1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1169 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1170 PadMBB->addSuccessor(TargetMBB); 1171 1172 // Create the terminator node. 1173 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1174 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1175 DAG.setRoot(Ret); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1179 llvm_unreachable("should never codegen catchendpads"); 1180 } 1181 1182 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1183 report_fatal_error("visitCleanupPad not yet implemented!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1187 report_fatal_error("visitCleanupRet not yet implemented!"); 1188 } 1189 1190 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1191 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1192 } 1193 1194 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1195 report_fatal_error("visitTerminatePad not yet implemented!"); 1196 } 1197 1198 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1200 auto &DL = DAG.getDataLayout(); 1201 SDValue Chain = getControlRoot(); 1202 SmallVector<ISD::OutputArg, 8> Outs; 1203 SmallVector<SDValue, 8> OutVals; 1204 1205 if (!FuncInfo.CanLowerReturn) { 1206 unsigned DemoteReg = FuncInfo.DemoteRegister; 1207 const Function *F = I.getParent()->getParent(); 1208 1209 // Emit a store of the return value through the virtual register. 1210 // Leave Outs empty so that LowerReturn won't try to load return 1211 // registers the usual way. 1212 SmallVector<EVT, 1> PtrValueVTs; 1213 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1214 PtrValueVTs); 1215 1216 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1217 SDValue RetOp = getValue(I.getOperand(0)); 1218 1219 SmallVector<EVT, 4> ValueVTs; 1220 SmallVector<uint64_t, 4> Offsets; 1221 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1222 unsigned NumValues = ValueVTs.size(); 1223 1224 SmallVector<SDValue, 4> Chains(NumValues); 1225 for (unsigned i = 0; i != NumValues; ++i) { 1226 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1227 RetPtr.getValueType(), RetPtr, 1228 DAG.getIntPtrConstant(Offsets[i], 1229 getCurSDLoc())); 1230 Chains[i] = 1231 DAG.getStore(Chain, getCurSDLoc(), 1232 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1233 // FIXME: better loc info would be nice. 1234 Add, MachinePointerInfo(), false, false, 0); 1235 } 1236 1237 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1238 MVT::Other, Chains); 1239 } else if (I.getNumOperands() != 0) { 1240 SmallVector<EVT, 4> ValueVTs; 1241 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1242 unsigned NumValues = ValueVTs.size(); 1243 if (NumValues) { 1244 SDValue RetOp = getValue(I.getOperand(0)); 1245 1246 const Function *F = I.getParent()->getParent(); 1247 1248 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1249 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::SExt)) 1251 ExtendKind = ISD::SIGN_EXTEND; 1252 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1253 Attribute::ZExt)) 1254 ExtendKind = ISD::ZERO_EXTEND; 1255 1256 LLVMContext &Context = F->getContext(); 1257 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1258 Attribute::InReg); 1259 1260 for (unsigned j = 0; j != NumValues; ++j) { 1261 EVT VT = ValueVTs[j]; 1262 1263 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1264 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1265 1266 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1267 MVT PartVT = TLI.getRegisterType(Context, VT); 1268 SmallVector<SDValue, 4> Parts(NumParts); 1269 getCopyToParts(DAG, getCurSDLoc(), 1270 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1271 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1272 1273 // 'inreg' on function refers to return value 1274 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1275 if (RetInReg) 1276 Flags.setInReg(); 1277 1278 // Propagate extension type if any 1279 if (ExtendKind == ISD::SIGN_EXTEND) 1280 Flags.setSExt(); 1281 else if (ExtendKind == ISD::ZERO_EXTEND) 1282 Flags.setZExt(); 1283 1284 for (unsigned i = 0; i < NumParts; ++i) { 1285 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1286 VT, /*isfixed=*/true, 0, 0)); 1287 OutVals.push_back(Parts[i]); 1288 } 1289 } 1290 } 1291 } 1292 1293 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1294 CallingConv::ID CallConv = 1295 DAG.getMachineFunction().getFunction()->getCallingConv(); 1296 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1297 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1298 1299 // Verify that the target's LowerReturn behaved as expected. 1300 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1301 "LowerReturn didn't return a valid chain!"); 1302 1303 // Update the DAG with the new chain value resulting from return lowering. 1304 DAG.setRoot(Chain); 1305 } 1306 1307 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1308 /// created for it, emit nodes to copy the value into the virtual 1309 /// registers. 1310 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1311 // Skip empty types 1312 if (V->getType()->isEmptyTy()) 1313 return; 1314 1315 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1316 if (VMI != FuncInfo.ValueMap.end()) { 1317 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1318 CopyValueToVirtualRegister(V, VMI->second); 1319 } 1320 } 1321 1322 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1323 /// the current basic block, add it to ValueMap now so that we'll get a 1324 /// CopyTo/FromReg. 1325 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1326 // No need to export constants. 1327 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1328 1329 // Already exported? 1330 if (FuncInfo.isExportedInst(V)) return; 1331 1332 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1333 CopyValueToVirtualRegister(V, Reg); 1334 } 1335 1336 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1337 const BasicBlock *FromBB) { 1338 // The operands of the setcc have to be in this block. We don't know 1339 // how to export them from some other block. 1340 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1341 // Can export from current BB. 1342 if (VI->getParent() == FromBB) 1343 return true; 1344 1345 // Is already exported, noop. 1346 return FuncInfo.isExportedInst(V); 1347 } 1348 1349 // If this is an argument, we can export it if the BB is the entry block or 1350 // if it is already exported. 1351 if (isa<Argument>(V)) { 1352 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1353 return true; 1354 1355 // Otherwise, can only export this if it is already exported. 1356 return FuncInfo.isExportedInst(V); 1357 } 1358 1359 // Otherwise, constants can always be exported. 1360 return true; 1361 } 1362 1363 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1364 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1365 const MachineBasicBlock *Dst) const { 1366 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1367 if (!BPI) 1368 return 0; 1369 const BasicBlock *SrcBB = Src->getBasicBlock(); 1370 const BasicBlock *DstBB = Dst->getBasicBlock(); 1371 return BPI->getEdgeWeight(SrcBB, DstBB); 1372 } 1373 1374 void SelectionDAGBuilder:: 1375 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1376 uint32_t Weight /* = 0 */) { 1377 if (!Weight) 1378 Weight = getEdgeWeight(Src, Dst); 1379 Src->addSuccessor(Dst, Weight); 1380 } 1381 1382 1383 static bool InBlock(const Value *V, const BasicBlock *BB) { 1384 if (const Instruction *I = dyn_cast<Instruction>(V)) 1385 return I->getParent() == BB; 1386 return true; 1387 } 1388 1389 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1390 /// This function emits a branch and is used at the leaves of an OR or an 1391 /// AND operator tree. 1392 /// 1393 void 1394 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1395 MachineBasicBlock *TBB, 1396 MachineBasicBlock *FBB, 1397 MachineBasicBlock *CurBB, 1398 MachineBasicBlock *SwitchBB, 1399 uint32_t TWeight, 1400 uint32_t FWeight) { 1401 const BasicBlock *BB = CurBB->getBasicBlock(); 1402 1403 // If the leaf of the tree is a comparison, merge the condition into 1404 // the caseblock. 1405 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1406 // The operands of the cmp have to be in this block. We don't know 1407 // how to export them from some other block. If this is the first block 1408 // of the sequence, no exporting is needed. 1409 if (CurBB == SwitchBB || 1410 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1411 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1412 ISD::CondCode Condition; 1413 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1414 Condition = getICmpCondCode(IC->getPredicate()); 1415 } else { 1416 const FCmpInst *FC = cast<FCmpInst>(Cond); 1417 Condition = getFCmpCondCode(FC->getPredicate()); 1418 if (TM.Options.NoNaNsFPMath) 1419 Condition = getFCmpCodeWithoutNaN(Condition); 1420 } 1421 1422 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1423 TBB, FBB, CurBB, TWeight, FWeight); 1424 SwitchCases.push_back(CB); 1425 return; 1426 } 1427 } 1428 1429 // Create a CaseBlock record representing this branch. 1430 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1431 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1432 SwitchCases.push_back(CB); 1433 } 1434 1435 /// Scale down both weights to fit into uint32_t. 1436 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1437 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1438 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1439 NewTrue = NewTrue / Scale; 1440 NewFalse = NewFalse / Scale; 1441 } 1442 1443 /// FindMergedConditions - If Cond is an expression like 1444 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1445 MachineBasicBlock *TBB, 1446 MachineBasicBlock *FBB, 1447 MachineBasicBlock *CurBB, 1448 MachineBasicBlock *SwitchBB, 1449 Instruction::BinaryOps Opc, 1450 uint32_t TWeight, 1451 uint32_t FWeight) { 1452 // If this node is not part of the or/and tree, emit it as a branch. 1453 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1454 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1455 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1456 BOp->getParent() != CurBB->getBasicBlock() || 1457 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1458 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1459 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1460 TWeight, FWeight); 1461 return; 1462 } 1463 1464 // Create TmpBB after CurBB. 1465 MachineFunction::iterator BBI = CurBB; 1466 MachineFunction &MF = DAG.getMachineFunction(); 1467 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1468 CurBB->getParent()->insert(++BBI, TmpBB); 1469 1470 if (Opc == Instruction::Or) { 1471 // Codegen X | Y as: 1472 // BB1: 1473 // jmp_if_X TBB 1474 // jmp TmpBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 1480 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1481 // The requirement is that 1482 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1483 // = TrueProb for original BB. 1484 // Assuming the original weights are A and B, one choice is to set BB1's 1485 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1486 // assumes that 1487 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1488 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1489 // TmpBB, but the math is more complicated. 1490 1491 uint64_t NewTrueWeight = TWeight; 1492 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1493 ScaleWeights(NewTrueWeight, NewFalseWeight); 1494 // Emit the LHS condition. 1495 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1496 NewTrueWeight, NewFalseWeight); 1497 1498 NewTrueWeight = TWeight; 1499 NewFalseWeight = 2 * (uint64_t)FWeight; 1500 ScaleWeights(NewTrueWeight, NewFalseWeight); 1501 // Emit the RHS condition into TmpBB. 1502 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1503 NewTrueWeight, NewFalseWeight); 1504 } else { 1505 assert(Opc == Instruction::And && "Unknown merge op!"); 1506 // Codegen X & Y as: 1507 // BB1: 1508 // jmp_if_X TmpBB 1509 // jmp FBB 1510 // TmpBB: 1511 // jmp_if_Y TBB 1512 // jmp FBB 1513 // 1514 // This requires creation of TmpBB after CurBB. 1515 1516 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1517 // The requirement is that 1518 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1519 // = FalseProb for original BB. 1520 // Assuming the original weights are A and B, one choice is to set BB1's 1521 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1522 // assumes that 1523 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1524 1525 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1526 uint64_t NewFalseWeight = FWeight; 1527 ScaleWeights(NewTrueWeight, NewFalseWeight); 1528 // Emit the LHS condition. 1529 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1530 NewTrueWeight, NewFalseWeight); 1531 1532 NewTrueWeight = 2 * (uint64_t)TWeight; 1533 NewFalseWeight = FWeight; 1534 ScaleWeights(NewTrueWeight, NewFalseWeight); 1535 // Emit the RHS condition into TmpBB. 1536 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1537 NewTrueWeight, NewFalseWeight); 1538 } 1539 } 1540 1541 /// If the set of cases should be emitted as a series of branches, return true. 1542 /// If we should emit this as a bunch of and/or'd together conditions, return 1543 /// false. 1544 bool 1545 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1546 if (Cases.size() != 2) return true; 1547 1548 // If this is two comparisons of the same values or'd or and'd together, they 1549 // will get folded into a single comparison, so don't emit two blocks. 1550 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1551 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1552 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1553 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1554 return false; 1555 } 1556 1557 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1558 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1559 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1560 Cases[0].CC == Cases[1].CC && 1561 isa<Constant>(Cases[0].CmpRHS) && 1562 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1563 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1564 return false; 1565 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1566 return false; 1567 } 1568 1569 return true; 1570 } 1571 1572 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1573 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1574 1575 // Update machine-CFG edges. 1576 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1577 1578 if (I.isUnconditional()) { 1579 // Update machine-CFG edges. 1580 BrMBB->addSuccessor(Succ0MBB); 1581 1582 // If this is not a fall-through branch or optimizations are switched off, 1583 // emit the branch. 1584 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1585 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1586 MVT::Other, getControlRoot(), 1587 DAG.getBasicBlock(Succ0MBB))); 1588 1589 return; 1590 } 1591 1592 // If this condition is one of the special cases we handle, do special stuff 1593 // now. 1594 const Value *CondVal = I.getCondition(); 1595 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1596 1597 // If this is a series of conditions that are or'd or and'd together, emit 1598 // this as a sequence of branches instead of setcc's with and/or operations. 1599 // As long as jumps are not expensive, this should improve performance. 1600 // For example, instead of something like: 1601 // cmp A, B 1602 // C = seteq 1603 // cmp D, E 1604 // F = setle 1605 // or C, F 1606 // jnz foo 1607 // Emit: 1608 // cmp A, B 1609 // je foo 1610 // cmp D, E 1611 // jle foo 1612 // 1613 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1614 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1615 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1616 !I.getMetadata(LLVMContext::MD_unpredictable) && 1617 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1618 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1619 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1620 getEdgeWeight(BrMBB, Succ1MBB)); 1621 // If the compares in later blocks need to use values not currently 1622 // exported from this block, export them now. This block should always 1623 // be the first entry. 1624 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1625 1626 // Allow some cases to be rejected. 1627 if (ShouldEmitAsBranches(SwitchCases)) { 1628 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1629 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1630 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1631 } 1632 1633 // Emit the branch for this block. 1634 visitSwitchCase(SwitchCases[0], BrMBB); 1635 SwitchCases.erase(SwitchCases.begin()); 1636 return; 1637 } 1638 1639 // Okay, we decided not to do this, remove any inserted MBB's and clear 1640 // SwitchCases. 1641 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1642 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1643 1644 SwitchCases.clear(); 1645 } 1646 } 1647 1648 // Create a CaseBlock record representing this branch. 1649 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1650 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1651 1652 // Use visitSwitchCase to actually insert the fast branch sequence for this 1653 // cond branch. 1654 visitSwitchCase(CB, BrMBB); 1655 } 1656 1657 /// visitSwitchCase - Emits the necessary code to represent a single node in 1658 /// the binary search tree resulting from lowering a switch instruction. 1659 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1660 MachineBasicBlock *SwitchBB) { 1661 SDValue Cond; 1662 SDValue CondLHS = getValue(CB.CmpLHS); 1663 SDLoc dl = getCurSDLoc(); 1664 1665 // Build the setcc now. 1666 if (!CB.CmpMHS) { 1667 // Fold "(X == true)" to X and "(X == false)" to !X to 1668 // handle common cases produced by branch lowering. 1669 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1670 CB.CC == ISD::SETEQ) 1671 Cond = CondLHS; 1672 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) { 1674 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1675 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1676 } else 1677 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1678 } else { 1679 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1680 1681 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1682 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1683 1684 SDValue CmpOp = getValue(CB.CmpMHS); 1685 EVT VT = CmpOp.getValueType(); 1686 1687 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1688 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1689 ISD::SETLE); 1690 } else { 1691 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1692 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1693 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1694 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1695 } 1696 } 1697 1698 // Update successor info 1699 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1700 // TrueBB and FalseBB are always different unless the incoming IR is 1701 // degenerate. This only happens when running llc on weird IR. 1702 if (CB.TrueBB != CB.FalseBB) 1703 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1704 1705 // If the lhs block is the next block, invert the condition so that we can 1706 // fall through to the lhs instead of the rhs block. 1707 if (CB.TrueBB == NextBlock(SwitchBB)) { 1708 std::swap(CB.TrueBB, CB.FalseBB); 1709 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1710 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1711 } 1712 1713 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1714 MVT::Other, getControlRoot(), Cond, 1715 DAG.getBasicBlock(CB.TrueBB)); 1716 1717 // Insert the false branch. Do this even if it's a fall through branch, 1718 // this makes it easier to do DAG optimizations which require inverting 1719 // the branch condition. 1720 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1721 DAG.getBasicBlock(CB.FalseBB)); 1722 1723 DAG.setRoot(BrCond); 1724 } 1725 1726 /// visitJumpTable - Emit JumpTable node in the current MBB 1727 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1728 // Emit the code for the jump table 1729 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1730 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1731 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1732 JT.Reg, PTy); 1733 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1734 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1735 MVT::Other, Index.getValue(1), 1736 Table, Index); 1737 DAG.setRoot(BrJumpTable); 1738 } 1739 1740 /// visitJumpTableHeader - This function emits necessary code to produce index 1741 /// in the JumpTable from switch case. 1742 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1743 JumpTableHeader &JTH, 1744 MachineBasicBlock *SwitchBB) { 1745 SDLoc dl = getCurSDLoc(); 1746 1747 // Subtract the lowest switch case value from the value being switched on and 1748 // conditional branch to default mbb if the result is greater than the 1749 // difference between smallest and largest cases. 1750 SDValue SwitchOp = getValue(JTH.SValue); 1751 EVT VT = SwitchOp.getValueType(); 1752 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1753 DAG.getConstant(JTH.First, dl, VT)); 1754 1755 // The SDNode we just created, which holds the value being switched on minus 1756 // the smallest case value, needs to be copied to a virtual register so it 1757 // can be used as an index into the jump table in a subsequent basic block. 1758 // This value may be smaller or larger than the target's pointer type, and 1759 // therefore require extension or truncating. 1760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1761 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1762 1763 unsigned JumpTableReg = 1764 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1765 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1766 JumpTableReg, SwitchOp); 1767 JT.Reg = JumpTableReg; 1768 1769 // Emit the range check for the jump table, and branch to the default block 1770 // for the switch statement if the value being switched on exceeds the largest 1771 // case in the switch. 1772 SDValue CMP = DAG.getSetCC( 1773 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1774 Sub.getValueType()), 1775 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1776 1777 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1778 MVT::Other, CopyTo, CMP, 1779 DAG.getBasicBlock(JT.Default)); 1780 1781 // Avoid emitting unnecessary branches to the next block. 1782 if (JT.MBB != NextBlock(SwitchBB)) 1783 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1784 DAG.getBasicBlock(JT.MBB)); 1785 1786 DAG.setRoot(BrCond); 1787 } 1788 1789 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1790 /// tail spliced into a stack protector check success bb. 1791 /// 1792 /// For a high level explanation of how this fits into the stack protector 1793 /// generation see the comment on the declaration of class 1794 /// StackProtectorDescriptor. 1795 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1796 MachineBasicBlock *ParentBB) { 1797 1798 // First create the loads to the guard/stack slot for the comparison. 1799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1800 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1801 1802 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1803 int FI = MFI->getStackProtectorIndex(); 1804 1805 const Value *IRGuard = SPD.getGuard(); 1806 SDValue GuardPtr = getValue(IRGuard); 1807 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1808 1809 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1810 1811 SDValue Guard; 1812 SDLoc dl = getCurSDLoc(); 1813 1814 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1815 // guard value from the virtual register holding the value. Otherwise, emit a 1816 // volatile load to retrieve the stack guard value. 1817 unsigned GuardReg = SPD.getGuardReg(); 1818 1819 if (GuardReg && TLI.useLoadStackGuardNode()) 1820 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1821 PtrTy); 1822 else 1823 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1824 GuardPtr, MachinePointerInfo(IRGuard, 0), 1825 true, false, false, Align); 1826 1827 SDValue StackSlot = DAG.getLoad( 1828 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1829 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1830 false, false, Align); 1831 1832 // Perform the comparison via a subtract/getsetcc. 1833 EVT VT = Guard.getValueType(); 1834 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1835 1836 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1837 *DAG.getContext(), 1838 Sub.getValueType()), 1839 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1840 1841 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1842 // branch to failure MBB. 1843 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1844 MVT::Other, StackSlot.getOperand(0), 1845 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1846 // Otherwise branch to success MBB. 1847 SDValue Br = DAG.getNode(ISD::BR, dl, 1848 MVT::Other, BrCond, 1849 DAG.getBasicBlock(SPD.getSuccessMBB())); 1850 1851 DAG.setRoot(Br); 1852 } 1853 1854 /// Codegen the failure basic block for a stack protector check. 1855 /// 1856 /// A failure stack protector machine basic block consists simply of a call to 1857 /// __stack_chk_fail(). 1858 /// 1859 /// For a high level explanation of how this fits into the stack protector 1860 /// generation see the comment on the declaration of class 1861 /// StackProtectorDescriptor. 1862 void 1863 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1865 SDValue Chain = 1866 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1867 nullptr, 0, false, getCurSDLoc(), false, false).second; 1868 DAG.setRoot(Chain); 1869 } 1870 1871 /// visitBitTestHeader - This function emits necessary code to produce value 1872 /// suitable for "bit tests" 1873 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1874 MachineBasicBlock *SwitchBB) { 1875 SDLoc dl = getCurSDLoc(); 1876 1877 // Subtract the minimum value 1878 SDValue SwitchOp = getValue(B.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1881 DAG.getConstant(B.First, dl, VT)); 1882 1883 // Check range 1884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1885 SDValue RangeCmp = DAG.getSetCC( 1886 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1887 Sub.getValueType()), 1888 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1889 1890 // Determine the type of the test operands. 1891 bool UsePtrType = false; 1892 if (!TLI.isTypeLegal(VT)) 1893 UsePtrType = true; 1894 else { 1895 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1896 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1897 // Switch table case range are encoded into series of masks. 1898 // Just use pointer type, it's guaranteed to fit. 1899 UsePtrType = true; 1900 break; 1901 } 1902 } 1903 if (UsePtrType) { 1904 VT = TLI.getPointerTy(DAG.getDataLayout()); 1905 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1906 } 1907 1908 B.RegVT = VT.getSimpleVT(); 1909 B.Reg = FuncInfo.CreateReg(B.RegVT); 1910 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1911 1912 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1913 1914 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1915 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1916 1917 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1918 MVT::Other, CopyTo, RangeCmp, 1919 DAG.getBasicBlock(B.Default)); 1920 1921 // Avoid emitting unnecessary branches to the next block. 1922 if (MBB != NextBlock(SwitchBB)) 1923 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1924 DAG.getBasicBlock(MBB)); 1925 1926 DAG.setRoot(BrRange); 1927 } 1928 1929 /// visitBitTestCase - this function produces one "bit test" 1930 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1931 MachineBasicBlock* NextMBB, 1932 uint32_t BranchWeightToNext, 1933 unsigned Reg, 1934 BitTestCase &B, 1935 MachineBasicBlock *SwitchBB) { 1936 SDLoc dl = getCurSDLoc(); 1937 MVT VT = BB.RegVT; 1938 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1939 SDValue Cmp; 1940 unsigned PopCount = countPopulation(B.Mask); 1941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1942 if (PopCount == 1) { 1943 // Testing for a single bit; just compare the shift count with what it 1944 // would need to be to shift a 1 bit in that position. 1945 Cmp = DAG.getSetCC( 1946 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1947 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1948 ISD::SETEQ); 1949 } else if (PopCount == BB.Range) { 1950 // There is only one zero bit in the range, test for it directly. 1951 Cmp = DAG.getSetCC( 1952 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1953 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1954 ISD::SETNE); 1955 } else { 1956 // Make desired shift 1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1958 DAG.getConstant(1, dl, VT), ShiftOp); 1959 1960 // Emit bit tests and jumps 1961 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1962 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1963 Cmp = DAG.getSetCC( 1964 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1965 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1966 } 1967 1968 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1969 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1970 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1971 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1972 1973 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1974 MVT::Other, getControlRoot(), 1975 Cmp, DAG.getBasicBlock(B.TargetBB)); 1976 1977 // Avoid emitting unnecessary branches to the next block. 1978 if (NextMBB != NextBlock(SwitchBB)) 1979 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1980 DAG.getBasicBlock(NextMBB)); 1981 1982 DAG.setRoot(BrAnd); 1983 } 1984 1985 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1986 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1987 1988 // Retrieve successors. Look through artificial IR level blocks like catchpads 1989 // and catchendpads for successors. 1990 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1991 const BasicBlock *EHPadBB = I.getSuccessor(1); 1992 bool IsLandingPad = EHPadBB->isLandingPad(); 1993 1994 const Value *Callee(I.getCalledValue()); 1995 const Function *Fn = dyn_cast<Function>(Callee); 1996 if (isa<InlineAsm>(Callee)) 1997 visitInlineAsm(&I); 1998 else if (Fn && Fn->isIntrinsic()) { 1999 switch (Fn->getIntrinsicID()) { 2000 default: 2001 llvm_unreachable("Cannot invoke this intrinsic"); 2002 case Intrinsic::donothing: 2003 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2004 break; 2005 case Intrinsic::experimental_patchpoint_void: 2006 case Intrinsic::experimental_patchpoint_i64: 2007 visitPatchpoint(&I, EHPadBB); 2008 break; 2009 case Intrinsic::experimental_gc_statepoint: 2010 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2011 break; 2012 } 2013 } else 2014 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2015 2016 // If the value of the invoke is used outside of its defining block, make it 2017 // available as a virtual register. 2018 // We already took care of the exported value for the statepoint instruction 2019 // during call to the LowerStatepoint. 2020 if (!isStatepoint(I)) { 2021 CopyToExportRegsIfNeeded(&I); 2022 } 2023 2024 // Stop when we hit a pad that generates real code or we unwind to caller. 2025 // Catchpads are conditional branches that add real MBB destinations and 2026 // continue the loop. EH "end" pads are not real BBs and simply continue. 2027 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2028 while (EHPadBB) { 2029 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2030 if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 2031 assert(FuncInfo.MBBMap[EHPadBB]); 2032 // Stop on cleanup pads and landingpads. 2033 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 2034 break; 2035 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 2036 // Add the catchpad handler to the possible destinations. 2037 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 2038 EHPadBB = CPI->getUnwindDest(); 2039 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 2040 EHPadBB = CEPI->getUnwindDest(); 2041 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 2042 EHPadBB = CEPI->getUnwindDest(); 2043 } 2044 } 2045 2046 // Update successor info 2047 // FIXME: The weights for catchpads will be wrong. 2048 addSuccessorWithWeight(InvokeMBB, Return); 2049 for (auto *UnwindDest : UnwindDests) { 2050 UnwindDest->setIsEHPad(); 2051 if (!IsLandingPad) 2052 UnwindDest->setIsEHFuncletEntry(); 2053 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2054 } 2055 2056 // Drop into normal successor. 2057 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2058 MVT::Other, getControlRoot(), 2059 DAG.getBasicBlock(Return))); 2060 } 2061 2062 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2063 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2064 } 2065 2066 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2067 assert(FuncInfo.MBB->isEHPad() && 2068 "Call to landingpad not in landing pad!"); 2069 2070 MachineBasicBlock *MBB = FuncInfo.MBB; 2071 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2072 AddLandingPadInfo(LP, MMI, MBB); 2073 2074 // If there aren't registers to copy the values into (e.g., during SjLj 2075 // exceptions), then don't bother to create these DAG nodes. 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 if (TLI.getExceptionPointerRegister() == 0 && 2078 TLI.getExceptionSelectorRegister() == 0) 2079 return; 2080 2081 SmallVector<EVT, 2> ValueVTs; 2082 SDLoc dl = getCurSDLoc(); 2083 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2084 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2085 2086 // Get the two live-in registers as SDValues. The physregs have already been 2087 // copied into virtual registers. 2088 SDValue Ops[2]; 2089 if (FuncInfo.ExceptionPointerVirtReg) { 2090 Ops[0] = DAG.getZExtOrTrunc( 2091 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2092 FuncInfo.ExceptionPointerVirtReg, 2093 TLI.getPointerTy(DAG.getDataLayout())), 2094 dl, ValueVTs[0]); 2095 } else { 2096 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2097 } 2098 Ops[1] = DAG.getZExtOrTrunc( 2099 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2100 FuncInfo.ExceptionSelectorVirtReg, 2101 TLI.getPointerTy(DAG.getDataLayout())), 2102 dl, ValueVTs[1]); 2103 2104 // Merge into one. 2105 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2106 DAG.getVTList(ValueVTs), Ops); 2107 setValue(&LP, Res); 2108 } 2109 2110 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2111 #ifndef NDEBUG 2112 for (const CaseCluster &CC : Clusters) 2113 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2114 #endif 2115 2116 std::sort(Clusters.begin(), Clusters.end(), 2117 [](const CaseCluster &a, const CaseCluster &b) { 2118 return a.Low->getValue().slt(b.Low->getValue()); 2119 }); 2120 2121 // Merge adjacent clusters with the same destination. 2122 const unsigned N = Clusters.size(); 2123 unsigned DstIndex = 0; 2124 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2125 CaseCluster &CC = Clusters[SrcIndex]; 2126 const ConstantInt *CaseVal = CC.Low; 2127 MachineBasicBlock *Succ = CC.MBB; 2128 2129 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2130 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2131 // If this case has the same successor and is a neighbour, merge it into 2132 // the previous cluster. 2133 Clusters[DstIndex - 1].High = CaseVal; 2134 Clusters[DstIndex - 1].Weight += CC.Weight; 2135 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2136 } else { 2137 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2138 sizeof(Clusters[SrcIndex])); 2139 } 2140 } 2141 Clusters.resize(DstIndex); 2142 } 2143 2144 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2145 MachineBasicBlock *Last) { 2146 // Update JTCases. 2147 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2148 if (JTCases[i].first.HeaderBB == First) 2149 JTCases[i].first.HeaderBB = Last; 2150 2151 // Update BitTestCases. 2152 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2153 if (BitTestCases[i].Parent == First) 2154 BitTestCases[i].Parent = Last; 2155 } 2156 2157 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2158 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2159 2160 // Update machine-CFG edges with unique successors. 2161 SmallSet<BasicBlock*, 32> Done; 2162 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2163 BasicBlock *BB = I.getSuccessor(i); 2164 bool Inserted = Done.insert(BB).second; 2165 if (!Inserted) 2166 continue; 2167 2168 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2169 addSuccessorWithWeight(IndirectBrMBB, Succ); 2170 } 2171 2172 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2173 MVT::Other, getControlRoot(), 2174 getValue(I.getAddress()))); 2175 } 2176 2177 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2178 if (DAG.getTarget().Options.TrapUnreachable) 2179 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2180 } 2181 2182 void SelectionDAGBuilder::visitFSub(const User &I) { 2183 // -0.0 - X --> fneg 2184 Type *Ty = I.getType(); 2185 if (isa<Constant>(I.getOperand(0)) && 2186 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2187 SDValue Op2 = getValue(I.getOperand(1)); 2188 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2189 Op2.getValueType(), Op2)); 2190 return; 2191 } 2192 2193 visitBinary(I, ISD::FSUB); 2194 } 2195 2196 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2197 SDValue Op1 = getValue(I.getOperand(0)); 2198 SDValue Op2 = getValue(I.getOperand(1)); 2199 2200 bool nuw = false; 2201 bool nsw = false; 2202 bool exact = false; 2203 FastMathFlags FMF; 2204 2205 if (const OverflowingBinaryOperator *OFBinOp = 2206 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2207 nuw = OFBinOp->hasNoUnsignedWrap(); 2208 nsw = OFBinOp->hasNoSignedWrap(); 2209 } 2210 if (const PossiblyExactOperator *ExactOp = 2211 dyn_cast<const PossiblyExactOperator>(&I)) 2212 exact = ExactOp->isExact(); 2213 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2214 FMF = FPOp->getFastMathFlags(); 2215 2216 SDNodeFlags Flags; 2217 Flags.setExact(exact); 2218 Flags.setNoSignedWrap(nsw); 2219 Flags.setNoUnsignedWrap(nuw); 2220 if (EnableFMFInDAG) { 2221 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2222 Flags.setNoInfs(FMF.noInfs()); 2223 Flags.setNoNaNs(FMF.noNaNs()); 2224 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2225 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2226 } 2227 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2228 Op1, Op2, &Flags); 2229 setValue(&I, BinNodeValue); 2230 } 2231 2232 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2233 SDValue Op1 = getValue(I.getOperand(0)); 2234 SDValue Op2 = getValue(I.getOperand(1)); 2235 2236 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2237 Op2.getValueType(), DAG.getDataLayout()); 2238 2239 // Coerce the shift amount to the right type if we can. 2240 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2241 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2242 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2243 SDLoc DL = getCurSDLoc(); 2244 2245 // If the operand is smaller than the shift count type, promote it. 2246 if (ShiftSize > Op2Size) 2247 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2248 2249 // If the operand is larger than the shift count type but the shift 2250 // count type has enough bits to represent any shift value, truncate 2251 // it now. This is a common case and it exposes the truncate to 2252 // optimization early. 2253 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2254 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2255 // Otherwise we'll need to temporarily settle for some other convenient 2256 // type. Type legalization will make adjustments once the shiftee is split. 2257 else 2258 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2259 } 2260 2261 bool nuw = false; 2262 bool nsw = false; 2263 bool exact = false; 2264 2265 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2266 2267 if (const OverflowingBinaryOperator *OFBinOp = 2268 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2269 nuw = OFBinOp->hasNoUnsignedWrap(); 2270 nsw = OFBinOp->hasNoSignedWrap(); 2271 } 2272 if (const PossiblyExactOperator *ExactOp = 2273 dyn_cast<const PossiblyExactOperator>(&I)) 2274 exact = ExactOp->isExact(); 2275 } 2276 SDNodeFlags Flags; 2277 Flags.setExact(exact); 2278 Flags.setNoSignedWrap(nsw); 2279 Flags.setNoUnsignedWrap(nuw); 2280 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2281 &Flags); 2282 setValue(&I, Res); 2283 } 2284 2285 void SelectionDAGBuilder::visitSDiv(const User &I) { 2286 SDValue Op1 = getValue(I.getOperand(0)); 2287 SDValue Op2 = getValue(I.getOperand(1)); 2288 2289 SDNodeFlags Flags; 2290 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2291 cast<PossiblyExactOperator>(&I)->isExact()); 2292 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2293 Op2, &Flags)); 2294 } 2295 2296 void SelectionDAGBuilder::visitICmp(const User &I) { 2297 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2298 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2299 predicate = IC->getPredicate(); 2300 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2301 predicate = ICmpInst::Predicate(IC->getPredicate()); 2302 SDValue Op1 = getValue(I.getOperand(0)); 2303 SDValue Op2 = getValue(I.getOperand(1)); 2304 ISD::CondCode Opcode = getICmpCondCode(predicate); 2305 2306 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2307 I.getType()); 2308 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2309 } 2310 2311 void SelectionDAGBuilder::visitFCmp(const User &I) { 2312 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2313 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2314 predicate = FC->getPredicate(); 2315 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2316 predicate = FCmpInst::Predicate(FC->getPredicate()); 2317 SDValue Op1 = getValue(I.getOperand(0)); 2318 SDValue Op2 = getValue(I.getOperand(1)); 2319 ISD::CondCode Condition = getFCmpCondCode(predicate); 2320 if (TM.Options.NoNaNsFPMath) 2321 Condition = getFCmpCodeWithoutNaN(Condition); 2322 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2323 I.getType()); 2324 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2325 } 2326 2327 void SelectionDAGBuilder::visitSelect(const User &I) { 2328 SmallVector<EVT, 4> ValueVTs; 2329 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2330 ValueVTs); 2331 unsigned NumValues = ValueVTs.size(); 2332 if (NumValues == 0) return; 2333 2334 SmallVector<SDValue, 4> Values(NumValues); 2335 SDValue Cond = getValue(I.getOperand(0)); 2336 SDValue LHSVal = getValue(I.getOperand(1)); 2337 SDValue RHSVal = getValue(I.getOperand(2)); 2338 auto BaseOps = {Cond}; 2339 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2340 ISD::VSELECT : ISD::SELECT; 2341 2342 // Min/max matching is only viable if all output VTs are the same. 2343 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2344 EVT VT = ValueVTs[0]; 2345 LLVMContext &Ctx = *DAG.getContext(); 2346 auto &TLI = DAG.getTargetLoweringInfo(); 2347 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2348 VT = TLI.getTypeToTransformTo(Ctx, VT); 2349 2350 Value *LHS, *RHS; 2351 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2352 ISD::NodeType Opc = ISD::DELETED_NODE; 2353 switch (SPR.Flavor) { 2354 case SPF_UMAX: Opc = ISD::UMAX; break; 2355 case SPF_UMIN: Opc = ISD::UMIN; break; 2356 case SPF_SMAX: Opc = ISD::SMAX; break; 2357 case SPF_SMIN: Opc = ISD::SMIN; break; 2358 case SPF_FMINNUM: 2359 switch (SPR.NaNBehavior) { 2360 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2361 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2362 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2363 case SPNB_RETURNS_ANY: 2364 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2365 : ISD::FMINNAN; 2366 break; 2367 } 2368 break; 2369 case SPF_FMAXNUM: 2370 switch (SPR.NaNBehavior) { 2371 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2372 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2373 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2374 case SPNB_RETURNS_ANY: 2375 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2376 : ISD::FMAXNAN; 2377 break; 2378 } 2379 break; 2380 default: break; 2381 } 2382 2383 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2384 // If the underlying comparison instruction is used by any other instruction, 2385 // the consumed instructions won't be destroyed, so it is not profitable 2386 // to convert to a min/max. 2387 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2388 OpCode = Opc; 2389 LHSVal = getValue(LHS); 2390 RHSVal = getValue(RHS); 2391 BaseOps = {}; 2392 } 2393 } 2394 2395 for (unsigned i = 0; i != NumValues; ++i) { 2396 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2397 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2398 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2399 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2400 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2401 Ops); 2402 } 2403 2404 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2405 DAG.getVTList(ValueVTs), Values)); 2406 } 2407 2408 void SelectionDAGBuilder::visitTrunc(const User &I) { 2409 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2410 SDValue N = getValue(I.getOperand(0)); 2411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2412 I.getType()); 2413 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2414 } 2415 2416 void SelectionDAGBuilder::visitZExt(const User &I) { 2417 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2418 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2419 SDValue N = getValue(I.getOperand(0)); 2420 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2421 I.getType()); 2422 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2423 } 2424 2425 void SelectionDAGBuilder::visitSExt(const User &I) { 2426 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2427 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2428 SDValue N = getValue(I.getOperand(0)); 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2430 I.getType()); 2431 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2432 } 2433 2434 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2435 // FPTrunc is never a no-op cast, no need to check 2436 SDValue N = getValue(I.getOperand(0)); 2437 SDLoc dl = getCurSDLoc(); 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2440 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2441 DAG.getTargetConstant( 2442 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2443 } 2444 2445 void SelectionDAGBuilder::visitFPExt(const User &I) { 2446 // FPExt is never a no-op cast, no need to check 2447 SDValue N = getValue(I.getOperand(0)); 2448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2449 I.getType()); 2450 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2451 } 2452 2453 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2454 // FPToUI is never a no-op cast, no need to check 2455 SDValue N = getValue(I.getOperand(0)); 2456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2457 I.getType()); 2458 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2459 } 2460 2461 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2462 // FPToSI is never a no-op cast, no need to check 2463 SDValue N = getValue(I.getOperand(0)); 2464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2465 I.getType()); 2466 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2467 } 2468 2469 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2470 // UIToFP is never a no-op cast, no need to check 2471 SDValue N = getValue(I.getOperand(0)); 2472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2473 I.getType()); 2474 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2475 } 2476 2477 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2478 // SIToFP is never a no-op cast, no need to check 2479 SDValue N = getValue(I.getOperand(0)); 2480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2481 I.getType()); 2482 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2483 } 2484 2485 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2486 // What to do depends on the size of the integer and the size of the pointer. 2487 // We can either truncate, zero extend, or no-op, accordingly. 2488 SDValue N = getValue(I.getOperand(0)); 2489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2490 I.getType()); 2491 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2492 } 2493 2494 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2495 // What to do depends on the size of the integer and the size of the pointer. 2496 // We can either truncate, zero extend, or no-op, accordingly. 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2499 I.getType()); 2500 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2501 } 2502 2503 void SelectionDAGBuilder::visitBitCast(const User &I) { 2504 SDValue N = getValue(I.getOperand(0)); 2505 SDLoc dl = getCurSDLoc(); 2506 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2507 I.getType()); 2508 2509 // BitCast assures us that source and destination are the same size so this is 2510 // either a BITCAST or a no-op. 2511 if (DestVT != N.getValueType()) 2512 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2513 DestVT, N)); // convert types. 2514 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2515 // might fold any kind of constant expression to an integer constant and that 2516 // is not what we are looking for. Only regcognize a bitcast of a genuine 2517 // constant integer as an opaque constant. 2518 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2519 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2520 /*isOpaque*/true)); 2521 else 2522 setValue(&I, N); // noop cast. 2523 } 2524 2525 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2527 const Value *SV = I.getOperand(0); 2528 SDValue N = getValue(SV); 2529 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2530 2531 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2532 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2533 2534 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2535 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2536 2537 setValue(&I, N); 2538 } 2539 2540 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2542 SDValue InVec = getValue(I.getOperand(0)); 2543 SDValue InVal = getValue(I.getOperand(1)); 2544 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2545 TLI.getVectorIdxTy(DAG.getDataLayout())); 2546 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2547 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2548 InVec, InVal, InIdx)); 2549 } 2550 2551 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2553 SDValue InVec = getValue(I.getOperand(0)); 2554 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2555 TLI.getVectorIdxTy(DAG.getDataLayout())); 2556 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2557 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2558 InVec, InIdx)); 2559 } 2560 2561 // Utility for visitShuffleVector - Return true if every element in Mask, 2562 // beginning from position Pos and ending in Pos+Size, falls within the 2563 // specified sequential range [L, L+Pos). or is undef. 2564 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2565 unsigned Pos, unsigned Size, int Low) { 2566 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2567 if (Mask[i] >= 0 && Mask[i] != Low) 2568 return false; 2569 return true; 2570 } 2571 2572 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2573 SDValue Src1 = getValue(I.getOperand(0)); 2574 SDValue Src2 = getValue(I.getOperand(1)); 2575 2576 SmallVector<int, 8> Mask; 2577 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2578 unsigned MaskNumElts = Mask.size(); 2579 2580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2581 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2582 EVT SrcVT = Src1.getValueType(); 2583 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2584 2585 if (SrcNumElts == MaskNumElts) { 2586 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2587 &Mask[0])); 2588 return; 2589 } 2590 2591 // Normalize the shuffle vector since mask and vector length don't match. 2592 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2593 // Mask is longer than the source vectors and is a multiple of the source 2594 // vectors. We can use concatenate vector to make the mask and vectors 2595 // lengths match. 2596 if (SrcNumElts*2 == MaskNumElts) { 2597 // First check for Src1 in low and Src2 in high 2598 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2599 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2600 // The shuffle is concatenating two vectors together. 2601 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2602 VT, Src1, Src2)); 2603 return; 2604 } 2605 // Then check for Src2 in low and Src1 in high 2606 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2607 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2608 // The shuffle is concatenating two vectors together. 2609 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2610 VT, Src2, Src1)); 2611 return; 2612 } 2613 } 2614 2615 // Pad both vectors with undefs to make them the same length as the mask. 2616 unsigned NumConcat = MaskNumElts / SrcNumElts; 2617 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2618 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2619 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2620 2621 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2622 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2623 MOps1[0] = Src1; 2624 MOps2[0] = Src2; 2625 2626 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2627 getCurSDLoc(), VT, MOps1); 2628 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2629 getCurSDLoc(), VT, MOps2); 2630 2631 // Readjust mask for new input vector length. 2632 SmallVector<int, 8> MappedOps; 2633 for (unsigned i = 0; i != MaskNumElts; ++i) { 2634 int Idx = Mask[i]; 2635 if (Idx >= (int)SrcNumElts) 2636 Idx -= SrcNumElts - MaskNumElts; 2637 MappedOps.push_back(Idx); 2638 } 2639 2640 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2641 &MappedOps[0])); 2642 return; 2643 } 2644 2645 if (SrcNumElts > MaskNumElts) { 2646 // Analyze the access pattern of the vector to see if we can extract 2647 // two subvectors and do the shuffle. The analysis is done by calculating 2648 // the range of elements the mask access on both vectors. 2649 int MinRange[2] = { static_cast<int>(SrcNumElts), 2650 static_cast<int>(SrcNumElts)}; 2651 int MaxRange[2] = {-1, -1}; 2652 2653 for (unsigned i = 0; i != MaskNumElts; ++i) { 2654 int Idx = Mask[i]; 2655 unsigned Input = 0; 2656 if (Idx < 0) 2657 continue; 2658 2659 if (Idx >= (int)SrcNumElts) { 2660 Input = 1; 2661 Idx -= SrcNumElts; 2662 } 2663 if (Idx > MaxRange[Input]) 2664 MaxRange[Input] = Idx; 2665 if (Idx < MinRange[Input]) 2666 MinRange[Input] = Idx; 2667 } 2668 2669 // Check if the access is smaller than the vector size and can we find 2670 // a reasonable extract index. 2671 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2672 // Extract. 2673 int StartIdx[2]; // StartIdx to extract from 2674 for (unsigned Input = 0; Input < 2; ++Input) { 2675 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2676 RangeUse[Input] = 0; // Unused 2677 StartIdx[Input] = 0; 2678 continue; 2679 } 2680 2681 // Find a good start index that is a multiple of the mask length. Then 2682 // see if the rest of the elements are in range. 2683 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2684 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2685 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2686 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2687 } 2688 2689 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2690 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2691 return; 2692 } 2693 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2694 // Extract appropriate subvector and generate a vector shuffle 2695 for (unsigned Input = 0; Input < 2; ++Input) { 2696 SDValue &Src = Input == 0 ? Src1 : Src2; 2697 if (RangeUse[Input] == 0) 2698 Src = DAG.getUNDEF(VT); 2699 else { 2700 SDLoc dl = getCurSDLoc(); 2701 Src = DAG.getNode( 2702 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2703 DAG.getConstant(StartIdx[Input], dl, 2704 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2705 } 2706 } 2707 2708 // Calculate new mask. 2709 SmallVector<int, 8> MappedOps; 2710 for (unsigned i = 0; i != MaskNumElts; ++i) { 2711 int Idx = Mask[i]; 2712 if (Idx >= 0) { 2713 if (Idx < (int)SrcNumElts) 2714 Idx -= StartIdx[0]; 2715 else 2716 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2717 } 2718 MappedOps.push_back(Idx); 2719 } 2720 2721 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2722 &MappedOps[0])); 2723 return; 2724 } 2725 } 2726 2727 // We can't use either concat vectors or extract subvectors so fall back to 2728 // replacing the shuffle with extract and build vector. 2729 // to insert and build vector. 2730 EVT EltVT = VT.getVectorElementType(); 2731 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2732 SDLoc dl = getCurSDLoc(); 2733 SmallVector<SDValue,8> Ops; 2734 for (unsigned i = 0; i != MaskNumElts; ++i) { 2735 int Idx = Mask[i]; 2736 SDValue Res; 2737 2738 if (Idx < 0) { 2739 Res = DAG.getUNDEF(EltVT); 2740 } else { 2741 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2742 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2743 2744 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2745 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2746 } 2747 2748 Ops.push_back(Res); 2749 } 2750 2751 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2752 } 2753 2754 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2755 const Value *Op0 = I.getOperand(0); 2756 const Value *Op1 = I.getOperand(1); 2757 Type *AggTy = I.getType(); 2758 Type *ValTy = Op1->getType(); 2759 bool IntoUndef = isa<UndefValue>(Op0); 2760 bool FromUndef = isa<UndefValue>(Op1); 2761 2762 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2763 2764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2765 SmallVector<EVT, 4> AggValueVTs; 2766 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2767 SmallVector<EVT, 4> ValValueVTs; 2768 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2769 2770 unsigned NumAggValues = AggValueVTs.size(); 2771 unsigned NumValValues = ValValueVTs.size(); 2772 SmallVector<SDValue, 4> Values(NumAggValues); 2773 2774 // Ignore an insertvalue that produces an empty object 2775 if (!NumAggValues) { 2776 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2777 return; 2778 } 2779 2780 SDValue Agg = getValue(Op0); 2781 unsigned i = 0; 2782 // Copy the beginning value(s) from the original aggregate. 2783 for (; i != LinearIndex; ++i) 2784 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2785 SDValue(Agg.getNode(), Agg.getResNo() + i); 2786 // Copy values from the inserted value(s). 2787 if (NumValValues) { 2788 SDValue Val = getValue(Op1); 2789 for (; i != LinearIndex + NumValValues; ++i) 2790 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2791 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2792 } 2793 // Copy remaining value(s) from the original aggregate. 2794 for (; i != NumAggValues; ++i) 2795 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2796 SDValue(Agg.getNode(), Agg.getResNo() + i); 2797 2798 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2799 DAG.getVTList(AggValueVTs), Values)); 2800 } 2801 2802 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2803 const Value *Op0 = I.getOperand(0); 2804 Type *AggTy = Op0->getType(); 2805 Type *ValTy = I.getType(); 2806 bool OutOfUndef = isa<UndefValue>(Op0); 2807 2808 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2809 2810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2811 SmallVector<EVT, 4> ValValueVTs; 2812 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2813 2814 unsigned NumValValues = ValValueVTs.size(); 2815 2816 // Ignore a extractvalue that produces an empty object 2817 if (!NumValValues) { 2818 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2819 return; 2820 } 2821 2822 SmallVector<SDValue, 4> Values(NumValValues); 2823 2824 SDValue Agg = getValue(Op0); 2825 // Copy out the selected value(s). 2826 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2827 Values[i - LinearIndex] = 2828 OutOfUndef ? 2829 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2830 SDValue(Agg.getNode(), Agg.getResNo() + i); 2831 2832 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2833 DAG.getVTList(ValValueVTs), Values)); 2834 } 2835 2836 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2837 Value *Op0 = I.getOperand(0); 2838 // Note that the pointer operand may be a vector of pointers. Take the scalar 2839 // element which holds a pointer. 2840 Type *Ty = Op0->getType()->getScalarType(); 2841 unsigned AS = Ty->getPointerAddressSpace(); 2842 SDValue N = getValue(Op0); 2843 SDLoc dl = getCurSDLoc(); 2844 2845 // Normalize Vector GEP - all scalar operands should be converted to the 2846 // splat vector. 2847 unsigned VectorWidth = I.getType()->isVectorTy() ? 2848 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2849 2850 if (VectorWidth && !N.getValueType().isVector()) { 2851 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2852 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2853 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2854 } 2855 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2856 OI != E; ++OI) { 2857 const Value *Idx = *OI; 2858 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2859 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2860 if (Field) { 2861 // N = N + Offset 2862 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2863 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2864 DAG.getConstant(Offset, dl, N.getValueType())); 2865 } 2866 2867 Ty = StTy->getElementType(Field); 2868 } else { 2869 Ty = cast<SequentialType>(Ty)->getElementType(); 2870 MVT PtrTy = 2871 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2872 unsigned PtrSize = PtrTy.getSizeInBits(); 2873 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2874 2875 // If this is a scalar constant or a splat vector of constants, 2876 // handle it quickly. 2877 const auto *CI = dyn_cast<ConstantInt>(Idx); 2878 if (!CI && isa<ConstantDataVector>(Idx) && 2879 cast<ConstantDataVector>(Idx)->getSplatValue()) 2880 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2881 2882 if (CI) { 2883 if (CI->isZero()) 2884 continue; 2885 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2886 SDValue OffsVal = VectorWidth ? 2887 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2888 DAG.getConstant(Offs, dl, PtrTy); 2889 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2890 continue; 2891 } 2892 2893 // N = N + Idx * ElementSize; 2894 SDValue IdxN = getValue(Idx); 2895 2896 if (!IdxN.getValueType().isVector() && VectorWidth) { 2897 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2898 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2899 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2900 } 2901 // If the index is smaller or larger than intptr_t, truncate or extend 2902 // it. 2903 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2904 2905 // If this is a multiply by a power of two, turn it into a shl 2906 // immediately. This is a very common case. 2907 if (ElementSize != 1) { 2908 if (ElementSize.isPowerOf2()) { 2909 unsigned Amt = ElementSize.logBase2(); 2910 IdxN = DAG.getNode(ISD::SHL, dl, 2911 N.getValueType(), IdxN, 2912 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2913 } else { 2914 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2915 IdxN = DAG.getNode(ISD::MUL, dl, 2916 N.getValueType(), IdxN, Scale); 2917 } 2918 } 2919 2920 N = DAG.getNode(ISD::ADD, dl, 2921 N.getValueType(), N, IdxN); 2922 } 2923 } 2924 2925 setValue(&I, N); 2926 } 2927 2928 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2929 // If this is a fixed sized alloca in the entry block of the function, 2930 // allocate it statically on the stack. 2931 if (FuncInfo.StaticAllocaMap.count(&I)) 2932 return; // getValue will auto-populate this. 2933 2934 SDLoc dl = getCurSDLoc(); 2935 Type *Ty = I.getAllocatedType(); 2936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2937 auto &DL = DAG.getDataLayout(); 2938 uint64_t TySize = DL.getTypeAllocSize(Ty); 2939 unsigned Align = 2940 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2941 2942 SDValue AllocSize = getValue(I.getArraySize()); 2943 2944 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2945 if (AllocSize.getValueType() != IntPtr) 2946 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2947 2948 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2949 AllocSize, 2950 DAG.getConstant(TySize, dl, IntPtr)); 2951 2952 // Handle alignment. If the requested alignment is less than or equal to 2953 // the stack alignment, ignore it. If the size is greater than or equal to 2954 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2955 unsigned StackAlign = 2956 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2957 if (Align <= StackAlign) 2958 Align = 0; 2959 2960 // Round the size of the allocation up to the stack alignment size 2961 // by add SA-1 to the size. 2962 AllocSize = DAG.getNode(ISD::ADD, dl, 2963 AllocSize.getValueType(), AllocSize, 2964 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2965 2966 // Mask out the low bits for alignment purposes. 2967 AllocSize = DAG.getNode(ISD::AND, dl, 2968 AllocSize.getValueType(), AllocSize, 2969 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2970 dl)); 2971 2972 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2973 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2974 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2975 setValue(&I, DSA); 2976 DAG.setRoot(DSA.getValue(1)); 2977 2978 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2979 } 2980 2981 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2982 if (I.isAtomic()) 2983 return visitAtomicLoad(I); 2984 2985 const Value *SV = I.getOperand(0); 2986 SDValue Ptr = getValue(SV); 2987 2988 Type *Ty = I.getType(); 2989 2990 bool isVolatile = I.isVolatile(); 2991 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2992 2993 // The IR notion of invariant_load only guarantees that all *non-faulting* 2994 // invariant loads result in the same value. The MI notion of invariant load 2995 // guarantees that the load can be legally moved to any location within its 2996 // containing function. The MI notion of invariant_load is stronger than the 2997 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2998 // with a guarantee that the location being loaded from is dereferenceable 2999 // throughout the function's lifetime. 3000 3001 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3002 isDereferenceablePointer(SV, DAG.getDataLayout()); 3003 unsigned Alignment = I.getAlignment(); 3004 3005 AAMDNodes AAInfo; 3006 I.getAAMetadata(AAInfo); 3007 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3008 3009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3010 SmallVector<EVT, 4> ValueVTs; 3011 SmallVector<uint64_t, 4> Offsets; 3012 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3013 unsigned NumValues = ValueVTs.size(); 3014 if (NumValues == 0) 3015 return; 3016 3017 SDValue Root; 3018 bool ConstantMemory = false; 3019 if (isVolatile || NumValues > MaxParallelChains) 3020 // Serialize volatile loads with other side effects. 3021 Root = getRoot(); 3022 else if (AA->pointsToConstantMemory(MemoryLocation( 3023 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3024 // Do not serialize (non-volatile) loads of constant memory with anything. 3025 Root = DAG.getEntryNode(); 3026 ConstantMemory = true; 3027 } else { 3028 // Do not serialize non-volatile loads against each other. 3029 Root = DAG.getRoot(); 3030 } 3031 3032 SDLoc dl = getCurSDLoc(); 3033 3034 if (isVolatile) 3035 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3036 3037 SmallVector<SDValue, 4> Values(NumValues); 3038 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3039 EVT PtrVT = Ptr.getValueType(); 3040 unsigned ChainI = 0; 3041 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3042 // Serializing loads here may result in excessive register pressure, and 3043 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3044 // could recover a bit by hoisting nodes upward in the chain by recognizing 3045 // they are side-effect free or do not alias. The optimizer should really 3046 // avoid this case by converting large object/array copies to llvm.memcpy 3047 // (MaxParallelChains should always remain as failsafe). 3048 if (ChainI == MaxParallelChains) { 3049 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3050 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3051 makeArrayRef(Chains.data(), ChainI)); 3052 Root = Chain; 3053 ChainI = 0; 3054 } 3055 SDValue A = DAG.getNode(ISD::ADD, dl, 3056 PtrVT, Ptr, 3057 DAG.getConstant(Offsets[i], dl, PtrVT)); 3058 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3059 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3060 isNonTemporal, isInvariant, Alignment, AAInfo, 3061 Ranges); 3062 3063 Values[i] = L; 3064 Chains[ChainI] = L.getValue(1); 3065 } 3066 3067 if (!ConstantMemory) { 3068 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3069 makeArrayRef(Chains.data(), ChainI)); 3070 if (isVolatile) 3071 DAG.setRoot(Chain); 3072 else 3073 PendingLoads.push_back(Chain); 3074 } 3075 3076 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3077 DAG.getVTList(ValueVTs), Values)); 3078 } 3079 3080 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3081 if (I.isAtomic()) 3082 return visitAtomicStore(I); 3083 3084 const Value *SrcV = I.getOperand(0); 3085 const Value *PtrV = I.getOperand(1); 3086 3087 SmallVector<EVT, 4> ValueVTs; 3088 SmallVector<uint64_t, 4> Offsets; 3089 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3090 SrcV->getType(), ValueVTs, &Offsets); 3091 unsigned NumValues = ValueVTs.size(); 3092 if (NumValues == 0) 3093 return; 3094 3095 // Get the lowered operands. Note that we do this after 3096 // checking if NumResults is zero, because with zero results 3097 // the operands won't have values in the map. 3098 SDValue Src = getValue(SrcV); 3099 SDValue Ptr = getValue(PtrV); 3100 3101 SDValue Root = getRoot(); 3102 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3103 EVT PtrVT = Ptr.getValueType(); 3104 bool isVolatile = I.isVolatile(); 3105 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3106 unsigned Alignment = I.getAlignment(); 3107 SDLoc dl = getCurSDLoc(); 3108 3109 AAMDNodes AAInfo; 3110 I.getAAMetadata(AAInfo); 3111 3112 unsigned ChainI = 0; 3113 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3114 // See visitLoad comments. 3115 if (ChainI == MaxParallelChains) { 3116 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3117 makeArrayRef(Chains.data(), ChainI)); 3118 Root = Chain; 3119 ChainI = 0; 3120 } 3121 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3122 DAG.getConstant(Offsets[i], dl, PtrVT)); 3123 SDValue St = DAG.getStore(Root, dl, 3124 SDValue(Src.getNode(), Src.getResNo() + i), 3125 Add, MachinePointerInfo(PtrV, Offsets[i]), 3126 isVolatile, isNonTemporal, Alignment, AAInfo); 3127 Chains[ChainI] = St; 3128 } 3129 3130 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3131 makeArrayRef(Chains.data(), ChainI)); 3132 DAG.setRoot(StoreNode); 3133 } 3134 3135 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3136 SDLoc sdl = getCurSDLoc(); 3137 3138 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3139 Value *PtrOperand = I.getArgOperand(1); 3140 SDValue Ptr = getValue(PtrOperand); 3141 SDValue Src0 = getValue(I.getArgOperand(0)); 3142 SDValue Mask = getValue(I.getArgOperand(3)); 3143 EVT VT = Src0.getValueType(); 3144 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3145 if (!Alignment) 3146 Alignment = DAG.getEVTAlignment(VT); 3147 3148 AAMDNodes AAInfo; 3149 I.getAAMetadata(AAInfo); 3150 3151 MachineMemOperand *MMO = 3152 DAG.getMachineFunction(). 3153 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3154 MachineMemOperand::MOStore, VT.getStoreSize(), 3155 Alignment, AAInfo); 3156 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3157 MMO, false); 3158 DAG.setRoot(StoreNode); 3159 setValue(&I, StoreNode); 3160 } 3161 3162 // Get a uniform base for the Gather/Scatter intrinsic. 3163 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3164 // We try to represent it as a base pointer + vector of indices. 3165 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3166 // The first operand of the GEP may be a single pointer or a vector of pointers 3167 // Example: 3168 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3169 // or 3170 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3171 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3172 // 3173 // When the first GEP operand is a single pointer - it is the uniform base we 3174 // are looking for. If first operand of the GEP is a splat vector - we 3175 // extract the spalt value and use it as a uniform base. 3176 // In all other cases the function returns 'false'. 3177 // 3178 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3179 SelectionDAGBuilder* SDB) { 3180 3181 SelectionDAG& DAG = SDB->DAG; 3182 LLVMContext &Context = *DAG.getContext(); 3183 3184 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3185 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3186 if (!GEP || GEP->getNumOperands() > 2) 3187 return false; 3188 3189 Value *GEPPtr = GEP->getPointerOperand(); 3190 if (!GEPPtr->getType()->isVectorTy()) 3191 Ptr = GEPPtr; 3192 else if (!(Ptr = getSplatValue(GEPPtr))) 3193 return false; 3194 3195 Value *IndexVal = GEP->getOperand(1); 3196 3197 // The operands of the GEP may be defined in another basic block. 3198 // In this case we'll not find nodes for the operands. 3199 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3200 return false; 3201 3202 Base = SDB->getValue(Ptr); 3203 Index = SDB->getValue(IndexVal); 3204 3205 // Suppress sign extension. 3206 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3207 if (SDB->findValue(Sext->getOperand(0))) { 3208 IndexVal = Sext->getOperand(0); 3209 Index = SDB->getValue(IndexVal); 3210 } 3211 } 3212 if (!Index.getValueType().isVector()) { 3213 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3214 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3215 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3216 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3217 } 3218 return true; 3219 } 3220 3221 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3222 SDLoc sdl = getCurSDLoc(); 3223 3224 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3225 Value *Ptr = I.getArgOperand(1); 3226 SDValue Src0 = getValue(I.getArgOperand(0)); 3227 SDValue Mask = getValue(I.getArgOperand(3)); 3228 EVT VT = Src0.getValueType(); 3229 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3230 if (!Alignment) 3231 Alignment = DAG.getEVTAlignment(VT); 3232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3233 3234 AAMDNodes AAInfo; 3235 I.getAAMetadata(AAInfo); 3236 3237 SDValue Base; 3238 SDValue Index; 3239 Value *BasePtr = Ptr; 3240 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3241 3242 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3243 MachineMemOperand *MMO = DAG.getMachineFunction(). 3244 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3245 MachineMemOperand::MOStore, VT.getStoreSize(), 3246 Alignment, AAInfo); 3247 if (!UniformBase) { 3248 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3249 Index = getValue(Ptr); 3250 } 3251 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3252 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3253 Ops, MMO); 3254 DAG.setRoot(Scatter); 3255 setValue(&I, Scatter); 3256 } 3257 3258 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3259 SDLoc sdl = getCurSDLoc(); 3260 3261 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3262 Value *PtrOperand = I.getArgOperand(0); 3263 SDValue Ptr = getValue(PtrOperand); 3264 SDValue Src0 = getValue(I.getArgOperand(3)); 3265 SDValue Mask = getValue(I.getArgOperand(2)); 3266 3267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3268 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3269 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3270 if (!Alignment) 3271 Alignment = DAG.getEVTAlignment(VT); 3272 3273 AAMDNodes AAInfo; 3274 I.getAAMetadata(AAInfo); 3275 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3276 3277 SDValue InChain = DAG.getRoot(); 3278 if (AA->pointsToConstantMemory(MemoryLocation( 3279 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3280 AAInfo))) { 3281 // Do not serialize (non-volatile) loads of constant memory with anything. 3282 InChain = DAG.getEntryNode(); 3283 } 3284 3285 MachineMemOperand *MMO = 3286 DAG.getMachineFunction(). 3287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3288 MachineMemOperand::MOLoad, VT.getStoreSize(), 3289 Alignment, AAInfo, Ranges); 3290 3291 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3292 ISD::NON_EXTLOAD); 3293 SDValue OutChain = Load.getValue(1); 3294 DAG.setRoot(OutChain); 3295 setValue(&I, Load); 3296 } 3297 3298 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3299 SDLoc sdl = getCurSDLoc(); 3300 3301 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3302 Value *Ptr = I.getArgOperand(0); 3303 SDValue Src0 = getValue(I.getArgOperand(3)); 3304 SDValue Mask = getValue(I.getArgOperand(2)); 3305 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3308 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3309 if (!Alignment) 3310 Alignment = DAG.getEVTAlignment(VT); 3311 3312 AAMDNodes AAInfo; 3313 I.getAAMetadata(AAInfo); 3314 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3315 3316 SDValue Root = DAG.getRoot(); 3317 SDValue Base; 3318 SDValue Index; 3319 Value *BasePtr = Ptr; 3320 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3321 bool ConstantMemory = false; 3322 if (UniformBase && 3323 AA->pointsToConstantMemory(MemoryLocation( 3324 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3325 AAInfo))) { 3326 // Do not serialize (non-volatile) loads of constant memory with anything. 3327 Root = DAG.getEntryNode(); 3328 ConstantMemory = true; 3329 } 3330 3331 MachineMemOperand *MMO = 3332 DAG.getMachineFunction(). 3333 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3334 MachineMemOperand::MOLoad, VT.getStoreSize(), 3335 Alignment, AAInfo, Ranges); 3336 3337 if (!UniformBase) { 3338 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3339 Index = getValue(Ptr); 3340 } 3341 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3342 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3343 Ops, MMO); 3344 3345 SDValue OutChain = Gather.getValue(1); 3346 if (!ConstantMemory) 3347 PendingLoads.push_back(OutChain); 3348 setValue(&I, Gather); 3349 } 3350 3351 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3352 SDLoc dl = getCurSDLoc(); 3353 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3354 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3355 SynchronizationScope Scope = I.getSynchScope(); 3356 3357 SDValue InChain = getRoot(); 3358 3359 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3360 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3361 SDValue L = DAG.getAtomicCmpSwap( 3362 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3363 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3364 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3365 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3366 3367 SDValue OutChain = L.getValue(2); 3368 3369 setValue(&I, L); 3370 DAG.setRoot(OutChain); 3371 } 3372 3373 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3374 SDLoc dl = getCurSDLoc(); 3375 ISD::NodeType NT; 3376 switch (I.getOperation()) { 3377 default: llvm_unreachable("Unknown atomicrmw operation"); 3378 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3379 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3380 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3381 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3382 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3383 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3384 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3385 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3386 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3387 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3388 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3389 } 3390 AtomicOrdering Order = I.getOrdering(); 3391 SynchronizationScope Scope = I.getSynchScope(); 3392 3393 SDValue InChain = getRoot(); 3394 3395 SDValue L = 3396 DAG.getAtomic(NT, dl, 3397 getValue(I.getValOperand()).getSimpleValueType(), 3398 InChain, 3399 getValue(I.getPointerOperand()), 3400 getValue(I.getValOperand()), 3401 I.getPointerOperand(), 3402 /* Alignment=*/ 0, Order, Scope); 3403 3404 SDValue OutChain = L.getValue(1); 3405 3406 setValue(&I, L); 3407 DAG.setRoot(OutChain); 3408 } 3409 3410 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3411 SDLoc dl = getCurSDLoc(); 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 SDValue Ops[3]; 3414 Ops[0] = getRoot(); 3415 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3416 TLI.getPointerTy(DAG.getDataLayout())); 3417 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3418 TLI.getPointerTy(DAG.getDataLayout())); 3419 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3420 } 3421 3422 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3423 SDLoc dl = getCurSDLoc(); 3424 AtomicOrdering Order = I.getOrdering(); 3425 SynchronizationScope Scope = I.getSynchScope(); 3426 3427 SDValue InChain = getRoot(); 3428 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3431 3432 if (I.getAlignment() < VT.getSizeInBits() / 8) 3433 report_fatal_error("Cannot generate unaligned atomic load"); 3434 3435 MachineMemOperand *MMO = 3436 DAG.getMachineFunction(). 3437 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3438 MachineMemOperand::MOVolatile | 3439 MachineMemOperand::MOLoad, 3440 VT.getStoreSize(), 3441 I.getAlignment() ? I.getAlignment() : 3442 DAG.getEVTAlignment(VT)); 3443 3444 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3445 SDValue L = 3446 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3447 getValue(I.getPointerOperand()), MMO, 3448 Order, Scope); 3449 3450 SDValue OutChain = L.getValue(1); 3451 3452 setValue(&I, L); 3453 DAG.setRoot(OutChain); 3454 } 3455 3456 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3457 SDLoc dl = getCurSDLoc(); 3458 3459 AtomicOrdering Order = I.getOrdering(); 3460 SynchronizationScope Scope = I.getSynchScope(); 3461 3462 SDValue InChain = getRoot(); 3463 3464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3465 EVT VT = 3466 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3467 3468 if (I.getAlignment() < VT.getSizeInBits() / 8) 3469 report_fatal_error("Cannot generate unaligned atomic store"); 3470 3471 SDValue OutChain = 3472 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3473 InChain, 3474 getValue(I.getPointerOperand()), 3475 getValue(I.getValueOperand()), 3476 I.getPointerOperand(), I.getAlignment(), 3477 Order, Scope); 3478 3479 DAG.setRoot(OutChain); 3480 } 3481 3482 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3483 /// node. 3484 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3485 unsigned Intrinsic) { 3486 bool HasChain = !I.doesNotAccessMemory(); 3487 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3488 3489 // Build the operand list. 3490 SmallVector<SDValue, 8> Ops; 3491 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3492 if (OnlyLoad) { 3493 // We don't need to serialize loads against other loads. 3494 Ops.push_back(DAG.getRoot()); 3495 } else { 3496 Ops.push_back(getRoot()); 3497 } 3498 } 3499 3500 // Info is set by getTgtMemInstrinsic 3501 TargetLowering::IntrinsicInfo Info; 3502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3503 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3504 3505 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3506 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3507 Info.opc == ISD::INTRINSIC_W_CHAIN) 3508 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3509 TLI.getPointerTy(DAG.getDataLayout()))); 3510 3511 // Add all operands of the call to the operand list. 3512 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3513 SDValue Op = getValue(I.getArgOperand(i)); 3514 Ops.push_back(Op); 3515 } 3516 3517 SmallVector<EVT, 4> ValueVTs; 3518 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3519 3520 if (HasChain) 3521 ValueVTs.push_back(MVT::Other); 3522 3523 SDVTList VTs = DAG.getVTList(ValueVTs); 3524 3525 // Create the node. 3526 SDValue Result; 3527 if (IsTgtIntrinsic) { 3528 // This is target intrinsic that touches memory 3529 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3530 VTs, Ops, Info.memVT, 3531 MachinePointerInfo(Info.ptrVal, Info.offset), 3532 Info.align, Info.vol, 3533 Info.readMem, Info.writeMem, Info.size); 3534 } else if (!HasChain) { 3535 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3536 } else if (!I.getType()->isVoidTy()) { 3537 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3538 } else { 3539 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3540 } 3541 3542 if (HasChain) { 3543 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3544 if (OnlyLoad) 3545 PendingLoads.push_back(Chain); 3546 else 3547 DAG.setRoot(Chain); 3548 } 3549 3550 if (!I.getType()->isVoidTy()) { 3551 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3552 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3553 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3554 } 3555 3556 setValue(&I, Result); 3557 } 3558 } 3559 3560 /// GetSignificand - Get the significand and build it into a floating-point 3561 /// number with exponent of 1: 3562 /// 3563 /// Op = (Op & 0x007fffff) | 0x3f800000; 3564 /// 3565 /// where Op is the hexadecimal representation of floating point value. 3566 static SDValue 3567 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3568 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3569 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3570 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3571 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3572 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3573 } 3574 3575 /// GetExponent - Get the exponent: 3576 /// 3577 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3578 /// 3579 /// where Op is the hexadecimal representation of floating point value. 3580 static SDValue 3581 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3582 SDLoc dl) { 3583 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3584 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3585 SDValue t1 = DAG.getNode( 3586 ISD::SRL, dl, MVT::i32, t0, 3587 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3588 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3589 DAG.getConstant(127, dl, MVT::i32)); 3590 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3591 } 3592 3593 /// getF32Constant - Get 32-bit floating point constant. 3594 static SDValue 3595 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3596 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3597 MVT::f32); 3598 } 3599 3600 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3601 SelectionDAG &DAG) { 3602 // IntegerPartOfX = ((int32_t)(t0); 3603 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3604 3605 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3606 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3607 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3608 3609 // IntegerPartOfX <<= 23; 3610 IntegerPartOfX = DAG.getNode( 3611 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3612 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3613 DAG.getDataLayout()))); 3614 3615 SDValue TwoToFractionalPartOfX; 3616 if (LimitFloatPrecision <= 6) { 3617 // For floating-point precision of 6: 3618 // 3619 // TwoToFractionalPartOfX = 3620 // 0.997535578f + 3621 // (0.735607626f + 0.252464424f * x) * x; 3622 // 3623 // error 0.0144103317, which is 6 bits 3624 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3625 getF32Constant(DAG, 0x3e814304, dl)); 3626 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3627 getF32Constant(DAG, 0x3f3c50c8, dl)); 3628 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3629 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3630 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3631 } else if (LimitFloatPrecision <= 12) { 3632 // For floating-point precision of 12: 3633 // 3634 // TwoToFractionalPartOfX = 3635 // 0.999892986f + 3636 // (0.696457318f + 3637 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3638 // 3639 // error 0.000107046256, which is 13 to 14 bits 3640 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3641 getF32Constant(DAG, 0x3da235e3, dl)); 3642 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3643 getF32Constant(DAG, 0x3e65b8f3, dl)); 3644 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3645 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3646 getF32Constant(DAG, 0x3f324b07, dl)); 3647 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3648 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3649 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3650 } else { // LimitFloatPrecision <= 18 3651 // For floating-point precision of 18: 3652 // 3653 // TwoToFractionalPartOfX = 3654 // 0.999999982f + 3655 // (0.693148872f + 3656 // (0.240227044f + 3657 // (0.554906021e-1f + 3658 // (0.961591928e-2f + 3659 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3660 // error 2.47208000*10^(-7), which is better than 18 bits 3661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3662 getF32Constant(DAG, 0x3924b03e, dl)); 3663 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3664 getF32Constant(DAG, 0x3ab24b87, dl)); 3665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3666 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3667 getF32Constant(DAG, 0x3c1d8c17, dl)); 3668 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3669 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3670 getF32Constant(DAG, 0x3d634a1d, dl)); 3671 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3672 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3673 getF32Constant(DAG, 0x3e75fe14, dl)); 3674 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3675 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3676 getF32Constant(DAG, 0x3f317234, dl)); 3677 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3678 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3679 getF32Constant(DAG, 0x3f800000, dl)); 3680 } 3681 3682 // Add the exponent into the result in integer domain. 3683 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3684 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3685 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3686 } 3687 3688 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3689 /// limited-precision mode. 3690 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3691 const TargetLowering &TLI) { 3692 if (Op.getValueType() == MVT::f32 && 3693 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3694 3695 // Put the exponent in the right bit position for later addition to the 3696 // final result: 3697 // 3698 // #define LOG2OFe 1.4426950f 3699 // t0 = Op * LOG2OFe 3700 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3701 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3702 return getLimitedPrecisionExp2(t0, dl, DAG); 3703 } 3704 3705 // No special expansion. 3706 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3707 } 3708 3709 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3710 /// limited-precision mode. 3711 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3712 const TargetLowering &TLI) { 3713 if (Op.getValueType() == MVT::f32 && 3714 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3715 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3716 3717 // Scale the exponent by log(2) [0.69314718f]. 3718 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3719 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3720 getF32Constant(DAG, 0x3f317218, dl)); 3721 3722 // Get the significand and build it into a floating-point number with 3723 // exponent of 1. 3724 SDValue X = GetSignificand(DAG, Op1, dl); 3725 3726 SDValue LogOfMantissa; 3727 if (LimitFloatPrecision <= 6) { 3728 // For floating-point precision of 6: 3729 // 3730 // LogofMantissa = 3731 // -1.1609546f + 3732 // (1.4034025f - 0.23903021f * x) * x; 3733 // 3734 // error 0.0034276066, which is better than 8 bits 3735 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3736 getF32Constant(DAG, 0xbe74c456, dl)); 3737 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3738 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3739 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3740 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3741 getF32Constant(DAG, 0x3f949a29, dl)); 3742 } else if (LimitFloatPrecision <= 12) { 3743 // For floating-point precision of 12: 3744 // 3745 // LogOfMantissa = 3746 // -1.7417939f + 3747 // (2.8212026f + 3748 // (-1.4699568f + 3749 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3750 // 3751 // error 0.000061011436, which is 14 bits 3752 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0xbd67b6d6, dl)); 3754 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3755 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3756 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3757 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3758 getF32Constant(DAG, 0x3fbc278b, dl)); 3759 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3760 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3761 getF32Constant(DAG, 0x40348e95, dl)); 3762 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3763 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3764 getF32Constant(DAG, 0x3fdef31a, dl)); 3765 } else { // LimitFloatPrecision <= 18 3766 // For floating-point precision of 18: 3767 // 3768 // LogOfMantissa = 3769 // -2.1072184f + 3770 // (4.2372794f + 3771 // (-3.7029485f + 3772 // (2.2781945f + 3773 // (-0.87823314f + 3774 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3775 // 3776 // error 0.0000023660568, which is better than 18 bits 3777 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3778 getF32Constant(DAG, 0xbc91e5ac, dl)); 3779 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3780 getF32Constant(DAG, 0x3e4350aa, dl)); 3781 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3782 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3783 getF32Constant(DAG, 0x3f60d3e3, dl)); 3784 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3785 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3786 getF32Constant(DAG, 0x4011cdf0, dl)); 3787 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3788 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3789 getF32Constant(DAG, 0x406cfd1c, dl)); 3790 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3791 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3792 getF32Constant(DAG, 0x408797cb, dl)); 3793 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3794 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3795 getF32Constant(DAG, 0x4006dcab, dl)); 3796 } 3797 3798 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3799 } 3800 3801 // No special expansion. 3802 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3803 } 3804 3805 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3806 /// limited-precision mode. 3807 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3808 const TargetLowering &TLI) { 3809 if (Op.getValueType() == MVT::f32 && 3810 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3811 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3812 3813 // Get the exponent. 3814 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3815 3816 // Get the significand and build it into a floating-point number with 3817 // exponent of 1. 3818 SDValue X = GetSignificand(DAG, Op1, dl); 3819 3820 // Different possible minimax approximations of significand in 3821 // floating-point for various degrees of accuracy over [1,2]. 3822 SDValue Log2ofMantissa; 3823 if (LimitFloatPrecision <= 6) { 3824 // For floating-point precision of 6: 3825 // 3826 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3827 // 3828 // error 0.0049451742, which is more than 7 bits 3829 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3830 getF32Constant(DAG, 0xbeb08fe0, dl)); 3831 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3832 getF32Constant(DAG, 0x40019463, dl)); 3833 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3834 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3835 getF32Constant(DAG, 0x3fd6633d, dl)); 3836 } else if (LimitFloatPrecision <= 12) { 3837 // For floating-point precision of 12: 3838 // 3839 // Log2ofMantissa = 3840 // -2.51285454f + 3841 // (4.07009056f + 3842 // (-2.12067489f + 3843 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3844 // 3845 // error 0.0000876136000, which is better than 13 bits 3846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3847 getF32Constant(DAG, 0xbda7262e, dl)); 3848 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3849 getF32Constant(DAG, 0x3f25280b, dl)); 3850 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3851 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3852 getF32Constant(DAG, 0x4007b923, dl)); 3853 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3854 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3855 getF32Constant(DAG, 0x40823e2f, dl)); 3856 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3857 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3858 getF32Constant(DAG, 0x4020d29c, dl)); 3859 } else { // LimitFloatPrecision <= 18 3860 // For floating-point precision of 18: 3861 // 3862 // Log2ofMantissa = 3863 // -3.0400495f + 3864 // (6.1129976f + 3865 // (-5.3420409f + 3866 // (3.2865683f + 3867 // (-1.2669343f + 3868 // (0.27515199f - 3869 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3870 // 3871 // error 0.0000018516, which is better than 18 bits 3872 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3873 getF32Constant(DAG, 0xbcd2769e, dl)); 3874 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3875 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3876 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3877 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3878 getF32Constant(DAG, 0x3fa22ae7, dl)); 3879 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3880 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3881 getF32Constant(DAG, 0x40525723, dl)); 3882 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3883 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3884 getF32Constant(DAG, 0x40aaf200, dl)); 3885 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3886 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3887 getF32Constant(DAG, 0x40c39dad, dl)); 3888 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3889 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3890 getF32Constant(DAG, 0x4042902c, dl)); 3891 } 3892 3893 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3894 } 3895 3896 // No special expansion. 3897 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3898 } 3899 3900 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3901 /// limited-precision mode. 3902 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3903 const TargetLowering &TLI) { 3904 if (Op.getValueType() == MVT::f32 && 3905 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3906 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3907 3908 // Scale the exponent by log10(2) [0.30102999f]. 3909 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3910 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3911 getF32Constant(DAG, 0x3e9a209a, dl)); 3912 3913 // Get the significand and build it into a floating-point number with 3914 // exponent of 1. 3915 SDValue X = GetSignificand(DAG, Op1, dl); 3916 3917 SDValue Log10ofMantissa; 3918 if (LimitFloatPrecision <= 6) { 3919 // For floating-point precision of 6: 3920 // 3921 // Log10ofMantissa = 3922 // -0.50419619f + 3923 // (0.60948995f - 0.10380950f * x) * x; 3924 // 3925 // error 0.0014886165, which is 6 bits 3926 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3927 getF32Constant(DAG, 0xbdd49a13, dl)); 3928 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3929 getF32Constant(DAG, 0x3f1c0789, dl)); 3930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3931 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3932 getF32Constant(DAG, 0x3f011300, dl)); 3933 } else if (LimitFloatPrecision <= 12) { 3934 // For floating-point precision of 12: 3935 // 3936 // Log10ofMantissa = 3937 // -0.64831180f + 3938 // (0.91751397f + 3939 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3940 // 3941 // error 0.00019228036, which is better than 12 bits 3942 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3943 getF32Constant(DAG, 0x3d431f31, dl)); 3944 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3945 getF32Constant(DAG, 0x3ea21fb2, dl)); 3946 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3947 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3948 getF32Constant(DAG, 0x3f6ae232, dl)); 3949 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3950 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3951 getF32Constant(DAG, 0x3f25f7c3, dl)); 3952 } else { // LimitFloatPrecision <= 18 3953 // For floating-point precision of 18: 3954 // 3955 // Log10ofMantissa = 3956 // -0.84299375f + 3957 // (1.5327582f + 3958 // (-1.0688956f + 3959 // (0.49102474f + 3960 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3961 // 3962 // error 0.0000037995730, which is better than 18 bits 3963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3964 getF32Constant(DAG, 0x3c5d51ce, dl)); 3965 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3966 getF32Constant(DAG, 0x3e00685a, dl)); 3967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3968 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3969 getF32Constant(DAG, 0x3efb6798, dl)); 3970 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3971 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3972 getF32Constant(DAG, 0x3f88d192, dl)); 3973 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3974 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3975 getF32Constant(DAG, 0x3fc4316c, dl)); 3976 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3977 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3978 getF32Constant(DAG, 0x3f57ce70, dl)); 3979 } 3980 3981 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3982 } 3983 3984 // No special expansion. 3985 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3986 } 3987 3988 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3989 /// limited-precision mode. 3990 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3991 const TargetLowering &TLI) { 3992 if (Op.getValueType() == MVT::f32 && 3993 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3994 return getLimitedPrecisionExp2(Op, dl, DAG); 3995 3996 // No special expansion. 3997 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3998 } 3999 4000 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4001 /// limited-precision mode with x == 10.0f. 4002 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4003 SelectionDAG &DAG, const TargetLowering &TLI) { 4004 bool IsExp10 = false; 4005 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4006 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4007 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4008 APFloat Ten(10.0f); 4009 IsExp10 = LHSC->isExactlyValue(Ten); 4010 } 4011 } 4012 4013 if (IsExp10) { 4014 // Put the exponent in the right bit position for later addition to the 4015 // final result: 4016 // 4017 // #define LOG2OF10 3.3219281f 4018 // t0 = Op * LOG2OF10; 4019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4020 getF32Constant(DAG, 0x40549a78, dl)); 4021 return getLimitedPrecisionExp2(t0, dl, DAG); 4022 } 4023 4024 // No special expansion. 4025 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4026 } 4027 4028 4029 /// ExpandPowI - Expand a llvm.powi intrinsic. 4030 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4031 SelectionDAG &DAG) { 4032 // If RHS is a constant, we can expand this out to a multiplication tree, 4033 // otherwise we end up lowering to a call to __powidf2 (for example). When 4034 // optimizing for size, we only want to do this if the expansion would produce 4035 // a small number of multiplies, otherwise we do the full expansion. 4036 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4037 // Get the exponent as a positive value. 4038 unsigned Val = RHSC->getSExtValue(); 4039 if ((int)Val < 0) Val = -Val; 4040 4041 // powi(x, 0) -> 1.0 4042 if (Val == 0) 4043 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4044 4045 const Function *F = DAG.getMachineFunction().getFunction(); 4046 if (!F->optForSize() || 4047 // If optimizing for size, don't insert too many multiplies. 4048 // This inserts up to 5 multiplies. 4049 countPopulation(Val) + Log2_32(Val) < 7) { 4050 // We use the simple binary decomposition method to generate the multiply 4051 // sequence. There are more optimal ways to do this (for example, 4052 // powi(x,15) generates one more multiply than it should), but this has 4053 // the benefit of being both really simple and much better than a libcall. 4054 SDValue Res; // Logically starts equal to 1.0 4055 SDValue CurSquare = LHS; 4056 while (Val) { 4057 if (Val & 1) { 4058 if (Res.getNode()) 4059 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4060 else 4061 Res = CurSquare; // 1.0*CurSquare. 4062 } 4063 4064 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4065 CurSquare, CurSquare); 4066 Val >>= 1; 4067 } 4068 4069 // If the original was negative, invert the result, producing 1/(x*x*x). 4070 if (RHSC->getSExtValue() < 0) 4071 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4072 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4073 return Res; 4074 } 4075 } 4076 4077 // Otherwise, expand to a libcall. 4078 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4079 } 4080 4081 // getTruncatedArgReg - Find underlying register used for an truncated 4082 // argument. 4083 static unsigned getTruncatedArgReg(const SDValue &N) { 4084 if (N.getOpcode() != ISD::TRUNCATE) 4085 return 0; 4086 4087 const SDValue &Ext = N.getOperand(0); 4088 if (Ext.getOpcode() == ISD::AssertZext || 4089 Ext.getOpcode() == ISD::AssertSext) { 4090 const SDValue &CFR = Ext.getOperand(0); 4091 if (CFR.getOpcode() == ISD::CopyFromReg) 4092 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4093 if (CFR.getOpcode() == ISD::TRUNCATE) 4094 return getTruncatedArgReg(CFR); 4095 } 4096 return 0; 4097 } 4098 4099 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4100 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4101 /// At the end of instruction selection, they will be inserted to the entry BB. 4102 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4103 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4104 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4105 const Argument *Arg = dyn_cast<Argument>(V); 4106 if (!Arg) 4107 return false; 4108 4109 MachineFunction &MF = DAG.getMachineFunction(); 4110 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4111 4112 // Ignore inlined function arguments here. 4113 // 4114 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4115 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4116 return false; 4117 4118 Optional<MachineOperand> Op; 4119 // Some arguments' frame index is recorded during argument lowering. 4120 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4121 Op = MachineOperand::CreateFI(FI); 4122 4123 if (!Op && N.getNode()) { 4124 unsigned Reg; 4125 if (N.getOpcode() == ISD::CopyFromReg) 4126 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4127 else 4128 Reg = getTruncatedArgReg(N); 4129 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4130 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4131 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4132 if (PR) 4133 Reg = PR; 4134 } 4135 if (Reg) 4136 Op = MachineOperand::CreateReg(Reg, false); 4137 } 4138 4139 if (!Op) { 4140 // Check if ValueMap has reg number. 4141 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4142 if (VMI != FuncInfo.ValueMap.end()) 4143 Op = MachineOperand::CreateReg(VMI->second, false); 4144 } 4145 4146 if (!Op && N.getNode()) 4147 // Check if frame index is available. 4148 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4149 if (FrameIndexSDNode *FINode = 4150 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4151 Op = MachineOperand::CreateFI(FINode->getIndex()); 4152 4153 if (!Op) 4154 return false; 4155 4156 assert(Variable->isValidLocationForIntrinsic(DL) && 4157 "Expected inlined-at fields to agree"); 4158 if (Op->isReg()) 4159 FuncInfo.ArgDbgValues.push_back( 4160 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4161 Op->getReg(), Offset, Variable, Expr)); 4162 else 4163 FuncInfo.ArgDbgValues.push_back( 4164 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4165 .addOperand(*Op) 4166 .addImm(Offset) 4167 .addMetadata(Variable) 4168 .addMetadata(Expr)); 4169 4170 return true; 4171 } 4172 4173 // VisualStudio defines setjmp as _setjmp 4174 #if defined(_MSC_VER) && defined(setjmp) && \ 4175 !defined(setjmp_undefined_for_msvc) 4176 # pragma push_macro("setjmp") 4177 # undef setjmp 4178 # define setjmp_undefined_for_msvc 4179 #endif 4180 4181 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4182 /// we want to emit this as a call to a named external function, return the name 4183 /// otherwise lower it and return null. 4184 const char * 4185 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4187 SDLoc sdl = getCurSDLoc(); 4188 DebugLoc dl = getCurDebugLoc(); 4189 SDValue Res; 4190 4191 switch (Intrinsic) { 4192 default: 4193 // By default, turn this into a target intrinsic node. 4194 visitTargetIntrinsic(I, Intrinsic); 4195 return nullptr; 4196 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4197 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4198 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4199 case Intrinsic::returnaddress: 4200 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4201 TLI.getPointerTy(DAG.getDataLayout()), 4202 getValue(I.getArgOperand(0)))); 4203 return nullptr; 4204 case Intrinsic::frameaddress: 4205 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4206 TLI.getPointerTy(DAG.getDataLayout()), 4207 getValue(I.getArgOperand(0)))); 4208 return nullptr; 4209 case Intrinsic::read_register: { 4210 Value *Reg = I.getArgOperand(0); 4211 SDValue Chain = getRoot(); 4212 SDValue RegName = 4213 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4214 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4215 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4216 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4217 setValue(&I, Res); 4218 DAG.setRoot(Res.getValue(1)); 4219 return nullptr; 4220 } 4221 case Intrinsic::write_register: { 4222 Value *Reg = I.getArgOperand(0); 4223 Value *RegValue = I.getArgOperand(1); 4224 SDValue Chain = getRoot(); 4225 SDValue RegName = 4226 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4227 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4228 RegName, getValue(RegValue))); 4229 return nullptr; 4230 } 4231 case Intrinsic::setjmp: 4232 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4233 case Intrinsic::longjmp: 4234 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4235 case Intrinsic::memcpy: { 4236 // FIXME: this definition of "user defined address space" is x86-specific 4237 // Assert for address < 256 since we support only user defined address 4238 // spaces. 4239 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4240 < 256 && 4241 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4242 < 256 && 4243 "Unknown address space"); 4244 SDValue Op1 = getValue(I.getArgOperand(0)); 4245 SDValue Op2 = getValue(I.getArgOperand(1)); 4246 SDValue Op3 = getValue(I.getArgOperand(2)); 4247 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4248 if (!Align) 4249 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4250 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4251 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4252 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4253 false, isTC, 4254 MachinePointerInfo(I.getArgOperand(0)), 4255 MachinePointerInfo(I.getArgOperand(1))); 4256 updateDAGForMaybeTailCall(MC); 4257 return nullptr; 4258 } 4259 case Intrinsic::memset: { 4260 // FIXME: this definition of "user defined address space" is x86-specific 4261 // Assert for address < 256 since we support only user defined address 4262 // spaces. 4263 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4264 < 256 && 4265 "Unknown address space"); 4266 SDValue Op1 = getValue(I.getArgOperand(0)); 4267 SDValue Op2 = getValue(I.getArgOperand(1)); 4268 SDValue Op3 = getValue(I.getArgOperand(2)); 4269 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4270 if (!Align) 4271 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4272 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4273 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4274 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4275 isTC, MachinePointerInfo(I.getArgOperand(0))); 4276 updateDAGForMaybeTailCall(MS); 4277 return nullptr; 4278 } 4279 case Intrinsic::memmove: { 4280 // FIXME: this definition of "user defined address space" is x86-specific 4281 // Assert for address < 256 since we support only user defined address 4282 // spaces. 4283 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4284 < 256 && 4285 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4286 < 256 && 4287 "Unknown address space"); 4288 SDValue Op1 = getValue(I.getArgOperand(0)); 4289 SDValue Op2 = getValue(I.getArgOperand(1)); 4290 SDValue Op3 = getValue(I.getArgOperand(2)); 4291 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4292 if (!Align) 4293 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4294 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4295 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4296 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4297 isTC, MachinePointerInfo(I.getArgOperand(0)), 4298 MachinePointerInfo(I.getArgOperand(1))); 4299 updateDAGForMaybeTailCall(MM); 4300 return nullptr; 4301 } 4302 case Intrinsic::dbg_declare: { 4303 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4304 DILocalVariable *Variable = DI.getVariable(); 4305 DIExpression *Expression = DI.getExpression(); 4306 const Value *Address = DI.getAddress(); 4307 assert(Variable && "Missing variable"); 4308 if (!Address) { 4309 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4310 return nullptr; 4311 } 4312 4313 // Check if address has undef value. 4314 if (isa<UndefValue>(Address) || 4315 (Address->use_empty() && !isa<Argument>(Address))) { 4316 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4317 return nullptr; 4318 } 4319 4320 SDValue &N = NodeMap[Address]; 4321 if (!N.getNode() && isa<Argument>(Address)) 4322 // Check unused arguments map. 4323 N = UnusedArgNodeMap[Address]; 4324 SDDbgValue *SDV; 4325 if (N.getNode()) { 4326 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4327 Address = BCI->getOperand(0); 4328 // Parameters are handled specially. 4329 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4330 4331 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4332 4333 if (isParameter && !AI) { 4334 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4335 if (FINode) 4336 // Byval parameter. We have a frame index at this point. 4337 SDV = DAG.getFrameIndexDbgValue( 4338 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4339 else { 4340 // Address is an argument, so try to emit its dbg value using 4341 // virtual register info from the FuncInfo.ValueMap. 4342 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4343 N); 4344 return nullptr; 4345 } 4346 } else if (AI) 4347 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4348 true, 0, dl, SDNodeOrder); 4349 else { 4350 // Can't do anything with other non-AI cases yet. 4351 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4352 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4353 DEBUG(Address->dump()); 4354 return nullptr; 4355 } 4356 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4357 } else { 4358 // If Address is an argument then try to emit its dbg value using 4359 // virtual register info from the FuncInfo.ValueMap. 4360 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4361 N)) { 4362 // If variable is pinned by a alloca in dominating bb then 4363 // use StaticAllocaMap. 4364 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4365 if (AI->getParent() != DI.getParent()) { 4366 DenseMap<const AllocaInst*, int>::iterator SI = 4367 FuncInfo.StaticAllocaMap.find(AI); 4368 if (SI != FuncInfo.StaticAllocaMap.end()) { 4369 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4370 0, dl, SDNodeOrder); 4371 DAG.AddDbgValue(SDV, nullptr, false); 4372 return nullptr; 4373 } 4374 } 4375 } 4376 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4377 } 4378 } 4379 return nullptr; 4380 } 4381 case Intrinsic::dbg_value: { 4382 const DbgValueInst &DI = cast<DbgValueInst>(I); 4383 assert(DI.getVariable() && "Missing variable"); 4384 4385 DILocalVariable *Variable = DI.getVariable(); 4386 DIExpression *Expression = DI.getExpression(); 4387 uint64_t Offset = DI.getOffset(); 4388 const Value *V = DI.getValue(); 4389 if (!V) 4390 return nullptr; 4391 4392 SDDbgValue *SDV; 4393 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4394 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4395 SDNodeOrder); 4396 DAG.AddDbgValue(SDV, nullptr, false); 4397 } else { 4398 // Do not use getValue() in here; we don't want to generate code at 4399 // this point if it hasn't been done yet. 4400 SDValue N = NodeMap[V]; 4401 if (!N.getNode() && isa<Argument>(V)) 4402 // Check unused arguments map. 4403 N = UnusedArgNodeMap[V]; 4404 if (N.getNode()) { 4405 // A dbg.value for an alloca is always indirect. 4406 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4407 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4408 IsIndirect, N)) { 4409 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4410 IsIndirect, Offset, dl, SDNodeOrder); 4411 DAG.AddDbgValue(SDV, N.getNode(), false); 4412 } 4413 } else if (!V->use_empty() ) { 4414 // Do not call getValue(V) yet, as we don't want to generate code. 4415 // Remember it for later. 4416 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4417 DanglingDebugInfoMap[V] = DDI; 4418 } else { 4419 // We may expand this to cover more cases. One case where we have no 4420 // data available is an unreferenced parameter. 4421 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4422 } 4423 } 4424 4425 // Build a debug info table entry. 4426 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4427 V = BCI->getOperand(0); 4428 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4429 // Don't handle byval struct arguments or VLAs, for example. 4430 if (!AI) { 4431 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4432 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4433 return nullptr; 4434 } 4435 DenseMap<const AllocaInst*, int>::iterator SI = 4436 FuncInfo.StaticAllocaMap.find(AI); 4437 if (SI == FuncInfo.StaticAllocaMap.end()) 4438 return nullptr; // VLAs. 4439 return nullptr; 4440 } 4441 4442 case Intrinsic::eh_typeid_for: { 4443 // Find the type id for the given typeinfo. 4444 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4445 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4446 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4447 setValue(&I, Res); 4448 return nullptr; 4449 } 4450 4451 case Intrinsic::eh_return_i32: 4452 case Intrinsic::eh_return_i64: 4453 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4454 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4455 MVT::Other, 4456 getControlRoot(), 4457 getValue(I.getArgOperand(0)), 4458 getValue(I.getArgOperand(1)))); 4459 return nullptr; 4460 case Intrinsic::eh_unwind_init: 4461 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4462 return nullptr; 4463 case Intrinsic::eh_dwarf_cfa: { 4464 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4465 TLI.getPointerTy(DAG.getDataLayout())); 4466 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4467 CfaArg.getValueType(), 4468 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4469 CfaArg.getValueType()), 4470 CfaArg); 4471 SDValue FA = DAG.getNode( 4472 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4473 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4474 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4475 FA, Offset)); 4476 return nullptr; 4477 } 4478 case Intrinsic::eh_sjlj_callsite: { 4479 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4480 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4481 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4482 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4483 4484 MMI.setCurrentCallSite(CI->getZExtValue()); 4485 return nullptr; 4486 } 4487 case Intrinsic::eh_sjlj_functioncontext: { 4488 // Get and store the index of the function context. 4489 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4490 AllocaInst *FnCtx = 4491 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4492 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4493 MFI->setFunctionContextIndex(FI); 4494 return nullptr; 4495 } 4496 case Intrinsic::eh_sjlj_setjmp: { 4497 SDValue Ops[2]; 4498 Ops[0] = getRoot(); 4499 Ops[1] = getValue(I.getArgOperand(0)); 4500 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4501 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4502 setValue(&I, Op.getValue(0)); 4503 DAG.setRoot(Op.getValue(1)); 4504 return nullptr; 4505 } 4506 case Intrinsic::eh_sjlj_longjmp: { 4507 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4508 getRoot(), getValue(I.getArgOperand(0)))); 4509 return nullptr; 4510 } 4511 case Intrinsic::eh_sjlj_setup_dispatch: { 4512 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4513 getRoot())); 4514 return nullptr; 4515 } 4516 4517 case Intrinsic::masked_gather: 4518 visitMaskedGather(I); 4519 return nullptr; 4520 case Intrinsic::masked_load: 4521 visitMaskedLoad(I); 4522 return nullptr; 4523 case Intrinsic::masked_scatter: 4524 visitMaskedScatter(I); 4525 return nullptr; 4526 case Intrinsic::masked_store: 4527 visitMaskedStore(I); 4528 return nullptr; 4529 case Intrinsic::x86_mmx_pslli_w: 4530 case Intrinsic::x86_mmx_pslli_d: 4531 case Intrinsic::x86_mmx_pslli_q: 4532 case Intrinsic::x86_mmx_psrli_w: 4533 case Intrinsic::x86_mmx_psrli_d: 4534 case Intrinsic::x86_mmx_psrli_q: 4535 case Intrinsic::x86_mmx_psrai_w: 4536 case Intrinsic::x86_mmx_psrai_d: { 4537 SDValue ShAmt = getValue(I.getArgOperand(1)); 4538 if (isa<ConstantSDNode>(ShAmt)) { 4539 visitTargetIntrinsic(I, Intrinsic); 4540 return nullptr; 4541 } 4542 unsigned NewIntrinsic = 0; 4543 EVT ShAmtVT = MVT::v2i32; 4544 switch (Intrinsic) { 4545 case Intrinsic::x86_mmx_pslli_w: 4546 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4547 break; 4548 case Intrinsic::x86_mmx_pslli_d: 4549 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4550 break; 4551 case Intrinsic::x86_mmx_pslli_q: 4552 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4553 break; 4554 case Intrinsic::x86_mmx_psrli_w: 4555 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4556 break; 4557 case Intrinsic::x86_mmx_psrli_d: 4558 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4559 break; 4560 case Intrinsic::x86_mmx_psrli_q: 4561 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4562 break; 4563 case Intrinsic::x86_mmx_psrai_w: 4564 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4565 break; 4566 case Intrinsic::x86_mmx_psrai_d: 4567 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4568 break; 4569 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4570 } 4571 4572 // The vector shift intrinsics with scalars uses 32b shift amounts but 4573 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4574 // to be zero. 4575 // We must do this early because v2i32 is not a legal type. 4576 SDValue ShOps[2]; 4577 ShOps[0] = ShAmt; 4578 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4579 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4580 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4581 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4582 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4583 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4584 getValue(I.getArgOperand(0)), ShAmt); 4585 setValue(&I, Res); 4586 return nullptr; 4587 } 4588 case Intrinsic::convertff: 4589 case Intrinsic::convertfsi: 4590 case Intrinsic::convertfui: 4591 case Intrinsic::convertsif: 4592 case Intrinsic::convertuif: 4593 case Intrinsic::convertss: 4594 case Intrinsic::convertsu: 4595 case Intrinsic::convertus: 4596 case Intrinsic::convertuu: { 4597 ISD::CvtCode Code = ISD::CVT_INVALID; 4598 switch (Intrinsic) { 4599 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4600 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4601 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4602 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4603 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4604 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4605 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4606 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4607 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4608 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4609 } 4610 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4611 const Value *Op1 = I.getArgOperand(0); 4612 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4613 DAG.getValueType(DestVT), 4614 DAG.getValueType(getValue(Op1).getValueType()), 4615 getValue(I.getArgOperand(1)), 4616 getValue(I.getArgOperand(2)), 4617 Code); 4618 setValue(&I, Res); 4619 return nullptr; 4620 } 4621 case Intrinsic::powi: 4622 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4623 getValue(I.getArgOperand(1)), DAG)); 4624 return nullptr; 4625 case Intrinsic::log: 4626 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4627 return nullptr; 4628 case Intrinsic::log2: 4629 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4630 return nullptr; 4631 case Intrinsic::log10: 4632 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4633 return nullptr; 4634 case Intrinsic::exp: 4635 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4636 return nullptr; 4637 case Intrinsic::exp2: 4638 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4639 return nullptr; 4640 case Intrinsic::pow: 4641 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4642 getValue(I.getArgOperand(1)), DAG, TLI)); 4643 return nullptr; 4644 case Intrinsic::sqrt: 4645 case Intrinsic::fabs: 4646 case Intrinsic::sin: 4647 case Intrinsic::cos: 4648 case Intrinsic::floor: 4649 case Intrinsic::ceil: 4650 case Intrinsic::trunc: 4651 case Intrinsic::rint: 4652 case Intrinsic::nearbyint: 4653 case Intrinsic::round: { 4654 unsigned Opcode; 4655 switch (Intrinsic) { 4656 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4657 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4658 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4659 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4660 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4661 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4662 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4663 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4664 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4665 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4666 case Intrinsic::round: Opcode = ISD::FROUND; break; 4667 } 4668 4669 setValue(&I, DAG.getNode(Opcode, sdl, 4670 getValue(I.getArgOperand(0)).getValueType(), 4671 getValue(I.getArgOperand(0)))); 4672 return nullptr; 4673 } 4674 case Intrinsic::minnum: 4675 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4676 getValue(I.getArgOperand(0)).getValueType(), 4677 getValue(I.getArgOperand(0)), 4678 getValue(I.getArgOperand(1)))); 4679 return nullptr; 4680 case Intrinsic::maxnum: 4681 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4682 getValue(I.getArgOperand(0)).getValueType(), 4683 getValue(I.getArgOperand(0)), 4684 getValue(I.getArgOperand(1)))); 4685 return nullptr; 4686 case Intrinsic::copysign: 4687 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4688 getValue(I.getArgOperand(0)).getValueType(), 4689 getValue(I.getArgOperand(0)), 4690 getValue(I.getArgOperand(1)))); 4691 return nullptr; 4692 case Intrinsic::fma: 4693 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4694 getValue(I.getArgOperand(0)).getValueType(), 4695 getValue(I.getArgOperand(0)), 4696 getValue(I.getArgOperand(1)), 4697 getValue(I.getArgOperand(2)))); 4698 return nullptr; 4699 case Intrinsic::fmuladd: { 4700 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4701 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4702 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4703 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4704 getValue(I.getArgOperand(0)).getValueType(), 4705 getValue(I.getArgOperand(0)), 4706 getValue(I.getArgOperand(1)), 4707 getValue(I.getArgOperand(2)))); 4708 } else { 4709 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4710 getValue(I.getArgOperand(0)).getValueType(), 4711 getValue(I.getArgOperand(0)), 4712 getValue(I.getArgOperand(1))); 4713 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4714 getValue(I.getArgOperand(0)).getValueType(), 4715 Mul, 4716 getValue(I.getArgOperand(2))); 4717 setValue(&I, Add); 4718 } 4719 return nullptr; 4720 } 4721 case Intrinsic::convert_to_fp16: 4722 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4723 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4724 getValue(I.getArgOperand(0)), 4725 DAG.getTargetConstant(0, sdl, 4726 MVT::i32)))); 4727 return nullptr; 4728 case Intrinsic::convert_from_fp16: 4729 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4730 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4731 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4732 getValue(I.getArgOperand(0))))); 4733 return nullptr; 4734 case Intrinsic::pcmarker: { 4735 SDValue Tmp = getValue(I.getArgOperand(0)); 4736 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4737 return nullptr; 4738 } 4739 case Intrinsic::readcyclecounter: { 4740 SDValue Op = getRoot(); 4741 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4742 DAG.getVTList(MVT::i64, MVT::Other), Op); 4743 setValue(&I, Res); 4744 DAG.setRoot(Res.getValue(1)); 4745 return nullptr; 4746 } 4747 case Intrinsic::bswap: 4748 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4749 getValue(I.getArgOperand(0)).getValueType(), 4750 getValue(I.getArgOperand(0)))); 4751 return nullptr; 4752 case Intrinsic::uabsdiff: 4753 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4754 getValue(I.getArgOperand(0)).getValueType(), 4755 getValue(I.getArgOperand(0)), 4756 getValue(I.getArgOperand(1)))); 4757 return nullptr; 4758 case Intrinsic::sabsdiff: 4759 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4760 getValue(I.getArgOperand(0)).getValueType(), 4761 getValue(I.getArgOperand(0)), 4762 getValue(I.getArgOperand(1)))); 4763 return nullptr; 4764 case Intrinsic::cttz: { 4765 SDValue Arg = getValue(I.getArgOperand(0)); 4766 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4767 EVT Ty = Arg.getValueType(); 4768 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4769 sdl, Ty, Arg)); 4770 return nullptr; 4771 } 4772 case Intrinsic::ctlz: { 4773 SDValue Arg = getValue(I.getArgOperand(0)); 4774 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4775 EVT Ty = Arg.getValueType(); 4776 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4777 sdl, Ty, Arg)); 4778 return nullptr; 4779 } 4780 case Intrinsic::ctpop: { 4781 SDValue Arg = getValue(I.getArgOperand(0)); 4782 EVT Ty = Arg.getValueType(); 4783 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4784 return nullptr; 4785 } 4786 case Intrinsic::stacksave: { 4787 SDValue Op = getRoot(); 4788 Res = DAG.getNode( 4789 ISD::STACKSAVE, sdl, 4790 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4791 setValue(&I, Res); 4792 DAG.setRoot(Res.getValue(1)); 4793 return nullptr; 4794 } 4795 case Intrinsic::stackrestore: { 4796 Res = getValue(I.getArgOperand(0)); 4797 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4798 return nullptr; 4799 } 4800 case Intrinsic::stackprotector: { 4801 // Emit code into the DAG to store the stack guard onto the stack. 4802 MachineFunction &MF = DAG.getMachineFunction(); 4803 MachineFrameInfo *MFI = MF.getFrameInfo(); 4804 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4805 SDValue Src, Chain = getRoot(); 4806 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4807 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4808 4809 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4810 // global variable __stack_chk_guard. 4811 if (!GV) 4812 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4813 if (BC->getOpcode() == Instruction::BitCast) 4814 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4815 4816 if (GV && TLI.useLoadStackGuardNode()) { 4817 // Emit a LOAD_STACK_GUARD node. 4818 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4819 sdl, PtrTy, Chain); 4820 MachinePointerInfo MPInfo(GV); 4821 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4822 unsigned Flags = MachineMemOperand::MOLoad | 4823 MachineMemOperand::MOInvariant; 4824 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4825 PtrTy.getSizeInBits() / 8, 4826 DAG.getEVTAlignment(PtrTy)); 4827 Node->setMemRefs(MemRefs, MemRefs + 1); 4828 4829 // Copy the guard value to a virtual register so that it can be 4830 // retrieved in the epilogue. 4831 Src = SDValue(Node, 0); 4832 const TargetRegisterClass *RC = 4833 TLI.getRegClassFor(Src.getSimpleValueType()); 4834 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4835 4836 SPDescriptor.setGuardReg(Reg); 4837 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4838 } else { 4839 Src = getValue(I.getArgOperand(0)); // The guard's value. 4840 } 4841 4842 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4843 4844 int FI = FuncInfo.StaticAllocaMap[Slot]; 4845 MFI->setStackProtectorIndex(FI); 4846 4847 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4848 4849 // Store the stack protector onto the stack. 4850 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4851 DAG.getMachineFunction(), FI), 4852 true, false, 0); 4853 setValue(&I, Res); 4854 DAG.setRoot(Res); 4855 return nullptr; 4856 } 4857 case Intrinsic::objectsize: { 4858 // If we don't know by now, we're never going to know. 4859 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4860 4861 assert(CI && "Non-constant type in __builtin_object_size?"); 4862 4863 SDValue Arg = getValue(I.getCalledValue()); 4864 EVT Ty = Arg.getValueType(); 4865 4866 if (CI->isZero()) 4867 Res = DAG.getConstant(-1ULL, sdl, Ty); 4868 else 4869 Res = DAG.getConstant(0, sdl, Ty); 4870 4871 setValue(&I, Res); 4872 return nullptr; 4873 } 4874 case Intrinsic::annotation: 4875 case Intrinsic::ptr_annotation: 4876 // Drop the intrinsic, but forward the value 4877 setValue(&I, getValue(I.getOperand(0))); 4878 return nullptr; 4879 case Intrinsic::assume: 4880 case Intrinsic::var_annotation: 4881 // Discard annotate attributes and assumptions 4882 return nullptr; 4883 4884 case Intrinsic::init_trampoline: { 4885 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4886 4887 SDValue Ops[6]; 4888 Ops[0] = getRoot(); 4889 Ops[1] = getValue(I.getArgOperand(0)); 4890 Ops[2] = getValue(I.getArgOperand(1)); 4891 Ops[3] = getValue(I.getArgOperand(2)); 4892 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4893 Ops[5] = DAG.getSrcValue(F); 4894 4895 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4896 4897 DAG.setRoot(Res); 4898 return nullptr; 4899 } 4900 case Intrinsic::adjust_trampoline: { 4901 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4902 TLI.getPointerTy(DAG.getDataLayout()), 4903 getValue(I.getArgOperand(0)))); 4904 return nullptr; 4905 } 4906 case Intrinsic::gcroot: 4907 if (GFI) { 4908 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4909 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4910 4911 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4912 GFI->addStackRoot(FI->getIndex(), TypeMap); 4913 } 4914 return nullptr; 4915 case Intrinsic::gcread: 4916 case Intrinsic::gcwrite: 4917 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4918 case Intrinsic::flt_rounds: 4919 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4920 return nullptr; 4921 4922 case Intrinsic::expect: { 4923 // Just replace __builtin_expect(exp, c) with EXP. 4924 setValue(&I, getValue(I.getArgOperand(0))); 4925 return nullptr; 4926 } 4927 4928 case Intrinsic::debugtrap: 4929 case Intrinsic::trap: { 4930 StringRef TrapFuncName = 4931 I.getAttributes() 4932 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4933 .getValueAsString(); 4934 if (TrapFuncName.empty()) { 4935 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4936 ISD::TRAP : ISD::DEBUGTRAP; 4937 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4938 return nullptr; 4939 } 4940 TargetLowering::ArgListTy Args; 4941 4942 TargetLowering::CallLoweringInfo CLI(DAG); 4943 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4944 CallingConv::C, I.getType(), 4945 DAG.getExternalSymbol(TrapFuncName.data(), 4946 TLI.getPointerTy(DAG.getDataLayout())), 4947 std::move(Args), 0); 4948 4949 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4950 DAG.setRoot(Result.second); 4951 return nullptr; 4952 } 4953 4954 case Intrinsic::uadd_with_overflow: 4955 case Intrinsic::sadd_with_overflow: 4956 case Intrinsic::usub_with_overflow: 4957 case Intrinsic::ssub_with_overflow: 4958 case Intrinsic::umul_with_overflow: 4959 case Intrinsic::smul_with_overflow: { 4960 ISD::NodeType Op; 4961 switch (Intrinsic) { 4962 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4963 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4964 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4965 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4966 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4967 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4968 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4969 } 4970 SDValue Op1 = getValue(I.getArgOperand(0)); 4971 SDValue Op2 = getValue(I.getArgOperand(1)); 4972 4973 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4974 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4975 return nullptr; 4976 } 4977 case Intrinsic::prefetch: { 4978 SDValue Ops[5]; 4979 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4980 Ops[0] = getRoot(); 4981 Ops[1] = getValue(I.getArgOperand(0)); 4982 Ops[2] = getValue(I.getArgOperand(1)); 4983 Ops[3] = getValue(I.getArgOperand(2)); 4984 Ops[4] = getValue(I.getArgOperand(3)); 4985 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4986 DAG.getVTList(MVT::Other), Ops, 4987 EVT::getIntegerVT(*Context, 8), 4988 MachinePointerInfo(I.getArgOperand(0)), 4989 0, /* align */ 4990 false, /* volatile */ 4991 rw==0, /* read */ 4992 rw==1)); /* write */ 4993 return nullptr; 4994 } 4995 case Intrinsic::lifetime_start: 4996 case Intrinsic::lifetime_end: { 4997 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4998 // Stack coloring is not enabled in O0, discard region information. 4999 if (TM.getOptLevel() == CodeGenOpt::None) 5000 return nullptr; 5001 5002 SmallVector<Value *, 4> Allocas; 5003 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5004 5005 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5006 E = Allocas.end(); Object != E; ++Object) { 5007 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5008 5009 // Could not find an Alloca. 5010 if (!LifetimeObject) 5011 continue; 5012 5013 // First check that the Alloca is static, otherwise it won't have a 5014 // valid frame index. 5015 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5016 if (SI == FuncInfo.StaticAllocaMap.end()) 5017 return nullptr; 5018 5019 int FI = SI->second; 5020 5021 SDValue Ops[2]; 5022 Ops[0] = getRoot(); 5023 Ops[1] = 5024 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5025 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5026 5027 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5028 DAG.setRoot(Res); 5029 } 5030 return nullptr; 5031 } 5032 case Intrinsic::invariant_start: 5033 // Discard region information. 5034 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5035 return nullptr; 5036 case Intrinsic::invariant_end: 5037 // Discard region information. 5038 return nullptr; 5039 case Intrinsic::stackprotectorcheck: { 5040 // Do not actually emit anything for this basic block. Instead we initialize 5041 // the stack protector descriptor and export the guard variable so we can 5042 // access it in FinishBasicBlock. 5043 const BasicBlock *BB = I.getParent(); 5044 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5045 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5046 5047 // Flush our exports since we are going to process a terminator. 5048 (void)getControlRoot(); 5049 return nullptr; 5050 } 5051 case Intrinsic::clear_cache: 5052 return TLI.getClearCacheBuiltinName(); 5053 case Intrinsic::eh_actions: 5054 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5055 return nullptr; 5056 case Intrinsic::donothing: 5057 // ignore 5058 return nullptr; 5059 case Intrinsic::experimental_stackmap: { 5060 visitStackmap(I); 5061 return nullptr; 5062 } 5063 case Intrinsic::experimental_patchpoint_void: 5064 case Intrinsic::experimental_patchpoint_i64: { 5065 visitPatchpoint(&I); 5066 return nullptr; 5067 } 5068 case Intrinsic::experimental_gc_statepoint: { 5069 visitStatepoint(I); 5070 return nullptr; 5071 } 5072 case Intrinsic::experimental_gc_result_int: 5073 case Intrinsic::experimental_gc_result_float: 5074 case Intrinsic::experimental_gc_result_ptr: 5075 case Intrinsic::experimental_gc_result: { 5076 visitGCResult(I); 5077 return nullptr; 5078 } 5079 case Intrinsic::experimental_gc_relocate: { 5080 visitGCRelocate(I); 5081 return nullptr; 5082 } 5083 case Intrinsic::instrprof_increment: 5084 llvm_unreachable("instrprof failed to lower an increment"); 5085 5086 case Intrinsic::localescape: { 5087 MachineFunction &MF = DAG.getMachineFunction(); 5088 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5089 5090 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5091 // is the same on all targets. 5092 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5093 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5094 if (isa<ConstantPointerNull>(Arg)) 5095 continue; // Skip null pointers. They represent a hole in index space. 5096 AllocaInst *Slot = cast<AllocaInst>(Arg); 5097 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5098 "can only escape static allocas"); 5099 int FI = FuncInfo.StaticAllocaMap[Slot]; 5100 MCSymbol *FrameAllocSym = 5101 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5102 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5104 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5105 .addSym(FrameAllocSym) 5106 .addFrameIndex(FI); 5107 } 5108 5109 return nullptr; 5110 } 5111 5112 case Intrinsic::localrecover: { 5113 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5114 MachineFunction &MF = DAG.getMachineFunction(); 5115 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5116 5117 // Get the symbol that defines the frame offset. 5118 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5119 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5120 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5121 MCSymbol *FrameAllocSym = 5122 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5123 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5124 5125 // Create a MCSymbol for the label to avoid any target lowering 5126 // that would make this PC relative. 5127 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5128 SDValue OffsetVal = 5129 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5130 5131 // Add the offset to the FP. 5132 Value *FP = I.getArgOperand(1); 5133 SDValue FPVal = getValue(FP); 5134 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5135 setValue(&I, Add); 5136 5137 return nullptr; 5138 } 5139 case Intrinsic::eh_begincatch: 5140 case Intrinsic::eh_endcatch: 5141 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5142 case Intrinsic::eh_exceptioncode: { 5143 unsigned Reg = TLI.getExceptionPointerRegister(); 5144 assert(Reg && "cannot get exception code on this platform"); 5145 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5146 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5147 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5148 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5149 SDValue N = 5150 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5151 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5152 setValue(&I, N); 5153 return nullptr; 5154 } 5155 } 5156 } 5157 5158 std::pair<SDValue, SDValue> 5159 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5160 const BasicBlock *EHPadBB) { 5161 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5162 MCSymbol *BeginLabel = nullptr; 5163 5164 if (EHPadBB) { 5165 // Insert a label before the invoke call to mark the try range. This can be 5166 // used to detect deletion of the invoke via the MachineModuleInfo. 5167 BeginLabel = MMI.getContext().createTempSymbol(); 5168 5169 // For SjLj, keep track of which landing pads go with which invokes 5170 // so as to maintain the ordering of pads in the LSDA. 5171 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5172 if (CallSiteIndex) { 5173 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5174 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5175 5176 // Now that the call site is handled, stop tracking it. 5177 MMI.setCurrentCallSite(0); 5178 } 5179 5180 // Both PendingLoads and PendingExports must be flushed here; 5181 // this call might not return. 5182 (void)getRoot(); 5183 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5184 5185 CLI.setChain(getRoot()); 5186 } 5187 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5188 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5189 5190 assert((CLI.IsTailCall || Result.second.getNode()) && 5191 "Non-null chain expected with non-tail call!"); 5192 assert((Result.second.getNode() || !Result.first.getNode()) && 5193 "Null value expected with tail call!"); 5194 5195 if (!Result.second.getNode()) { 5196 // As a special case, a null chain means that a tail call has been emitted 5197 // and the DAG root is already updated. 5198 HasTailCall = true; 5199 5200 // Since there's no actual continuation from this block, nothing can be 5201 // relying on us setting vregs for them. 5202 PendingExports.clear(); 5203 } else { 5204 DAG.setRoot(Result.second); 5205 } 5206 5207 if (EHPadBB) { 5208 // Insert a label at the end of the invoke call to mark the try range. This 5209 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5210 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5211 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5212 5213 // Inform MachineModuleInfo of range. 5214 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5215 } 5216 5217 return Result; 5218 } 5219 5220 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5221 bool isTailCall, 5222 const BasicBlock *EHPadBB) { 5223 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5224 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5225 Type *RetTy = FTy->getReturnType(); 5226 5227 TargetLowering::ArgListTy Args; 5228 TargetLowering::ArgListEntry Entry; 5229 Args.reserve(CS.arg_size()); 5230 5231 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5232 i != e; ++i) { 5233 const Value *V = *i; 5234 5235 // Skip empty types 5236 if (V->getType()->isEmptyTy()) 5237 continue; 5238 5239 SDValue ArgNode = getValue(V); 5240 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5241 5242 // Skip the first return-type Attribute to get to params. 5243 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5244 Args.push_back(Entry); 5245 5246 // If we have an explicit sret argument that is an Instruction, (i.e., it 5247 // might point to function-local memory), we can't meaningfully tail-call. 5248 if (Entry.isSRet && isa<Instruction>(V)) 5249 isTailCall = false; 5250 } 5251 5252 // Check if target-independent constraints permit a tail call here. 5253 // Target-dependent constraints are checked within TLI->LowerCallTo. 5254 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5255 isTailCall = false; 5256 5257 TargetLowering::CallLoweringInfo CLI(DAG); 5258 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5259 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5260 .setTailCall(isTailCall); 5261 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5262 5263 if (Result.first.getNode()) 5264 setValue(CS.getInstruction(), Result.first); 5265 } 5266 5267 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5268 /// value is equal or not-equal to zero. 5269 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5270 for (const User *U : V->users()) { 5271 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5272 if (IC->isEquality()) 5273 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5274 if (C->isNullValue()) 5275 continue; 5276 // Unknown instruction. 5277 return false; 5278 } 5279 return true; 5280 } 5281 5282 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5283 Type *LoadTy, 5284 SelectionDAGBuilder &Builder) { 5285 5286 // Check to see if this load can be trivially constant folded, e.g. if the 5287 // input is from a string literal. 5288 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5289 // Cast pointer to the type we really want to load. 5290 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5291 PointerType::getUnqual(LoadTy)); 5292 5293 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5294 const_cast<Constant *>(LoadInput), *Builder.DL)) 5295 return Builder.getValue(LoadCst); 5296 } 5297 5298 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5299 // still constant memory, the input chain can be the entry node. 5300 SDValue Root; 5301 bool ConstantMemory = false; 5302 5303 // Do not serialize (non-volatile) loads of constant memory with anything. 5304 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5305 Root = Builder.DAG.getEntryNode(); 5306 ConstantMemory = true; 5307 } else { 5308 // Do not serialize non-volatile loads against each other. 5309 Root = Builder.DAG.getRoot(); 5310 } 5311 5312 SDValue Ptr = Builder.getValue(PtrVal); 5313 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5314 Ptr, MachinePointerInfo(PtrVal), 5315 false /*volatile*/, 5316 false /*nontemporal*/, 5317 false /*isinvariant*/, 1 /* align=1 */); 5318 5319 if (!ConstantMemory) 5320 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5321 return LoadVal; 5322 } 5323 5324 /// processIntegerCallValue - Record the value for an instruction that 5325 /// produces an integer result, converting the type where necessary. 5326 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5327 SDValue Value, 5328 bool IsSigned) { 5329 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5330 I.getType(), true); 5331 if (IsSigned) 5332 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5333 else 5334 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5335 setValue(&I, Value); 5336 } 5337 5338 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5339 /// If so, return true and lower it, otherwise return false and it will be 5340 /// lowered like a normal call. 5341 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5342 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5343 if (I.getNumArgOperands() != 3) 5344 return false; 5345 5346 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5347 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5348 !I.getArgOperand(2)->getType()->isIntegerTy() || 5349 !I.getType()->isIntegerTy()) 5350 return false; 5351 5352 const Value *Size = I.getArgOperand(2); 5353 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5354 if (CSize && CSize->getZExtValue() == 0) { 5355 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5356 I.getType(), true); 5357 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5358 return true; 5359 } 5360 5361 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5362 std::pair<SDValue, SDValue> Res = 5363 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5364 getValue(LHS), getValue(RHS), getValue(Size), 5365 MachinePointerInfo(LHS), 5366 MachinePointerInfo(RHS)); 5367 if (Res.first.getNode()) { 5368 processIntegerCallValue(I, Res.first, true); 5369 PendingLoads.push_back(Res.second); 5370 return true; 5371 } 5372 5373 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5374 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5375 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5376 bool ActuallyDoIt = true; 5377 MVT LoadVT; 5378 Type *LoadTy; 5379 switch (CSize->getZExtValue()) { 5380 default: 5381 LoadVT = MVT::Other; 5382 LoadTy = nullptr; 5383 ActuallyDoIt = false; 5384 break; 5385 case 2: 5386 LoadVT = MVT::i16; 5387 LoadTy = Type::getInt16Ty(CSize->getContext()); 5388 break; 5389 case 4: 5390 LoadVT = MVT::i32; 5391 LoadTy = Type::getInt32Ty(CSize->getContext()); 5392 break; 5393 case 8: 5394 LoadVT = MVT::i64; 5395 LoadTy = Type::getInt64Ty(CSize->getContext()); 5396 break; 5397 /* 5398 case 16: 5399 LoadVT = MVT::v4i32; 5400 LoadTy = Type::getInt32Ty(CSize->getContext()); 5401 LoadTy = VectorType::get(LoadTy, 4); 5402 break; 5403 */ 5404 } 5405 5406 // This turns into unaligned loads. We only do this if the target natively 5407 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5408 // we'll only produce a small number of byte loads. 5409 5410 // Require that we can find a legal MVT, and only do this if the target 5411 // supports unaligned loads of that type. Expanding into byte loads would 5412 // bloat the code. 5413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5414 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5415 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5416 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5417 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5418 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5419 // TODO: Check alignment of src and dest ptrs. 5420 if (!TLI.isTypeLegal(LoadVT) || 5421 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5422 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5423 ActuallyDoIt = false; 5424 } 5425 5426 if (ActuallyDoIt) { 5427 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5428 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5429 5430 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5431 ISD::SETNE); 5432 processIntegerCallValue(I, Res, false); 5433 return true; 5434 } 5435 } 5436 5437 5438 return false; 5439 } 5440 5441 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5442 /// form. If so, return true and lower it, otherwise return false and it 5443 /// will be lowered like a normal call. 5444 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5445 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5446 if (I.getNumArgOperands() != 3) 5447 return false; 5448 5449 const Value *Src = I.getArgOperand(0); 5450 const Value *Char = I.getArgOperand(1); 5451 const Value *Length = I.getArgOperand(2); 5452 if (!Src->getType()->isPointerTy() || 5453 !Char->getType()->isIntegerTy() || 5454 !Length->getType()->isIntegerTy() || 5455 !I.getType()->isPointerTy()) 5456 return false; 5457 5458 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5459 std::pair<SDValue, SDValue> Res = 5460 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5461 getValue(Src), getValue(Char), getValue(Length), 5462 MachinePointerInfo(Src)); 5463 if (Res.first.getNode()) { 5464 setValue(&I, Res.first); 5465 PendingLoads.push_back(Res.second); 5466 return true; 5467 } 5468 5469 return false; 5470 } 5471 5472 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5473 /// optimized form. If so, return true and lower it, otherwise return false 5474 /// and it will be lowered like a normal call. 5475 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5476 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5477 if (I.getNumArgOperands() != 2) 5478 return false; 5479 5480 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5481 if (!Arg0->getType()->isPointerTy() || 5482 !Arg1->getType()->isPointerTy() || 5483 !I.getType()->isPointerTy()) 5484 return false; 5485 5486 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5487 std::pair<SDValue, SDValue> Res = 5488 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5489 getValue(Arg0), getValue(Arg1), 5490 MachinePointerInfo(Arg0), 5491 MachinePointerInfo(Arg1), isStpcpy); 5492 if (Res.first.getNode()) { 5493 setValue(&I, Res.first); 5494 DAG.setRoot(Res.second); 5495 return true; 5496 } 5497 5498 return false; 5499 } 5500 5501 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5502 /// If so, return true and lower it, otherwise return false and it will be 5503 /// lowered like a normal call. 5504 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5505 // Verify that the prototype makes sense. int strcmp(void*,void*) 5506 if (I.getNumArgOperands() != 2) 5507 return false; 5508 5509 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5510 if (!Arg0->getType()->isPointerTy() || 5511 !Arg1->getType()->isPointerTy() || 5512 !I.getType()->isIntegerTy()) 5513 return false; 5514 5515 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5516 std::pair<SDValue, SDValue> Res = 5517 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5518 getValue(Arg0), getValue(Arg1), 5519 MachinePointerInfo(Arg0), 5520 MachinePointerInfo(Arg1)); 5521 if (Res.first.getNode()) { 5522 processIntegerCallValue(I, Res.first, true); 5523 PendingLoads.push_back(Res.second); 5524 return true; 5525 } 5526 5527 return false; 5528 } 5529 5530 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5531 /// form. If so, return true and lower it, otherwise return false and it 5532 /// will be lowered like a normal call. 5533 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5534 // Verify that the prototype makes sense. size_t strlen(char *) 5535 if (I.getNumArgOperands() != 1) 5536 return false; 5537 5538 const Value *Arg0 = I.getArgOperand(0); 5539 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5540 return false; 5541 5542 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5543 std::pair<SDValue, SDValue> Res = 5544 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5545 getValue(Arg0), MachinePointerInfo(Arg0)); 5546 if (Res.first.getNode()) { 5547 processIntegerCallValue(I, Res.first, false); 5548 PendingLoads.push_back(Res.second); 5549 return true; 5550 } 5551 5552 return false; 5553 } 5554 5555 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5556 /// form. If so, return true and lower it, otherwise return false and it 5557 /// will be lowered like a normal call. 5558 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5559 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5560 if (I.getNumArgOperands() != 2) 5561 return false; 5562 5563 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5564 if (!Arg0->getType()->isPointerTy() || 5565 !Arg1->getType()->isIntegerTy() || 5566 !I.getType()->isIntegerTy()) 5567 return false; 5568 5569 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5570 std::pair<SDValue, SDValue> Res = 5571 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5572 getValue(Arg0), getValue(Arg1), 5573 MachinePointerInfo(Arg0)); 5574 if (Res.first.getNode()) { 5575 processIntegerCallValue(I, Res.first, false); 5576 PendingLoads.push_back(Res.second); 5577 return true; 5578 } 5579 5580 return false; 5581 } 5582 5583 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5584 /// operation (as expected), translate it to an SDNode with the specified opcode 5585 /// and return true. 5586 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5587 unsigned Opcode) { 5588 // Sanity check that it really is a unary floating-point call. 5589 if (I.getNumArgOperands() != 1 || 5590 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5591 I.getType() != I.getArgOperand(0)->getType() || 5592 !I.onlyReadsMemory()) 5593 return false; 5594 5595 SDValue Tmp = getValue(I.getArgOperand(0)); 5596 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5597 return true; 5598 } 5599 5600 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5601 /// operation (as expected), translate it to an SDNode with the specified opcode 5602 /// and return true. 5603 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5604 unsigned Opcode) { 5605 // Sanity check that it really is a binary floating-point call. 5606 if (I.getNumArgOperands() != 2 || 5607 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5608 I.getType() != I.getArgOperand(0)->getType() || 5609 I.getType() != I.getArgOperand(1)->getType() || 5610 !I.onlyReadsMemory()) 5611 return false; 5612 5613 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5614 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5615 EVT VT = Tmp0.getValueType(); 5616 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5617 return true; 5618 } 5619 5620 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5621 // Handle inline assembly differently. 5622 if (isa<InlineAsm>(I.getCalledValue())) { 5623 visitInlineAsm(&I); 5624 return; 5625 } 5626 5627 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5628 ComputeUsesVAFloatArgument(I, &MMI); 5629 5630 const char *RenameFn = nullptr; 5631 if (Function *F = I.getCalledFunction()) { 5632 if (F->isDeclaration()) { 5633 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5634 if (unsigned IID = II->getIntrinsicID(F)) { 5635 RenameFn = visitIntrinsicCall(I, IID); 5636 if (!RenameFn) 5637 return; 5638 } 5639 } 5640 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5641 RenameFn = visitIntrinsicCall(I, IID); 5642 if (!RenameFn) 5643 return; 5644 } 5645 } 5646 5647 // Check for well-known libc/libm calls. If the function is internal, it 5648 // can't be a library call. 5649 LibFunc::Func Func; 5650 if (!F->hasLocalLinkage() && F->hasName() && 5651 LibInfo->getLibFunc(F->getName(), Func) && 5652 LibInfo->hasOptimizedCodeGen(Func)) { 5653 switch (Func) { 5654 default: break; 5655 case LibFunc::copysign: 5656 case LibFunc::copysignf: 5657 case LibFunc::copysignl: 5658 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5659 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5660 I.getType() == I.getArgOperand(0)->getType() && 5661 I.getType() == I.getArgOperand(1)->getType() && 5662 I.onlyReadsMemory()) { 5663 SDValue LHS = getValue(I.getArgOperand(0)); 5664 SDValue RHS = getValue(I.getArgOperand(1)); 5665 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5666 LHS.getValueType(), LHS, RHS)); 5667 return; 5668 } 5669 break; 5670 case LibFunc::fabs: 5671 case LibFunc::fabsf: 5672 case LibFunc::fabsl: 5673 if (visitUnaryFloatCall(I, ISD::FABS)) 5674 return; 5675 break; 5676 case LibFunc::fmin: 5677 case LibFunc::fminf: 5678 case LibFunc::fminl: 5679 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5680 return; 5681 break; 5682 case LibFunc::fmax: 5683 case LibFunc::fmaxf: 5684 case LibFunc::fmaxl: 5685 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5686 return; 5687 break; 5688 case LibFunc::sin: 5689 case LibFunc::sinf: 5690 case LibFunc::sinl: 5691 if (visitUnaryFloatCall(I, ISD::FSIN)) 5692 return; 5693 break; 5694 case LibFunc::cos: 5695 case LibFunc::cosf: 5696 case LibFunc::cosl: 5697 if (visitUnaryFloatCall(I, ISD::FCOS)) 5698 return; 5699 break; 5700 case LibFunc::sqrt: 5701 case LibFunc::sqrtf: 5702 case LibFunc::sqrtl: 5703 case LibFunc::sqrt_finite: 5704 case LibFunc::sqrtf_finite: 5705 case LibFunc::sqrtl_finite: 5706 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5707 return; 5708 break; 5709 case LibFunc::floor: 5710 case LibFunc::floorf: 5711 case LibFunc::floorl: 5712 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5713 return; 5714 break; 5715 case LibFunc::nearbyint: 5716 case LibFunc::nearbyintf: 5717 case LibFunc::nearbyintl: 5718 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5719 return; 5720 break; 5721 case LibFunc::ceil: 5722 case LibFunc::ceilf: 5723 case LibFunc::ceill: 5724 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5725 return; 5726 break; 5727 case LibFunc::rint: 5728 case LibFunc::rintf: 5729 case LibFunc::rintl: 5730 if (visitUnaryFloatCall(I, ISD::FRINT)) 5731 return; 5732 break; 5733 case LibFunc::round: 5734 case LibFunc::roundf: 5735 case LibFunc::roundl: 5736 if (visitUnaryFloatCall(I, ISD::FROUND)) 5737 return; 5738 break; 5739 case LibFunc::trunc: 5740 case LibFunc::truncf: 5741 case LibFunc::truncl: 5742 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5743 return; 5744 break; 5745 case LibFunc::log2: 5746 case LibFunc::log2f: 5747 case LibFunc::log2l: 5748 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5749 return; 5750 break; 5751 case LibFunc::exp2: 5752 case LibFunc::exp2f: 5753 case LibFunc::exp2l: 5754 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5755 return; 5756 break; 5757 case LibFunc::memcmp: 5758 if (visitMemCmpCall(I)) 5759 return; 5760 break; 5761 case LibFunc::memchr: 5762 if (visitMemChrCall(I)) 5763 return; 5764 break; 5765 case LibFunc::strcpy: 5766 if (visitStrCpyCall(I, false)) 5767 return; 5768 break; 5769 case LibFunc::stpcpy: 5770 if (visitStrCpyCall(I, true)) 5771 return; 5772 break; 5773 case LibFunc::strcmp: 5774 if (visitStrCmpCall(I)) 5775 return; 5776 break; 5777 case LibFunc::strlen: 5778 if (visitStrLenCall(I)) 5779 return; 5780 break; 5781 case LibFunc::strnlen: 5782 if (visitStrNLenCall(I)) 5783 return; 5784 break; 5785 } 5786 } 5787 } 5788 5789 SDValue Callee; 5790 if (!RenameFn) 5791 Callee = getValue(I.getCalledValue()); 5792 else 5793 Callee = DAG.getExternalSymbol( 5794 RenameFn, 5795 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5796 5797 // Check if we can potentially perform a tail call. More detailed checking is 5798 // be done within LowerCallTo, after more information about the call is known. 5799 LowerCallTo(&I, Callee, I.isTailCall()); 5800 } 5801 5802 namespace { 5803 5804 /// AsmOperandInfo - This contains information for each constraint that we are 5805 /// lowering. 5806 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5807 public: 5808 /// CallOperand - If this is the result output operand or a clobber 5809 /// this is null, otherwise it is the incoming operand to the CallInst. 5810 /// This gets modified as the asm is processed. 5811 SDValue CallOperand; 5812 5813 /// AssignedRegs - If this is a register or register class operand, this 5814 /// contains the set of register corresponding to the operand. 5815 RegsForValue AssignedRegs; 5816 5817 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5818 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5819 } 5820 5821 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5822 /// corresponds to. If there is no Value* for this operand, it returns 5823 /// MVT::Other. 5824 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5825 const DataLayout &DL) const { 5826 if (!CallOperandVal) return MVT::Other; 5827 5828 if (isa<BasicBlock>(CallOperandVal)) 5829 return TLI.getPointerTy(DL); 5830 5831 llvm::Type *OpTy = CallOperandVal->getType(); 5832 5833 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5834 // If this is an indirect operand, the operand is a pointer to the 5835 // accessed type. 5836 if (isIndirect) { 5837 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5838 if (!PtrTy) 5839 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5840 OpTy = PtrTy->getElementType(); 5841 } 5842 5843 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5844 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5845 if (STy->getNumElements() == 1) 5846 OpTy = STy->getElementType(0); 5847 5848 // If OpTy is not a single value, it may be a struct/union that we 5849 // can tile with integers. 5850 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5851 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5852 switch (BitSize) { 5853 default: break; 5854 case 1: 5855 case 8: 5856 case 16: 5857 case 32: 5858 case 64: 5859 case 128: 5860 OpTy = IntegerType::get(Context, BitSize); 5861 break; 5862 } 5863 } 5864 5865 return TLI.getValueType(DL, OpTy, true); 5866 } 5867 }; 5868 5869 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5870 5871 } // end anonymous namespace 5872 5873 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5874 /// specified operand. We prefer to assign virtual registers, to allow the 5875 /// register allocator to handle the assignment process. However, if the asm 5876 /// uses features that we can't model on machineinstrs, we have SDISel do the 5877 /// allocation. This produces generally horrible, but correct, code. 5878 /// 5879 /// OpInfo describes the operand. 5880 /// 5881 static void GetRegistersForValue(SelectionDAG &DAG, 5882 const TargetLowering &TLI, 5883 SDLoc DL, 5884 SDISelAsmOperandInfo &OpInfo) { 5885 LLVMContext &Context = *DAG.getContext(); 5886 5887 MachineFunction &MF = DAG.getMachineFunction(); 5888 SmallVector<unsigned, 4> Regs; 5889 5890 // If this is a constraint for a single physreg, or a constraint for a 5891 // register class, find it. 5892 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5893 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5894 OpInfo.ConstraintCode, 5895 OpInfo.ConstraintVT); 5896 5897 unsigned NumRegs = 1; 5898 if (OpInfo.ConstraintVT != MVT::Other) { 5899 // If this is a FP input in an integer register (or visa versa) insert a bit 5900 // cast of the input value. More generally, handle any case where the input 5901 // value disagrees with the register class we plan to stick this in. 5902 if (OpInfo.Type == InlineAsm::isInput && 5903 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5904 // Try to convert to the first EVT that the reg class contains. If the 5905 // types are identical size, use a bitcast to convert (e.g. two differing 5906 // vector types). 5907 MVT RegVT = *PhysReg.second->vt_begin(); 5908 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5909 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5910 RegVT, OpInfo.CallOperand); 5911 OpInfo.ConstraintVT = RegVT; 5912 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5913 // If the input is a FP value and we want it in FP registers, do a 5914 // bitcast to the corresponding integer type. This turns an f64 value 5915 // into i64, which can be passed with two i32 values on a 32-bit 5916 // machine. 5917 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5918 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5919 RegVT, OpInfo.CallOperand); 5920 OpInfo.ConstraintVT = RegVT; 5921 } 5922 } 5923 5924 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5925 } 5926 5927 MVT RegVT; 5928 EVT ValueVT = OpInfo.ConstraintVT; 5929 5930 // If this is a constraint for a specific physical register, like {r17}, 5931 // assign it now. 5932 if (unsigned AssignedReg = PhysReg.first) { 5933 const TargetRegisterClass *RC = PhysReg.second; 5934 if (OpInfo.ConstraintVT == MVT::Other) 5935 ValueVT = *RC->vt_begin(); 5936 5937 // Get the actual register value type. This is important, because the user 5938 // may have asked for (e.g.) the AX register in i32 type. We need to 5939 // remember that AX is actually i16 to get the right extension. 5940 RegVT = *RC->vt_begin(); 5941 5942 // This is a explicit reference to a physical register. 5943 Regs.push_back(AssignedReg); 5944 5945 // If this is an expanded reference, add the rest of the regs to Regs. 5946 if (NumRegs != 1) { 5947 TargetRegisterClass::iterator I = RC->begin(); 5948 for (; *I != AssignedReg; ++I) 5949 assert(I != RC->end() && "Didn't find reg!"); 5950 5951 // Already added the first reg. 5952 --NumRegs; ++I; 5953 for (; NumRegs; --NumRegs, ++I) { 5954 assert(I != RC->end() && "Ran out of registers to allocate!"); 5955 Regs.push_back(*I); 5956 } 5957 } 5958 5959 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5960 return; 5961 } 5962 5963 // Otherwise, if this was a reference to an LLVM register class, create vregs 5964 // for this reference. 5965 if (const TargetRegisterClass *RC = PhysReg.second) { 5966 RegVT = *RC->vt_begin(); 5967 if (OpInfo.ConstraintVT == MVT::Other) 5968 ValueVT = RegVT; 5969 5970 // Create the appropriate number of virtual registers. 5971 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5972 for (; NumRegs; --NumRegs) 5973 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5974 5975 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5976 return; 5977 } 5978 5979 // Otherwise, we couldn't allocate enough registers for this. 5980 } 5981 5982 /// visitInlineAsm - Handle a call to an InlineAsm object. 5983 /// 5984 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5985 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5986 5987 /// ConstraintOperands - Information about all of the constraints. 5988 SDISelAsmOperandInfoVector ConstraintOperands; 5989 5990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5991 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5992 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5993 5994 bool hasMemory = false; 5995 5996 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5997 unsigned ResNo = 0; // ResNo - The result number of the next output. 5998 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5999 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6000 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6001 6002 MVT OpVT = MVT::Other; 6003 6004 // Compute the value type for each operand. 6005 switch (OpInfo.Type) { 6006 case InlineAsm::isOutput: 6007 // Indirect outputs just consume an argument. 6008 if (OpInfo.isIndirect) { 6009 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6010 break; 6011 } 6012 6013 // The return value of the call is this value. As such, there is no 6014 // corresponding argument. 6015 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6016 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6017 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6018 STy->getElementType(ResNo)); 6019 } else { 6020 assert(ResNo == 0 && "Asm only has one result!"); 6021 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6022 } 6023 ++ResNo; 6024 break; 6025 case InlineAsm::isInput: 6026 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6027 break; 6028 case InlineAsm::isClobber: 6029 // Nothing to do. 6030 break; 6031 } 6032 6033 // If this is an input or an indirect output, process the call argument. 6034 // BasicBlocks are labels, currently appearing only in asm's. 6035 if (OpInfo.CallOperandVal) { 6036 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6037 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6038 } else { 6039 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6040 } 6041 6042 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6043 DAG.getDataLayout()).getSimpleVT(); 6044 } 6045 6046 OpInfo.ConstraintVT = OpVT; 6047 6048 // Indirect operand accesses access memory. 6049 if (OpInfo.isIndirect) 6050 hasMemory = true; 6051 else { 6052 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6053 TargetLowering::ConstraintType 6054 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6055 if (CType == TargetLowering::C_Memory) { 6056 hasMemory = true; 6057 break; 6058 } 6059 } 6060 } 6061 } 6062 6063 SDValue Chain, Flag; 6064 6065 // We won't need to flush pending loads if this asm doesn't touch 6066 // memory and is nonvolatile. 6067 if (hasMemory || IA->hasSideEffects()) 6068 Chain = getRoot(); 6069 else 6070 Chain = DAG.getRoot(); 6071 6072 // Second pass over the constraints: compute which constraint option to use 6073 // and assign registers to constraints that want a specific physreg. 6074 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6075 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6076 6077 // If this is an output operand with a matching input operand, look up the 6078 // matching input. If their types mismatch, e.g. one is an integer, the 6079 // other is floating point, or their sizes are different, flag it as an 6080 // error. 6081 if (OpInfo.hasMatchingInput()) { 6082 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6083 6084 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6085 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6086 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6087 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6088 OpInfo.ConstraintVT); 6089 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6090 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6091 Input.ConstraintVT); 6092 if ((OpInfo.ConstraintVT.isInteger() != 6093 Input.ConstraintVT.isInteger()) || 6094 (MatchRC.second != InputRC.second)) { 6095 report_fatal_error("Unsupported asm: input constraint" 6096 " with a matching output constraint of" 6097 " incompatible type!"); 6098 } 6099 Input.ConstraintVT = OpInfo.ConstraintVT; 6100 } 6101 } 6102 6103 // Compute the constraint code and ConstraintType to use. 6104 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6105 6106 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6107 OpInfo.Type == InlineAsm::isClobber) 6108 continue; 6109 6110 // If this is a memory input, and if the operand is not indirect, do what we 6111 // need to to provide an address for the memory input. 6112 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6113 !OpInfo.isIndirect) { 6114 assert((OpInfo.isMultipleAlternative || 6115 (OpInfo.Type == InlineAsm::isInput)) && 6116 "Can only indirectify direct input operands!"); 6117 6118 // Memory operands really want the address of the value. If we don't have 6119 // an indirect input, put it in the constpool if we can, otherwise spill 6120 // it to a stack slot. 6121 // TODO: This isn't quite right. We need to handle these according to 6122 // the addressing mode that the constraint wants. Also, this may take 6123 // an additional register for the computation and we don't want that 6124 // either. 6125 6126 // If the operand is a float, integer, or vector constant, spill to a 6127 // constant pool entry to get its address. 6128 const Value *OpVal = OpInfo.CallOperandVal; 6129 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6130 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6131 OpInfo.CallOperand = DAG.getConstantPool( 6132 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6133 } else { 6134 // Otherwise, create a stack slot and emit a store to it before the 6135 // asm. 6136 Type *Ty = OpVal->getType(); 6137 auto &DL = DAG.getDataLayout(); 6138 uint64_t TySize = DL.getTypeAllocSize(Ty); 6139 unsigned Align = DL.getPrefTypeAlignment(Ty); 6140 MachineFunction &MF = DAG.getMachineFunction(); 6141 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6142 SDValue StackSlot = 6143 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6144 Chain = DAG.getStore( 6145 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6146 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6147 false, false, 0); 6148 OpInfo.CallOperand = StackSlot; 6149 } 6150 6151 // There is no longer a Value* corresponding to this operand. 6152 OpInfo.CallOperandVal = nullptr; 6153 6154 // It is now an indirect operand. 6155 OpInfo.isIndirect = true; 6156 } 6157 6158 // If this constraint is for a specific register, allocate it before 6159 // anything else. 6160 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6161 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6162 } 6163 6164 // Second pass - Loop over all of the operands, assigning virtual or physregs 6165 // to register class operands. 6166 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6167 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6168 6169 // C_Register operands have already been allocated, Other/Memory don't need 6170 // to be. 6171 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6172 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6173 } 6174 6175 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6176 std::vector<SDValue> AsmNodeOperands; 6177 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6178 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6179 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6180 6181 // If we have a !srcloc metadata node associated with it, we want to attach 6182 // this to the ultimately generated inline asm machineinstr. To do this, we 6183 // pass in the third operand as this (potentially null) inline asm MDNode. 6184 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6185 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6186 6187 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6188 // bits as operand 3. 6189 unsigned ExtraInfo = 0; 6190 if (IA->hasSideEffects()) 6191 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6192 if (IA->isAlignStack()) 6193 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6194 // Set the asm dialect. 6195 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6196 6197 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6198 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6199 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6200 6201 // Compute the constraint code and ConstraintType to use. 6202 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6203 6204 // Ideally, we would only check against memory constraints. However, the 6205 // meaning of an other constraint can be target-specific and we can't easily 6206 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6207 // for other constriants as well. 6208 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6209 OpInfo.ConstraintType == TargetLowering::C_Other) { 6210 if (OpInfo.Type == InlineAsm::isInput) 6211 ExtraInfo |= InlineAsm::Extra_MayLoad; 6212 else if (OpInfo.Type == InlineAsm::isOutput) 6213 ExtraInfo |= InlineAsm::Extra_MayStore; 6214 else if (OpInfo.Type == InlineAsm::isClobber) 6215 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6216 } 6217 } 6218 6219 AsmNodeOperands.push_back(DAG.getTargetConstant( 6220 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6221 6222 // Loop over all of the inputs, copying the operand values into the 6223 // appropriate registers and processing the output regs. 6224 RegsForValue RetValRegs; 6225 6226 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6227 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6228 6229 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6230 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6231 6232 switch (OpInfo.Type) { 6233 case InlineAsm::isOutput: { 6234 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6235 OpInfo.ConstraintType != TargetLowering::C_Register) { 6236 // Memory output, or 'other' output (e.g. 'X' constraint). 6237 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6238 6239 unsigned ConstraintID = 6240 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6241 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6242 "Failed to convert memory constraint code to constraint id."); 6243 6244 // Add information to the INLINEASM node to know about this output. 6245 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6246 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6247 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6248 MVT::i32)); 6249 AsmNodeOperands.push_back(OpInfo.CallOperand); 6250 break; 6251 } 6252 6253 // Otherwise, this is a register or register class output. 6254 6255 // Copy the output from the appropriate register. Find a register that 6256 // we can use. 6257 if (OpInfo.AssignedRegs.Regs.empty()) { 6258 LLVMContext &Ctx = *DAG.getContext(); 6259 Ctx.emitError(CS.getInstruction(), 6260 "couldn't allocate output register for constraint '" + 6261 Twine(OpInfo.ConstraintCode) + "'"); 6262 return; 6263 } 6264 6265 // If this is an indirect operand, store through the pointer after the 6266 // asm. 6267 if (OpInfo.isIndirect) { 6268 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6269 OpInfo.CallOperandVal)); 6270 } else { 6271 // This is the result value of the call. 6272 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6273 // Concatenate this output onto the outputs list. 6274 RetValRegs.append(OpInfo.AssignedRegs); 6275 } 6276 6277 // Add information to the INLINEASM node to know that this register is 6278 // set. 6279 OpInfo.AssignedRegs 6280 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6281 ? InlineAsm::Kind_RegDefEarlyClobber 6282 : InlineAsm::Kind_RegDef, 6283 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6284 break; 6285 } 6286 case InlineAsm::isInput: { 6287 SDValue InOperandVal = OpInfo.CallOperand; 6288 6289 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6290 // If this is required to match an output register we have already set, 6291 // just use its register. 6292 unsigned OperandNo = OpInfo.getMatchedOperand(); 6293 6294 // Scan until we find the definition we already emitted of this operand. 6295 // When we find it, create a RegsForValue operand. 6296 unsigned CurOp = InlineAsm::Op_FirstOperand; 6297 for (; OperandNo; --OperandNo) { 6298 // Advance to the next operand. 6299 unsigned OpFlag = 6300 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6301 assert((InlineAsm::isRegDefKind(OpFlag) || 6302 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6303 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6304 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6305 } 6306 6307 unsigned OpFlag = 6308 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6309 if (InlineAsm::isRegDefKind(OpFlag) || 6310 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6311 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6312 if (OpInfo.isIndirect) { 6313 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6314 LLVMContext &Ctx = *DAG.getContext(); 6315 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6316 " don't know how to handle tied " 6317 "indirect register inputs"); 6318 return; 6319 } 6320 6321 RegsForValue MatchedRegs; 6322 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6323 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6324 MatchedRegs.RegVTs.push_back(RegVT); 6325 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6326 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6327 i != e; ++i) { 6328 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6329 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6330 else { 6331 LLVMContext &Ctx = *DAG.getContext(); 6332 Ctx.emitError(CS.getInstruction(), 6333 "inline asm error: This value" 6334 " type register class is not natively supported!"); 6335 return; 6336 } 6337 } 6338 SDLoc dl = getCurSDLoc(); 6339 // Use the produced MatchedRegs object to 6340 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6341 Chain, &Flag, CS.getInstruction()); 6342 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6343 true, OpInfo.getMatchedOperand(), dl, 6344 DAG, AsmNodeOperands); 6345 break; 6346 } 6347 6348 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6349 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6350 "Unexpected number of operands"); 6351 // Add information to the INLINEASM node to know about this input. 6352 // See InlineAsm.h isUseOperandTiedToDef. 6353 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6354 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6355 OpInfo.getMatchedOperand()); 6356 AsmNodeOperands.push_back(DAG.getTargetConstant( 6357 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6358 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6359 break; 6360 } 6361 6362 // Treat indirect 'X' constraint as memory. 6363 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6364 OpInfo.isIndirect) 6365 OpInfo.ConstraintType = TargetLowering::C_Memory; 6366 6367 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6368 std::vector<SDValue> Ops; 6369 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6370 Ops, DAG); 6371 if (Ops.empty()) { 6372 LLVMContext &Ctx = *DAG.getContext(); 6373 Ctx.emitError(CS.getInstruction(), 6374 "invalid operand for inline asm constraint '" + 6375 Twine(OpInfo.ConstraintCode) + "'"); 6376 return; 6377 } 6378 6379 // Add information to the INLINEASM node to know about this input. 6380 unsigned ResOpType = 6381 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6382 AsmNodeOperands.push_back(DAG.getTargetConstant( 6383 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6384 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6385 break; 6386 } 6387 6388 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6389 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6390 assert(InOperandVal.getValueType() == 6391 TLI.getPointerTy(DAG.getDataLayout()) && 6392 "Memory operands expect pointer values"); 6393 6394 unsigned ConstraintID = 6395 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6396 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6397 "Failed to convert memory constraint code to constraint id."); 6398 6399 // Add information to the INLINEASM node to know about this input. 6400 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6401 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6402 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6403 getCurSDLoc(), 6404 MVT::i32)); 6405 AsmNodeOperands.push_back(InOperandVal); 6406 break; 6407 } 6408 6409 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6410 OpInfo.ConstraintType == TargetLowering::C_Register) && 6411 "Unknown constraint type!"); 6412 6413 // TODO: Support this. 6414 if (OpInfo.isIndirect) { 6415 LLVMContext &Ctx = *DAG.getContext(); 6416 Ctx.emitError(CS.getInstruction(), 6417 "Don't know how to handle indirect register inputs yet " 6418 "for constraint '" + 6419 Twine(OpInfo.ConstraintCode) + "'"); 6420 return; 6421 } 6422 6423 // Copy the input into the appropriate registers. 6424 if (OpInfo.AssignedRegs.Regs.empty()) { 6425 LLVMContext &Ctx = *DAG.getContext(); 6426 Ctx.emitError(CS.getInstruction(), 6427 "couldn't allocate input reg for constraint '" + 6428 Twine(OpInfo.ConstraintCode) + "'"); 6429 return; 6430 } 6431 6432 SDLoc dl = getCurSDLoc(); 6433 6434 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6435 Chain, &Flag, CS.getInstruction()); 6436 6437 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6438 dl, DAG, AsmNodeOperands); 6439 break; 6440 } 6441 case InlineAsm::isClobber: { 6442 // Add the clobbered value to the operand list, so that the register 6443 // allocator is aware that the physreg got clobbered. 6444 if (!OpInfo.AssignedRegs.Regs.empty()) 6445 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6446 false, 0, getCurSDLoc(), DAG, 6447 AsmNodeOperands); 6448 break; 6449 } 6450 } 6451 } 6452 6453 // Finish up input operands. Set the input chain and add the flag last. 6454 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6455 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6456 6457 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6458 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6459 Flag = Chain.getValue(1); 6460 6461 // If this asm returns a register value, copy the result from that register 6462 // and set it as the value of the call. 6463 if (!RetValRegs.Regs.empty()) { 6464 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6465 Chain, &Flag, CS.getInstruction()); 6466 6467 // FIXME: Why don't we do this for inline asms with MRVs? 6468 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6469 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6470 6471 // If any of the results of the inline asm is a vector, it may have the 6472 // wrong width/num elts. This can happen for register classes that can 6473 // contain multiple different value types. The preg or vreg allocated may 6474 // not have the same VT as was expected. Convert it to the right type 6475 // with bit_convert. 6476 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6477 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6478 ResultType, Val); 6479 6480 } else if (ResultType != Val.getValueType() && 6481 ResultType.isInteger() && Val.getValueType().isInteger()) { 6482 // If a result value was tied to an input value, the computed result may 6483 // have a wider width than the expected result. Extract the relevant 6484 // portion. 6485 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6486 } 6487 6488 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6489 } 6490 6491 setValue(CS.getInstruction(), Val); 6492 // Don't need to use this as a chain in this case. 6493 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6494 return; 6495 } 6496 6497 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6498 6499 // Process indirect outputs, first output all of the flagged copies out of 6500 // physregs. 6501 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6502 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6503 const Value *Ptr = IndirectStoresToEmit[i].second; 6504 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6505 Chain, &Flag, IA); 6506 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6507 } 6508 6509 // Emit the non-flagged stores from the physregs. 6510 SmallVector<SDValue, 8> OutChains; 6511 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6512 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6513 StoresToEmit[i].first, 6514 getValue(StoresToEmit[i].second), 6515 MachinePointerInfo(StoresToEmit[i].second), 6516 false, false, 0); 6517 OutChains.push_back(Val); 6518 } 6519 6520 if (!OutChains.empty()) 6521 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6522 6523 DAG.setRoot(Chain); 6524 } 6525 6526 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6527 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6528 MVT::Other, getRoot(), 6529 getValue(I.getArgOperand(0)), 6530 DAG.getSrcValue(I.getArgOperand(0)))); 6531 } 6532 6533 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6535 const DataLayout &DL = DAG.getDataLayout(); 6536 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6537 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6538 DAG.getSrcValue(I.getOperand(0)), 6539 DL.getABITypeAlignment(I.getType())); 6540 setValue(&I, V); 6541 DAG.setRoot(V.getValue(1)); 6542 } 6543 6544 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6545 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6546 MVT::Other, getRoot(), 6547 getValue(I.getArgOperand(0)), 6548 DAG.getSrcValue(I.getArgOperand(0)))); 6549 } 6550 6551 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6552 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6553 MVT::Other, getRoot(), 6554 getValue(I.getArgOperand(0)), 6555 getValue(I.getArgOperand(1)), 6556 DAG.getSrcValue(I.getArgOperand(0)), 6557 DAG.getSrcValue(I.getArgOperand(1)))); 6558 } 6559 6560 /// \brief Lower an argument list according to the target calling convention. 6561 /// 6562 /// \return A tuple of <return-value, token-chain> 6563 /// 6564 /// This is a helper for lowering intrinsics that follow a target calling 6565 /// convention or require stack pointer adjustment. Only a subset of the 6566 /// intrinsic's operands need to participate in the calling convention. 6567 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6568 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6569 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6570 TargetLowering::ArgListTy Args; 6571 Args.reserve(NumArgs); 6572 6573 // Populate the argument list. 6574 // Attributes for args start at offset 1, after the return attribute. 6575 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6576 ArgI != ArgE; ++ArgI) { 6577 const Value *V = CS->getOperand(ArgI); 6578 6579 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6580 6581 TargetLowering::ArgListEntry Entry; 6582 Entry.Node = getValue(V); 6583 Entry.Ty = V->getType(); 6584 Entry.setAttributes(&CS, AttrI); 6585 Args.push_back(Entry); 6586 } 6587 6588 TargetLowering::CallLoweringInfo CLI(DAG); 6589 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6590 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6591 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6592 6593 return lowerInvokable(CLI, EHPadBB); 6594 } 6595 6596 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6597 /// or patchpoint target node's operand list. 6598 /// 6599 /// Constants are converted to TargetConstants purely as an optimization to 6600 /// avoid constant materialization and register allocation. 6601 /// 6602 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6603 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6604 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6605 /// address materialization and register allocation, but may also be required 6606 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6607 /// alloca in the entry block, then the runtime may assume that the alloca's 6608 /// StackMap location can be read immediately after compilation and that the 6609 /// location is valid at any point during execution (this is similar to the 6610 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6611 /// only available in a register, then the runtime would need to trap when 6612 /// execution reaches the StackMap in order to read the alloca's location. 6613 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6614 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6615 SelectionDAGBuilder &Builder) { 6616 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6617 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6618 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6619 Ops.push_back( 6620 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6621 Ops.push_back( 6622 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6623 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6624 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6625 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6626 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6627 } else 6628 Ops.push_back(OpVal); 6629 } 6630 } 6631 6632 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6633 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6634 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6635 // [live variables...]) 6636 6637 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6638 6639 SDValue Chain, InFlag, Callee, NullPtr; 6640 SmallVector<SDValue, 32> Ops; 6641 6642 SDLoc DL = getCurSDLoc(); 6643 Callee = getValue(CI.getCalledValue()); 6644 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6645 6646 // The stackmap intrinsic only records the live variables (the arguemnts 6647 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6648 // intrinsic, this won't be lowered to a function call. This means we don't 6649 // have to worry about calling conventions and target specific lowering code. 6650 // Instead we perform the call lowering right here. 6651 // 6652 // chain, flag = CALLSEQ_START(chain, 0) 6653 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6654 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6655 // 6656 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6657 InFlag = Chain.getValue(1); 6658 6659 // Add the <id> and <numBytes> constants. 6660 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6661 Ops.push_back(DAG.getTargetConstant( 6662 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6663 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6664 Ops.push_back(DAG.getTargetConstant( 6665 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6666 MVT::i32)); 6667 6668 // Push live variables for the stack map. 6669 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6670 6671 // We are not pushing any register mask info here on the operands list, 6672 // because the stackmap doesn't clobber anything. 6673 6674 // Push the chain and the glue flag. 6675 Ops.push_back(Chain); 6676 Ops.push_back(InFlag); 6677 6678 // Create the STACKMAP node. 6679 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6680 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6681 Chain = SDValue(SM, 0); 6682 InFlag = Chain.getValue(1); 6683 6684 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6685 6686 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6687 6688 // Set the root to the target-lowered call chain. 6689 DAG.setRoot(Chain); 6690 6691 // Inform the Frame Information that we have a stackmap in this function. 6692 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6693 } 6694 6695 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6696 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6697 const BasicBlock *EHPadBB) { 6698 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6699 // i32 <numBytes>, 6700 // i8* <target>, 6701 // i32 <numArgs>, 6702 // [Args...], 6703 // [live variables...]) 6704 6705 CallingConv::ID CC = CS.getCallingConv(); 6706 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6707 bool HasDef = !CS->getType()->isVoidTy(); 6708 SDLoc dl = getCurSDLoc(); 6709 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6710 6711 // Handle immediate and symbolic callees. 6712 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6713 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6714 /*isTarget=*/true); 6715 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6716 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6717 SDLoc(SymbolicCallee), 6718 SymbolicCallee->getValueType(0)); 6719 6720 // Get the real number of arguments participating in the call <numArgs> 6721 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6722 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6723 6724 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6725 // Intrinsics include all meta-operands up to but not including CC. 6726 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6727 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6728 "Not enough arguments provided to the patchpoint intrinsic"); 6729 6730 // For AnyRegCC the arguments are lowered later on manually. 6731 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6732 Type *ReturnTy = 6733 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6734 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6735 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6736 6737 SDNode *CallEnd = Result.second.getNode(); 6738 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6739 CallEnd = CallEnd->getOperand(0).getNode(); 6740 6741 /// Get a call instruction from the call sequence chain. 6742 /// Tail calls are not allowed. 6743 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6744 "Expected a callseq node."); 6745 SDNode *Call = CallEnd->getOperand(0).getNode(); 6746 bool HasGlue = Call->getGluedNode(); 6747 6748 // Replace the target specific call node with the patchable intrinsic. 6749 SmallVector<SDValue, 8> Ops; 6750 6751 // Add the <id> and <numBytes> constants. 6752 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6753 Ops.push_back(DAG.getTargetConstant( 6754 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6755 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6756 Ops.push_back(DAG.getTargetConstant( 6757 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6758 MVT::i32)); 6759 6760 // Add the callee. 6761 Ops.push_back(Callee); 6762 6763 // Adjust <numArgs> to account for any arguments that have been passed on the 6764 // stack instead. 6765 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6766 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6767 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6768 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6769 6770 // Add the calling convention 6771 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6772 6773 // Add the arguments we omitted previously. The register allocator should 6774 // place these in any free register. 6775 if (IsAnyRegCC) 6776 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6777 Ops.push_back(getValue(CS.getArgument(i))); 6778 6779 // Push the arguments from the call instruction up to the register mask. 6780 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6781 Ops.append(Call->op_begin() + 2, e); 6782 6783 // Push live variables for the stack map. 6784 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6785 6786 // Push the register mask info. 6787 if (HasGlue) 6788 Ops.push_back(*(Call->op_end()-2)); 6789 else 6790 Ops.push_back(*(Call->op_end()-1)); 6791 6792 // Push the chain (this is originally the first operand of the call, but 6793 // becomes now the last or second to last operand). 6794 Ops.push_back(*(Call->op_begin())); 6795 6796 // Push the glue flag (last operand). 6797 if (HasGlue) 6798 Ops.push_back(*(Call->op_end()-1)); 6799 6800 SDVTList NodeTys; 6801 if (IsAnyRegCC && HasDef) { 6802 // Create the return types based on the intrinsic definition 6803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6804 SmallVector<EVT, 3> ValueVTs; 6805 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6806 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6807 6808 // There is always a chain and a glue type at the end 6809 ValueVTs.push_back(MVT::Other); 6810 ValueVTs.push_back(MVT::Glue); 6811 NodeTys = DAG.getVTList(ValueVTs); 6812 } else 6813 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6814 6815 // Replace the target specific call node with a PATCHPOINT node. 6816 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6817 dl, NodeTys, Ops); 6818 6819 // Update the NodeMap. 6820 if (HasDef) { 6821 if (IsAnyRegCC) 6822 setValue(CS.getInstruction(), SDValue(MN, 0)); 6823 else 6824 setValue(CS.getInstruction(), Result.first); 6825 } 6826 6827 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6828 // call sequence. Furthermore the location of the chain and glue can change 6829 // when the AnyReg calling convention is used and the intrinsic returns a 6830 // value. 6831 if (IsAnyRegCC && HasDef) { 6832 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6833 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6834 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6835 } else 6836 DAG.ReplaceAllUsesWith(Call, MN); 6837 DAG.DeleteNode(Call); 6838 6839 // Inform the Frame Information that we have a patchpoint in this function. 6840 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6841 } 6842 6843 /// Returns an AttributeSet representing the attributes applied to the return 6844 /// value of the given call. 6845 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6846 SmallVector<Attribute::AttrKind, 2> Attrs; 6847 if (CLI.RetSExt) 6848 Attrs.push_back(Attribute::SExt); 6849 if (CLI.RetZExt) 6850 Attrs.push_back(Attribute::ZExt); 6851 if (CLI.IsInReg) 6852 Attrs.push_back(Attribute::InReg); 6853 6854 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6855 Attrs); 6856 } 6857 6858 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6859 /// implementation, which just calls LowerCall. 6860 /// FIXME: When all targets are 6861 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6862 std::pair<SDValue, SDValue> 6863 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6864 // Handle the incoming return values from the call. 6865 CLI.Ins.clear(); 6866 Type *OrigRetTy = CLI.RetTy; 6867 SmallVector<EVT, 4> RetTys; 6868 SmallVector<uint64_t, 4> Offsets; 6869 auto &DL = CLI.DAG.getDataLayout(); 6870 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6871 6872 SmallVector<ISD::OutputArg, 4> Outs; 6873 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6874 6875 bool CanLowerReturn = 6876 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6877 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6878 6879 SDValue DemoteStackSlot; 6880 int DemoteStackIdx = -100; 6881 if (!CanLowerReturn) { 6882 // FIXME: equivalent assert? 6883 // assert(!CS.hasInAllocaArgument() && 6884 // "sret demotion is incompatible with inalloca"); 6885 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6886 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6887 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6888 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6889 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6890 6891 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6892 ArgListEntry Entry; 6893 Entry.Node = DemoteStackSlot; 6894 Entry.Ty = StackSlotPtrType; 6895 Entry.isSExt = false; 6896 Entry.isZExt = false; 6897 Entry.isInReg = false; 6898 Entry.isSRet = true; 6899 Entry.isNest = false; 6900 Entry.isByVal = false; 6901 Entry.isReturned = false; 6902 Entry.Alignment = Align; 6903 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6904 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6905 6906 // sret demotion isn't compatible with tail-calls, since the sret argument 6907 // points into the callers stack frame. 6908 CLI.IsTailCall = false; 6909 } else { 6910 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6911 EVT VT = RetTys[I]; 6912 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6913 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6914 for (unsigned i = 0; i != NumRegs; ++i) { 6915 ISD::InputArg MyFlags; 6916 MyFlags.VT = RegisterVT; 6917 MyFlags.ArgVT = VT; 6918 MyFlags.Used = CLI.IsReturnValueUsed; 6919 if (CLI.RetSExt) 6920 MyFlags.Flags.setSExt(); 6921 if (CLI.RetZExt) 6922 MyFlags.Flags.setZExt(); 6923 if (CLI.IsInReg) 6924 MyFlags.Flags.setInReg(); 6925 CLI.Ins.push_back(MyFlags); 6926 } 6927 } 6928 } 6929 6930 // Handle all of the outgoing arguments. 6931 CLI.Outs.clear(); 6932 CLI.OutVals.clear(); 6933 ArgListTy &Args = CLI.getArgs(); 6934 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6935 SmallVector<EVT, 4> ValueVTs; 6936 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6937 Type *FinalType = Args[i].Ty; 6938 if (Args[i].isByVal) 6939 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6940 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6941 FinalType, CLI.CallConv, CLI.IsVarArg); 6942 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6943 ++Value) { 6944 EVT VT = ValueVTs[Value]; 6945 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6946 SDValue Op = SDValue(Args[i].Node.getNode(), 6947 Args[i].Node.getResNo() + Value); 6948 ISD::ArgFlagsTy Flags; 6949 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6950 6951 if (Args[i].isZExt) 6952 Flags.setZExt(); 6953 if (Args[i].isSExt) 6954 Flags.setSExt(); 6955 if (Args[i].isInReg) 6956 Flags.setInReg(); 6957 if (Args[i].isSRet) 6958 Flags.setSRet(); 6959 if (Args[i].isByVal) 6960 Flags.setByVal(); 6961 if (Args[i].isInAlloca) { 6962 Flags.setInAlloca(); 6963 // Set the byval flag for CCAssignFn callbacks that don't know about 6964 // inalloca. This way we can know how many bytes we should've allocated 6965 // and how many bytes a callee cleanup function will pop. If we port 6966 // inalloca to more targets, we'll have to add custom inalloca handling 6967 // in the various CC lowering callbacks. 6968 Flags.setByVal(); 6969 } 6970 if (Args[i].isByVal || Args[i].isInAlloca) { 6971 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6972 Type *ElementTy = Ty->getElementType(); 6973 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6974 // For ByVal, alignment should come from FE. BE will guess if this 6975 // info is not there but there are cases it cannot get right. 6976 unsigned FrameAlign; 6977 if (Args[i].Alignment) 6978 FrameAlign = Args[i].Alignment; 6979 else 6980 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6981 Flags.setByValAlign(FrameAlign); 6982 } 6983 if (Args[i].isNest) 6984 Flags.setNest(); 6985 if (NeedsRegBlock) 6986 Flags.setInConsecutiveRegs(); 6987 Flags.setOrigAlign(OriginalAlignment); 6988 6989 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6990 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6991 SmallVector<SDValue, 4> Parts(NumParts); 6992 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6993 6994 if (Args[i].isSExt) 6995 ExtendKind = ISD::SIGN_EXTEND; 6996 else if (Args[i].isZExt) 6997 ExtendKind = ISD::ZERO_EXTEND; 6998 6999 // Conservatively only handle 'returned' on non-vectors for now 7000 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7001 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7002 "unexpected use of 'returned'"); 7003 // Before passing 'returned' to the target lowering code, ensure that 7004 // either the register MVT and the actual EVT are the same size or that 7005 // the return value and argument are extended in the same way; in these 7006 // cases it's safe to pass the argument register value unchanged as the 7007 // return register value (although it's at the target's option whether 7008 // to do so) 7009 // TODO: allow code generation to take advantage of partially preserved 7010 // registers rather than clobbering the entire register when the 7011 // parameter extension method is not compatible with the return 7012 // extension method 7013 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7014 (ExtendKind != ISD::ANY_EXTEND && 7015 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7016 Flags.setReturned(); 7017 } 7018 7019 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7020 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7021 7022 for (unsigned j = 0; j != NumParts; ++j) { 7023 // if it isn't first piece, alignment must be 1 7024 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7025 i < CLI.NumFixedArgs, 7026 i, j*Parts[j].getValueType().getStoreSize()); 7027 if (NumParts > 1 && j == 0) 7028 MyFlags.Flags.setSplit(); 7029 else if (j != 0) 7030 MyFlags.Flags.setOrigAlign(1); 7031 7032 CLI.Outs.push_back(MyFlags); 7033 CLI.OutVals.push_back(Parts[j]); 7034 } 7035 7036 if (NeedsRegBlock && Value == NumValues - 1) 7037 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7038 } 7039 } 7040 7041 SmallVector<SDValue, 4> InVals; 7042 CLI.Chain = LowerCall(CLI, InVals); 7043 7044 // Verify that the target's LowerCall behaved as expected. 7045 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7046 "LowerCall didn't return a valid chain!"); 7047 assert((!CLI.IsTailCall || InVals.empty()) && 7048 "LowerCall emitted a return value for a tail call!"); 7049 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7050 "LowerCall didn't emit the correct number of values!"); 7051 7052 // For a tail call, the return value is merely live-out and there aren't 7053 // any nodes in the DAG representing it. Return a special value to 7054 // indicate that a tail call has been emitted and no more Instructions 7055 // should be processed in the current block. 7056 if (CLI.IsTailCall) { 7057 CLI.DAG.setRoot(CLI.Chain); 7058 return std::make_pair(SDValue(), SDValue()); 7059 } 7060 7061 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7062 assert(InVals[i].getNode() && 7063 "LowerCall emitted a null value!"); 7064 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7065 "LowerCall emitted a value with the wrong type!"); 7066 }); 7067 7068 SmallVector<SDValue, 4> ReturnValues; 7069 if (!CanLowerReturn) { 7070 // The instruction result is the result of loading from the 7071 // hidden sret parameter. 7072 SmallVector<EVT, 1> PVTs; 7073 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7074 7075 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7076 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7077 EVT PtrVT = PVTs[0]; 7078 7079 unsigned NumValues = RetTys.size(); 7080 ReturnValues.resize(NumValues); 7081 SmallVector<SDValue, 4> Chains(NumValues); 7082 7083 for (unsigned i = 0; i < NumValues; ++i) { 7084 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7085 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7086 PtrVT)); 7087 SDValue L = CLI.DAG.getLoad( 7088 RetTys[i], CLI.DL, CLI.Chain, Add, 7089 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7090 DemoteStackIdx, Offsets[i]), 7091 false, false, false, 1); 7092 ReturnValues[i] = L; 7093 Chains[i] = L.getValue(1); 7094 } 7095 7096 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7097 } else { 7098 // Collect the legal value parts into potentially illegal values 7099 // that correspond to the original function's return values. 7100 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7101 if (CLI.RetSExt) 7102 AssertOp = ISD::AssertSext; 7103 else if (CLI.RetZExt) 7104 AssertOp = ISD::AssertZext; 7105 unsigned CurReg = 0; 7106 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7107 EVT VT = RetTys[I]; 7108 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7109 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7110 7111 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7112 NumRegs, RegisterVT, VT, nullptr, 7113 AssertOp)); 7114 CurReg += NumRegs; 7115 } 7116 7117 // For a function returning void, there is no return value. We can't create 7118 // such a node, so we just return a null return value in that case. In 7119 // that case, nothing will actually look at the value. 7120 if (ReturnValues.empty()) 7121 return std::make_pair(SDValue(), CLI.Chain); 7122 } 7123 7124 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7125 CLI.DAG.getVTList(RetTys), ReturnValues); 7126 return std::make_pair(Res, CLI.Chain); 7127 } 7128 7129 void TargetLowering::LowerOperationWrapper(SDNode *N, 7130 SmallVectorImpl<SDValue> &Results, 7131 SelectionDAG &DAG) const { 7132 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7133 if (Res.getNode()) 7134 Results.push_back(Res); 7135 } 7136 7137 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7138 llvm_unreachable("LowerOperation not implemented for this target!"); 7139 } 7140 7141 void 7142 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7143 SDValue Op = getNonRegisterValue(V); 7144 assert((Op.getOpcode() != ISD::CopyFromReg || 7145 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7146 "Copy from a reg to the same reg!"); 7147 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7148 7149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7150 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7151 V->getType()); 7152 SDValue Chain = DAG.getEntryNode(); 7153 7154 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7155 FuncInfo.PreferredExtendType.end()) 7156 ? ISD::ANY_EXTEND 7157 : FuncInfo.PreferredExtendType[V]; 7158 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7159 PendingExports.push_back(Chain); 7160 } 7161 7162 #include "llvm/CodeGen/SelectionDAGISel.h" 7163 7164 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7165 /// entry block, return true. This includes arguments used by switches, since 7166 /// the switch may expand into multiple basic blocks. 7167 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7168 // With FastISel active, we may be splitting blocks, so force creation 7169 // of virtual registers for all non-dead arguments. 7170 if (FastISel) 7171 return A->use_empty(); 7172 7173 const BasicBlock *Entry = A->getParent()->begin(); 7174 for (const User *U : A->users()) 7175 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7176 return false; // Use not in entry block. 7177 7178 return true; 7179 } 7180 7181 void SelectionDAGISel::LowerArguments(const Function &F) { 7182 SelectionDAG &DAG = SDB->DAG; 7183 SDLoc dl = SDB->getCurSDLoc(); 7184 const DataLayout &DL = DAG.getDataLayout(); 7185 SmallVector<ISD::InputArg, 16> Ins; 7186 7187 if (!FuncInfo->CanLowerReturn) { 7188 // Put in an sret pointer parameter before all the other parameters. 7189 SmallVector<EVT, 1> ValueVTs; 7190 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7191 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7192 7193 // NOTE: Assuming that a pointer will never break down to more than one VT 7194 // or one register. 7195 ISD::ArgFlagsTy Flags; 7196 Flags.setSRet(); 7197 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7198 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7199 ISD::InputArg::NoArgIndex, 0); 7200 Ins.push_back(RetArg); 7201 } 7202 7203 // Set up the incoming argument description vector. 7204 unsigned Idx = 1; 7205 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7206 I != E; ++I, ++Idx) { 7207 SmallVector<EVT, 4> ValueVTs; 7208 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7209 bool isArgValueUsed = !I->use_empty(); 7210 unsigned PartBase = 0; 7211 Type *FinalType = I->getType(); 7212 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7213 FinalType = cast<PointerType>(FinalType)->getElementType(); 7214 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7215 FinalType, F.getCallingConv(), F.isVarArg()); 7216 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7217 Value != NumValues; ++Value) { 7218 EVT VT = ValueVTs[Value]; 7219 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7220 ISD::ArgFlagsTy Flags; 7221 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7222 7223 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7224 Flags.setZExt(); 7225 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7226 Flags.setSExt(); 7227 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7228 Flags.setInReg(); 7229 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7230 Flags.setSRet(); 7231 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7232 Flags.setByVal(); 7233 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7234 Flags.setInAlloca(); 7235 // Set the byval flag for CCAssignFn callbacks that don't know about 7236 // inalloca. This way we can know how many bytes we should've allocated 7237 // and how many bytes a callee cleanup function will pop. If we port 7238 // inalloca to more targets, we'll have to add custom inalloca handling 7239 // in the various CC lowering callbacks. 7240 Flags.setByVal(); 7241 } 7242 if (Flags.isByVal() || Flags.isInAlloca()) { 7243 PointerType *Ty = cast<PointerType>(I->getType()); 7244 Type *ElementTy = Ty->getElementType(); 7245 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7246 // For ByVal, alignment should be passed from FE. BE will guess if 7247 // this info is not there but there are cases it cannot get right. 7248 unsigned FrameAlign; 7249 if (F.getParamAlignment(Idx)) 7250 FrameAlign = F.getParamAlignment(Idx); 7251 else 7252 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7253 Flags.setByValAlign(FrameAlign); 7254 } 7255 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7256 Flags.setNest(); 7257 if (NeedsRegBlock) 7258 Flags.setInConsecutiveRegs(); 7259 Flags.setOrigAlign(OriginalAlignment); 7260 7261 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7262 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7263 for (unsigned i = 0; i != NumRegs; ++i) { 7264 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7265 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7266 if (NumRegs > 1 && i == 0) 7267 MyFlags.Flags.setSplit(); 7268 // if it isn't first piece, alignment must be 1 7269 else if (i > 0) 7270 MyFlags.Flags.setOrigAlign(1); 7271 Ins.push_back(MyFlags); 7272 } 7273 if (NeedsRegBlock && Value == NumValues - 1) 7274 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7275 PartBase += VT.getStoreSize(); 7276 } 7277 } 7278 7279 // Call the target to set up the argument values. 7280 SmallVector<SDValue, 8> InVals; 7281 SDValue NewRoot = TLI->LowerFormalArguments( 7282 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7283 7284 // Verify that the target's LowerFormalArguments behaved as expected. 7285 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7286 "LowerFormalArguments didn't return a valid chain!"); 7287 assert(InVals.size() == Ins.size() && 7288 "LowerFormalArguments didn't emit the correct number of values!"); 7289 DEBUG({ 7290 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7291 assert(InVals[i].getNode() && 7292 "LowerFormalArguments emitted a null value!"); 7293 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7294 "LowerFormalArguments emitted a value with the wrong type!"); 7295 } 7296 }); 7297 7298 // Update the DAG with the new chain value resulting from argument lowering. 7299 DAG.setRoot(NewRoot); 7300 7301 // Set up the argument values. 7302 unsigned i = 0; 7303 Idx = 1; 7304 if (!FuncInfo->CanLowerReturn) { 7305 // Create a virtual register for the sret pointer, and put in a copy 7306 // from the sret argument into it. 7307 SmallVector<EVT, 1> ValueVTs; 7308 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7309 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7310 MVT VT = ValueVTs[0].getSimpleVT(); 7311 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7312 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7313 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7314 RegVT, VT, nullptr, AssertOp); 7315 7316 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7317 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7318 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7319 FuncInfo->DemoteRegister = SRetReg; 7320 NewRoot = 7321 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7322 DAG.setRoot(NewRoot); 7323 7324 // i indexes lowered arguments. Bump it past the hidden sret argument. 7325 // Idx indexes LLVM arguments. Don't touch it. 7326 ++i; 7327 } 7328 7329 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7330 ++I, ++Idx) { 7331 SmallVector<SDValue, 4> ArgValues; 7332 SmallVector<EVT, 4> ValueVTs; 7333 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7334 unsigned NumValues = ValueVTs.size(); 7335 7336 // If this argument is unused then remember its value. It is used to generate 7337 // debugging information. 7338 if (I->use_empty() && NumValues) { 7339 SDB->setUnusedArgValue(I, InVals[i]); 7340 7341 // Also remember any frame index for use in FastISel. 7342 if (FrameIndexSDNode *FI = 7343 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7344 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7345 } 7346 7347 for (unsigned Val = 0; Val != NumValues; ++Val) { 7348 EVT VT = ValueVTs[Val]; 7349 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7350 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7351 7352 if (!I->use_empty()) { 7353 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7355 AssertOp = ISD::AssertSext; 7356 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7357 AssertOp = ISD::AssertZext; 7358 7359 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7360 NumParts, PartVT, VT, 7361 nullptr, AssertOp)); 7362 } 7363 7364 i += NumParts; 7365 } 7366 7367 // We don't need to do anything else for unused arguments. 7368 if (ArgValues.empty()) 7369 continue; 7370 7371 // Note down frame index. 7372 if (FrameIndexSDNode *FI = 7373 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7374 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7375 7376 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7377 SDB->getCurSDLoc()); 7378 7379 SDB->setValue(I, Res); 7380 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7381 if (LoadSDNode *LNode = 7382 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7383 if (FrameIndexSDNode *FI = 7384 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7385 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7386 } 7387 7388 // If this argument is live outside of the entry block, insert a copy from 7389 // wherever we got it to the vreg that other BB's will reference it as. 7390 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7391 // If we can, though, try to skip creating an unnecessary vreg. 7392 // FIXME: This isn't very clean... it would be nice to make this more 7393 // general. It's also subtly incompatible with the hacks FastISel 7394 // uses with vregs. 7395 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7396 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7397 FuncInfo->ValueMap[I] = Reg; 7398 continue; 7399 } 7400 } 7401 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7402 FuncInfo->InitializeRegForValue(I); 7403 SDB->CopyToExportRegsIfNeeded(I); 7404 } 7405 } 7406 7407 assert(i == InVals.size() && "Argument register count mismatch!"); 7408 7409 // Finally, if the target has anything special to do, allow it to do so. 7410 EmitFunctionEntryCode(); 7411 } 7412 7413 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7414 /// ensure constants are generated when needed. Remember the virtual registers 7415 /// that need to be added to the Machine PHI nodes as input. We cannot just 7416 /// directly add them, because expansion might result in multiple MBB's for one 7417 /// BB. As such, the start of the BB might correspond to a different MBB than 7418 /// the end. 7419 /// 7420 void 7421 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7422 const TerminatorInst *TI = LLVMBB->getTerminator(); 7423 7424 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7425 7426 // Check PHI nodes in successors that expect a value to be available from this 7427 // block. 7428 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7429 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7430 if (!isa<PHINode>(SuccBB->begin())) continue; 7431 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7432 7433 // If this terminator has multiple identical successors (common for 7434 // switches), only handle each succ once. 7435 if (!SuccsHandled.insert(SuccMBB).second) 7436 continue; 7437 7438 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7439 7440 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7441 // nodes and Machine PHI nodes, but the incoming operands have not been 7442 // emitted yet. 7443 for (BasicBlock::const_iterator I = SuccBB->begin(); 7444 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7445 // Ignore dead phi's. 7446 if (PN->use_empty()) continue; 7447 7448 // Skip empty types 7449 if (PN->getType()->isEmptyTy()) 7450 continue; 7451 7452 unsigned Reg; 7453 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7454 7455 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7456 unsigned &RegOut = ConstantsOut[C]; 7457 if (RegOut == 0) { 7458 RegOut = FuncInfo.CreateRegs(C->getType()); 7459 CopyValueToVirtualRegister(C, RegOut); 7460 } 7461 Reg = RegOut; 7462 } else { 7463 DenseMap<const Value *, unsigned>::iterator I = 7464 FuncInfo.ValueMap.find(PHIOp); 7465 if (I != FuncInfo.ValueMap.end()) 7466 Reg = I->second; 7467 else { 7468 assert(isa<AllocaInst>(PHIOp) && 7469 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7470 "Didn't codegen value into a register!??"); 7471 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7472 CopyValueToVirtualRegister(PHIOp, Reg); 7473 } 7474 } 7475 7476 // Remember that this register needs to added to the machine PHI node as 7477 // the input for this MBB. 7478 SmallVector<EVT, 4> ValueVTs; 7479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7480 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7481 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7482 EVT VT = ValueVTs[vti]; 7483 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7484 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7485 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7486 Reg += NumRegisters; 7487 } 7488 } 7489 } 7490 7491 ConstantsOut.clear(); 7492 } 7493 7494 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7495 /// is 0. 7496 MachineBasicBlock * 7497 SelectionDAGBuilder::StackProtectorDescriptor:: 7498 AddSuccessorMBB(const BasicBlock *BB, 7499 MachineBasicBlock *ParentMBB, 7500 bool IsLikely, 7501 MachineBasicBlock *SuccMBB) { 7502 // If SuccBB has not been created yet, create it. 7503 if (!SuccMBB) { 7504 MachineFunction *MF = ParentMBB->getParent(); 7505 MachineFunction::iterator BBI = ParentMBB; 7506 SuccMBB = MF->CreateMachineBasicBlock(BB); 7507 MF->insert(++BBI, SuccMBB); 7508 } 7509 // Add it as a successor of ParentMBB. 7510 ParentMBB->addSuccessor( 7511 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7512 return SuccMBB; 7513 } 7514 7515 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7516 MachineFunction::iterator I = MBB; 7517 if (++I == FuncInfo.MF->end()) 7518 return nullptr; 7519 return I; 7520 } 7521 7522 /// During lowering new call nodes can be created (such as memset, etc.). 7523 /// Those will become new roots of the current DAG, but complications arise 7524 /// when they are tail calls. In such cases, the call lowering will update 7525 /// the root, but the builder still needs to know that a tail call has been 7526 /// lowered in order to avoid generating an additional return. 7527 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7528 // If the node is null, we do have a tail call. 7529 if (MaybeTC.getNode() != nullptr) 7530 DAG.setRoot(MaybeTC); 7531 else 7532 HasTailCall = true; 7533 } 7534 7535 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7536 unsigned *TotalCases, unsigned First, 7537 unsigned Last) { 7538 assert(Last >= First); 7539 assert(TotalCases[Last] >= TotalCases[First]); 7540 7541 APInt LowCase = Clusters[First].Low->getValue(); 7542 APInt HighCase = Clusters[Last].High->getValue(); 7543 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7544 7545 // FIXME: A range of consecutive cases has 100% density, but only requires one 7546 // comparison to lower. We should discriminate against such consecutive ranges 7547 // in jump tables. 7548 7549 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7550 uint64_t Range = Diff + 1; 7551 7552 uint64_t NumCases = 7553 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7554 7555 assert(NumCases < UINT64_MAX / 100); 7556 assert(Range >= NumCases); 7557 7558 return NumCases * 100 >= Range * MinJumpTableDensity; 7559 } 7560 7561 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7562 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7563 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7564 } 7565 7566 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7567 unsigned First, unsigned Last, 7568 const SwitchInst *SI, 7569 MachineBasicBlock *DefaultMBB, 7570 CaseCluster &JTCluster) { 7571 assert(First <= Last); 7572 7573 uint32_t Weight = 0; 7574 unsigned NumCmps = 0; 7575 std::vector<MachineBasicBlock*> Table; 7576 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7577 for (unsigned I = First; I <= Last; ++I) { 7578 assert(Clusters[I].Kind == CC_Range); 7579 Weight += Clusters[I].Weight; 7580 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7581 APInt Low = Clusters[I].Low->getValue(); 7582 APInt High = Clusters[I].High->getValue(); 7583 NumCmps += (Low == High) ? 1 : 2; 7584 if (I != First) { 7585 // Fill the gap between this and the previous cluster. 7586 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7587 assert(PreviousHigh.slt(Low)); 7588 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7589 for (uint64_t J = 0; J < Gap; J++) 7590 Table.push_back(DefaultMBB); 7591 } 7592 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7593 for (uint64_t J = 0; J < ClusterSize; ++J) 7594 Table.push_back(Clusters[I].MBB); 7595 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7596 } 7597 7598 unsigned NumDests = JTWeights.size(); 7599 if (isSuitableForBitTests(NumDests, NumCmps, 7600 Clusters[First].Low->getValue(), 7601 Clusters[Last].High->getValue())) { 7602 // Clusters[First..Last] should be lowered as bit tests instead. 7603 return false; 7604 } 7605 7606 // Create the MBB that will load from and jump through the table. 7607 // Note: We create it here, but it's not inserted into the function yet. 7608 MachineFunction *CurMF = FuncInfo.MF; 7609 MachineBasicBlock *JumpTableMBB = 7610 CurMF->CreateMachineBasicBlock(SI->getParent()); 7611 7612 // Add successors. Note: use table order for determinism. 7613 SmallPtrSet<MachineBasicBlock *, 8> Done; 7614 for (MachineBasicBlock *Succ : Table) { 7615 if (Done.count(Succ)) 7616 continue; 7617 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7618 Done.insert(Succ); 7619 } 7620 7621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7622 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7623 ->createJumpTableIndex(Table); 7624 7625 // Set up the jump table info. 7626 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7627 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7628 Clusters[Last].High->getValue(), SI->getCondition(), 7629 nullptr, false); 7630 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7631 7632 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7633 JTCases.size() - 1, Weight); 7634 return true; 7635 } 7636 7637 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7638 const SwitchInst *SI, 7639 MachineBasicBlock *DefaultMBB) { 7640 #ifndef NDEBUG 7641 // Clusters must be non-empty, sorted, and only contain Range clusters. 7642 assert(!Clusters.empty()); 7643 for (CaseCluster &C : Clusters) 7644 assert(C.Kind == CC_Range); 7645 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7646 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7647 #endif 7648 7649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7650 if (!areJTsAllowed(TLI)) 7651 return; 7652 7653 const int64_t N = Clusters.size(); 7654 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7655 7656 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7657 SmallVector<unsigned, 8> TotalCases(N); 7658 7659 for (unsigned i = 0; i < N; ++i) { 7660 APInt Hi = Clusters[i].High->getValue(); 7661 APInt Lo = Clusters[i].Low->getValue(); 7662 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7663 if (i != 0) 7664 TotalCases[i] += TotalCases[i - 1]; 7665 } 7666 7667 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7668 // Cheap case: the whole range might be suitable for jump table. 7669 CaseCluster JTCluster; 7670 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7671 Clusters[0] = JTCluster; 7672 Clusters.resize(1); 7673 return; 7674 } 7675 } 7676 7677 // The algorithm below is not suitable for -O0. 7678 if (TM.getOptLevel() == CodeGenOpt::None) 7679 return; 7680 7681 // Split Clusters into minimum number of dense partitions. The algorithm uses 7682 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7683 // for the Case Statement'" (1994), but builds the MinPartitions array in 7684 // reverse order to make it easier to reconstruct the partitions in ascending 7685 // order. In the choice between two optimal partitionings, it picks the one 7686 // which yields more jump tables. 7687 7688 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7689 SmallVector<unsigned, 8> MinPartitions(N); 7690 // LastElement[i] is the last element of the partition starting at i. 7691 SmallVector<unsigned, 8> LastElement(N); 7692 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7693 SmallVector<unsigned, 8> NumTables(N); 7694 7695 // Base case: There is only one way to partition Clusters[N-1]. 7696 MinPartitions[N - 1] = 1; 7697 LastElement[N - 1] = N - 1; 7698 assert(MinJumpTableSize > 1); 7699 NumTables[N - 1] = 0; 7700 7701 // Note: loop indexes are signed to avoid underflow. 7702 for (int64_t i = N - 2; i >= 0; i--) { 7703 // Find optimal partitioning of Clusters[i..N-1]. 7704 // Baseline: Put Clusters[i] into a partition on its own. 7705 MinPartitions[i] = MinPartitions[i + 1] + 1; 7706 LastElement[i] = i; 7707 NumTables[i] = NumTables[i + 1]; 7708 7709 // Search for a solution that results in fewer partitions. 7710 for (int64_t j = N - 1; j > i; j--) { 7711 // Try building a partition from Clusters[i..j]. 7712 if (isDense(Clusters, &TotalCases[0], i, j)) { 7713 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7714 bool IsTable = j - i + 1 >= MinJumpTableSize; 7715 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7716 7717 // If this j leads to fewer partitions, or same number of partitions 7718 // with more lookup tables, it is a better partitioning. 7719 if (NumPartitions < MinPartitions[i] || 7720 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7721 MinPartitions[i] = NumPartitions; 7722 LastElement[i] = j; 7723 NumTables[i] = Tables; 7724 } 7725 } 7726 } 7727 } 7728 7729 // Iterate over the partitions, replacing some with jump tables in-place. 7730 unsigned DstIndex = 0; 7731 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7732 Last = LastElement[First]; 7733 assert(Last >= First); 7734 assert(DstIndex <= First); 7735 unsigned NumClusters = Last - First + 1; 7736 7737 CaseCluster JTCluster; 7738 if (NumClusters >= MinJumpTableSize && 7739 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7740 Clusters[DstIndex++] = JTCluster; 7741 } else { 7742 for (unsigned I = First; I <= Last; ++I) 7743 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7744 } 7745 } 7746 Clusters.resize(DstIndex); 7747 } 7748 7749 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7750 // FIXME: Using the pointer type doesn't seem ideal. 7751 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7752 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7753 return Range <= BW; 7754 } 7755 7756 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7757 unsigned NumCmps, 7758 const APInt &Low, 7759 const APInt &High) { 7760 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7761 // range of cases both require only one branch to lower. Just looking at the 7762 // number of clusters and destinations should be enough to decide whether to 7763 // build bit tests. 7764 7765 // To lower a range with bit tests, the range must fit the bitwidth of a 7766 // machine word. 7767 if (!rangeFitsInWord(Low, High)) 7768 return false; 7769 7770 // Decide whether it's profitable to lower this range with bit tests. Each 7771 // destination requires a bit test and branch, and there is an overall range 7772 // check branch. For a small number of clusters, separate comparisons might be 7773 // cheaper, and for many destinations, splitting the range might be better. 7774 return (NumDests == 1 && NumCmps >= 3) || 7775 (NumDests == 2 && NumCmps >= 5) || 7776 (NumDests == 3 && NumCmps >= 6); 7777 } 7778 7779 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7780 unsigned First, unsigned Last, 7781 const SwitchInst *SI, 7782 CaseCluster &BTCluster) { 7783 assert(First <= Last); 7784 if (First == Last) 7785 return false; 7786 7787 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7788 unsigned NumCmps = 0; 7789 for (int64_t I = First; I <= Last; ++I) { 7790 assert(Clusters[I].Kind == CC_Range); 7791 Dests.set(Clusters[I].MBB->getNumber()); 7792 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7793 } 7794 unsigned NumDests = Dests.count(); 7795 7796 APInt Low = Clusters[First].Low->getValue(); 7797 APInt High = Clusters[Last].High->getValue(); 7798 assert(Low.slt(High)); 7799 7800 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7801 return false; 7802 7803 APInt LowBound; 7804 APInt CmpRange; 7805 7806 const int BitWidth = DAG.getTargetLoweringInfo() 7807 .getPointerTy(DAG.getDataLayout()) 7808 .getSizeInBits(); 7809 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7810 7811 // Check if the clusters cover a contiguous range such that no value in the 7812 // range will jump to the default statement. 7813 bool ContiguousRange = true; 7814 for (int64_t I = First + 1; I <= Last; ++I) { 7815 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7816 ContiguousRange = false; 7817 break; 7818 } 7819 } 7820 7821 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7822 // Optimize the case where all the case values fit in a word without having 7823 // to subtract minValue. In this case, we can optimize away the subtraction. 7824 LowBound = APInt::getNullValue(Low.getBitWidth()); 7825 CmpRange = High; 7826 ContiguousRange = false; 7827 } else { 7828 LowBound = Low; 7829 CmpRange = High - Low; 7830 } 7831 7832 CaseBitsVector CBV; 7833 uint32_t TotalWeight = 0; 7834 for (unsigned i = First; i <= Last; ++i) { 7835 // Find the CaseBits for this destination. 7836 unsigned j; 7837 for (j = 0; j < CBV.size(); ++j) 7838 if (CBV[j].BB == Clusters[i].MBB) 7839 break; 7840 if (j == CBV.size()) 7841 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7842 CaseBits *CB = &CBV[j]; 7843 7844 // Update Mask, Bits and ExtraWeight. 7845 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7846 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7847 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7848 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7849 CB->Bits += Hi - Lo + 1; 7850 CB->ExtraWeight += Clusters[i].Weight; 7851 TotalWeight += Clusters[i].Weight; 7852 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7853 } 7854 7855 BitTestInfo BTI; 7856 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7857 // Sort by weight first, number of bits second. 7858 if (a.ExtraWeight != b.ExtraWeight) 7859 return a.ExtraWeight > b.ExtraWeight; 7860 return a.Bits > b.Bits; 7861 }); 7862 7863 for (auto &CB : CBV) { 7864 MachineBasicBlock *BitTestBB = 7865 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7866 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7867 } 7868 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7869 SI->getCondition(), -1U, MVT::Other, false, 7870 ContiguousRange, nullptr, nullptr, std::move(BTI), 7871 TotalWeight); 7872 7873 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7874 BitTestCases.size() - 1, TotalWeight); 7875 return true; 7876 } 7877 7878 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7879 const SwitchInst *SI) { 7880 // Partition Clusters into as few subsets as possible, where each subset has a 7881 // range that fits in a machine word and has <= 3 unique destinations. 7882 7883 #ifndef NDEBUG 7884 // Clusters must be sorted and contain Range or JumpTable clusters. 7885 assert(!Clusters.empty()); 7886 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7887 for (const CaseCluster &C : Clusters) 7888 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7889 for (unsigned i = 1; i < Clusters.size(); ++i) 7890 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7891 #endif 7892 7893 // The algorithm below is not suitable for -O0. 7894 if (TM.getOptLevel() == CodeGenOpt::None) 7895 return; 7896 7897 // If target does not have legal shift left, do not emit bit tests at all. 7898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7899 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7900 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7901 return; 7902 7903 int BitWidth = PTy.getSizeInBits(); 7904 const int64_t N = Clusters.size(); 7905 7906 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7907 SmallVector<unsigned, 8> MinPartitions(N); 7908 // LastElement[i] is the last element of the partition starting at i. 7909 SmallVector<unsigned, 8> LastElement(N); 7910 7911 // FIXME: This might not be the best algorithm for finding bit test clusters. 7912 7913 // Base case: There is only one way to partition Clusters[N-1]. 7914 MinPartitions[N - 1] = 1; 7915 LastElement[N - 1] = N - 1; 7916 7917 // Note: loop indexes are signed to avoid underflow. 7918 for (int64_t i = N - 2; i >= 0; --i) { 7919 // Find optimal partitioning of Clusters[i..N-1]. 7920 // Baseline: Put Clusters[i] into a partition on its own. 7921 MinPartitions[i] = MinPartitions[i + 1] + 1; 7922 LastElement[i] = i; 7923 7924 // Search for a solution that results in fewer partitions. 7925 // Note: the search is limited by BitWidth, reducing time complexity. 7926 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7927 // Try building a partition from Clusters[i..j]. 7928 7929 // Check the range. 7930 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7931 Clusters[j].High->getValue())) 7932 continue; 7933 7934 // Check nbr of destinations and cluster types. 7935 // FIXME: This works, but doesn't seem very efficient. 7936 bool RangesOnly = true; 7937 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7938 for (int64_t k = i; k <= j; k++) { 7939 if (Clusters[k].Kind != CC_Range) { 7940 RangesOnly = false; 7941 break; 7942 } 7943 Dests.set(Clusters[k].MBB->getNumber()); 7944 } 7945 if (!RangesOnly || Dests.count() > 3) 7946 break; 7947 7948 // Check if it's a better partition. 7949 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7950 if (NumPartitions < MinPartitions[i]) { 7951 // Found a better partition. 7952 MinPartitions[i] = NumPartitions; 7953 LastElement[i] = j; 7954 } 7955 } 7956 } 7957 7958 // Iterate over the partitions, replacing with bit-test clusters in-place. 7959 unsigned DstIndex = 0; 7960 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7961 Last = LastElement[First]; 7962 assert(First <= Last); 7963 assert(DstIndex <= First); 7964 7965 CaseCluster BitTestCluster; 7966 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7967 Clusters[DstIndex++] = BitTestCluster; 7968 } else { 7969 size_t NumClusters = Last - First + 1; 7970 std::memmove(&Clusters[DstIndex], &Clusters[First], 7971 sizeof(Clusters[0]) * NumClusters); 7972 DstIndex += NumClusters; 7973 } 7974 } 7975 Clusters.resize(DstIndex); 7976 } 7977 7978 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7979 MachineBasicBlock *SwitchMBB, 7980 MachineBasicBlock *DefaultMBB) { 7981 MachineFunction *CurMF = FuncInfo.MF; 7982 MachineBasicBlock *NextMBB = nullptr; 7983 MachineFunction::iterator BBI = W.MBB; 7984 if (++BBI != FuncInfo.MF->end()) 7985 NextMBB = BBI; 7986 7987 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7988 7989 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7990 7991 if (Size == 2 && W.MBB == SwitchMBB) { 7992 // If any two of the cases has the same destination, and if one value 7993 // is the same as the other, but has one bit unset that the other has set, 7994 // use bit manipulation to do two compares at once. For example: 7995 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7996 // TODO: This could be extended to merge any 2 cases in switches with 3 7997 // cases. 7998 // TODO: Handle cases where W.CaseBB != SwitchBB. 7999 CaseCluster &Small = *W.FirstCluster; 8000 CaseCluster &Big = *W.LastCluster; 8001 8002 if (Small.Low == Small.High && Big.Low == Big.High && 8003 Small.MBB == Big.MBB) { 8004 const APInt &SmallValue = Small.Low->getValue(); 8005 const APInt &BigValue = Big.Low->getValue(); 8006 8007 // Check that there is only one bit different. 8008 APInt CommonBit = BigValue ^ SmallValue; 8009 if (CommonBit.isPowerOf2()) { 8010 SDValue CondLHS = getValue(Cond); 8011 EVT VT = CondLHS.getValueType(); 8012 SDLoc DL = getCurSDLoc(); 8013 8014 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8015 DAG.getConstant(CommonBit, DL, VT)); 8016 SDValue Cond = DAG.getSetCC( 8017 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8018 ISD::SETEQ); 8019 8020 // Update successor info. 8021 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8022 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8023 addSuccessorWithWeight( 8024 SwitchMBB, DefaultMBB, 8025 // The default destination is the first successor in IR. 8026 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8027 : 0); 8028 8029 // Insert the true branch. 8030 SDValue BrCond = 8031 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8032 DAG.getBasicBlock(Small.MBB)); 8033 // Insert the false branch. 8034 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8035 DAG.getBasicBlock(DefaultMBB)); 8036 8037 DAG.setRoot(BrCond); 8038 return; 8039 } 8040 } 8041 } 8042 8043 if (TM.getOptLevel() != CodeGenOpt::None) { 8044 // Order cases by weight so the most likely case will be checked first. 8045 std::sort(W.FirstCluster, W.LastCluster + 1, 8046 [](const CaseCluster &a, const CaseCluster &b) { 8047 return a.Weight > b.Weight; 8048 }); 8049 8050 // Rearrange the case blocks so that the last one falls through if possible 8051 // without without changing the order of weights. 8052 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8053 --I; 8054 if (I->Weight > W.LastCluster->Weight) 8055 break; 8056 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8057 std::swap(*I, *W.LastCluster); 8058 break; 8059 } 8060 } 8061 } 8062 8063 // Compute total weight. 8064 uint32_t DefaultWeight = W.DefaultWeight; 8065 uint32_t UnhandledWeights = DefaultWeight; 8066 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8067 UnhandledWeights += I->Weight; 8068 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8069 } 8070 8071 MachineBasicBlock *CurMBB = W.MBB; 8072 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8073 MachineBasicBlock *Fallthrough; 8074 if (I == W.LastCluster) { 8075 // For the last cluster, fall through to the default destination. 8076 Fallthrough = DefaultMBB; 8077 } else { 8078 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8079 CurMF->insert(BBI, Fallthrough); 8080 // Put Cond in a virtual register to make it available from the new blocks. 8081 ExportFromCurrentBlock(Cond); 8082 } 8083 UnhandledWeights -= I->Weight; 8084 8085 switch (I->Kind) { 8086 case CC_JumpTable: { 8087 // FIXME: Optimize away range check based on pivot comparisons. 8088 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8089 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8090 8091 // The jump block hasn't been inserted yet; insert it here. 8092 MachineBasicBlock *JumpMBB = JT->MBB; 8093 CurMF->insert(BBI, JumpMBB); 8094 8095 uint32_t JumpWeight = I->Weight; 8096 uint32_t FallthroughWeight = UnhandledWeights; 8097 8098 // If Fallthrough is a target of the jump table, we evenly distribute 8099 // the weight on the edge to Fallthrough to successors of CurMBB. 8100 // Also update the weight on the edge from JumpMBB to Fallthrough. 8101 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8102 SE = JumpMBB->succ_end(); 8103 SI != SE; ++SI) { 8104 if (*SI == Fallthrough) { 8105 JumpWeight += DefaultWeight / 2; 8106 FallthroughWeight -= DefaultWeight / 2; 8107 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8108 break; 8109 } 8110 } 8111 8112 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8113 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8114 8115 // The jump table header will be inserted in our current block, do the 8116 // range check, and fall through to our fallthrough block. 8117 JTH->HeaderBB = CurMBB; 8118 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8119 8120 // If we're in the right place, emit the jump table header right now. 8121 if (CurMBB == SwitchMBB) { 8122 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8123 JTH->Emitted = true; 8124 } 8125 break; 8126 } 8127 case CC_BitTests: { 8128 // FIXME: Optimize away range check based on pivot comparisons. 8129 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8130 8131 // The bit test blocks haven't been inserted yet; insert them here. 8132 for (BitTestCase &BTC : BTB->Cases) 8133 CurMF->insert(BBI, BTC.ThisBB); 8134 8135 // Fill in fields of the BitTestBlock. 8136 BTB->Parent = CurMBB; 8137 BTB->Default = Fallthrough; 8138 8139 BTB->DefaultWeight = UnhandledWeights; 8140 // If the cases in bit test don't form a contiguous range, we evenly 8141 // distribute the weight on the edge to Fallthrough to two successors 8142 // of CurMBB. 8143 if (!BTB->ContiguousRange) { 8144 BTB->Weight += DefaultWeight / 2; 8145 BTB->DefaultWeight -= DefaultWeight / 2; 8146 } 8147 8148 // If we're in the right place, emit the bit test header right now. 8149 if (CurMBB == SwitchMBB) { 8150 visitBitTestHeader(*BTB, SwitchMBB); 8151 BTB->Emitted = true; 8152 } 8153 break; 8154 } 8155 case CC_Range: { 8156 const Value *RHS, *LHS, *MHS; 8157 ISD::CondCode CC; 8158 if (I->Low == I->High) { 8159 // Check Cond == I->Low. 8160 CC = ISD::SETEQ; 8161 LHS = Cond; 8162 RHS=I->Low; 8163 MHS = nullptr; 8164 } else { 8165 // Check I->Low <= Cond <= I->High. 8166 CC = ISD::SETLE; 8167 LHS = I->Low; 8168 MHS = Cond; 8169 RHS = I->High; 8170 } 8171 8172 // The false weight is the sum of all unhandled cases. 8173 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8174 UnhandledWeights); 8175 8176 if (CurMBB == SwitchMBB) 8177 visitSwitchCase(CB, SwitchMBB); 8178 else 8179 SwitchCases.push_back(CB); 8180 8181 break; 8182 } 8183 } 8184 CurMBB = Fallthrough; 8185 } 8186 } 8187 8188 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8189 CaseClusterIt First, 8190 CaseClusterIt Last) { 8191 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8192 if (X.Weight != CC.Weight) 8193 return X.Weight > CC.Weight; 8194 8195 // Ties are broken by comparing the case value. 8196 return X.Low->getValue().slt(CC.Low->getValue()); 8197 }); 8198 } 8199 8200 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8201 const SwitchWorkListItem &W, 8202 Value *Cond, 8203 MachineBasicBlock *SwitchMBB) { 8204 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8205 "Clusters not sorted?"); 8206 8207 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8208 8209 // Balance the tree based on branch weights to create a near-optimal (in terms 8210 // of search time given key frequency) binary search tree. See e.g. Kurt 8211 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8212 CaseClusterIt LastLeft = W.FirstCluster; 8213 CaseClusterIt FirstRight = W.LastCluster; 8214 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8215 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8216 8217 // Move LastLeft and FirstRight towards each other from opposite directions to 8218 // find a partitioning of the clusters which balances the weight on both 8219 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8220 // taken to ensure 0-weight nodes are distributed evenly. 8221 unsigned I = 0; 8222 while (LastLeft + 1 < FirstRight) { 8223 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8224 LeftWeight += (++LastLeft)->Weight; 8225 else 8226 RightWeight += (--FirstRight)->Weight; 8227 I++; 8228 } 8229 8230 for (;;) { 8231 // Our binary search tree differs from a typical BST in that ours can have up 8232 // to three values in each leaf. The pivot selection above doesn't take that 8233 // into account, which means the tree might require more nodes and be less 8234 // efficient. We compensate for this here. 8235 8236 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8237 unsigned NumRight = W.LastCluster - FirstRight + 1; 8238 8239 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8240 // If one side has less than 3 clusters, and the other has more than 3, 8241 // consider taking a cluster from the other side. 8242 8243 if (NumLeft < NumRight) { 8244 // Consider moving the first cluster on the right to the left side. 8245 CaseCluster &CC = *FirstRight; 8246 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8247 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8248 if (LeftSideRank <= RightSideRank) { 8249 // Moving the cluster to the left does not demote it. 8250 ++LastLeft; 8251 ++FirstRight; 8252 continue; 8253 } 8254 } else { 8255 assert(NumRight < NumLeft); 8256 // Consider moving the last element on the left to the right side. 8257 CaseCluster &CC = *LastLeft; 8258 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8259 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8260 if (RightSideRank <= LeftSideRank) { 8261 // Moving the cluster to the right does not demot it. 8262 --LastLeft; 8263 --FirstRight; 8264 continue; 8265 } 8266 } 8267 } 8268 break; 8269 } 8270 8271 assert(LastLeft + 1 == FirstRight); 8272 assert(LastLeft >= W.FirstCluster); 8273 assert(FirstRight <= W.LastCluster); 8274 8275 // Use the first element on the right as pivot since we will make less-than 8276 // comparisons against it. 8277 CaseClusterIt PivotCluster = FirstRight; 8278 assert(PivotCluster > W.FirstCluster); 8279 assert(PivotCluster <= W.LastCluster); 8280 8281 CaseClusterIt FirstLeft = W.FirstCluster; 8282 CaseClusterIt LastRight = W.LastCluster; 8283 8284 const ConstantInt *Pivot = PivotCluster->Low; 8285 8286 // New blocks will be inserted immediately after the current one. 8287 MachineFunction::iterator BBI = W.MBB; 8288 ++BBI; 8289 8290 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8291 // we can branch to its destination directly if it's squeezed exactly in 8292 // between the known lower bound and Pivot - 1. 8293 MachineBasicBlock *LeftMBB; 8294 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8295 FirstLeft->Low == W.GE && 8296 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8297 LeftMBB = FirstLeft->MBB; 8298 } else { 8299 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8300 FuncInfo.MF->insert(BBI, LeftMBB); 8301 WorkList.push_back( 8302 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8303 // Put Cond in a virtual register to make it available from the new blocks. 8304 ExportFromCurrentBlock(Cond); 8305 } 8306 8307 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8308 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8309 // directly if RHS.High equals the current upper bound. 8310 MachineBasicBlock *RightMBB; 8311 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8312 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8313 RightMBB = FirstRight->MBB; 8314 } else { 8315 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8316 FuncInfo.MF->insert(BBI, RightMBB); 8317 WorkList.push_back( 8318 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8319 // Put Cond in a virtual register to make it available from the new blocks. 8320 ExportFromCurrentBlock(Cond); 8321 } 8322 8323 // Create the CaseBlock record that will be used to lower the branch. 8324 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8325 LeftWeight, RightWeight); 8326 8327 if (W.MBB == SwitchMBB) 8328 visitSwitchCase(CB, SwitchMBB); 8329 else 8330 SwitchCases.push_back(CB); 8331 } 8332 8333 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8334 // Extract cases from the switch. 8335 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8336 CaseClusterVector Clusters; 8337 Clusters.reserve(SI.getNumCases()); 8338 for (auto I : SI.cases()) { 8339 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8340 const ConstantInt *CaseVal = I.getCaseValue(); 8341 uint32_t Weight = 8342 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8343 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8344 } 8345 8346 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8347 8348 // Cluster adjacent cases with the same destination. We do this at all 8349 // optimization levels because it's cheap to do and will make codegen faster 8350 // if there are many clusters. 8351 sortAndRangeify(Clusters); 8352 8353 if (TM.getOptLevel() != CodeGenOpt::None) { 8354 // Replace an unreachable default with the most popular destination. 8355 // FIXME: Exploit unreachable default more aggressively. 8356 bool UnreachableDefault = 8357 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8358 if (UnreachableDefault && !Clusters.empty()) { 8359 DenseMap<const BasicBlock *, unsigned> Popularity; 8360 unsigned MaxPop = 0; 8361 const BasicBlock *MaxBB = nullptr; 8362 for (auto I : SI.cases()) { 8363 const BasicBlock *BB = I.getCaseSuccessor(); 8364 if (++Popularity[BB] > MaxPop) { 8365 MaxPop = Popularity[BB]; 8366 MaxBB = BB; 8367 } 8368 } 8369 // Set new default. 8370 assert(MaxPop > 0 && MaxBB); 8371 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8372 8373 // Remove cases that were pointing to the destination that is now the 8374 // default. 8375 CaseClusterVector New; 8376 New.reserve(Clusters.size()); 8377 for (CaseCluster &CC : Clusters) { 8378 if (CC.MBB != DefaultMBB) 8379 New.push_back(CC); 8380 } 8381 Clusters = std::move(New); 8382 } 8383 } 8384 8385 // If there is only the default destination, jump there directly. 8386 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8387 if (Clusters.empty()) { 8388 SwitchMBB->addSuccessor(DefaultMBB); 8389 if (DefaultMBB != NextBlock(SwitchMBB)) { 8390 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8391 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8392 } 8393 return; 8394 } 8395 8396 findJumpTables(Clusters, &SI, DefaultMBB); 8397 findBitTestClusters(Clusters, &SI); 8398 8399 DEBUG({ 8400 dbgs() << "Case clusters: "; 8401 for (const CaseCluster &C : Clusters) { 8402 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8403 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8404 8405 C.Low->getValue().print(dbgs(), true); 8406 if (C.Low != C.High) { 8407 dbgs() << '-'; 8408 C.High->getValue().print(dbgs(), true); 8409 } 8410 dbgs() << ' '; 8411 } 8412 dbgs() << '\n'; 8413 }); 8414 8415 assert(!Clusters.empty()); 8416 SwitchWorkList WorkList; 8417 CaseClusterIt First = Clusters.begin(); 8418 CaseClusterIt Last = Clusters.end() - 1; 8419 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8420 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8421 8422 while (!WorkList.empty()) { 8423 SwitchWorkListItem W = WorkList.back(); 8424 WorkList.pop_back(); 8425 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8426 8427 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8428 // For optimized builds, lower large range as a balanced binary tree. 8429 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8430 continue; 8431 } 8432 8433 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8434 } 8435 } 8436