 2517 for (unsigned i = 0; i != MaskNumElts; ++i) { 2518 int Idx = Mask[i]; 2519 if (Idx >= (int)SrcNumElts) 2520 Idx -= SrcNumElts - MaskNumElts; 2521 MappedOps.push_back(Idx); 2522 } 2523 2524 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2525 &MappedOps[0])); 2526 return; 2527 } 2528 2529 if (SrcNumElts > MaskNumElts) { 2530 // Analyze the access pattern of the vector to see if we can extract 2531 // two subvectors and do the shuffle. The analysis is done by calculating 2532 // the range of elements the mask access on both vectors. 2533 int MinRange[2] = { static_cast<int>(SrcNumElts), 2534 static_cast<int>(SrcNumElts)}; 2535 int MaxRange[2] = {-1, -1}; 2536 2537 for (unsigned i = 0; i != MaskNumElts; ++i) { 2538 int Idx = Mask[i]; 2539 unsigned Input = 0; 2540 if (Idx < 0) 2541 continue; 2542 2543 if (Idx >= (int)SrcNumElts) { 2544 Input = 1; 2545 Idx -= SrcNumElts; 2546 } 2547 if (Idx > MaxRange[Input]) 2548 MaxRange[Input] = Idx; 2549 if (Idx < MinRange[Input]) 2550 MinRange[Input] = Idx; 2551 } 2552 2553 // Check if the access is smaller than the vector size and can we find 2554 // a reasonable extract index. 2555 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2556 // Extract. 2557 int StartIdx[2]; // StartIdx to extract from 2558 for (unsigned Input = 0; Input < 2; ++Input) { 2559 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2560 RangeUse[Input] = 0; // Unused 2561 StartIdx[Input] = 0; 2562 continue; 2563 } 2564 2565 // Find a good start index that is a multiple of the mask length. Then 2566 // see if the rest of the elements are in range. 2567 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2568 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2569 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2570 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2571 } 2572 2573 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2574 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2575 return; 2576 } 2577 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2578 // Extract appropriate subvector and generate a vector shuffle 2579 for (unsigned Input = 0; Input < 2; ++Input) { 2580 SDValue &Src = Input == 0 ? Src1 : Src2; 2581 if (RangeUse[Input] == 0) 2582 Src = DAG.getUNDEF(VT); 2583 else { 2584 SDLoc dl = getCurSDLoc(); 2585 Src = DAG.getNode( 2586 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2587 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2588 } 2589 } 2590 2591 // Calculate new mask. 2592 SmallVector<int, 8> MappedOps; 2593 for (unsigned i = 0; i != MaskNumElts; ++i) { 2594 int Idx = Mask[i]; 2595 if (Idx >= 0) { 2596 if (Idx < (int)SrcNumElts) 2597 Idx -= StartIdx[0]; 2598 else 2599 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2600 } 2601 MappedOps.push_back(Idx); 2602 } 2603 2604 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2605 &MappedOps[0])); 2606 return; 2607 } 2608 } 2609 2610 // We can't use either concat vectors or extract subvectors so fall back to 2611 // replacing the shuffle with extract and build vector. 2612 // to insert and build vector. 2613 EVT EltVT = VT.getVectorElementType(); 2614 EVT IdxVT = TLI.getVectorIdxTy(); 2615 SDLoc dl = getCurSDLoc(); 2616 SmallVector<SDValue,8> Ops; 2617 for (unsigned i = 0; i != MaskNumElts; ++i) { 2618 int Idx = Mask[i]; 2619 SDValue Res; 2620 2621 if (Idx < 0) { 2622 Res = DAG.getUNDEF(EltVT); 2623 } else { 2624 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2625 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2626 2627 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2628 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2629 } 2630 2631 Ops.push_back(Res); 2632 } 2633 2634 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2635 } 2636 2637 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2638 const Value *Op0 = I.getOperand(0); 2639 const Value *Op1 = I.getOperand(1); 2640 Type *AggTy = I.getType(); 2641 Type *ValTy = Op1->getType(); 2642 bool IntoUndef = isa<UndefValue>(Op0); 2643 bool FromUndef = isa<UndefValue>(Op1); 2644 2645 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2646 2647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2648 SmallVector<EVT, 4> AggValueVTs; 2649 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2650 SmallVector<EVT, 4> ValValueVTs; 2651 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2652 2653 unsigned NumAggValues = AggValueVTs.size(); 2654 unsigned NumValValues = ValValueVTs.size(); 2655 SmallVector<SDValue, 4> Values(NumAggValues); 2656 2657 // Ignore an insertvalue that produces an empty object 2658 if (!NumAggValues) { 2659 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2660 return; 2661 } 2662 2663 SDValue Agg = getValue(Op0); 2664 unsigned i = 0; 2665 // Copy the beginning value(s) from the original aggregate. 2666 for (; i != LinearIndex; ++i) 2667 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2668 SDValue(Agg.getNode(), Agg.getResNo() + i); 2669 // Copy values from the inserted value(s). 2670 if (NumValValues) { 2671 SDValue Val = getValue(Op1); 2672 for (; i != LinearIndex + NumValValues; ++i) 2673 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2674 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2675 } 2676 // Copy remaining value(s) from the original aggregate. 2677 for (; i != NumAggValues; ++i) 2678 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2679 SDValue(Agg.getNode(), Agg.getResNo() + i); 2680 2681 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2682 DAG.getVTList(AggValueVTs), Values)); 2683 } 2684 2685 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2686 const Value *Op0 = I.getOperand(0); 2687 Type *AggTy = Op0->getType(); 2688 Type *ValTy = I.getType(); 2689 bool OutOfUndef = isa<UndefValue>(Op0); 2690 2691 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2692 2693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2694 SmallVector<EVT, 4> ValValueVTs; 2695 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2696 2697 unsigned NumValValues = ValValueVTs.size(); 2698 2699 // Ignore a extractvalue that produces an empty object 2700 if (!NumValValues) { 2701 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2702 return; 2703 } 2704 2705 SmallVector<SDValue, 4> Values(NumValValues); 2706 2707 SDValue Agg = getValue(Op0); 2708 // Copy out the selected value(s). 2709 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2710 Values[i - LinearIndex] = 2711 OutOfUndef ? 2712 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2713 SDValue(Agg.getNode(), Agg.getResNo() + i); 2714 2715 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2716 DAG.getVTList(ValValueVTs), Values)); 2717 } 2718 2719 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2720 Value *Op0 = I.getOperand(0); 2721 // Note that the pointer operand may be a vector of pointers. Take the scalar 2722 // element which holds a pointer. 2723 Type *Ty = Op0->getType()->getScalarType(); 2724 unsigned AS = Ty->getPointerAddressSpace(); 2725 SDValue N = getValue(Op0); 2726 SDLoc dl = getCurSDLoc(); 2727 2728 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2729 OI != E; ++OI) { 2730 const Value *Idx = *OI; 2731 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2732 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2733 if (Field) { 2734 // N = N + Offset 2735 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2736 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2737 DAG.getConstant(Offset, dl, N.getValueType())); 2738 } 2739 2740 Ty = StTy->getElementType(Field); 2741 } else { 2742 Ty = cast<SequentialType>(Ty)->getElementType(); 2743 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2744 unsigned PtrSize = PtrTy.getSizeInBits(); 2745 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2746 2747 // If this is a constant subscript, handle it quickly. 2748 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2749 if (CI->isZero()) 2750 continue; 2751 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2752 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2753 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2754 continue; 2755 } 2756 2757 // N = N + Idx * ElementSize; 2758 SDValue IdxN = getValue(Idx); 2759 2760 // If the index is smaller or larger than intptr_t, truncate or extend 2761 // it. 2762 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2763 2764 // If this is a multiply by a power of two, turn it into a shl 2765 // immediately. This is a very common case. 2766 if (ElementSize != 1) { 2767 if (ElementSize.isPowerOf2()) { 2768 unsigned Amt = ElementSize.logBase2(); 2769 IdxN = DAG.getNode(ISD::SHL, dl, 2770 N.getValueType(), IdxN, 2771 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2772 } else { 2773 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2774 IdxN = DAG.getNode(ISD::MUL, dl, 2775 N.getValueType(), IdxN, Scale); 2776 } 2777 } 2778 2779 N = DAG.getNode(ISD::ADD, dl, 2780 N.getValueType(), N, IdxN); 2781 } 2782 } 2783 2784 setValue(&I, N); 2785 } 2786 2787 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2788 // If this is a fixed sized alloca in the entry block of the function, 2789 // allocate it statically on the stack. 2790 if (FuncInfo.StaticAllocaMap.count(&I)) 2791 return; // getValue will auto-populate this. 2792 2793 SDLoc dl = getCurSDLoc(); 2794 Type *Ty = I.getAllocatedType(); 2795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2796 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2797 unsigned Align = 2798 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2799 I.getAlignment()); 2800 2801 SDValue AllocSize = getValue(I.getArraySize()); 2802 2803 EVT IntPtr = TLI.getPointerTy(); 2804 if (AllocSize.getValueType() != IntPtr) 2805 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2806 2807 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2808 AllocSize, 2809 DAG.getConstant(TySize, dl, IntPtr)); 2810 2811 // Handle alignment. If the requested alignment is less than or equal to 2812 // the stack alignment, ignore it. If the size is greater than or equal to 2813 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2814 unsigned StackAlign = 2815 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2816 if (Align <= StackAlign) 2817 Align = 0; 2818 2819 // Round the size of the allocation up to the stack alignment size 2820 // by add SA-1 to the size. 2821 AllocSize = DAG.getNode(ISD::ADD, dl, 2822 AllocSize.getValueType(), AllocSize, 2823 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2824 2825 // Mask out the low bits for alignment purposes. 2826 AllocSize = DAG.getNode(ISD::AND, dl, 2827 AllocSize.getValueType(), AllocSize, 2828 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2829 dl)); 2830 2831 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2832 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2833 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2834 setValue(&I, DSA); 2835 DAG.setRoot(DSA.getValue(1)); 2836 2837 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2838 } 2839 2840 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2841 if (I.isAtomic()) 2842 return visitAtomicLoad(I); 2843 2844 const Value *SV = I.getOperand(0); 2845 SDValue Ptr = getValue(SV); 2846 2847 Type *Ty = I.getType(); 2848 2849 bool isVolatile = I.isVolatile(); 2850 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2851 2852 // The IR notion of invariant_load only guarantees that all *non-faulting* 2853 // invariant loads result in the same value. The MI notion of invariant load 2854 // guarantees that the load can be legally moved to any location within its 2855 // containing function. The MI notion of invariant_load is stronger than the 2856 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2857 // with a guarantee that the location being loaded from is dereferenceable 2858 // throughout the function's lifetime. 2859 2860 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2861 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2862 unsigned Alignment = I.getAlignment(); 2863 2864 AAMDNodes AAInfo; 2865 I.getAAMetadata(AAInfo); 2866 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2867 2868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2869 SmallVector<EVT, 4> ValueVTs; 2870 SmallVector<uint64_t, 4> Offsets; 2871 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2872 unsigned NumValues = ValueVTs.size(); 2873 if (NumValues == 0) 2874 return; 2875 2876 SDValue Root; 2877 bool ConstantMemory = false; 2878 if (isVolatile || NumValues > MaxParallelChains) 2879 // Serialize volatile loads with other side effects. 2880 Root = getRoot(); 2881 else if (AA->pointsToConstantMemory( 2882 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2883 // Do not serialize (non-volatile) loads of constant memory with anything. 2884 Root = DAG.getEntryNode(); 2885 ConstantMemory = true; 2886 } else { 2887 // Do not serialize non-volatile loads against each other. 2888 Root = DAG.getRoot(); 2889 } 2890 2891 SDLoc dl = getCurSDLoc(); 2892 2893 if (isVolatile) 2894 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2895 2896 SmallVector<SDValue, 4> Values(NumValues); 2897 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2898 NumValues)); 2899 EVT PtrVT = Ptr.getValueType(); 2900 unsigned ChainI = 0; 2901 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2902 // Serializing loads here may result in excessive register pressure, and 2903 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2904 // could recover a bit by hoisting nodes upward in the chain by recognizing 2905 // they are side-effect free or do not alias. The optimizer should really 2906 // avoid this case by converting large object/array copies to llvm.memcpy 2907 // (MaxParallelChains should always remain as failsafe). 2908 if (ChainI == MaxParallelChains) { 2909 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2910 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2911 makeArrayRef(Chains.data(), ChainI)); 2912 Root = Chain; 2913 ChainI = 0; 2914 } 2915 SDValue A = DAG.getNode(ISD::ADD, dl, 2916 PtrVT, Ptr, 2917 DAG.getConstant(Offsets[i], dl, PtrVT)); 2918 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2919 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2920 isNonTemporal, isInvariant, Alignment, AAInfo, 2921 Ranges); 2922 2923 Values[i] = L; 2924 Chains[ChainI] = L.getValue(1); 2925 } 2926 2927 if (!ConstantMemory) { 2928 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2929 makeArrayRef(Chains.data(), ChainI)); 2930 if (isVolatile) 2931 DAG.setRoot(Chain); 2932 else 2933 PendingLoads.push_back(Chain); 2934 } 2935 2936 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2937 DAG.getVTList(ValueVTs), Values)); 2938 } 2939 2940 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2941 if (I.isAtomic()) 2942 return visitAtomicStore(I); 2943 2944 const Value *SrcV = I.getOperand(0); 2945 const Value *PtrV = I.getOperand(1); 2946 2947 SmallVector<EVT, 4> ValueVTs; 2948 SmallVector<uint64_t, 4> Offsets; 2949 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2950 ValueVTs, &Offsets); 2951 unsigned NumValues = ValueVTs.size(); 2952 if (NumValues == 0) 2953 return; 2954 2955 // Get the lowered operands. Note that we do this after 2956 // checking if NumResults is zero, because with zero results 2957 // the operands won't have values in the map. 2958 SDValue Src = getValue(SrcV); 2959 SDValue Ptr = getValue(PtrV); 2960 2961 SDValue Root = getRoot(); 2962 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2963 NumValues)); 2964 EVT PtrVT = Ptr.getValueType(); 2965 bool isVolatile = I.isVolatile(); 2966 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2967 unsigned Alignment = I.getAlignment(); 2968 SDLoc dl = getCurSDLoc(); 2969 2970 AAMDNodes AAInfo; 2971 I.getAAMetadata(AAInfo); 2972 2973 unsigned ChainI = 0; 2974 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2975 // See visitLoad comments. 2976 if (ChainI == MaxParallelChains) { 2977 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2978 makeArrayRef(Chains.data(), ChainI)); 2979 Root = Chain; 2980 ChainI = 0; 2981 } 2982 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2983 DAG.getConstant(Offsets[i], dl, PtrVT)); 2984 SDValue St = DAG.getStore(Root, dl, 2985 SDValue(Src.getNode(), Src.getResNo() + i), 2986 Add, MachinePointerInfo(PtrV, Offsets[i]), 2987 isVolatile, isNonTemporal, Alignment, AAInfo); 2988 Chains[ChainI] = St; 2989 } 2990 2991 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2992 makeArrayRef(Chains.data(), ChainI)); 2993 DAG.setRoot(StoreNode); 2994 } 2995 2996 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 2997 SDLoc sdl = getCurSDLoc(); 2998 2999 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3000 Value *PtrOperand = I.getArgOperand(1); 3001 SDValue Ptr = getValue(PtrOperand); 3002 SDValue Src0 = getValue(I.getArgOperand(0)); 3003 SDValue Mask = getValue(I.getArgOperand(3)); 3004 EVT VT = Src0.getValueType(); 3005 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3006 if (!Alignment) 3007 Alignment = DAG.getEVTAlignment(VT); 3008 3009 AAMDNodes AAInfo; 3010 I.getAAMetadata(AAInfo); 3011 3012 MachineMemOperand *MMO = 3013 DAG.getMachineFunction(). 3014 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3015 MachineMemOperand::MOStore, VT.getStoreSize(), 3016 Alignment, AAInfo); 3017 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3018 MMO, false); 3019 DAG.setRoot(StoreNode); 3020 setValue(&I, StoreNode); 3021 } 3022 3023 // Gather/scatter receive a vector of pointers. 3024 // This vector of pointers may be represented as a base pointer + vector of 3025 // indices, it depends on GEP and instruction preceeding GEP 3026 // that calculates indices 3027 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3028 SelectionDAGBuilder* SDB) { 3029 3030 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3031 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3032 if (!Gep || Gep->getNumOperands() > 2) 3033 return false; 3034 ShuffleVectorInst *ShuffleInst = 3035 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3036 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3037 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3038 Instruction::InsertElement) 3039 return false; 3040 3041 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3042 3043 SelectionDAG& DAG = SDB->DAG; 3044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3045 // Check is the Ptr is inside current basic block 3046 // If not, look for the shuffle instruction 3047 if (SDB->findValue(Ptr)) 3048 Base = SDB->getValue(Ptr); 3049 else if (SDB->findValue(ShuffleInst)) { 3050 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3051 SDLoc sdl = ShuffleNode; 3052 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3053 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3054 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3055 SDB->setValue(Ptr, Base); 3056 } 3057 else 3058 return false; 3059 3060 Value *IndexVal = Gep->getOperand(1); 3061 if (SDB->findValue(IndexVal)) { 3062 Index = SDB->getValue(IndexVal); 3063 3064 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3065 IndexVal = Sext->getOperand(0); 3066 if (SDB->findValue(IndexVal)) 3067 Index = SDB->getValue(IndexVal); 3068 } 3069 return true; 3070 } 3071 return false; 3072 } 3073 3074 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3075 SDLoc sdl = getCurSDLoc(); 3076 3077 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3078 Value *Ptr = I.getArgOperand(1); 3079 SDValue Src0 = getValue(I.getArgOperand(0)); 3080 SDValue Mask = getValue(I.getArgOperand(3)); 3081 EVT VT = Src0.getValueType(); 3082 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3083 if (!Alignment) 3084 Alignment = DAG.getEVTAlignment(VT); 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 3087 AAMDNodes AAInfo; 3088 I.getAAMetadata(AAInfo); 3089 3090 SDValue Base; 3091 SDValue Index; 3092 Value *BasePtr = Ptr; 3093 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3094 3095 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3096 MachineMemOperand *MMO = DAG.getMachineFunction(). 3097 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3098 MachineMemOperand::MOStore, VT.getStoreSize(), 3099 Alignment, AAInfo); 3100 if (!UniformBase) { 3101 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3102 Index = getValue(Ptr); 3103 } 3104 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3105 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3106 Ops, MMO); 3107 DAG.setRoot(Scatter); 3108 setValue(&I, Scatter); 3109 } 3110 3111 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3112 SDLoc sdl = getCurSDLoc(); 3113 3114 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3115 Value *PtrOperand = I.getArgOperand(0); 3116 SDValue Ptr = getValue(PtrOperand); 3117 SDValue Src0 = getValue(I.getArgOperand(3)); 3118 SDValue Mask = getValue(I.getArgOperand(2)); 3119 3120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3121 EVT VT = TLI.getValueType(I.getType()); 3122 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3123 if (!Alignment) 3124 Alignment = DAG.getEVTAlignment(VT); 3125 3126 AAMDNodes AAInfo; 3127 I.getAAMetadata(AAInfo); 3128 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3129 3130 SDValue InChain = DAG.getRoot(); 3131 if (AA->pointsToConstantMemory( 3132 AliasAnalysis::Location(PtrOperand, 3133 AA->getTypeStoreSize(I.getType()), 3134 AAInfo))) { 3135 // Do not serialize (non-volatile) loads of constant memory with anything. 3136 InChain = DAG.getEntryNode(); 3137 } 3138 3139 MachineMemOperand *MMO = 3140 DAG.getMachineFunction(). 3141 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3142 MachineMemOperand::MOLoad, VT.getStoreSize(), 3143 Alignment, AAInfo, Ranges); 3144 3145 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3146 ISD::NON_EXTLOAD); 3147 SDValue OutChain = Load.getValue(1); 3148 DAG.setRoot(OutChain); 3149 setValue(&I, Load); 3150 } 3151 3152 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3153 SDLoc sdl = getCurSDLoc(); 3154 3155 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3156 Value *Ptr = I.getArgOperand(0); 3157 SDValue Src0 = getValue(I.getArgOperand(3)); 3158 SDValue Mask = getValue(I.getArgOperand(2)); 3159 3160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3161 EVT VT = TLI.getValueType(I.getType()); 3162 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3163 if (!Alignment) 3164 Alignment = DAG.getEVTAlignment(VT); 3165 3166 AAMDNodes AAInfo; 3167 I.getAAMetadata(AAInfo); 3168 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3169 3170 SDValue Root = DAG.getRoot(); 3171 SDValue Base; 3172 SDValue Index; 3173 Value *BasePtr = Ptr; 3174 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3175 bool ConstantMemory = false; 3176 if (UniformBase && AA->pointsToConstantMemory( 3177 AliasAnalysis::Location(BasePtr, 3178 AA->getTypeStoreSize(I.getType()), 3179 AAInfo))) { 3180 // Do not serialize (non-volatile) loads of constant memory with anything. 3181 Root = DAG.getEntryNode(); 3182 ConstantMemory = true; 3183 } 3184 3185 MachineMemOperand *MMO = 3186 DAG.getMachineFunction(). 3187 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3188 MachineMemOperand::MOLoad, VT.getStoreSize(), 3189 Alignment, AAInfo, Ranges); 3190 3191 if (!UniformBase) { 3192 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3193 Index = getValue(Ptr); 3194 } 3195 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3196 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3197 Ops, MMO); 3198 3199 SDValue OutChain = Gather.getValue(1); 3200 if (!ConstantMemory) 3201 PendingLoads.push_back(OutChain); 3202 setValue(&I, Gather); 3203 } 3204 3205 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3206 SDLoc dl = getCurSDLoc(); 3207 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3208 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3209 SynchronizationScope Scope = I.getSynchScope(); 3210 3211 SDValue InChain = getRoot(); 3212 3213 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3214 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3215 SDValue L = DAG.getAtomicCmpSwap( 3216 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3217 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3218 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3219 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3220 3221 SDValue OutChain = L.getValue(2); 3222 3223 setValue(&I, L); 3224 DAG.setRoot(OutChain); 3225 } 3226 3227 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3228 SDLoc dl = getCurSDLoc(); 3229 ISD::NodeType NT; 3230 switch (I.getOperation()) { 3231 default: llvm_unreachable("Unknown atomicrmw operation"); 3232 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3233 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3234 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3235 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3236 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3237 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3238 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3239 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3240 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3241 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3242 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3243 } 3244 AtomicOrdering Order = I.getOrdering(); 3245 SynchronizationScope Scope = I.getSynchScope(); 3246 3247 SDValue InChain = getRoot(); 3248 3249 SDValue L = 3250 DAG.getAtomic(NT, dl, 3251 getValue(I.getValOperand()).getSimpleValueType(), 3252 InChain, 3253 getValue(I.getPointerOperand()), 3254 getValue(I.getValOperand()), 3255 I.getPointerOperand(), 3256 /* Alignment=*/ 0, Order, Scope); 3257 3258 SDValue OutChain = L.getValue(1); 3259 3260 setValue(&I, L); 3261 DAG.setRoot(OutChain); 3262 } 3263 3264 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3265 SDLoc dl = getCurSDLoc(); 3266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3267 SDValue Ops[3]; 3268 Ops[0] = getRoot(); 3269 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3270 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3271 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3272 } 3273 3274 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3275 SDLoc dl = getCurSDLoc(); 3276 AtomicOrdering Order = I.getOrdering(); 3277 SynchronizationScope Scope = I.getSynchScope(); 3278 3279 SDValue InChain = getRoot(); 3280 3281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3282 EVT VT = TLI.getValueType(I.getType()); 3283 3284 if (I.getAlignment() < VT.getSizeInBits() / 8) 3285 report_fatal_error("Cannot generate unaligned atomic load"); 3286 3287 MachineMemOperand *MMO = 3288 DAG.getMachineFunction(). 3289 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3290 MachineMemOperand::MOVolatile | 3291 MachineMemOperand::MOLoad, 3292 VT.getStoreSize(), 3293 I.getAlignment() ? I.getAlignment() : 3294 DAG.getEVTAlignment(VT)); 3295 3296 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3297 SDValue L = 3298 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3299 getValue(I.getPointerOperand()), MMO, 3300 Order, Scope); 3301 3302 SDValue OutChain = L.getValue(1); 3303 3304 setValue(&I, L); 3305 DAG.setRoot(OutChain); 3306 } 3307 3308 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3309 SDLoc dl = getCurSDLoc(); 3310 3311 AtomicOrdering Order = I.getOrdering(); 3312 SynchronizationScope Scope = I.getSynchScope(); 3313 3314 SDValue InChain = getRoot(); 3315 3316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3317 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3318 3319 if (I.getAlignment() < VT.getSizeInBits() / 8) 3320 report_fatal_error("Cannot generate unaligned atomic store"); 3321 3322 SDValue OutChain = 3323 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3324 InChain, 3325 getValue(I.getPointerOperand()), 3326 getValue(I.getValueOperand()), 3327 I.getPointerOperand(), I.getAlignment(), 3328 Order, Scope); 3329 3330 DAG.setRoot(OutChain); 3331 } 3332 3333 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3334 /// node. 3335 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3336 unsigned Intrinsic) { 3337 bool HasChain = !I.doesNotAccessMemory(); 3338 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3339 3340 // Build the operand list. 3341 SmallVector<SDValue, 8> Ops; 3342 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3343 if (OnlyLoad) { 3344 // We don't need to serialize loads against other loads. 3345 Ops.push_back(DAG.getRoot()); 3346 } else { 3347 Ops.push_back(getRoot()); 3348 } 3349 } 3350 3351 // Info is set by getTgtMemInstrinsic 3352 TargetLowering::IntrinsicInfo Info; 3353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3354 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3355 3356 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3357 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3358 Info.opc == ISD::INTRINSIC_W_CHAIN) 3359 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3360 TLI.getPointerTy())); 3361 3362 // Add all operands of the call to the operand list. 3363 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3364 SDValue Op = getValue(I.getArgOperand(i)); 3365 Ops.push_back(Op); 3366 } 3367 3368 SmallVector<EVT, 4> ValueVTs; 3369 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3370 3371 if (HasChain) 3372 ValueVTs.push_back(MVT::Other); 3373 3374 SDVTList VTs = DAG.getVTList(ValueVTs); 3375 3376 // Create the node. 3377 SDValue Result; 3378 if (IsTgtIntrinsic) { 3379 // This is target intrinsic that touches memory 3380 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3381 VTs, Ops, Info.memVT, 3382 MachinePointerInfo(Info.ptrVal, Info.offset), 3383 Info.align, Info.vol, 3384 Info.readMem, Info.writeMem, Info.size); 3385 } else if (!HasChain) { 3386 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3387 } else if (!I.getType()->isVoidTy()) { 3388 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3389 } else { 3390 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3391 } 3392 3393 if (HasChain) { 3394 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3395 if (OnlyLoad) 3396 PendingLoads.push_back(Chain); 3397 else 3398 DAG.setRoot(Chain); 3399 } 3400 3401 if (!I.getType()->isVoidTy()) { 3402 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3403 EVT VT = TLI.getValueType(PTy); 3404 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3405 } 3406 3407 setValue(&I, Result); 3408 } 3409 } 3410 3411 /// GetSignificand - Get the significand and build it into a floating-point 3412 /// number with exponent of 1: 3413 /// 3414 /// Op = (Op & 0x007fffff) | 0x3f800000; 3415 /// 3416 /// where Op is the hexadecimal representation of floating point value. 3417 static SDValue 3418 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3419 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3420 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3421 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3422 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3423 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3424 } 3425 3426 /// GetExponent - Get the exponent: 3427 /// 3428 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3429 /// 3430 /// where Op is the hexadecimal representation of floating point value. 3431 static SDValue 3432 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3433 SDLoc dl) { 3434 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3435 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3436 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3437 DAG.getConstant(23, dl, TLI.getPointerTy())); 3438 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3439 DAG.getConstant(127, dl, MVT::i32)); 3440 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3441 } 3442 3443 /// getF32Constant - Get 32-bit floating point constant. 3444 static SDValue 3445 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3446 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3447 MVT::f32); 3448 } 3449 3450 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3451 SelectionDAG &DAG) { 3452 // IntegerPartOfX = ((int32_t)(t0); 3453 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3454 3455 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3456 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3457 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3458 3459 // IntegerPartOfX <<= 23; 3460 IntegerPartOfX = DAG.getNode( 3461 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3462 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3463 3464 SDValue TwoToFractionalPartOfX; 3465 if (LimitFloatPrecision <= 6) { 3466 // For floating-point precision of 6: 3467 // 3468 // TwoToFractionalPartOfX = 3469 // 0.997535578f + 3470 // (0.735607626f + 0.252464424f * x) * x; 3471 // 3472 // error 0.0144103317, which is 6 bits 3473 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3474 getF32Constant(DAG, 0x3e814304, dl)); 3475 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3476 getF32Constant(DAG, 0x3f3c50c8, dl)); 3477 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3478 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3479 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3480 } else if (LimitFloatPrecision <= 12) { 3481 // For floating-point precision of 12: 3482 // 3483 // TwoToFractionalPartOfX = 3484 // 0.999892986f + 3485 // (0.696457318f + 3486 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3487 // 3488 // error 0.000107046256, which is 13 to 14 bits 3489 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3490 getF32Constant(DAG, 0x3da235e3, dl)); 3491 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3492 getF32Constant(DAG, 0x3e65b8f3, dl)); 3493 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3494 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3495 getF32Constant(DAG, 0x3f324b07, dl)); 3496 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3497 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3498 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3499 } else { // LimitFloatPrecision <= 18 3500 // For floating-point precision of 18: 3501 // 3502 // TwoToFractionalPartOfX = 3503 // 0.999999982f + 3504 // (0.693148872f + 3505 // (0.240227044f + 3506 // (0.554906021e-1f + 3507 // (0.961591928e-2f + 3508 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3509 // error 2.47208000*10^(-7), which is better than 18 bits 3510 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3511 getF32Constant(DAG, 0x3924b03e, dl)); 3512 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3513 getF32Constant(DAG, 0x3ab24b87, dl)); 3514 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3515 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3516 getF32Constant(DAG, 0x3c1d8c17, dl)); 3517 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3518 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3519 getF32Constant(DAG, 0x3d634a1d, dl)); 3520 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3521 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3522 getF32Constant(DAG, 0x3e75fe14, dl)); 3523 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3524 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3525 getF32Constant(DAG, 0x3f317234, dl)); 3526 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3527 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3528 getF32Constant(DAG, 0x3f800000, dl)); 3529 } 3530 3531 // Add the exponent into the result in integer domain. 3532 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3533 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3534 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3535 } 3536 3537 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3538 /// limited-precision mode. 3539 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3540 const TargetLowering &TLI) { 3541 if (Op.getValueType() == MVT::f32 && 3542 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3543 3544 // Put the exponent in the right bit position for later addition to the 3545 // final result: 3546 // 3547 // #define LOG2OFe 1.4426950f 3548 // t0 = Op * LOG2OFe 3549 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3550 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3551 return getLimitedPrecisionExp2(t0, dl, DAG); 3552 } 3553 3554 // No special expansion. 3555 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3556 } 3557 3558 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3559 /// limited-precision mode. 3560 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3561 const TargetLowering &TLI) { 3562 if (Op.getValueType() == MVT::f32 && 3563 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3564 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3565 3566 // Scale the exponent by log(2) [0.69314718f]. 3567 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3568 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3569 getF32Constant(DAG, 0x3f317218, dl)); 3570 3571 // Get the significand and build it into a floating-point number with 3572 // exponent of 1. 3573 SDValue X = GetSignificand(DAG, Op1, dl); 3574 3575 SDValue LogOfMantissa; 3576 if (LimitFloatPrecision <= 6) { 3577 // For floating-point precision of 6: 3578 // 3579 // LogofMantissa = 3580 // -1.1609546f + 3581 // (1.4034025f - 0.23903021f * x) * x; 3582 // 3583 // error 0.0034276066, which is better than 8 bits 3584 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3585 getF32Constant(DAG, 0xbe74c456, dl)); 3586 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3587 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3588 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3589 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3590 getF32Constant(DAG, 0x3f949a29, dl)); 3591 } else if (LimitFloatPrecision <= 12) { 3592 // For floating-point precision of 12: 3593 // 3594 // LogOfMantissa = 3595 // -1.7417939f + 3596 // (2.8212026f + 3597 // (-1.4699568f + 3598 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3599 // 3600 // error 0.000061011436, which is 14 bits 3601 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3602 getF32Constant(DAG, 0xbd67b6d6, dl)); 3603 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3604 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3605 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3606 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3607 getF32Constant(DAG, 0x3fbc278b, dl)); 3608 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3609 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3610 getF32Constant(DAG, 0x40348e95, dl)); 3611 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3612 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3613 getF32Constant(DAG, 0x3fdef31a, dl)); 3614 } else { // LimitFloatPrecision <= 18 3615 // For floating-point precision of 18: 3616 // 3617 // LogOfMantissa = 3618 // -2.1072184f + 3619 // (4.2372794f + 3620 // (-3.7029485f + 3621 // (2.2781945f + 3622 // (-0.87823314f + 3623 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3624 // 3625 // error 0.0000023660568, which is better than 18 bits 3626 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3627 getF32Constant(DAG, 0xbc91e5ac, dl)); 3628 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3629 getF32Constant(DAG, 0x3e4350aa, dl)); 3630 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3631 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3632 getF32Constant(DAG, 0x3f60d3e3, dl)); 3633 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3634 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3635 getF32Constant(DAG, 0x4011cdf0, dl)); 3636 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3637 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3638 getF32Constant(DAG, 0x406cfd1c, dl)); 3639 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3640 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3641 getF32Constant(DAG, 0x408797cb, dl)); 3642 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3643 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3644 getF32Constant(DAG, 0x4006dcab, dl)); 3645 } 3646 3647 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3648 } 3649 3650 // No special expansion. 3651 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3652 } 3653 3654 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3655 /// limited-precision mode. 3656 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3657 const TargetLowering &TLI) { 3658 if (Op.getValueType() == MVT::f32 && 3659 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3660 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3661 3662 // Get the exponent. 3663 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3664 3665 // Get the significand and build it into a floating-point number with 3666 // exponent of 1. 3667 SDValue X = GetSignificand(DAG, Op1, dl); 3668 3669 // Different possible minimax approximations of significand in 3670 // floating-point for various degrees of accuracy over [1,2]. 3671 SDValue Log2ofMantissa; 3672 if (LimitFloatPrecision <= 6) { 3673 // For floating-point precision of 6: 3674 // 3675 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3676 // 3677 // error 0.0049451742, which is more than 7 bits 3678 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3679 getF32Constant(DAG, 0xbeb08fe0, dl)); 3680 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3681 getF32Constant(DAG, 0x40019463, dl)); 3682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3683 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3684 getF32Constant(DAG, 0x3fd6633d, dl)); 3685 } else if (LimitFloatPrecision <= 12) { 3686 // For floating-point precision of 12: 3687 // 3688 // Log2ofMantissa = 3689 // -2.51285454f + 3690 // (4.07009056f + 3691 // (-2.12067489f + 3692 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3693 // 3694 // error 0.0000876136000, which is better than 13 bits 3695 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3696 getF32Constant(DAG, 0xbda7262e, dl)); 3697 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3698 getF32Constant(DAG, 0x3f25280b, dl)); 3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3700 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3701 getF32Constant(DAG, 0x4007b923, dl)); 3702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3703 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3704 getF32Constant(DAG, 0x40823e2f, dl)); 3705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3706 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3707 getF32Constant(DAG, 0x4020d29c, dl)); 3708 } else { // LimitFloatPrecision <= 18 3709 // For floating-point precision of 18: 3710 // 3711 // Log2ofMantissa = 3712 // -3.0400495f + 3713 // (6.1129976f + 3714 // (-5.3420409f + 3715 // (3.2865683f + 3716 // (-1.2669343f + 3717 // (0.27515199f - 3718 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3719 // 3720 // error 0.0000018516, which is better than 18 bits 3721 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3722 getF32Constant(DAG, 0xbcd2769e, dl)); 3723 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3724 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3726 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3727 getF32Constant(DAG, 0x3fa22ae7, dl)); 3728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3729 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3730 getF32Constant(DAG, 0x40525723, dl)); 3731 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3732 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3733 getF32Constant(DAG, 0x40aaf200, dl)); 3734 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3735 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3736 getF32Constant(DAG, 0x40c39dad, dl)); 3737 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3738 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3739 getF32Constant(DAG, 0x4042902c, dl)); 3740 } 3741 3742 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3743 } 3744 3745 // No special expansion. 3746 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3747 } 3748 3749 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3750 /// limited-precision mode. 3751 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3752 const TargetLowering &TLI) { 3753 if (Op.getValueType() == MVT::f32 && 3754 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3755 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3756 3757 // Scale the exponent by log10(2) [0.30102999f]. 3758 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3759 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3760 getF32Constant(DAG, 0x3e9a209a, dl)); 3761 3762 // Get the significand and build it into a floating-point number with 3763 // exponent of 1. 3764 SDValue X = GetSignificand(DAG, Op1, dl); 3765 3766 SDValue Log10ofMantissa; 3767 if (LimitFloatPrecision <= 6) { 3768 // For floating-point precision of 6: 3769 // 3770 // Log10ofMantissa = 3771 // -0.50419619f + 3772 // (0.60948995f - 0.10380950f * x) * x; 3773 // 3774 // error 0.0014886165, which is 6 bits 3775 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3776 getF32Constant(DAG, 0xbdd49a13, dl)); 3777 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3778 getF32Constant(DAG, 0x3f1c0789, dl)); 3779 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3780 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3f011300, dl)); 3782 } else if (LimitFloatPrecision <= 12) { 3783 // For floating-point precision of 12: 3784 // 3785 // Log10ofMantissa = 3786 // -0.64831180f + 3787 // (0.91751397f + 3788 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3789 // 3790 // error 0.00019228036, which is better than 12 bits 3791 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3792 getF32Constant(DAG, 0x3d431f31, dl)); 3793 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3794 getF32Constant(DAG, 0x3ea21fb2, dl)); 3795 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3796 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3797 getF32Constant(DAG, 0x3f6ae232, dl)); 3798 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3799 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3800 getF32Constant(DAG, 0x3f25f7c3, dl)); 3801 } else { // LimitFloatPrecision <= 18 3802 // For floating-point precision of 18: 3803 // 3804 // Log10ofMantissa = 3805 // -0.84299375f + 3806 // (1.5327582f + 3807 // (-1.0688956f + 3808 // (0.49102474f + 3809 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3810 // 3811 // error 0.0000037995730, which is better than 18 bits 3812 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3813 getF32Constant(DAG, 0x3c5d51ce, dl)); 3814 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3815 getF32Constant(DAG, 0x3e00685a, dl)); 3816 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3817 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3818 getF32Constant(DAG, 0x3efb6798, dl)); 3819 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3820 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3821 getF32Constant(DAG, 0x3f88d192, dl)); 3822 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3823 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3824 getF32Constant(DAG, 0x3fc4316c, dl)); 3825 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3826 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3827 getF32Constant(DAG, 0x3f57ce70, dl)); 3828 } 3829 3830 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3831 } 3832 3833 // No special expansion. 3834 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3835 } 3836 3837 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3838 /// limited-precision mode. 3839 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3840 const TargetLowering &TLI) { 3841 if (Op.getValueType() == MVT::f32 && 3842 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3843 return getLimitedPrecisionExp2(Op, dl, DAG); 3844 3845 // No special expansion. 3846 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3847 } 3848 3849 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3850 /// limited-precision mode with x == 10.0f. 3851 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3852 SelectionDAG &DAG, const TargetLowering &TLI) { 3853 bool IsExp10 = false; 3854 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3856 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3857 APFloat Ten(10.0f); 3858 IsExp10 = LHSC->isExactlyValue(Ten); 3859 } 3860 } 3861 3862 if (IsExp10) { 3863 // Put the exponent in the right bit position for later addition to the 3864 // final result: 3865 // 3866 // #define LOG2OF10 3.3219281f 3867 // t0 = Op * LOG2OF10; 3868 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3869 getF32Constant(DAG, 0x40549a78, dl)); 3870 return getLimitedPrecisionExp2(t0, dl, DAG); 3871 } 3872 3873 // No special expansion. 3874 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3875 } 3876 3877 3878 /// ExpandPowI - Expand a llvm.powi intrinsic. 3879 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3880 SelectionDAG &DAG) { 3881 // If RHS is a constant, we can expand this out to a multiplication tree, 3882 // otherwise we end up lowering to a call to __powidf2 (for example). When 3883 // optimizing for size, we only want to do this if the expansion would produce 3884 // a small number of multiplies, otherwise we do the full expansion. 3885 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3886 // Get the exponent as a positive value. 3887 unsigned Val = RHSC->getSExtValue(); 3888 if ((int)Val < 0) Val = -Val; 3889 3890 // powi(x, 0) -> 1.0 3891 if (Val == 0) 3892 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3893 3894 const Function *F = DAG.getMachineFunction().getFunction(); 3895 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3896 // If optimizing for size, don't insert too many multiplies. This 3897 // inserts up to 5 multiplies. 3898 countPopulation(Val) + Log2_32(Val) < 7) { 3899 // We use the simple binary decomposition method to generate the multiply 3900 // sequence. There are more optimal ways to do this (for example, 3901 // powi(x,15) generates one more multiply than it should), but this has 3902 // the benefit of being both really simple and much better than a libcall. 3903 SDValue Res; // Logically starts equal to 1.0 3904 SDValue CurSquare = LHS; 3905 while (Val) { 3906 if (Val & 1) { 3907 if (Res.getNode()) 3908 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3909 else 3910 Res = CurSquare; // 1.0*CurSquare. 3911 } 3912 3913 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3914 CurSquare, CurSquare); 3915 Val >>= 1; 3916 } 3917 3918 // If the original was negative, invert the result, producing 1/(x*x*x). 3919 if (RHSC->getSExtValue() < 0) 3920 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3921 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3922 return Res; 3923 } 3924 } 3925 3926 // Otherwise, expand to a libcall. 3927 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3928 } 3929 3930 // getTruncatedArgReg - Find underlying register used for an truncated 3931 // argument. 3932 static unsigned getTruncatedArgReg(const SDValue &N) { 3933 if (N.getOpcode() != ISD::TRUNCATE) 3934 return 0; 3935 3936 const SDValue &Ext = N.getOperand(0); 3937 if (Ext.getOpcode() == ISD::AssertZext || 3938 Ext.getOpcode() == ISD::AssertSext) { 3939 const SDValue &CFR = Ext.getOperand(0); 3940 if (CFR.getOpcode() == ISD::CopyFromReg) 3941 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3942 if (CFR.getOpcode() == ISD::TRUNCATE) 3943 return getTruncatedArgReg(CFR); 3944 } 3945 return 0; 3946 } 3947 3948 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3949 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3950 /// At the end of instruction selection, they will be inserted to the entry BB. 3951 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3952 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3953 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3954 const Argument *Arg = dyn_cast<Argument>(V); 3955 if (!Arg) 3956 return false; 3957 3958 MachineFunction &MF = DAG.getMachineFunction(); 3959 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3960 3961 // Ignore inlined function arguments here. 3962 // 3963 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3964 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3965 return false; 3966 3967 Optional<MachineOperand> Op; 3968 // Some arguments' frame index is recorded during argument lowering. 3969 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3970 Op = MachineOperand::CreateFI(FI); 3971 3972 if (!Op && N.getNode()) { 3973 unsigned Reg; 3974 if (N.getOpcode() == ISD::CopyFromReg) 3975 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3976 else 3977 Reg = getTruncatedArgReg(N); 3978 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3979 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3980 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3981 if (PR) 3982 Reg = PR; 3983 } 3984 if (Reg) 3985 Op = MachineOperand::CreateReg(Reg, false); 3986 } 3987 3988 if (!Op) { 3989 // Check if ValueMap has reg number. 3990 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3991 if (VMI != FuncInfo.ValueMap.end()) 3992 Op = MachineOperand::CreateReg(VMI->second, false); 3993 } 3994 3995 if (!Op && N.getNode()) 3996 // Check if frame index is available. 3997 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3998 if (FrameIndexSDNode *FINode = 3999 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4000 Op = MachineOperand::CreateFI(FINode->getIndex()); 4001 4002 if (!Op) 4003 return false; 4004 4005 assert(Variable->isValidLocationForIntrinsic(DL) && 4006 "Expected inlined-at fields to agree"); 4007 if (Op->isReg()) 4008 FuncInfo.ArgDbgValues.push_back( 4009 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4010 Op->getReg(), Offset, Variable, Expr)); 4011 else 4012 FuncInfo.ArgDbgValues.push_back( 4013 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4014 .addOperand(*Op) 4015 .addImm(Offset) 4016 .addMetadata(Variable) 4017 .addMetadata(Expr)); 4018 4019 return true; 4020 } 4021 4022 // VisualStudio defines setjmp as _setjmp 4023 #if defined(_MSC_VER) && defined(setjmp) && \ 4024 !defined(setjmp_undefined_for_msvc) 4025 # pragma push_macro("setjmp") 4026 # undef setjmp 4027 # define setjmp_undefined_for_msvc 4028 #endif 4029 4030 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4031 /// we want to emit this as a call to a named external function, return the name 4032 /// otherwise lower it and return null. 4033 const char * 4034 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4036 SDLoc sdl = getCurSDLoc(); 4037 DebugLoc dl = getCurDebugLoc(); 4038 SDValue Res; 4039 4040 switch (Intrinsic) { 4041 default: 4042 // By default, turn this into a target intrinsic node. 4043 visitTargetIntrinsic(I, Intrinsic); 4044 return nullptr; 4045 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4046 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4047 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4048 case Intrinsic::returnaddress: 4049 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4050 getValue(I.getArgOperand(0)))); 4051 return nullptr; 4052 case Intrinsic::frameaddress: 4053 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4054 getValue(I.getArgOperand(0)))); 4055 return nullptr; 4056 case Intrinsic::read_register: { 4057 Value *Reg = I.getArgOperand(0); 4058 SDValue Chain = getRoot(); 4059 SDValue RegName = 4060 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4061 EVT VT = TLI.getValueType(I.getType()); 4062 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4063 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4064 setValue(&I, Res); 4065 DAG.setRoot(Res.getValue(1)); 4066 return nullptr; 4067 } 4068 case Intrinsic::write_register: { 4069 Value *Reg = I.getArgOperand(0); 4070 Value *RegValue = I.getArgOperand(1); 4071 SDValue Chain = getRoot(); 4072 SDValue RegName = 4073 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4074 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4075 RegName, getValue(RegValue))); 4076 return nullptr; 4077 } 4078 case Intrinsic::setjmp: 4079 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4080 case Intrinsic::longjmp: 4081 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4082 case Intrinsic::memcpy: { 4083 // FIXME: this definition of "user defined address space" is x86-specific 4084 // Assert for address < 256 since we support only user defined address 4085 // spaces. 4086 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4087 < 256 && 4088 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4089 < 256 && 4090 "Unknown address space"); 4091 SDValue Op1 = getValue(I.getArgOperand(0)); 4092 SDValue Op2 = getValue(I.getArgOperand(1)); 4093 SDValue Op3 = getValue(I.getArgOperand(2)); 4094 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4095 if (!Align) 4096 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4097 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4098 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4099 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4100 false, isTC, 4101 MachinePointerInfo(I.getArgOperand(0)), 4102 MachinePointerInfo(I.getArgOperand(1))); 4103 updateDAGForMaybeTailCall(MC); 4104 return nullptr; 4105 } 4106 case Intrinsic::memset: { 4107 // FIXME: this definition of "user defined address space" is x86-specific 4108 // Assert for address < 256 since we support only user defined address 4109 // spaces. 4110 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4111 < 256 && 4112 "Unknown address space"); 4113 SDValue Op1 = getValue(I.getArgOperand(0)); 4114 SDValue Op2 = getValue(I.getArgOperand(1)); 4115 SDValue Op3 = getValue(I.getArgOperand(2)); 4116 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4117 if (!Align) 4118 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4119 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4120 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4121 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4122 isTC, MachinePointerInfo(I.getArgOperand(0))); 4123 updateDAGForMaybeTailCall(MS); 4124 return nullptr; 4125 } 4126 case Intrinsic::memmove: { 4127 // FIXME: this definition of "user defined address space" is x86-specific 4128 // Assert for address < 256 since we support only user defined address 4129 // spaces. 4130 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4131 < 256 && 4132 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4133 < 256 && 4134 "Unknown address space"); 4135 SDValue Op1 = getValue(I.getArgOperand(0)); 4136 SDValue Op2 = getValue(I.getArgOperand(1)); 4137 SDValue Op3 = getValue(I.getArgOperand(2)); 4138 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4139 if (!Align) 4140 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4141 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4142 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4143 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4144 isTC, MachinePointerInfo(I.getArgOperand(0)), 4145 MachinePointerInfo(I.getArgOperand(1))); 4146 updateDAGForMaybeTailCall(MM); 4147 return nullptr; 4148 } 4149 case Intrinsic::dbg_declare: { 4150 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4151 DILocalVariable *Variable = DI.getVariable(); 4152 DIExpression *Expression = DI.getExpression(); 4153 const Value *Address = DI.getAddress(); 4154 assert(Variable && "Missing variable"); 4155 if (!Address) { 4156 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4157 return nullptr; 4158 } 4159 4160 // Check if address has undef value. 4161 if (isa<UndefValue>(Address) || 4162 (Address->use_empty() && !isa<Argument>(Address))) { 4163 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4164 return nullptr; 4165 } 4166 4167 SDValue &N = NodeMap[Address]; 4168 if (!N.getNode() && isa<Argument>(Address)) 4169 // Check unused arguments map. 4170 N = UnusedArgNodeMap[Address]; 4171 SDDbgValue *SDV; 4172 if (N.getNode()) { 4173 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4174 Address = BCI->getOperand(0); 4175 // Parameters are handled specially. 4176 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4177 isa<Argument>(Address); 4178 4179 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4180 4181 if (isParameter && !AI) { 4182 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4183 if (FINode) 4184 // Byval parameter. We have a frame index at this point. 4185 SDV = DAG.getFrameIndexDbgValue( 4186 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4187 else { 4188 // Address is an argument, so try to emit its dbg value using 4189 // virtual register info from the FuncInfo.ValueMap. 4190 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4191 N); 4192 return nullptr; 4193 } 4194 } else if (AI) 4195 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4196 true, 0, dl, SDNodeOrder); 4197 else { 4198 // Can't do anything with other non-AI cases yet. 4199 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4200 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4201 DEBUG(Address->dump()); 4202 return nullptr; 4203 } 4204 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4205 } else { 4206 // If Address is an argument then try to emit its dbg value using 4207 // virtual register info from the FuncInfo.ValueMap. 4208 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4209 N)) { 4210 // If variable is pinned by a alloca in dominating bb then 4211 // use StaticAllocaMap. 4212 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4213 if (AI->getParent() != DI.getParent()) { 4214 DenseMap<const AllocaInst*, int>::iterator SI = 4215 FuncInfo.StaticAllocaMap.find(AI); 4216 if (SI != FuncInfo.StaticAllocaMap.end()) { 4217 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4218 0, dl, SDNodeOrder); 4219 DAG.AddDbgValue(SDV, nullptr, false); 4220 return nullptr; 4221 } 4222 } 4223 } 4224 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4225 } 4226 } 4227 return nullptr; 4228 } 4229 case Intrinsic::dbg_value: { 4230 const DbgValueInst &DI = cast<DbgValueInst>(I); 4231 assert(DI.getVariable() && "Missing variable"); 4232 4233 DILocalVariable *Variable = DI.getVariable(); 4234 DIExpression *Expression = DI.getExpression(); 4235 uint64_t Offset = DI.getOffset(); 4236 const Value *V = DI.getValue(); 4237 if (!V) 4238 return nullptr; 4239 4240 SDDbgValue *SDV; 4241 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4242 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4243 SDNodeOrder); 4244 DAG.AddDbgValue(SDV, nullptr, false); 4245 } else { 4246 // Do not use getValue() in here; we don't want to generate code at 4247 // this point if it hasn't been done yet. 4248 SDValue N = NodeMap[V]; 4249 if (!N.getNode() && isa<Argument>(V)) 4250 // Check unused arguments map. 4251 N = UnusedArgNodeMap[V]; 4252 if (N.getNode()) { 4253 // A dbg.value for an alloca is always indirect. 4254 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4255 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4256 IsIndirect, N)) { 4257 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4258 IsIndirect, Offset, dl, SDNodeOrder); 4259 DAG.AddDbgValue(SDV, N.getNode(), false); 4260 } 4261 } else if (!V->use_empty() ) { 4262 // Do not call getValue(V) yet, as we don't want to generate code. 4263 // Remember it for later. 4264 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4265 DanglingDebugInfoMap[V] = DDI; 4266 } else { 4267 // We may expand this to cover more cases. One case where we have no 4268 // data available is an unreferenced parameter. 4269 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4270 } 4271 } 4272 4273 // Build a debug info table entry. 4274 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4275 V = BCI->getOperand(0); 4276 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4277 // Don't handle byval struct arguments or VLAs, for example. 4278 if (!AI) { 4279 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4280 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4281 return nullptr; 4282 } 4283 DenseMap<const AllocaInst*, int>::iterator SI = 4284 FuncInfo.StaticAllocaMap.find(AI); 4285 if (SI == FuncInfo.StaticAllocaMap.end()) 4286 return nullptr; // VLAs. 4287 return nullptr; 4288 } 4289 4290 case Intrinsic::eh_typeid_for: { 4291 // Find the type id for the given typeinfo. 4292 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4293 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4294 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4295 setValue(&I, Res); 4296 return nullptr; 4297 } 4298 4299 case Intrinsic::eh_return_i32: 4300 case Intrinsic::eh_return_i64: 4301 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4302 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4303 MVT::Other, 4304 getControlRoot(), 4305 getValue(I.getArgOperand(0)), 4306 getValue(I.getArgOperand(1)))); 4307 return nullptr; 4308 case Intrinsic::eh_unwind_init: 4309 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4310 return nullptr; 4311 case Intrinsic::eh_dwarf_cfa: { 4312 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4313 TLI.getPointerTy()); 4314 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4315 CfaArg.getValueType(), 4316 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4317 CfaArg.getValueType()), 4318 CfaArg); 4319 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4320 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4321 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4322 FA, Offset)); 4323 return nullptr; 4324 } 4325 case Intrinsic::eh_sjlj_callsite: { 4326 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4327 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4328 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4329 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4330 4331 MMI.setCurrentCallSite(CI->getZExtValue()); 4332 return nullptr; 4333 } 4334 case Intrinsic::eh_sjlj_functioncontext: { 4335 // Get and store the index of the function context. 4336 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4337 AllocaInst *FnCtx = 4338 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4339 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4340 MFI->setFunctionContextIndex(FI); 4341 return nullptr; 4342 } 4343 case Intrinsic::eh_sjlj_setjmp: { 4344 SDValue Ops[2]; 4345 Ops[0] = getRoot(); 4346 Ops[1] = getValue(I.getArgOperand(0)); 4347 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4348 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4349 setValue(&I, Op.getValue(0)); 4350 DAG.setRoot(Op.getValue(1)); 4351 return nullptr; 4352 } 4353 case Intrinsic::eh_sjlj_longjmp: { 4354 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4355 getRoot(), getValue(I.getArgOperand(0)))); 4356 return nullptr; 4357 } 4358 4359 case Intrinsic::masked_gather: 4360 visitMaskedGather(I); 4361 return nullptr; 4362 case Intrinsic::masked_load: 4363 visitMaskedLoad(I); 4364 return nullptr; 4365 case Intrinsic::masked_scatter: 4366 visitMaskedScatter(I); 4367 return nullptr; 4368 case Intrinsic::masked_store: 4369 visitMaskedStore(I); 4370 return nullptr; 4371 case Intrinsic::x86_mmx_pslli_w: 4372 case Intrinsic::x86_mmx_pslli_d: 4373 case Intrinsic::x86_mmx_pslli_q: 4374 case Intrinsic::x86_mmx_psrli_w: 4375 case Intrinsic::x86_mmx_psrli_d: 4376 case Intrinsic::x86_mmx_psrli_q: 4377 case Intrinsic::x86_mmx_psrai_w: 4378 case Intrinsic::x86_mmx_psrai_d: { 4379 SDValue ShAmt = getValue(I.getArgOperand(1)); 4380 if (isa<ConstantSDNode>(ShAmt)) { 4381 visitTargetIntrinsic(I, Intrinsic); 4382 return nullptr; 4383 } 4384 unsigned NewIntrinsic = 0; 4385 EVT ShAmtVT = MVT::v2i32; 4386 switch (Intrinsic) { 4387 case Intrinsic::x86_mmx_pslli_w: 4388 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4389 break; 4390 case Intrinsic::x86_mmx_pslli_d: 4391 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4392 break; 4393 case Intrinsic::x86_mmx_pslli_q: 4394 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4395 break; 4396 case Intrinsic::x86_mmx_psrli_w: 4397 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4398 break; 4399 case Intrinsic::x86_mmx_psrli_d: 4400 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4401 break; 4402 case Intrinsic::x86_mmx_psrli_q: 4403 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4404 break; 4405 case Intrinsic::x86_mmx_psrai_w: 4406 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4407 break; 4408 case Intrinsic::x86_mmx_psrai_d: 4409 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4410 break; 4411 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4412 } 4413 4414 // The vector shift intrinsics with scalars uses 32b shift amounts but 4415 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4416 // to be zero. 4417 // We must do this early because v2i32 is not a legal type. 4418 SDValue ShOps[2]; 4419 ShOps[0] = ShAmt; 4420 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4421 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4422 EVT DestVT = TLI.getValueType(I.getType()); 4423 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4424 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4425 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4426 getValue(I.getArgOperand(0)), ShAmt); 4427 setValue(&I, Res); 4428 return nullptr; 4429 } 4430 case Intrinsic::convertff: 4431 case Intrinsic::convertfsi: 4432 case Intrinsic::convertfui: 4433 case Intrinsic::convertsif: 4434 case Intrinsic::convertuif: 4435 case Intrinsic::convertss: 4436 case Intrinsic::convertsu: 4437 case Intrinsic::convertus: 4438 case Intrinsic::convertuu: { 4439 ISD::CvtCode Code = ISD::CVT_INVALID; 4440 switch (Intrinsic) { 4441 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4442 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4443 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4444 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4445 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4446 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4447 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4448 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4449 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4450 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4451 } 4452 EVT DestVT = TLI.getValueType(I.getType()); 4453 const Value *Op1 = I.getArgOperand(0); 4454 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4455 DAG.getValueType(DestVT), 4456 DAG.getValueType(getValue(Op1).getValueType()), 4457 getValue(I.getArgOperand(1)), 4458 getValue(I.getArgOperand(2)), 4459 Code); 4460 setValue(&I, Res); 4461 return nullptr; 4462 } 4463 case Intrinsic::powi: 4464 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4465 getValue(I.getArgOperand(1)), DAG)); 4466 return nullptr; 4467 case Intrinsic::log: 4468 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4469 return nullptr; 4470 case Intrinsic::log2: 4471 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4472 return nullptr; 4473 case Intrinsic::log10: 4474 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4475 return nullptr; 4476 case Intrinsic::exp: 4477 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4478 return nullptr; 4479 case Intrinsic::exp2: 4480 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4481 return nullptr; 4482 case Intrinsic::pow: 4483 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4484 getValue(I.getArgOperand(1)), DAG, TLI)); 4485 return nullptr; 4486 case Intrinsic::sqrt: 4487 case Intrinsic::fabs: 4488 case Intrinsic::sin: 4489 case Intrinsic::cos: 4490 case Intrinsic::floor: 4491 case Intrinsic::ceil: 4492 case Intrinsic::trunc: 4493 case Intrinsic::rint: 4494 case Intrinsic::nearbyint: 4495 case Intrinsic::round: { 4496 unsigned Opcode; 4497 switch (Intrinsic) { 4498 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4499 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4500 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4501 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4502 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4503 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4504 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4505 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4506 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4507 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4508 case Intrinsic::round: Opcode = ISD::FROUND; break; 4509 } 4510 4511 setValue(&I, DAG.getNode(Opcode, sdl, 4512 getValue(I.getArgOperand(0)).getValueType(), 4513 getValue(I.getArgOperand(0)))); 4514 return nullptr; 4515 } 4516 case Intrinsic::minnum: 4517 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4518 getValue(I.getArgOperand(0)).getValueType(), 4519 getValue(I.getArgOperand(0)), 4520 getValue(I.getArgOperand(1)))); 4521 return nullptr; 4522 case Intrinsic::maxnum: 4523 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4524 getValue(I.getArgOperand(0)).getValueType(), 4525 getValue(I.getArgOperand(0)), 4526 getValue(I.getArgOperand(1)))); 4527 return nullptr; 4528 case Intrinsic::copysign: 4529 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4530 getValue(I.getArgOperand(0)).getValueType(), 4531 getValue(I.getArgOperand(0)), 4532 getValue(I.getArgOperand(1)))); 4533 return nullptr; 4534 case Intrinsic::fma: 4535 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4536 getValue(I.getArgOperand(0)).getValueType(), 4537 getValue(I.getArgOperand(0)), 4538 getValue(I.getArgOperand(1)), 4539 getValue(I.getArgOperand(2)))); 4540 return nullptr; 4541 case Intrinsic::fmuladd: { 4542 EVT VT = TLI.getValueType(I.getType()); 4543 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4544 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4545 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4546 getValue(I.getArgOperand(0)).getValueType(), 4547 getValue(I.getArgOperand(0)), 4548 getValue(I.getArgOperand(1)), 4549 getValue(I.getArgOperand(2)))); 4550 } else { 4551 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4552 getValue(I.getArgOperand(0)).getValueType(), 4553 getValue(I.getArgOperand(0)), 4554 getValue(I.getArgOperand(1))); 4555 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4556 getValue(I.getArgOperand(0)).getValueType(), 4557 Mul, 4558 getValue(I.getArgOperand(2))); 4559 setValue(&I, Add); 4560 } 4561 return nullptr; 4562 } 4563 case Intrinsic::convert_to_fp16: 4564 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4565 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4566 getValue(I.getArgOperand(0)), 4567 DAG.getTargetConstant(0, sdl, 4568 MVT::i32)))); 4569 return nullptr; 4570 case Intrinsic::convert_from_fp16: 4571 setValue(&I, 4572 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4573 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4574 getValue(I.getArgOperand(0))))); 4575 return nullptr; 4576 case Intrinsic::pcmarker: { 4577 SDValue Tmp = getValue(I.getArgOperand(0)); 4578 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4579 return nullptr; 4580 } 4581 case Intrinsic::readcyclecounter: { 4582 SDValue Op = getRoot(); 4583 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4584 DAG.getVTList(MVT::i64, MVT::Other), Op); 4585 setValue(&I, Res); 4586 DAG.setRoot(Res.getValue(1)); 4587 return nullptr; 4588 } 4589 case Intrinsic::bswap: 4590 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4591 getValue(I.getArgOperand(0)).getValueType(), 4592 getValue(I.getArgOperand(0)))); 4593 return nullptr; 4594 case Intrinsic::cttz: { 4595 SDValue Arg = getValue(I.getArgOperand(0)); 4596 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4597 EVT Ty = Arg.getValueType(); 4598 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4599 sdl, Ty, Arg)); 4600 return nullptr; 4601 } 4602 case Intrinsic::ctlz: { 4603 SDValue Arg = getValue(I.getArgOperand(0)); 4604 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4605 EVT Ty = Arg.getValueType(); 4606 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4607 sdl, Ty, Arg)); 4608 return nullptr; 4609 } 4610 case Intrinsic::ctpop: { 4611 SDValue Arg = getValue(I.getArgOperand(0)); 4612 EVT Ty = Arg.getValueType(); 4613 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4614 return nullptr; 4615 } 4616 case Intrinsic::stacksave: { 4617 SDValue Op = getRoot(); 4618 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4619 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4620 setValue(&I, Res); 4621 DAG.setRoot(Res.getValue(1)); 4622 return nullptr; 4623 } 4624 case Intrinsic::stackrestore: { 4625 Res = getValue(I.getArgOperand(0)); 4626 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4627 return nullptr; 4628 } 4629 case Intrinsic::stackprotector: { 4630 // Emit code into the DAG to store the stack guard onto the stack. 4631 MachineFunction &MF = DAG.getMachineFunction(); 4632 MachineFrameInfo *MFI = MF.getFrameInfo(); 4633 EVT PtrTy = TLI.getPointerTy(); 4634 SDValue Src, Chain = getRoot(); 4635 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4636 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4637 4638 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4639 // global variable __stack_chk_guard. 4640 if (!GV) 4641 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4642 if (BC->getOpcode() == Instruction::BitCast) 4643 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4644 4645 if (GV && TLI.useLoadStackGuardNode()) { 4646 // Emit a LOAD_STACK_GUARD node. 4647 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4648 sdl, PtrTy, Chain); 4649 MachinePointerInfo MPInfo(GV); 4650 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4651 unsigned Flags = MachineMemOperand::MOLoad | 4652 MachineMemOperand::MOInvariant; 4653 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4654 PtrTy.getSizeInBits() / 8, 4655 DAG.getEVTAlignment(PtrTy)); 4656 Node->setMemRefs(MemRefs, MemRefs + 1); 4657 4658 // Copy the guard value to a virtual register so that it can be 4659 // retrieved in the epilogue. 4660 Src = SDValue(Node, 0); 4661 const TargetRegisterClass *RC = 4662 TLI.getRegClassFor(Src.getSimpleValueType()); 4663 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4664 4665 SPDescriptor.setGuardReg(Reg); 4666 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4667 } else { 4668 Src = getValue(I.getArgOperand(0)); // The guard's value. 4669 } 4670 4671 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4672 4673 int FI = FuncInfo.StaticAllocaMap[Slot]; 4674 MFI->setStackProtectorIndex(FI); 4675 4676 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4677 4678 // Store the stack protector onto the stack. 4679 Res = DAG.getStore(Chain, sdl, Src, FIN, 4680 MachinePointerInfo::getFixedStack(FI), 4681 true, false, 0); 4682 setValue(&I, Res); 4683 DAG.setRoot(Res); 4684 return nullptr; 4685 } 4686 case Intrinsic::objectsize: { 4687 // If we don't know by now, we're never going to know. 4688 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4689 4690 assert(CI && "Non-constant type in __builtin_object_size?"); 4691 4692 SDValue Arg = getValue(I.getCalledValue()); 4693 EVT Ty = Arg.getValueType(); 4694 4695 if (CI->isZero()) 4696 Res = DAG.getConstant(-1ULL, sdl, Ty); 4697 else 4698 Res = DAG.getConstant(0, sdl, Ty); 4699 4700 setValue(&I, Res); 4701 return nullptr; 4702 } 4703 case Intrinsic::annotation: 4704 case Intrinsic::ptr_annotation: 4705 // Drop the intrinsic, but forward the value 4706 setValue(&I, getValue(I.getOperand(0))); 4707 return nullptr; 4708 case Intrinsic::assume: 4709 case Intrinsic::var_annotation: 4710 // Discard annotate attributes and assumptions 4711 return nullptr; 4712 4713 case Intrinsic::init_trampoline: { 4714 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4715 4716 SDValue Ops[6]; 4717 Ops[0] = getRoot(); 4718 Ops[1] = getValue(I.getArgOperand(0)); 4719 Ops[2] = getValue(I.getArgOperand(1)); 4720 Ops[3] = getValue(I.getArgOperand(2)); 4721 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4722 Ops[5] = DAG.getSrcValue(F); 4723 4724 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4725 4726 DAG.setRoot(Res); 4727 return nullptr; 4728 } 4729 case Intrinsic::adjust_trampoline: { 4730 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4731 TLI.getPointerTy(), 4732 getValue(I.getArgOperand(0)))); 4733 return nullptr; 4734 } 4735 case Intrinsic::gcroot: 4736 if (GFI) { 4737 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4738 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4739 4740 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4741 GFI->addStackRoot(FI->getIndex(), TypeMap); 4742 } 4743 return nullptr; 4744 case Intrinsic::gcread: 4745 case Intrinsic::gcwrite: 4746 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4747 case Intrinsic::flt_rounds: 4748 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4749 return nullptr; 4750 4751 case Intrinsic::expect: { 4752 // Just replace __builtin_expect(exp, c) with EXP. 4753 setValue(&I, getValue(I.getArgOperand(0))); 4754 return nullptr; 4755 } 4756 4757 case Intrinsic::debugtrap: 4758 case Intrinsic::trap: { 4759 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4760 if (TrapFuncName.empty()) { 4761 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4762 ISD::TRAP : ISD::DEBUGTRAP; 4763 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4764 return nullptr; 4765 } 4766 TargetLowering::ArgListTy Args; 4767 4768 TargetLowering::CallLoweringInfo CLI(DAG); 4769 CLI.setDebugLoc(sdl).setChain(getRoot()) 4770 .setCallee(CallingConv::C, I.getType(), 4771 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4772 std::move(Args), 0); 4773 4774 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4775 DAG.setRoot(Result.second); 4776 return nullptr; 4777 } 4778 4779 case Intrinsic::uadd_with_overflow: 4780 case Intrinsic::sadd_with_overflow: 4781 case Intrinsic::usub_with_overflow: 4782 case Intrinsic::ssub_with_overflow: 4783 case Intrinsic::umul_with_overflow: 4784 case Intrinsic::smul_with_overflow: { 4785 ISD::NodeType Op; 4786 switch (Intrinsic) { 4787 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4788 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4789 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4790 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4791 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4792 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4793 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4794 } 4795 SDValue Op1 = getValue(I.getArgOperand(0)); 4796 SDValue Op2 = getValue(I.getArgOperand(1)); 4797 4798 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4799 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4800 return nullptr; 4801 } 4802 case Intrinsic::prefetch: { 4803 SDValue Ops[5]; 4804 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4805 Ops[0] = getRoot(); 4806 Ops[1] = getValue(I.getArgOperand(0)); 4807 Ops[2] = getValue(I.getArgOperand(1)); 4808 Ops[3] = getValue(I.getArgOperand(2)); 4809 Ops[4] = getValue(I.getArgOperand(3)); 4810 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4811 DAG.getVTList(MVT::Other), Ops, 4812 EVT::getIntegerVT(*Context, 8), 4813 MachinePointerInfo(I.getArgOperand(0)), 4814 0, /* align */ 4815 false, /* volatile */ 4816 rw==0, /* read */ 4817 rw==1)); /* write */ 4818 return nullptr; 4819 } 4820 case Intrinsic::lifetime_start: 4821 case Intrinsic::lifetime_end: { 4822 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4823 // Stack coloring is not enabled in O0, discard region information. 4824 if (TM.getOptLevel() == CodeGenOpt::None) 4825 return nullptr; 4826 4827 SmallVector<Value *, 4> Allocas; 4828 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4829 4830 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4831 E = Allocas.end(); Object != E; ++Object) { 4832 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4833 4834 // Could not find an Alloca. 4835 if (!LifetimeObject) 4836 continue; 4837 4838 // First check that the Alloca is static, otherwise it won't have a 4839 // valid frame index. 4840 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4841 if (SI == FuncInfo.StaticAllocaMap.end()) 4842 return nullptr; 4843 4844 int FI = SI->second; 4845 4846 SDValue Ops[2]; 4847 Ops[0] = getRoot(); 4848 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4849 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4850 4851 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4852 DAG.setRoot(Res); 4853 } 4854 return nullptr; 4855 } 4856 case Intrinsic::invariant_start: 4857 // Discard region information. 4858 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4859 return nullptr; 4860 case Intrinsic::invariant_end: 4861 // Discard region information. 4862 return nullptr; 4863 case Intrinsic::stackprotectorcheck: { 4864 // Do not actually emit anything for this basic block. Instead we initialize 4865 // the stack protector descriptor and export the guard variable so we can 4866 // access it in FinishBasicBlock. 4867 const BasicBlock *BB = I.getParent(); 4868 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4869 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4870 4871 // Flush our exports since we are going to process a terminator. 4872 (void)getControlRoot(); 4873 return nullptr; 4874 } 4875 case Intrinsic::clear_cache: 4876 return TLI.getClearCacheBuiltinName(); 4877 case Intrinsic::eh_actions: 4878 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4879 return nullptr; 4880 case Intrinsic::donothing: 4881 // ignore 4882 return nullptr; 4883 case Intrinsic::experimental_stackmap: { 4884 visitStackmap(I); 4885 return nullptr; 4886 } 4887 case Intrinsic::experimental_patchpoint_void: 4888 case Intrinsic::experimental_patchpoint_i64: { 4889 visitPatchpoint(&I); 4890 return nullptr; 4891 } 4892 case Intrinsic::experimental_gc_statepoint: { 4893 visitStatepoint(I); 4894 return nullptr; 4895 } 4896 case Intrinsic::experimental_gc_result_int: 4897 case Intrinsic::experimental_gc_result_float: 4898 case Intrinsic::experimental_gc_result_ptr: 4899 case Intrinsic::experimental_gc_result: { 4900 visitGCResult(I); 4901 return nullptr; 4902 } 4903 case Intrinsic::experimental_gc_relocate: { 4904 visitGCRelocate(I); 4905 return nullptr; 4906 } 4907 case Intrinsic::instrprof_increment: 4908 llvm_unreachable("instrprof failed to lower an increment"); 4909 4910 case Intrinsic::frameescape: { 4911 MachineFunction &MF = DAG.getMachineFunction(); 4912 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4913 4914 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4915 // is the same on all targets. 4916 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4917 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4918 if (isa<ConstantPointerNull>(Arg)) 4919 continue; // Skip null pointers. They represent a hole in index space. 4920 AllocaInst *Slot = cast<AllocaInst>(Arg); 4921 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4922 "can only escape static allocas"); 4923 int FI = FuncInfo.StaticAllocaMap[Slot]; 4924 MCSymbol *FrameAllocSym = 4925 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4926 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4928 TII->get(TargetOpcode::FRAME_ALLOC)) 4929 .addSym(FrameAllocSym) 4930 .addFrameIndex(FI); 4931 } 4932 4933 return nullptr; 4934 } 4935 4936 case Intrinsic::framerecover: { 4937 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4938 MachineFunction &MF = DAG.getMachineFunction(); 4939 MVT PtrVT = TLI.getPointerTy(0); 4940 4941 // Get the symbol that defines the frame offset. 4942 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4943 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4944 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4945 MCSymbol *FrameAllocSym = 4946 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4947 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4948 4949 // Create a TargetExternalSymbol for the label to avoid any target lowering 4950 // that would make this PC relative. 4951 StringRef Name = FrameAllocSym->getName(); 4952 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4953 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4954 SDValue OffsetVal = 4955 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4956 4957 // Add the offset to the FP. 4958 Value *FP = I.getArgOperand(1); 4959 SDValue FPVal = getValue(FP); 4960 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4961 setValue(&I, Add); 4962 4963 return nullptr; 4964 } 4965 case Intrinsic::eh_begincatch: 4966 case Intrinsic::eh_endcatch: 4967 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4968 case Intrinsic::eh_exceptioncode: { 4969 unsigned Reg = TLI.getExceptionPointerRegister(); 4970 assert(Reg && "cannot get exception code on this platform"); 4971 MVT PtrVT = TLI.getPointerTy(); 4972 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4973 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4974 SDValue N = 4975 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4976 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4977 setValue(&I, N); 4978 return nullptr; 4979 } 4980 } 4981 } 4982 4983 std::pair<SDValue, SDValue> 4984 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4985 MachineBasicBlock *LandingPad) { 4986 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4987 MCSymbol *BeginLabel = nullptr; 4988 4989 if (LandingPad) { 4990 // Insert a label before the invoke call to mark the try range. This can be 4991 // used to detect deletion of the invoke via the MachineModuleInfo. 4992 BeginLabel = MMI.getContext().createTempSymbol(); 4993 4994 // For SjLj, keep track of which landing pads go with which invokes 4995 // so as to maintain the ordering of pads in the LSDA. 4996 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4997 if (CallSiteIndex) { 4998 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4999 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5000 5001 // Now that the call site is handled, stop tracking it. 5002 MMI.setCurrentCallSite(0); 5003 } 5004 5005 // Both PendingLoads and PendingExports must be flushed here; 5006 // this call might not return. 5007 (void)getRoot(); 5008 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5009 5010 CLI.setChain(getRoot()); 5011 } 5012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5013 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5014 5015 assert((CLI.IsTailCall || Result.second.getNode()) && 5016 "Non-null chain expected with non-tail call!"); 5017 assert((Result.second.getNode() || !Result.first.getNode()) && 5018 "Null value expected with tail call!"); 5019 5020 if (!Result.second.getNode()) { 5021 // As a special case, a null chain means that a tail call has been emitted 5022 // and the DAG root is already updated. 5023 HasTailCall = true; 5024 5025 // Since there's no actual continuation from this block, nothing can be 5026 // relying on us setting vregs for them. 5027 PendingExports.clear(); 5028 } else { 5029 DAG.setRoot(Result.second); 5030 } 5031 5032 if (LandingPad) { 5033 // Insert a label at the end of the invoke call to mark the try range. This 5034 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5035 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5036 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5037 5038 // Inform MachineModuleInfo of range. 5039 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5040 } 5041 5042 return Result; 5043 } 5044 5045 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5046 bool isTailCall, 5047 MachineBasicBlock *LandingPad) { 5048 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5049 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5050 Type *RetTy = FTy->getReturnType(); 5051 5052 TargetLowering::ArgListTy Args; 5053 TargetLowering::ArgListEntry Entry; 5054 Args.reserve(CS.arg_size()); 5055 5056 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5057 i != e; ++i) { 5058 const Value *V = *i; 5059 5060 // Skip empty types 5061 if (V->getType()->isEmptyTy()) 5062 continue; 5063 5064 SDValue ArgNode = getValue(V); 5065 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5066 5067 // Skip the first return-type Attribute to get to params. 5068 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5069 Args.push_back(Entry); 5070 5071 // If we have an explicit sret argument that is an Instruction, (i.e., it 5072 // might point to function-local memory), we can't meaningfully tail-call. 5073 if (Entry.isSRet && isa<Instruction>(V)) 5074 isTailCall = false; 5075 } 5076 5077 // Check if target-independent constraints permit a tail call here. 5078 // Target-dependent constraints are checked within TLI->LowerCallTo. 5079 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5080 isTailCall = false; 5081 5082 TargetLowering::CallLoweringInfo CLI(DAG); 5083 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5084 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5085 .setTailCall(isTailCall); 5086 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5087 5088 if (Result.first.getNode()) 5089 setValue(CS.getInstruction(), Result.first); 5090 } 5091 5092 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5093 /// value is equal or not-equal to zero. 5094 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5095 for (const User *U : V->users()) { 5096 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5097 if (IC->isEquality()) 5098 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5099 if (C->isNullValue()) 5100 continue; 5101 // Unknown instruction. 5102 return false; 5103 } 5104 return true; 5105 } 5106 5107 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5108 Type *LoadTy, 5109 SelectionDAGBuilder &Builder) { 5110 5111 // Check to see if this load can be trivially constant folded, e.g. if the 5112 // input is from a string literal. 5113 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5114 // Cast pointer to the type we really want to load. 5115 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5116 PointerType::getUnqual(LoadTy)); 5117 5118 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5119 const_cast<Constant *>(LoadInput), *Builder.DL)) 5120 return Builder.getValue(LoadCst); 5121 } 5122 5123 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5124 // still constant memory, the input chain can be the entry node. 5125 SDValue Root; 5126 bool ConstantMemory = false; 5127 5128 // Do not serialize (non-volatile) loads of constant memory with anything. 5129 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5130 Root = Builder.DAG.getEntryNode(); 5131 ConstantMemory = true; 5132 } else { 5133 // Do not serialize non-volatile loads against each other. 5134 Root = Builder.DAG.getRoot(); 5135 } 5136 5137 SDValue Ptr = Builder.getValue(PtrVal); 5138 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5139 Ptr, MachinePointerInfo(PtrVal), 5140 false /*volatile*/, 5141 false /*nontemporal*/, 5142 false /*isinvariant*/, 1 /* align=1 */); 5143 5144 if (!ConstantMemory) 5145 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5146 return LoadVal; 5147 } 5148 5149 /// processIntegerCallValue - Record the value for an instruction that 5150 /// produces an integer result, converting the type where necessary. 5151 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5152 SDValue Value, 5153 bool IsSigned) { 5154 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5155 if (IsSigned) 5156 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5157 else 5158 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5159 setValue(&I, Value); 5160 } 5161 5162 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5163 /// If so, return true and lower it, otherwise return false and it will be 5164 /// lowered like a normal call. 5165 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5166 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5167 if (I.getNumArgOperands() != 3) 5168 return false; 5169 5170 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5171 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5172 !I.getArgOperand(2)->getType()->isIntegerTy() || 5173 !I.getType()->isIntegerTy()) 5174 return false; 5175 5176 const Value *Size = I.getArgOperand(2); 5177 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5178 if (CSize && CSize->getZExtValue() == 0) { 5179 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5180 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5181 return true; 5182 } 5183 5184 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5185 std::pair<SDValue, SDValue> Res = 5186 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5187 getValue(LHS), getValue(RHS), getValue(Size), 5188 MachinePointerInfo(LHS), 5189 MachinePointerInfo(RHS)); 5190 if (Res.first.getNode()) { 5191 processIntegerCallValue(I, Res.first, true); 5192 PendingLoads.push_back(Res.second); 5193 return true; 5194 } 5195 5196 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5197 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5198 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5199 bool ActuallyDoIt = true; 5200 MVT LoadVT; 5201 Type *LoadTy; 5202 switch (CSize->getZExtValue()) { 5203 default: 5204 LoadVT = MVT::Other; 5205 LoadTy = nullptr; 5206 ActuallyDoIt = false; 5207 break; 5208 case 2: 5209 LoadVT = MVT::i16; 5210 LoadTy = Type::getInt16Ty(CSize->getContext()); 5211 break; 5212 case 4: 5213 LoadVT = MVT::i32; 5214 LoadTy = Type::getInt32Ty(CSize->getContext()); 5215 break; 5216 case 8: 5217 LoadVT = MVT::i64; 5218 LoadTy = Type::getInt64Ty(CSize->getContext()); 5219 break; 5220 /* 5221 case 16: 5222 LoadVT = MVT::v4i32; 5223 LoadTy = Type::getInt32Ty(CSize->getContext()); 5224 LoadTy = VectorType::get(LoadTy, 4); 5225 break; 5226 */ 5227 } 5228 5229 // This turns into unaligned loads. We only do this if the target natively 5230 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5231 // we'll only produce a small number of byte loads. 5232 5233 // Require that we can find a legal MVT, and only do this if the target 5234 // supports unaligned loads of that type. Expanding into byte loads would 5235 // bloat the code. 5236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5237 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5238 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5239 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5240 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5241 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5242 // TODO: Check alignment of src and dest ptrs. 5243 if (!TLI.isTypeLegal(LoadVT) || 5244 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5245 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5246 ActuallyDoIt = false; 5247 } 5248 5249 if (ActuallyDoIt) { 5250 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5251 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5252 5253 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5254 ISD::SETNE); 5255 processIntegerCallValue(I, Res, false); 5256 return true; 5257 } 5258 } 5259 5260 5261 return false; 5262 } 5263 5264 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5265 /// form. If so, return true and lower it, otherwise return false and it 5266 /// will be lowered like a normal call. 5267 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5268 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5269 if (I.getNumArgOperands() != 3) 5270 return false; 5271 5272 const Value *Src = I.getArgOperand(0); 5273 const Value *Char = I.getArgOperand(1); 5274 const Value *Length = I.getArgOperand(2); 5275 if (!Src->getType()->isPointerTy() || 5276 !Char->getType()->isIntegerTy() || 5277 !Length->getType()->isIntegerTy() || 5278 !I.getType()->isPointerTy()) 5279 return false; 5280 5281 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5282 std::pair<SDValue, SDValue> Res = 5283 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5284 getValue(Src), getValue(Char), getValue(Length), 5285 MachinePointerInfo(Src)); 5286 if (Res.first.getNode()) { 5287 setValue(&I, Res.first); 5288 PendingLoads.push_back(Res.second); 5289 return true; 5290 } 5291 5292 return false; 5293 } 5294 5295 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5296 /// optimized form. If so, return true and lower it, otherwise return false 5297 /// and it will be lowered like a normal call. 5298 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5299 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5300 if (I.getNumArgOperands() != 2) 5301 return false; 5302 5303 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5304 if (!Arg0->getType()->isPointerTy() || 5305 !Arg1->getType()->isPointerTy() || 5306 !I.getType()->isPointerTy()) 5307 return false; 5308 5309 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5310 std::pair<SDValue, SDValue> Res = 5311 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5312 getValue(Arg0), getValue(Arg1), 5313 MachinePointerInfo(Arg0), 5314 MachinePointerInfo(Arg1), isStpcpy); 5315 if (Res.first.getNode()) { 5316 setValue(&I, Res.first); 5317 DAG.setRoot(Res.second); 5318 return true; 5319 } 5320 5321 return false; 5322 } 5323 5324 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5325 /// If so, return true and lower it, otherwise return false and it will be 5326 /// lowered like a normal call. 5327 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5328 // Verify that the prototype makes sense. int strcmp(void*,void*) 5329 if (I.getNumArgOperands() != 2) 5330 return false; 5331 5332 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5333 if (!Arg0->getType()->isPointerTy() || 5334 !Arg1->getType()->isPointerTy() || 5335 !I.getType()->isIntegerTy()) 5336 return false; 5337 5338 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5339 std::pair<SDValue, SDValue> Res = 5340 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5341 getValue(Arg0), getValue(Arg1), 5342 MachinePointerInfo(Arg0), 5343 MachinePointerInfo(Arg1)); 5344 if (Res.first.getNode()) { 5345 processIntegerCallValue(I, Res.first, true); 5346 PendingLoads.push_back(Res.second); 5347 return true; 5348 } 5349 5350 return false; 5351 } 5352 5353 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5354 /// form. If so, return true and lower it, otherwise return false and it 5355 /// will be lowered like a normal call. 5356 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5357 // Verify that the prototype makes sense. size_t strlen(char *) 5358 if (I.getNumArgOperands() != 1) 5359 return false; 5360 5361 const Value *Arg0 = I.getArgOperand(0); 5362 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5363 return false; 5364 5365 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5366 std::pair<SDValue, SDValue> Res = 5367 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5368 getValue(Arg0), MachinePointerInfo(Arg0)); 5369 if (Res.first.getNode()) { 5370 processIntegerCallValue(I, Res.first, false); 5371 PendingLoads.push_back(Res.second); 5372 return true; 5373 } 5374 5375 return false; 5376 } 5377 5378 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5379 /// form. If so, return true and lower it, otherwise return false and it 5380 /// will be lowered like a normal call. 5381 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5382 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5383 if (I.getNumArgOperands() != 2) 5384 return false; 5385 5386 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5387 if (!Arg0->getType()->isPointerTy() || 5388 !Arg1->getType()->isIntegerTy() || 5389 !I.getType()->isIntegerTy()) 5390 return false; 5391 5392 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5393 std::pair<SDValue, SDValue> Res = 5394 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5395 getValue(Arg0), getValue(Arg1), 5396 MachinePointerInfo(Arg0)); 5397 if (Res.first.getNode()) { 5398 processIntegerCallValue(I, Res.first, false); 5399 PendingLoads.push_back(Res.second); 5400 return true; 5401 } 5402 5403 return false; 5404 } 5405 5406 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5407 /// operation (as expected), translate it to an SDNode with the specified opcode 5408 /// and return true. 5409 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5410 unsigned Opcode) { 5411 // Sanity check that it really is a unary floating-point call. 5412 if (I.getNumArgOperands() != 1 || 5413 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5414 I.getType() != I.getArgOperand(0)->getType() || 5415 !I.onlyReadsMemory()) 5416 return false; 5417 5418 SDValue Tmp = getValue(I.getArgOperand(0)); 5419 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5420 return true; 5421 } 5422 5423 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5424 /// operation (as expected), translate it to an SDNode with the specified opcode 5425 /// and return true. 5426 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5427 unsigned Opcode) { 5428 // Sanity check that it really is a binary floating-point call. 5429 if (I.getNumArgOperands() != 2 || 5430 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5431 I.getType() != I.getArgOperand(0)->getType() || 5432 I.getType() != I.getArgOperand(1)->getType() || 5433 !I.onlyReadsMemory()) 5434 return false; 5435 5436 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5437 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5438 EVT VT = Tmp0.getValueType(); 5439 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5440 return true; 5441 } 5442 5443 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5444 // Handle inline assembly differently. 5445 if (isa<InlineAsm>(I.getCalledValue())) { 5446 visitInlineAsm(&I); 5447 return; 5448 } 5449 5450 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5451 ComputeUsesVAFloatArgument(I, &MMI); 5452 5453 const char *RenameFn = nullptr; 5454 if (Function *F = I.getCalledFunction()) { 5455 if (F->isDeclaration()) { 5456 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5457 if (unsigned IID = II->getIntrinsicID(F)) { 5458 RenameFn = visitIntrinsicCall(I, IID); 5459 if (!RenameFn) 5460 return; 5461 } 5462 } 5463 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5464 RenameFn = visitIntrinsicCall(I, IID); 5465 if (!RenameFn) 5466 return; 5467 } 5468 } 5469 5470 // Check for well-known libc/libm calls. If the function is internal, it 5471 // can't be a library call. 5472 LibFunc::Func Func; 5473 if (!F->hasLocalLinkage() && F->hasName() && 5474 LibInfo->getLibFunc(F->getName(), Func) && 5475 LibInfo->hasOptimizedCodeGen(Func)) { 5476 switch (Func) { 5477 default: break; 5478 case LibFunc::copysign: 5479 case LibFunc::copysignf: 5480 case LibFunc::copysignl: 5481 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5482 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5483 I.getType() == I.getArgOperand(0)->getType() && 5484 I.getType() == I.getArgOperand(1)->getType() && 5485 I.onlyReadsMemory()) { 5486 SDValue LHS = getValue(I.getArgOperand(0)); 5487 SDValue RHS = getValue(I.getArgOperand(1)); 5488 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5489 LHS.getValueType(), LHS, RHS)); 5490 return; 5491 } 5492 break; 5493 case LibFunc::fabs: 5494 case LibFunc::fabsf: 5495 case LibFunc::fabsl: 5496 if (visitUnaryFloatCall(I, ISD::FABS)) 5497 return; 5498 break; 5499 case LibFunc::fmin: 5500 case LibFunc::fminf: 5501 case LibFunc::fminl: 5502 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5503 return; 5504 break; 5505 case LibFunc::fmax: 5506 case LibFunc::fmaxf: 5507 case LibFunc::fmaxl: 5508 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5509 return; 5510 break; 5511 case LibFunc::sin: 5512 case LibFunc::sinf: 5513 case LibFunc::sinl: 5514 if (visitUnaryFloatCall(I, ISD::FSIN)) 5515 return; 5516 break; 5517 case LibFunc::cos: 5518 case LibFunc::cosf: 5519 case LibFunc::cosl: 5520 if (visitUnaryFloatCall(I, ISD::FCOS)) 5521 return; 5522 break; 5523 case LibFunc::sqrt: 5524 case LibFunc::sqrtf: 5525 case LibFunc::sqrtl: 5526 case LibFunc::sqrt_finite: 5527 case LibFunc::sqrtf_finite: 5528 case LibFunc::sqrtl_finite: 5529 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5530 return; 5531 break; 5532 case LibFunc::floor: 5533 case LibFunc::floorf: 5534 case LibFunc::floorl: 5535 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5536 return; 5537 break; 5538 case LibFunc::nearbyint: 5539 case LibFunc::nearbyintf: 5540 case LibFunc::nearbyintl: 5541 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5542 return; 5543 break; 5544 case LibFunc::ceil: 5545 case LibFunc::ceilf: 5546 case LibFunc::ceill: 5547 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5548 return; 5549 break; 5550 case LibFunc::rint: 5551 case LibFunc::rintf: 5552 case LibFunc::rintl: 5553 if (visitUnaryFloatCall(I, ISD::FRINT)) 5554 return; 5555 break; 5556 case LibFunc::round: 5557 case LibFunc::roundf: 5558 case LibFunc::roundl: 5559 if (visitUnaryFloatCall(I, ISD::FROUND)) 5560 return; 5561 break; 5562 case LibFunc::trunc: 5563 case LibFunc::truncf: 5564 case LibFunc::truncl: 5565 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5566 return; 5567 break; 5568 case LibFunc::log2: 5569 case LibFunc::log2f: 5570 case LibFunc::log2l: 5571 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5572 return; 5573 break; 5574 case LibFunc::exp2: 5575 case LibFunc::exp2f: 5576 case LibFunc::exp2l: 5577 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5578 return; 5579 break; 5580 case LibFunc::memcmp: 5581 if (visitMemCmpCall(I)) 5582 return; 5583 break; 5584 case LibFunc::memchr: 5585 if (visitMemChrCall(I)) 5586 return; 5587 break; 5588 case LibFunc::strcpy: 5589 if (visitStrCpyCall(I, false)) 5590 return; 5591 break; 5592 case LibFunc::stpcpy: 5593 if (visitStrCpyCall(I, true)) 5594 return; 5595 break; 5596 case LibFunc::strcmp: 5597 if (visitStrCmpCall(I)) 5598 return; 5599 break; 5600 case LibFunc::strlen: 5601 if (visitStrLenCall(I)) 5602 return; 5603 break; 5604 case LibFunc::strnlen: 5605 if (visitStrNLenCall(I)) 5606 return; 5607 break; 5608 } 5609 } 5610 } 5611 5612 SDValue Callee; 5613 if (!RenameFn) 5614 Callee = getValue(I.getCalledValue()); 5615 else 5616 Callee = DAG.getExternalSymbol(RenameFn, 5617 DAG.getTargetLoweringInfo().getPointerTy()); 5618 5619 // Check if we can potentially perform a tail call. More detailed checking is 5620 // be done within LowerCallTo, after more information about the call is known. 5621 LowerCallTo(&I, Callee, I.isTailCall()); 5622 } 5623 5624 namespace { 5625 5626 /// AsmOperandInfo - This contains information for each constraint that we are 5627 /// lowering. 5628 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5629 public: 5630 /// CallOperand - If this is the result output operand or a clobber 5631 /// this is null, otherwise it is the incoming operand to the CallInst. 5632 /// This gets modified as the asm is processed. 5633 SDValue CallOperand; 5634 5635 /// AssignedRegs - If this is a register or register class operand, this 5636 /// contains the set of register corresponding to the operand. 5637 RegsForValue AssignedRegs; 5638 5639 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5640 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5641 } 5642 5643 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5644 /// corresponds to. If there is no Value* for this operand, it returns 5645 /// MVT::Other. 5646 EVT getCallOperandValEVT(LLVMContext &Context, 5647 const TargetLowering &TLI, 5648 const DataLayout *DL) const { 5649 if (!CallOperandVal) return MVT::Other; 5650 5651 if (isa<BasicBlock>(CallOperandVal)) 5652 return TLI.getPointerTy(); 5653 5654 llvm::Type *OpTy = CallOperandVal->getType(); 5655 5656 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5657 // If this is an indirect operand, the operand is a pointer to the 5658 // accessed type. 5659 if (isIndirect) { 5660 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5661 if (!PtrTy) 5662 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5663 OpTy = PtrTy->getElementType(); 5664 } 5665 5666 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5667 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5668 if (STy->getNumElements() == 1) 5669 OpTy = STy->getElementType(0); 5670 5671 // If OpTy is not a single value, it may be a struct/union that we 5672 // can tile with integers. 5673 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5674 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5675 switch (BitSize) { 5676 default: break; 5677 case 1: 5678 case 8: 5679 case 16: 5680 case 32: 5681 case 64: 5682 case 128: 5683 OpTy = IntegerType::get(Context, BitSize); 5684 break; 5685 } 5686 } 5687 5688 return TLI.getValueType(OpTy, true); 5689 } 5690 }; 5691 5692 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5693 5694 } // end anonymous namespace 5695 5696 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5697 /// specified operand. We prefer to assign virtual registers, to allow the 5698 /// register allocator to handle the assignment process. However, if the asm 5699 /// uses features that we can't model on machineinstrs, we have SDISel do the 5700 /// allocation. This produces generally horrible, but correct, code. 5701 /// 5702 /// OpInfo describes the operand. 5703 /// 5704 static void GetRegistersForValue(SelectionDAG &DAG, 5705 const TargetLowering &TLI, 5706 SDLoc DL, 5707 SDISelAsmOperandInfo &OpInfo) { 5708 LLVMContext &Context = *DAG.getContext(); 5709 5710 MachineFunction &MF = DAG.getMachineFunction(); 5711 SmallVector<unsigned, 4> Regs; 5712 5713 // If this is a constraint for a single physreg, or a constraint for a 5714 // register class, find it. 5715 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5716 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5717 OpInfo.ConstraintCode, 5718 OpInfo.ConstraintVT); 5719 5720 unsigned NumRegs = 1; 5721 if (OpInfo.ConstraintVT != MVT::Other) { 5722 // If this is a FP input in an integer register (or visa versa) insert a bit 5723 // cast of the input value. More generally, handle any case where the input 5724 // value disagrees with the register class we plan to stick this in. 5725 if (OpInfo.Type == InlineAsm::isInput && 5726 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5727 // Try to convert to the first EVT that the reg class contains. If the 5728 // types are identical size, use a bitcast to convert (e.g. two differing 5729 // vector types). 5730 MVT RegVT = *PhysReg.second->vt_begin(); 5731 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5732 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5733 RegVT, OpInfo.CallOperand); 5734 OpInfo.ConstraintVT = RegVT; 5735 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5736 // If the input is a FP value and we want it in FP registers, do a 5737 // bitcast to the corresponding integer type. This turns an f64 value 5738 // into i64, which can be passed with two i32 values on a 32-bit 5739 // machine. 5740 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5741 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5742 RegVT, OpInfo.CallOperand); 5743 OpInfo.ConstraintVT = RegVT; 5744 } 5745 } 5746 5747 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5748 } 5749 5750 MVT RegVT; 5751 EVT ValueVT = OpInfo.ConstraintVT; 5752 5753 // If this is a constraint for a specific physical register, like {r17}, 5754 // assign it now. 5755 if (unsigned AssignedReg = PhysReg.first) { 5756 const TargetRegisterClass *RC = PhysReg.second; 5757 if (OpInfo.ConstraintVT == MVT::Other) 5758 ValueVT = *RC->vt_begin(); 5759 5760 // Get the actual register value type. This is important, because the user 5761 // may have asked for (e.g.) the AX register in i32 type. We need to 5762 // remember that AX is actually i16 to get the right extension. 5763 RegVT = *RC->vt_begin(); 5764 5765 // This is a explicit reference to a physical register. 5766 Regs.push_back(AssignedReg); 5767 5768 // If this is an expanded reference, add the rest of the regs to Regs. 5769 if (NumRegs != 1) { 5770 TargetRegisterClass::iterator I = RC->begin(); 5771 for (; *I != AssignedReg; ++I) 5772 assert(I != RC->end() && "Didn't find reg!"); 5773 5774 // Already added the first reg. 5775 --NumRegs; ++I; 5776 for (; NumRegs; --NumRegs, ++I) { 5777 assert(I != RC->end() && "Ran out of registers to allocate!"); 5778 Regs.push_back(*I); 5779 } 5780 } 5781 5782 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5783 return; 5784 } 5785 5786 // Otherwise, if this was a reference to an LLVM register class, create vregs 5787 // for this reference. 5788 if (const TargetRegisterClass *RC = PhysReg.second) { 5789 RegVT = *RC->vt_begin(); 5790 if (OpInfo.ConstraintVT == MVT::Other) 5791 ValueVT = RegVT; 5792 5793 // Create the appropriate number of virtual registers. 5794 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5795 for (; NumRegs; --NumRegs) 5796 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5797 5798 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5799 return; 5800 } 5801 5802 // Otherwise, we couldn't allocate enough registers for this. 5803 } 5804 5805 /// visitInlineAsm - Handle a call to an InlineAsm object. 5806 /// 5807 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5808 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5809 5810 /// ConstraintOperands - Information about all of the constraints. 5811 SDISelAsmOperandInfoVector ConstraintOperands; 5812 5813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5814 TargetLowering::AsmOperandInfoVector TargetConstraints = 5815 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5816 5817 bool hasMemory = false; 5818 5819 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5820 unsigned ResNo = 0; // ResNo - The result number of the next output. 5821 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5822 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5823 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5824 5825 MVT OpVT = MVT::Other; 5826 5827 // Compute the value type for each operand. 5828 switch (OpInfo.Type) { 5829 case InlineAsm::isOutput: 5830 // Indirect outputs just consume an argument. 5831 if (OpInfo.isIndirect) { 5832 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5833 break; 5834 } 5835 5836 // The return value of the call is this value. As such, there is no 5837 // corresponding argument. 5838 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5839 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5840 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5841 } else { 5842 assert(ResNo == 0 && "Asm only has one result!"); 5843 OpVT = TLI.getSimpleValueType(CS.getType()); 5844 } 5845 ++ResNo; 5846 break; 5847 case InlineAsm::isInput: 5848 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5849 break; 5850 case InlineAsm::isClobber: 5851 // Nothing to do. 5852 break; 5853 } 5854 5855 // If this is an input or an indirect output, process the call argument. 5856 // BasicBlocks are labels, currently appearing only in asm's. 5857 if (OpInfo.CallOperandVal) { 5858 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5859 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5860 } else { 5861 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5862 } 5863 5864 OpVT = 5865 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5866 } 5867 5868 OpInfo.ConstraintVT = OpVT; 5869 5870 // Indirect operand accesses access memory. 5871 if (OpInfo.isIndirect) 5872 hasMemory = true; 5873 else { 5874 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5875 TargetLowering::ConstraintType 5876 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5877 if (CType == TargetLowering::C_Memory) { 5878 hasMemory = true; 5879 break; 5880 } 5881 } 5882 } 5883 } 5884 5885 SDValue Chain, Flag; 5886 5887 // We won't need to flush pending loads if this asm doesn't touch 5888 // memory and is nonvolatile. 5889 if (hasMemory || IA->hasSideEffects()) 5890 Chain = getRoot(); 5891 else 5892 Chain = DAG.getRoot(); 5893 5894 // Second pass over the constraints: compute which constraint option to use 5895 // and assign registers to constraints that want a specific physreg. 5896 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5897 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5898 5899 // If this is an output operand with a matching input operand, look up the 5900 // matching input. If their types mismatch, e.g. one is an integer, the 5901 // other is floating point, or their sizes are different, flag it as an 5902 // error. 5903 if (OpInfo.hasMatchingInput()) { 5904 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5905 5906 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5907 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5908 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5909 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5910 OpInfo.ConstraintVT); 5911 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5912 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5913 Input.ConstraintVT); 5914 if ((OpInfo.ConstraintVT.isInteger() != 5915 Input.ConstraintVT.isInteger()) || 5916 (MatchRC.second != InputRC.second)) { 5917 report_fatal_error("Unsupported asm: input constraint" 5918 " with a matching output constraint of" 5919 " incompatible type!"); 5920 } 5921 Input.ConstraintVT = OpInfo.ConstraintVT; 5922 } 5923 } 5924 5925 // Compute the constraint code and ConstraintType to use. 5926 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5927 5928 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5929 OpInfo.Type == InlineAsm::isClobber) 5930 continue; 5931 5932 // If this is a memory input, and if the operand is not indirect, do what we 5933 // need to to provide an address for the memory input. 5934 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5935 !OpInfo.isIndirect) { 5936 assert((OpInfo.isMultipleAlternative || 5937 (OpInfo.Type == InlineAsm::isInput)) && 5938 "Can only indirectify direct input operands!"); 5939 5940 // Memory operands really want the address of the value. If we don't have 5941 // an indirect input, put it in the constpool if we can, otherwise spill 5942 // it to a stack slot. 5943 // TODO: This isn't quite right. We need to handle these according to 5944 // the addressing mode that the constraint wants. Also, this may take 5945 // an additional register for the computation and we don't want that 5946 // either. 5947 5948 // If the operand is a float, integer, or vector constant, spill to a 5949 // constant pool entry to get its address. 5950 const Value *OpVal = OpInfo.CallOperandVal; 5951 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5952 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5953 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5954 TLI.getPointerTy()); 5955 } else { 5956 // Otherwise, create a stack slot and emit a store to it before the 5957 // asm. 5958 Type *Ty = OpVal->getType(); 5959 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5960 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5961 MachineFunction &MF = DAG.getMachineFunction(); 5962 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5963 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5964 Chain = DAG.getStore(Chain, getCurSDLoc(), 5965 OpInfo.CallOperand, StackSlot, 5966 MachinePointerInfo::getFixedStack(SSFI), 5967 false, false, 0); 5968 OpInfo.CallOperand = StackSlot; 5969 } 5970 5971 // There is no longer a Value* corresponding to this operand. 5972 OpInfo.CallOperandVal = nullptr; 5973 5974 // It is now an indirect operand. 5975 OpInfo.isIndirect = true; 5976 } 5977 5978 // If this constraint is for a specific register, allocate it before 5979 // anything else. 5980 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5981 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5982 } 5983 5984 // Second pass - Loop over all of the operands, assigning virtual or physregs 5985 // to register class operands. 5986 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5987 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5988 5989 // C_Register operands have already been allocated, Other/Memory don't need 5990 // to be. 5991 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5992 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5993 } 5994 5995 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5996 std::vector<SDValue> AsmNodeOperands; 5997 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5998 AsmNodeOperands.push_back( 5999 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6000 TLI.getPointerTy())); 6001 6002 // If we have a !srcloc metadata node associated with it, we want to attach 6003 // this to the ultimately generated inline asm machineinstr. To do this, we 6004 // pass in the third operand as this (potentially null) inline asm MDNode. 6005 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6006 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6007 6008 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6009 // bits as operand 3. 6010 unsigned ExtraInfo = 0; 6011 if (IA->hasSideEffects()) 6012 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6013 if (IA->isAlignStack()) 6014 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6015 // Set the asm dialect. 6016 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6017 6018 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6019 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6020 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6021 6022 // Compute the constraint code and ConstraintType to use. 6023 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6024 6025 // Ideally, we would only check against memory constraints. However, the 6026 // meaning of an other constraint can be target-specific and we can't easily 6027 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6028 // for other constriants as well. 6029 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6030 OpInfo.ConstraintType == TargetLowering::C_Other) { 6031 if (OpInfo.Type == InlineAsm::isInput) 6032 ExtraInfo |= InlineAsm::Extra_MayLoad; 6033 else if (OpInfo.Type == InlineAsm::isOutput) 6034 ExtraInfo |= InlineAsm::Extra_MayStore; 6035 else if (OpInfo.Type == InlineAsm::isClobber) 6036 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6037 } 6038 } 6039 6040 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6041 TLI.getPointerTy())); 6042 6043 // Loop over all of the inputs, copying the operand values into the 6044 // appropriate registers and processing the output regs. 6045 RegsForValue RetValRegs; 6046 6047 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6048 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6049 6050 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6051 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6052 6053 switch (OpInfo.Type) { 6054 case InlineAsm::isOutput: { 6055 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6056 OpInfo.ConstraintType != TargetLowering::C_Register) { 6057 // Memory output, or 'other' output (e.g. 'X' constraint). 6058 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6059 6060 unsigned ConstraintID = 6061 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6062 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6063 "Failed to convert memory constraint code to constraint id."); 6064 6065 // Add information to the INLINEASM node to know about this output. 6066 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6067 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6068 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6069 MVT::i32)); 6070 AsmNodeOperands.push_back(OpInfo.CallOperand); 6071 break; 6072 } 6073 6074 // Otherwise, this is a register or register class output. 6075 6076 // Copy the output from the appropriate register. Find a register that 6077 // we can use. 6078 if (OpInfo.AssignedRegs.Regs.empty()) { 6079 LLVMContext &Ctx = *DAG.getContext(); 6080 Ctx.emitError(CS.getInstruction(), 6081 "couldn't allocate output register for constraint '" + 6082 Twine(OpInfo.ConstraintCode) + "'"); 6083 return; 6084 } 6085 6086 // If this is an indirect operand, store through the pointer after the 6087 // asm. 6088 if (OpInfo.isIndirect) { 6089 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6090 OpInfo.CallOperandVal)); 6091 } else { 6092 // This is the result value of the call. 6093 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6094 // Concatenate this output onto the outputs list. 6095 RetValRegs.append(OpInfo.AssignedRegs); 6096 } 6097 6098 // Add information to the INLINEASM node to know that this register is 6099 // set. 6100 OpInfo.AssignedRegs 6101 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6102 ? InlineAsm::Kind_RegDefEarlyClobber 6103 : InlineAsm::Kind_RegDef, 6104 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6105 break; 6106 } 6107 case InlineAsm::isInput: { 6108 SDValue InOperandVal = OpInfo.CallOperand; 6109 6110 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6111 // If this is required to match an output register we have already set, 6112 // just use its register. 6113 unsigned OperandNo = OpInfo.getMatchedOperand(); 6114 6115 // Scan until we find the definition we already emitted of this operand. 6116 // When we find it, create a RegsForValue operand. 6117 unsigned CurOp = InlineAsm::Op_FirstOperand; 6118 for (; OperandNo; --OperandNo) { 6119 // Advance to the next operand. 6120 unsigned OpFlag = 6121 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6122 assert((InlineAsm::isRegDefKind(OpFlag) || 6123 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6124 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6125 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6126 } 6127 6128 unsigned OpFlag = 6129 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6130 if (InlineAsm::isRegDefKind(OpFlag) || 6131 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6132 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6133 if (OpInfo.isIndirect) { 6134 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6135 LLVMContext &Ctx = *DAG.getContext(); 6136 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6137 " don't know how to handle tied " 6138 "indirect register inputs"); 6139 return; 6140 } 6141 6142 RegsForValue MatchedRegs; 6143 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6144 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6145 MatchedRegs.RegVTs.push_back(RegVT); 6146 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6147 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6148 i != e; ++i) { 6149 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6150 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6151 else { 6152 LLVMContext &Ctx = *DAG.getContext(); 6153 Ctx.emitError(CS.getInstruction(), 6154 "inline asm error: This value" 6155 " type register class is not natively supported!"); 6156 return; 6157 } 6158 } 6159 SDLoc dl = getCurSDLoc(); 6160 // Use the produced MatchedRegs object to 6161 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6162 Chain, &Flag, CS.getInstruction()); 6163 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6164 true, OpInfo.getMatchedOperand(), dl, 6165 DAG, AsmNodeOperands); 6166 break; 6167 } 6168 6169 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6170 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6171 "Unexpected number of operands"); 6172 // Add information to the INLINEASM node to know about this input. 6173 // See InlineAsm.h isUseOperandTiedToDef. 6174 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6175 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6176 OpInfo.getMatchedOperand()); 6177 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6178 TLI.getPointerTy())); 6179 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6180 break; 6181 } 6182 6183 // Treat indirect 'X' constraint as memory. 6184 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6185 OpInfo.isIndirect) 6186 OpInfo.ConstraintType = TargetLowering::C_Memory; 6187 6188 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6189 std::vector<SDValue> Ops; 6190 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6191 Ops, DAG); 6192 if (Ops.empty()) { 6193 LLVMContext &Ctx = *DAG.getContext(); 6194 Ctx.emitError(CS.getInstruction(), 6195 "invalid operand for inline asm constraint '" + 6196 Twine(OpInfo.ConstraintCode) + "'"); 6197 return; 6198 } 6199 6200 // Add information to the INLINEASM node to know about this input. 6201 unsigned ResOpType = 6202 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6203 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6204 getCurSDLoc(), 6205 TLI.getPointerTy())); 6206 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6207 break; 6208 } 6209 6210 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6211 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6212 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6213 "Memory operands expect pointer values"); 6214 6215 unsigned ConstraintID = 6216 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6217 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6218 "Failed to convert memory constraint code to constraint id."); 6219 6220 // Add information to the INLINEASM node to know about this input. 6221 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6222 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6223 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6224 getCurSDLoc(), 6225 MVT::i32)); 6226 AsmNodeOperands.push_back(InOperandVal); 6227 break; 6228 } 6229 6230 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6231 OpInfo.ConstraintType == TargetLowering::C_Register) && 6232 "Unknown constraint type!"); 6233 6234 // TODO: Support this. 6235 if (OpInfo.isIndirect) { 6236 LLVMContext &Ctx = *DAG.getContext(); 6237 Ctx.emitError(CS.getInstruction(), 6238 "Don't know how to handle indirect register inputs yet " 6239 "for constraint '" + 6240 Twine(OpInfo.ConstraintCode) + "'"); 6241 return; 6242 } 6243 6244 // Copy the input into the appropriate registers. 6245 if (OpInfo.AssignedRegs.Regs.empty()) { 6246 LLVMContext &Ctx = *DAG.getContext(); 6247 Ctx.emitError(CS.getInstruction(), 6248 "couldn't allocate input reg for constraint '" + 6249 Twine(OpInfo.ConstraintCode) + "'"); 6250 return; 6251 } 6252 6253 SDLoc dl = getCurSDLoc(); 6254 6255 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6256 Chain, &Flag, CS.getInstruction()); 6257 6258 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6259 dl, DAG, AsmNodeOperands); 6260 break; 6261 } 6262 case InlineAsm::isClobber: { 6263 // Add the clobbered value to the operand list, so that the register 6264 // allocator is aware that the physreg got clobbered. 6265 if (!OpInfo.AssignedRegs.Regs.empty()) 6266 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6267 false, 0, getCurSDLoc(), DAG, 6268 AsmNodeOperands); 6269 break; 6270 } 6271 } 6272 } 6273 6274 // Finish up input operands. Set the input chain and add the flag last. 6275 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6276 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6277 6278 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6279 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6280 Flag = Chain.getValue(1); 6281 6282 // If this asm returns a register value, copy the result from that register 6283 // and set it as the value of the call. 6284 if (!RetValRegs.Regs.empty()) { 6285 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6286 Chain, &Flag, CS.getInstruction()); 6287 6288 // FIXME: Why don't we do this for inline asms with MRVs? 6289 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6290 EVT ResultType = TLI.getValueType(CS.getType()); 6291 6292 // If any of the results of the inline asm is a vector, it may have the 6293 // wrong width/num elts. This can happen for register classes that can 6294 // contain multiple different value types. The preg or vreg allocated may 6295 // not have the same VT as was expected. Convert it to the right type 6296 // with bit_convert. 6297 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6298 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6299 ResultType, Val); 6300 6301 } else if (ResultType != Val.getValueType() && 6302 ResultType.isInteger() && Val.getValueType().isInteger()) { 6303 // If a result value was tied to an input value, the computed result may 6304 // have a wider width than the expected result. Extract the relevant 6305 // portion. 6306 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6307 } 6308 6309 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6310 } 6311 6312 setValue(CS.getInstruction(), Val); 6313 // Don't need to use this as a chain in this case. 6314 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6315 return; 6316 } 6317 6318 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6319 6320 // Process indirect outputs, first output all of the flagged copies out of 6321 // physregs. 6322 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6323 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6324 const Value *Ptr = IndirectStoresToEmit[i].second; 6325 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6326 Chain, &Flag, IA); 6327 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6328 } 6329 6330 // Emit the non-flagged stores from the physregs. 6331 SmallVector<SDValue, 8> OutChains; 6332 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6333 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6334 StoresToEmit[i].first, 6335 getValue(StoresToEmit[i].second), 6336 MachinePointerInfo(StoresToEmit[i].second), 6337 false, false, 0); 6338 OutChains.push_back(Val); 6339 } 6340 6341 if (!OutChains.empty()) 6342 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6343 6344 DAG.setRoot(Chain); 6345 } 6346 6347 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6348 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6349 MVT::Other, getRoot(), 6350 getValue(I.getArgOperand(0)), 6351 DAG.getSrcValue(I.getArgOperand(0)))); 6352 } 6353 6354 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6356 const DataLayout &DL = *TLI.getDataLayout(); 6357 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6358 getRoot(), getValue(I.getOperand(0)), 6359 DAG.getSrcValue(I.getOperand(0)), 6360 DL.getABITypeAlignment(I.getType())); 6361 setValue(&I, V); 6362 DAG.setRoot(V.getValue(1)); 6363 } 6364 6365 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6366 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6367 MVT::Other, getRoot(), 6368 getValue(I.getArgOperand(0)), 6369 DAG.getSrcValue(I.getArgOperand(0)))); 6370 } 6371 6372 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6373 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6374 MVT::Other, getRoot(), 6375 getValue(I.getArgOperand(0)), 6376 getValue(I.getArgOperand(1)), 6377 DAG.getSrcValue(I.getArgOperand(0)), 6378 DAG.getSrcValue(I.getArgOperand(1)))); 6379 } 6380 6381 /// \brief Lower an argument list according to the target calling convention. 6382 /// 6383 /// \return A tuple of <return-value, token-chain> 6384 /// 6385 /// This is a helper for lowering intrinsics that follow a target calling 6386 /// convention or require stack pointer adjustment. Only a subset of the 6387 /// intrinsic's operands need to participate in the calling convention. 6388 std::pair<SDValue, SDValue> 6389 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6390 unsigned NumArgs, SDValue Callee, 6391 Type *ReturnTy, 6392 MachineBasicBlock *LandingPad, 6393 bool IsPatchPoint) { 6394 TargetLowering::ArgListTy Args; 6395 Args.reserve(NumArgs); 6396 6397 // Populate the argument list. 6398 // Attributes for args start at offset 1, after the return attribute. 6399 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6400 ArgI != ArgE; ++ArgI) { 6401 const Value *V = CS->getOperand(ArgI); 6402 6403 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6404 6405 TargetLowering::ArgListEntry Entry; 6406 Entry.Node = getValue(V); 6407 Entry.Ty = V->getType(); 6408 Entry.setAttributes(&CS, AttrI); 6409 Args.push_back(Entry); 6410 } 6411 6412 TargetLowering::CallLoweringInfo CLI(DAG); 6413 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6414 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6415 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6416 6417 return lowerInvokable(CLI, LandingPad); 6418 } 6419 6420 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6421 /// or patchpoint target node's operand list. 6422 /// 6423 /// Constants are converted to TargetConstants purely as an optimization to 6424 /// avoid constant materialization and register allocation. 6425 /// 6426 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6427 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6428 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6429 /// address materialization and register allocation, but may also be required 6430 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6431 /// alloca in the entry block, then the runtime may assume that the alloca's 6432 /// StackMap location can be read immediately after compilation and that the 6433 /// location is valid at any point during execution (this is similar to the 6434 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6435 /// only available in a register, then the runtime would need to trap when 6436 /// execution reaches the StackMap in order to read the alloca's location. 6437 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6438 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6439 SelectionDAGBuilder &Builder) { 6440 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6441 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6442 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6443 Ops.push_back( 6444 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6445 Ops.push_back( 6446 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6447 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6448 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6449 Ops.push_back( 6450 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6451 } else 6452 Ops.push_back(OpVal); 6453 } 6454 } 6455 6456 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6457 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6458 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6459 // [live variables...]) 6460 6461 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6462 6463 SDValue Chain, InFlag, Callee, NullPtr; 6464 SmallVector<SDValue, 32> Ops; 6465 6466 SDLoc DL = getCurSDLoc(); 6467 Callee = getValue(CI.getCalledValue()); 6468 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6469 6470 // The stackmap intrinsic only records the live variables (the arguemnts 6471 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6472 // intrinsic, this won't be lowered to a function call. This means we don't 6473 // have to worry about calling conventions and target specific lowering code. 6474 // Instead we perform the call lowering right here. 6475 // 6476 // chain, flag = CALLSEQ_START(chain, 0) 6477 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6478 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6479 // 6480 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6481 InFlag = Chain.getValue(1); 6482 6483 // Add the <id> and <numBytes> constants. 6484 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6485 Ops.push_back(DAG.getTargetConstant( 6486 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6487 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6488 Ops.push_back(DAG.getTargetConstant( 6489 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6490 MVT::i32)); 6491 6492 // Push live variables for the stack map. 6493 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6494 6495 // We are not pushing any register mask info here on the operands list, 6496 // because the stackmap doesn't clobber anything. 6497 6498 // Push the chain and the glue flag. 6499 Ops.push_back(Chain); 6500 Ops.push_back(InFlag); 6501 6502 // Create the STACKMAP node. 6503 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6504 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6505 Chain = SDValue(SM, 0); 6506 InFlag = Chain.getValue(1); 6507 6508 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6509 6510 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6511 6512 // Set the root to the target-lowered call chain. 6513 DAG.setRoot(Chain); 6514 6515 // Inform the Frame Information that we have a stackmap in this function. 6516 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6517 } 6518 6519 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6520 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6521 MachineBasicBlock *LandingPad) { 6522 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6523 // i32 <numBytes>, 6524 // i8* <target>, 6525 // i32 <numArgs>, 6526 // [Args...], 6527 // [live variables...]) 6528 6529 CallingConv::ID CC = CS.getCallingConv(); 6530 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6531 bool HasDef = !CS->getType()->isVoidTy(); 6532 SDLoc dl = getCurSDLoc(); 6533 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6534 6535 // Handle immediate and symbolic callees. 6536 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6537 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6538 /*isTarget=*/true); 6539 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6540 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6541 SDLoc(SymbolicCallee), 6542 SymbolicCallee->getValueType(0)); 6543 6544 // Get the real number of arguments participating in the call <numArgs> 6545 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6546 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6547 6548 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6549 // Intrinsics include all meta-operands up to but not including CC. 6550 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6551 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6552 "Not enough arguments provided to the patchpoint intrinsic"); 6553 6554 // For AnyRegCC the arguments are lowered later on manually. 6555 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6556 Type *ReturnTy = 6557 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6558 std::pair<SDValue, SDValue> Result = 6559 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6560 LandingPad, true); 6561 6562 SDNode *CallEnd = Result.second.getNode(); 6563 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6564 CallEnd = CallEnd->getOperand(0).getNode(); 6565 6566 /// Get a call instruction from the call sequence chain. 6567 /// Tail calls are not allowed. 6568 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6569 "Expected a callseq node."); 6570 SDNode *Call = CallEnd->getOperand(0).getNode(); 6571 bool HasGlue = Call->getGluedNode(); 6572 6573 // Replace the target specific call node with the patchable intrinsic. 6574 SmallVector<SDValue, 8> Ops; 6575 6576 // Add the <id> and <numBytes> constants. 6577 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6578 Ops.push_back(DAG.getTargetConstant( 6579 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6580 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6581 Ops.push_back(DAG.getTargetConstant( 6582 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6583 MVT::i32)); 6584 6585 // Add the callee. 6586 Ops.push_back(Callee); 6587 6588 // Adjust <numArgs> to account for any arguments that have been passed on the 6589 // stack instead. 6590 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6591 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6592 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6593 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6594 6595 // Add the calling convention 6596 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6597 6598 // Add the arguments we omitted previously. The register allocator should 6599 // place these in any free register. 6600 if (IsAnyRegCC) 6601 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6602 Ops.push_back(getValue(CS.getArgument(i))); 6603 6604 // Push the arguments from the call instruction up to the register mask. 6605 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6606 Ops.append(Call->op_begin() + 2, e); 6607 6608 // Push live variables for the stack map. 6609 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6610 6611 // Push the register mask info. 6612 if (HasGlue) 6613 Ops.push_back(*(Call->op_end()-2)); 6614 else 6615 Ops.push_back(*(Call->op_end()-1)); 6616 6617 // Push the chain (this is originally the first operand of the call, but 6618 // becomes now the last or second to last operand). 6619 Ops.push_back(*(Call->op_begin())); 6620 6621 // Push the glue flag (last operand). 6622 if (HasGlue) 6623 Ops.push_back(*(Call->op_end()-1)); 6624 6625 SDVTList NodeTys; 6626 if (IsAnyRegCC && HasDef) { 6627 // Create the return types based on the intrinsic definition 6628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6629 SmallVector<EVT, 3> ValueVTs; 6630 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6631 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6632 6633 // There is always a chain and a glue type at the end 6634 ValueVTs.push_back(MVT::Other); 6635 ValueVTs.push_back(MVT::Glue); 6636 NodeTys = DAG.getVTList(ValueVTs); 6637 } else 6638 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6639 6640 // Replace the target specific call node with a PATCHPOINT node. 6641 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6642 dl, NodeTys, Ops); 6643 6644 // Update the NodeMap. 6645 if (HasDef) { 6646 if (IsAnyRegCC) 6647 setValue(CS.getInstruction(), SDValue(MN, 0)); 6648 else 6649 setValue(CS.getInstruction(), Result.first); 6650 } 6651 6652 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6653 // call sequence. Furthermore the location of the chain and glue can change 6654 // when the AnyReg calling convention is used and the intrinsic returns a 6655 // value. 6656 if (IsAnyRegCC && HasDef) { 6657 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6658 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6659 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6660 } else 6661 DAG.ReplaceAllUsesWith(Call, MN); 6662 DAG.DeleteNode(Call); 6663 6664 // Inform the Frame Information that we have a patchpoint in this function. 6665 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6666 } 6667 6668 /// Returns an AttributeSet representing the attributes applied to the return 6669 /// value of the given call. 6670 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6671 SmallVector<Attribute::AttrKind, 2> Attrs; 6672 if (CLI.RetSExt) 6673 Attrs.push_back(Attribute::SExt); 6674 if (CLI.RetZExt) 6675 Attrs.push_back(Attribute::ZExt); 6676 if (CLI.IsInReg) 6677 Attrs.push_back(Attribute::InReg); 6678 6679 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6680 Attrs); 6681 } 6682 6683 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6684 /// implementation, which just calls LowerCall. 6685 /// FIXME: When all targets are 6686 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6687 std::pair<SDValue, SDValue> 6688 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6689 // Handle the incoming return values from the call. 6690 CLI.Ins.clear(); 6691 Type *OrigRetTy = CLI.RetTy; 6692 SmallVector<EVT, 4> RetTys; 6693 SmallVector<uint64_t, 4> Offsets; 6694 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6695 6696 SmallVector<ISD::OutputArg, 4> Outs; 6697 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6698 6699 bool CanLowerReturn = 6700 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6701 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6702 6703 SDValue DemoteStackSlot; 6704 int DemoteStackIdx = -100; 6705 if (!CanLowerReturn) { 6706 // FIXME: equivalent assert? 6707 // assert(!CS.hasInAllocaArgument() && 6708 // "sret demotion is incompatible with inalloca"); 6709 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6710 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6711 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6712 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6713 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6714 6715 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6716 ArgListEntry Entry; 6717 Entry.Node = DemoteStackSlot; 6718 Entry.Ty = StackSlotPtrType; 6719 Entry.isSExt = false; 6720 Entry.isZExt = false; 6721 Entry.isInReg = false; 6722 Entry.isSRet = true; 6723 Entry.isNest = false; 6724 Entry.isByVal = false; 6725 Entry.isReturned = false; 6726 Entry.Alignment = Align; 6727 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6728 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6729 6730 // sret demotion isn't compatible with tail-calls, since the sret argument 6731 // points into the callers stack frame. 6732 CLI.IsTailCall = false; 6733 } else { 6734 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6735 EVT VT = RetTys[I]; 6736 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6737 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6738 for (unsigned i = 0; i != NumRegs; ++i) { 6739 ISD::InputArg MyFlags; 6740 MyFlags.VT = RegisterVT; 6741 MyFlags.ArgVT = VT; 6742 MyFlags.Used = CLI.IsReturnValueUsed; 6743 if (CLI.RetSExt) 6744 MyFlags.Flags.setSExt(); 6745 if (CLI.RetZExt) 6746 MyFlags.Flags.setZExt(); 6747 if (CLI.IsInReg) 6748 MyFlags.Flags.setInReg(); 6749 CLI.Ins.push_back(MyFlags); 6750 } 6751 } 6752 } 6753 6754 // Handle all of the outgoing arguments. 6755 CLI.Outs.clear(); 6756 CLI.OutVals.clear(); 6757 ArgListTy &Args = CLI.getArgs(); 6758 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6759 SmallVector<EVT, 4> ValueVTs; 6760 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6761 Type *FinalType = Args[i].Ty; 6762 if (Args[i].isByVal) 6763 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6764 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6765 FinalType, CLI.CallConv, CLI.IsVarArg); 6766 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6767 ++Value) { 6768 EVT VT = ValueVTs[Value]; 6769 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6770 SDValue Op = SDValue(Args[i].Node.getNode(), 6771 Args[i].Node.getResNo() + Value); 6772 ISD::ArgFlagsTy Flags; 6773 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6774 6775 if (Args[i].isZExt) 6776 Flags.setZExt(); 6777 if (Args[i].isSExt) 6778 Flags.setSExt(); 6779 if (Args[i].isInReg) 6780 Flags.setInReg(); 6781 if (Args[i].isSRet) 6782 Flags.setSRet(); 6783 if (Args[i].isByVal) 6784 Flags.setByVal(); 6785 if (Args[i].isInAlloca) { 6786 Flags.setInAlloca(); 6787 // Set the byval flag for CCAssignFn callbacks that don't know about 6788 // inalloca. This way we can know how many bytes we should've allocated 6789 // and how many bytes a callee cleanup function will pop. If we port 6790 // inalloca to more targets, we'll have to add custom inalloca handling 6791 // in the various CC lowering callbacks. 6792 Flags.setByVal(); 6793 } 6794 if (Args[i].isByVal || Args[i].isInAlloca) { 6795 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6796 Type *ElementTy = Ty->getElementType(); 6797 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6798 // For ByVal, alignment should come from FE. BE will guess if this 6799 // info is not there but there are cases it cannot get right. 6800 unsigned FrameAlign; 6801 if (Args[i].Alignment) 6802 FrameAlign = Args[i].Alignment; 6803 else 6804 FrameAlign = getByValTypeAlignment(ElementTy); 6805 Flags.setByValAlign(FrameAlign); 6806 } 6807 if (Args[i].isNest) 6808 Flags.setNest(); 6809 if (NeedsRegBlock) 6810 Flags.setInConsecutiveRegs(); 6811 Flags.setOrigAlign(OriginalAlignment); 6812 6813 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6814 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6815 SmallVector<SDValue, 4> Parts(NumParts); 6816 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6817 6818 if (Args[i].isSExt) 6819 ExtendKind = ISD::SIGN_EXTEND; 6820 else if (Args[i].isZExt) 6821 ExtendKind = ISD::ZERO_EXTEND; 6822 6823 // Conservatively only handle 'returned' on non-vectors for now 6824 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6825 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6826 "unexpected use of 'returned'"); 6827 // Before passing 'returned' to the target lowering code, ensure that 6828 // either the register MVT and the actual EVT are the same size or that 6829 // the return value and argument are extended in the same way; in these 6830 // cases it's safe to pass the argument register value unchanged as the 6831 // return register value (although it's at the target's option whether 6832 // to do so) 6833 // TODO: allow code generation to take advantage of partially preserved 6834 // registers rather than clobbering the entire register when the 6835 // parameter extension method is not compatible with the return 6836 // extension method 6837 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6838 (ExtendKind != ISD::ANY_EXTEND && 6839 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6840 Flags.setReturned(); 6841 } 6842 6843 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6844 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6845 6846 for (unsigned j = 0; j != NumParts; ++j) { 6847 // if it isn't first piece, alignment must be 1 6848 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6849 i < CLI.NumFixedArgs, 6850 i, j*Parts[j].getValueType().getStoreSize()); 6851 if (NumParts > 1 && j == 0) 6852 MyFlags.Flags.setSplit(); 6853 else if (j != 0) 6854 MyFlags.Flags.setOrigAlign(1); 6855 6856 CLI.Outs.push_back(MyFlags); 6857 CLI.OutVals.push_back(Parts[j]); 6858 } 6859 6860 if (NeedsRegBlock && Value == NumValues - 1) 6861 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6862 } 6863 } 6864 6865 SmallVector<SDValue, 4> InVals; 6866 CLI.Chain = LowerCall(CLI, InVals); 6867 6868 // Verify that the target's LowerCall behaved as expected. 6869 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6870 "LowerCall didn't return a valid chain!"); 6871 assert((!CLI.IsTailCall || InVals.empty()) && 6872 "LowerCall emitted a return value for a tail call!"); 6873 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6874 "LowerCall didn't emit the correct number of values!"); 6875 6876 // For a tail call, the return value is merely live-out and there aren't 6877 // any nodes in the DAG representing it. Return a special value to 6878 // indicate that a tail call has been emitted and no more Instructions 6879 // should be processed in the current block. 6880 if (CLI.IsTailCall) { 6881 CLI.DAG.setRoot(CLI.Chain); 6882 return std::make_pair(SDValue(), SDValue()); 6883 } 6884 6885 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6886 assert(InVals[i].getNode() && 6887 "LowerCall emitted a null value!"); 6888 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6889 "LowerCall emitted a value with the wrong type!"); 6890 }); 6891 6892 SmallVector<SDValue, 4> ReturnValues; 6893 if (!CanLowerReturn) { 6894 // The instruction result is the result of loading from the 6895 // hidden sret parameter. 6896 SmallVector<EVT, 1> PVTs; 6897 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6898 6899 ComputeValueVTs(*this, PtrRetTy, PVTs); 6900 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6901 EVT PtrVT = PVTs[0]; 6902 6903 unsigned NumValues = RetTys.size(); 6904 ReturnValues.resize(NumValues); 6905 SmallVector<SDValue, 4> Chains(NumValues); 6906 6907 for (unsigned i = 0; i < NumValues; ++i) { 6908 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6909 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6910 PtrVT)); 6911 SDValue L = CLI.DAG.getLoad( 6912 RetTys[i], CLI.DL, CLI.Chain, Add, 6913 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6914 false, false, 1); 6915 ReturnValues[i] = L; 6916 Chains[i] = L.getValue(1); 6917 } 6918 6919 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6920 } else { 6921 // Collect the legal value parts into potentially illegal values 6922 // that correspond to the original function's return values. 6923 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6924 if (CLI.RetSExt) 6925 AssertOp = ISD::AssertSext; 6926 else if (CLI.RetZExt) 6927 AssertOp = ISD::AssertZext; 6928 unsigned CurReg = 0; 6929 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6930 EVT VT = RetTys[I]; 6931 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6932 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6933 6934 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6935 NumRegs, RegisterVT, VT, nullptr, 6936 AssertOp)); 6937 CurReg += NumRegs; 6938 } 6939 6940 // For a function returning void, there is no return value. We can't create 6941 // such a node, so we just return a null return value in that case. In 6942 // that case, nothing will actually look at the value. 6943 if (ReturnValues.empty()) 6944 return std::make_pair(SDValue(), CLI.Chain); 6945 } 6946 6947 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6948 CLI.DAG.getVTList(RetTys), ReturnValues); 6949 return std::make_pair(Res, CLI.Chain); 6950 } 6951 6952 void TargetLowering::LowerOperationWrapper(SDNode *N, 6953 SmallVectorImpl<SDValue> &Results, 6954 SelectionDAG &DAG) const { 6955 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6956 if (Res.getNode()) 6957 Results.push_back(Res); 6958 } 6959 6960 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6961 llvm_unreachable("LowerOperation not implemented for this target!"); 6962 } 6963 6964 void 6965 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6966 SDValue Op = getNonRegisterValue(V); 6967 assert((Op.getOpcode() != ISD::CopyFromReg || 6968 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6969 "Copy from a reg to the same reg!"); 6970 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6971 6972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6973 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6974 SDValue Chain = DAG.getEntryNode(); 6975 6976 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6977 FuncInfo.PreferredExtendType.end()) 6978 ? ISD::ANY_EXTEND 6979 : FuncInfo.PreferredExtendType[V]; 6980 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6981 PendingExports.push_back(Chain); 6982 } 6983 6984 #include "llvm/CodeGen/SelectionDAGISel.h" 6985 6986 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6987 /// entry block, return true. This includes arguments used by switches, since 6988 /// the switch may expand into multiple basic blocks. 6989 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6990 // With FastISel active, we may be splitting blocks, so force creation 6991 // of virtual registers for all non-dead arguments. 6992 if (FastISel) 6993 return A->use_empty(); 6994 6995 const BasicBlock *Entry = A->getParent()->begin(); 6996 for (const User *U : A->users()) 6997 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6998 return false; // Use not in entry block. 6999 7000 return true; 7001 } 7002 7003 void SelectionDAGISel::LowerArguments(const Function &F) { 7004 SelectionDAG &DAG = SDB->DAG; 7005 SDLoc dl = SDB->getCurSDLoc(); 7006 const DataLayout *DL = TLI->getDataLayout(); 7007 SmallVector<ISD::InputArg, 16> Ins; 7008 7009 if (!FuncInfo->CanLowerReturn) { 7010 // Put in an sret pointer parameter before all the other parameters. 7011 SmallVector<EVT, 1> ValueVTs; 7012 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7013 7014 // NOTE: Assuming that a pointer will never break down to more than one VT 7015 // or one register. 7016 ISD::ArgFlagsTy Flags; 7017 Flags.setSRet(); 7018 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7019 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7020 ISD::InputArg::NoArgIndex, 0); 7021 Ins.push_back(RetArg); 7022 } 7023 7024 // Set up the incoming argument description vector. 7025 unsigned Idx = 1; 7026 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7027 I != E; ++I, ++Idx) { 7028 SmallVector<EVT, 4> ValueVTs; 7029 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7030 bool isArgValueUsed = !I->use_empty(); 7031 unsigned PartBase = 0; 7032 Type *FinalType = I->getType(); 7033 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7034 FinalType = cast<PointerType>(FinalType)->getElementType(); 7035 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7036 FinalType, F.getCallingConv(), F.isVarArg()); 7037 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7038 Value != NumValues; ++Value) { 7039 EVT VT = ValueVTs[Value]; 7040 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7041 ISD::ArgFlagsTy Flags; 7042 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7043 7044 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7045 Flags.setZExt(); 7046 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7047 Flags.setSExt(); 7048 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7049 Flags.setInReg(); 7050 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7051 Flags.setSRet(); 7052 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7053 Flags.setByVal(); 7054 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7055 Flags.setInAlloca(); 7056 // Set the byval flag for CCAssignFn callbacks that don't know about 7057 // inalloca. This way we can know how many bytes we should've allocated 7058 // and how many bytes a callee cleanup function will pop. If we port 7059 // inalloca to more targets, we'll have to add custom inalloca handling 7060 // in the various CC lowering callbacks. 7061 Flags.setByVal(); 7062 } 7063 if (Flags.isByVal() || Flags.isInAlloca()) { 7064 PointerType *Ty = cast<PointerType>(I->getType()); 7065 Type *ElementTy = Ty->getElementType(); 7066 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7067 // For ByVal, alignment should be passed from FE. BE will guess if 7068 // this info is not there but there are cases it cannot get right. 7069 unsigned FrameAlign; 7070 if (F.getParamAlignment(Idx)) 7071 FrameAlign = F.getParamAlignment(Idx); 7072 else 7073 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7074 Flags.setByValAlign(FrameAlign); 7075 } 7076 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7077 Flags.setNest(); 7078 if (NeedsRegBlock) 7079 Flags.setInConsecutiveRegs(); 7080 Flags.setOrigAlign(OriginalAlignment); 7081 7082 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7083 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7084 for (unsigned i = 0; i != NumRegs; ++i) { 7085 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7086 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7087 if (NumRegs > 1 && i == 0) 7088 MyFlags.Flags.setSplit(); 7089 // if it isn't first piece, alignment must be 1 7090 else if (i > 0) 7091 MyFlags.Flags.setOrigAlign(1); 7092 Ins.push_back(MyFlags); 7093 } 7094 if (NeedsRegBlock && Value == NumValues - 1) 7095 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7096 PartBase += VT.getStoreSize(); 7097 } 7098 } 7099 7100 // Call the target to set up the argument values. 7101 SmallVector<SDValue, 8> InVals; 7102 SDValue NewRoot = TLI->LowerFormalArguments( 7103 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7104 7105 // Verify that the target's LowerFormalArguments behaved as expected. 7106 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7107 "LowerFormalArguments didn't return a valid chain!"); 7108 assert(InVals.size() == Ins.size() && 7109 "LowerFormalArguments didn't emit the correct number of values!"); 7110 DEBUG({ 7111 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7112 assert(InVals[i].getNode() && 7113 "LowerFormalArguments emitted a null value!"); 7114 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7115 "LowerFormalArguments emitted a value with the wrong type!"); 7116 } 7117 }); 7118 7119 // Update the DAG with the new chain value resulting from argument lowering. 7120 DAG.setRoot(NewRoot); 7121 7122 // Set up the argument values. 7123 unsigned i = 0; 7124 Idx = 1; 7125 if (!FuncInfo->CanLowerReturn) { 7126 // Create a virtual register for the sret pointer, and put in a copy 7127 // from the sret argument into it. 7128 SmallVector<EVT, 1> ValueVTs; 7129 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7130 MVT VT = ValueVTs[0].getSimpleVT(); 7131 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7132 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7133 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7134 RegVT, VT, nullptr, AssertOp); 7135 7136 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7137 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7138 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7139 FuncInfo->DemoteRegister = SRetReg; 7140 NewRoot = 7141 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7142 DAG.setRoot(NewRoot); 7143 7144 // i indexes lowered arguments. Bump it past the hidden sret argument. 7145 // Idx indexes LLVM arguments. Don't touch it. 7146 ++i; 7147 } 7148 7149 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7150 ++I, ++Idx) { 7151 SmallVector<SDValue, 4> ArgValues; 7152 SmallVector<EVT, 4> ValueVTs; 7153 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7154 unsigned NumValues = ValueVTs.size(); 7155 7156 // If this argument is unused then remember its value. It is used to generate 7157 // debugging information. 7158 if (I->use_empty() && NumValues) { 7159 SDB->setUnusedArgValue(I, InVals[i]); 7160 7161 // Also remember any frame index for use in FastISel. 7162 if (FrameIndexSDNode *FI = 7163 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7164 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7165 } 7166 7167 for (unsigned Val = 0; Val != NumValues; ++Val) { 7168 EVT VT = ValueVTs[Val]; 7169 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7170 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7171 7172 if (!I->use_empty()) { 7173 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7174 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7175 AssertOp = ISD::AssertSext; 7176 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7177 AssertOp = ISD::AssertZext; 7178 7179 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7180 NumParts, PartVT, VT, 7181 nullptr, AssertOp)); 7182 } 7183 7184 i += NumParts; 7185 } 7186 7187 // We don't need to do anything else for unused arguments. 7188 if (ArgValues.empty()) 7189 continue; 7190 7191 // Note down frame index. 7192 if (FrameIndexSDNode *FI = 7193 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7194 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7195 7196 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7197 SDB->getCurSDLoc()); 7198 7199 SDB->setValue(I, Res); 7200 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7201 if (LoadSDNode *LNode = 7202 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7203 if (FrameIndexSDNode *FI = 7204 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7205 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7206 } 7207 7208 // If this argument is live outside of the entry block, insert a copy from 7209 // wherever we got it to the vreg that other BB's will reference it as. 7210 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7211 // If we can, though, try to skip creating an unnecessary vreg. 7212 // FIXME: This isn't very clean... it would be nice to make this more 7213 // general. It's also subtly incompatible with the hacks FastISel 7214 // uses with vregs. 7215 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7216 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7217 FuncInfo->ValueMap[I] = Reg; 7218 continue; 7219 } 7220 } 7221 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7222 FuncInfo->InitializeRegForValue(I); 7223 SDB->CopyToExportRegsIfNeeded(I); 7224 } 7225 } 7226 7227 assert(i == InVals.size() && "Argument register count mismatch!"); 7228 7229 // Finally, if the target has anything special to do, allow it to do so. 7230 EmitFunctionEntryCode(); 7231 } 7232 7233 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7234 /// ensure constants are generated when needed. Remember the virtual registers 7235 /// that need to be added to the Machine PHI nodes as input. We cannot just 7236 /// directly add them, because expansion might result in multiple MBB's for one 7237 /// BB. As such, the start of the BB might correspond to a different MBB than 7238 /// the end. 7239 /// 7240 void 7241 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7242 const TerminatorInst *TI = LLVMBB->getTerminator(); 7243 7244 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7245 7246 // Check PHI nodes in successors that expect a value to be available from this 7247 // block. 7248 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7249 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7250 if (!isa<PHINode>(SuccBB->begin())) continue; 7251 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7252 7253 // If this terminator has multiple identical successors (common for 7254 // switches), only handle each succ once. 7255 if (!SuccsHandled.insert(SuccMBB).second) 7256 continue; 7257 7258 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7259 7260 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7261 // nodes and Machine PHI nodes, but the incoming operands have not been 7262 // emitted yet. 7263 for (BasicBlock::const_iterator I = SuccBB->begin(); 7264 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7265 // Ignore dead phi's. 7266 if (PN->use_empty()) continue; 7267 7268 // Skip empty types 7269 if (PN->getType()->isEmptyTy()) 7270 continue; 7271 7272 unsigned Reg; 7273 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7274 7275 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7276 unsigned &RegOut = ConstantsOut[C]; 7277 if (RegOut == 0) { 7278 RegOut = FuncInfo.CreateRegs(C->getType()); 7279 CopyValueToVirtualRegister(C, RegOut); 7280 } 7281 Reg = RegOut; 7282 } else { 7283 DenseMap<const Value *, unsigned>::iterator I = 7284 FuncInfo.ValueMap.find(PHIOp); 7285 if (I != FuncInfo.ValueMap.end()) 7286 Reg = I->second; 7287 else { 7288 assert(isa<AllocaInst>(PHIOp) && 7289 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7290 "Didn't codegen value into a register!??"); 7291 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7292 CopyValueToVirtualRegister(PHIOp, Reg); 7293 } 7294 } 7295 7296 // Remember that this register needs to added to the machine PHI node as 7297 // the input for this MBB. 7298 SmallVector<EVT, 4> ValueVTs; 7299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7300 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7301 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7302 EVT VT = ValueVTs[vti]; 7303 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7304 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7305 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7306 Reg += NumRegisters; 7307 } 7308 } 7309 } 7310 7311 ConstantsOut.clear(); 7312 } 7313 7314 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7315 /// is 0. 7316 MachineBasicBlock * 7317 SelectionDAGBuilder::StackProtectorDescriptor:: 7318 AddSuccessorMBB(const BasicBlock *BB, 7319 MachineBasicBlock *ParentMBB, 7320 bool IsLikely, 7321 MachineBasicBlock *SuccMBB) { 7322 // If SuccBB has not been created yet, create it. 7323 if (!SuccMBB) { 7324 MachineFunction *MF = ParentMBB->getParent(); 7325 MachineFunction::iterator BBI = ParentMBB; 7326 SuccMBB = MF->CreateMachineBasicBlock(BB); 7327 MF->insert(++BBI, SuccMBB); 7328 } 7329 // Add it as a successor of ParentMBB. 7330 ParentMBB->addSuccessor( 7331 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7332 return SuccMBB; 7333 } 7334 7335 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7336 MachineFunction::iterator I = MBB; 7337 if (++I == FuncInfo.MF->end()) 7338 return nullptr; 7339 return I; 7340 } 7341 7342 /// During lowering new call nodes can be created (such as memset, etc.). 7343 /// Those will become new roots of the current DAG, but complications arise 7344 /// when they are tail calls. In such cases, the call lowering will update 7345 /// the root, but the builder still needs to know that a tail call has been 7346 /// lowered in order to avoid generating an additional return. 7347 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7348 // If the node is null, we do have a tail call. 7349 if (MaybeTC.getNode() != nullptr) 7350 DAG.setRoot(MaybeTC); 7351 else 7352 HasTailCall = true; 7353 } 7354 7355 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7356 unsigned *TotalCases, unsigned First, 7357 unsigned Last) { 7358 assert(Last >= First); 7359 assert(TotalCases[Last] >= TotalCases[First]); 7360 7361 APInt LowCase = Clusters[First].Low->getValue(); 7362 APInt HighCase = Clusters[Last].High->getValue(); 7363 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7364 7365 // FIXME: A range of consecutive cases has 100% density, but only requires one 7366 // comparison to lower. We should discriminate against such consecutive ranges 7367 // in jump tables. 7368 7369 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7370 uint64_t Range = Diff + 1; 7371 7372 uint64_t NumCases = 7373 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7374 7375 assert(NumCases < UINT64_MAX / 100); 7376 assert(Range >= NumCases); 7377 7378 return NumCases * 100 >= Range * MinJumpTableDensity; 7379 } 7380 7381 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7382 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7383 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7384 } 7385 7386 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7387 unsigned First, unsigned Last, 7388 const SwitchInst *SI, 7389 MachineBasicBlock *DefaultMBB, 7390 CaseCluster &JTCluster) { 7391 assert(First <= Last); 7392 7393 uint32_t Weight = 0; 7394 unsigned NumCmps = 0; 7395 std::vector<MachineBasicBlock*> Table; 7396 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7397 for (unsigned I = First; I <= Last; ++I) { 7398 assert(Clusters[I].Kind == CC_Range); 7399 Weight += Clusters[I].Weight; 7400 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7401 APInt Low = Clusters[I].Low->getValue(); 7402 APInt High = Clusters[I].High->getValue(); 7403 NumCmps += (Low == High) ? 1 : 2; 7404 if (I != First) { 7405 // Fill the gap between this and the previous cluster. 7406 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7407 assert(PreviousHigh.slt(Low)); 7408 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7409 for (uint64_t J = 0; J < Gap; J++) 7410 Table.push_back(DefaultMBB); 7411 } 7412 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7413 for (uint64_t J = 0; J < ClusterSize; ++J) 7414 Table.push_back(Clusters[I].MBB); 7415 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7416 } 7417 7418 unsigned NumDests = JTWeights.size(); 7419 if (isSuitableForBitTests(NumDests, NumCmps, 7420 Clusters[First].Low->getValue(), 7421 Clusters[Last].High->getValue())) { 7422 // Clusters[First..Last] should be lowered as bit tests instead. 7423 return false; 7424 } 7425 7426 // Create the MBB that will load from and jump through the table. 7427 // Note: We create it here, but it's not inserted into the function yet. 7428 MachineFunction *CurMF = FuncInfo.MF; 7429 MachineBasicBlock *JumpTableMBB = 7430 CurMF->CreateMachineBasicBlock(SI->getParent()); 7431 7432 // Add successors. Note: use table order for determinism. 7433 SmallPtrSet<MachineBasicBlock *, 8> Done; 7434 for (MachineBasicBlock *Succ : Table) { 7435 if (Done.count(Succ)) 7436 continue; 7437 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7438 Done.insert(Succ); 7439 } 7440 7441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7442 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7443 ->createJumpTableIndex(Table); 7444 7445 // Set up the jump table info. 7446 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7447 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7448 Clusters[Last].High->getValue(), SI->getCondition(), 7449 nullptr, false); 7450 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7451 7452 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7453 JTCases.size() - 1, Weight); 7454 return true; 7455 } 7456 7457 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7458 const SwitchInst *SI, 7459 MachineBasicBlock *DefaultMBB) { 7460 #ifndef NDEBUG 7461 // Clusters must be non-empty, sorted, and only contain Range clusters. 7462 assert(!Clusters.empty()); 7463 for (CaseCluster &C : Clusters) 7464 assert(C.Kind == CC_Range); 7465 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7466 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7467 #endif 7468 7469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7470 if (!areJTsAllowed(TLI)) 7471 return; 7472 7473 const int64_t N = Clusters.size(); 7474 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7475 7476 // Split Clusters into minimum number of dense partitions. The algorithm uses 7477 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7478 // for the Case Statement'" (1994), but builds the MinPartitions array in 7479 // reverse order to make it easier to reconstruct the partitions in ascending 7480 // order. In the choice between two optimal partitionings, it picks the one 7481 // which yields more jump tables. 7482 7483 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7484 SmallVector<unsigned, 8> MinPartitions(N); 7485 // LastElement[i] is the last element of the partition starting at i. 7486 SmallVector<unsigned, 8> LastElement(N); 7487 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7488 SmallVector<unsigned, 8> NumTables(N); 7489 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7490 SmallVector<unsigned, 8> TotalCases(N); 7491 7492 for (unsigned i = 0; i < N; ++i) { 7493 APInt Hi = Clusters[i].High->getValue(); 7494 APInt Lo = Clusters[i].Low->getValue(); 7495 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7496 if (i != 0) 7497 TotalCases[i] += TotalCases[i - 1]; 7498 } 7499 7500 // Base case: There is only one way to partition Clusters[N-1]. 7501 MinPartitions[N - 1] = 1; 7502 LastElement[N - 1] = N - 1; 7503 assert(MinJumpTableSize > 1); 7504 NumTables[N - 1] = 0; 7505 7506 // Note: loop indexes are signed to avoid underflow. 7507 for (int64_t i = N - 2; i >= 0; i--) { 7508 // Find optimal partitioning of Clusters[i..N-1]. 7509 // Baseline: Put Clusters[i] into a partition on its own. 7510 MinPartitions[i] = MinPartitions[i + 1] + 1; 7511 LastElement[i] = i; 7512 NumTables[i] = NumTables[i + 1]; 7513 7514 // Search for a solution that results in fewer partitions. 7515 for (int64_t j = N - 1; j > i; j--) { 7516 // Try building a partition from Clusters[i..j]. 7517 if (isDense(Clusters, &TotalCases[0], i, j)) { 7518 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7519 bool IsTable = j - i + 1 >= MinJumpTableSize; 7520 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7521 7522 // If this j leads to fewer partitions, or same number of partitions 7523 // with more lookup tables, it is a better partitioning. 7524 if (NumPartitions < MinPartitions[i] || 7525 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7526 MinPartitions[i] = NumPartitions; 7527 LastElement[i] = j; 7528 NumTables[i] = Tables; 7529 } 7530 } 7531 } 7532 } 7533 7534 // Iterate over the partitions, replacing some with jump tables in-place. 7535 unsigned DstIndex = 0; 7536 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7537 Last = LastElement[First]; 7538 assert(Last >= First); 7539 assert(DstIndex <= First); 7540 unsigned NumClusters = Last - First + 1; 7541 7542 CaseCluster JTCluster; 7543 if (NumClusters >= MinJumpTableSize && 7544 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7545 Clusters[DstIndex++] = JTCluster; 7546 } else { 7547 for (unsigned I = First; I <= Last; ++I) 7548 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7549 } 7550 } 7551 Clusters.resize(DstIndex); 7552 } 7553 7554 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7555 // FIXME: Using the pointer type doesn't seem ideal. 7556 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7557 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7558 return Range <= BW; 7559 } 7560 7561 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7562 unsigned NumCmps, 7563 const APInt &Low, 7564 const APInt &High) { 7565 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7566 // range of cases both require only one branch to lower. Just looking at the 7567 // number of clusters and destinations should be enough to decide whether to 7568 // build bit tests. 7569 7570 // To lower a range with bit tests, the range must fit the bitwidth of a 7571 // machine word. 7572 if (!rangeFitsInWord(Low, High)) 7573 return false; 7574 7575 // Decide whether it's profitable to lower this range with bit tests. Each 7576 // destination requires a bit test and branch, and there is an overall range 7577 // check branch. For a small number of clusters, separate comparisons might be 7578 // cheaper, and for many destinations, splitting the range might be better. 7579 return (NumDests == 1 && NumCmps >= 3) || 7580 (NumDests == 2 && NumCmps >= 5) || 7581 (NumDests == 3 && NumCmps >= 6); 7582 } 7583 7584 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7585 unsigned First, unsigned Last, 7586 const SwitchInst *SI, 7587 CaseCluster &BTCluster) { 7588 assert(First <= Last); 7589 if (First == Last) 7590 return false; 7591 7592 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7593 unsigned NumCmps = 0; 7594 for (int64_t I = First; I <= Last; ++I) { 7595 assert(Clusters[I].Kind == CC_Range); 7596 Dests.set(Clusters[I].MBB->getNumber()); 7597 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7598 } 7599 unsigned NumDests = Dests.count(); 7600 7601 APInt Low = Clusters[First].Low->getValue(); 7602 APInt High = Clusters[Last].High->getValue(); 7603 assert(Low.slt(High)); 7604 7605 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7606 return false; 7607 7608 APInt LowBound; 7609 APInt CmpRange; 7610 7611 const int BitWidth = 7612 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7613 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7614 7615 if (Low.isNonNegative() && High.slt(BitWidth)) { 7616 // Optimize the case where all the case values fit in a 7617 // word without having to subtract minValue. In this case, 7618 // we can optimize away the subtraction. 7619 LowBound = APInt::getNullValue(Low.getBitWidth()); 7620 CmpRange = High; 7621 } else { 7622 LowBound = Low; 7623 CmpRange = High - Low; 7624 } 7625 7626 CaseBitsVector CBV; 7627 uint32_t TotalWeight = 0; 7628 for (unsigned i = First; i <= Last; ++i) { 7629 // Find the CaseBits for this destination. 7630 unsigned j; 7631 for (j = 0; j < CBV.size(); ++j) 7632 if (CBV[j].BB == Clusters[i].MBB) 7633 break; 7634 if (j == CBV.size()) 7635 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7636 CaseBits *CB = &CBV[j]; 7637 7638 // Update Mask, Bits and ExtraWeight. 7639 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7640 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7641 for (uint64_t j = Lo; j <= Hi; ++j) { 7642 CB->Mask |= 1ULL << j; 7643 CB->Bits++; 7644 } 7645 CB->ExtraWeight += Clusters[i].Weight; 7646 TotalWeight += Clusters[i].Weight; 7647 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7648 } 7649 7650 BitTestInfo BTI; 7651 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7652 // Sort by weight first, number of bits second. 7653 if (a.ExtraWeight != b.ExtraWeight) 7654 return a.ExtraWeight > b.ExtraWeight; 7655 return a.Bits > b.Bits; 7656 }); 7657 7658 for (auto &CB : CBV) { 7659 MachineBasicBlock *BitTestBB = 7660 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7661 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7662 } 7663 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7664 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7665 nullptr, std::move(BTI)); 7666 7667 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7668 BitTestCases.size() - 1, TotalWeight); 7669 return true; 7670 } 7671 7672 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7673 const SwitchInst *SI) { 7674 // Partition Clusters into as few subsets as possible, where each subset has a 7675 // range that fits in a machine word and has <= 3 unique destinations. 7676 7677 #ifndef NDEBUG 7678 // Clusters must be sorted and contain Range or JumpTable clusters. 7679 assert(!Clusters.empty()); 7680 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7681 for (const CaseCluster &C : Clusters) 7682 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7683 for (unsigned i = 1; i < Clusters.size(); ++i) 7684 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7685 #endif 7686 7687 // If target does not have legal shift left, do not emit bit tests at all. 7688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7689 EVT PTy = TLI.getPointerTy(); 7690 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7691 return; 7692 7693 int BitWidth = PTy.getSizeInBits(); 7694 const int64_t N = Clusters.size(); 7695 7696 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7697 SmallVector<unsigned, 8> MinPartitions(N); 7698 // LastElement[i] is the last element of the partition starting at i. 7699 SmallVector<unsigned, 8> LastElement(N); 7700 7701 // FIXME: This might not be the best algorithm for finding bit test clusters. 7702 7703 // Base case: There is only one way to partition Clusters[N-1]. 7704 MinPartitions[N - 1] = 1; 7705 LastElement[N - 1] = N - 1; 7706 7707 // Note: loop indexes are signed to avoid underflow. 7708 for (int64_t i = N - 2; i >= 0; --i) { 7709 // Find optimal partitioning of Clusters[i..N-1]. 7710 // Baseline: Put Clusters[i] into a partition on its own. 7711 MinPartitions[i] = MinPartitions[i + 1] + 1; 7712 LastElement[i] = i; 7713 7714 // Search for a solution that results in fewer partitions. 7715 // Note: the search is limited by BitWidth, reducing time complexity. 7716 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7717 // Try building a partition from Clusters[i..j]. 7718 7719 // Check the range. 7720 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7721 Clusters[j].High->getValue())) 7722 continue; 7723 7724 // Check nbr of destinations and cluster types. 7725 // FIXME: This works, but doesn't seem very efficient. 7726 bool RangesOnly = true; 7727 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7728 for (int64_t k = i; k <= j; k++) { 7729 if (Clusters[k].Kind != CC_Range) { 7730 RangesOnly = false; 7731 break; 7732 } 7733 Dests.set(Clusters[k].MBB->getNumber()); 7734 } 7735 if (!RangesOnly || Dests.count() > 3) 7736 break; 7737 7738 // Check if it's a better partition. 7739 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7740 if (NumPartitions < MinPartitions[i]) { 7741 // Found a better partition. 7742 MinPartitions[i] = NumPartitions; 7743 LastElement[i] = j; 7744 } 7745 } 7746 } 7747 7748 // Iterate over the partitions, replacing with bit-test clusters in-place. 7749 unsigned DstIndex = 0; 7750 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7751 Last = LastElement[First]; 7752 assert(First <= Last); 7753 assert(DstIndex <= First); 7754 7755 CaseCluster BitTestCluster; 7756 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7757 Clusters[DstIndex++] = BitTestCluster; 7758 } else { 7759 for (unsigned I = First; I <= Last; ++I) 7760 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7761 } 7762 } 7763 Clusters.resize(DstIndex); 7764 } 7765 7766 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7767 MachineBasicBlock *SwitchMBB, 7768 MachineBasicBlock *DefaultMBB) { 7769 MachineFunction *CurMF = FuncInfo.MF; 7770 MachineBasicBlock *NextMBB = nullptr; 7771 MachineFunction::iterator BBI = W.MBB; 7772 if (++BBI != FuncInfo.MF->end()) 7773 NextMBB = BBI; 7774 7775 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7776 7777 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7778 7779 if (Size == 2 && W.MBB == SwitchMBB) { 7780 // If any two of the cases has the same destination, and if one value 7781 // is the same as the other, but has one bit unset that the other has set, 7782 // use bit manipulation to do two compares at once. For example: 7783 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7784 // TODO: This could be extended to merge any 2 cases in switches with 3 7785 // cases. 7786 // TODO: Handle cases where W.CaseBB != SwitchBB. 7787 CaseCluster &Small = *W.FirstCluster; 7788 CaseCluster &Big = *W.LastCluster; 7789 7790 if (Small.Low == Small.High && Big.Low == Big.High && 7791 Small.MBB == Big.MBB) { 7792 const APInt &SmallValue = Small.Low->getValue(); 7793 const APInt &BigValue = Big.Low->getValue(); 7794 7795 // Check that there is only one bit different. 7796 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7797 (SmallValue | BigValue) == BigValue) { 7798 // Isolate the common bit. 7799 APInt CommonBit = BigValue & ~SmallValue; 7800 assert((SmallValue | CommonBit) == BigValue && 7801 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7802 7803 SDValue CondLHS = getValue(Cond); 7804 EVT VT = CondLHS.getValueType(); 7805 SDLoc DL = getCurSDLoc(); 7806 7807 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7808 DAG.getConstant(CommonBit, DL, VT)); 7809 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7810 DAG.getConstant(BigValue, DL, VT), 7811 ISD::SETEQ); 7812 7813 // Update successor info. 7814 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7815 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7816 addSuccessorWithWeight( 7817 SwitchMBB, DefaultMBB, 7818 // The default destination is the first successor in IR. 7819 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7820 : 0); 7821 7822 // Insert the true branch. 7823 SDValue BrCond = 7824 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7825 DAG.getBasicBlock(Small.MBB)); 7826 // Insert the false branch. 7827 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7828 DAG.getBasicBlock(DefaultMBB)); 7829 7830 DAG.setRoot(BrCond); 7831 return; 7832 } 7833 } 7834 } 7835 7836 if (TM.getOptLevel() != CodeGenOpt::None) { 7837 // Order cases by weight so the most likely case will be checked first. 7838 std::sort(W.FirstCluster, W.LastCluster + 1, 7839 [](const CaseCluster &a, const CaseCluster &b) { 7840 return a.Weight > b.Weight; 7841 }); 7842 7843 // Rearrange the case blocks so that the last one falls through if possible 7844 // without without changing the order of weights. 7845 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7846 --I; 7847 if (I->Weight > W.LastCluster->Weight) 7848 break; 7849 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7850 std::swap(*I, *W.LastCluster); 7851 break; 7852 } 7853 } 7854 } 7855 7856 // Compute total weight. 7857 uint32_t UnhandledWeights = 0; 7858 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7859 UnhandledWeights += I->Weight; 7860 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7861 } 7862 7863 MachineBasicBlock *CurMBB = W.MBB; 7864 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7865 MachineBasicBlock *Fallthrough; 7866 if (I == W.LastCluster) { 7867 // For the last cluster, fall through to the default destination. 7868 Fallthrough = DefaultMBB; 7869 } else { 7870 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7871 CurMF->insert(BBI, Fallthrough); 7872 // Put Cond in a virtual register to make it available from the new blocks. 7873 ExportFromCurrentBlock(Cond); 7874 } 7875 7876 switch (I->Kind) { 7877 case CC_JumpTable: { 7878 // FIXME: Optimize away range check based on pivot comparisons. 7879 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7880 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7881 7882 // The jump block hasn't been inserted yet; insert it here. 7883 MachineBasicBlock *JumpMBB = JT->MBB; 7884 CurMF->insert(BBI, JumpMBB); 7885 addSuccessorWithWeight(CurMBB, Fallthrough); 7886 addSuccessorWithWeight(CurMBB, JumpMBB); 7887 7888 // The jump table header will be inserted in our current block, do the 7889 // range check, and fall through to our fallthrough block. 7890 JTH->HeaderBB = CurMBB; 7891 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7892 7893 // If we're in the right place, emit the jump table header right now. 7894 if (CurMBB == SwitchMBB) { 7895 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7896 JTH->Emitted = true; 7897 } 7898 break; 7899 } 7900 case CC_BitTests: { 7901 // FIXME: Optimize away range check based on pivot comparisons. 7902 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7903 7904 // The bit test blocks haven't been inserted yet; insert them here. 7905 for (BitTestCase &BTC : BTB->Cases) 7906 CurMF->insert(BBI, BTC.ThisBB); 7907 7908 // Fill in fields of the BitTestBlock. 7909 BTB->Parent = CurMBB; 7910 BTB->Default = Fallthrough; 7911 7912 // If we're in the right place, emit the bit test header header right now. 7913 if (CurMBB ==SwitchMBB) { 7914 visitBitTestHeader(*BTB, SwitchMBB); 7915 BTB->Emitted = true; 7916 } 7917 break; 7918 } 7919 case CC_Range: { 7920 const Value *RHS, *LHS, *MHS; 7921 ISD::CondCode CC; 7922 if (I->Low == I->High) { 7923 // Check Cond == I->Low. 7924 CC = ISD::SETEQ; 7925 LHS = Cond; 7926 RHS=I->Low; 7927 MHS = nullptr; 7928 } else { 7929 // Check I->Low <= Cond <= I->High. 7930 CC = ISD::SETLE; 7931 LHS = I->Low; 7932 MHS = Cond; 7933 RHS = I->High; 7934 } 7935 7936 // The false weight is the sum of all unhandled cases. 7937 UnhandledWeights -= I->Weight; 7938 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7939 UnhandledWeights); 7940 7941 if (CurMBB == SwitchMBB) 7942 visitSwitchCase(CB, SwitchMBB); 7943 else 7944 SwitchCases.push_back(CB); 7945 7946 break; 7947 } 7948 } 7949 CurMBB = Fallthrough; 7950 } 7951 } 7952 7953 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7954 const SwitchWorkListItem &W, 7955 Value *Cond, 7956 MachineBasicBlock *SwitchMBB) { 7957 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7958 "Clusters not sorted?"); 7959 7960 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7961 7962 // Balance the tree based on branch weights to create a near-optimal (in terms 7963 // of search time given key frequency) binary search tree. See e.g. Kurt 7964 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7965 CaseClusterIt LastLeft = W.FirstCluster; 7966 CaseClusterIt FirstRight = W.LastCluster; 7967 uint32_t LeftWeight = LastLeft->Weight; 7968 uint32_t RightWeight = FirstRight->Weight; 7969 7970 // Move LastLeft and FirstRight towards each other from opposite directions to 7971 // find a partitioning of the clusters which balances the weight on both 7972 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7973 // taken to ensure 0-weight nodes are distributed evenly. 7974 unsigned I = 0; 7975 while (LastLeft + 1 < FirstRight) { 7976 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7977 LeftWeight += (++LastLeft)->Weight; 7978 else 7979 RightWeight += (--FirstRight)->Weight; 7980 I++; 7981 } 7982 assert(LastLeft + 1 == FirstRight); 7983 assert(LastLeft >= W.FirstCluster); 7984 assert(FirstRight <= W.LastCluster); 7985 7986 // Use the first element on the right as pivot since we will make less-than 7987 // comparisons against it. 7988 CaseClusterIt PivotCluster = FirstRight; 7989 assert(PivotCluster > W.FirstCluster); 7990 assert(PivotCluster <= W.LastCluster); 7991 7992 CaseClusterIt FirstLeft = W.FirstCluster; 7993 CaseClusterIt LastRight = W.LastCluster; 7994 7995 const ConstantInt *Pivot = PivotCluster->Low; 7996 7997 // New blocks will be inserted immediately after the current one. 7998 MachineFunction::iterator BBI = W.MBB; 7999 ++BBI; 8000 8001 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8002 // we can branch to its destination directly if it's squeezed exactly in 8003 // between the known lower bound and Pivot - 1. 8004 MachineBasicBlock *LeftMBB; 8005 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8006 FirstLeft->Low == W.GE && 8007 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8008 LeftMBB = FirstLeft->MBB; 8009 } else { 8010 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8011 FuncInfo.MF->insert(BBI, LeftMBB); 8012 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8013 // Put Cond in a virtual register to make it available from the new blocks. 8014 ExportFromCurrentBlock(Cond); 8015 } 8016 8017 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8018 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8019 // directly if RHS.High equals the current upper bound. 8020 MachineBasicBlock *RightMBB; 8021 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8022 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8023 RightMBB = FirstRight->MBB; 8024 } else { 8025 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8026 FuncInfo.MF->insert(BBI, RightMBB); 8027 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8028 // Put Cond in a virtual register to make it available from the new blocks. 8029 ExportFromCurrentBlock(Cond); 8030 } 8031 8032 // Create the CaseBlock record that will be used to lower the branch. 8033 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8034 LeftWeight, RightWeight); 8035 8036 if (W.MBB == SwitchMBB) 8037 visitSwitchCase(CB, SwitchMBB); 8038 else 8039 SwitchCases.push_back(CB); 8040 } 8041 8042 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8043 // Extract cases from the switch. 8044 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8045 CaseClusterVector Clusters; 8046 Clusters.reserve(SI.getNumCases()); 8047 for (auto I : SI.cases()) { 8048 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8049 const ConstantInt *CaseVal = I.getCaseValue(); 8050 uint32_t Weight = 8051 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8052 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8053 } 8054 8055 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8056 8057 // Cluster adjacent cases with the same destination. We do this at all 8058 // optimization levels because it's cheap to do and will make codegen faster 8059 // if there are many clusters. 8060 sortAndRangeify(Clusters); 8061 8062 if (TM.getOptLevel() != CodeGenOpt::None) { 8063 // Replace an unreachable default with the most popular destination. 8064 // FIXME: Exploit unreachable default more aggressively. 8065 bool UnreachableDefault = 8066 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8067 if (UnreachableDefault && !Clusters.empty()) { 8068 DenseMap<const BasicBlock *, unsigned> Popularity; 8069 unsigned MaxPop = 0; 8070 const BasicBlock *MaxBB = nullptr; 8071 for (auto I : SI.cases()) { 8072 const BasicBlock *BB = I.getCaseSuccessor(); 8073 if (++Popularity[BB] > MaxPop) { 8074 MaxPop = Popularity[BB]; 8075 MaxBB = BB; 8076 } 8077 } 8078 // Set new default. 8079 assert(MaxPop > 0 && MaxBB); 8080 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8081 8082 // Remove cases that were pointing to the destination that is now the 8083 // default. 8084 CaseClusterVector New; 8085 New.reserve(Clusters.size()); 8086 for (CaseCluster &CC : Clusters) { 8087 if (CC.MBB != DefaultMBB) 8088 New.push_back(CC); 8089 } 8090 Clusters = std::move(New); 8091 } 8092 } 8093 8094 // If there is only the default destination, jump there directly. 8095 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8096 if (Clusters.empty()) { 8097 SwitchMBB->addSuccessor(DefaultMBB); 8098 if (DefaultMBB != NextBlock(SwitchMBB)) { 8099 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8100 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8101 } 8102 return; 8103 } 8104 8105 if (TM.getOptLevel() != CodeGenOpt::None) { 8106 findJumpTables(Clusters, &SI, DefaultMBB); 8107 findBitTestClusters(Clusters, &SI); 8108 } 8109 8110 8111 DEBUG({ 8112 dbgs() << "Case clusters: "; 8113 for (const CaseCluster &C : Clusters) { 8114 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8115 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8116 8117 C.Low->getValue().print(dbgs(), true); 8118 if (C.Low != C.High) { 8119 dbgs() << '-'; 8120 C.High->getValue().print(dbgs(), true); 8121 } 8122 dbgs() << ' '; 8123 } 8124 dbgs() << '\n'; 8125 }); 8126 8127 assert(!Clusters.empty()); 8128 SwitchWorkList WorkList; 8129 CaseClusterIt First = Clusters.begin(); 8130 CaseClusterIt Last = Clusters.end() - 1; 8131 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8132 8133 while (!WorkList.empty()) { 8134 SwitchWorkListItem W = WorkList.back(); 8135 WorkList.pop_back(); 8136 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8137 8138 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8139 // For optimized builds, lower large range as a balanced binary tree. 8140 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8141 continue; 8142 } 8143 8144 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8145 } 8146 } 8147