1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 // Update machine-CFG edges. 1164 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1165 MachineBasicBlock *CatchingMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1166 MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()]; 1167 PadMBB->addSuccessor(CatchingMBB); 1168 PadMBB->addSuccessor(UnwindMBB); 1169 1170 CatchingMBB->setIsEHFuncletEntry(); 1171 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1172 MMI.setHasEHFunclets(true); 1173 } 1174 1175 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1176 // Update machine-CFG edge. 1177 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1178 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1179 PadMBB->addSuccessor(TargetMBB); 1180 1181 // Create the terminator node. 1182 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1183 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1184 DAG.setRoot(Ret); 1185 } 1186 1187 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1188 // If this unwinds to caller, we don't need a DAG node hanging around. 1189 if (!I.hasUnwindDest()) 1190 return; 1191 1192 // Update machine-CFG edge. 1193 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1194 MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()]; 1195 PadMBB->addSuccessor(UnwindMBB); 1196 } 1197 1198 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1199 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1200 MMI.setHasEHFunclets(true); 1201 report_fatal_error("visitCleanupPad not yet implemented!"); 1202 } 1203 1204 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1205 report_fatal_error("visitCleanupRet not yet implemented!"); 1206 } 1207 1208 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1209 report_fatal_error("visitTerminatePad not yet implemented!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1214 auto &DL = DAG.getDataLayout(); 1215 SDValue Chain = getControlRoot(); 1216 SmallVector<ISD::OutputArg, 8> Outs; 1217 SmallVector<SDValue, 8> OutVals; 1218 1219 if (!FuncInfo.CanLowerReturn) { 1220 unsigned DemoteReg = FuncInfo.DemoteRegister; 1221 const Function *F = I.getParent()->getParent(); 1222 1223 // Emit a store of the return value through the virtual register. 1224 // Leave Outs empty so that LowerReturn won't try to load return 1225 // registers the usual way. 1226 SmallVector<EVT, 1> PtrValueVTs; 1227 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1228 PtrValueVTs); 1229 1230 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 SmallVector<EVT, 4> ValueVTs; 1234 SmallVector<uint64_t, 4> Offsets; 1235 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1236 unsigned NumValues = ValueVTs.size(); 1237 1238 SmallVector<SDValue, 4> Chains(NumValues); 1239 for (unsigned i = 0; i != NumValues; ++i) { 1240 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1241 RetPtr.getValueType(), RetPtr, 1242 DAG.getIntPtrConstant(Offsets[i], 1243 getCurSDLoc())); 1244 Chains[i] = 1245 DAG.getStore(Chain, getCurSDLoc(), 1246 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1247 // FIXME: better loc info would be nice. 1248 Add, MachinePointerInfo(), false, false, 0); 1249 } 1250 1251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1252 MVT::Other, Chains); 1253 } else if (I.getNumOperands() != 0) { 1254 SmallVector<EVT, 4> ValueVTs; 1255 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1256 unsigned NumValues = ValueVTs.size(); 1257 if (NumValues) { 1258 SDValue RetOp = getValue(I.getOperand(0)); 1259 1260 const Function *F = I.getParent()->getParent(); 1261 1262 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1263 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1264 Attribute::SExt)) 1265 ExtendKind = ISD::SIGN_EXTEND; 1266 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::ZExt)) 1268 ExtendKind = ISD::ZERO_EXTEND; 1269 1270 LLVMContext &Context = F->getContext(); 1271 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1272 Attribute::InReg); 1273 1274 for (unsigned j = 0; j != NumValues; ++j) { 1275 EVT VT = ValueVTs[j]; 1276 1277 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1278 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1279 1280 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1281 MVT PartVT = TLI.getRegisterType(Context, VT); 1282 SmallVector<SDValue, 4> Parts(NumParts); 1283 getCopyToParts(DAG, getCurSDLoc(), 1284 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1285 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1286 1287 // 'inreg' on function refers to return value 1288 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1289 if (RetInReg) 1290 Flags.setInReg(); 1291 1292 // Propagate extension type if any 1293 if (ExtendKind == ISD::SIGN_EXTEND) 1294 Flags.setSExt(); 1295 else if (ExtendKind == ISD::ZERO_EXTEND) 1296 Flags.setZExt(); 1297 1298 for (unsigned i = 0; i < NumParts; ++i) { 1299 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1300 VT, /*isfixed=*/true, 0, 0)); 1301 OutVals.push_back(Parts[i]); 1302 } 1303 } 1304 } 1305 } 1306 1307 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1308 CallingConv::ID CallConv = 1309 DAG.getMachineFunction().getFunction()->getCallingConv(); 1310 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1311 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1312 1313 // Verify that the target's LowerReturn behaved as expected. 1314 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1315 "LowerReturn didn't return a valid chain!"); 1316 1317 // Update the DAG with the new chain value resulting from return lowering. 1318 DAG.setRoot(Chain); 1319 } 1320 1321 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1322 /// created for it, emit nodes to copy the value into the virtual 1323 /// registers. 1324 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1325 // Skip empty types 1326 if (V->getType()->isEmptyTy()) 1327 return; 1328 1329 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1330 if (VMI != FuncInfo.ValueMap.end()) { 1331 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1332 CopyValueToVirtualRegister(V, VMI->second); 1333 } 1334 } 1335 1336 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1337 /// the current basic block, add it to ValueMap now so that we'll get a 1338 /// CopyTo/FromReg. 1339 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1340 // No need to export constants. 1341 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1342 1343 // Already exported? 1344 if (FuncInfo.isExportedInst(V)) return; 1345 1346 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1347 CopyValueToVirtualRegister(V, Reg); 1348 } 1349 1350 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1351 const BasicBlock *FromBB) { 1352 // The operands of the setcc have to be in this block. We don't know 1353 // how to export them from some other block. 1354 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1355 // Can export from current BB. 1356 if (VI->getParent() == FromBB) 1357 return true; 1358 1359 // Is already exported, noop. 1360 return FuncInfo.isExportedInst(V); 1361 } 1362 1363 // If this is an argument, we can export it if the BB is the entry block or 1364 // if it is already exported. 1365 if (isa<Argument>(V)) { 1366 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1367 return true; 1368 1369 // Otherwise, can only export this if it is already exported. 1370 return FuncInfo.isExportedInst(V); 1371 } 1372 1373 // Otherwise, constants can always be exported. 1374 return true; 1375 } 1376 1377 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1378 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1379 const MachineBasicBlock *Dst) const { 1380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1381 if (!BPI) 1382 return 0; 1383 const BasicBlock *SrcBB = Src->getBasicBlock(); 1384 const BasicBlock *DstBB = Dst->getBasicBlock(); 1385 return BPI->getEdgeWeight(SrcBB, DstBB); 1386 } 1387 1388 void SelectionDAGBuilder:: 1389 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1390 uint32_t Weight /* = 0 */) { 1391 if (!Weight) 1392 Weight = getEdgeWeight(Src, Dst); 1393 Src->addSuccessor(Dst, Weight); 1394 } 1395 1396 1397 static bool InBlock(const Value *V, const BasicBlock *BB) { 1398 if (const Instruction *I = dyn_cast<Instruction>(V)) 1399 return I->getParent() == BB; 1400 return true; 1401 } 1402 1403 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1404 /// This function emits a branch and is used at the leaves of an OR or an 1405 /// AND operator tree. 1406 /// 1407 void 1408 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1409 MachineBasicBlock *TBB, 1410 MachineBasicBlock *FBB, 1411 MachineBasicBlock *CurBB, 1412 MachineBasicBlock *SwitchBB, 1413 uint32_t TWeight, 1414 uint32_t FWeight) { 1415 const BasicBlock *BB = CurBB->getBasicBlock(); 1416 1417 // If the leaf of the tree is a comparison, merge the condition into 1418 // the caseblock. 1419 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1420 // The operands of the cmp have to be in this block. We don't know 1421 // how to export them from some other block. If this is the first block 1422 // of the sequence, no exporting is needed. 1423 if (CurBB == SwitchBB || 1424 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1425 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1426 ISD::CondCode Condition; 1427 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1428 Condition = getICmpCondCode(IC->getPredicate()); 1429 } else { 1430 const FCmpInst *FC = cast<FCmpInst>(Cond); 1431 Condition = getFCmpCondCode(FC->getPredicate()); 1432 if (TM.Options.NoNaNsFPMath) 1433 Condition = getFCmpCodeWithoutNaN(Condition); 1434 } 1435 1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1437 TBB, FBB, CurBB, TWeight, FWeight); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 } 1448 1449 /// Scale down both weights to fit into uint32_t. 1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1453 NewTrue = NewTrue / Scale; 1454 NewFalse = NewFalse / Scale; 1455 } 1456 1457 /// FindMergedConditions - If Cond is an expression like 1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1459 MachineBasicBlock *TBB, 1460 MachineBasicBlock *FBB, 1461 MachineBasicBlock *CurBB, 1462 MachineBasicBlock *SwitchBB, 1463 Instruction::BinaryOps Opc, 1464 uint32_t TWeight, 1465 uint32_t FWeight) { 1466 // If this node is not part of the or/and tree, emit it as a branch. 1467 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1468 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1469 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1470 BOp->getParent() != CurBB->getBasicBlock() || 1471 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1472 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1473 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1474 TWeight, FWeight); 1475 return; 1476 } 1477 1478 // Create TmpBB after CurBB. 1479 MachineFunction::iterator BBI = CurBB; 1480 MachineFunction &MF = DAG.getMachineFunction(); 1481 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1482 CurBB->getParent()->insert(++BBI, TmpBB); 1483 1484 if (Opc == Instruction::Or) { 1485 // Codegen X | Y as: 1486 // BB1: 1487 // jmp_if_X TBB 1488 // jmp TmpBB 1489 // TmpBB: 1490 // jmp_if_Y TBB 1491 // jmp FBB 1492 // 1493 1494 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1495 // The requirement is that 1496 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1497 // = TrueProb for original BB. 1498 // Assuming the original weights are A and B, one choice is to set BB1's 1499 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1500 // assumes that 1501 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1502 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1503 // TmpBB, but the math is more complicated. 1504 1505 uint64_t NewTrueWeight = TWeight; 1506 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1507 ScaleWeights(NewTrueWeight, NewFalseWeight); 1508 // Emit the LHS condition. 1509 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1510 NewTrueWeight, NewFalseWeight); 1511 1512 NewTrueWeight = TWeight; 1513 NewFalseWeight = 2 * (uint64_t)FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the RHS condition into TmpBB. 1516 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 } else { 1519 assert(Opc == Instruction::And && "Unknown merge op!"); 1520 // Codegen X & Y as: 1521 // BB1: 1522 // jmp_if_X TmpBB 1523 // jmp FBB 1524 // TmpBB: 1525 // jmp_if_Y TBB 1526 // jmp FBB 1527 // 1528 // This requires creation of TmpBB after CurBB. 1529 1530 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1531 // The requirement is that 1532 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1533 // = FalseProb for original BB. 1534 // Assuming the original weights are A and B, one choice is to set BB1's 1535 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1536 // assumes that 1537 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1538 1539 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1540 uint64_t NewFalseWeight = FWeight; 1541 ScaleWeights(NewTrueWeight, NewFalseWeight); 1542 // Emit the LHS condition. 1543 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1544 NewTrueWeight, NewFalseWeight); 1545 1546 NewTrueWeight = 2 * (uint64_t)TWeight; 1547 NewFalseWeight = FWeight; 1548 ScaleWeights(NewTrueWeight, NewFalseWeight); 1549 // Emit the RHS condition into TmpBB. 1550 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1551 NewTrueWeight, NewFalseWeight); 1552 } 1553 } 1554 1555 /// If the set of cases should be emitted as a series of branches, return true. 1556 /// If we should emit this as a bunch of and/or'd together conditions, return 1557 /// false. 1558 bool 1559 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1560 if (Cases.size() != 2) return true; 1561 1562 // If this is two comparisons of the same values or'd or and'd together, they 1563 // will get folded into a single comparison, so don't emit two blocks. 1564 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1565 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1566 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1567 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1568 return false; 1569 } 1570 1571 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1572 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1573 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1574 Cases[0].CC == Cases[1].CC && 1575 isa<Constant>(Cases[0].CmpRHS) && 1576 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1577 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1578 return false; 1579 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1580 return false; 1581 } 1582 1583 return true; 1584 } 1585 1586 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1587 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1588 1589 // Update machine-CFG edges. 1590 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1591 1592 if (I.isUnconditional()) { 1593 // Update machine-CFG edges. 1594 BrMBB->addSuccessor(Succ0MBB); 1595 1596 // If this is not a fall-through branch or optimizations are switched off, 1597 // emit the branch. 1598 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1599 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1600 MVT::Other, getControlRoot(), 1601 DAG.getBasicBlock(Succ0MBB))); 1602 1603 return; 1604 } 1605 1606 // If this condition is one of the special cases we handle, do special stuff 1607 // now. 1608 const Value *CondVal = I.getCondition(); 1609 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1610 1611 // If this is a series of conditions that are or'd or and'd together, emit 1612 // this as a sequence of branches instead of setcc's with and/or operations. 1613 // As long as jumps are not expensive, this should improve performance. 1614 // For example, instead of something like: 1615 // cmp A, B 1616 // C = seteq 1617 // cmp D, E 1618 // F = setle 1619 // or C, F 1620 // jnz foo 1621 // Emit: 1622 // cmp A, B 1623 // je foo 1624 // cmp D, E 1625 // jle foo 1626 // 1627 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1628 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1629 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1630 BOp->getOpcode() == Instruction::Or)) { 1631 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1632 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1633 getEdgeWeight(BrMBB, Succ1MBB)); 1634 // If the compares in later blocks need to use values not currently 1635 // exported from this block, export them now. This block should always 1636 // be the first entry. 1637 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1638 1639 // Allow some cases to be rejected. 1640 if (ShouldEmitAsBranches(SwitchCases)) { 1641 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1642 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1643 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1644 } 1645 1646 // Emit the branch for this block. 1647 visitSwitchCase(SwitchCases[0], BrMBB); 1648 SwitchCases.erase(SwitchCases.begin()); 1649 return; 1650 } 1651 1652 // Okay, we decided not to do this, remove any inserted MBB's and clear 1653 // SwitchCases. 1654 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1655 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1656 1657 SwitchCases.clear(); 1658 } 1659 } 1660 1661 // Create a CaseBlock record representing this branch. 1662 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1663 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1664 1665 // Use visitSwitchCase to actually insert the fast branch sequence for this 1666 // cond branch. 1667 visitSwitchCase(CB, BrMBB); 1668 } 1669 1670 /// visitSwitchCase - Emits the necessary code to represent a single node in 1671 /// the binary search tree resulting from lowering a switch instruction. 1672 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1673 MachineBasicBlock *SwitchBB) { 1674 SDValue Cond; 1675 SDValue CondLHS = getValue(CB.CmpLHS); 1676 SDLoc dl = getCurSDLoc(); 1677 1678 // Build the setcc now. 1679 if (!CB.CmpMHS) { 1680 // Fold "(X == true)" to X and "(X == false)" to !X to 1681 // handle common cases produced by branch lowering. 1682 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1683 CB.CC == ISD::SETEQ) 1684 Cond = CondLHS; 1685 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1686 CB.CC == ISD::SETEQ) { 1687 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1688 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1689 } else 1690 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1691 } else { 1692 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1693 1694 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1695 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1696 1697 SDValue CmpOp = getValue(CB.CmpMHS); 1698 EVT VT = CmpOp.getValueType(); 1699 1700 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1701 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1702 ISD::SETLE); 1703 } else { 1704 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1705 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1706 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1707 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1708 } 1709 } 1710 1711 // Update successor info 1712 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1713 // TrueBB and FalseBB are always different unless the incoming IR is 1714 // degenerate. This only happens when running llc on weird IR. 1715 if (CB.TrueBB != CB.FalseBB) 1716 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1717 1718 // If the lhs block is the next block, invert the condition so that we can 1719 // fall through to the lhs instead of the rhs block. 1720 if (CB.TrueBB == NextBlock(SwitchBB)) { 1721 std::swap(CB.TrueBB, CB.FalseBB); 1722 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1723 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1724 } 1725 1726 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1727 MVT::Other, getControlRoot(), Cond, 1728 DAG.getBasicBlock(CB.TrueBB)); 1729 1730 // Insert the false branch. Do this even if it's a fall through branch, 1731 // this makes it easier to do DAG optimizations which require inverting 1732 // the branch condition. 1733 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1734 DAG.getBasicBlock(CB.FalseBB)); 1735 1736 DAG.setRoot(BrCond); 1737 } 1738 1739 /// visitJumpTable - Emit JumpTable node in the current MBB 1740 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1741 // Emit the code for the jump table 1742 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1743 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1744 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1745 JT.Reg, PTy); 1746 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1747 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1748 MVT::Other, Index.getValue(1), 1749 Table, Index); 1750 DAG.setRoot(BrJumpTable); 1751 } 1752 1753 /// visitJumpTableHeader - This function emits necessary code to produce index 1754 /// in the JumpTable from switch case. 1755 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1756 JumpTableHeader &JTH, 1757 MachineBasicBlock *SwitchBB) { 1758 SDLoc dl = getCurSDLoc(); 1759 1760 // Subtract the lowest switch case value from the value being switched on and 1761 // conditional branch to default mbb if the result is greater than the 1762 // difference between smallest and largest cases. 1763 SDValue SwitchOp = getValue(JTH.SValue); 1764 EVT VT = SwitchOp.getValueType(); 1765 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1766 DAG.getConstant(JTH.First, dl, VT)); 1767 1768 // The SDNode we just created, which holds the value being switched on minus 1769 // the smallest case value, needs to be copied to a virtual register so it 1770 // can be used as an index into the jump table in a subsequent basic block. 1771 // This value may be smaller or larger than the target's pointer type, and 1772 // therefore require extension or truncating. 1773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1774 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1775 1776 unsigned JumpTableReg = 1777 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1778 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1779 JumpTableReg, SwitchOp); 1780 JT.Reg = JumpTableReg; 1781 1782 // Emit the range check for the jump table, and branch to the default block 1783 // for the switch statement if the value being switched on exceeds the largest 1784 // case in the switch. 1785 SDValue CMP = DAG.getSetCC( 1786 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1787 Sub.getValueType()), 1788 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1789 1790 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1791 MVT::Other, CopyTo, CMP, 1792 DAG.getBasicBlock(JT.Default)); 1793 1794 // Avoid emitting unnecessary branches to the next block. 1795 if (JT.MBB != NextBlock(SwitchBB)) 1796 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1797 DAG.getBasicBlock(JT.MBB)); 1798 1799 DAG.setRoot(BrCond); 1800 } 1801 1802 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1803 /// tail spliced into a stack protector check success bb. 1804 /// 1805 /// For a high level explanation of how this fits into the stack protector 1806 /// generation see the comment on the declaration of class 1807 /// StackProtectorDescriptor. 1808 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1809 MachineBasicBlock *ParentBB) { 1810 1811 // First create the loads to the guard/stack slot for the comparison. 1812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1813 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1814 1815 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1816 int FI = MFI->getStackProtectorIndex(); 1817 1818 const Value *IRGuard = SPD.getGuard(); 1819 SDValue GuardPtr = getValue(IRGuard); 1820 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1821 1822 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1823 1824 SDValue Guard; 1825 SDLoc dl = getCurSDLoc(); 1826 1827 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1828 // guard value from the virtual register holding the value. Otherwise, emit a 1829 // volatile load to retrieve the stack guard value. 1830 unsigned GuardReg = SPD.getGuardReg(); 1831 1832 if (GuardReg && TLI.useLoadStackGuardNode()) 1833 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1834 PtrTy); 1835 else 1836 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1837 GuardPtr, MachinePointerInfo(IRGuard, 0), 1838 true, false, false, Align); 1839 1840 SDValue StackSlot = DAG.getLoad( 1841 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1842 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1843 false, false, Align); 1844 1845 // Perform the comparison via a subtract/getsetcc. 1846 EVT VT = Guard.getValueType(); 1847 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1848 1849 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1850 *DAG.getContext(), 1851 Sub.getValueType()), 1852 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1853 1854 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1855 // branch to failure MBB. 1856 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1857 MVT::Other, StackSlot.getOperand(0), 1858 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1859 // Otherwise branch to success MBB. 1860 SDValue Br = DAG.getNode(ISD::BR, dl, 1861 MVT::Other, BrCond, 1862 DAG.getBasicBlock(SPD.getSuccessMBB())); 1863 1864 DAG.setRoot(Br); 1865 } 1866 1867 /// Codegen the failure basic block for a stack protector check. 1868 /// 1869 /// A failure stack protector machine basic block consists simply of a call to 1870 /// __stack_chk_fail(). 1871 /// 1872 /// For a high level explanation of how this fits into the stack protector 1873 /// generation see the comment on the declaration of class 1874 /// StackProtectorDescriptor. 1875 void 1876 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1878 SDValue Chain = 1879 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1880 nullptr, 0, false, getCurSDLoc(), false, false).second; 1881 DAG.setRoot(Chain); 1882 } 1883 1884 /// visitBitTestHeader - This function emits necessary code to produce value 1885 /// suitable for "bit tests" 1886 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 1890 // Subtract the minimum value 1891 SDValue SwitchOp = getValue(B.SValue); 1892 EVT VT = SwitchOp.getValueType(); 1893 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1894 DAG.getConstant(B.First, dl, VT)); 1895 1896 // Check range 1897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1898 SDValue RangeCmp = DAG.getSetCC( 1899 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1900 Sub.getValueType()), 1901 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1902 1903 // Determine the type of the test operands. 1904 bool UsePtrType = false; 1905 if (!TLI.isTypeLegal(VT)) 1906 UsePtrType = true; 1907 else { 1908 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1909 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1910 // Switch table case range are encoded into series of masks. 1911 // Just use pointer type, it's guaranteed to fit. 1912 UsePtrType = true; 1913 break; 1914 } 1915 } 1916 if (UsePtrType) { 1917 VT = TLI.getPointerTy(DAG.getDataLayout()); 1918 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1919 } 1920 1921 B.RegVT = VT.getSimpleVT(); 1922 B.Reg = FuncInfo.CreateReg(B.RegVT); 1923 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1924 1925 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1926 1927 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1928 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1929 1930 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1931 MVT::Other, CopyTo, RangeCmp, 1932 DAG.getBasicBlock(B.Default)); 1933 1934 // Avoid emitting unnecessary branches to the next block. 1935 if (MBB != NextBlock(SwitchBB)) 1936 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1937 DAG.getBasicBlock(MBB)); 1938 1939 DAG.setRoot(BrRange); 1940 } 1941 1942 /// visitBitTestCase - this function produces one "bit test" 1943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1944 MachineBasicBlock* NextMBB, 1945 uint32_t BranchWeightToNext, 1946 unsigned Reg, 1947 BitTestCase &B, 1948 MachineBasicBlock *SwitchBB) { 1949 SDLoc dl = getCurSDLoc(); 1950 MVT VT = BB.RegVT; 1951 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1952 SDValue Cmp; 1953 unsigned PopCount = countPopulation(B.Mask); 1954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1955 if (PopCount == 1) { 1956 // Testing for a single bit; just compare the shift count with what it 1957 // would need to be to shift a 1 bit in that position. 1958 Cmp = DAG.getSetCC( 1959 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1960 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1961 ISD::SETEQ); 1962 } else if (PopCount == BB.Range) { 1963 // There is only one zero bit in the range, test for it directly. 1964 Cmp = DAG.getSetCC( 1965 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1966 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1967 ISD::SETNE); 1968 } else { 1969 // Make desired shift 1970 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1971 DAG.getConstant(1, dl, VT), ShiftOp); 1972 1973 // Emit bit tests and jumps 1974 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1975 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1976 Cmp = DAG.getSetCC( 1977 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1978 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1979 } 1980 1981 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1982 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1983 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1984 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1985 1986 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1987 MVT::Other, getControlRoot(), 1988 Cmp, DAG.getBasicBlock(B.TargetBB)); 1989 1990 // Avoid emitting unnecessary branches to the next block. 1991 if (NextMBB != NextBlock(SwitchBB)) 1992 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1993 DAG.getBasicBlock(NextMBB)); 1994 1995 DAG.setRoot(BrAnd); 1996 } 1997 1998 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1999 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2000 2001 // Retrieve successors. 2002 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2003 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2004 2005 const Value *Callee(I.getCalledValue()); 2006 const Function *Fn = dyn_cast<Function>(Callee); 2007 if (isa<InlineAsm>(Callee)) 2008 visitInlineAsm(&I); 2009 else if (Fn && Fn->isIntrinsic()) { 2010 switch (Fn->getIntrinsicID()) { 2011 default: 2012 llvm_unreachable("Cannot invoke this intrinsic"); 2013 case Intrinsic::donothing: 2014 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2015 break; 2016 case Intrinsic::experimental_patchpoint_void: 2017 case Intrinsic::experimental_patchpoint_i64: 2018 visitPatchpoint(&I, LandingPad); 2019 break; 2020 case Intrinsic::experimental_gc_statepoint: 2021 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2022 break; 2023 } 2024 } else 2025 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2026 2027 // If the value of the invoke is used outside of its defining block, make it 2028 // available as a virtual register. 2029 // We already took care of the exported value for the statepoint instruction 2030 // during call to the LowerStatepoint. 2031 if (!isStatepoint(I)) { 2032 CopyToExportRegsIfNeeded(&I); 2033 } 2034 2035 // Update successor info 2036 addSuccessorWithWeight(InvokeMBB, Return); 2037 addSuccessorWithWeight(InvokeMBB, LandingPad); 2038 2039 // Drop into normal successor. 2040 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2041 MVT::Other, getControlRoot(), 2042 DAG.getBasicBlock(Return))); 2043 } 2044 2045 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2046 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2047 } 2048 2049 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2050 assert(FuncInfo.MBB->isEHPad() && 2051 "Call to landingpad not in landing pad!"); 2052 2053 MachineBasicBlock *MBB = FuncInfo.MBB; 2054 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2055 AddLandingPadInfo(LP, MMI, MBB); 2056 2057 // If there aren't registers to copy the values into (e.g., during SjLj 2058 // exceptions), then don't bother to create these DAG nodes. 2059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2060 if (TLI.getExceptionPointerRegister() == 0 && 2061 TLI.getExceptionSelectorRegister() == 0) 2062 return; 2063 2064 SmallVector<EVT, 2> ValueVTs; 2065 SDLoc dl = getCurSDLoc(); 2066 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2067 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2068 2069 // Get the two live-in registers as SDValues. The physregs have already been 2070 // copied into virtual registers. 2071 SDValue Ops[2]; 2072 if (FuncInfo.ExceptionPointerVirtReg) { 2073 Ops[0] = DAG.getZExtOrTrunc( 2074 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2075 FuncInfo.ExceptionPointerVirtReg, 2076 TLI.getPointerTy(DAG.getDataLayout())), 2077 dl, ValueVTs[0]); 2078 } else { 2079 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2080 } 2081 Ops[1] = DAG.getZExtOrTrunc( 2082 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2083 FuncInfo.ExceptionSelectorVirtReg, 2084 TLI.getPointerTy(DAG.getDataLayout())), 2085 dl, ValueVTs[1]); 2086 2087 // Merge into one. 2088 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2089 DAG.getVTList(ValueVTs), Ops); 2090 setValue(&LP, Res); 2091 } 2092 2093 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2094 #ifndef NDEBUG 2095 for (const CaseCluster &CC : Clusters) 2096 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2097 #endif 2098 2099 std::sort(Clusters.begin(), Clusters.end(), 2100 [](const CaseCluster &a, const CaseCluster &b) { 2101 return a.Low->getValue().slt(b.Low->getValue()); 2102 }); 2103 2104 // Merge adjacent clusters with the same destination. 2105 const unsigned N = Clusters.size(); 2106 unsigned DstIndex = 0; 2107 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2108 CaseCluster &CC = Clusters[SrcIndex]; 2109 const ConstantInt *CaseVal = CC.Low; 2110 MachineBasicBlock *Succ = CC.MBB; 2111 2112 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2113 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2114 // If this case has the same successor and is a neighbour, merge it into 2115 // the previous cluster. 2116 Clusters[DstIndex - 1].High = CaseVal; 2117 Clusters[DstIndex - 1].Weight += CC.Weight; 2118 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2119 } else { 2120 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2121 sizeof(Clusters[SrcIndex])); 2122 } 2123 } 2124 Clusters.resize(DstIndex); 2125 } 2126 2127 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2128 MachineBasicBlock *Last) { 2129 // Update JTCases. 2130 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2131 if (JTCases[i].first.HeaderBB == First) 2132 JTCases[i].first.HeaderBB = Last; 2133 2134 // Update BitTestCases. 2135 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2136 if (BitTestCases[i].Parent == First) 2137 BitTestCases[i].Parent = Last; 2138 } 2139 2140 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2141 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2142 2143 // Update machine-CFG edges with unique successors. 2144 SmallSet<BasicBlock*, 32> Done; 2145 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2146 BasicBlock *BB = I.getSuccessor(i); 2147 bool Inserted = Done.insert(BB).second; 2148 if (!Inserted) 2149 continue; 2150 2151 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2152 addSuccessorWithWeight(IndirectBrMBB, Succ); 2153 } 2154 2155 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2156 MVT::Other, getControlRoot(), 2157 getValue(I.getAddress()))); 2158 } 2159 2160 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2161 if (DAG.getTarget().Options.TrapUnreachable) 2162 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2163 } 2164 2165 void SelectionDAGBuilder::visitFSub(const User &I) { 2166 // -0.0 - X --> fneg 2167 Type *Ty = I.getType(); 2168 if (isa<Constant>(I.getOperand(0)) && 2169 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2170 SDValue Op2 = getValue(I.getOperand(1)); 2171 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2172 Op2.getValueType(), Op2)); 2173 return; 2174 } 2175 2176 visitBinary(I, ISD::FSUB); 2177 } 2178 2179 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2180 SDValue Op1 = getValue(I.getOperand(0)); 2181 SDValue Op2 = getValue(I.getOperand(1)); 2182 2183 bool nuw = false; 2184 bool nsw = false; 2185 bool exact = false; 2186 FastMathFlags FMF; 2187 2188 if (const OverflowingBinaryOperator *OFBinOp = 2189 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2190 nuw = OFBinOp->hasNoUnsignedWrap(); 2191 nsw = OFBinOp->hasNoSignedWrap(); 2192 } 2193 if (const PossiblyExactOperator *ExactOp = 2194 dyn_cast<const PossiblyExactOperator>(&I)) 2195 exact = ExactOp->isExact(); 2196 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2197 FMF = FPOp->getFastMathFlags(); 2198 2199 SDNodeFlags Flags; 2200 Flags.setExact(exact); 2201 Flags.setNoSignedWrap(nsw); 2202 Flags.setNoUnsignedWrap(nuw); 2203 if (EnableFMFInDAG) { 2204 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2205 Flags.setNoInfs(FMF.noInfs()); 2206 Flags.setNoNaNs(FMF.noNaNs()); 2207 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2208 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2209 } 2210 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2211 Op1, Op2, &Flags); 2212 setValue(&I, BinNodeValue); 2213 } 2214 2215 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2216 SDValue Op1 = getValue(I.getOperand(0)); 2217 SDValue Op2 = getValue(I.getOperand(1)); 2218 2219 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2220 Op2.getValueType(), DAG.getDataLayout()); 2221 2222 // Coerce the shift amount to the right type if we can. 2223 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2224 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2225 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2226 SDLoc DL = getCurSDLoc(); 2227 2228 // If the operand is smaller than the shift count type, promote it. 2229 if (ShiftSize > Op2Size) 2230 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2231 2232 // If the operand is larger than the shift count type but the shift 2233 // count type has enough bits to represent any shift value, truncate 2234 // it now. This is a common case and it exposes the truncate to 2235 // optimization early. 2236 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2237 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2238 // Otherwise we'll need to temporarily settle for some other convenient 2239 // type. Type legalization will make adjustments once the shiftee is split. 2240 else 2241 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2242 } 2243 2244 bool nuw = false; 2245 bool nsw = false; 2246 bool exact = false; 2247 2248 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2249 2250 if (const OverflowingBinaryOperator *OFBinOp = 2251 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2252 nuw = OFBinOp->hasNoUnsignedWrap(); 2253 nsw = OFBinOp->hasNoSignedWrap(); 2254 } 2255 if (const PossiblyExactOperator *ExactOp = 2256 dyn_cast<const PossiblyExactOperator>(&I)) 2257 exact = ExactOp->isExact(); 2258 } 2259 SDNodeFlags Flags; 2260 Flags.setExact(exact); 2261 Flags.setNoSignedWrap(nsw); 2262 Flags.setNoUnsignedWrap(nuw); 2263 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2264 &Flags); 2265 setValue(&I, Res); 2266 } 2267 2268 void SelectionDAGBuilder::visitSDiv(const User &I) { 2269 SDValue Op1 = getValue(I.getOperand(0)); 2270 SDValue Op2 = getValue(I.getOperand(1)); 2271 2272 SDNodeFlags Flags; 2273 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2274 cast<PossiblyExactOperator>(&I)->isExact()); 2275 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2276 Op2, &Flags)); 2277 } 2278 2279 void SelectionDAGBuilder::visitICmp(const User &I) { 2280 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2281 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2282 predicate = IC->getPredicate(); 2283 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2284 predicate = ICmpInst::Predicate(IC->getPredicate()); 2285 SDValue Op1 = getValue(I.getOperand(0)); 2286 SDValue Op2 = getValue(I.getOperand(1)); 2287 ISD::CondCode Opcode = getICmpCondCode(predicate); 2288 2289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2290 I.getType()); 2291 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2292 } 2293 2294 void SelectionDAGBuilder::visitFCmp(const User &I) { 2295 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2296 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2297 predicate = FC->getPredicate(); 2298 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2299 predicate = FCmpInst::Predicate(FC->getPredicate()); 2300 SDValue Op1 = getValue(I.getOperand(0)); 2301 SDValue Op2 = getValue(I.getOperand(1)); 2302 ISD::CondCode Condition = getFCmpCondCode(predicate); 2303 if (TM.Options.NoNaNsFPMath) 2304 Condition = getFCmpCodeWithoutNaN(Condition); 2305 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2306 I.getType()); 2307 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2308 } 2309 2310 void SelectionDAGBuilder::visitSelect(const User &I) { 2311 SmallVector<EVT, 4> ValueVTs; 2312 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2313 ValueVTs); 2314 unsigned NumValues = ValueVTs.size(); 2315 if (NumValues == 0) return; 2316 2317 SmallVector<SDValue, 4> Values(NumValues); 2318 SDValue Cond = getValue(I.getOperand(0)); 2319 SDValue LHSVal = getValue(I.getOperand(1)); 2320 SDValue RHSVal = getValue(I.getOperand(2)); 2321 auto BaseOps = {Cond}; 2322 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2323 ISD::VSELECT : ISD::SELECT; 2324 2325 // Min/max matching is only viable if all output VTs are the same. 2326 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2327 EVT VT = ValueVTs[0]; 2328 LLVMContext &Ctx = *DAG.getContext(); 2329 auto &TLI = DAG.getTargetLoweringInfo(); 2330 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2331 VT = TLI.getTypeToTransformTo(Ctx, VT); 2332 2333 Value *LHS, *RHS; 2334 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2335 ISD::NodeType Opc = ISD::DELETED_NODE; 2336 switch (SPR.Flavor) { 2337 case SPF_UMAX: Opc = ISD::UMAX; break; 2338 case SPF_UMIN: Opc = ISD::UMIN; break; 2339 case SPF_SMAX: Opc = ISD::SMAX; break; 2340 case SPF_SMIN: Opc = ISD::SMIN; break; 2341 case SPF_FMINNUM: 2342 switch (SPR.NaNBehavior) { 2343 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2344 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2345 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2346 case SPNB_RETURNS_ANY: 2347 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2348 : ISD::FMINNAN; 2349 break; 2350 } 2351 break; 2352 case SPF_FMAXNUM: 2353 switch (SPR.NaNBehavior) { 2354 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2355 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2356 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2357 case SPNB_RETURNS_ANY: 2358 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2359 : ISD::FMAXNAN; 2360 break; 2361 } 2362 break; 2363 default: break; 2364 } 2365 2366 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2367 // If the underlying comparison instruction is used by any other instruction, 2368 // the consumed instructions won't be destroyed, so it is not profitable 2369 // to convert to a min/max. 2370 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2371 OpCode = Opc; 2372 LHSVal = getValue(LHS); 2373 RHSVal = getValue(RHS); 2374 BaseOps = {}; 2375 } 2376 } 2377 2378 for (unsigned i = 0; i != NumValues; ++i) { 2379 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2380 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2381 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2382 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2383 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2384 Ops); 2385 } 2386 2387 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2388 DAG.getVTList(ValueVTs), Values)); 2389 } 2390 2391 void SelectionDAGBuilder::visitTrunc(const User &I) { 2392 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2393 SDValue N = getValue(I.getOperand(0)); 2394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2395 I.getType()); 2396 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2397 } 2398 2399 void SelectionDAGBuilder::visitZExt(const User &I) { 2400 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2401 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2402 SDValue N = getValue(I.getOperand(0)); 2403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2404 I.getType()); 2405 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2406 } 2407 2408 void SelectionDAGBuilder::visitSExt(const User &I) { 2409 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2410 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2411 SDValue N = getValue(I.getOperand(0)); 2412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2413 I.getType()); 2414 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2415 } 2416 2417 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2418 // FPTrunc is never a no-op cast, no need to check 2419 SDValue N = getValue(I.getOperand(0)); 2420 SDLoc dl = getCurSDLoc(); 2421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2422 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2423 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2424 DAG.getTargetConstant( 2425 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2426 } 2427 2428 void SelectionDAGBuilder::visitFPExt(const User &I) { 2429 // FPExt is never a no-op cast, no need to check 2430 SDValue N = getValue(I.getOperand(0)); 2431 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2432 I.getType()); 2433 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2434 } 2435 2436 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2437 // FPToUI is never a no-op cast, no need to check 2438 SDValue N = getValue(I.getOperand(0)); 2439 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2440 I.getType()); 2441 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2442 } 2443 2444 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2445 // FPToSI is never a no-op cast, no need to check 2446 SDValue N = getValue(I.getOperand(0)); 2447 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2448 I.getType()); 2449 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2450 } 2451 2452 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2453 // UIToFP is never a no-op cast, no need to check 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2456 I.getType()); 2457 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2458 } 2459 2460 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2461 // SIToFP is never a no-op cast, no need to check 2462 SDValue N = getValue(I.getOperand(0)); 2463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2464 I.getType()); 2465 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2466 } 2467 2468 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2469 // What to do depends on the size of the integer and the size of the pointer. 2470 // We can either truncate, zero extend, or no-op, accordingly. 2471 SDValue N = getValue(I.getOperand(0)); 2472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2473 I.getType()); 2474 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2475 } 2476 2477 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2478 // What to do depends on the size of the integer and the size of the pointer. 2479 // We can either truncate, zero extend, or no-op, accordingly. 2480 SDValue N = getValue(I.getOperand(0)); 2481 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2482 I.getType()); 2483 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2484 } 2485 2486 void SelectionDAGBuilder::visitBitCast(const User &I) { 2487 SDValue N = getValue(I.getOperand(0)); 2488 SDLoc dl = getCurSDLoc(); 2489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2490 I.getType()); 2491 2492 // BitCast assures us that source and destination are the same size so this is 2493 // either a BITCAST or a no-op. 2494 if (DestVT != N.getValueType()) 2495 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2496 DestVT, N)); // convert types. 2497 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2498 // might fold any kind of constant expression to an integer constant and that 2499 // is not what we are looking for. Only regcognize a bitcast of a genuine 2500 // constant integer as an opaque constant. 2501 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2502 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2503 /*isOpaque*/true)); 2504 else 2505 setValue(&I, N); // noop cast. 2506 } 2507 2508 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2510 const Value *SV = I.getOperand(0); 2511 SDValue N = getValue(SV); 2512 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2513 2514 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2515 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2516 2517 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2518 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2519 2520 setValue(&I, N); 2521 } 2522 2523 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2525 SDValue InVec = getValue(I.getOperand(0)); 2526 SDValue InVal = getValue(I.getOperand(1)); 2527 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2528 TLI.getVectorIdxTy(DAG.getDataLayout())); 2529 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2530 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2531 InVec, InVal, InIdx)); 2532 } 2533 2534 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2536 SDValue InVec = getValue(I.getOperand(0)); 2537 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2538 TLI.getVectorIdxTy(DAG.getDataLayout())); 2539 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2540 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2541 InVec, InIdx)); 2542 } 2543 2544 // Utility for visitShuffleVector - Return true if every element in Mask, 2545 // beginning from position Pos and ending in Pos+Size, falls within the 2546 // specified sequential range [L, L+Pos). or is undef. 2547 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2548 unsigned Pos, unsigned Size, int Low) { 2549 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2550 if (Mask[i] >= 0 && Mask[i] != Low) 2551 return false; 2552 return true; 2553 } 2554 2555 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2556 SDValue Src1 = getValue(I.getOperand(0)); 2557 SDValue Src2 = getValue(I.getOperand(1)); 2558 2559 SmallVector<int, 8> Mask; 2560 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2561 unsigned MaskNumElts = Mask.size(); 2562 2563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2564 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2565 EVT SrcVT = Src1.getValueType(); 2566 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2567 2568 if (SrcNumElts == MaskNumElts) { 2569 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2570 &Mask[0])); 2571 return; 2572 } 2573 2574 // Normalize the shuffle vector since mask and vector length don't match. 2575 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2576 // Mask is longer than the source vectors and is a multiple of the source 2577 // vectors. We can use concatenate vector to make the mask and vectors 2578 // lengths match. 2579 if (SrcNumElts*2 == MaskNumElts) { 2580 // First check for Src1 in low and Src2 in high 2581 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2582 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2583 // The shuffle is concatenating two vectors together. 2584 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2585 VT, Src1, Src2)); 2586 return; 2587 } 2588 // Then check for Src2 in low and Src1 in high 2589 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2590 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2591 // The shuffle is concatenating two vectors together. 2592 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2593 VT, Src2, Src1)); 2594 return; 2595 } 2596 } 2597 2598 // Pad both vectors with undefs to make them the same length as the mask. 2599 unsigned NumConcat = MaskNumElts / SrcNumElts; 2600 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2601 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2602 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2603 2604 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2605 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2606 MOps1[0] = Src1; 2607 MOps2[0] = Src2; 2608 2609 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2610 getCurSDLoc(), VT, MOps1); 2611 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2612 getCurSDLoc(), VT, MOps2); 2613 2614 // Readjust mask for new input vector length. 2615 SmallVector<int, 8> MappedOps; 2616 for (unsigned i = 0; i != MaskNumElts; ++i) { 2617 int Idx = Mask[i]; 2618 if (Idx >= (int)SrcNumElts) 2619 Idx -= SrcNumElts - MaskNumElts; 2620 MappedOps.push_back(Idx); 2621 } 2622 2623 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2624 &MappedOps[0])); 2625 return; 2626 } 2627 2628 if (SrcNumElts > MaskNumElts) { 2629 // Analyze the access pattern of the vector to see if we can extract 2630 // two subvectors and do the shuffle. The analysis is done by calculating 2631 // the range of elements the mask access on both vectors. 2632 int MinRange[2] = { static_cast<int>(SrcNumElts), 2633 static_cast<int>(SrcNumElts)}; 2634 int MaxRange[2] = {-1, -1}; 2635 2636 for (unsigned i = 0; i != MaskNumElts; ++i) { 2637 int Idx = Mask[i]; 2638 unsigned Input = 0; 2639 if (Idx < 0) 2640 continue; 2641 2642 if (Idx >= (int)SrcNumElts) { 2643 Input = 1; 2644 Idx -= SrcNumElts; 2645 } 2646 if (Idx > MaxRange[Input]) 2647 MaxRange[Input] = Idx; 2648 if (Idx < MinRange[Input]) 2649 MinRange[Input] = Idx; 2650 } 2651 2652 // Check if the access is smaller than the vector size and can we find 2653 // a reasonable extract index. 2654 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2655 // Extract. 2656 int StartIdx[2]; // StartIdx to extract from 2657 for (unsigned Input = 0; Input < 2; ++Input) { 2658 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2659 RangeUse[Input] = 0; // Unused 2660 StartIdx[Input] = 0; 2661 continue; 2662 } 2663 2664 // Find a good start index that is a multiple of the mask length. Then 2665 // see if the rest of the elements are in range. 2666 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2667 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2668 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2669 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2670 } 2671 2672 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2673 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2674 return; 2675 } 2676 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2677 // Extract appropriate subvector and generate a vector shuffle 2678 for (unsigned Input = 0; Input < 2; ++Input) { 2679 SDValue &Src = Input == 0 ? Src1 : Src2; 2680 if (RangeUse[Input] == 0) 2681 Src = DAG.getUNDEF(VT); 2682 else { 2683 SDLoc dl = getCurSDLoc(); 2684 Src = DAG.getNode( 2685 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2686 DAG.getConstant(StartIdx[Input], dl, 2687 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2688 } 2689 } 2690 2691 // Calculate new mask. 2692 SmallVector<int, 8> MappedOps; 2693 for (unsigned i = 0; i != MaskNumElts; ++i) { 2694 int Idx = Mask[i]; 2695 if (Idx >= 0) { 2696 if (Idx < (int)SrcNumElts) 2697 Idx -= StartIdx[0]; 2698 else 2699 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2700 } 2701 MappedOps.push_back(Idx); 2702 } 2703 2704 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2705 &MappedOps[0])); 2706 return; 2707 } 2708 } 2709 2710 // We can't use either concat vectors or extract subvectors so fall back to 2711 // replacing the shuffle with extract and build vector. 2712 // to insert and build vector. 2713 EVT EltVT = VT.getVectorElementType(); 2714 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2715 SDLoc dl = getCurSDLoc(); 2716 SmallVector<SDValue,8> Ops; 2717 for (unsigned i = 0; i != MaskNumElts; ++i) { 2718 int Idx = Mask[i]; 2719 SDValue Res; 2720 2721 if (Idx < 0) { 2722 Res = DAG.getUNDEF(EltVT); 2723 } else { 2724 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2725 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2726 2727 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2728 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2729 } 2730 2731 Ops.push_back(Res); 2732 } 2733 2734 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2735 } 2736 2737 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2738 const Value *Op0 = I.getOperand(0); 2739 const Value *Op1 = I.getOperand(1); 2740 Type *AggTy = I.getType(); 2741 Type *ValTy = Op1->getType(); 2742 bool IntoUndef = isa<UndefValue>(Op0); 2743 bool FromUndef = isa<UndefValue>(Op1); 2744 2745 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2746 2747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2748 SmallVector<EVT, 4> AggValueVTs; 2749 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2750 SmallVector<EVT, 4> ValValueVTs; 2751 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2752 2753 unsigned NumAggValues = AggValueVTs.size(); 2754 unsigned NumValValues = ValValueVTs.size(); 2755 SmallVector<SDValue, 4> Values(NumAggValues); 2756 2757 // Ignore an insertvalue that produces an empty object 2758 if (!NumAggValues) { 2759 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2760 return; 2761 } 2762 2763 SDValue Agg = getValue(Op0); 2764 unsigned i = 0; 2765 // Copy the beginning value(s) from the original aggregate. 2766 for (; i != LinearIndex; ++i) 2767 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2768 SDValue(Agg.getNode(), Agg.getResNo() + i); 2769 // Copy values from the inserted value(s). 2770 if (NumValValues) { 2771 SDValue Val = getValue(Op1); 2772 for (; i != LinearIndex + NumValValues; ++i) 2773 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2774 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2775 } 2776 // Copy remaining value(s) from the original aggregate. 2777 for (; i != NumAggValues; ++i) 2778 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2779 SDValue(Agg.getNode(), Agg.getResNo() + i); 2780 2781 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2782 DAG.getVTList(AggValueVTs), Values)); 2783 } 2784 2785 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2786 const Value *Op0 = I.getOperand(0); 2787 Type *AggTy = Op0->getType(); 2788 Type *ValTy = I.getType(); 2789 bool OutOfUndef = isa<UndefValue>(Op0); 2790 2791 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2792 2793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2794 SmallVector<EVT, 4> ValValueVTs; 2795 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2796 2797 unsigned NumValValues = ValValueVTs.size(); 2798 2799 // Ignore a extractvalue that produces an empty object 2800 if (!NumValValues) { 2801 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2802 return; 2803 } 2804 2805 SmallVector<SDValue, 4> Values(NumValValues); 2806 2807 SDValue Agg = getValue(Op0); 2808 // Copy out the selected value(s). 2809 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2810 Values[i - LinearIndex] = 2811 OutOfUndef ? 2812 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2813 SDValue(Agg.getNode(), Agg.getResNo() + i); 2814 2815 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2816 DAG.getVTList(ValValueVTs), Values)); 2817 } 2818 2819 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2820 Value *Op0 = I.getOperand(0); 2821 // Note that the pointer operand may be a vector of pointers. Take the scalar 2822 // element which holds a pointer. 2823 Type *Ty = Op0->getType()->getScalarType(); 2824 unsigned AS = Ty->getPointerAddressSpace(); 2825 SDValue N = getValue(Op0); 2826 SDLoc dl = getCurSDLoc(); 2827 2828 // Normalize Vector GEP - all scalar operands should be converted to the 2829 // splat vector. 2830 unsigned VectorWidth = I.getType()->isVectorTy() ? 2831 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2832 2833 if (VectorWidth && !N.getValueType().isVector()) { 2834 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2835 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2836 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2837 } 2838 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2839 OI != E; ++OI) { 2840 const Value *Idx = *OI; 2841 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2842 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2843 if (Field) { 2844 // N = N + Offset 2845 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2846 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2847 DAG.getConstant(Offset, dl, N.getValueType())); 2848 } 2849 2850 Ty = StTy->getElementType(Field); 2851 } else { 2852 Ty = cast<SequentialType>(Ty)->getElementType(); 2853 MVT PtrTy = 2854 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2855 unsigned PtrSize = PtrTy.getSizeInBits(); 2856 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2857 2858 // If this is a scalar constant or a splat vector of constants, 2859 // handle it quickly. 2860 const auto *CI = dyn_cast<ConstantInt>(Idx); 2861 if (!CI && isa<ConstantDataVector>(Idx) && 2862 cast<ConstantDataVector>(Idx)->getSplatValue()) 2863 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2864 2865 if (CI) { 2866 if (CI->isZero()) 2867 continue; 2868 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2869 SDValue OffsVal = VectorWidth ? 2870 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2871 DAG.getConstant(Offs, dl, PtrTy); 2872 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2873 continue; 2874 } 2875 2876 // N = N + Idx * ElementSize; 2877 SDValue IdxN = getValue(Idx); 2878 2879 if (!IdxN.getValueType().isVector() && VectorWidth) { 2880 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2881 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2882 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2883 } 2884 // If the index is smaller or larger than intptr_t, truncate or extend 2885 // it. 2886 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2887 2888 // If this is a multiply by a power of two, turn it into a shl 2889 // immediately. This is a very common case. 2890 if (ElementSize != 1) { 2891 if (ElementSize.isPowerOf2()) { 2892 unsigned Amt = ElementSize.logBase2(); 2893 IdxN = DAG.getNode(ISD::SHL, dl, 2894 N.getValueType(), IdxN, 2895 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2896 } else { 2897 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2898 IdxN = DAG.getNode(ISD::MUL, dl, 2899 N.getValueType(), IdxN, Scale); 2900 } 2901 } 2902 2903 N = DAG.getNode(ISD::ADD, dl, 2904 N.getValueType(), N, IdxN); 2905 } 2906 } 2907 2908 setValue(&I, N); 2909 } 2910 2911 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2912 // If this is a fixed sized alloca in the entry block of the function, 2913 // allocate it statically on the stack. 2914 if (FuncInfo.StaticAllocaMap.count(&I)) 2915 return; // getValue will auto-populate this. 2916 2917 SDLoc dl = getCurSDLoc(); 2918 Type *Ty = I.getAllocatedType(); 2919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2920 auto &DL = DAG.getDataLayout(); 2921 uint64_t TySize = DL.getTypeAllocSize(Ty); 2922 unsigned Align = 2923 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2924 2925 SDValue AllocSize = getValue(I.getArraySize()); 2926 2927 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2928 if (AllocSize.getValueType() != IntPtr) 2929 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2930 2931 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2932 AllocSize, 2933 DAG.getConstant(TySize, dl, IntPtr)); 2934 2935 // Handle alignment. If the requested alignment is less than or equal to 2936 // the stack alignment, ignore it. If the size is greater than or equal to 2937 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2938 unsigned StackAlign = 2939 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2940 if (Align <= StackAlign) 2941 Align = 0; 2942 2943 // Round the size of the allocation up to the stack alignment size 2944 // by add SA-1 to the size. 2945 AllocSize = DAG.getNode(ISD::ADD, dl, 2946 AllocSize.getValueType(), AllocSize, 2947 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2948 2949 // Mask out the low bits for alignment purposes. 2950 AllocSize = DAG.getNode(ISD::AND, dl, 2951 AllocSize.getValueType(), AllocSize, 2952 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2953 dl)); 2954 2955 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2956 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2957 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2958 setValue(&I, DSA); 2959 DAG.setRoot(DSA.getValue(1)); 2960 2961 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2962 } 2963 2964 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2965 if (I.isAtomic()) 2966 return visitAtomicLoad(I); 2967 2968 const Value *SV = I.getOperand(0); 2969 SDValue Ptr = getValue(SV); 2970 2971 Type *Ty = I.getType(); 2972 2973 bool isVolatile = I.isVolatile(); 2974 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2975 2976 // The IR notion of invariant_load only guarantees that all *non-faulting* 2977 // invariant loads result in the same value. The MI notion of invariant load 2978 // guarantees that the load can be legally moved to any location within its 2979 // containing function. The MI notion of invariant_load is stronger than the 2980 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2981 // with a guarantee that the location being loaded from is dereferenceable 2982 // throughout the function's lifetime. 2983 2984 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2985 isDereferenceablePointer(SV, DAG.getDataLayout()); 2986 unsigned Alignment = I.getAlignment(); 2987 2988 AAMDNodes AAInfo; 2989 I.getAAMetadata(AAInfo); 2990 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2991 2992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2993 SmallVector<EVT, 4> ValueVTs; 2994 SmallVector<uint64_t, 4> Offsets; 2995 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2996 unsigned NumValues = ValueVTs.size(); 2997 if (NumValues == 0) 2998 return; 2999 3000 SDValue Root; 3001 bool ConstantMemory = false; 3002 if (isVolatile || NumValues > MaxParallelChains) 3003 // Serialize volatile loads with other side effects. 3004 Root = getRoot(); 3005 else if (AA->pointsToConstantMemory(MemoryLocation( 3006 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3007 // Do not serialize (non-volatile) loads of constant memory with anything. 3008 Root = DAG.getEntryNode(); 3009 ConstantMemory = true; 3010 } else { 3011 // Do not serialize non-volatile loads against each other. 3012 Root = DAG.getRoot(); 3013 } 3014 3015 SDLoc dl = getCurSDLoc(); 3016 3017 if (isVolatile) 3018 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3019 3020 SmallVector<SDValue, 4> Values(NumValues); 3021 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3022 EVT PtrVT = Ptr.getValueType(); 3023 unsigned ChainI = 0; 3024 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3025 // Serializing loads here may result in excessive register pressure, and 3026 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3027 // could recover a bit by hoisting nodes upward in the chain by recognizing 3028 // they are side-effect free or do not alias. The optimizer should really 3029 // avoid this case by converting large object/array copies to llvm.memcpy 3030 // (MaxParallelChains should always remain as failsafe). 3031 if (ChainI == MaxParallelChains) { 3032 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3033 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3034 makeArrayRef(Chains.data(), ChainI)); 3035 Root = Chain; 3036 ChainI = 0; 3037 } 3038 SDValue A = DAG.getNode(ISD::ADD, dl, 3039 PtrVT, Ptr, 3040 DAG.getConstant(Offsets[i], dl, PtrVT)); 3041 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3042 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3043 isNonTemporal, isInvariant, Alignment, AAInfo, 3044 Ranges); 3045 3046 Values[i] = L; 3047 Chains[ChainI] = L.getValue(1); 3048 } 3049 3050 if (!ConstantMemory) { 3051 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3052 makeArrayRef(Chains.data(), ChainI)); 3053 if (isVolatile) 3054 DAG.setRoot(Chain); 3055 else 3056 PendingLoads.push_back(Chain); 3057 } 3058 3059 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3060 DAG.getVTList(ValueVTs), Values)); 3061 } 3062 3063 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3064 if (I.isAtomic()) 3065 return visitAtomicStore(I); 3066 3067 const Value *SrcV = I.getOperand(0); 3068 const Value *PtrV = I.getOperand(1); 3069 3070 SmallVector<EVT, 4> ValueVTs; 3071 SmallVector<uint64_t, 4> Offsets; 3072 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3073 SrcV->getType(), ValueVTs, &Offsets); 3074 unsigned NumValues = ValueVTs.size(); 3075 if (NumValues == 0) 3076 return; 3077 3078 // Get the lowered operands. Note that we do this after 3079 // checking if NumResults is zero, because with zero results 3080 // the operands won't have values in the map. 3081 SDValue Src = getValue(SrcV); 3082 SDValue Ptr = getValue(PtrV); 3083 3084 SDValue Root = getRoot(); 3085 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3086 EVT PtrVT = Ptr.getValueType(); 3087 bool isVolatile = I.isVolatile(); 3088 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3089 unsigned Alignment = I.getAlignment(); 3090 SDLoc dl = getCurSDLoc(); 3091 3092 AAMDNodes AAInfo; 3093 I.getAAMetadata(AAInfo); 3094 3095 unsigned ChainI = 0; 3096 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3097 // See visitLoad comments. 3098 if (ChainI == MaxParallelChains) { 3099 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3100 makeArrayRef(Chains.data(), ChainI)); 3101 Root = Chain; 3102 ChainI = 0; 3103 } 3104 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3105 DAG.getConstant(Offsets[i], dl, PtrVT)); 3106 SDValue St = DAG.getStore(Root, dl, 3107 SDValue(Src.getNode(), Src.getResNo() + i), 3108 Add, MachinePointerInfo(PtrV, Offsets[i]), 3109 isVolatile, isNonTemporal, Alignment, AAInfo); 3110 Chains[ChainI] = St; 3111 } 3112 3113 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3114 makeArrayRef(Chains.data(), ChainI)); 3115 DAG.setRoot(StoreNode); 3116 } 3117 3118 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3119 SDLoc sdl = getCurSDLoc(); 3120 3121 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3122 Value *PtrOperand = I.getArgOperand(1); 3123 SDValue Ptr = getValue(PtrOperand); 3124 SDValue Src0 = getValue(I.getArgOperand(0)); 3125 SDValue Mask = getValue(I.getArgOperand(3)); 3126 EVT VT = Src0.getValueType(); 3127 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3128 if (!Alignment) 3129 Alignment = DAG.getEVTAlignment(VT); 3130 3131 AAMDNodes AAInfo; 3132 I.getAAMetadata(AAInfo); 3133 3134 MachineMemOperand *MMO = 3135 DAG.getMachineFunction(). 3136 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3137 MachineMemOperand::MOStore, VT.getStoreSize(), 3138 Alignment, AAInfo); 3139 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3140 MMO, false); 3141 DAG.setRoot(StoreNode); 3142 setValue(&I, StoreNode); 3143 } 3144 3145 // Gather/scatter receive a vector of pointers. 3146 // This vector of pointers may be represented as a base pointer + vector of 3147 // indices, it depends on GEP and instruction preceding GEP 3148 // that calculates indices 3149 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3150 SelectionDAGBuilder* SDB) { 3151 3152 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 3153 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3154 if (!GEP || GEP->getNumOperands() > 2) 3155 return false; 3156 Value *GEPPtrs = GEP->getPointerOperand(); 3157 if (!(Ptr = getSplatValue(GEPPtrs))) 3158 return false; 3159 3160 SelectionDAG& DAG = SDB->DAG; 3161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3162 // Check is the Ptr is inside current basic block 3163 // If not, look for the shuffle instruction 3164 if (SDB->findValue(Ptr)) 3165 Base = SDB->getValue(Ptr); 3166 else if (SDB->findValue(GEPPtrs)) { 3167 SDValue GEPPtrsVal = SDB->getValue(GEPPtrs); 3168 SDLoc sdl = GEPPtrsVal; 3169 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3170 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3171 GEPPtrsVal.getValueType().getScalarType(), GEPPtrsVal, 3172 DAG.getConstant(0, sdl, IdxVT)); 3173 SDB->setValue(Ptr, Base); 3174 } 3175 else 3176 return false; 3177 3178 Value *IndexVal = GEP->getOperand(1); 3179 if (SDB->findValue(IndexVal)) { 3180 Index = SDB->getValue(IndexVal); 3181 3182 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3183 IndexVal = Sext->getOperand(0); 3184 if (SDB->findValue(IndexVal)) 3185 Index = SDB->getValue(IndexVal); 3186 } 3187 return true; 3188 } 3189 return false; 3190 } 3191 3192 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3193 SDLoc sdl = getCurSDLoc(); 3194 3195 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3196 Value *Ptr = I.getArgOperand(1); 3197 SDValue Src0 = getValue(I.getArgOperand(0)); 3198 SDValue Mask = getValue(I.getArgOperand(3)); 3199 EVT VT = Src0.getValueType(); 3200 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3201 if (!Alignment) 3202 Alignment = DAG.getEVTAlignment(VT); 3203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3204 3205 AAMDNodes AAInfo; 3206 I.getAAMetadata(AAInfo); 3207 3208 SDValue Base; 3209 SDValue Index; 3210 Value *BasePtr = Ptr; 3211 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3212 3213 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3214 MachineMemOperand *MMO = DAG.getMachineFunction(). 3215 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3216 MachineMemOperand::MOStore, VT.getStoreSize(), 3217 Alignment, AAInfo); 3218 if (!UniformBase) { 3219 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3220 Index = getValue(Ptr); 3221 } 3222 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3223 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3224 Ops, MMO); 3225 DAG.setRoot(Scatter); 3226 setValue(&I, Scatter); 3227 } 3228 3229 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3230 SDLoc sdl = getCurSDLoc(); 3231 3232 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3233 Value *PtrOperand = I.getArgOperand(0); 3234 SDValue Ptr = getValue(PtrOperand); 3235 SDValue Src0 = getValue(I.getArgOperand(3)); 3236 SDValue Mask = getValue(I.getArgOperand(2)); 3237 3238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3239 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3240 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3241 if (!Alignment) 3242 Alignment = DAG.getEVTAlignment(VT); 3243 3244 AAMDNodes AAInfo; 3245 I.getAAMetadata(AAInfo); 3246 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3247 3248 SDValue InChain = DAG.getRoot(); 3249 if (AA->pointsToConstantMemory(MemoryLocation( 3250 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3251 AAInfo))) { 3252 // Do not serialize (non-volatile) loads of constant memory with anything. 3253 InChain = DAG.getEntryNode(); 3254 } 3255 3256 MachineMemOperand *MMO = 3257 DAG.getMachineFunction(). 3258 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3259 MachineMemOperand::MOLoad, VT.getStoreSize(), 3260 Alignment, AAInfo, Ranges); 3261 3262 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3263 ISD::NON_EXTLOAD); 3264 SDValue OutChain = Load.getValue(1); 3265 DAG.setRoot(OutChain); 3266 setValue(&I, Load); 3267 } 3268 3269 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3270 SDLoc sdl = getCurSDLoc(); 3271 3272 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3273 Value *Ptr = I.getArgOperand(0); 3274 SDValue Src0 = getValue(I.getArgOperand(3)); 3275 SDValue Mask = getValue(I.getArgOperand(2)); 3276 3277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3278 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3279 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3280 if (!Alignment) 3281 Alignment = DAG.getEVTAlignment(VT); 3282 3283 AAMDNodes AAInfo; 3284 I.getAAMetadata(AAInfo); 3285 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3286 3287 SDValue Root = DAG.getRoot(); 3288 SDValue Base; 3289 SDValue Index; 3290 Value *BasePtr = Ptr; 3291 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3292 bool ConstantMemory = false; 3293 if (UniformBase && 3294 AA->pointsToConstantMemory(MemoryLocation( 3295 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3296 AAInfo))) { 3297 // Do not serialize (non-volatile) loads of constant memory with anything. 3298 Root = DAG.getEntryNode(); 3299 ConstantMemory = true; 3300 } 3301 3302 MachineMemOperand *MMO = 3303 DAG.getMachineFunction(). 3304 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3305 MachineMemOperand::MOLoad, VT.getStoreSize(), 3306 Alignment, AAInfo, Ranges); 3307 3308 if (!UniformBase) { 3309 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3310 Index = getValue(Ptr); 3311 } 3312 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3313 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3314 Ops, MMO); 3315 3316 SDValue OutChain = Gather.getValue(1); 3317 if (!ConstantMemory) 3318 PendingLoads.push_back(OutChain); 3319 setValue(&I, Gather); 3320 } 3321 3322 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3323 SDLoc dl = getCurSDLoc(); 3324 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3325 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3326 SynchronizationScope Scope = I.getSynchScope(); 3327 3328 SDValue InChain = getRoot(); 3329 3330 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3331 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3332 SDValue L = DAG.getAtomicCmpSwap( 3333 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3334 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3335 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3336 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3337 3338 SDValue OutChain = L.getValue(2); 3339 3340 setValue(&I, L); 3341 DAG.setRoot(OutChain); 3342 } 3343 3344 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3345 SDLoc dl = getCurSDLoc(); 3346 ISD::NodeType NT; 3347 switch (I.getOperation()) { 3348 default: llvm_unreachable("Unknown atomicrmw operation"); 3349 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3350 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3351 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3352 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3353 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3354 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3355 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3356 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3357 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3358 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3359 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3360 } 3361 AtomicOrdering Order = I.getOrdering(); 3362 SynchronizationScope Scope = I.getSynchScope(); 3363 3364 SDValue InChain = getRoot(); 3365 3366 SDValue L = 3367 DAG.getAtomic(NT, dl, 3368 getValue(I.getValOperand()).getSimpleValueType(), 3369 InChain, 3370 getValue(I.getPointerOperand()), 3371 getValue(I.getValOperand()), 3372 I.getPointerOperand(), 3373 /* Alignment=*/ 0, Order, Scope); 3374 3375 SDValue OutChain = L.getValue(1); 3376 3377 setValue(&I, L); 3378 DAG.setRoot(OutChain); 3379 } 3380 3381 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3382 SDLoc dl = getCurSDLoc(); 3383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3384 SDValue Ops[3]; 3385 Ops[0] = getRoot(); 3386 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3387 TLI.getPointerTy(DAG.getDataLayout())); 3388 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3389 TLI.getPointerTy(DAG.getDataLayout())); 3390 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3391 } 3392 3393 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3394 SDLoc dl = getCurSDLoc(); 3395 AtomicOrdering Order = I.getOrdering(); 3396 SynchronizationScope Scope = I.getSynchScope(); 3397 3398 SDValue InChain = getRoot(); 3399 3400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3401 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3402 3403 if (I.getAlignment() < VT.getSizeInBits() / 8) 3404 report_fatal_error("Cannot generate unaligned atomic load"); 3405 3406 MachineMemOperand *MMO = 3407 DAG.getMachineFunction(). 3408 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3409 MachineMemOperand::MOVolatile | 3410 MachineMemOperand::MOLoad, 3411 VT.getStoreSize(), 3412 I.getAlignment() ? I.getAlignment() : 3413 DAG.getEVTAlignment(VT)); 3414 3415 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3416 SDValue L = 3417 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3418 getValue(I.getPointerOperand()), MMO, 3419 Order, Scope); 3420 3421 SDValue OutChain = L.getValue(1); 3422 3423 setValue(&I, L); 3424 DAG.setRoot(OutChain); 3425 } 3426 3427 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3428 SDLoc dl = getCurSDLoc(); 3429 3430 AtomicOrdering Order = I.getOrdering(); 3431 SynchronizationScope Scope = I.getSynchScope(); 3432 3433 SDValue InChain = getRoot(); 3434 3435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3436 EVT VT = 3437 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3438 3439 if (I.getAlignment() < VT.getSizeInBits() / 8) 3440 report_fatal_error("Cannot generate unaligned atomic store"); 3441 3442 SDValue OutChain = 3443 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3444 InChain, 3445 getValue(I.getPointerOperand()), 3446 getValue(I.getValueOperand()), 3447 I.getPointerOperand(), I.getAlignment(), 3448 Order, Scope); 3449 3450 DAG.setRoot(OutChain); 3451 } 3452 3453 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3454 /// node. 3455 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3456 unsigned Intrinsic) { 3457 bool HasChain = !I.doesNotAccessMemory(); 3458 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3459 3460 // Build the operand list. 3461 SmallVector<SDValue, 8> Ops; 3462 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3463 if (OnlyLoad) { 3464 // We don't need to serialize loads against other loads. 3465 Ops.push_back(DAG.getRoot()); 3466 } else { 3467 Ops.push_back(getRoot()); 3468 } 3469 } 3470 3471 // Info is set by getTgtMemInstrinsic 3472 TargetLowering::IntrinsicInfo Info; 3473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3474 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3475 3476 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3477 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3478 Info.opc == ISD::INTRINSIC_W_CHAIN) 3479 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3480 TLI.getPointerTy(DAG.getDataLayout()))); 3481 3482 // Add all operands of the call to the operand list. 3483 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3484 SDValue Op = getValue(I.getArgOperand(i)); 3485 Ops.push_back(Op); 3486 } 3487 3488 SmallVector<EVT, 4> ValueVTs; 3489 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3490 3491 if (HasChain) 3492 ValueVTs.push_back(MVT::Other); 3493 3494 SDVTList VTs = DAG.getVTList(ValueVTs); 3495 3496 // Create the node. 3497 SDValue Result; 3498 if (IsTgtIntrinsic) { 3499 // This is target intrinsic that touches memory 3500 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3501 VTs, Ops, Info.memVT, 3502 MachinePointerInfo(Info.ptrVal, Info.offset), 3503 Info.align, Info.vol, 3504 Info.readMem, Info.writeMem, Info.size); 3505 } else if (!HasChain) { 3506 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3507 } else if (!I.getType()->isVoidTy()) { 3508 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3509 } else { 3510 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3511 } 3512 3513 if (HasChain) { 3514 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3515 if (OnlyLoad) 3516 PendingLoads.push_back(Chain); 3517 else 3518 DAG.setRoot(Chain); 3519 } 3520 3521 if (!I.getType()->isVoidTy()) { 3522 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3523 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3524 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3525 } 3526 3527 setValue(&I, Result); 3528 } 3529 } 3530 3531 /// GetSignificand - Get the significand and build it into a floating-point 3532 /// number with exponent of 1: 3533 /// 3534 /// Op = (Op & 0x007fffff) | 0x3f800000; 3535 /// 3536 /// where Op is the hexadecimal representation of floating point value. 3537 static SDValue 3538 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3539 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3540 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3541 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3542 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3543 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3544 } 3545 3546 /// GetExponent - Get the exponent: 3547 /// 3548 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3549 /// 3550 /// where Op is the hexadecimal representation of floating point value. 3551 static SDValue 3552 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3553 SDLoc dl) { 3554 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3555 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3556 SDValue t1 = DAG.getNode( 3557 ISD::SRL, dl, MVT::i32, t0, 3558 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3559 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3560 DAG.getConstant(127, dl, MVT::i32)); 3561 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3562 } 3563 3564 /// getF32Constant - Get 32-bit floating point constant. 3565 static SDValue 3566 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3567 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3568 MVT::f32); 3569 } 3570 3571 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3572 SelectionDAG &DAG) { 3573 // IntegerPartOfX = ((int32_t)(t0); 3574 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3575 3576 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3577 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3578 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3579 3580 // IntegerPartOfX <<= 23; 3581 IntegerPartOfX = DAG.getNode( 3582 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3583 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3584 DAG.getDataLayout()))); 3585 3586 SDValue TwoToFractionalPartOfX; 3587 if (LimitFloatPrecision <= 6) { 3588 // For floating-point precision of 6: 3589 // 3590 // TwoToFractionalPartOfX = 3591 // 0.997535578f + 3592 // (0.735607626f + 0.252464424f * x) * x; 3593 // 3594 // error 0.0144103317, which is 6 bits 3595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3596 getF32Constant(DAG, 0x3e814304, dl)); 3597 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3598 getF32Constant(DAG, 0x3f3c50c8, dl)); 3599 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3600 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3601 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3602 } else if (LimitFloatPrecision <= 12) { 3603 // For floating-point precision of 12: 3604 // 3605 // TwoToFractionalPartOfX = 3606 // 0.999892986f + 3607 // (0.696457318f + 3608 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3609 // 3610 // error 0.000107046256, which is 13 to 14 bits 3611 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3612 getF32Constant(DAG, 0x3da235e3, dl)); 3613 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3614 getF32Constant(DAG, 0x3e65b8f3, dl)); 3615 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3616 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3617 getF32Constant(DAG, 0x3f324b07, dl)); 3618 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3619 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3620 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3621 } else { // LimitFloatPrecision <= 18 3622 // For floating-point precision of 18: 3623 // 3624 // TwoToFractionalPartOfX = 3625 // 0.999999982f + 3626 // (0.693148872f + 3627 // (0.240227044f + 3628 // (0.554906021e-1f + 3629 // (0.961591928e-2f + 3630 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3631 // error 2.47208000*10^(-7), which is better than 18 bits 3632 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3633 getF32Constant(DAG, 0x3924b03e, dl)); 3634 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3635 getF32Constant(DAG, 0x3ab24b87, dl)); 3636 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3637 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3638 getF32Constant(DAG, 0x3c1d8c17, dl)); 3639 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3640 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3641 getF32Constant(DAG, 0x3d634a1d, dl)); 3642 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3643 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3644 getF32Constant(DAG, 0x3e75fe14, dl)); 3645 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3646 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3647 getF32Constant(DAG, 0x3f317234, dl)); 3648 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3649 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3650 getF32Constant(DAG, 0x3f800000, dl)); 3651 } 3652 3653 // Add the exponent into the result in integer domain. 3654 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3655 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3656 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3657 } 3658 3659 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3660 /// limited-precision mode. 3661 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3662 const TargetLowering &TLI) { 3663 if (Op.getValueType() == MVT::f32 && 3664 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3665 3666 // Put the exponent in the right bit position for later addition to the 3667 // final result: 3668 // 3669 // #define LOG2OFe 1.4426950f 3670 // t0 = Op * LOG2OFe 3671 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3672 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3673 return getLimitedPrecisionExp2(t0, dl, DAG); 3674 } 3675 3676 // No special expansion. 3677 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3678 } 3679 3680 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3681 /// limited-precision mode. 3682 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3683 const TargetLowering &TLI) { 3684 if (Op.getValueType() == MVT::f32 && 3685 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3686 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3687 3688 // Scale the exponent by log(2) [0.69314718f]. 3689 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3690 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3691 getF32Constant(DAG, 0x3f317218, dl)); 3692 3693 // Get the significand and build it into a floating-point number with 3694 // exponent of 1. 3695 SDValue X = GetSignificand(DAG, Op1, dl); 3696 3697 SDValue LogOfMantissa; 3698 if (LimitFloatPrecision <= 6) { 3699 // For floating-point precision of 6: 3700 // 3701 // LogofMantissa = 3702 // -1.1609546f + 3703 // (1.4034025f - 0.23903021f * x) * x; 3704 // 3705 // error 0.0034276066, which is better than 8 bits 3706 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3707 getF32Constant(DAG, 0xbe74c456, dl)); 3708 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3709 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3710 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3711 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3712 getF32Constant(DAG, 0x3f949a29, dl)); 3713 } else if (LimitFloatPrecision <= 12) { 3714 // For floating-point precision of 12: 3715 // 3716 // LogOfMantissa = 3717 // -1.7417939f + 3718 // (2.8212026f + 3719 // (-1.4699568f + 3720 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3721 // 3722 // error 0.000061011436, which is 14 bits 3723 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3724 getF32Constant(DAG, 0xbd67b6d6, dl)); 3725 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3726 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3727 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3728 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3729 getF32Constant(DAG, 0x3fbc278b, dl)); 3730 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3731 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3732 getF32Constant(DAG, 0x40348e95, dl)); 3733 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3734 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3735 getF32Constant(DAG, 0x3fdef31a, dl)); 3736 } else { // LimitFloatPrecision <= 18 3737 // For floating-point precision of 18: 3738 // 3739 // LogOfMantissa = 3740 // -2.1072184f + 3741 // (4.2372794f + 3742 // (-3.7029485f + 3743 // (2.2781945f + 3744 // (-0.87823314f + 3745 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3746 // 3747 // error 0.0000023660568, which is better than 18 bits 3748 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3749 getF32Constant(DAG, 0xbc91e5ac, dl)); 3750 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3751 getF32Constant(DAG, 0x3e4350aa, dl)); 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3753 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3754 getF32Constant(DAG, 0x3f60d3e3, dl)); 3755 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3756 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3757 getF32Constant(DAG, 0x4011cdf0, dl)); 3758 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3759 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3760 getF32Constant(DAG, 0x406cfd1c, dl)); 3761 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3762 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3763 getF32Constant(DAG, 0x408797cb, dl)); 3764 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3765 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3766 getF32Constant(DAG, 0x4006dcab, dl)); 3767 } 3768 3769 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3770 } 3771 3772 // No special expansion. 3773 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3774 } 3775 3776 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3777 /// limited-precision mode. 3778 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3779 const TargetLowering &TLI) { 3780 if (Op.getValueType() == MVT::f32 && 3781 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3782 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3783 3784 // Get the exponent. 3785 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3786 3787 // Get the significand and build it into a floating-point number with 3788 // exponent of 1. 3789 SDValue X = GetSignificand(DAG, Op1, dl); 3790 3791 // Different possible minimax approximations of significand in 3792 // floating-point for various degrees of accuracy over [1,2]. 3793 SDValue Log2ofMantissa; 3794 if (LimitFloatPrecision <= 6) { 3795 // For floating-point precision of 6: 3796 // 3797 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3798 // 3799 // error 0.0049451742, which is more than 7 bits 3800 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3801 getF32Constant(DAG, 0xbeb08fe0, dl)); 3802 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3803 getF32Constant(DAG, 0x40019463, dl)); 3804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3805 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3fd6633d, dl)); 3807 } else if (LimitFloatPrecision <= 12) { 3808 // For floating-point precision of 12: 3809 // 3810 // Log2ofMantissa = 3811 // -2.51285454f + 3812 // (4.07009056f + 3813 // (-2.12067489f + 3814 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3815 // 3816 // error 0.0000876136000, which is better than 13 bits 3817 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3818 getF32Constant(DAG, 0xbda7262e, dl)); 3819 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3820 getF32Constant(DAG, 0x3f25280b, dl)); 3821 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3822 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3823 getF32Constant(DAG, 0x4007b923, dl)); 3824 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3825 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3826 getF32Constant(DAG, 0x40823e2f, dl)); 3827 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3828 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3829 getF32Constant(DAG, 0x4020d29c, dl)); 3830 } else { // LimitFloatPrecision <= 18 3831 // For floating-point precision of 18: 3832 // 3833 // Log2ofMantissa = 3834 // -3.0400495f + 3835 // (6.1129976f + 3836 // (-5.3420409f + 3837 // (3.2865683f + 3838 // (-1.2669343f + 3839 // (0.27515199f - 3840 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3841 // 3842 // error 0.0000018516, which is better than 18 bits 3843 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3844 getF32Constant(DAG, 0xbcd2769e, dl)); 3845 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3846 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3848 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3849 getF32Constant(DAG, 0x3fa22ae7, dl)); 3850 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3851 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3852 getF32Constant(DAG, 0x40525723, dl)); 3853 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3854 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3855 getF32Constant(DAG, 0x40aaf200, dl)); 3856 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3857 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3858 getF32Constant(DAG, 0x40c39dad, dl)); 3859 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3860 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3861 getF32Constant(DAG, 0x4042902c, dl)); 3862 } 3863 3864 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3865 } 3866 3867 // No special expansion. 3868 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3869 } 3870 3871 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3872 /// limited-precision mode. 3873 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3874 const TargetLowering &TLI) { 3875 if (Op.getValueType() == MVT::f32 && 3876 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3877 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3878 3879 // Scale the exponent by log10(2) [0.30102999f]. 3880 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3881 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3882 getF32Constant(DAG, 0x3e9a209a, dl)); 3883 3884 // Get the significand and build it into a floating-point number with 3885 // exponent of 1. 3886 SDValue X = GetSignificand(DAG, Op1, dl); 3887 3888 SDValue Log10ofMantissa; 3889 if (LimitFloatPrecision <= 6) { 3890 // For floating-point precision of 6: 3891 // 3892 // Log10ofMantissa = 3893 // -0.50419619f + 3894 // (0.60948995f - 0.10380950f * x) * x; 3895 // 3896 // error 0.0014886165, which is 6 bits 3897 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3898 getF32Constant(DAG, 0xbdd49a13, dl)); 3899 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3900 getF32Constant(DAG, 0x3f1c0789, dl)); 3901 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3902 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3903 getF32Constant(DAG, 0x3f011300, dl)); 3904 } else if (LimitFloatPrecision <= 12) { 3905 // For floating-point precision of 12: 3906 // 3907 // Log10ofMantissa = 3908 // -0.64831180f + 3909 // (0.91751397f + 3910 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3911 // 3912 // error 0.00019228036, which is better than 12 bits 3913 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3914 getF32Constant(DAG, 0x3d431f31, dl)); 3915 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3916 getF32Constant(DAG, 0x3ea21fb2, dl)); 3917 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3918 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3919 getF32Constant(DAG, 0x3f6ae232, dl)); 3920 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3921 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3922 getF32Constant(DAG, 0x3f25f7c3, dl)); 3923 } else { // LimitFloatPrecision <= 18 3924 // For floating-point precision of 18: 3925 // 3926 // Log10ofMantissa = 3927 // -0.84299375f + 3928 // (1.5327582f + 3929 // (-1.0688956f + 3930 // (0.49102474f + 3931 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3932 // 3933 // error 0.0000037995730, which is better than 18 bits 3934 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3935 getF32Constant(DAG, 0x3c5d51ce, dl)); 3936 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3937 getF32Constant(DAG, 0x3e00685a, dl)); 3938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3939 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3940 getF32Constant(DAG, 0x3efb6798, dl)); 3941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3942 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3943 getF32Constant(DAG, 0x3f88d192, dl)); 3944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3945 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3946 getF32Constant(DAG, 0x3fc4316c, dl)); 3947 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3948 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3949 getF32Constant(DAG, 0x3f57ce70, dl)); 3950 } 3951 3952 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3953 } 3954 3955 // No special expansion. 3956 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3957 } 3958 3959 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3960 /// limited-precision mode. 3961 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3962 const TargetLowering &TLI) { 3963 if (Op.getValueType() == MVT::f32 && 3964 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3965 return getLimitedPrecisionExp2(Op, dl, DAG); 3966 3967 // No special expansion. 3968 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3969 } 3970 3971 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3972 /// limited-precision mode with x == 10.0f. 3973 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3974 SelectionDAG &DAG, const TargetLowering &TLI) { 3975 bool IsExp10 = false; 3976 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3977 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3978 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3979 APFloat Ten(10.0f); 3980 IsExp10 = LHSC->isExactlyValue(Ten); 3981 } 3982 } 3983 3984 if (IsExp10) { 3985 // Put the exponent in the right bit position for later addition to the 3986 // final result: 3987 // 3988 // #define LOG2OF10 3.3219281f 3989 // t0 = Op * LOG2OF10; 3990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3991 getF32Constant(DAG, 0x40549a78, dl)); 3992 return getLimitedPrecisionExp2(t0, dl, DAG); 3993 } 3994 3995 // No special expansion. 3996 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3997 } 3998 3999 4000 /// ExpandPowI - Expand a llvm.powi intrinsic. 4001 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4002 SelectionDAG &DAG) { 4003 // If RHS is a constant, we can expand this out to a multiplication tree, 4004 // otherwise we end up lowering to a call to __powidf2 (for example). When 4005 // optimizing for size, we only want to do this if the expansion would produce 4006 // a small number of multiplies, otherwise we do the full expansion. 4007 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4008 // Get the exponent as a positive value. 4009 unsigned Val = RHSC->getSExtValue(); 4010 if ((int)Val < 0) Val = -Val; 4011 4012 // powi(x, 0) -> 1.0 4013 if (Val == 0) 4014 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4015 4016 const Function *F = DAG.getMachineFunction().getFunction(); 4017 if (!F->optForSize() || 4018 // If optimizing for size, don't insert too many multiplies. 4019 // This inserts up to 5 multiplies. 4020 countPopulation(Val) + Log2_32(Val) < 7) { 4021 // We use the simple binary decomposition method to generate the multiply 4022 // sequence. There are more optimal ways to do this (for example, 4023 // powi(x,15) generates one more multiply than it should), but this has 4024 // the benefit of being both really simple and much better than a libcall. 4025 SDValue Res; // Logically starts equal to 1.0 4026 SDValue CurSquare = LHS; 4027 while (Val) { 4028 if (Val & 1) { 4029 if (Res.getNode()) 4030 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4031 else 4032 Res = CurSquare; // 1.0*CurSquare. 4033 } 4034 4035 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4036 CurSquare, CurSquare); 4037 Val >>= 1; 4038 } 4039 4040 // If the original was negative, invert the result, producing 1/(x*x*x). 4041 if (RHSC->getSExtValue() < 0) 4042 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4043 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4044 return Res; 4045 } 4046 } 4047 4048 // Otherwise, expand to a libcall. 4049 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4050 } 4051 4052 // getTruncatedArgReg - Find underlying register used for an truncated 4053 // argument. 4054 static unsigned getTruncatedArgReg(const SDValue &N) { 4055 if (N.getOpcode() != ISD::TRUNCATE) 4056 return 0; 4057 4058 const SDValue &Ext = N.getOperand(0); 4059 if (Ext.getOpcode() == ISD::AssertZext || 4060 Ext.getOpcode() == ISD::AssertSext) { 4061 const SDValue &CFR = Ext.getOperand(0); 4062 if (CFR.getOpcode() == ISD::CopyFromReg) 4063 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4064 if (CFR.getOpcode() == ISD::TRUNCATE) 4065 return getTruncatedArgReg(CFR); 4066 } 4067 return 0; 4068 } 4069 4070 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4071 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4072 /// At the end of instruction selection, they will be inserted to the entry BB. 4073 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4074 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4075 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4076 const Argument *Arg = dyn_cast<Argument>(V); 4077 if (!Arg) 4078 return false; 4079 4080 MachineFunction &MF = DAG.getMachineFunction(); 4081 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4082 4083 // Ignore inlined function arguments here. 4084 // 4085 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4086 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4087 return false; 4088 4089 Optional<MachineOperand> Op; 4090 // Some arguments' frame index is recorded during argument lowering. 4091 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4092 Op = MachineOperand::CreateFI(FI); 4093 4094 if (!Op && N.getNode()) { 4095 unsigned Reg; 4096 if (N.getOpcode() == ISD::CopyFromReg) 4097 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4098 else 4099 Reg = getTruncatedArgReg(N); 4100 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4101 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4102 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4103 if (PR) 4104 Reg = PR; 4105 } 4106 if (Reg) 4107 Op = MachineOperand::CreateReg(Reg, false); 4108 } 4109 4110 if (!Op) { 4111 // Check if ValueMap has reg number. 4112 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4113 if (VMI != FuncInfo.ValueMap.end()) 4114 Op = MachineOperand::CreateReg(VMI->second, false); 4115 } 4116 4117 if (!Op && N.getNode()) 4118 // Check if frame index is available. 4119 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4120 if (FrameIndexSDNode *FINode = 4121 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4122 Op = MachineOperand::CreateFI(FINode->getIndex()); 4123 4124 if (!Op) 4125 return false; 4126 4127 assert(Variable->isValidLocationForIntrinsic(DL) && 4128 "Expected inlined-at fields to agree"); 4129 if (Op->isReg()) 4130 FuncInfo.ArgDbgValues.push_back( 4131 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4132 Op->getReg(), Offset, Variable, Expr)); 4133 else 4134 FuncInfo.ArgDbgValues.push_back( 4135 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4136 .addOperand(*Op) 4137 .addImm(Offset) 4138 .addMetadata(Variable) 4139 .addMetadata(Expr)); 4140 4141 return true; 4142 } 4143 4144 // VisualStudio defines setjmp as _setjmp 4145 #if defined(_MSC_VER) && defined(setjmp) && \ 4146 !defined(setjmp_undefined_for_msvc) 4147 # pragma push_macro("setjmp") 4148 # undef setjmp 4149 # define setjmp_undefined_for_msvc 4150 #endif 4151 4152 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4153 /// we want to emit this as a call to a named external function, return the name 4154 /// otherwise lower it and return null. 4155 const char * 4156 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4158 SDLoc sdl = getCurSDLoc(); 4159 DebugLoc dl = getCurDebugLoc(); 4160 SDValue Res; 4161 4162 switch (Intrinsic) { 4163 default: 4164 // By default, turn this into a target intrinsic node. 4165 visitTargetIntrinsic(I, Intrinsic); 4166 return nullptr; 4167 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4168 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4169 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4170 case Intrinsic::returnaddress: 4171 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4172 TLI.getPointerTy(DAG.getDataLayout()), 4173 getValue(I.getArgOperand(0)))); 4174 return nullptr; 4175 case Intrinsic::frameaddress: 4176 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4177 TLI.getPointerTy(DAG.getDataLayout()), 4178 getValue(I.getArgOperand(0)))); 4179 return nullptr; 4180 case Intrinsic::read_register: { 4181 Value *Reg = I.getArgOperand(0); 4182 SDValue Chain = getRoot(); 4183 SDValue RegName = 4184 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4185 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4186 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4187 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4188 setValue(&I, Res); 4189 DAG.setRoot(Res.getValue(1)); 4190 return nullptr; 4191 } 4192 case Intrinsic::write_register: { 4193 Value *Reg = I.getArgOperand(0); 4194 Value *RegValue = I.getArgOperand(1); 4195 SDValue Chain = getRoot(); 4196 SDValue RegName = 4197 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4198 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4199 RegName, getValue(RegValue))); 4200 return nullptr; 4201 } 4202 case Intrinsic::setjmp: 4203 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4204 case Intrinsic::longjmp: 4205 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4206 case Intrinsic::memcpy: { 4207 // FIXME: this definition of "user defined address space" is x86-specific 4208 // Assert for address < 256 since we support only user defined address 4209 // spaces. 4210 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4211 < 256 && 4212 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4213 < 256 && 4214 "Unknown address space"); 4215 SDValue Op1 = getValue(I.getArgOperand(0)); 4216 SDValue Op2 = getValue(I.getArgOperand(1)); 4217 SDValue Op3 = getValue(I.getArgOperand(2)); 4218 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4219 if (!Align) 4220 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4221 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4222 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4223 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4224 false, isTC, 4225 MachinePointerInfo(I.getArgOperand(0)), 4226 MachinePointerInfo(I.getArgOperand(1))); 4227 updateDAGForMaybeTailCall(MC); 4228 return nullptr; 4229 } 4230 case Intrinsic::memset: { 4231 // FIXME: this definition of "user defined address space" is x86-specific 4232 // Assert for address < 256 since we support only user defined address 4233 // spaces. 4234 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4235 < 256 && 4236 "Unknown address space"); 4237 SDValue Op1 = getValue(I.getArgOperand(0)); 4238 SDValue Op2 = getValue(I.getArgOperand(1)); 4239 SDValue Op3 = getValue(I.getArgOperand(2)); 4240 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4241 if (!Align) 4242 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4243 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4244 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4245 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4246 isTC, MachinePointerInfo(I.getArgOperand(0))); 4247 updateDAGForMaybeTailCall(MS); 4248 return nullptr; 4249 } 4250 case Intrinsic::memmove: { 4251 // FIXME: this definition of "user defined address space" is x86-specific 4252 // Assert for address < 256 since we support only user defined address 4253 // spaces. 4254 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4255 < 256 && 4256 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4257 < 256 && 4258 "Unknown address space"); 4259 SDValue Op1 = getValue(I.getArgOperand(0)); 4260 SDValue Op2 = getValue(I.getArgOperand(1)); 4261 SDValue Op3 = getValue(I.getArgOperand(2)); 4262 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4263 if (!Align) 4264 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4265 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4266 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4267 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4268 isTC, MachinePointerInfo(I.getArgOperand(0)), 4269 MachinePointerInfo(I.getArgOperand(1))); 4270 updateDAGForMaybeTailCall(MM); 4271 return nullptr; 4272 } 4273 case Intrinsic::dbg_declare: { 4274 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4275 DILocalVariable *Variable = DI.getVariable(); 4276 DIExpression *Expression = DI.getExpression(); 4277 const Value *Address = DI.getAddress(); 4278 assert(Variable && "Missing variable"); 4279 if (!Address) { 4280 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4281 return nullptr; 4282 } 4283 4284 // Check if address has undef value. 4285 if (isa<UndefValue>(Address) || 4286 (Address->use_empty() && !isa<Argument>(Address))) { 4287 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4288 return nullptr; 4289 } 4290 4291 SDValue &N = NodeMap[Address]; 4292 if (!N.getNode() && isa<Argument>(Address)) 4293 // Check unused arguments map. 4294 N = UnusedArgNodeMap[Address]; 4295 SDDbgValue *SDV; 4296 if (N.getNode()) { 4297 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4298 Address = BCI->getOperand(0); 4299 // Parameters are handled specially. 4300 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4301 4302 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4303 4304 if (isParameter && !AI) { 4305 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4306 if (FINode) 4307 // Byval parameter. We have a frame index at this point. 4308 SDV = DAG.getFrameIndexDbgValue( 4309 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4310 else { 4311 // Address is an argument, so try to emit its dbg value using 4312 // virtual register info from the FuncInfo.ValueMap. 4313 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4314 N); 4315 return nullptr; 4316 } 4317 } else if (AI) 4318 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4319 true, 0, dl, SDNodeOrder); 4320 else { 4321 // Can't do anything with other non-AI cases yet. 4322 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4323 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4324 DEBUG(Address->dump()); 4325 return nullptr; 4326 } 4327 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4328 } else { 4329 // If Address is an argument then try to emit its dbg value using 4330 // virtual register info from the FuncInfo.ValueMap. 4331 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4332 N)) { 4333 // If variable is pinned by a alloca in dominating bb then 4334 // use StaticAllocaMap. 4335 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4336 if (AI->getParent() != DI.getParent()) { 4337 DenseMap<const AllocaInst*, int>::iterator SI = 4338 FuncInfo.StaticAllocaMap.find(AI); 4339 if (SI != FuncInfo.StaticAllocaMap.end()) { 4340 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4341 0, dl, SDNodeOrder); 4342 DAG.AddDbgValue(SDV, nullptr, false); 4343 return nullptr; 4344 } 4345 } 4346 } 4347 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4348 } 4349 } 4350 return nullptr; 4351 } 4352 case Intrinsic::dbg_value: { 4353 const DbgValueInst &DI = cast<DbgValueInst>(I); 4354 assert(DI.getVariable() && "Missing variable"); 4355 4356 DILocalVariable *Variable = DI.getVariable(); 4357 DIExpression *Expression = DI.getExpression(); 4358 uint64_t Offset = DI.getOffset(); 4359 const Value *V = DI.getValue(); 4360 if (!V) 4361 return nullptr; 4362 4363 SDDbgValue *SDV; 4364 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4365 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4366 SDNodeOrder); 4367 DAG.AddDbgValue(SDV, nullptr, false); 4368 } else { 4369 // Do not use getValue() in here; we don't want to generate code at 4370 // this point if it hasn't been done yet. 4371 SDValue N = NodeMap[V]; 4372 if (!N.getNode() && isa<Argument>(V)) 4373 // Check unused arguments map. 4374 N = UnusedArgNodeMap[V]; 4375 if (N.getNode()) { 4376 // A dbg.value for an alloca is always indirect. 4377 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4378 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4379 IsIndirect, N)) { 4380 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4381 IsIndirect, Offset, dl, SDNodeOrder); 4382 DAG.AddDbgValue(SDV, N.getNode(), false); 4383 } 4384 } else if (!V->use_empty() ) { 4385 // Do not call getValue(V) yet, as we don't want to generate code. 4386 // Remember it for later. 4387 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4388 DanglingDebugInfoMap[V] = DDI; 4389 } else { 4390 // We may expand this to cover more cases. One case where we have no 4391 // data available is an unreferenced parameter. 4392 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4393 } 4394 } 4395 4396 // Build a debug info table entry. 4397 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4398 V = BCI->getOperand(0); 4399 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4400 // Don't handle byval struct arguments or VLAs, for example. 4401 if (!AI) { 4402 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4403 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4404 return nullptr; 4405 } 4406 DenseMap<const AllocaInst*, int>::iterator SI = 4407 FuncInfo.StaticAllocaMap.find(AI); 4408 if (SI == FuncInfo.StaticAllocaMap.end()) 4409 return nullptr; // VLAs. 4410 return nullptr; 4411 } 4412 4413 case Intrinsic::eh_typeid_for: { 4414 // Find the type id for the given typeinfo. 4415 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4416 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4417 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4418 setValue(&I, Res); 4419 return nullptr; 4420 } 4421 4422 case Intrinsic::eh_return_i32: 4423 case Intrinsic::eh_return_i64: 4424 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4425 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4426 MVT::Other, 4427 getControlRoot(), 4428 getValue(I.getArgOperand(0)), 4429 getValue(I.getArgOperand(1)))); 4430 return nullptr; 4431 case Intrinsic::eh_unwind_init: 4432 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4433 return nullptr; 4434 case Intrinsic::eh_dwarf_cfa: { 4435 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4436 TLI.getPointerTy(DAG.getDataLayout())); 4437 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4438 CfaArg.getValueType(), 4439 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4440 CfaArg.getValueType()), 4441 CfaArg); 4442 SDValue FA = DAG.getNode( 4443 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4444 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4445 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4446 FA, Offset)); 4447 return nullptr; 4448 } 4449 case Intrinsic::eh_sjlj_callsite: { 4450 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4451 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4452 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4453 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4454 4455 MMI.setCurrentCallSite(CI->getZExtValue()); 4456 return nullptr; 4457 } 4458 case Intrinsic::eh_sjlj_functioncontext: { 4459 // Get and store the index of the function context. 4460 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4461 AllocaInst *FnCtx = 4462 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4463 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4464 MFI->setFunctionContextIndex(FI); 4465 return nullptr; 4466 } 4467 case Intrinsic::eh_sjlj_setjmp: { 4468 SDValue Ops[2]; 4469 Ops[0] = getRoot(); 4470 Ops[1] = getValue(I.getArgOperand(0)); 4471 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4472 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4473 setValue(&I, Op.getValue(0)); 4474 DAG.setRoot(Op.getValue(1)); 4475 return nullptr; 4476 } 4477 case Intrinsic::eh_sjlj_longjmp: { 4478 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4479 getRoot(), getValue(I.getArgOperand(0)))); 4480 return nullptr; 4481 } 4482 case Intrinsic::eh_sjlj_setup_dispatch: { 4483 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4484 getRoot())); 4485 return nullptr; 4486 } 4487 4488 case Intrinsic::masked_gather: 4489 visitMaskedGather(I); 4490 return nullptr; 4491 case Intrinsic::masked_load: 4492 visitMaskedLoad(I); 4493 return nullptr; 4494 case Intrinsic::masked_scatter: 4495 visitMaskedScatter(I); 4496 return nullptr; 4497 case Intrinsic::masked_store: 4498 visitMaskedStore(I); 4499 return nullptr; 4500 case Intrinsic::x86_mmx_pslli_w: 4501 case Intrinsic::x86_mmx_pslli_d: 4502 case Intrinsic::x86_mmx_pslli_q: 4503 case Intrinsic::x86_mmx_psrli_w: 4504 case Intrinsic::x86_mmx_psrli_d: 4505 case Intrinsic::x86_mmx_psrli_q: 4506 case Intrinsic::x86_mmx_psrai_w: 4507 case Intrinsic::x86_mmx_psrai_d: { 4508 SDValue ShAmt = getValue(I.getArgOperand(1)); 4509 if (isa<ConstantSDNode>(ShAmt)) { 4510 visitTargetIntrinsic(I, Intrinsic); 4511 return nullptr; 4512 } 4513 unsigned NewIntrinsic = 0; 4514 EVT ShAmtVT = MVT::v2i32; 4515 switch (Intrinsic) { 4516 case Intrinsic::x86_mmx_pslli_w: 4517 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4518 break; 4519 case Intrinsic::x86_mmx_pslli_d: 4520 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4521 break; 4522 case Intrinsic::x86_mmx_pslli_q: 4523 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4524 break; 4525 case Intrinsic::x86_mmx_psrli_w: 4526 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4527 break; 4528 case Intrinsic::x86_mmx_psrli_d: 4529 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4530 break; 4531 case Intrinsic::x86_mmx_psrli_q: 4532 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4533 break; 4534 case Intrinsic::x86_mmx_psrai_w: 4535 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4536 break; 4537 case Intrinsic::x86_mmx_psrai_d: 4538 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4539 break; 4540 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4541 } 4542 4543 // The vector shift intrinsics with scalars uses 32b shift amounts but 4544 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4545 // to be zero. 4546 // We must do this early because v2i32 is not a legal type. 4547 SDValue ShOps[2]; 4548 ShOps[0] = ShAmt; 4549 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4550 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4551 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4552 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4553 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4554 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4555 getValue(I.getArgOperand(0)), ShAmt); 4556 setValue(&I, Res); 4557 return nullptr; 4558 } 4559 case Intrinsic::convertff: 4560 case Intrinsic::convertfsi: 4561 case Intrinsic::convertfui: 4562 case Intrinsic::convertsif: 4563 case Intrinsic::convertuif: 4564 case Intrinsic::convertss: 4565 case Intrinsic::convertsu: 4566 case Intrinsic::convertus: 4567 case Intrinsic::convertuu: { 4568 ISD::CvtCode Code = ISD::CVT_INVALID; 4569 switch (Intrinsic) { 4570 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4571 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4572 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4573 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4574 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4575 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4576 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4577 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4578 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4579 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4580 } 4581 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4582 const Value *Op1 = I.getArgOperand(0); 4583 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4584 DAG.getValueType(DestVT), 4585 DAG.getValueType(getValue(Op1).getValueType()), 4586 getValue(I.getArgOperand(1)), 4587 getValue(I.getArgOperand(2)), 4588 Code); 4589 setValue(&I, Res); 4590 return nullptr; 4591 } 4592 case Intrinsic::powi: 4593 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4594 getValue(I.getArgOperand(1)), DAG)); 4595 return nullptr; 4596 case Intrinsic::log: 4597 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4598 return nullptr; 4599 case Intrinsic::log2: 4600 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4601 return nullptr; 4602 case Intrinsic::log10: 4603 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4604 return nullptr; 4605 case Intrinsic::exp: 4606 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4607 return nullptr; 4608 case Intrinsic::exp2: 4609 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4610 return nullptr; 4611 case Intrinsic::pow: 4612 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4613 getValue(I.getArgOperand(1)), DAG, TLI)); 4614 return nullptr; 4615 case Intrinsic::sqrt: 4616 case Intrinsic::fabs: 4617 case Intrinsic::sin: 4618 case Intrinsic::cos: 4619 case Intrinsic::floor: 4620 case Intrinsic::ceil: 4621 case Intrinsic::trunc: 4622 case Intrinsic::rint: 4623 case Intrinsic::nearbyint: 4624 case Intrinsic::round: { 4625 unsigned Opcode; 4626 switch (Intrinsic) { 4627 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4628 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4629 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4630 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4631 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4632 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4633 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4634 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4635 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4636 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4637 case Intrinsic::round: Opcode = ISD::FROUND; break; 4638 } 4639 4640 setValue(&I, DAG.getNode(Opcode, sdl, 4641 getValue(I.getArgOperand(0)).getValueType(), 4642 getValue(I.getArgOperand(0)))); 4643 return nullptr; 4644 } 4645 case Intrinsic::minnum: 4646 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4647 getValue(I.getArgOperand(0)).getValueType(), 4648 getValue(I.getArgOperand(0)), 4649 getValue(I.getArgOperand(1)))); 4650 return nullptr; 4651 case Intrinsic::maxnum: 4652 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4653 getValue(I.getArgOperand(0)).getValueType(), 4654 getValue(I.getArgOperand(0)), 4655 getValue(I.getArgOperand(1)))); 4656 return nullptr; 4657 case Intrinsic::copysign: 4658 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4659 getValue(I.getArgOperand(0)).getValueType(), 4660 getValue(I.getArgOperand(0)), 4661 getValue(I.getArgOperand(1)))); 4662 return nullptr; 4663 case Intrinsic::fma: 4664 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4665 getValue(I.getArgOperand(0)).getValueType(), 4666 getValue(I.getArgOperand(0)), 4667 getValue(I.getArgOperand(1)), 4668 getValue(I.getArgOperand(2)))); 4669 return nullptr; 4670 case Intrinsic::fmuladd: { 4671 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4672 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4673 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4674 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4675 getValue(I.getArgOperand(0)).getValueType(), 4676 getValue(I.getArgOperand(0)), 4677 getValue(I.getArgOperand(1)), 4678 getValue(I.getArgOperand(2)))); 4679 } else { 4680 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4681 getValue(I.getArgOperand(0)).getValueType(), 4682 getValue(I.getArgOperand(0)), 4683 getValue(I.getArgOperand(1))); 4684 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4685 getValue(I.getArgOperand(0)).getValueType(), 4686 Mul, 4687 getValue(I.getArgOperand(2))); 4688 setValue(&I, Add); 4689 } 4690 return nullptr; 4691 } 4692 case Intrinsic::convert_to_fp16: 4693 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4694 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4695 getValue(I.getArgOperand(0)), 4696 DAG.getTargetConstant(0, sdl, 4697 MVT::i32)))); 4698 return nullptr; 4699 case Intrinsic::convert_from_fp16: 4700 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4701 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4702 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4703 getValue(I.getArgOperand(0))))); 4704 return nullptr; 4705 case Intrinsic::pcmarker: { 4706 SDValue Tmp = getValue(I.getArgOperand(0)); 4707 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4708 return nullptr; 4709 } 4710 case Intrinsic::readcyclecounter: { 4711 SDValue Op = getRoot(); 4712 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4713 DAG.getVTList(MVT::i64, MVT::Other), Op); 4714 setValue(&I, Res); 4715 DAG.setRoot(Res.getValue(1)); 4716 return nullptr; 4717 } 4718 case Intrinsic::bswap: 4719 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4720 getValue(I.getArgOperand(0)).getValueType(), 4721 getValue(I.getArgOperand(0)))); 4722 return nullptr; 4723 case Intrinsic::uabsdiff: 4724 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4725 getValue(I.getArgOperand(0)).getValueType(), 4726 getValue(I.getArgOperand(0)), 4727 getValue(I.getArgOperand(1)))); 4728 return nullptr; 4729 case Intrinsic::sabsdiff: 4730 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4731 getValue(I.getArgOperand(0)).getValueType(), 4732 getValue(I.getArgOperand(0)), 4733 getValue(I.getArgOperand(1)))); 4734 return nullptr; 4735 case Intrinsic::cttz: { 4736 SDValue Arg = getValue(I.getArgOperand(0)); 4737 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4738 EVT Ty = Arg.getValueType(); 4739 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4740 sdl, Ty, Arg)); 4741 return nullptr; 4742 } 4743 case Intrinsic::ctlz: { 4744 SDValue Arg = getValue(I.getArgOperand(0)); 4745 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4746 EVT Ty = Arg.getValueType(); 4747 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4748 sdl, Ty, Arg)); 4749 return nullptr; 4750 } 4751 case Intrinsic::ctpop: { 4752 SDValue Arg = getValue(I.getArgOperand(0)); 4753 EVT Ty = Arg.getValueType(); 4754 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4755 return nullptr; 4756 } 4757 case Intrinsic::stacksave: { 4758 SDValue Op = getRoot(); 4759 Res = DAG.getNode( 4760 ISD::STACKSAVE, sdl, 4761 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4762 setValue(&I, Res); 4763 DAG.setRoot(Res.getValue(1)); 4764 return nullptr; 4765 } 4766 case Intrinsic::stackrestore: { 4767 Res = getValue(I.getArgOperand(0)); 4768 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4769 return nullptr; 4770 } 4771 case Intrinsic::stackprotector: { 4772 // Emit code into the DAG to store the stack guard onto the stack. 4773 MachineFunction &MF = DAG.getMachineFunction(); 4774 MachineFrameInfo *MFI = MF.getFrameInfo(); 4775 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4776 SDValue Src, Chain = getRoot(); 4777 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4778 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4779 4780 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4781 // global variable __stack_chk_guard. 4782 if (!GV) 4783 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4784 if (BC->getOpcode() == Instruction::BitCast) 4785 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4786 4787 if (GV && TLI.useLoadStackGuardNode()) { 4788 // Emit a LOAD_STACK_GUARD node. 4789 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4790 sdl, PtrTy, Chain); 4791 MachinePointerInfo MPInfo(GV); 4792 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4793 unsigned Flags = MachineMemOperand::MOLoad | 4794 MachineMemOperand::MOInvariant; 4795 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4796 PtrTy.getSizeInBits() / 8, 4797 DAG.getEVTAlignment(PtrTy)); 4798 Node->setMemRefs(MemRefs, MemRefs + 1); 4799 4800 // Copy the guard value to a virtual register so that it can be 4801 // retrieved in the epilogue. 4802 Src = SDValue(Node, 0); 4803 const TargetRegisterClass *RC = 4804 TLI.getRegClassFor(Src.getSimpleValueType()); 4805 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4806 4807 SPDescriptor.setGuardReg(Reg); 4808 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4809 } else { 4810 Src = getValue(I.getArgOperand(0)); // The guard's value. 4811 } 4812 4813 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4814 4815 int FI = FuncInfo.StaticAllocaMap[Slot]; 4816 MFI->setStackProtectorIndex(FI); 4817 4818 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4819 4820 // Store the stack protector onto the stack. 4821 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4822 DAG.getMachineFunction(), FI), 4823 true, false, 0); 4824 setValue(&I, Res); 4825 DAG.setRoot(Res); 4826 return nullptr; 4827 } 4828 case Intrinsic::objectsize: { 4829 // If we don't know by now, we're never going to know. 4830 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4831 4832 assert(CI && "Non-constant type in __builtin_object_size?"); 4833 4834 SDValue Arg = getValue(I.getCalledValue()); 4835 EVT Ty = Arg.getValueType(); 4836 4837 if (CI->isZero()) 4838 Res = DAG.getConstant(-1ULL, sdl, Ty); 4839 else 4840 Res = DAG.getConstant(0, sdl, Ty); 4841 4842 setValue(&I, Res); 4843 return nullptr; 4844 } 4845 case Intrinsic::annotation: 4846 case Intrinsic::ptr_annotation: 4847 // Drop the intrinsic, but forward the value 4848 setValue(&I, getValue(I.getOperand(0))); 4849 return nullptr; 4850 case Intrinsic::assume: 4851 case Intrinsic::var_annotation: 4852 // Discard annotate attributes and assumptions 4853 return nullptr; 4854 4855 case Intrinsic::init_trampoline: { 4856 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4857 4858 SDValue Ops[6]; 4859 Ops[0] = getRoot(); 4860 Ops[1] = getValue(I.getArgOperand(0)); 4861 Ops[2] = getValue(I.getArgOperand(1)); 4862 Ops[3] = getValue(I.getArgOperand(2)); 4863 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4864 Ops[5] = DAG.getSrcValue(F); 4865 4866 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4867 4868 DAG.setRoot(Res); 4869 return nullptr; 4870 } 4871 case Intrinsic::adjust_trampoline: { 4872 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4873 TLI.getPointerTy(DAG.getDataLayout()), 4874 getValue(I.getArgOperand(0)))); 4875 return nullptr; 4876 } 4877 case Intrinsic::gcroot: 4878 if (GFI) { 4879 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4880 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4881 4882 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4883 GFI->addStackRoot(FI->getIndex(), TypeMap); 4884 } 4885 return nullptr; 4886 case Intrinsic::gcread: 4887 case Intrinsic::gcwrite: 4888 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4889 case Intrinsic::flt_rounds: 4890 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4891 return nullptr; 4892 4893 case Intrinsic::expect: { 4894 // Just replace __builtin_expect(exp, c) with EXP. 4895 setValue(&I, getValue(I.getArgOperand(0))); 4896 return nullptr; 4897 } 4898 4899 case Intrinsic::debugtrap: 4900 case Intrinsic::trap: { 4901 StringRef TrapFuncName = 4902 I.getAttributes() 4903 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4904 .getValueAsString(); 4905 if (TrapFuncName.empty()) { 4906 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4907 ISD::TRAP : ISD::DEBUGTRAP; 4908 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4909 return nullptr; 4910 } 4911 TargetLowering::ArgListTy Args; 4912 4913 TargetLowering::CallLoweringInfo CLI(DAG); 4914 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4915 CallingConv::C, I.getType(), 4916 DAG.getExternalSymbol(TrapFuncName.data(), 4917 TLI.getPointerTy(DAG.getDataLayout())), 4918 std::move(Args), 0); 4919 4920 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4921 DAG.setRoot(Result.second); 4922 return nullptr; 4923 } 4924 4925 case Intrinsic::uadd_with_overflow: 4926 case Intrinsic::sadd_with_overflow: 4927 case Intrinsic::usub_with_overflow: 4928 case Intrinsic::ssub_with_overflow: 4929 case Intrinsic::umul_with_overflow: 4930 case Intrinsic::smul_with_overflow: { 4931 ISD::NodeType Op; 4932 switch (Intrinsic) { 4933 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4934 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4935 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4936 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4937 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4938 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4939 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4940 } 4941 SDValue Op1 = getValue(I.getArgOperand(0)); 4942 SDValue Op2 = getValue(I.getArgOperand(1)); 4943 4944 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4945 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4946 return nullptr; 4947 } 4948 case Intrinsic::prefetch: { 4949 SDValue Ops[5]; 4950 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4951 Ops[0] = getRoot(); 4952 Ops[1] = getValue(I.getArgOperand(0)); 4953 Ops[2] = getValue(I.getArgOperand(1)); 4954 Ops[3] = getValue(I.getArgOperand(2)); 4955 Ops[4] = getValue(I.getArgOperand(3)); 4956 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4957 DAG.getVTList(MVT::Other), Ops, 4958 EVT::getIntegerVT(*Context, 8), 4959 MachinePointerInfo(I.getArgOperand(0)), 4960 0, /* align */ 4961 false, /* volatile */ 4962 rw==0, /* read */ 4963 rw==1)); /* write */ 4964 return nullptr; 4965 } 4966 case Intrinsic::lifetime_start: 4967 case Intrinsic::lifetime_end: { 4968 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4969 // Stack coloring is not enabled in O0, discard region information. 4970 if (TM.getOptLevel() == CodeGenOpt::None) 4971 return nullptr; 4972 4973 SmallVector<Value *, 4> Allocas; 4974 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4975 4976 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4977 E = Allocas.end(); Object != E; ++Object) { 4978 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4979 4980 // Could not find an Alloca. 4981 if (!LifetimeObject) 4982 continue; 4983 4984 // First check that the Alloca is static, otherwise it won't have a 4985 // valid frame index. 4986 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4987 if (SI == FuncInfo.StaticAllocaMap.end()) 4988 return nullptr; 4989 4990 int FI = SI->second; 4991 4992 SDValue Ops[2]; 4993 Ops[0] = getRoot(); 4994 Ops[1] = 4995 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4996 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4997 4998 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4999 DAG.setRoot(Res); 5000 } 5001 return nullptr; 5002 } 5003 case Intrinsic::invariant_start: 5004 // Discard region information. 5005 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5006 return nullptr; 5007 case Intrinsic::invariant_end: 5008 // Discard region information. 5009 return nullptr; 5010 case Intrinsic::stackprotectorcheck: { 5011 // Do not actually emit anything for this basic block. Instead we initialize 5012 // the stack protector descriptor and export the guard variable so we can 5013 // access it in FinishBasicBlock. 5014 const BasicBlock *BB = I.getParent(); 5015 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5016 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5017 5018 // Flush our exports since we are going to process a terminator. 5019 (void)getControlRoot(); 5020 return nullptr; 5021 } 5022 case Intrinsic::clear_cache: 5023 return TLI.getClearCacheBuiltinName(); 5024 case Intrinsic::eh_actions: 5025 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5026 return nullptr; 5027 case Intrinsic::donothing: 5028 // ignore 5029 return nullptr; 5030 case Intrinsic::experimental_stackmap: { 5031 visitStackmap(I); 5032 return nullptr; 5033 } 5034 case Intrinsic::experimental_patchpoint_void: 5035 case Intrinsic::experimental_patchpoint_i64: { 5036 visitPatchpoint(&I); 5037 return nullptr; 5038 } 5039 case Intrinsic::experimental_gc_statepoint: { 5040 visitStatepoint(I); 5041 return nullptr; 5042 } 5043 case Intrinsic::experimental_gc_result_int: 5044 case Intrinsic::experimental_gc_result_float: 5045 case Intrinsic::experimental_gc_result_ptr: 5046 case Intrinsic::experimental_gc_result: { 5047 visitGCResult(I); 5048 return nullptr; 5049 } 5050 case Intrinsic::experimental_gc_relocate: { 5051 visitGCRelocate(I); 5052 return nullptr; 5053 } 5054 case Intrinsic::instrprof_increment: 5055 llvm_unreachable("instrprof failed to lower an increment"); 5056 5057 case Intrinsic::localescape: { 5058 MachineFunction &MF = DAG.getMachineFunction(); 5059 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5060 5061 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5062 // is the same on all targets. 5063 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5064 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5065 if (isa<ConstantPointerNull>(Arg)) 5066 continue; // Skip null pointers. They represent a hole in index space. 5067 AllocaInst *Slot = cast<AllocaInst>(Arg); 5068 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5069 "can only escape static allocas"); 5070 int FI = FuncInfo.StaticAllocaMap[Slot]; 5071 MCSymbol *FrameAllocSym = 5072 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5073 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5075 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5076 .addSym(FrameAllocSym) 5077 .addFrameIndex(FI); 5078 } 5079 5080 return nullptr; 5081 } 5082 5083 case Intrinsic::localrecover: { 5084 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5085 MachineFunction &MF = DAG.getMachineFunction(); 5086 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5087 5088 // Get the symbol that defines the frame offset. 5089 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5090 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5091 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5092 MCSymbol *FrameAllocSym = 5093 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5094 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5095 5096 // Create a MCSymbol for the label to avoid any target lowering 5097 // that would make this PC relative. 5098 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5099 SDValue OffsetVal = 5100 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5101 5102 // Add the offset to the FP. 5103 Value *FP = I.getArgOperand(1); 5104 SDValue FPVal = getValue(FP); 5105 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5106 setValue(&I, Add); 5107 5108 return nullptr; 5109 } 5110 case Intrinsic::eh_begincatch: 5111 case Intrinsic::eh_endcatch: 5112 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5113 case Intrinsic::eh_exceptioncode: { 5114 unsigned Reg = TLI.getExceptionPointerRegister(); 5115 assert(Reg && "cannot get exception code on this platform"); 5116 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5117 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5118 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5119 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5120 SDValue N = 5121 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5122 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5123 setValue(&I, N); 5124 return nullptr; 5125 } 5126 } 5127 } 5128 5129 std::pair<SDValue, SDValue> 5130 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5131 MachineBasicBlock *LandingPad) { 5132 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5133 MCSymbol *BeginLabel = nullptr; 5134 5135 if (LandingPad) { 5136 // Insert a label before the invoke call to mark the try range. This can be 5137 // used to detect deletion of the invoke via the MachineModuleInfo. 5138 BeginLabel = MMI.getContext().createTempSymbol(); 5139 5140 // For SjLj, keep track of which landing pads go with which invokes 5141 // so as to maintain the ordering of pads in the LSDA. 5142 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5143 if (CallSiteIndex) { 5144 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5145 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5146 5147 // Now that the call site is handled, stop tracking it. 5148 MMI.setCurrentCallSite(0); 5149 } 5150 5151 // Both PendingLoads and PendingExports must be flushed here; 5152 // this call might not return. 5153 (void)getRoot(); 5154 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5155 5156 CLI.setChain(getRoot()); 5157 } 5158 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5159 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5160 5161 assert((CLI.IsTailCall || Result.second.getNode()) && 5162 "Non-null chain expected with non-tail call!"); 5163 assert((Result.second.getNode() || !Result.first.getNode()) && 5164 "Null value expected with tail call!"); 5165 5166 if (!Result.second.getNode()) { 5167 // As a special case, a null chain means that a tail call has been emitted 5168 // and the DAG root is already updated. 5169 HasTailCall = true; 5170 5171 // Since there's no actual continuation from this block, nothing can be 5172 // relying on us setting vregs for them. 5173 PendingExports.clear(); 5174 } else { 5175 DAG.setRoot(Result.second); 5176 } 5177 5178 if (LandingPad) { 5179 // Insert a label at the end of the invoke call to mark the try range. This 5180 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5181 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5182 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5183 5184 // Inform MachineModuleInfo of range. 5185 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5186 } 5187 5188 return Result; 5189 } 5190 5191 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5192 bool isTailCall, 5193 MachineBasicBlock *LandingPad) { 5194 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5195 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5196 Type *RetTy = FTy->getReturnType(); 5197 5198 TargetLowering::ArgListTy Args; 5199 TargetLowering::ArgListEntry Entry; 5200 Args.reserve(CS.arg_size()); 5201 5202 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5203 i != e; ++i) { 5204 const Value *V = *i; 5205 5206 // Skip empty types 5207 if (V->getType()->isEmptyTy()) 5208 continue; 5209 5210 SDValue ArgNode = getValue(V); 5211 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5212 5213 // Skip the first return-type Attribute to get to params. 5214 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5215 Args.push_back(Entry); 5216 5217 // If we have an explicit sret argument that is an Instruction, (i.e., it 5218 // might point to function-local memory), we can't meaningfully tail-call. 5219 if (Entry.isSRet && isa<Instruction>(V)) 5220 isTailCall = false; 5221 } 5222 5223 // Check if target-independent constraints permit a tail call here. 5224 // Target-dependent constraints are checked within TLI->LowerCallTo. 5225 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5226 isTailCall = false; 5227 5228 TargetLowering::CallLoweringInfo CLI(DAG); 5229 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5230 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5231 .setTailCall(isTailCall); 5232 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5233 5234 if (Result.first.getNode()) 5235 setValue(CS.getInstruction(), Result.first); 5236 } 5237 5238 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5239 /// value is equal or not-equal to zero. 5240 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5241 for (const User *U : V->users()) { 5242 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5243 if (IC->isEquality()) 5244 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5245 if (C->isNullValue()) 5246 continue; 5247 // Unknown instruction. 5248 return false; 5249 } 5250 return true; 5251 } 5252 5253 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5254 Type *LoadTy, 5255 SelectionDAGBuilder &Builder) { 5256 5257 // Check to see if this load can be trivially constant folded, e.g. if the 5258 // input is from a string literal. 5259 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5260 // Cast pointer to the type we really want to load. 5261 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5262 PointerType::getUnqual(LoadTy)); 5263 5264 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5265 const_cast<Constant *>(LoadInput), *Builder.DL)) 5266 return Builder.getValue(LoadCst); 5267 } 5268 5269 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5270 // still constant memory, the input chain can be the entry node. 5271 SDValue Root; 5272 bool ConstantMemory = false; 5273 5274 // Do not serialize (non-volatile) loads of constant memory with anything. 5275 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5276 Root = Builder.DAG.getEntryNode(); 5277 ConstantMemory = true; 5278 } else { 5279 // Do not serialize non-volatile loads against each other. 5280 Root = Builder.DAG.getRoot(); 5281 } 5282 5283 SDValue Ptr = Builder.getValue(PtrVal); 5284 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5285 Ptr, MachinePointerInfo(PtrVal), 5286 false /*volatile*/, 5287 false /*nontemporal*/, 5288 false /*isinvariant*/, 1 /* align=1 */); 5289 5290 if (!ConstantMemory) 5291 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5292 return LoadVal; 5293 } 5294 5295 /// processIntegerCallValue - Record the value for an instruction that 5296 /// produces an integer result, converting the type where necessary. 5297 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5298 SDValue Value, 5299 bool IsSigned) { 5300 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5301 I.getType(), true); 5302 if (IsSigned) 5303 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5304 else 5305 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5306 setValue(&I, Value); 5307 } 5308 5309 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5310 /// If so, return true and lower it, otherwise return false and it will be 5311 /// lowered like a normal call. 5312 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5313 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5314 if (I.getNumArgOperands() != 3) 5315 return false; 5316 5317 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5318 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5319 !I.getArgOperand(2)->getType()->isIntegerTy() || 5320 !I.getType()->isIntegerTy()) 5321 return false; 5322 5323 const Value *Size = I.getArgOperand(2); 5324 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5325 if (CSize && CSize->getZExtValue() == 0) { 5326 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5327 I.getType(), true); 5328 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5329 return true; 5330 } 5331 5332 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5333 std::pair<SDValue, SDValue> Res = 5334 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5335 getValue(LHS), getValue(RHS), getValue(Size), 5336 MachinePointerInfo(LHS), 5337 MachinePointerInfo(RHS)); 5338 if (Res.first.getNode()) { 5339 processIntegerCallValue(I, Res.first, true); 5340 PendingLoads.push_back(Res.second); 5341 return true; 5342 } 5343 5344 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5345 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5346 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5347 bool ActuallyDoIt = true; 5348 MVT LoadVT; 5349 Type *LoadTy; 5350 switch (CSize->getZExtValue()) { 5351 default: 5352 LoadVT = MVT::Other; 5353 LoadTy = nullptr; 5354 ActuallyDoIt = false; 5355 break; 5356 case 2: 5357 LoadVT = MVT::i16; 5358 LoadTy = Type::getInt16Ty(CSize->getContext()); 5359 break; 5360 case 4: 5361 LoadVT = MVT::i32; 5362 LoadTy = Type::getInt32Ty(CSize->getContext()); 5363 break; 5364 case 8: 5365 LoadVT = MVT::i64; 5366 LoadTy = Type::getInt64Ty(CSize->getContext()); 5367 break; 5368 /* 5369 case 16: 5370 LoadVT = MVT::v4i32; 5371 LoadTy = Type::getInt32Ty(CSize->getContext()); 5372 LoadTy = VectorType::get(LoadTy, 4); 5373 break; 5374 */ 5375 } 5376 5377 // This turns into unaligned loads. We only do this if the target natively 5378 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5379 // we'll only produce a small number of byte loads. 5380 5381 // Require that we can find a legal MVT, and only do this if the target 5382 // supports unaligned loads of that type. Expanding into byte loads would 5383 // bloat the code. 5384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5385 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5386 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5387 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5388 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5389 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5390 // TODO: Check alignment of src and dest ptrs. 5391 if (!TLI.isTypeLegal(LoadVT) || 5392 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5393 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5394 ActuallyDoIt = false; 5395 } 5396 5397 if (ActuallyDoIt) { 5398 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5399 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5400 5401 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5402 ISD::SETNE); 5403 processIntegerCallValue(I, Res, false); 5404 return true; 5405 } 5406 } 5407 5408 5409 return false; 5410 } 5411 5412 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5413 /// form. If so, return true and lower it, otherwise return false and it 5414 /// will be lowered like a normal call. 5415 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5416 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5417 if (I.getNumArgOperands() != 3) 5418 return false; 5419 5420 const Value *Src = I.getArgOperand(0); 5421 const Value *Char = I.getArgOperand(1); 5422 const Value *Length = I.getArgOperand(2); 5423 if (!Src->getType()->isPointerTy() || 5424 !Char->getType()->isIntegerTy() || 5425 !Length->getType()->isIntegerTy() || 5426 !I.getType()->isPointerTy()) 5427 return false; 5428 5429 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5430 std::pair<SDValue, SDValue> Res = 5431 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5432 getValue(Src), getValue(Char), getValue(Length), 5433 MachinePointerInfo(Src)); 5434 if (Res.first.getNode()) { 5435 setValue(&I, Res.first); 5436 PendingLoads.push_back(Res.second); 5437 return true; 5438 } 5439 5440 return false; 5441 } 5442 5443 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5444 /// optimized form. If so, return true and lower it, otherwise return false 5445 /// and it will be lowered like a normal call. 5446 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5447 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5448 if (I.getNumArgOperands() != 2) 5449 return false; 5450 5451 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5452 if (!Arg0->getType()->isPointerTy() || 5453 !Arg1->getType()->isPointerTy() || 5454 !I.getType()->isPointerTy()) 5455 return false; 5456 5457 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5458 std::pair<SDValue, SDValue> Res = 5459 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5460 getValue(Arg0), getValue(Arg1), 5461 MachinePointerInfo(Arg0), 5462 MachinePointerInfo(Arg1), isStpcpy); 5463 if (Res.first.getNode()) { 5464 setValue(&I, Res.first); 5465 DAG.setRoot(Res.second); 5466 return true; 5467 } 5468 5469 return false; 5470 } 5471 5472 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5473 /// If so, return true and lower it, otherwise return false and it will be 5474 /// lowered like a normal call. 5475 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5476 // Verify that the prototype makes sense. int strcmp(void*,void*) 5477 if (I.getNumArgOperands() != 2) 5478 return false; 5479 5480 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5481 if (!Arg0->getType()->isPointerTy() || 5482 !Arg1->getType()->isPointerTy() || 5483 !I.getType()->isIntegerTy()) 5484 return false; 5485 5486 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5487 std::pair<SDValue, SDValue> Res = 5488 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5489 getValue(Arg0), getValue(Arg1), 5490 MachinePointerInfo(Arg0), 5491 MachinePointerInfo(Arg1)); 5492 if (Res.first.getNode()) { 5493 processIntegerCallValue(I, Res.first, true); 5494 PendingLoads.push_back(Res.second); 5495 return true; 5496 } 5497 5498 return false; 5499 } 5500 5501 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5502 /// form. If so, return true and lower it, otherwise return false and it 5503 /// will be lowered like a normal call. 5504 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5505 // Verify that the prototype makes sense. size_t strlen(char *) 5506 if (I.getNumArgOperands() != 1) 5507 return false; 5508 5509 const Value *Arg0 = I.getArgOperand(0); 5510 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5511 return false; 5512 5513 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5514 std::pair<SDValue, SDValue> Res = 5515 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5516 getValue(Arg0), MachinePointerInfo(Arg0)); 5517 if (Res.first.getNode()) { 5518 processIntegerCallValue(I, Res.first, false); 5519 PendingLoads.push_back(Res.second); 5520 return true; 5521 } 5522 5523 return false; 5524 } 5525 5526 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5527 /// form. If so, return true and lower it, otherwise return false and it 5528 /// will be lowered like a normal call. 5529 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5530 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5531 if (I.getNumArgOperands() != 2) 5532 return false; 5533 5534 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5535 if (!Arg0->getType()->isPointerTy() || 5536 !Arg1->getType()->isIntegerTy() || 5537 !I.getType()->isIntegerTy()) 5538 return false; 5539 5540 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5541 std::pair<SDValue, SDValue> Res = 5542 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5543 getValue(Arg0), getValue(Arg1), 5544 MachinePointerInfo(Arg0)); 5545 if (Res.first.getNode()) { 5546 processIntegerCallValue(I, Res.first, false); 5547 PendingLoads.push_back(Res.second); 5548 return true; 5549 } 5550 5551 return false; 5552 } 5553 5554 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5555 /// operation (as expected), translate it to an SDNode with the specified opcode 5556 /// and return true. 5557 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5558 unsigned Opcode) { 5559 // Sanity check that it really is a unary floating-point call. 5560 if (I.getNumArgOperands() != 1 || 5561 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5562 I.getType() != I.getArgOperand(0)->getType() || 5563 !I.onlyReadsMemory()) 5564 return false; 5565 5566 SDValue Tmp = getValue(I.getArgOperand(0)); 5567 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5568 return true; 5569 } 5570 5571 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5572 /// operation (as expected), translate it to an SDNode with the specified opcode 5573 /// and return true. 5574 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5575 unsigned Opcode) { 5576 // Sanity check that it really is a binary floating-point call. 5577 if (I.getNumArgOperands() != 2 || 5578 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5579 I.getType() != I.getArgOperand(0)->getType() || 5580 I.getType() != I.getArgOperand(1)->getType() || 5581 !I.onlyReadsMemory()) 5582 return false; 5583 5584 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5585 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5586 EVT VT = Tmp0.getValueType(); 5587 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5588 return true; 5589 } 5590 5591 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5592 // Handle inline assembly differently. 5593 if (isa<InlineAsm>(I.getCalledValue())) { 5594 visitInlineAsm(&I); 5595 return; 5596 } 5597 5598 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5599 ComputeUsesVAFloatArgument(I, &MMI); 5600 5601 const char *RenameFn = nullptr; 5602 if (Function *F = I.getCalledFunction()) { 5603 if (F->isDeclaration()) { 5604 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5605 if (unsigned IID = II->getIntrinsicID(F)) { 5606 RenameFn = visitIntrinsicCall(I, IID); 5607 if (!RenameFn) 5608 return; 5609 } 5610 } 5611 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5612 RenameFn = visitIntrinsicCall(I, IID); 5613 if (!RenameFn) 5614 return; 5615 } 5616 } 5617 5618 // Check for well-known libc/libm calls. If the function is internal, it 5619 // can't be a library call. 5620 LibFunc::Func Func; 5621 if (!F->hasLocalLinkage() && F->hasName() && 5622 LibInfo->getLibFunc(F->getName(), Func) && 5623 LibInfo->hasOptimizedCodeGen(Func)) { 5624 switch (Func) { 5625 default: break; 5626 case LibFunc::copysign: 5627 case LibFunc::copysignf: 5628 case LibFunc::copysignl: 5629 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5630 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5631 I.getType() == I.getArgOperand(0)->getType() && 5632 I.getType() == I.getArgOperand(1)->getType() && 5633 I.onlyReadsMemory()) { 5634 SDValue LHS = getValue(I.getArgOperand(0)); 5635 SDValue RHS = getValue(I.getArgOperand(1)); 5636 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5637 LHS.getValueType(), LHS, RHS)); 5638 return; 5639 } 5640 break; 5641 case LibFunc::fabs: 5642 case LibFunc::fabsf: 5643 case LibFunc::fabsl: 5644 if (visitUnaryFloatCall(I, ISD::FABS)) 5645 return; 5646 break; 5647 case LibFunc::fmin: 5648 case LibFunc::fminf: 5649 case LibFunc::fminl: 5650 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5651 return; 5652 break; 5653 case LibFunc::fmax: 5654 case LibFunc::fmaxf: 5655 case LibFunc::fmaxl: 5656 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5657 return; 5658 break; 5659 case LibFunc::sin: 5660 case LibFunc::sinf: 5661 case LibFunc::sinl: 5662 if (visitUnaryFloatCall(I, ISD::FSIN)) 5663 return; 5664 break; 5665 case LibFunc::cos: 5666 case LibFunc::cosf: 5667 case LibFunc::cosl: 5668 if (visitUnaryFloatCall(I, ISD::FCOS)) 5669 return; 5670 break; 5671 case LibFunc::sqrt: 5672 case LibFunc::sqrtf: 5673 case LibFunc::sqrtl: 5674 case LibFunc::sqrt_finite: 5675 case LibFunc::sqrtf_finite: 5676 case LibFunc::sqrtl_finite: 5677 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5678 return; 5679 break; 5680 case LibFunc::floor: 5681 case LibFunc::floorf: 5682 case LibFunc::floorl: 5683 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5684 return; 5685 break; 5686 case LibFunc::nearbyint: 5687 case LibFunc::nearbyintf: 5688 case LibFunc::nearbyintl: 5689 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5690 return; 5691 break; 5692 case LibFunc::ceil: 5693 case LibFunc::ceilf: 5694 case LibFunc::ceill: 5695 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5696 return; 5697 break; 5698 case LibFunc::rint: 5699 case LibFunc::rintf: 5700 case LibFunc::rintl: 5701 if (visitUnaryFloatCall(I, ISD::FRINT)) 5702 return; 5703 break; 5704 case LibFunc::round: 5705 case LibFunc::roundf: 5706 case LibFunc::roundl: 5707 if (visitUnaryFloatCall(I, ISD::FROUND)) 5708 return; 5709 break; 5710 case LibFunc::trunc: 5711 case LibFunc::truncf: 5712 case LibFunc::truncl: 5713 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5714 return; 5715 break; 5716 case LibFunc::log2: 5717 case LibFunc::log2f: 5718 case LibFunc::log2l: 5719 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5720 return; 5721 break; 5722 case LibFunc::exp2: 5723 case LibFunc::exp2f: 5724 case LibFunc::exp2l: 5725 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5726 return; 5727 break; 5728 case LibFunc::memcmp: 5729 if (visitMemCmpCall(I)) 5730 return; 5731 break; 5732 case LibFunc::memchr: 5733 if (visitMemChrCall(I)) 5734 return; 5735 break; 5736 case LibFunc::strcpy: 5737 if (visitStrCpyCall(I, false)) 5738 return; 5739 break; 5740 case LibFunc::stpcpy: 5741 if (visitStrCpyCall(I, true)) 5742 return; 5743 break; 5744 case LibFunc::strcmp: 5745 if (visitStrCmpCall(I)) 5746 return; 5747 break; 5748 case LibFunc::strlen: 5749 if (visitStrLenCall(I)) 5750 return; 5751 break; 5752 case LibFunc::strnlen: 5753 if (visitStrNLenCall(I)) 5754 return; 5755 break; 5756 } 5757 } 5758 } 5759 5760 SDValue Callee; 5761 if (!RenameFn) 5762 Callee = getValue(I.getCalledValue()); 5763 else 5764 Callee = DAG.getExternalSymbol( 5765 RenameFn, 5766 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5767 5768 // Check if we can potentially perform a tail call. More detailed checking is 5769 // be done within LowerCallTo, after more information about the call is known. 5770 LowerCallTo(&I, Callee, I.isTailCall()); 5771 } 5772 5773 namespace { 5774 5775 /// AsmOperandInfo - This contains information for each constraint that we are 5776 /// lowering. 5777 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5778 public: 5779 /// CallOperand - If this is the result output operand or a clobber 5780 /// this is null, otherwise it is the incoming operand to the CallInst. 5781 /// This gets modified as the asm is processed. 5782 SDValue CallOperand; 5783 5784 /// AssignedRegs - If this is a register or register class operand, this 5785 /// contains the set of register corresponding to the operand. 5786 RegsForValue AssignedRegs; 5787 5788 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5789 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5790 } 5791 5792 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5793 /// corresponds to. If there is no Value* for this operand, it returns 5794 /// MVT::Other. 5795 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5796 const DataLayout &DL) const { 5797 if (!CallOperandVal) return MVT::Other; 5798 5799 if (isa<BasicBlock>(CallOperandVal)) 5800 return TLI.getPointerTy(DL); 5801 5802 llvm::Type *OpTy = CallOperandVal->getType(); 5803 5804 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5805 // If this is an indirect operand, the operand is a pointer to the 5806 // accessed type. 5807 if (isIndirect) { 5808 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5809 if (!PtrTy) 5810 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5811 OpTy = PtrTy->getElementType(); 5812 } 5813 5814 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5815 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5816 if (STy->getNumElements() == 1) 5817 OpTy = STy->getElementType(0); 5818 5819 // If OpTy is not a single value, it may be a struct/union that we 5820 // can tile with integers. 5821 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5822 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5823 switch (BitSize) { 5824 default: break; 5825 case 1: 5826 case 8: 5827 case 16: 5828 case 32: 5829 case 64: 5830 case 128: 5831 OpTy = IntegerType::get(Context, BitSize); 5832 break; 5833 } 5834 } 5835 5836 return TLI.getValueType(DL, OpTy, true); 5837 } 5838 }; 5839 5840 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5841 5842 } // end anonymous namespace 5843 5844 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5845 /// specified operand. We prefer to assign virtual registers, to allow the 5846 /// register allocator to handle the assignment process. However, if the asm 5847 /// uses features that we can't model on machineinstrs, we have SDISel do the 5848 /// allocation. This produces generally horrible, but correct, code. 5849 /// 5850 /// OpInfo describes the operand. 5851 /// 5852 static void GetRegistersForValue(SelectionDAG &DAG, 5853 const TargetLowering &TLI, 5854 SDLoc DL, 5855 SDISelAsmOperandInfo &OpInfo) { 5856 LLVMContext &Context = *DAG.getContext(); 5857 5858 MachineFunction &MF = DAG.getMachineFunction(); 5859 SmallVector<unsigned, 4> Regs; 5860 5861 // If this is a constraint for a single physreg, or a constraint for a 5862 // register class, find it. 5863 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5864 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5865 OpInfo.ConstraintCode, 5866 OpInfo.ConstraintVT); 5867 5868 unsigned NumRegs = 1; 5869 if (OpInfo.ConstraintVT != MVT::Other) { 5870 // If this is a FP input in an integer register (or visa versa) insert a bit 5871 // cast of the input value. More generally, handle any case where the input 5872 // value disagrees with the register class we plan to stick this in. 5873 if (OpInfo.Type == InlineAsm::isInput && 5874 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5875 // Try to convert to the first EVT that the reg class contains. If the 5876 // types are identical size, use a bitcast to convert (e.g. two differing 5877 // vector types). 5878 MVT RegVT = *PhysReg.second->vt_begin(); 5879 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5880 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5881 RegVT, OpInfo.CallOperand); 5882 OpInfo.ConstraintVT = RegVT; 5883 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5884 // If the input is a FP value and we want it in FP registers, do a 5885 // bitcast to the corresponding integer type. This turns an f64 value 5886 // into i64, which can be passed with two i32 values on a 32-bit 5887 // machine. 5888 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5889 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5890 RegVT, OpInfo.CallOperand); 5891 OpInfo.ConstraintVT = RegVT; 5892 } 5893 } 5894 5895 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5896 } 5897 5898 MVT RegVT; 5899 EVT ValueVT = OpInfo.ConstraintVT; 5900 5901 // If this is a constraint for a specific physical register, like {r17}, 5902 // assign it now. 5903 if (unsigned AssignedReg = PhysReg.first) { 5904 const TargetRegisterClass *RC = PhysReg.second; 5905 if (OpInfo.ConstraintVT == MVT::Other) 5906 ValueVT = *RC->vt_begin(); 5907 5908 // Get the actual register value type. This is important, because the user 5909 // may have asked for (e.g.) the AX register in i32 type. We need to 5910 // remember that AX is actually i16 to get the right extension. 5911 RegVT = *RC->vt_begin(); 5912 5913 // This is a explicit reference to a physical register. 5914 Regs.push_back(AssignedReg); 5915 5916 // If this is an expanded reference, add the rest of the regs to Regs. 5917 if (NumRegs != 1) { 5918 TargetRegisterClass::iterator I = RC->begin(); 5919 for (; *I != AssignedReg; ++I) 5920 assert(I != RC->end() && "Didn't find reg!"); 5921 5922 // Already added the first reg. 5923 --NumRegs; ++I; 5924 for (; NumRegs; --NumRegs, ++I) { 5925 assert(I != RC->end() && "Ran out of registers to allocate!"); 5926 Regs.push_back(*I); 5927 } 5928 } 5929 5930 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5931 return; 5932 } 5933 5934 // Otherwise, if this was a reference to an LLVM register class, create vregs 5935 // for this reference. 5936 if (const TargetRegisterClass *RC = PhysReg.second) { 5937 RegVT = *RC->vt_begin(); 5938 if (OpInfo.ConstraintVT == MVT::Other) 5939 ValueVT = RegVT; 5940 5941 // Create the appropriate number of virtual registers. 5942 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5943 for (; NumRegs; --NumRegs) 5944 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5945 5946 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5947 return; 5948 } 5949 5950 // Otherwise, we couldn't allocate enough registers for this. 5951 } 5952 5953 /// visitInlineAsm - Handle a call to an InlineAsm object. 5954 /// 5955 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5956 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5957 5958 /// ConstraintOperands - Information about all of the constraints. 5959 SDISelAsmOperandInfoVector ConstraintOperands; 5960 5961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5962 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5963 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5964 5965 bool hasMemory = false; 5966 5967 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5968 unsigned ResNo = 0; // ResNo - The result number of the next output. 5969 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5970 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5971 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5972 5973 MVT OpVT = MVT::Other; 5974 5975 // Compute the value type for each operand. 5976 switch (OpInfo.Type) { 5977 case InlineAsm::isOutput: 5978 // Indirect outputs just consume an argument. 5979 if (OpInfo.isIndirect) { 5980 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5981 break; 5982 } 5983 5984 // The return value of the call is this value. As such, there is no 5985 // corresponding argument. 5986 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5987 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5988 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5989 STy->getElementType(ResNo)); 5990 } else { 5991 assert(ResNo == 0 && "Asm only has one result!"); 5992 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5993 } 5994 ++ResNo; 5995 break; 5996 case InlineAsm::isInput: 5997 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5998 break; 5999 case InlineAsm::isClobber: 6000 // Nothing to do. 6001 break; 6002 } 6003 6004 // If this is an input or an indirect output, process the call argument. 6005 // BasicBlocks are labels, currently appearing only in asm's. 6006 if (OpInfo.CallOperandVal) { 6007 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6008 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6009 } else { 6010 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6011 } 6012 6013 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6014 DAG.getDataLayout()).getSimpleVT(); 6015 } 6016 6017 OpInfo.ConstraintVT = OpVT; 6018 6019 // Indirect operand accesses access memory. 6020 if (OpInfo.isIndirect) 6021 hasMemory = true; 6022 else { 6023 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6024 TargetLowering::ConstraintType 6025 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6026 if (CType == TargetLowering::C_Memory) { 6027 hasMemory = true; 6028 break; 6029 } 6030 } 6031 } 6032 } 6033 6034 SDValue Chain, Flag; 6035 6036 // We won't need to flush pending loads if this asm doesn't touch 6037 // memory and is nonvolatile. 6038 if (hasMemory || IA->hasSideEffects()) 6039 Chain = getRoot(); 6040 else 6041 Chain = DAG.getRoot(); 6042 6043 // Second pass over the constraints: compute which constraint option to use 6044 // and assign registers to constraints that want a specific physreg. 6045 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6046 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6047 6048 // If this is an output operand with a matching input operand, look up the 6049 // matching input. If their types mismatch, e.g. one is an integer, the 6050 // other is floating point, or their sizes are different, flag it as an 6051 // error. 6052 if (OpInfo.hasMatchingInput()) { 6053 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6054 6055 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6056 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6057 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6058 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6059 OpInfo.ConstraintVT); 6060 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6061 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6062 Input.ConstraintVT); 6063 if ((OpInfo.ConstraintVT.isInteger() != 6064 Input.ConstraintVT.isInteger()) || 6065 (MatchRC.second != InputRC.second)) { 6066 report_fatal_error("Unsupported asm: input constraint" 6067 " with a matching output constraint of" 6068 " incompatible type!"); 6069 } 6070 Input.ConstraintVT = OpInfo.ConstraintVT; 6071 } 6072 } 6073 6074 // Compute the constraint code and ConstraintType to use. 6075 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6076 6077 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6078 OpInfo.Type == InlineAsm::isClobber) 6079 continue; 6080 6081 // If this is a memory input, and if the operand is not indirect, do what we 6082 // need to to provide an address for the memory input. 6083 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6084 !OpInfo.isIndirect) { 6085 assert((OpInfo.isMultipleAlternative || 6086 (OpInfo.Type == InlineAsm::isInput)) && 6087 "Can only indirectify direct input operands!"); 6088 6089 // Memory operands really want the address of the value. If we don't have 6090 // an indirect input, put it in the constpool if we can, otherwise spill 6091 // it to a stack slot. 6092 // TODO: This isn't quite right. We need to handle these according to 6093 // the addressing mode that the constraint wants. Also, this may take 6094 // an additional register for the computation and we don't want that 6095 // either. 6096 6097 // If the operand is a float, integer, or vector constant, spill to a 6098 // constant pool entry to get its address. 6099 const Value *OpVal = OpInfo.CallOperandVal; 6100 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6101 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6102 OpInfo.CallOperand = DAG.getConstantPool( 6103 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6104 } else { 6105 // Otherwise, create a stack slot and emit a store to it before the 6106 // asm. 6107 Type *Ty = OpVal->getType(); 6108 auto &DL = DAG.getDataLayout(); 6109 uint64_t TySize = DL.getTypeAllocSize(Ty); 6110 unsigned Align = DL.getPrefTypeAlignment(Ty); 6111 MachineFunction &MF = DAG.getMachineFunction(); 6112 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6113 SDValue StackSlot = 6114 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6115 Chain = DAG.getStore( 6116 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6117 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6118 false, false, 0); 6119 OpInfo.CallOperand = StackSlot; 6120 } 6121 6122 // There is no longer a Value* corresponding to this operand. 6123 OpInfo.CallOperandVal = nullptr; 6124 6125 // It is now an indirect operand. 6126 OpInfo.isIndirect = true; 6127 } 6128 6129 // If this constraint is for a specific register, allocate it before 6130 // anything else. 6131 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6132 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6133 } 6134 6135 // Second pass - Loop over all of the operands, assigning virtual or physregs 6136 // to register class operands. 6137 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6138 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6139 6140 // C_Register operands have already been allocated, Other/Memory don't need 6141 // to be. 6142 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6143 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6144 } 6145 6146 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6147 std::vector<SDValue> AsmNodeOperands; 6148 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6149 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6150 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6151 6152 // If we have a !srcloc metadata node associated with it, we want to attach 6153 // this to the ultimately generated inline asm machineinstr. To do this, we 6154 // pass in the third operand as this (potentially null) inline asm MDNode. 6155 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6156 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6157 6158 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6159 // bits as operand 3. 6160 unsigned ExtraInfo = 0; 6161 if (IA->hasSideEffects()) 6162 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6163 if (IA->isAlignStack()) 6164 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6165 // Set the asm dialect. 6166 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6167 6168 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6169 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6170 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6171 6172 // Compute the constraint code and ConstraintType to use. 6173 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6174 6175 // Ideally, we would only check against memory constraints. However, the 6176 // meaning of an other constraint can be target-specific and we can't easily 6177 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6178 // for other constriants as well. 6179 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6180 OpInfo.ConstraintType == TargetLowering::C_Other) { 6181 if (OpInfo.Type == InlineAsm::isInput) 6182 ExtraInfo |= InlineAsm::Extra_MayLoad; 6183 else if (OpInfo.Type == InlineAsm::isOutput) 6184 ExtraInfo |= InlineAsm::Extra_MayStore; 6185 else if (OpInfo.Type == InlineAsm::isClobber) 6186 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6187 } 6188 } 6189 6190 AsmNodeOperands.push_back(DAG.getTargetConstant( 6191 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6192 6193 // Loop over all of the inputs, copying the operand values into the 6194 // appropriate registers and processing the output regs. 6195 RegsForValue RetValRegs; 6196 6197 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6198 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6199 6200 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6201 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6202 6203 switch (OpInfo.Type) { 6204 case InlineAsm::isOutput: { 6205 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6206 OpInfo.ConstraintType != TargetLowering::C_Register) { 6207 // Memory output, or 'other' output (e.g. 'X' constraint). 6208 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6209 6210 unsigned ConstraintID = 6211 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6212 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6213 "Failed to convert memory constraint code to constraint id."); 6214 6215 // Add information to the INLINEASM node to know about this output. 6216 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6217 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6218 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6219 MVT::i32)); 6220 AsmNodeOperands.push_back(OpInfo.CallOperand); 6221 break; 6222 } 6223 6224 // Otherwise, this is a register or register class output. 6225 6226 // Copy the output from the appropriate register. Find a register that 6227 // we can use. 6228 if (OpInfo.AssignedRegs.Regs.empty()) { 6229 LLVMContext &Ctx = *DAG.getContext(); 6230 Ctx.emitError(CS.getInstruction(), 6231 "couldn't allocate output register for constraint '" + 6232 Twine(OpInfo.ConstraintCode) + "'"); 6233 return; 6234 } 6235 6236 // If this is an indirect operand, store through the pointer after the 6237 // asm. 6238 if (OpInfo.isIndirect) { 6239 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6240 OpInfo.CallOperandVal)); 6241 } else { 6242 // This is the result value of the call. 6243 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6244 // Concatenate this output onto the outputs list. 6245 RetValRegs.append(OpInfo.AssignedRegs); 6246 } 6247 6248 // Add information to the INLINEASM node to know that this register is 6249 // set. 6250 OpInfo.AssignedRegs 6251 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6252 ? InlineAsm::Kind_RegDefEarlyClobber 6253 : InlineAsm::Kind_RegDef, 6254 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6255 break; 6256 } 6257 case InlineAsm::isInput: { 6258 SDValue InOperandVal = OpInfo.CallOperand; 6259 6260 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6261 // If this is required to match an output register we have already set, 6262 // just use its register. 6263 unsigned OperandNo = OpInfo.getMatchedOperand(); 6264 6265 // Scan until we find the definition we already emitted of this operand. 6266 // When we find it, create a RegsForValue operand. 6267 unsigned CurOp = InlineAsm::Op_FirstOperand; 6268 for (; OperandNo; --OperandNo) { 6269 // Advance to the next operand. 6270 unsigned OpFlag = 6271 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6272 assert((InlineAsm::isRegDefKind(OpFlag) || 6273 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6274 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6275 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6276 } 6277 6278 unsigned OpFlag = 6279 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6280 if (InlineAsm::isRegDefKind(OpFlag) || 6281 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6282 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6283 if (OpInfo.isIndirect) { 6284 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6285 LLVMContext &Ctx = *DAG.getContext(); 6286 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6287 " don't know how to handle tied " 6288 "indirect register inputs"); 6289 return; 6290 } 6291 6292 RegsForValue MatchedRegs; 6293 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6294 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6295 MatchedRegs.RegVTs.push_back(RegVT); 6296 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6297 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6298 i != e; ++i) { 6299 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6300 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6301 else { 6302 LLVMContext &Ctx = *DAG.getContext(); 6303 Ctx.emitError(CS.getInstruction(), 6304 "inline asm error: This value" 6305 " type register class is not natively supported!"); 6306 return; 6307 } 6308 } 6309 SDLoc dl = getCurSDLoc(); 6310 // Use the produced MatchedRegs object to 6311 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6312 Chain, &Flag, CS.getInstruction()); 6313 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6314 true, OpInfo.getMatchedOperand(), dl, 6315 DAG, AsmNodeOperands); 6316 break; 6317 } 6318 6319 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6320 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6321 "Unexpected number of operands"); 6322 // Add information to the INLINEASM node to know about this input. 6323 // See InlineAsm.h isUseOperandTiedToDef. 6324 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6325 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6326 OpInfo.getMatchedOperand()); 6327 AsmNodeOperands.push_back(DAG.getTargetConstant( 6328 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6329 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6330 break; 6331 } 6332 6333 // Treat indirect 'X' constraint as memory. 6334 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6335 OpInfo.isIndirect) 6336 OpInfo.ConstraintType = TargetLowering::C_Memory; 6337 6338 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6339 std::vector<SDValue> Ops; 6340 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6341 Ops, DAG); 6342 if (Ops.empty()) { 6343 LLVMContext &Ctx = *DAG.getContext(); 6344 Ctx.emitError(CS.getInstruction(), 6345 "invalid operand for inline asm constraint '" + 6346 Twine(OpInfo.ConstraintCode) + "'"); 6347 return; 6348 } 6349 6350 // Add information to the INLINEASM node to know about this input. 6351 unsigned ResOpType = 6352 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6353 AsmNodeOperands.push_back(DAG.getTargetConstant( 6354 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6355 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6356 break; 6357 } 6358 6359 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6360 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6361 assert(InOperandVal.getValueType() == 6362 TLI.getPointerTy(DAG.getDataLayout()) && 6363 "Memory operands expect pointer values"); 6364 6365 unsigned ConstraintID = 6366 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6367 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6368 "Failed to convert memory constraint code to constraint id."); 6369 6370 // Add information to the INLINEASM node to know about this input. 6371 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6372 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6373 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6374 getCurSDLoc(), 6375 MVT::i32)); 6376 AsmNodeOperands.push_back(InOperandVal); 6377 break; 6378 } 6379 6380 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6381 OpInfo.ConstraintType == TargetLowering::C_Register) && 6382 "Unknown constraint type!"); 6383 6384 // TODO: Support this. 6385 if (OpInfo.isIndirect) { 6386 LLVMContext &Ctx = *DAG.getContext(); 6387 Ctx.emitError(CS.getInstruction(), 6388 "Don't know how to handle indirect register inputs yet " 6389 "for constraint '" + 6390 Twine(OpInfo.ConstraintCode) + "'"); 6391 return; 6392 } 6393 6394 // Copy the input into the appropriate registers. 6395 if (OpInfo.AssignedRegs.Regs.empty()) { 6396 LLVMContext &Ctx = *DAG.getContext(); 6397 Ctx.emitError(CS.getInstruction(), 6398 "couldn't allocate input reg for constraint '" + 6399 Twine(OpInfo.ConstraintCode) + "'"); 6400 return; 6401 } 6402 6403 SDLoc dl = getCurSDLoc(); 6404 6405 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6406 Chain, &Flag, CS.getInstruction()); 6407 6408 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6409 dl, DAG, AsmNodeOperands); 6410 break; 6411 } 6412 case InlineAsm::isClobber: { 6413 // Add the clobbered value to the operand list, so that the register 6414 // allocator is aware that the physreg got clobbered. 6415 if (!OpInfo.AssignedRegs.Regs.empty()) 6416 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6417 false, 0, getCurSDLoc(), DAG, 6418 AsmNodeOperands); 6419 break; 6420 } 6421 } 6422 } 6423 6424 // Finish up input operands. Set the input chain and add the flag last. 6425 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6426 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6427 6428 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6429 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6430 Flag = Chain.getValue(1); 6431 6432 // If this asm returns a register value, copy the result from that register 6433 // and set it as the value of the call. 6434 if (!RetValRegs.Regs.empty()) { 6435 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6436 Chain, &Flag, CS.getInstruction()); 6437 6438 // FIXME: Why don't we do this for inline asms with MRVs? 6439 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6440 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6441 6442 // If any of the results of the inline asm is a vector, it may have the 6443 // wrong width/num elts. This can happen for register classes that can 6444 // contain multiple different value types. The preg or vreg allocated may 6445 // not have the same VT as was expected. Convert it to the right type 6446 // with bit_convert. 6447 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6448 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6449 ResultType, Val); 6450 6451 } else if (ResultType != Val.getValueType() && 6452 ResultType.isInteger() && Val.getValueType().isInteger()) { 6453 // If a result value was tied to an input value, the computed result may 6454 // have a wider width than the expected result. Extract the relevant 6455 // portion. 6456 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6457 } 6458 6459 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6460 } 6461 6462 setValue(CS.getInstruction(), Val); 6463 // Don't need to use this as a chain in this case. 6464 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6465 return; 6466 } 6467 6468 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6469 6470 // Process indirect outputs, first output all of the flagged copies out of 6471 // physregs. 6472 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6473 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6474 const Value *Ptr = IndirectStoresToEmit[i].second; 6475 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6476 Chain, &Flag, IA); 6477 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6478 } 6479 6480 // Emit the non-flagged stores from the physregs. 6481 SmallVector<SDValue, 8> OutChains; 6482 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6483 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6484 StoresToEmit[i].first, 6485 getValue(StoresToEmit[i].second), 6486 MachinePointerInfo(StoresToEmit[i].second), 6487 false, false, 0); 6488 OutChains.push_back(Val); 6489 } 6490 6491 if (!OutChains.empty()) 6492 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6493 6494 DAG.setRoot(Chain); 6495 } 6496 6497 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6498 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6499 MVT::Other, getRoot(), 6500 getValue(I.getArgOperand(0)), 6501 DAG.getSrcValue(I.getArgOperand(0)))); 6502 } 6503 6504 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6506 const DataLayout &DL = DAG.getDataLayout(); 6507 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6508 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6509 DAG.getSrcValue(I.getOperand(0)), 6510 DL.getABITypeAlignment(I.getType())); 6511 setValue(&I, V); 6512 DAG.setRoot(V.getValue(1)); 6513 } 6514 6515 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6516 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6517 MVT::Other, getRoot(), 6518 getValue(I.getArgOperand(0)), 6519 DAG.getSrcValue(I.getArgOperand(0)))); 6520 } 6521 6522 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6523 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6524 MVT::Other, getRoot(), 6525 getValue(I.getArgOperand(0)), 6526 getValue(I.getArgOperand(1)), 6527 DAG.getSrcValue(I.getArgOperand(0)), 6528 DAG.getSrcValue(I.getArgOperand(1)))); 6529 } 6530 6531 /// \brief Lower an argument list according to the target calling convention. 6532 /// 6533 /// \return A tuple of <return-value, token-chain> 6534 /// 6535 /// This is a helper for lowering intrinsics that follow a target calling 6536 /// convention or require stack pointer adjustment. Only a subset of the 6537 /// intrinsic's operands need to participate in the calling convention. 6538 std::pair<SDValue, SDValue> 6539 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6540 unsigned NumArgs, SDValue Callee, 6541 Type *ReturnTy, 6542 MachineBasicBlock *LandingPad, 6543 bool IsPatchPoint) { 6544 TargetLowering::ArgListTy Args; 6545 Args.reserve(NumArgs); 6546 6547 // Populate the argument list. 6548 // Attributes for args start at offset 1, after the return attribute. 6549 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6550 ArgI != ArgE; ++ArgI) { 6551 const Value *V = CS->getOperand(ArgI); 6552 6553 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6554 6555 TargetLowering::ArgListEntry Entry; 6556 Entry.Node = getValue(V); 6557 Entry.Ty = V->getType(); 6558 Entry.setAttributes(&CS, AttrI); 6559 Args.push_back(Entry); 6560 } 6561 6562 TargetLowering::CallLoweringInfo CLI(DAG); 6563 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6564 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6565 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6566 6567 return lowerInvokable(CLI, LandingPad); 6568 } 6569 6570 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6571 /// or patchpoint target node's operand list. 6572 /// 6573 /// Constants are converted to TargetConstants purely as an optimization to 6574 /// avoid constant materialization and register allocation. 6575 /// 6576 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6577 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6578 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6579 /// address materialization and register allocation, but may also be required 6580 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6581 /// alloca in the entry block, then the runtime may assume that the alloca's 6582 /// StackMap location can be read immediately after compilation and that the 6583 /// location is valid at any point during execution (this is similar to the 6584 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6585 /// only available in a register, then the runtime would need to trap when 6586 /// execution reaches the StackMap in order to read the alloca's location. 6587 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6588 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6589 SelectionDAGBuilder &Builder) { 6590 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6591 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6592 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6593 Ops.push_back( 6594 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6595 Ops.push_back( 6596 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6597 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6598 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6599 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6600 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6601 } else 6602 Ops.push_back(OpVal); 6603 } 6604 } 6605 6606 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6607 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6608 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6609 // [live variables...]) 6610 6611 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6612 6613 SDValue Chain, InFlag, Callee, NullPtr; 6614 SmallVector<SDValue, 32> Ops; 6615 6616 SDLoc DL = getCurSDLoc(); 6617 Callee = getValue(CI.getCalledValue()); 6618 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6619 6620 // The stackmap intrinsic only records the live variables (the arguemnts 6621 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6622 // intrinsic, this won't be lowered to a function call. This means we don't 6623 // have to worry about calling conventions and target specific lowering code. 6624 // Instead we perform the call lowering right here. 6625 // 6626 // chain, flag = CALLSEQ_START(chain, 0) 6627 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6628 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6629 // 6630 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6631 InFlag = Chain.getValue(1); 6632 6633 // Add the <id> and <numBytes> constants. 6634 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6635 Ops.push_back(DAG.getTargetConstant( 6636 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6637 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6638 Ops.push_back(DAG.getTargetConstant( 6639 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6640 MVT::i32)); 6641 6642 // Push live variables for the stack map. 6643 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6644 6645 // We are not pushing any register mask info here on the operands list, 6646 // because the stackmap doesn't clobber anything. 6647 6648 // Push the chain and the glue flag. 6649 Ops.push_back(Chain); 6650 Ops.push_back(InFlag); 6651 6652 // Create the STACKMAP node. 6653 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6654 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6655 Chain = SDValue(SM, 0); 6656 InFlag = Chain.getValue(1); 6657 6658 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6659 6660 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6661 6662 // Set the root to the target-lowered call chain. 6663 DAG.setRoot(Chain); 6664 6665 // Inform the Frame Information that we have a stackmap in this function. 6666 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6667 } 6668 6669 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6670 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6671 MachineBasicBlock *LandingPad) { 6672 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6673 // i32 <numBytes>, 6674 // i8* <target>, 6675 // i32 <numArgs>, 6676 // [Args...], 6677 // [live variables...]) 6678 6679 CallingConv::ID CC = CS.getCallingConv(); 6680 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6681 bool HasDef = !CS->getType()->isVoidTy(); 6682 SDLoc dl = getCurSDLoc(); 6683 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6684 6685 // Handle immediate and symbolic callees. 6686 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6687 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6688 /*isTarget=*/true); 6689 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6690 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6691 SDLoc(SymbolicCallee), 6692 SymbolicCallee->getValueType(0)); 6693 6694 // Get the real number of arguments participating in the call <numArgs> 6695 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6696 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6697 6698 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6699 // Intrinsics include all meta-operands up to but not including CC. 6700 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6701 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6702 "Not enough arguments provided to the patchpoint intrinsic"); 6703 6704 // For AnyRegCC the arguments are lowered later on manually. 6705 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6706 Type *ReturnTy = 6707 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6708 std::pair<SDValue, SDValue> Result = 6709 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6710 LandingPad, true); 6711 6712 SDNode *CallEnd = Result.second.getNode(); 6713 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6714 CallEnd = CallEnd->getOperand(0).getNode(); 6715 6716 /// Get a call instruction from the call sequence chain. 6717 /// Tail calls are not allowed. 6718 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6719 "Expected a callseq node."); 6720 SDNode *Call = CallEnd->getOperand(0).getNode(); 6721 bool HasGlue = Call->getGluedNode(); 6722 6723 // Replace the target specific call node with the patchable intrinsic. 6724 SmallVector<SDValue, 8> Ops; 6725 6726 // Add the <id> and <numBytes> constants. 6727 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6728 Ops.push_back(DAG.getTargetConstant( 6729 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6730 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6731 Ops.push_back(DAG.getTargetConstant( 6732 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6733 MVT::i32)); 6734 6735 // Add the callee. 6736 Ops.push_back(Callee); 6737 6738 // Adjust <numArgs> to account for any arguments that have been passed on the 6739 // stack instead. 6740 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6741 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6742 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6743 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6744 6745 // Add the calling convention 6746 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6747 6748 // Add the arguments we omitted previously. The register allocator should 6749 // place these in any free register. 6750 if (IsAnyRegCC) 6751 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6752 Ops.push_back(getValue(CS.getArgument(i))); 6753 6754 // Push the arguments from the call instruction up to the register mask. 6755 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6756 Ops.append(Call->op_begin() + 2, e); 6757 6758 // Push live variables for the stack map. 6759 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6760 6761 // Push the register mask info. 6762 if (HasGlue) 6763 Ops.push_back(*(Call->op_end()-2)); 6764 else 6765 Ops.push_back(*(Call->op_end()-1)); 6766 6767 // Push the chain (this is originally the first operand of the call, but 6768 // becomes now the last or second to last operand). 6769 Ops.push_back(*(Call->op_begin())); 6770 6771 // Push the glue flag (last operand). 6772 if (HasGlue) 6773 Ops.push_back(*(Call->op_end()-1)); 6774 6775 SDVTList NodeTys; 6776 if (IsAnyRegCC && HasDef) { 6777 // Create the return types based on the intrinsic definition 6778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6779 SmallVector<EVT, 3> ValueVTs; 6780 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6781 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6782 6783 // There is always a chain and a glue type at the end 6784 ValueVTs.push_back(MVT::Other); 6785 ValueVTs.push_back(MVT::Glue); 6786 NodeTys = DAG.getVTList(ValueVTs); 6787 } else 6788 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6789 6790 // Replace the target specific call node with a PATCHPOINT node. 6791 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6792 dl, NodeTys, Ops); 6793 6794 // Update the NodeMap. 6795 if (HasDef) { 6796 if (IsAnyRegCC) 6797 setValue(CS.getInstruction(), SDValue(MN, 0)); 6798 else 6799 setValue(CS.getInstruction(), Result.first); 6800 } 6801 6802 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6803 // call sequence. Furthermore the location of the chain and glue can change 6804 // when the AnyReg calling convention is used and the intrinsic returns a 6805 // value. 6806 if (IsAnyRegCC && HasDef) { 6807 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6808 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6809 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6810 } else 6811 DAG.ReplaceAllUsesWith(Call, MN); 6812 DAG.DeleteNode(Call); 6813 6814 // Inform the Frame Information that we have a patchpoint in this function. 6815 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6816 } 6817 6818 /// Returns an AttributeSet representing the attributes applied to the return 6819 /// value of the given call. 6820 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6821 SmallVector<Attribute::AttrKind, 2> Attrs; 6822 if (CLI.RetSExt) 6823 Attrs.push_back(Attribute::SExt); 6824 if (CLI.RetZExt) 6825 Attrs.push_back(Attribute::ZExt); 6826 if (CLI.IsInReg) 6827 Attrs.push_back(Attribute::InReg); 6828 6829 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6830 Attrs); 6831 } 6832 6833 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6834 /// implementation, which just calls LowerCall. 6835 /// FIXME: When all targets are 6836 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6837 std::pair<SDValue, SDValue> 6838 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6839 // Handle the incoming return values from the call. 6840 CLI.Ins.clear(); 6841 Type *OrigRetTy = CLI.RetTy; 6842 SmallVector<EVT, 4> RetTys; 6843 SmallVector<uint64_t, 4> Offsets; 6844 auto &DL = CLI.DAG.getDataLayout(); 6845 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6846 6847 SmallVector<ISD::OutputArg, 4> Outs; 6848 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6849 6850 bool CanLowerReturn = 6851 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6852 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6853 6854 SDValue DemoteStackSlot; 6855 int DemoteStackIdx = -100; 6856 if (!CanLowerReturn) { 6857 // FIXME: equivalent assert? 6858 // assert(!CS.hasInAllocaArgument() && 6859 // "sret demotion is incompatible with inalloca"); 6860 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6861 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6862 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6863 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6864 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6865 6866 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6867 ArgListEntry Entry; 6868 Entry.Node = DemoteStackSlot; 6869 Entry.Ty = StackSlotPtrType; 6870 Entry.isSExt = false; 6871 Entry.isZExt = false; 6872 Entry.isInReg = false; 6873 Entry.isSRet = true; 6874 Entry.isNest = false; 6875 Entry.isByVal = false; 6876 Entry.isReturned = false; 6877 Entry.Alignment = Align; 6878 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6879 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6880 6881 // sret demotion isn't compatible with tail-calls, since the sret argument 6882 // points into the callers stack frame. 6883 CLI.IsTailCall = false; 6884 } else { 6885 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6886 EVT VT = RetTys[I]; 6887 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6888 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6889 for (unsigned i = 0; i != NumRegs; ++i) { 6890 ISD::InputArg MyFlags; 6891 MyFlags.VT = RegisterVT; 6892 MyFlags.ArgVT = VT; 6893 MyFlags.Used = CLI.IsReturnValueUsed; 6894 if (CLI.RetSExt) 6895 MyFlags.Flags.setSExt(); 6896 if (CLI.RetZExt) 6897 MyFlags.Flags.setZExt(); 6898 if (CLI.IsInReg) 6899 MyFlags.Flags.setInReg(); 6900 CLI.Ins.push_back(MyFlags); 6901 } 6902 } 6903 } 6904 6905 // Handle all of the outgoing arguments. 6906 CLI.Outs.clear(); 6907 CLI.OutVals.clear(); 6908 ArgListTy &Args = CLI.getArgs(); 6909 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6910 SmallVector<EVT, 4> ValueVTs; 6911 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6912 Type *FinalType = Args[i].Ty; 6913 if (Args[i].isByVal) 6914 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6915 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6916 FinalType, CLI.CallConv, CLI.IsVarArg); 6917 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6918 ++Value) { 6919 EVT VT = ValueVTs[Value]; 6920 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6921 SDValue Op = SDValue(Args[i].Node.getNode(), 6922 Args[i].Node.getResNo() + Value); 6923 ISD::ArgFlagsTy Flags; 6924 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6925 6926 if (Args[i].isZExt) 6927 Flags.setZExt(); 6928 if (Args[i].isSExt) 6929 Flags.setSExt(); 6930 if (Args[i].isInReg) 6931 Flags.setInReg(); 6932 if (Args[i].isSRet) 6933 Flags.setSRet(); 6934 if (Args[i].isByVal) 6935 Flags.setByVal(); 6936 if (Args[i].isInAlloca) { 6937 Flags.setInAlloca(); 6938 // Set the byval flag for CCAssignFn callbacks that don't know about 6939 // inalloca. This way we can know how many bytes we should've allocated 6940 // and how many bytes a callee cleanup function will pop. If we port 6941 // inalloca to more targets, we'll have to add custom inalloca handling 6942 // in the various CC lowering callbacks. 6943 Flags.setByVal(); 6944 } 6945 if (Args[i].isByVal || Args[i].isInAlloca) { 6946 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6947 Type *ElementTy = Ty->getElementType(); 6948 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6949 // For ByVal, alignment should come from FE. BE will guess if this 6950 // info is not there but there are cases it cannot get right. 6951 unsigned FrameAlign; 6952 if (Args[i].Alignment) 6953 FrameAlign = Args[i].Alignment; 6954 else 6955 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6956 Flags.setByValAlign(FrameAlign); 6957 } 6958 if (Args[i].isNest) 6959 Flags.setNest(); 6960 if (NeedsRegBlock) 6961 Flags.setInConsecutiveRegs(); 6962 Flags.setOrigAlign(OriginalAlignment); 6963 6964 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6965 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6966 SmallVector<SDValue, 4> Parts(NumParts); 6967 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6968 6969 if (Args[i].isSExt) 6970 ExtendKind = ISD::SIGN_EXTEND; 6971 else if (Args[i].isZExt) 6972 ExtendKind = ISD::ZERO_EXTEND; 6973 6974 // Conservatively only handle 'returned' on non-vectors for now 6975 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6976 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6977 "unexpected use of 'returned'"); 6978 // Before passing 'returned' to the target lowering code, ensure that 6979 // either the register MVT and the actual EVT are the same size or that 6980 // the return value and argument are extended in the same way; in these 6981 // cases it's safe to pass the argument register value unchanged as the 6982 // return register value (although it's at the target's option whether 6983 // to do so) 6984 // TODO: allow code generation to take advantage of partially preserved 6985 // registers rather than clobbering the entire register when the 6986 // parameter extension method is not compatible with the return 6987 // extension method 6988 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6989 (ExtendKind != ISD::ANY_EXTEND && 6990 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6991 Flags.setReturned(); 6992 } 6993 6994 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6995 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6996 6997 for (unsigned j = 0; j != NumParts; ++j) { 6998 // if it isn't first piece, alignment must be 1 6999 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7000 i < CLI.NumFixedArgs, 7001 i, j*Parts[j].getValueType().getStoreSize()); 7002 if (NumParts > 1 && j == 0) 7003 MyFlags.Flags.setSplit(); 7004 else if (j != 0) 7005 MyFlags.Flags.setOrigAlign(1); 7006 7007 CLI.Outs.push_back(MyFlags); 7008 CLI.OutVals.push_back(Parts[j]); 7009 } 7010 7011 if (NeedsRegBlock && Value == NumValues - 1) 7012 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7013 } 7014 } 7015 7016 SmallVector<SDValue, 4> InVals; 7017 CLI.Chain = LowerCall(CLI, InVals); 7018 7019 // Verify that the target's LowerCall behaved as expected. 7020 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7021 "LowerCall didn't return a valid chain!"); 7022 assert((!CLI.IsTailCall || InVals.empty()) && 7023 "LowerCall emitted a return value for a tail call!"); 7024 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7025 "LowerCall didn't emit the correct number of values!"); 7026 7027 // For a tail call, the return value is merely live-out and there aren't 7028 // any nodes in the DAG representing it. Return a special value to 7029 // indicate that a tail call has been emitted and no more Instructions 7030 // should be processed in the current block. 7031 if (CLI.IsTailCall) { 7032 CLI.DAG.setRoot(CLI.Chain); 7033 return std::make_pair(SDValue(), SDValue()); 7034 } 7035 7036 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7037 assert(InVals[i].getNode() && 7038 "LowerCall emitted a null value!"); 7039 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7040 "LowerCall emitted a value with the wrong type!"); 7041 }); 7042 7043 SmallVector<SDValue, 4> ReturnValues; 7044 if (!CanLowerReturn) { 7045 // The instruction result is the result of loading from the 7046 // hidden sret parameter. 7047 SmallVector<EVT, 1> PVTs; 7048 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7049 7050 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7051 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7052 EVT PtrVT = PVTs[0]; 7053 7054 unsigned NumValues = RetTys.size(); 7055 ReturnValues.resize(NumValues); 7056 SmallVector<SDValue, 4> Chains(NumValues); 7057 7058 for (unsigned i = 0; i < NumValues; ++i) { 7059 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7060 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7061 PtrVT)); 7062 SDValue L = CLI.DAG.getLoad( 7063 RetTys[i], CLI.DL, CLI.Chain, Add, 7064 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7065 DemoteStackIdx, Offsets[i]), 7066 false, false, false, 1); 7067 ReturnValues[i] = L; 7068 Chains[i] = L.getValue(1); 7069 } 7070 7071 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7072 } else { 7073 // Collect the legal value parts into potentially illegal values 7074 // that correspond to the original function's return values. 7075 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7076 if (CLI.RetSExt) 7077 AssertOp = ISD::AssertSext; 7078 else if (CLI.RetZExt) 7079 AssertOp = ISD::AssertZext; 7080 unsigned CurReg = 0; 7081 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7082 EVT VT = RetTys[I]; 7083 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7084 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7085 7086 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7087 NumRegs, RegisterVT, VT, nullptr, 7088 AssertOp)); 7089 CurReg += NumRegs; 7090 } 7091 7092 // For a function returning void, there is no return value. We can't create 7093 // such a node, so we just return a null return value in that case. In 7094 // that case, nothing will actually look at the value. 7095 if (ReturnValues.empty()) 7096 return std::make_pair(SDValue(), CLI.Chain); 7097 } 7098 7099 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7100 CLI.DAG.getVTList(RetTys), ReturnValues); 7101 return std::make_pair(Res, CLI.Chain); 7102 } 7103 7104 void TargetLowering::LowerOperationWrapper(SDNode *N, 7105 SmallVectorImpl<SDValue> &Results, 7106 SelectionDAG &DAG) const { 7107 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7108 if (Res.getNode()) 7109 Results.push_back(Res); 7110 } 7111 7112 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7113 llvm_unreachable("LowerOperation not implemented for this target!"); 7114 } 7115 7116 void 7117 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7118 SDValue Op = getNonRegisterValue(V); 7119 assert((Op.getOpcode() != ISD::CopyFromReg || 7120 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7121 "Copy from a reg to the same reg!"); 7122 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7123 7124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7125 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7126 V->getType()); 7127 SDValue Chain = DAG.getEntryNode(); 7128 7129 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7130 FuncInfo.PreferredExtendType.end()) 7131 ? ISD::ANY_EXTEND 7132 : FuncInfo.PreferredExtendType[V]; 7133 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7134 PendingExports.push_back(Chain); 7135 } 7136 7137 #include "llvm/CodeGen/SelectionDAGISel.h" 7138 7139 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7140 /// entry block, return true. This includes arguments used by switches, since 7141 /// the switch may expand into multiple basic blocks. 7142 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7143 // With FastISel active, we may be splitting blocks, so force creation 7144 // of virtual registers for all non-dead arguments. 7145 if (FastISel) 7146 return A->use_empty(); 7147 7148 const BasicBlock *Entry = A->getParent()->begin(); 7149 for (const User *U : A->users()) 7150 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7151 return false; // Use not in entry block. 7152 7153 return true; 7154 } 7155 7156 void SelectionDAGISel::LowerArguments(const Function &F) { 7157 SelectionDAG &DAG = SDB->DAG; 7158 SDLoc dl = SDB->getCurSDLoc(); 7159 const DataLayout &DL = DAG.getDataLayout(); 7160 SmallVector<ISD::InputArg, 16> Ins; 7161 7162 if (!FuncInfo->CanLowerReturn) { 7163 // Put in an sret pointer parameter before all the other parameters. 7164 SmallVector<EVT, 1> ValueVTs; 7165 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7166 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7167 7168 // NOTE: Assuming that a pointer will never break down to more than one VT 7169 // or one register. 7170 ISD::ArgFlagsTy Flags; 7171 Flags.setSRet(); 7172 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7173 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7174 ISD::InputArg::NoArgIndex, 0); 7175 Ins.push_back(RetArg); 7176 } 7177 7178 // Set up the incoming argument description vector. 7179 unsigned Idx = 1; 7180 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7181 I != E; ++I, ++Idx) { 7182 SmallVector<EVT, 4> ValueVTs; 7183 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7184 bool isArgValueUsed = !I->use_empty(); 7185 unsigned PartBase = 0; 7186 Type *FinalType = I->getType(); 7187 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7188 FinalType = cast<PointerType>(FinalType)->getElementType(); 7189 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7190 FinalType, F.getCallingConv(), F.isVarArg()); 7191 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7192 Value != NumValues; ++Value) { 7193 EVT VT = ValueVTs[Value]; 7194 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7195 ISD::ArgFlagsTy Flags; 7196 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7197 7198 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7199 Flags.setZExt(); 7200 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7201 Flags.setSExt(); 7202 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7203 Flags.setInReg(); 7204 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7205 Flags.setSRet(); 7206 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7207 Flags.setByVal(); 7208 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7209 Flags.setInAlloca(); 7210 // Set the byval flag for CCAssignFn callbacks that don't know about 7211 // inalloca. This way we can know how many bytes we should've allocated 7212 // and how many bytes a callee cleanup function will pop. If we port 7213 // inalloca to more targets, we'll have to add custom inalloca handling 7214 // in the various CC lowering callbacks. 7215 Flags.setByVal(); 7216 } 7217 if (Flags.isByVal() || Flags.isInAlloca()) { 7218 PointerType *Ty = cast<PointerType>(I->getType()); 7219 Type *ElementTy = Ty->getElementType(); 7220 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7221 // For ByVal, alignment should be passed from FE. BE will guess if 7222 // this info is not there but there are cases it cannot get right. 7223 unsigned FrameAlign; 7224 if (F.getParamAlignment(Idx)) 7225 FrameAlign = F.getParamAlignment(Idx); 7226 else 7227 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7228 Flags.setByValAlign(FrameAlign); 7229 } 7230 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7231 Flags.setNest(); 7232 if (NeedsRegBlock) 7233 Flags.setInConsecutiveRegs(); 7234 Flags.setOrigAlign(OriginalAlignment); 7235 7236 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7237 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7238 for (unsigned i = 0; i != NumRegs; ++i) { 7239 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7240 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7241 if (NumRegs > 1 && i == 0) 7242 MyFlags.Flags.setSplit(); 7243 // if it isn't first piece, alignment must be 1 7244 else if (i > 0) 7245 MyFlags.Flags.setOrigAlign(1); 7246 Ins.push_back(MyFlags); 7247 } 7248 if (NeedsRegBlock && Value == NumValues - 1) 7249 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7250 PartBase += VT.getStoreSize(); 7251 } 7252 } 7253 7254 // Call the target to set up the argument values. 7255 SmallVector<SDValue, 8> InVals; 7256 SDValue NewRoot = TLI->LowerFormalArguments( 7257 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7258 7259 // Verify that the target's LowerFormalArguments behaved as expected. 7260 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7261 "LowerFormalArguments didn't return a valid chain!"); 7262 assert(InVals.size() == Ins.size() && 7263 "LowerFormalArguments didn't emit the correct number of values!"); 7264 DEBUG({ 7265 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7266 assert(InVals[i].getNode() && 7267 "LowerFormalArguments emitted a null value!"); 7268 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7269 "LowerFormalArguments emitted a value with the wrong type!"); 7270 } 7271 }); 7272 7273 // Update the DAG with the new chain value resulting from argument lowering. 7274 DAG.setRoot(NewRoot); 7275 7276 // Set up the argument values. 7277 unsigned i = 0; 7278 Idx = 1; 7279 if (!FuncInfo->CanLowerReturn) { 7280 // Create a virtual register for the sret pointer, and put in a copy 7281 // from the sret argument into it. 7282 SmallVector<EVT, 1> ValueVTs; 7283 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7284 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7285 MVT VT = ValueVTs[0].getSimpleVT(); 7286 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7287 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7288 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7289 RegVT, VT, nullptr, AssertOp); 7290 7291 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7292 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7293 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7294 FuncInfo->DemoteRegister = SRetReg; 7295 NewRoot = 7296 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7297 DAG.setRoot(NewRoot); 7298 7299 // i indexes lowered arguments. Bump it past the hidden sret argument. 7300 // Idx indexes LLVM arguments. Don't touch it. 7301 ++i; 7302 } 7303 7304 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7305 ++I, ++Idx) { 7306 SmallVector<SDValue, 4> ArgValues; 7307 SmallVector<EVT, 4> ValueVTs; 7308 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7309 unsigned NumValues = ValueVTs.size(); 7310 7311 // If this argument is unused then remember its value. It is used to generate 7312 // debugging information. 7313 if (I->use_empty() && NumValues) { 7314 SDB->setUnusedArgValue(I, InVals[i]); 7315 7316 // Also remember any frame index for use in FastISel. 7317 if (FrameIndexSDNode *FI = 7318 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7319 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7320 } 7321 7322 for (unsigned Val = 0; Val != NumValues; ++Val) { 7323 EVT VT = ValueVTs[Val]; 7324 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7325 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7326 7327 if (!I->use_empty()) { 7328 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7329 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7330 AssertOp = ISD::AssertSext; 7331 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7332 AssertOp = ISD::AssertZext; 7333 7334 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7335 NumParts, PartVT, VT, 7336 nullptr, AssertOp)); 7337 } 7338 7339 i += NumParts; 7340 } 7341 7342 // We don't need to do anything else for unused arguments. 7343 if (ArgValues.empty()) 7344 continue; 7345 7346 // Note down frame index. 7347 if (FrameIndexSDNode *FI = 7348 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7349 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7350 7351 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7352 SDB->getCurSDLoc()); 7353 7354 SDB->setValue(I, Res); 7355 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7356 if (LoadSDNode *LNode = 7357 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7358 if (FrameIndexSDNode *FI = 7359 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7360 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7361 } 7362 7363 // If this argument is live outside of the entry block, insert a copy from 7364 // wherever we got it to the vreg that other BB's will reference it as. 7365 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7366 // If we can, though, try to skip creating an unnecessary vreg. 7367 // FIXME: This isn't very clean... it would be nice to make this more 7368 // general. It's also subtly incompatible with the hacks FastISel 7369 // uses with vregs. 7370 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7371 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7372 FuncInfo->ValueMap[I] = Reg; 7373 continue; 7374 } 7375 } 7376 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7377 FuncInfo->InitializeRegForValue(I); 7378 SDB->CopyToExportRegsIfNeeded(I); 7379 } 7380 } 7381 7382 assert(i == InVals.size() && "Argument register count mismatch!"); 7383 7384 // Finally, if the target has anything special to do, allow it to do so. 7385 EmitFunctionEntryCode(); 7386 } 7387 7388 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7389 /// ensure constants are generated when needed. Remember the virtual registers 7390 /// that need to be added to the Machine PHI nodes as input. We cannot just 7391 /// directly add them, because expansion might result in multiple MBB's for one 7392 /// BB. As such, the start of the BB might correspond to a different MBB than 7393 /// the end. 7394 /// 7395 void 7396 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7397 const TerminatorInst *TI = LLVMBB->getTerminator(); 7398 7399 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7400 7401 // Check PHI nodes in successors that expect a value to be available from this 7402 // block. 7403 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7404 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7405 if (!isa<PHINode>(SuccBB->begin())) continue; 7406 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7407 7408 // If this terminator has multiple identical successors (common for 7409 // switches), only handle each succ once. 7410 if (!SuccsHandled.insert(SuccMBB).second) 7411 continue; 7412 7413 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7414 7415 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7416 // nodes and Machine PHI nodes, but the incoming operands have not been 7417 // emitted yet. 7418 for (BasicBlock::const_iterator I = SuccBB->begin(); 7419 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7420 // Ignore dead phi's. 7421 if (PN->use_empty()) continue; 7422 7423 // Skip empty types 7424 if (PN->getType()->isEmptyTy()) 7425 continue; 7426 7427 unsigned Reg; 7428 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7429 7430 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7431 unsigned &RegOut = ConstantsOut[C]; 7432 if (RegOut == 0) { 7433 RegOut = FuncInfo.CreateRegs(C->getType()); 7434 CopyValueToVirtualRegister(C, RegOut); 7435 } 7436 Reg = RegOut; 7437 } else { 7438 DenseMap<const Value *, unsigned>::iterator I = 7439 FuncInfo.ValueMap.find(PHIOp); 7440 if (I != FuncInfo.ValueMap.end()) 7441 Reg = I->second; 7442 else { 7443 assert(isa<AllocaInst>(PHIOp) && 7444 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7445 "Didn't codegen value into a register!??"); 7446 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7447 CopyValueToVirtualRegister(PHIOp, Reg); 7448 } 7449 } 7450 7451 // Remember that this register needs to added to the machine PHI node as 7452 // the input for this MBB. 7453 SmallVector<EVT, 4> ValueVTs; 7454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7455 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7456 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7457 EVT VT = ValueVTs[vti]; 7458 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7459 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7460 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7461 Reg += NumRegisters; 7462 } 7463 } 7464 } 7465 7466 ConstantsOut.clear(); 7467 } 7468 7469 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7470 /// is 0. 7471 MachineBasicBlock * 7472 SelectionDAGBuilder::StackProtectorDescriptor:: 7473 AddSuccessorMBB(const BasicBlock *BB, 7474 MachineBasicBlock *ParentMBB, 7475 bool IsLikely, 7476 MachineBasicBlock *SuccMBB) { 7477 // If SuccBB has not been created yet, create it. 7478 if (!SuccMBB) { 7479 MachineFunction *MF = ParentMBB->getParent(); 7480 MachineFunction::iterator BBI = ParentMBB; 7481 SuccMBB = MF->CreateMachineBasicBlock(BB); 7482 MF->insert(++BBI, SuccMBB); 7483 } 7484 // Add it as a successor of ParentMBB. 7485 ParentMBB->addSuccessor( 7486 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7487 return SuccMBB; 7488 } 7489 7490 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7491 MachineFunction::iterator I = MBB; 7492 if (++I == FuncInfo.MF->end()) 7493 return nullptr; 7494 return I; 7495 } 7496 7497 /// During lowering new call nodes can be created (such as memset, etc.). 7498 /// Those will become new roots of the current DAG, but complications arise 7499 /// when they are tail calls. In such cases, the call lowering will update 7500 /// the root, but the builder still needs to know that a tail call has been 7501 /// lowered in order to avoid generating an additional return. 7502 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7503 // If the node is null, we do have a tail call. 7504 if (MaybeTC.getNode() != nullptr) 7505 DAG.setRoot(MaybeTC); 7506 else 7507 HasTailCall = true; 7508 } 7509 7510 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7511 unsigned *TotalCases, unsigned First, 7512 unsigned Last) { 7513 assert(Last >= First); 7514 assert(TotalCases[Last] >= TotalCases[First]); 7515 7516 APInt LowCase = Clusters[First].Low->getValue(); 7517 APInt HighCase = Clusters[Last].High->getValue(); 7518 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7519 7520 // FIXME: A range of consecutive cases has 100% density, but only requires one 7521 // comparison to lower. We should discriminate against such consecutive ranges 7522 // in jump tables. 7523 7524 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7525 uint64_t Range = Diff + 1; 7526 7527 uint64_t NumCases = 7528 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7529 7530 assert(NumCases < UINT64_MAX / 100); 7531 assert(Range >= NumCases); 7532 7533 return NumCases * 100 >= Range * MinJumpTableDensity; 7534 } 7535 7536 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7537 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7538 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7539 } 7540 7541 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7542 unsigned First, unsigned Last, 7543 const SwitchInst *SI, 7544 MachineBasicBlock *DefaultMBB, 7545 CaseCluster &JTCluster) { 7546 assert(First <= Last); 7547 7548 uint32_t Weight = 0; 7549 unsigned NumCmps = 0; 7550 std::vector<MachineBasicBlock*> Table; 7551 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7552 for (unsigned I = First; I <= Last; ++I) { 7553 assert(Clusters[I].Kind == CC_Range); 7554 Weight += Clusters[I].Weight; 7555 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7556 APInt Low = Clusters[I].Low->getValue(); 7557 APInt High = Clusters[I].High->getValue(); 7558 NumCmps += (Low == High) ? 1 : 2; 7559 if (I != First) { 7560 // Fill the gap between this and the previous cluster. 7561 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7562 assert(PreviousHigh.slt(Low)); 7563 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7564 for (uint64_t J = 0; J < Gap; J++) 7565 Table.push_back(DefaultMBB); 7566 } 7567 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7568 for (uint64_t J = 0; J < ClusterSize; ++J) 7569 Table.push_back(Clusters[I].MBB); 7570 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7571 } 7572 7573 unsigned NumDests = JTWeights.size(); 7574 if (isSuitableForBitTests(NumDests, NumCmps, 7575 Clusters[First].Low->getValue(), 7576 Clusters[Last].High->getValue())) { 7577 // Clusters[First..Last] should be lowered as bit tests instead. 7578 return false; 7579 } 7580 7581 // Create the MBB that will load from and jump through the table. 7582 // Note: We create it here, but it's not inserted into the function yet. 7583 MachineFunction *CurMF = FuncInfo.MF; 7584 MachineBasicBlock *JumpTableMBB = 7585 CurMF->CreateMachineBasicBlock(SI->getParent()); 7586 7587 // Add successors. Note: use table order for determinism. 7588 SmallPtrSet<MachineBasicBlock *, 8> Done; 7589 for (MachineBasicBlock *Succ : Table) { 7590 if (Done.count(Succ)) 7591 continue; 7592 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7593 Done.insert(Succ); 7594 } 7595 7596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7597 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7598 ->createJumpTableIndex(Table); 7599 7600 // Set up the jump table info. 7601 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7602 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7603 Clusters[Last].High->getValue(), SI->getCondition(), 7604 nullptr, false); 7605 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7606 7607 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7608 JTCases.size() - 1, Weight); 7609 return true; 7610 } 7611 7612 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7613 const SwitchInst *SI, 7614 MachineBasicBlock *DefaultMBB) { 7615 #ifndef NDEBUG 7616 // Clusters must be non-empty, sorted, and only contain Range clusters. 7617 assert(!Clusters.empty()); 7618 for (CaseCluster &C : Clusters) 7619 assert(C.Kind == CC_Range); 7620 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7621 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7622 #endif 7623 7624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7625 if (!areJTsAllowed(TLI)) 7626 return; 7627 7628 const int64_t N = Clusters.size(); 7629 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7630 7631 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7632 SmallVector<unsigned, 8> TotalCases(N); 7633 7634 for (unsigned i = 0; i < N; ++i) { 7635 APInt Hi = Clusters[i].High->getValue(); 7636 APInt Lo = Clusters[i].Low->getValue(); 7637 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7638 if (i != 0) 7639 TotalCases[i] += TotalCases[i - 1]; 7640 } 7641 7642 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7643 // Cheap case: the whole range might be suitable for jump table. 7644 CaseCluster JTCluster; 7645 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7646 Clusters[0] = JTCluster; 7647 Clusters.resize(1); 7648 return; 7649 } 7650 } 7651 7652 // The algorithm below is not suitable for -O0. 7653 if (TM.getOptLevel() == CodeGenOpt::None) 7654 return; 7655 7656 // Split Clusters into minimum number of dense partitions. The algorithm uses 7657 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7658 // for the Case Statement'" (1994), but builds the MinPartitions array in 7659 // reverse order to make it easier to reconstruct the partitions in ascending 7660 // order. In the choice between two optimal partitionings, it picks the one 7661 // which yields more jump tables. 7662 7663 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7664 SmallVector<unsigned, 8> MinPartitions(N); 7665 // LastElement[i] is the last element of the partition starting at i. 7666 SmallVector<unsigned, 8> LastElement(N); 7667 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7668 SmallVector<unsigned, 8> NumTables(N); 7669 7670 // Base case: There is only one way to partition Clusters[N-1]. 7671 MinPartitions[N - 1] = 1; 7672 LastElement[N - 1] = N - 1; 7673 assert(MinJumpTableSize > 1); 7674 NumTables[N - 1] = 0; 7675 7676 // Note: loop indexes are signed to avoid underflow. 7677 for (int64_t i = N - 2; i >= 0; i--) { 7678 // Find optimal partitioning of Clusters[i..N-1]. 7679 // Baseline: Put Clusters[i] into a partition on its own. 7680 MinPartitions[i] = MinPartitions[i + 1] + 1; 7681 LastElement[i] = i; 7682 NumTables[i] = NumTables[i + 1]; 7683 7684 // Search for a solution that results in fewer partitions. 7685 for (int64_t j = N - 1; j > i; j--) { 7686 // Try building a partition from Clusters[i..j]. 7687 if (isDense(Clusters, &TotalCases[0], i, j)) { 7688 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7689 bool IsTable = j - i + 1 >= MinJumpTableSize; 7690 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7691 7692 // If this j leads to fewer partitions, or same number of partitions 7693 // with more lookup tables, it is a better partitioning. 7694 if (NumPartitions < MinPartitions[i] || 7695 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7696 MinPartitions[i] = NumPartitions; 7697 LastElement[i] = j; 7698 NumTables[i] = Tables; 7699 } 7700 } 7701 } 7702 } 7703 7704 // Iterate over the partitions, replacing some with jump tables in-place. 7705 unsigned DstIndex = 0; 7706 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7707 Last = LastElement[First]; 7708 assert(Last >= First); 7709 assert(DstIndex <= First); 7710 unsigned NumClusters = Last - First + 1; 7711 7712 CaseCluster JTCluster; 7713 if (NumClusters >= MinJumpTableSize && 7714 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7715 Clusters[DstIndex++] = JTCluster; 7716 } else { 7717 for (unsigned I = First; I <= Last; ++I) 7718 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7719 } 7720 } 7721 Clusters.resize(DstIndex); 7722 } 7723 7724 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7725 // FIXME: Using the pointer type doesn't seem ideal. 7726 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7727 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7728 return Range <= BW; 7729 } 7730 7731 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7732 unsigned NumCmps, 7733 const APInt &Low, 7734 const APInt &High) { 7735 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7736 // range of cases both require only one branch to lower. Just looking at the 7737 // number of clusters and destinations should be enough to decide whether to 7738 // build bit tests. 7739 7740 // To lower a range with bit tests, the range must fit the bitwidth of a 7741 // machine word. 7742 if (!rangeFitsInWord(Low, High)) 7743 return false; 7744 7745 // Decide whether it's profitable to lower this range with bit tests. Each 7746 // destination requires a bit test and branch, and there is an overall range 7747 // check branch. For a small number of clusters, separate comparisons might be 7748 // cheaper, and for many destinations, splitting the range might be better. 7749 return (NumDests == 1 && NumCmps >= 3) || 7750 (NumDests == 2 && NumCmps >= 5) || 7751 (NumDests == 3 && NumCmps >= 6); 7752 } 7753 7754 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7755 unsigned First, unsigned Last, 7756 const SwitchInst *SI, 7757 CaseCluster &BTCluster) { 7758 assert(First <= Last); 7759 if (First == Last) 7760 return false; 7761 7762 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7763 unsigned NumCmps = 0; 7764 for (int64_t I = First; I <= Last; ++I) { 7765 assert(Clusters[I].Kind == CC_Range); 7766 Dests.set(Clusters[I].MBB->getNumber()); 7767 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7768 } 7769 unsigned NumDests = Dests.count(); 7770 7771 APInt Low = Clusters[First].Low->getValue(); 7772 APInt High = Clusters[Last].High->getValue(); 7773 assert(Low.slt(High)); 7774 7775 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7776 return false; 7777 7778 APInt LowBound; 7779 APInt CmpRange; 7780 7781 const int BitWidth = DAG.getTargetLoweringInfo() 7782 .getPointerTy(DAG.getDataLayout()) 7783 .getSizeInBits(); 7784 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7785 7786 // Check if the clusters cover a contiguous range such that no value in the 7787 // range will jump to the default statement. 7788 bool ContiguousRange = true; 7789 for (int64_t I = First + 1; I <= Last; ++I) { 7790 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7791 ContiguousRange = false; 7792 break; 7793 } 7794 } 7795 7796 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7797 // Optimize the case where all the case values fit in a word without having 7798 // to subtract minValue. In this case, we can optimize away the subtraction. 7799 LowBound = APInt::getNullValue(Low.getBitWidth()); 7800 CmpRange = High; 7801 ContiguousRange = false; 7802 } else { 7803 LowBound = Low; 7804 CmpRange = High - Low; 7805 } 7806 7807 CaseBitsVector CBV; 7808 uint32_t TotalWeight = 0; 7809 for (unsigned i = First; i <= Last; ++i) { 7810 // Find the CaseBits for this destination. 7811 unsigned j; 7812 for (j = 0; j < CBV.size(); ++j) 7813 if (CBV[j].BB == Clusters[i].MBB) 7814 break; 7815 if (j == CBV.size()) 7816 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7817 CaseBits *CB = &CBV[j]; 7818 7819 // Update Mask, Bits and ExtraWeight. 7820 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7821 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7822 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7823 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7824 CB->Bits += Hi - Lo + 1; 7825 CB->ExtraWeight += Clusters[i].Weight; 7826 TotalWeight += Clusters[i].Weight; 7827 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7828 } 7829 7830 BitTestInfo BTI; 7831 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7832 // Sort by weight first, number of bits second. 7833 if (a.ExtraWeight != b.ExtraWeight) 7834 return a.ExtraWeight > b.ExtraWeight; 7835 return a.Bits > b.Bits; 7836 }); 7837 7838 for (auto &CB : CBV) { 7839 MachineBasicBlock *BitTestBB = 7840 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7841 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7842 } 7843 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7844 SI->getCondition(), -1U, MVT::Other, false, 7845 ContiguousRange, nullptr, nullptr, std::move(BTI), 7846 TotalWeight); 7847 7848 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7849 BitTestCases.size() - 1, TotalWeight); 7850 return true; 7851 } 7852 7853 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7854 const SwitchInst *SI) { 7855 // Partition Clusters into as few subsets as possible, where each subset has a 7856 // range that fits in a machine word and has <= 3 unique destinations. 7857 7858 #ifndef NDEBUG 7859 // Clusters must be sorted and contain Range or JumpTable clusters. 7860 assert(!Clusters.empty()); 7861 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7862 for (const CaseCluster &C : Clusters) 7863 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7864 for (unsigned i = 1; i < Clusters.size(); ++i) 7865 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7866 #endif 7867 7868 // The algorithm below is not suitable for -O0. 7869 if (TM.getOptLevel() == CodeGenOpt::None) 7870 return; 7871 7872 // If target does not have legal shift left, do not emit bit tests at all. 7873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7874 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7875 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7876 return; 7877 7878 int BitWidth = PTy.getSizeInBits(); 7879 const int64_t N = Clusters.size(); 7880 7881 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7882 SmallVector<unsigned, 8> MinPartitions(N); 7883 // LastElement[i] is the last element of the partition starting at i. 7884 SmallVector<unsigned, 8> LastElement(N); 7885 7886 // FIXME: This might not be the best algorithm for finding bit test clusters. 7887 7888 // Base case: There is only one way to partition Clusters[N-1]. 7889 MinPartitions[N - 1] = 1; 7890 LastElement[N - 1] = N - 1; 7891 7892 // Note: loop indexes are signed to avoid underflow. 7893 for (int64_t i = N - 2; i >= 0; --i) { 7894 // Find optimal partitioning of Clusters[i..N-1]. 7895 // Baseline: Put Clusters[i] into a partition on its own. 7896 MinPartitions[i] = MinPartitions[i + 1] + 1; 7897 LastElement[i] = i; 7898 7899 // Search for a solution that results in fewer partitions. 7900 // Note: the search is limited by BitWidth, reducing time complexity. 7901 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7902 // Try building a partition from Clusters[i..j]. 7903 7904 // Check the range. 7905 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7906 Clusters[j].High->getValue())) 7907 continue; 7908 7909 // Check nbr of destinations and cluster types. 7910 // FIXME: This works, but doesn't seem very efficient. 7911 bool RangesOnly = true; 7912 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7913 for (int64_t k = i; k <= j; k++) { 7914 if (Clusters[k].Kind != CC_Range) { 7915 RangesOnly = false; 7916 break; 7917 } 7918 Dests.set(Clusters[k].MBB->getNumber()); 7919 } 7920 if (!RangesOnly || Dests.count() > 3) 7921 break; 7922 7923 // Check if it's a better partition. 7924 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7925 if (NumPartitions < MinPartitions[i]) { 7926 // Found a better partition. 7927 MinPartitions[i] = NumPartitions; 7928 LastElement[i] = j; 7929 } 7930 } 7931 } 7932 7933 // Iterate over the partitions, replacing with bit-test clusters in-place. 7934 unsigned DstIndex = 0; 7935 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7936 Last = LastElement[First]; 7937 assert(First <= Last); 7938 assert(DstIndex <= First); 7939 7940 CaseCluster BitTestCluster; 7941 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7942 Clusters[DstIndex++] = BitTestCluster; 7943 } else { 7944 size_t NumClusters = Last - First + 1; 7945 std::memmove(&Clusters[DstIndex], &Clusters[First], 7946 sizeof(Clusters[0]) * NumClusters); 7947 DstIndex += NumClusters; 7948 } 7949 } 7950 Clusters.resize(DstIndex); 7951 } 7952 7953 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7954 MachineBasicBlock *SwitchMBB, 7955 MachineBasicBlock *DefaultMBB) { 7956 MachineFunction *CurMF = FuncInfo.MF; 7957 MachineBasicBlock *NextMBB = nullptr; 7958 MachineFunction::iterator BBI = W.MBB; 7959 if (++BBI != FuncInfo.MF->end()) 7960 NextMBB = BBI; 7961 7962 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7963 7964 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7965 7966 if (Size == 2 && W.MBB == SwitchMBB) { 7967 // If any two of the cases has the same destination, and if one value 7968 // is the same as the other, but has one bit unset that the other has set, 7969 // use bit manipulation to do two compares at once. For example: 7970 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7971 // TODO: This could be extended to merge any 2 cases in switches with 3 7972 // cases. 7973 // TODO: Handle cases where W.CaseBB != SwitchBB. 7974 CaseCluster &Small = *W.FirstCluster; 7975 CaseCluster &Big = *W.LastCluster; 7976 7977 if (Small.Low == Small.High && Big.Low == Big.High && 7978 Small.MBB == Big.MBB) { 7979 const APInt &SmallValue = Small.Low->getValue(); 7980 const APInt &BigValue = Big.Low->getValue(); 7981 7982 // Check that there is only one bit different. 7983 APInt CommonBit = BigValue ^ SmallValue; 7984 if (CommonBit.isPowerOf2()) { 7985 SDValue CondLHS = getValue(Cond); 7986 EVT VT = CondLHS.getValueType(); 7987 SDLoc DL = getCurSDLoc(); 7988 7989 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7990 DAG.getConstant(CommonBit, DL, VT)); 7991 SDValue Cond = DAG.getSetCC( 7992 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7993 ISD::SETEQ); 7994 7995 // Update successor info. 7996 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7997 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7998 addSuccessorWithWeight( 7999 SwitchMBB, DefaultMBB, 8000 // The default destination is the first successor in IR. 8001 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8002 : 0); 8003 8004 // Insert the true branch. 8005 SDValue BrCond = 8006 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8007 DAG.getBasicBlock(Small.MBB)); 8008 // Insert the false branch. 8009 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8010 DAG.getBasicBlock(DefaultMBB)); 8011 8012 DAG.setRoot(BrCond); 8013 return; 8014 } 8015 } 8016 } 8017 8018 if (TM.getOptLevel() != CodeGenOpt::None) { 8019 // Order cases by weight so the most likely case will be checked first. 8020 std::sort(W.FirstCluster, W.LastCluster + 1, 8021 [](const CaseCluster &a, const CaseCluster &b) { 8022 return a.Weight > b.Weight; 8023 }); 8024 8025 // Rearrange the case blocks so that the last one falls through if possible 8026 // without without changing the order of weights. 8027 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8028 --I; 8029 if (I->Weight > W.LastCluster->Weight) 8030 break; 8031 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8032 std::swap(*I, *W.LastCluster); 8033 break; 8034 } 8035 } 8036 } 8037 8038 // Compute total weight. 8039 uint32_t DefaultWeight = W.DefaultWeight; 8040 uint32_t UnhandledWeights = DefaultWeight; 8041 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8042 UnhandledWeights += I->Weight; 8043 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8044 } 8045 8046 MachineBasicBlock *CurMBB = W.MBB; 8047 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8048 MachineBasicBlock *Fallthrough; 8049 if (I == W.LastCluster) { 8050 // For the last cluster, fall through to the default destination. 8051 Fallthrough = DefaultMBB; 8052 } else { 8053 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8054 CurMF->insert(BBI, Fallthrough); 8055 // Put Cond in a virtual register to make it available from the new blocks. 8056 ExportFromCurrentBlock(Cond); 8057 } 8058 UnhandledWeights -= I->Weight; 8059 8060 switch (I->Kind) { 8061 case CC_JumpTable: { 8062 // FIXME: Optimize away range check based on pivot comparisons. 8063 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8064 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8065 8066 // The jump block hasn't been inserted yet; insert it here. 8067 MachineBasicBlock *JumpMBB = JT->MBB; 8068 CurMF->insert(BBI, JumpMBB); 8069 8070 uint32_t JumpWeight = I->Weight; 8071 uint32_t FallthroughWeight = UnhandledWeights; 8072 8073 // If Fallthrough is a target of the jump table, we evenly distribute 8074 // the weight on the edge to Fallthrough to successors of CurMBB. 8075 // Also update the weight on the edge from JumpMBB to Fallthrough. 8076 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8077 SE = JumpMBB->succ_end(); 8078 SI != SE; ++SI) { 8079 if (*SI == Fallthrough) { 8080 JumpWeight += DefaultWeight / 2; 8081 FallthroughWeight -= DefaultWeight / 2; 8082 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8083 break; 8084 } 8085 } 8086 8087 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8088 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8089 8090 // The jump table header will be inserted in our current block, do the 8091 // range check, and fall through to our fallthrough block. 8092 JTH->HeaderBB = CurMBB; 8093 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8094 8095 // If we're in the right place, emit the jump table header right now. 8096 if (CurMBB == SwitchMBB) { 8097 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8098 JTH->Emitted = true; 8099 } 8100 break; 8101 } 8102 case CC_BitTests: { 8103 // FIXME: Optimize away range check based on pivot comparisons. 8104 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8105 8106 // The bit test blocks haven't been inserted yet; insert them here. 8107 for (BitTestCase &BTC : BTB->Cases) 8108 CurMF->insert(BBI, BTC.ThisBB); 8109 8110 // Fill in fields of the BitTestBlock. 8111 BTB->Parent = CurMBB; 8112 BTB->Default = Fallthrough; 8113 8114 BTB->DefaultWeight = UnhandledWeights; 8115 // If the cases in bit test don't form a contiguous range, we evenly 8116 // distribute the weight on the edge to Fallthrough to two successors 8117 // of CurMBB. 8118 if (!BTB->ContiguousRange) { 8119 BTB->Weight += DefaultWeight / 2; 8120 BTB->DefaultWeight -= DefaultWeight / 2; 8121 } 8122 8123 // If we're in the right place, emit the bit test header right now. 8124 if (CurMBB == SwitchMBB) { 8125 visitBitTestHeader(*BTB, SwitchMBB); 8126 BTB->Emitted = true; 8127 } 8128 break; 8129 } 8130 case CC_Range: { 8131 const Value *RHS, *LHS, *MHS; 8132 ISD::CondCode CC; 8133 if (I->Low == I->High) { 8134 // Check Cond == I->Low. 8135 CC = ISD::SETEQ; 8136 LHS = Cond; 8137 RHS=I->Low; 8138 MHS = nullptr; 8139 } else { 8140 // Check I->Low <= Cond <= I->High. 8141 CC = ISD::SETLE; 8142 LHS = I->Low; 8143 MHS = Cond; 8144 RHS = I->High; 8145 } 8146 8147 // The false weight is the sum of all unhandled cases. 8148 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8149 UnhandledWeights); 8150 8151 if (CurMBB == SwitchMBB) 8152 visitSwitchCase(CB, SwitchMBB); 8153 else 8154 SwitchCases.push_back(CB); 8155 8156 break; 8157 } 8158 } 8159 CurMBB = Fallthrough; 8160 } 8161 } 8162 8163 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8164 CaseClusterIt First, 8165 CaseClusterIt Last) { 8166 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8167 if (X.Weight != CC.Weight) 8168 return X.Weight > CC.Weight; 8169 8170 // Ties are broken by comparing the case value. 8171 return X.Low->getValue().slt(CC.Low->getValue()); 8172 }); 8173 } 8174 8175 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8176 const SwitchWorkListItem &W, 8177 Value *Cond, 8178 MachineBasicBlock *SwitchMBB) { 8179 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8180 "Clusters not sorted?"); 8181 8182 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8183 8184 // Balance the tree based on branch weights to create a near-optimal (in terms 8185 // of search time given key frequency) binary search tree. See e.g. Kurt 8186 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8187 CaseClusterIt LastLeft = W.FirstCluster; 8188 CaseClusterIt FirstRight = W.LastCluster; 8189 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8190 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8191 8192 // Move LastLeft and FirstRight towards each other from opposite directions to 8193 // find a partitioning of the clusters which balances the weight on both 8194 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8195 // taken to ensure 0-weight nodes are distributed evenly. 8196 unsigned I = 0; 8197 while (LastLeft + 1 < FirstRight) { 8198 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8199 LeftWeight += (++LastLeft)->Weight; 8200 else 8201 RightWeight += (--FirstRight)->Weight; 8202 I++; 8203 } 8204 8205 for (;;) { 8206 // Our binary search tree differs from a typical BST in that ours can have up 8207 // to three values in each leaf. The pivot selection above doesn't take that 8208 // into account, which means the tree might require more nodes and be less 8209 // efficient. We compensate for this here. 8210 8211 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8212 unsigned NumRight = W.LastCluster - FirstRight + 1; 8213 8214 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8215 // If one side has less than 3 clusters, and the other has more than 3, 8216 // consider taking a cluster from the other side. 8217 8218 if (NumLeft < NumRight) { 8219 // Consider moving the first cluster on the right to the left side. 8220 CaseCluster &CC = *FirstRight; 8221 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8222 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8223 if (LeftSideRank <= RightSideRank) { 8224 // Moving the cluster to the left does not demote it. 8225 ++LastLeft; 8226 ++FirstRight; 8227 continue; 8228 } 8229 } else { 8230 assert(NumRight < NumLeft); 8231 // Consider moving the last element on the left to the right side. 8232 CaseCluster &CC = *LastLeft; 8233 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8234 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8235 if (RightSideRank <= LeftSideRank) { 8236 // Moving the cluster to the right does not demot it. 8237 --LastLeft; 8238 --FirstRight; 8239 continue; 8240 } 8241 } 8242 } 8243 break; 8244 } 8245 8246 assert(LastLeft + 1 == FirstRight); 8247 assert(LastLeft >= W.FirstCluster); 8248 assert(FirstRight <= W.LastCluster); 8249 8250 // Use the first element on the right as pivot since we will make less-than 8251 // comparisons against it. 8252 CaseClusterIt PivotCluster = FirstRight; 8253 assert(PivotCluster > W.FirstCluster); 8254 assert(PivotCluster <= W.LastCluster); 8255 8256 CaseClusterIt FirstLeft = W.FirstCluster; 8257 CaseClusterIt LastRight = W.LastCluster; 8258 8259 const ConstantInt *Pivot = PivotCluster->Low; 8260 8261 // New blocks will be inserted immediately after the current one. 8262 MachineFunction::iterator BBI = W.MBB; 8263 ++BBI; 8264 8265 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8266 // we can branch to its destination directly if it's squeezed exactly in 8267 // between the known lower bound and Pivot - 1. 8268 MachineBasicBlock *LeftMBB; 8269 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8270 FirstLeft->Low == W.GE && 8271 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8272 LeftMBB = FirstLeft->MBB; 8273 } else { 8274 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8275 FuncInfo.MF->insert(BBI, LeftMBB); 8276 WorkList.push_back( 8277 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8278 // Put Cond in a virtual register to make it available from the new blocks. 8279 ExportFromCurrentBlock(Cond); 8280 } 8281 8282 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8283 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8284 // directly if RHS.High equals the current upper bound. 8285 MachineBasicBlock *RightMBB; 8286 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8287 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8288 RightMBB = FirstRight->MBB; 8289 } else { 8290 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8291 FuncInfo.MF->insert(BBI, RightMBB); 8292 WorkList.push_back( 8293 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8294 // Put Cond in a virtual register to make it available from the new blocks. 8295 ExportFromCurrentBlock(Cond); 8296 } 8297 8298 // Create the CaseBlock record that will be used to lower the branch. 8299 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8300 LeftWeight, RightWeight); 8301 8302 if (W.MBB == SwitchMBB) 8303 visitSwitchCase(CB, SwitchMBB); 8304 else 8305 SwitchCases.push_back(CB); 8306 } 8307 8308 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8309 // Extract cases from the switch. 8310 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8311 CaseClusterVector Clusters; 8312 Clusters.reserve(SI.getNumCases()); 8313 for (auto I : SI.cases()) { 8314 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8315 const ConstantInt *CaseVal = I.getCaseValue(); 8316 uint32_t Weight = 8317 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8318 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8319 } 8320 8321 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8322 8323 // Cluster adjacent cases with the same destination. We do this at all 8324 // optimization levels because it's cheap to do and will make codegen faster 8325 // if there are many clusters. 8326 sortAndRangeify(Clusters); 8327 8328 if (TM.getOptLevel() != CodeGenOpt::None) { 8329 // Replace an unreachable default with the most popular destination. 8330 // FIXME: Exploit unreachable default more aggressively. 8331 bool UnreachableDefault = 8332 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8333 if (UnreachableDefault && !Clusters.empty()) { 8334 DenseMap<const BasicBlock *, unsigned> Popularity; 8335 unsigned MaxPop = 0; 8336 const BasicBlock *MaxBB = nullptr; 8337 for (auto I : SI.cases()) { 8338 const BasicBlock *BB = I.getCaseSuccessor(); 8339 if (++Popularity[BB] > MaxPop) { 8340 MaxPop = Popularity[BB]; 8341 MaxBB = BB; 8342 } 8343 } 8344 // Set new default. 8345 assert(MaxPop > 0 && MaxBB); 8346 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8347 8348 // Remove cases that were pointing to the destination that is now the 8349 // default. 8350 CaseClusterVector New; 8351 New.reserve(Clusters.size()); 8352 for (CaseCluster &CC : Clusters) { 8353 if (CC.MBB != DefaultMBB) 8354 New.push_back(CC); 8355 } 8356 Clusters = std::move(New); 8357 } 8358 } 8359 8360 // If there is only the default destination, jump there directly. 8361 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8362 if (Clusters.empty()) { 8363 SwitchMBB->addSuccessor(DefaultMBB); 8364 if (DefaultMBB != NextBlock(SwitchMBB)) { 8365 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8366 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8367 } 8368 return; 8369 } 8370 8371 findJumpTables(Clusters, &SI, DefaultMBB); 8372 findBitTestClusters(Clusters, &SI); 8373 8374 DEBUG({ 8375 dbgs() << "Case clusters: "; 8376 for (const CaseCluster &C : Clusters) { 8377 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8378 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8379 8380 C.Low->getValue().print(dbgs(), true); 8381 if (C.Low != C.High) { 8382 dbgs() << '-'; 8383 C.High->getValue().print(dbgs(), true); 8384 } 8385 dbgs() << ' '; 8386 } 8387 dbgs() << '\n'; 8388 }); 8389 8390 assert(!Clusters.empty()); 8391 SwitchWorkList WorkList; 8392 CaseClusterIt First = Clusters.begin(); 8393 CaseClusterIt Last = Clusters.end() - 1; 8394 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8395 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8396 8397 while (!WorkList.empty()) { 8398 SwitchWorkListItem W = WorkList.back(); 8399 WorkList.pop_back(); 8400 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8401 8402 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8403 // For optimized builds, lower large range as a balanced binary tree. 8404 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8405 continue; 8406 } 8407 8408 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8409 } 8410 } 8411