1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 // Limit the width of DAG chains. This is important in general to prevent 72 // prevent DAG-based analysis from blowing up. For example, alias analysis and 73 // load clustering may not complete in reasonable time. It is difficult to 74 // recognize and avoid this situation within each individual analysis, and 75 // future analyses are likely to have the same behavior. Limiting DAG width is 76 // the safe approach, and will be especially important with global DAGs. 77 // 78 // MaxParallelChains default is arbitrarily high to avoid affecting 79 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 80 // sequence over this should have been converted to llvm.memcpy by the 81 // frontend. It easy to induce this behavior with .ll code such as: 82 // %buffer = alloca [4096 x i8] 83 // %data = load [4096 x i8]* %argPtr 84 // store [4096 x i8] %data, [4096 x i8]* %buffer 85 static const unsigned MaxParallelChains = 64; 86 87 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 88 const SDValue *Parts, unsigned NumParts, 89 EVT PartVT, EVT ValueVT); 90 91 /// getCopyFromParts - Create a value that contains the specified legal parts 92 /// combined into the value they represent. If the parts combine to a type 93 /// larger then ValueVT then AssertOp can be used to specify whether the extra 94 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 95 /// (ISD::AssertSext). 96 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 97 const SDValue *Parts, 98 unsigned NumParts, EVT PartVT, EVT ValueVT, 99 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 100 if (ValueVT.isVector()) 101 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 102 103 assert(NumParts > 0 && "No parts to assemble!"); 104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 105 SDValue Val = Parts[0]; 106 107 if (NumParts > 1) { 108 // Assemble the value from multiple parts. 109 if (ValueVT.isInteger()) { 110 unsigned PartBits = PartVT.getSizeInBits(); 111 unsigned ValueBits = ValueVT.getSizeInBits(); 112 113 // Assemble the power of 2 part. 114 unsigned RoundParts = NumParts & (NumParts - 1) ? 115 1 << Log2_32(NumParts) : NumParts; 116 unsigned RoundBits = PartBits * RoundParts; 117 EVT RoundVT = RoundBits == ValueBits ? 118 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 119 SDValue Lo, Hi; 120 121 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 122 123 if (RoundParts > 2) { 124 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 125 PartVT, HalfVT); 126 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 127 RoundParts / 2, PartVT, HalfVT); 128 } else { 129 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 130 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 131 } 132 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 136 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 137 138 if (RoundParts < NumParts) { 139 // Assemble the trailing non-power-of-2 part. 140 unsigned OddParts = NumParts - RoundParts; 141 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 142 Hi = getCopyFromParts(DAG, DL, 143 Parts + RoundParts, OddParts, PartVT, OddVT); 144 145 // Combine the round and odd parts. 146 Lo = Val; 147 if (TLI.isBigEndian()) 148 std::swap(Lo, Hi); 149 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 150 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 151 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 152 DAG.getConstant(Lo.getValueType().getSizeInBits(), 153 TLI.getPointerTy())); 154 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 155 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 156 } 157 } else if (PartVT.isFloatingPoint()) { 158 // FP split into multiple FP parts (for ppcf128) 159 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 160 "Unexpected split"); 161 SDValue Lo, Hi; 162 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 164 if (TLI.isBigEndian()) 165 std::swap(Lo, Hi); 166 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 167 } else { 168 // FP split into integer parts (soft fp) 169 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 170 !PartVT.isVector() && "Unexpected split"); 171 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 172 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 173 } 174 } 175 176 // There is now one part, held in Val. Correct it to match ValueVT. 177 PartVT = Val.getValueType(); 178 179 if (PartVT == ValueVT) 180 return Val; 181 182 if (PartVT.isInteger() && ValueVT.isInteger()) { 183 if (ValueVT.bitsLT(PartVT)) { 184 // For a truncate, see if we have any information to 185 // indicate whether the truncated bits will always be 186 // zero or sign-extension. 187 if (AssertOp != ISD::DELETED_NODE) 188 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 189 DAG.getValueType(ValueVT)); 190 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 191 } 192 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 193 } 194 195 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 196 // FP_ROUND's are always exact here. 197 if (ValueVT.bitsLT(Val.getValueType())) 198 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 199 DAG.getIntPtrConstant(1)); 200 201 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 205 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 206 207 llvm_unreachable("Unknown mismatch!"); 208 return SDValue(); 209 } 210 211 /// getCopyFromParts - Create a value that contains the specified legal parts 212 /// combined into the value they represent. If the parts combine to a type 213 /// larger then ValueVT then AssertOp can be used to specify whether the extra 214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 215 /// (ISD::AssertSext). 216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 217 const SDValue *Parts, unsigned NumParts, 218 EVT PartVT, EVT ValueVT) { 219 assert(ValueVT.isVector() && "Not a vector value"); 220 assert(NumParts > 0 && "No parts to assemble!"); 221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 222 SDValue Val = Parts[0]; 223 224 // Handle a multi-element vector. 225 if (NumParts > 1) { 226 EVT IntermediateVT, RegisterVT; 227 unsigned NumIntermediates; 228 unsigned NumRegs = 229 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 230 NumIntermediates, RegisterVT); 231 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 232 NumParts = NumRegs; // Silence a compiler warning. 233 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 234 assert(RegisterVT == Parts[0].getValueType() && 235 "Part type doesn't match part!"); 236 237 // Assemble the parts into intermediate operands. 238 SmallVector<SDValue, 8> Ops(NumIntermediates); 239 if (NumIntermediates == NumParts) { 240 // If the register was not expanded, truncate or copy the value, 241 // as appropriate. 242 for (unsigned i = 0; i != NumParts; ++i) 243 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 244 PartVT, IntermediateVT); 245 } else if (NumParts > 0) { 246 // If the intermediate type was expanded, build the intermediate 247 // operands from the parts. 248 assert(NumParts % NumIntermediates == 0 && 249 "Must expand into a divisible number of parts!"); 250 unsigned Factor = NumParts / NumIntermediates; 251 for (unsigned i = 0; i != NumIntermediates; ++i) 252 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 253 PartVT, IntermediateVT); 254 } 255 256 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 257 // intermediate operands. 258 Val = DAG.getNode(IntermediateVT.isVector() ? 259 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 260 ValueVT, &Ops[0], NumIntermediates); 261 } 262 263 // There is now one part, held in Val. Correct it to match ValueVT. 264 PartVT = Val.getValueType(); 265 266 if (PartVT == ValueVT) 267 return Val; 268 269 if (PartVT.isVector()) { 270 // If the element type of the source/dest vectors are the same, but the 271 // parts vector has more elements than the value vector, then we have a 272 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 273 // elements we want. 274 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 275 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 276 "Cannot narrow, it would be a lossy transformation"); 277 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 278 DAG.getIntPtrConstant(0)); 279 } 280 281 // Vector/Vector bitcast. 282 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 283 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 284 285 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 286 "Cannot handle this kind of promotion"); 287 // Promoted vector extract 288 bool Smaller = ValueVT.bitsLE(PartVT); 289 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 290 DL, ValueVT, Val); 291 292 } 293 294 // Trivial bitcast if the types are the same size and the destination 295 // vector type is legal. 296 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 297 TLI.isTypeLegal(ValueVT)) 298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 299 300 // Handle cases such as i8 -> <1 x i1> 301 assert(ValueVT.getVectorNumElements() == 1 && 302 "Only trivial scalar-to-vector conversions should get here!"); 303 304 if (ValueVT.getVectorNumElements() == 1 && 305 ValueVT.getVectorElementType() != PartVT) { 306 bool Smaller = ValueVT.bitsLE(PartVT); 307 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 308 DL, ValueVT.getScalarType(), Val); 309 } 310 311 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 312 } 313 314 315 316 317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 318 SDValue Val, SDValue *Parts, unsigned NumParts, 319 EVT PartVT); 320 321 /// getCopyToParts - Create a series of nodes that contain the specified value 322 /// split into legal parts. If the parts contain more bits than Val, then, for 323 /// integers, ExtendKind can be used to specify how to generate the extra bits. 324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 325 SDValue Val, SDValue *Parts, unsigned NumParts, 326 EVT PartVT, 327 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 328 EVT ValueVT = Val.getValueType(); 329 330 // Handle the vector case separately. 331 if (ValueVT.isVector()) 332 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 unsigned PartBits = PartVT.getSizeInBits(); 336 unsigned OrigNumParts = NumParts; 337 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 338 339 if (NumParts == 0) 340 return; 341 342 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 343 if (PartVT == ValueVT) { 344 assert(NumParts == 1 && "No-op copy with multiple parts!"); 345 Parts[0] = Val; 346 return; 347 } 348 349 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 350 // If the parts cover more bits than the value has, promote the value. 351 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 352 assert(NumParts == 1 && "Do not know what to promote to!"); 353 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 354 } else { 355 assert(PartVT.isInteger() && ValueVT.isInteger() && 356 "Unknown mismatch!"); 357 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 358 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 359 } 360 } else if (PartBits == ValueVT.getSizeInBits()) { 361 // Different types of the same size. 362 assert(NumParts == 1 && PartVT != ValueVT); 363 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 364 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 365 // If the parts cover less bits than value has, truncate the value. 366 assert(PartVT.isInteger() && ValueVT.isInteger() && 367 "Unknown mismatch!"); 368 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 369 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 370 } 371 372 // The value may have changed - recompute ValueVT. 373 ValueVT = Val.getValueType(); 374 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 375 "Failed to tile the value with PartVT!"); 376 377 if (NumParts == 1) { 378 assert(PartVT == ValueVT && "Type conversion failed!"); 379 Parts[0] = Val; 380 return; 381 } 382 383 // Expand the value into multiple parts. 384 if (NumParts & (NumParts - 1)) { 385 // The number of parts is not a power of 2. Split off and copy the tail. 386 assert(PartVT.isInteger() && ValueVT.isInteger() && 387 "Do not know what to expand to!"); 388 unsigned RoundParts = 1 << Log2_32(NumParts); 389 unsigned RoundBits = RoundParts * PartBits; 390 unsigned OddParts = NumParts - RoundParts; 391 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 392 DAG.getIntPtrConstant(RoundBits)); 393 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 394 395 if (TLI.isBigEndian()) 396 // The odd parts were reversed by getCopyToParts - unreverse them. 397 std::reverse(Parts + RoundParts, Parts + NumParts); 398 399 NumParts = RoundParts; 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 } 403 404 // The number of parts is a power of 2. Repeatedly bisect the value using 405 // EXTRACT_ELEMENT. 406 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 407 EVT::getIntegerVT(*DAG.getContext(), 408 ValueVT.getSizeInBits()), 409 Val); 410 411 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 412 for (unsigned i = 0; i < NumParts; i += StepSize) { 413 unsigned ThisBits = StepSize * PartBits / 2; 414 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 415 SDValue &Part0 = Parts[i]; 416 SDValue &Part1 = Parts[i+StepSize/2]; 417 418 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 419 ThisVT, Part0, DAG.getIntPtrConstant(1)); 420 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 421 ThisVT, Part0, DAG.getIntPtrConstant(0)); 422 423 if (ThisBits == PartBits && ThisVT != PartVT) { 424 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 425 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 426 } 427 } 428 } 429 430 if (TLI.isBigEndian()) 431 std::reverse(Parts, Parts + OrigNumParts); 432 } 433 434 435 /// getCopyToPartsVector - Create a series of nodes that contain the specified 436 /// value split into legal parts. 437 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 438 SDValue Val, SDValue *Parts, unsigned NumParts, 439 EVT PartVT) { 440 EVT ValueVT = Val.getValueType(); 441 assert(ValueVT.isVector() && "Not a vector"); 442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 443 444 if (NumParts == 1) { 445 if (PartVT == ValueVT) { 446 // Nothing to do. 447 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 448 // Bitconvert vector->vector case. 449 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 450 } else if (PartVT.isVector() && 451 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 452 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 453 EVT ElementVT = PartVT.getVectorElementType(); 454 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 455 // undef elements. 456 SmallVector<SDValue, 16> Ops; 457 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 458 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 ElementVT, Val, DAG.getIntPtrConstant(i))); 460 461 for (unsigned i = ValueVT.getVectorNumElements(), 462 e = PartVT.getVectorNumElements(); i != e; ++i) 463 Ops.push_back(DAG.getUNDEF(ElementVT)); 464 465 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 466 467 // FIXME: Use CONCAT for 2x -> 4x. 468 469 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 470 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 471 } else if (PartVT.isVector() && 472 PartVT.getVectorElementType().bitsGE( 473 ValueVT.getVectorElementType()) && 474 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 475 476 // Promoted vector extract 477 bool Smaller = PartVT.bitsLE(ValueVT); 478 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 479 DL, PartVT, Val); 480 } else{ 481 // Vector -> scalar conversion. 482 assert(ValueVT.getVectorNumElements() == 1 && 483 "Only trivial vector-to-scalar conversions should get here!"); 484 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 485 PartVT, Val, DAG.getIntPtrConstant(0)); 486 487 bool Smaller = ValueVT.bitsLE(PartVT); 488 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 489 DL, PartVT, Val); 490 } 491 492 Parts[0] = Val; 493 return; 494 } 495 496 // Handle a multi-element vector. 497 EVT IntermediateVT, RegisterVT; 498 unsigned NumIntermediates; 499 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 500 IntermediateVT, 501 NumIntermediates, RegisterVT); 502 unsigned NumElements = ValueVT.getVectorNumElements(); 503 504 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 505 NumParts = NumRegs; // Silence a compiler warning. 506 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 507 508 // Split the vector into intermediate operands. 509 SmallVector<SDValue, 8> Ops(NumIntermediates); 510 for (unsigned i = 0; i != NumIntermediates; ++i) { 511 if (IntermediateVT.isVector()) 512 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 513 IntermediateVT, Val, 514 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 515 else 516 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 517 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 518 } 519 520 // Split the intermediate operands into legal parts. 521 if (NumParts == NumIntermediates) { 522 // If the register was not expanded, promote or copy the value, 523 // as appropriate. 524 for (unsigned i = 0; i != NumParts; ++i) 525 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 526 } else if (NumParts > 0) { 527 // If the intermediate type was expanded, split each the value into 528 // legal parts. 529 assert(NumParts % NumIntermediates == 0 && 530 "Must expand into a divisible number of parts!"); 531 unsigned Factor = NumParts / NumIntermediates; 532 for (unsigned i = 0; i != NumIntermediates; ++i) 533 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 534 } 535 } 536 537 538 539 540 namespace { 541 /// RegsForValue - This struct represents the registers (physical or virtual) 542 /// that a particular set of values is assigned, and the type information 543 /// about the value. The most common situation is to represent one value at a 544 /// time, but struct or array values are handled element-wise as multiple 545 /// values. The splitting of aggregates is performed recursively, so that we 546 /// never have aggregate-typed registers. The values at this point do not 547 /// necessarily have legal types, so each value may require one or more 548 /// registers of some legal type. 549 /// 550 struct RegsForValue { 551 /// ValueVTs - The value types of the values, which may not be legal, and 552 /// may need be promoted or synthesized from one or more registers. 553 /// 554 SmallVector<EVT, 4> ValueVTs; 555 556 /// RegVTs - The value types of the registers. This is the same size as 557 /// ValueVTs and it records, for each value, what the type of the assigned 558 /// register or registers are. (Individual values are never synthesized 559 /// from more than one type of register.) 560 /// 561 /// With virtual registers, the contents of RegVTs is redundant with TLI's 562 /// getRegisterType member function, however when with physical registers 563 /// it is necessary to have a separate record of the types. 564 /// 565 SmallVector<EVT, 4> RegVTs; 566 567 /// Regs - This list holds the registers assigned to the values. 568 /// Each legal or promoted value requires one register, and each 569 /// expanded value requires multiple registers. 570 /// 571 SmallVector<unsigned, 4> Regs; 572 573 RegsForValue() {} 574 575 RegsForValue(const SmallVector<unsigned, 4> ®s, 576 EVT regvt, EVT valuevt) 577 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 578 579 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 580 unsigned Reg, Type *Ty) { 581 ComputeValueVTs(tli, Ty, ValueVTs); 582 583 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 584 EVT ValueVT = ValueVTs[Value]; 585 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 586 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 587 for (unsigned i = 0; i != NumRegs; ++i) 588 Regs.push_back(Reg + i); 589 RegVTs.push_back(RegisterVT); 590 Reg += NumRegs; 591 } 592 } 593 594 /// areValueTypesLegal - Return true if types of all the values are legal. 595 bool areValueTypesLegal(const TargetLowering &TLI) { 596 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 597 EVT RegisterVT = RegVTs[Value]; 598 if (!TLI.isTypeLegal(RegisterVT)) 599 return false; 600 } 601 return true; 602 } 603 604 /// append - Add the specified values to this one. 605 void append(const RegsForValue &RHS) { 606 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 607 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 608 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 609 } 610 611 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 612 /// this value and returns the result as a ValueVTs value. This uses 613 /// Chain/Flag as the input and updates them for the output Chain/Flag. 614 /// If the Flag pointer is NULL, no flag is used. 615 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 616 DebugLoc dl, 617 SDValue &Chain, SDValue *Flag) const; 618 619 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 620 /// specified value into the registers specified by this object. This uses 621 /// Chain/Flag as the input and updates them for the output Chain/Flag. 622 /// If the Flag pointer is NULL, no flag is used. 623 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 627 /// operand list. This adds the code marker, matching input operand index 628 /// (if applicable), and includes the number of values added into it. 629 void AddInlineAsmOperands(unsigned Kind, 630 bool HasMatching, unsigned MatchingIdx, 631 SelectionDAG &DAG, 632 std::vector<SDValue> &Ops) const; 633 }; 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVT value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 641 FunctionLoweringInfo &FuncInfo, 642 DebugLoc dl, 643 SDValue &Chain, SDValue *Flag) const { 644 // A Value with type {} or [0 x %t] needs no registers. 645 if (ValueVTs.empty()) 646 return SDValue(); 647 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 650 // Assemble the legal parts into the final values. 651 SmallVector<SDValue, 4> Values(ValueVTs.size()); 652 SmallVector<SDValue, 8> Parts; 653 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 654 // Copy the legal parts from the registers. 655 EVT ValueVT = ValueVTs[Value]; 656 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 657 EVT RegisterVT = RegVTs[Value]; 658 659 Parts.resize(NumRegs); 660 for (unsigned i = 0; i != NumRegs; ++i) { 661 SDValue P; 662 if (Flag == 0) { 663 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 664 } else { 665 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 666 *Flag = P.getValue(2); 667 } 668 669 Chain = P.getValue(1); 670 Parts[i] = P; 671 672 // If the source register was virtual and if we know something about it, 673 // add an assert node. 674 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 675 !RegisterVT.isInteger() || RegisterVT.isVector()) 676 continue; 677 678 const FunctionLoweringInfo::LiveOutInfo *LOI = 679 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 680 if (!LOI) 681 continue; 682 683 unsigned RegSize = RegisterVT.getSizeInBits(); 684 unsigned NumSignBits = LOI->NumSignBits; 685 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 686 687 // FIXME: We capture more information than the dag can represent. For 688 // now, just use the tightest assertzext/assertsext possible. 689 bool isSExt = true; 690 EVT FromVT(MVT::Other); 691 if (NumSignBits == RegSize) 692 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 693 else if (NumZeroBits >= RegSize-1) 694 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 695 else if (NumSignBits > RegSize-8) 696 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 697 else if (NumZeroBits >= RegSize-8) 698 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 699 else if (NumSignBits > RegSize-16) 700 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 701 else if (NumZeroBits >= RegSize-16) 702 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 703 else if (NumSignBits > RegSize-32) 704 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 705 else if (NumZeroBits >= RegSize-32) 706 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 707 else 708 continue; 709 710 // Add an assertion node. 711 assert(FromVT != MVT::Other); 712 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 713 RegisterVT, P, DAG.getValueType(FromVT)); 714 } 715 716 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 717 NumRegs, RegisterVT, ValueVT); 718 Part += NumRegs; 719 Parts.clear(); 720 } 721 722 return DAG.getNode(ISD::MERGE_VALUES, dl, 723 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 724 &Values[0], ValueVTs.size()); 725 } 726 727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 728 /// specified value into the registers specified by this object. This uses 729 /// Chain/Flag as the input and updates them for the output Chain/Flag. 730 /// If the Flag pointer is NULL, no flag is used. 731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 732 SDValue &Chain, SDValue *Flag) const { 733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 734 735 // Get the list of the values's legal parts. 736 unsigned NumRegs = Regs.size(); 737 SmallVector<SDValue, 8> Parts(NumRegs); 738 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 739 EVT ValueVT = ValueVTs[Value]; 740 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 741 EVT RegisterVT = RegVTs[Value]; 742 743 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 744 &Parts[Part], NumParts, RegisterVT); 745 Part += NumParts; 746 } 747 748 // Copy the parts into the registers. 749 SmallVector<SDValue, 8> Chains(NumRegs); 750 for (unsigned i = 0; i != NumRegs; ++i) { 751 SDValue Part; 752 if (Flag == 0) { 753 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 754 } else { 755 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 756 *Flag = Part.getValue(1); 757 } 758 759 Chains[i] = Part.getValue(0); 760 } 761 762 if (NumRegs == 1 || Flag) 763 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 764 // flagged to it. That is the CopyToReg nodes and the user are considered 765 // a single scheduling unit. If we create a TokenFactor and return it as 766 // chain, then the TokenFactor is both a predecessor (operand) of the 767 // user as well as a successor (the TF operands are flagged to the user). 768 // c1, f1 = CopyToReg 769 // c2, f2 = CopyToReg 770 // c3 = TokenFactor c1, c2 771 // ... 772 // = op c3, ..., f2 773 Chain = Chains[NumRegs-1]; 774 else 775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 776 } 777 778 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 779 /// operand list. This adds the code marker and includes the number of 780 /// values added into it. 781 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 782 unsigned MatchingIdx, 783 SelectionDAG &DAG, 784 std::vector<SDValue> &Ops) const { 785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 786 787 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 788 if (HasMatching) 789 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 790 else if (!Regs.empty() && 791 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 792 // Put the register class of the virtual registers in the flag word. That 793 // way, later passes can recompute register class constraints for inline 794 // assembly as well as normal instructions. 795 // Don't do this for tied operands that can use the regclass information 796 // from the def. 797 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 798 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 799 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 800 } 801 802 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 803 Ops.push_back(Res); 804 805 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 806 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 807 EVT RegisterVT = RegVTs[Value]; 808 for (unsigned i = 0; i != NumRegs; ++i) { 809 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 810 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 816 AA = &aa; 817 GFI = gfi; 818 TD = DAG.getTarget().getTargetData(); 819 LPadToCallSiteMap.clear(); 820 } 821 822 /// clear - Clear out the current SelectionDAG and the associated 823 /// state and prepare this SelectionDAGBuilder object to be used 824 /// for a new block. This doesn't clear out information about 825 /// additional blocks that are needed to complete switch lowering 826 /// or PHI node updating; that information is cleared out as it is 827 /// consumed. 828 void SelectionDAGBuilder::clear() { 829 NodeMap.clear(); 830 UnusedArgNodeMap.clear(); 831 PendingLoads.clear(); 832 PendingExports.clear(); 833 CurDebugLoc = DebugLoc(); 834 HasTailCall = false; 835 } 836 837 /// clearDanglingDebugInfo - Clear the dangling debug information 838 /// map. This function is seperated from the clear so that debug 839 /// information that is dangling in a basic block can be properly 840 /// resolved in a different basic block. This allows the 841 /// SelectionDAG to resolve dangling debug information attached 842 /// to PHI nodes. 843 void SelectionDAGBuilder::clearDanglingDebugInfo() { 844 DanglingDebugInfoMap.clear(); 845 } 846 847 /// getRoot - Return the current virtual root of the Selection DAG, 848 /// flushing any PendingLoad items. This must be done before emitting 849 /// a store or any other node that may need to be ordered after any 850 /// prior load instructions. 851 /// 852 SDValue SelectionDAGBuilder::getRoot() { 853 if (PendingLoads.empty()) 854 return DAG.getRoot(); 855 856 if (PendingLoads.size() == 1) { 857 SDValue Root = PendingLoads[0]; 858 DAG.setRoot(Root); 859 PendingLoads.clear(); 860 return Root; 861 } 862 863 // Otherwise, we have to make a token factor node. 864 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 865 &PendingLoads[0], PendingLoads.size()); 866 PendingLoads.clear(); 867 DAG.setRoot(Root); 868 return Root; 869 } 870 871 /// getControlRoot - Similar to getRoot, but instead of flushing all the 872 /// PendingLoad items, flush all the PendingExports items. It is necessary 873 /// to do this before emitting a terminator instruction. 874 /// 875 SDValue SelectionDAGBuilder::getControlRoot() { 876 SDValue Root = DAG.getRoot(); 877 878 if (PendingExports.empty()) 879 return Root; 880 881 // Turn all of the CopyToReg chains into one factored node. 882 if (Root.getOpcode() != ISD::EntryToken) { 883 unsigned i = 0, e = PendingExports.size(); 884 for (; i != e; ++i) { 885 assert(PendingExports[i].getNode()->getNumOperands() > 1); 886 if (PendingExports[i].getNode()->getOperand(0) == Root) 887 break; // Don't add the root if we already indirectly depend on it. 888 } 889 890 if (i == e) 891 PendingExports.push_back(Root); 892 } 893 894 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 895 &PendingExports[0], 896 PendingExports.size()); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 903 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 904 DAG.AssignOrdering(Node, SDNodeOrder); 905 906 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 907 AssignOrderingToNode(Node->getOperand(I).getNode()); 908 } 909 910 void SelectionDAGBuilder::visit(const Instruction &I) { 911 // Set up outgoing PHI node register values before emitting the terminator. 912 if (isa<TerminatorInst>(&I)) 913 HandlePHINodesInSuccessorBlocks(I.getParent()); 914 915 CurDebugLoc = I.getDebugLoc(); 916 917 visit(I.getOpcode(), I); 918 919 if (!isa<TerminatorInst>(&I) && !HasTailCall) 920 CopyToExportRegsIfNeeded(&I); 921 922 CurDebugLoc = DebugLoc(); 923 } 924 925 void SelectionDAGBuilder::visitPHI(const PHINode &) { 926 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 927 } 928 929 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 930 // Note: this doesn't use InstVisitor, because it has to work with 931 // ConstantExpr's in addition to instructions. 932 switch (Opcode) { 933 default: llvm_unreachable("Unknown instruction type encountered!"); 934 // Build the switch statement using the Instruction.def file. 935 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 936 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 937 #include "llvm/Instruction.def" 938 } 939 940 // Assign the ordering to the freshly created DAG nodes. 941 if (NodeMap.count(&I)) { 942 ++SDNodeOrder; 943 AssignOrderingToNode(getValue(&I).getNode()); 944 } 945 } 946 947 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 948 // generate the debug data structures now that we've seen its definition. 949 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 950 SDValue Val) { 951 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 952 if (DDI.getDI()) { 953 const DbgValueInst *DI = DDI.getDI(); 954 DebugLoc dl = DDI.getdl(); 955 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 956 MDNode *Variable = DI->getVariable(); 957 uint64_t Offset = DI->getOffset(); 958 SDDbgValue *SDV; 959 if (Val.getNode()) { 960 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 961 SDV = DAG.getDbgValue(Variable, Val.getNode(), 962 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 963 DAG.AddDbgValue(SDV, Val.getNode(), false); 964 } 965 } else 966 DEBUG(dbgs() << "Dropping debug info for " << DI); 967 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 968 } 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 982 if (It != FuncInfo.ValueMap.end()) { 983 unsigned InReg = It->second; 984 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 985 SDValue Chain = DAG.getEntryNode(); 986 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 987 resolveDanglingDebugInfo(V, N); 988 return N; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) return N; 1004 1005 // Otherwise create a new SDValue and remember it. 1006 SDValue Val = getValueImpl(V); 1007 NodeMap[V] = Val; 1008 resolveDanglingDebugInfo(V, Val); 1009 return Val; 1010 } 1011 1012 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1013 /// Create an SDValue for the given value. 1014 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1015 if (const Constant *C = dyn_cast<Constant>(V)) { 1016 EVT VT = TLI.getValueType(V->getType(), true); 1017 1018 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1019 return DAG.getConstant(*CI, VT); 1020 1021 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1022 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1023 1024 if (isa<ConstantPointerNull>(C)) 1025 return DAG.getConstant(0, TLI.getPointerTy()); 1026 1027 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1028 return DAG.getConstantFP(*CFP, VT); 1029 1030 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1031 return DAG.getUNDEF(VT); 1032 1033 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1034 visit(CE->getOpcode(), *CE); 1035 SDValue N1 = NodeMap[V]; 1036 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1037 return N1; 1038 } 1039 1040 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1041 SmallVector<SDValue, 4> Constants; 1042 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1043 OI != OE; ++OI) { 1044 SDNode *Val = getValue(*OI).getNode(); 1045 // If the operand is an empty aggregate, there are no values. 1046 if (!Val) continue; 1047 // Add each leaf value from the operand to the Constants list 1048 // to form a flattened list of all the values. 1049 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1050 Constants.push_back(SDValue(Val, i)); 1051 } 1052 1053 return DAG.getMergeValues(&Constants[0], Constants.size(), 1054 getCurDebugLoc()); 1055 } 1056 1057 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1058 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1059 "Unknown struct or array constant!"); 1060 1061 SmallVector<EVT, 4> ValueVTs; 1062 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1063 unsigned NumElts = ValueVTs.size(); 1064 if (NumElts == 0) 1065 return SDValue(); // empty struct 1066 SmallVector<SDValue, 4> Constants(NumElts); 1067 for (unsigned i = 0; i != NumElts; ++i) { 1068 EVT EltVT = ValueVTs[i]; 1069 if (isa<UndefValue>(C)) 1070 Constants[i] = DAG.getUNDEF(EltVT); 1071 else if (EltVT.isFloatingPoint()) 1072 Constants[i] = DAG.getConstantFP(0, EltVT); 1073 else 1074 Constants[i] = DAG.getConstant(0, EltVT); 1075 } 1076 1077 return DAG.getMergeValues(&Constants[0], NumElts, 1078 getCurDebugLoc()); 1079 } 1080 1081 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1082 return DAG.getBlockAddress(BA, VT); 1083 1084 VectorType *VecTy = cast<VectorType>(V->getType()); 1085 unsigned NumElements = VecTy->getNumElements(); 1086 1087 // Now that we know the number and type of the elements, get that number of 1088 // elements into the Ops array based on what kind of constant it is. 1089 SmallVector<SDValue, 16> Ops; 1090 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1091 for (unsigned i = 0; i != NumElements; ++i) 1092 Ops.push_back(getValue(CP->getOperand(i))); 1093 } else { 1094 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1095 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1096 1097 SDValue Op; 1098 if (EltVT.isFloatingPoint()) 1099 Op = DAG.getConstantFP(0, EltVT); 1100 else 1101 Op = DAG.getConstant(0, EltVT); 1102 Ops.assign(NumElements, Op); 1103 } 1104 1105 // Create a BUILD_VECTOR node. 1106 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1107 VT, &Ops[0], Ops.size()); 1108 } 1109 1110 // If this is a static alloca, generate it as the frameindex instead of 1111 // computation. 1112 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1113 DenseMap<const AllocaInst*, int>::iterator SI = 1114 FuncInfo.StaticAllocaMap.find(AI); 1115 if (SI != FuncInfo.StaticAllocaMap.end()) 1116 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1117 } 1118 1119 // If this is an instruction which fast-isel has deferred, select it now. 1120 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1121 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1122 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1123 SDValue Chain = DAG.getEntryNode(); 1124 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1125 } 1126 1127 llvm_unreachable("Can't get register for value!"); 1128 return SDValue(); 1129 } 1130 1131 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1132 SDValue Chain = getControlRoot(); 1133 SmallVector<ISD::OutputArg, 8> Outs; 1134 SmallVector<SDValue, 8> OutVals; 1135 1136 if (!FuncInfo.CanLowerReturn) { 1137 unsigned DemoteReg = FuncInfo.DemoteRegister; 1138 const Function *F = I.getParent()->getParent(); 1139 1140 // Emit a store of the return value through the virtual register. 1141 // Leave Outs empty so that LowerReturn won't try to load return 1142 // registers the usual way. 1143 SmallVector<EVT, 1> PtrValueVTs; 1144 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1145 PtrValueVTs); 1146 1147 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1148 SDValue RetOp = getValue(I.getOperand(0)); 1149 1150 SmallVector<EVT, 4> ValueVTs; 1151 SmallVector<uint64_t, 4> Offsets; 1152 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1153 unsigned NumValues = ValueVTs.size(); 1154 1155 SmallVector<SDValue, 4> Chains(NumValues); 1156 for (unsigned i = 0; i != NumValues; ++i) { 1157 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1158 RetPtr.getValueType(), RetPtr, 1159 DAG.getIntPtrConstant(Offsets[i])); 1160 Chains[i] = 1161 DAG.getStore(Chain, getCurDebugLoc(), 1162 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1163 // FIXME: better loc info would be nice. 1164 Add, MachinePointerInfo(), false, false, 0); 1165 } 1166 1167 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1168 MVT::Other, &Chains[0], NumValues); 1169 } else if (I.getNumOperands() != 0) { 1170 SmallVector<EVT, 4> ValueVTs; 1171 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1172 unsigned NumValues = ValueVTs.size(); 1173 if (NumValues) { 1174 SDValue RetOp = getValue(I.getOperand(0)); 1175 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1176 EVT VT = ValueVTs[j]; 1177 1178 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1179 1180 const Function *F = I.getParent()->getParent(); 1181 if (F->paramHasAttr(0, Attribute::SExt)) 1182 ExtendKind = ISD::SIGN_EXTEND; 1183 else if (F->paramHasAttr(0, Attribute::ZExt)) 1184 ExtendKind = ISD::ZERO_EXTEND; 1185 1186 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1187 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1188 1189 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1190 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1191 SmallVector<SDValue, 4> Parts(NumParts); 1192 getCopyToParts(DAG, getCurDebugLoc(), 1193 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1194 &Parts[0], NumParts, PartVT, ExtendKind); 1195 1196 // 'inreg' on function refers to return value 1197 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1198 if (F->paramHasAttr(0, Attribute::InReg)) 1199 Flags.setInReg(); 1200 1201 // Propagate extension type if any 1202 if (ExtendKind == ISD::SIGN_EXTEND) 1203 Flags.setSExt(); 1204 else if (ExtendKind == ISD::ZERO_EXTEND) 1205 Flags.setZExt(); 1206 1207 for (unsigned i = 0; i < NumParts; ++i) { 1208 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1209 /*isfixed=*/true)); 1210 OutVals.push_back(Parts[i]); 1211 } 1212 } 1213 } 1214 } 1215 1216 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1217 CallingConv::ID CallConv = 1218 DAG.getMachineFunction().getFunction()->getCallingConv(); 1219 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1220 Outs, OutVals, getCurDebugLoc(), DAG); 1221 1222 // Verify that the target's LowerReturn behaved as expected. 1223 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1224 "LowerReturn didn't return a valid chain!"); 1225 1226 // Update the DAG with the new chain value resulting from return lowering. 1227 DAG.setRoot(Chain); 1228 } 1229 1230 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1231 /// created for it, emit nodes to copy the value into the virtual 1232 /// registers. 1233 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1234 // Skip empty types 1235 if (V->getType()->isEmptyTy()) 1236 return; 1237 1238 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1239 if (VMI != FuncInfo.ValueMap.end()) { 1240 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1241 CopyValueToVirtualRegister(V, VMI->second); 1242 } 1243 } 1244 1245 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1246 /// the current basic block, add it to ValueMap now so that we'll get a 1247 /// CopyTo/FromReg. 1248 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1249 // No need to export constants. 1250 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1251 1252 // Already exported? 1253 if (FuncInfo.isExportedInst(V)) return; 1254 1255 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1256 CopyValueToVirtualRegister(V, Reg); 1257 } 1258 1259 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1260 const BasicBlock *FromBB) { 1261 // The operands of the setcc have to be in this block. We don't know 1262 // how to export them from some other block. 1263 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1264 // Can export from current BB. 1265 if (VI->getParent() == FromBB) 1266 return true; 1267 1268 // Is already exported, noop. 1269 return FuncInfo.isExportedInst(V); 1270 } 1271 1272 // If this is an argument, we can export it if the BB is the entry block or 1273 // if it is already exported. 1274 if (isa<Argument>(V)) { 1275 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1276 return true; 1277 1278 // Otherwise, can only export this if it is already exported. 1279 return FuncInfo.isExportedInst(V); 1280 } 1281 1282 // Otherwise, constants can always be exported. 1283 return true; 1284 } 1285 1286 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1287 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1288 MachineBasicBlock *Dst) { 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 if (!BPI) 1291 return 0; 1292 const BasicBlock *SrcBB = Src->getBasicBlock(); 1293 const BasicBlock *DstBB = Dst->getBasicBlock(); 1294 return BPI->getEdgeWeight(SrcBB, DstBB); 1295 } 1296 1297 void SelectionDAGBuilder:: 1298 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1299 uint32_t Weight /* = 0 */) { 1300 if (!Weight) 1301 Weight = getEdgeWeight(Src, Dst); 1302 Src->addSuccessor(Dst, Weight); 1303 } 1304 1305 1306 static bool InBlock(const Value *V, const BasicBlock *BB) { 1307 if (const Instruction *I = dyn_cast<Instruction>(V)) 1308 return I->getParent() == BB; 1309 return true; 1310 } 1311 1312 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1313 /// This function emits a branch and is used at the leaves of an OR or an 1314 /// AND operator tree. 1315 /// 1316 void 1317 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1318 MachineBasicBlock *TBB, 1319 MachineBasicBlock *FBB, 1320 MachineBasicBlock *CurBB, 1321 MachineBasicBlock *SwitchBB) { 1322 const BasicBlock *BB = CurBB->getBasicBlock(); 1323 1324 // If the leaf of the tree is a comparison, merge the condition into 1325 // the caseblock. 1326 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1327 // The operands of the cmp have to be in this block. We don't know 1328 // how to export them from some other block. If this is the first block 1329 // of the sequence, no exporting is needed. 1330 if (CurBB == SwitchBB || 1331 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1332 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1333 ISD::CondCode Condition; 1334 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1335 Condition = getICmpCondCode(IC->getPredicate()); 1336 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1337 Condition = getFCmpCondCode(FC->getPredicate()); 1338 if (TM.Options.NoNaNsFPMath) 1339 Condition = getFCmpCodeWithoutNaN(Condition); 1340 } else { 1341 Condition = ISD::SETEQ; // silence warning. 1342 llvm_unreachable("Unknown compare instruction"); 1343 } 1344 1345 CaseBlock CB(Condition, BOp->getOperand(0), 1346 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1347 SwitchCases.push_back(CB); 1348 return; 1349 } 1350 } 1351 1352 // Create a CaseBlock record representing this branch. 1353 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1354 NULL, TBB, FBB, CurBB); 1355 SwitchCases.push_back(CB); 1356 } 1357 1358 /// FindMergedConditions - If Cond is an expression like 1359 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1360 MachineBasicBlock *TBB, 1361 MachineBasicBlock *FBB, 1362 MachineBasicBlock *CurBB, 1363 MachineBasicBlock *SwitchBB, 1364 unsigned Opc) { 1365 // If this node is not part of the or/and tree, emit it as a branch. 1366 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1367 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1368 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1369 BOp->getParent() != CurBB->getBasicBlock() || 1370 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1371 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1372 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1373 return; 1374 } 1375 1376 // Create TmpBB after CurBB. 1377 MachineFunction::iterator BBI = CurBB; 1378 MachineFunction &MF = DAG.getMachineFunction(); 1379 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1380 CurBB->getParent()->insert(++BBI, TmpBB); 1381 1382 if (Opc == Instruction::Or) { 1383 // Codegen X | Y as: 1384 // jmp_if_X TBB 1385 // jmp TmpBB 1386 // TmpBB: 1387 // jmp_if_Y TBB 1388 // jmp FBB 1389 // 1390 1391 // Emit the LHS condition. 1392 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1393 1394 // Emit the RHS condition into TmpBB. 1395 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1396 } else { 1397 assert(Opc == Instruction::And && "Unknown merge op!"); 1398 // Codegen X & Y as: 1399 // jmp_if_X TmpBB 1400 // jmp FBB 1401 // TmpBB: 1402 // jmp_if_Y TBB 1403 // jmp FBB 1404 // 1405 // This requires creation of TmpBB after CurBB. 1406 1407 // Emit the LHS condition. 1408 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1409 1410 // Emit the RHS condition into TmpBB. 1411 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1412 } 1413 } 1414 1415 /// If the set of cases should be emitted as a series of branches, return true. 1416 /// If we should emit this as a bunch of and/or'd together conditions, return 1417 /// false. 1418 bool 1419 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1420 if (Cases.size() != 2) return true; 1421 1422 // If this is two comparisons of the same values or'd or and'd together, they 1423 // will get folded into a single comparison, so don't emit two blocks. 1424 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1425 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1426 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1427 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1428 return false; 1429 } 1430 1431 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1432 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1433 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1434 Cases[0].CC == Cases[1].CC && 1435 isa<Constant>(Cases[0].CmpRHS) && 1436 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1437 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1438 return false; 1439 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1440 return false; 1441 } 1442 1443 return true; 1444 } 1445 1446 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1447 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1448 1449 // Update machine-CFG edges. 1450 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1451 1452 // Figure out which block is immediately after the current one. 1453 MachineBasicBlock *NextBlock = 0; 1454 MachineFunction::iterator BBI = BrMBB; 1455 if (++BBI != FuncInfo.MF->end()) 1456 NextBlock = BBI; 1457 1458 if (I.isUnconditional()) { 1459 // Update machine-CFG edges. 1460 BrMBB->addSuccessor(Succ0MBB); 1461 1462 // If this is not a fall-through branch, emit the branch. 1463 if (Succ0MBB != NextBlock) 1464 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1465 MVT::Other, getControlRoot(), 1466 DAG.getBasicBlock(Succ0MBB))); 1467 1468 return; 1469 } 1470 1471 // If this condition is one of the special cases we handle, do special stuff 1472 // now. 1473 const Value *CondVal = I.getCondition(); 1474 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1475 1476 // If this is a series of conditions that are or'd or and'd together, emit 1477 // this as a sequence of branches instead of setcc's with and/or operations. 1478 // As long as jumps are not expensive, this should improve performance. 1479 // For example, instead of something like: 1480 // cmp A, B 1481 // C = seteq 1482 // cmp D, E 1483 // F = setle 1484 // or C, F 1485 // jnz foo 1486 // Emit: 1487 // cmp A, B 1488 // je foo 1489 // cmp D, E 1490 // jle foo 1491 // 1492 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1493 if (!TLI.isJumpExpensive() && 1494 BOp->hasOneUse() && 1495 (BOp->getOpcode() == Instruction::And || 1496 BOp->getOpcode() == Instruction::Or)) { 1497 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1498 BOp->getOpcode()); 1499 // If the compares in later blocks need to use values not currently 1500 // exported from this block, export them now. This block should always 1501 // be the first entry. 1502 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1503 1504 // Allow some cases to be rejected. 1505 if (ShouldEmitAsBranches(SwitchCases)) { 1506 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1507 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1508 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1509 } 1510 1511 // Emit the branch for this block. 1512 visitSwitchCase(SwitchCases[0], BrMBB); 1513 SwitchCases.erase(SwitchCases.begin()); 1514 return; 1515 } 1516 1517 // Okay, we decided not to do this, remove any inserted MBB's and clear 1518 // SwitchCases. 1519 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1520 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1521 1522 SwitchCases.clear(); 1523 } 1524 } 1525 1526 // Create a CaseBlock record representing this branch. 1527 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1528 NULL, Succ0MBB, Succ1MBB, BrMBB); 1529 1530 // Use visitSwitchCase to actually insert the fast branch sequence for this 1531 // cond branch. 1532 visitSwitchCase(CB, BrMBB); 1533 } 1534 1535 /// visitSwitchCase - Emits the necessary code to represent a single node in 1536 /// the binary search tree resulting from lowering a switch instruction. 1537 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1538 MachineBasicBlock *SwitchBB) { 1539 SDValue Cond; 1540 SDValue CondLHS = getValue(CB.CmpLHS); 1541 DebugLoc dl = getCurDebugLoc(); 1542 1543 // Build the setcc now. 1544 if (CB.CmpMHS == NULL) { 1545 // Fold "(X == true)" to X and "(X == false)" to !X to 1546 // handle common cases produced by branch lowering. 1547 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1548 CB.CC == ISD::SETEQ) 1549 Cond = CondLHS; 1550 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1551 CB.CC == ISD::SETEQ) { 1552 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1553 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1554 } else 1555 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1556 } else { 1557 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1558 1559 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1560 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1561 1562 SDValue CmpOp = getValue(CB.CmpMHS); 1563 EVT VT = CmpOp.getValueType(); 1564 1565 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1566 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1567 ISD::SETLE); 1568 } else { 1569 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1570 VT, CmpOp, DAG.getConstant(Low, VT)); 1571 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1572 DAG.getConstant(High-Low, VT), ISD::SETULE); 1573 } 1574 } 1575 1576 // Update successor info 1577 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1578 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1579 1580 // Set NextBlock to be the MBB immediately after the current one, if any. 1581 // This is used to avoid emitting unnecessary branches to the next block. 1582 MachineBasicBlock *NextBlock = 0; 1583 MachineFunction::iterator BBI = SwitchBB; 1584 if (++BBI != FuncInfo.MF->end()) 1585 NextBlock = BBI; 1586 1587 // If the lhs block is the next block, invert the condition so that we can 1588 // fall through to the lhs instead of the rhs block. 1589 if (CB.TrueBB == NextBlock) { 1590 std::swap(CB.TrueBB, CB.FalseBB); 1591 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1592 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1593 } 1594 1595 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1596 MVT::Other, getControlRoot(), Cond, 1597 DAG.getBasicBlock(CB.TrueBB)); 1598 1599 // Insert the false branch. Do this even if it's a fall through branch, 1600 // this makes it easier to do DAG optimizations which require inverting 1601 // the branch condition. 1602 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1603 DAG.getBasicBlock(CB.FalseBB)); 1604 1605 DAG.setRoot(BrCond); 1606 } 1607 1608 /// visitJumpTable - Emit JumpTable node in the current MBB 1609 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1610 // Emit the code for the jump table 1611 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1612 EVT PTy = TLI.getPointerTy(); 1613 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1614 JT.Reg, PTy); 1615 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1616 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1617 MVT::Other, Index.getValue(1), 1618 Table, Index); 1619 DAG.setRoot(BrJumpTable); 1620 } 1621 1622 /// visitJumpTableHeader - This function emits necessary code to produce index 1623 /// in the JumpTable from switch case. 1624 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1625 JumpTableHeader &JTH, 1626 MachineBasicBlock *SwitchBB) { 1627 // Subtract the lowest switch case value from the value being switched on and 1628 // conditional branch to default mbb if the result is greater than the 1629 // difference between smallest and largest cases. 1630 SDValue SwitchOp = getValue(JTH.SValue); 1631 EVT VT = SwitchOp.getValueType(); 1632 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1633 DAG.getConstant(JTH.First, VT)); 1634 1635 // The SDNode we just created, which holds the value being switched on minus 1636 // the smallest case value, needs to be copied to a virtual register so it 1637 // can be used as an index into the jump table in a subsequent basic block. 1638 // This value may be smaller or larger than the target's pointer type, and 1639 // therefore require extension or truncating. 1640 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1641 1642 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1643 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1644 JumpTableReg, SwitchOp); 1645 JT.Reg = JumpTableReg; 1646 1647 // Emit the range check for the jump table, and branch to the default block 1648 // for the switch statement if the value being switched on exceeds the largest 1649 // case in the switch. 1650 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1651 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1652 DAG.getConstant(JTH.Last-JTH.First,VT), 1653 ISD::SETUGT); 1654 1655 // Set NextBlock to be the MBB immediately after the current one, if any. 1656 // This is used to avoid emitting unnecessary branches to the next block. 1657 MachineBasicBlock *NextBlock = 0; 1658 MachineFunction::iterator BBI = SwitchBB; 1659 1660 if (++BBI != FuncInfo.MF->end()) 1661 NextBlock = BBI; 1662 1663 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1664 MVT::Other, CopyTo, CMP, 1665 DAG.getBasicBlock(JT.Default)); 1666 1667 if (JT.MBB != NextBlock) 1668 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1669 DAG.getBasicBlock(JT.MBB)); 1670 1671 DAG.setRoot(BrCond); 1672 } 1673 1674 /// visitBitTestHeader - This function emits necessary code to produce value 1675 /// suitable for "bit tests" 1676 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1677 MachineBasicBlock *SwitchBB) { 1678 // Subtract the minimum value 1679 SDValue SwitchOp = getValue(B.SValue); 1680 EVT VT = SwitchOp.getValueType(); 1681 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1682 DAG.getConstant(B.First, VT)); 1683 1684 // Check range 1685 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1686 TLI.getSetCCResultType(Sub.getValueType()), 1687 Sub, DAG.getConstant(B.Range, VT), 1688 ISD::SETUGT); 1689 1690 // Determine the type of the test operands. 1691 bool UsePtrType = false; 1692 if (!TLI.isTypeLegal(VT)) 1693 UsePtrType = true; 1694 else { 1695 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1696 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1697 // Switch table case range are encoded into series of masks. 1698 // Just use pointer type, it's guaranteed to fit. 1699 UsePtrType = true; 1700 break; 1701 } 1702 } 1703 if (UsePtrType) { 1704 VT = TLI.getPointerTy(); 1705 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1706 } 1707 1708 B.RegVT = VT; 1709 B.Reg = FuncInfo.CreateReg(VT); 1710 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1711 B.Reg, Sub); 1712 1713 // Set NextBlock to be the MBB immediately after the current one, if any. 1714 // This is used to avoid emitting unnecessary branches to the next block. 1715 MachineBasicBlock *NextBlock = 0; 1716 MachineFunction::iterator BBI = SwitchBB; 1717 if (++BBI != FuncInfo.MF->end()) 1718 NextBlock = BBI; 1719 1720 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1721 1722 addSuccessorWithWeight(SwitchBB, B.Default); 1723 addSuccessorWithWeight(SwitchBB, MBB); 1724 1725 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1726 MVT::Other, CopyTo, RangeCmp, 1727 DAG.getBasicBlock(B.Default)); 1728 1729 if (MBB != NextBlock) 1730 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1731 DAG.getBasicBlock(MBB)); 1732 1733 DAG.setRoot(BrRange); 1734 } 1735 1736 /// visitBitTestCase - this function produces one "bit test" 1737 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1738 MachineBasicBlock* NextMBB, 1739 unsigned Reg, 1740 BitTestCase &B, 1741 MachineBasicBlock *SwitchBB) { 1742 EVT VT = BB.RegVT; 1743 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1744 Reg, VT); 1745 SDValue Cmp; 1746 unsigned PopCount = CountPopulation_64(B.Mask); 1747 if (PopCount == 1) { 1748 // Testing for a single bit; just compare the shift count with what it 1749 // would need to be to shift a 1 bit in that position. 1750 Cmp = DAG.getSetCC(getCurDebugLoc(), 1751 TLI.getSetCCResultType(VT), 1752 ShiftOp, 1753 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1754 ISD::SETEQ); 1755 } else if (PopCount == BB.Range) { 1756 // There is only one zero bit in the range, test for it directly. 1757 Cmp = DAG.getSetCC(getCurDebugLoc(), 1758 TLI.getSetCCResultType(VT), 1759 ShiftOp, 1760 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1761 ISD::SETNE); 1762 } else { 1763 // Make desired shift 1764 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1765 DAG.getConstant(1, VT), ShiftOp); 1766 1767 // Emit bit tests and jumps 1768 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1769 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1770 Cmp = DAG.getSetCC(getCurDebugLoc(), 1771 TLI.getSetCCResultType(VT), 1772 AndOp, DAG.getConstant(0, VT), 1773 ISD::SETNE); 1774 } 1775 1776 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1777 addSuccessorWithWeight(SwitchBB, NextMBB); 1778 1779 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1780 MVT::Other, getControlRoot(), 1781 Cmp, DAG.getBasicBlock(B.TargetBB)); 1782 1783 // Set NextBlock to be the MBB immediately after the current one, if any. 1784 // This is used to avoid emitting unnecessary branches to the next block. 1785 MachineBasicBlock *NextBlock = 0; 1786 MachineFunction::iterator BBI = SwitchBB; 1787 if (++BBI != FuncInfo.MF->end()) 1788 NextBlock = BBI; 1789 1790 if (NextMBB != NextBlock) 1791 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1792 DAG.getBasicBlock(NextMBB)); 1793 1794 DAG.setRoot(BrAnd); 1795 } 1796 1797 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1798 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1799 1800 // Retrieve successors. 1801 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1802 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1803 1804 const Value *Callee(I.getCalledValue()); 1805 if (isa<InlineAsm>(Callee)) 1806 visitInlineAsm(&I); 1807 else 1808 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1809 1810 // If the value of the invoke is used outside of its defining block, make it 1811 // available as a virtual register. 1812 CopyToExportRegsIfNeeded(&I); 1813 1814 // Update successor info 1815 addSuccessorWithWeight(InvokeMBB, Return); 1816 addSuccessorWithWeight(InvokeMBB, LandingPad); 1817 1818 // Drop into normal successor. 1819 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1820 MVT::Other, getControlRoot(), 1821 DAG.getBasicBlock(Return))); 1822 } 1823 1824 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1825 } 1826 1827 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1828 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1829 } 1830 1831 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1832 assert(FuncInfo.MBB->isLandingPad() && 1833 "Call to landingpad not in landing pad!"); 1834 1835 MachineBasicBlock *MBB = FuncInfo.MBB; 1836 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1837 AddLandingPadInfo(LP, MMI, MBB); 1838 1839 SmallVector<EVT, 2> ValueVTs; 1840 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1841 1842 // Insert the EXCEPTIONADDR instruction. 1843 assert(FuncInfo.MBB->isLandingPad() && 1844 "Call to eh.exception not in landing pad!"); 1845 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1846 SDValue Ops[2]; 1847 Ops[0] = DAG.getRoot(); 1848 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1849 SDValue Chain = Op1.getValue(1); 1850 1851 // Insert the EHSELECTION instruction. 1852 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1853 Ops[0] = Op1; 1854 Ops[1] = Chain; 1855 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1856 Chain = Op2.getValue(1); 1857 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1858 1859 Ops[0] = Op1; 1860 Ops[1] = Op2; 1861 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1862 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1863 &Ops[0], 2); 1864 1865 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1866 setValue(&LP, RetPair.first); 1867 DAG.setRoot(RetPair.second); 1868 } 1869 1870 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1871 /// small case ranges). 1872 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1873 CaseRecVector& WorkList, 1874 const Value* SV, 1875 MachineBasicBlock *Default, 1876 MachineBasicBlock *SwitchBB) { 1877 Case& BackCase = *(CR.Range.second-1); 1878 1879 // Size is the number of Cases represented by this range. 1880 size_t Size = CR.Range.second - CR.Range.first; 1881 if (Size > 3) 1882 return false; 1883 1884 // Get the MachineFunction which holds the current MBB. This is used when 1885 // inserting any additional MBBs necessary to represent the switch. 1886 MachineFunction *CurMF = FuncInfo.MF; 1887 1888 // Figure out which block is immediately after the current one. 1889 MachineBasicBlock *NextBlock = 0; 1890 MachineFunction::iterator BBI = CR.CaseBB; 1891 1892 if (++BBI != FuncInfo.MF->end()) 1893 NextBlock = BBI; 1894 1895 // If any two of the cases has the same destination, and if one value 1896 // is the same as the other, but has one bit unset that the other has set, 1897 // use bit manipulation to do two compares at once. For example: 1898 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1899 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1900 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1901 if (Size == 2 && CR.CaseBB == SwitchBB) { 1902 Case &Small = *CR.Range.first; 1903 Case &Big = *(CR.Range.second-1); 1904 1905 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1906 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1907 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1908 1909 // Check that there is only one bit different. 1910 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1911 (SmallValue | BigValue) == BigValue) { 1912 // Isolate the common bit. 1913 APInt CommonBit = BigValue & ~SmallValue; 1914 assert((SmallValue | CommonBit) == BigValue && 1915 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1916 1917 SDValue CondLHS = getValue(SV); 1918 EVT VT = CondLHS.getValueType(); 1919 DebugLoc DL = getCurDebugLoc(); 1920 1921 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1922 DAG.getConstant(CommonBit, VT)); 1923 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1924 Or, DAG.getConstant(BigValue, VT), 1925 ISD::SETEQ); 1926 1927 // Update successor info. 1928 addSuccessorWithWeight(SwitchBB, Small.BB); 1929 addSuccessorWithWeight(SwitchBB, Default); 1930 1931 // Insert the true branch. 1932 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1933 getControlRoot(), Cond, 1934 DAG.getBasicBlock(Small.BB)); 1935 1936 // Insert the false branch. 1937 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1938 DAG.getBasicBlock(Default)); 1939 1940 DAG.setRoot(BrCond); 1941 return true; 1942 } 1943 } 1944 } 1945 1946 // Rearrange the case blocks so that the last one falls through if possible. 1947 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1948 // The last case block won't fall through into 'NextBlock' if we emit the 1949 // branches in this order. See if rearranging a case value would help. 1950 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1951 if (I->BB == NextBlock) { 1952 std::swap(*I, BackCase); 1953 break; 1954 } 1955 } 1956 } 1957 1958 // Create a CaseBlock record representing a conditional branch to 1959 // the Case's target mbb if the value being switched on SV is equal 1960 // to C. 1961 MachineBasicBlock *CurBlock = CR.CaseBB; 1962 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1963 MachineBasicBlock *FallThrough; 1964 if (I != E-1) { 1965 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1966 CurMF->insert(BBI, FallThrough); 1967 1968 // Put SV in a virtual register to make it available from the new blocks. 1969 ExportFromCurrentBlock(SV); 1970 } else { 1971 // If the last case doesn't match, go to the default block. 1972 FallThrough = Default; 1973 } 1974 1975 const Value *RHS, *LHS, *MHS; 1976 ISD::CondCode CC; 1977 if (I->High == I->Low) { 1978 // This is just small small case range :) containing exactly 1 case 1979 CC = ISD::SETEQ; 1980 LHS = SV; RHS = I->High; MHS = NULL; 1981 } else { 1982 CC = ISD::SETLE; 1983 LHS = I->Low; MHS = SV; RHS = I->High; 1984 } 1985 1986 uint32_t ExtraWeight = I->ExtraWeight; 1987 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1988 /* me */ CurBlock, 1989 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1990 1991 // If emitting the first comparison, just call visitSwitchCase to emit the 1992 // code into the current block. Otherwise, push the CaseBlock onto the 1993 // vector to be later processed by SDISel, and insert the node's MBB 1994 // before the next MBB. 1995 if (CurBlock == SwitchBB) 1996 visitSwitchCase(CB, SwitchBB); 1997 else 1998 SwitchCases.push_back(CB); 1999 2000 CurBlock = FallThrough; 2001 } 2002 2003 return true; 2004 } 2005 2006 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2007 return !TLI.getTargetMachine().Options.DisableJumpTables && 2008 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2009 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2010 } 2011 2012 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2013 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2014 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2015 return (LastExt - FirstExt + 1ULL); 2016 } 2017 2018 /// handleJTSwitchCase - Emit jumptable for current switch case range 2019 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2020 CaseRecVector &WorkList, 2021 const Value *SV, 2022 MachineBasicBlock *Default, 2023 MachineBasicBlock *SwitchBB) { 2024 Case& FrontCase = *CR.Range.first; 2025 Case& BackCase = *(CR.Range.second-1); 2026 2027 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2028 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2029 2030 APInt TSize(First.getBitWidth(), 0); 2031 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2032 TSize += I->size(); 2033 2034 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2035 return false; 2036 2037 APInt Range = ComputeRange(First, Last); 2038 // The density is TSize / Range. Require at least 40%. 2039 // It should not be possible for IntTSize to saturate for sane code, but make 2040 // sure we handle Range saturation correctly. 2041 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2042 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2043 if (IntTSize * 10 < IntRange * 4) 2044 return false; 2045 2046 DEBUG(dbgs() << "Lowering jump table\n" 2047 << "First entry: " << First << ". Last entry: " << Last << '\n' 2048 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2049 2050 // Get the MachineFunction which holds the current MBB. This is used when 2051 // inserting any additional MBBs necessary to represent the switch. 2052 MachineFunction *CurMF = FuncInfo.MF; 2053 2054 // Figure out which block is immediately after the current one. 2055 MachineFunction::iterator BBI = CR.CaseBB; 2056 ++BBI; 2057 2058 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2059 2060 // Create a new basic block to hold the code for loading the address 2061 // of the jump table, and jumping to it. Update successor information; 2062 // we will either branch to the default case for the switch, or the jump 2063 // table. 2064 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2065 CurMF->insert(BBI, JumpTableBB); 2066 2067 addSuccessorWithWeight(CR.CaseBB, Default); 2068 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2069 2070 // Build a vector of destination BBs, corresponding to each target 2071 // of the jump table. If the value of the jump table slot corresponds to 2072 // a case statement, push the case's BB onto the vector, otherwise, push 2073 // the default BB. 2074 std::vector<MachineBasicBlock*> DestBBs; 2075 APInt TEI = First; 2076 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2077 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2078 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2079 2080 if (Low.sle(TEI) && TEI.sle(High)) { 2081 DestBBs.push_back(I->BB); 2082 if (TEI==High) 2083 ++I; 2084 } else { 2085 DestBBs.push_back(Default); 2086 } 2087 } 2088 2089 // Update successor info. Add one edge to each unique successor. 2090 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2091 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2092 E = DestBBs.end(); I != E; ++I) { 2093 if (!SuccsHandled[(*I)->getNumber()]) { 2094 SuccsHandled[(*I)->getNumber()] = true; 2095 addSuccessorWithWeight(JumpTableBB, *I); 2096 } 2097 } 2098 2099 // Create a jump table index for this jump table. 2100 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2101 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2102 ->createJumpTableIndex(DestBBs); 2103 2104 // Set the jump table information so that we can codegen it as a second 2105 // MachineBasicBlock 2106 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2107 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2108 if (CR.CaseBB == SwitchBB) 2109 visitJumpTableHeader(JT, JTH, SwitchBB); 2110 2111 JTCases.push_back(JumpTableBlock(JTH, JT)); 2112 return true; 2113 } 2114 2115 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2116 /// 2 subtrees. 2117 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2118 CaseRecVector& WorkList, 2119 const Value* SV, 2120 MachineBasicBlock *Default, 2121 MachineBasicBlock *SwitchBB) { 2122 // Get the MachineFunction which holds the current MBB. This is used when 2123 // inserting any additional MBBs necessary to represent the switch. 2124 MachineFunction *CurMF = FuncInfo.MF; 2125 2126 // Figure out which block is immediately after the current one. 2127 MachineFunction::iterator BBI = CR.CaseBB; 2128 ++BBI; 2129 2130 Case& FrontCase = *CR.Range.first; 2131 Case& BackCase = *(CR.Range.second-1); 2132 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2133 2134 // Size is the number of Cases represented by this range. 2135 unsigned Size = CR.Range.second - CR.Range.first; 2136 2137 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2138 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2139 double FMetric = 0; 2140 CaseItr Pivot = CR.Range.first + Size/2; 2141 2142 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2143 // (heuristically) allow us to emit JumpTable's later. 2144 APInt TSize(First.getBitWidth(), 0); 2145 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2146 I!=E; ++I) 2147 TSize += I->size(); 2148 2149 APInt LSize = FrontCase.size(); 2150 APInt RSize = TSize-LSize; 2151 DEBUG(dbgs() << "Selecting best pivot: \n" 2152 << "First: " << First << ", Last: " << Last <<'\n' 2153 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2154 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2155 J!=E; ++I, ++J) { 2156 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2157 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2158 APInt Range = ComputeRange(LEnd, RBegin); 2159 assert((Range - 2ULL).isNonNegative() && 2160 "Invalid case distance"); 2161 // Use volatile double here to avoid excess precision issues on some hosts, 2162 // e.g. that use 80-bit X87 registers. 2163 volatile double LDensity = 2164 (double)LSize.roundToDouble() / 2165 (LEnd - First + 1ULL).roundToDouble(); 2166 volatile double RDensity = 2167 (double)RSize.roundToDouble() / 2168 (Last - RBegin + 1ULL).roundToDouble(); 2169 double Metric = Range.logBase2()*(LDensity+RDensity); 2170 // Should always split in some non-trivial place 2171 DEBUG(dbgs() <<"=>Step\n" 2172 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2173 << "LDensity: " << LDensity 2174 << ", RDensity: " << RDensity << '\n' 2175 << "Metric: " << Metric << '\n'); 2176 if (FMetric < Metric) { 2177 Pivot = J; 2178 FMetric = Metric; 2179 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2180 } 2181 2182 LSize += J->size(); 2183 RSize -= J->size(); 2184 } 2185 if (areJTsAllowed(TLI)) { 2186 // If our case is dense we *really* should handle it earlier! 2187 assert((FMetric > 0) && "Should handle dense range earlier!"); 2188 } else { 2189 Pivot = CR.Range.first + Size/2; 2190 } 2191 2192 CaseRange LHSR(CR.Range.first, Pivot); 2193 CaseRange RHSR(Pivot, CR.Range.second); 2194 Constant *C = Pivot->Low; 2195 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2196 2197 // We know that we branch to the LHS if the Value being switched on is 2198 // less than the Pivot value, C. We use this to optimize our binary 2199 // tree a bit, by recognizing that if SV is greater than or equal to the 2200 // LHS's Case Value, and that Case Value is exactly one less than the 2201 // Pivot's Value, then we can branch directly to the LHS's Target, 2202 // rather than creating a leaf node for it. 2203 if ((LHSR.second - LHSR.first) == 1 && 2204 LHSR.first->High == CR.GE && 2205 cast<ConstantInt>(C)->getValue() == 2206 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2207 TrueBB = LHSR.first->BB; 2208 } else { 2209 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2210 CurMF->insert(BBI, TrueBB); 2211 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2212 2213 // Put SV in a virtual register to make it available from the new blocks. 2214 ExportFromCurrentBlock(SV); 2215 } 2216 2217 // Similar to the optimization above, if the Value being switched on is 2218 // known to be less than the Constant CR.LT, and the current Case Value 2219 // is CR.LT - 1, then we can branch directly to the target block for 2220 // the current Case Value, rather than emitting a RHS leaf node for it. 2221 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2222 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2223 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2224 FalseBB = RHSR.first->BB; 2225 } else { 2226 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2227 CurMF->insert(BBI, FalseBB); 2228 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2229 2230 // Put SV in a virtual register to make it available from the new blocks. 2231 ExportFromCurrentBlock(SV); 2232 } 2233 2234 // Create a CaseBlock record representing a conditional branch to 2235 // the LHS node if the value being switched on SV is less than C. 2236 // Otherwise, branch to LHS. 2237 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2238 2239 if (CR.CaseBB == SwitchBB) 2240 visitSwitchCase(CB, SwitchBB); 2241 else 2242 SwitchCases.push_back(CB); 2243 2244 return true; 2245 } 2246 2247 /// handleBitTestsSwitchCase - if current case range has few destination and 2248 /// range span less, than machine word bitwidth, encode case range into series 2249 /// of masks and emit bit tests with these masks. 2250 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2251 CaseRecVector& WorkList, 2252 const Value* SV, 2253 MachineBasicBlock* Default, 2254 MachineBasicBlock *SwitchBB){ 2255 EVT PTy = TLI.getPointerTy(); 2256 unsigned IntPtrBits = PTy.getSizeInBits(); 2257 2258 Case& FrontCase = *CR.Range.first; 2259 Case& BackCase = *(CR.Range.second-1); 2260 2261 // Get the MachineFunction which holds the current MBB. This is used when 2262 // inserting any additional MBBs necessary to represent the switch. 2263 MachineFunction *CurMF = FuncInfo.MF; 2264 2265 // If target does not have legal shift left, do not emit bit tests at all. 2266 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2267 return false; 2268 2269 size_t numCmps = 0; 2270 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2271 I!=E; ++I) { 2272 // Single case counts one, case range - two. 2273 numCmps += (I->Low == I->High ? 1 : 2); 2274 } 2275 2276 // Count unique destinations 2277 SmallSet<MachineBasicBlock*, 4> Dests; 2278 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2279 Dests.insert(I->BB); 2280 if (Dests.size() > 3) 2281 // Don't bother the code below, if there are too much unique destinations 2282 return false; 2283 } 2284 DEBUG(dbgs() << "Total number of unique destinations: " 2285 << Dests.size() << '\n' 2286 << "Total number of comparisons: " << numCmps << '\n'); 2287 2288 // Compute span of values. 2289 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2290 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2291 APInt cmpRange = maxValue - minValue; 2292 2293 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2294 << "Low bound: " << minValue << '\n' 2295 << "High bound: " << maxValue << '\n'); 2296 2297 if (cmpRange.uge(IntPtrBits) || 2298 (!(Dests.size() == 1 && numCmps >= 3) && 2299 !(Dests.size() == 2 && numCmps >= 5) && 2300 !(Dests.size() >= 3 && numCmps >= 6))) 2301 return false; 2302 2303 DEBUG(dbgs() << "Emitting bit tests\n"); 2304 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2305 2306 // Optimize the case where all the case values fit in a 2307 // word without having to subtract minValue. In this case, 2308 // we can optimize away the subtraction. 2309 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2310 cmpRange = maxValue; 2311 } else { 2312 lowBound = minValue; 2313 } 2314 2315 CaseBitsVector CasesBits; 2316 unsigned i, count = 0; 2317 2318 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2319 MachineBasicBlock* Dest = I->BB; 2320 for (i = 0; i < count; ++i) 2321 if (Dest == CasesBits[i].BB) 2322 break; 2323 2324 if (i == count) { 2325 assert((count < 3) && "Too much destinations to test!"); 2326 CasesBits.push_back(CaseBits(0, Dest, 0)); 2327 count++; 2328 } 2329 2330 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2331 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2332 2333 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2334 uint64_t hi = (highValue - lowBound).getZExtValue(); 2335 2336 for (uint64_t j = lo; j <= hi; j++) { 2337 CasesBits[i].Mask |= 1ULL << j; 2338 CasesBits[i].Bits++; 2339 } 2340 2341 } 2342 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2343 2344 BitTestInfo BTC; 2345 2346 // Figure out which block is immediately after the current one. 2347 MachineFunction::iterator BBI = CR.CaseBB; 2348 ++BBI; 2349 2350 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2351 2352 DEBUG(dbgs() << "Cases:\n"); 2353 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2354 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2355 << ", Bits: " << CasesBits[i].Bits 2356 << ", BB: " << CasesBits[i].BB << '\n'); 2357 2358 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2359 CurMF->insert(BBI, CaseBB); 2360 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2361 CaseBB, 2362 CasesBits[i].BB)); 2363 2364 // Put SV in a virtual register to make it available from the new blocks. 2365 ExportFromCurrentBlock(SV); 2366 } 2367 2368 BitTestBlock BTB(lowBound, cmpRange, SV, 2369 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2370 CR.CaseBB, Default, BTC); 2371 2372 if (CR.CaseBB == SwitchBB) 2373 visitBitTestHeader(BTB, SwitchBB); 2374 2375 BitTestCases.push_back(BTB); 2376 2377 return true; 2378 } 2379 2380 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2381 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2382 const SwitchInst& SI) { 2383 size_t numCmps = 0; 2384 2385 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2386 // Start with "simple" cases 2387 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2388 BasicBlock *SuccBB = SI.getSuccessor(i); 2389 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2390 2391 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2392 2393 Cases.push_back(Case(SI.getSuccessorValue(i), 2394 SI.getSuccessorValue(i), 2395 SMBB, ExtraWeight)); 2396 } 2397 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2398 2399 // Merge case into clusters 2400 if (Cases.size() >= 2) 2401 // Must recompute end() each iteration because it may be 2402 // invalidated by erase if we hold on to it 2403 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2404 J != Cases.end(); ) { 2405 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2406 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2407 MachineBasicBlock* nextBB = J->BB; 2408 MachineBasicBlock* currentBB = I->BB; 2409 2410 // If the two neighboring cases go to the same destination, merge them 2411 // into a single case. 2412 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2413 I->High = J->High; 2414 J = Cases.erase(J); 2415 2416 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2417 uint32_t CurWeight = currentBB->getBasicBlock() ? 2418 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2419 uint32_t NextWeight = nextBB->getBasicBlock() ? 2420 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2421 2422 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2423 CurWeight + NextWeight); 2424 } 2425 } else { 2426 I = J++; 2427 } 2428 } 2429 2430 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2431 if (I->Low != I->High) 2432 // A range counts double, since it requires two compares. 2433 ++numCmps; 2434 } 2435 2436 return numCmps; 2437 } 2438 2439 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2440 MachineBasicBlock *Last) { 2441 // Update JTCases. 2442 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2443 if (JTCases[i].first.HeaderBB == First) 2444 JTCases[i].first.HeaderBB = Last; 2445 2446 // Update BitTestCases. 2447 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2448 if (BitTestCases[i].Parent == First) 2449 BitTestCases[i].Parent = Last; 2450 } 2451 2452 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2453 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2454 2455 // Figure out which block is immediately after the current one. 2456 MachineBasicBlock *NextBlock = 0; 2457 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2458 2459 // If there is only the default destination, branch to it if it is not the 2460 // next basic block. Otherwise, just fall through. 2461 if (SI.getNumCases() == 1) { 2462 // Update machine-CFG edges. 2463 2464 // If this is not a fall-through branch, emit the branch. 2465 SwitchMBB->addSuccessor(Default); 2466 if (Default != NextBlock) 2467 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2468 MVT::Other, getControlRoot(), 2469 DAG.getBasicBlock(Default))); 2470 2471 return; 2472 } 2473 2474 // If there are any non-default case statements, create a vector of Cases 2475 // representing each one, and sort the vector so that we can efficiently 2476 // create a binary search tree from them. 2477 CaseVector Cases; 2478 size_t numCmps = Clusterify(Cases, SI); 2479 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2480 << ". Total compares: " << numCmps << '\n'); 2481 (void)numCmps; 2482 2483 // Get the Value to be switched on and default basic blocks, which will be 2484 // inserted into CaseBlock records, representing basic blocks in the binary 2485 // search tree. 2486 const Value *SV = SI.getCondition(); 2487 2488 // Push the initial CaseRec onto the worklist 2489 CaseRecVector WorkList; 2490 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2491 CaseRange(Cases.begin(),Cases.end()))); 2492 2493 while (!WorkList.empty()) { 2494 // Grab a record representing a case range to process off the worklist 2495 CaseRec CR = WorkList.back(); 2496 WorkList.pop_back(); 2497 2498 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2499 continue; 2500 2501 // If the range has few cases (two or less) emit a series of specific 2502 // tests. 2503 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2504 continue; 2505 2506 // If the switch has more than 5 blocks, and at least 40% dense, and the 2507 // target supports indirect branches, then emit a jump table rather than 2508 // lowering the switch to a binary tree of conditional branches. 2509 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2510 continue; 2511 2512 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2513 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2514 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2515 } 2516 } 2517 2518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2520 2521 // Update machine-CFG edges with unique successors. 2522 SmallVector<BasicBlock*, 32> succs; 2523 succs.reserve(I.getNumSuccessors()); 2524 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2525 succs.push_back(I.getSuccessor(i)); 2526 array_pod_sort(succs.begin(), succs.end()); 2527 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2528 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2529 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2530 addSuccessorWithWeight(IndirectBrMBB, Succ); 2531 } 2532 2533 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2534 MVT::Other, getControlRoot(), 2535 getValue(I.getAddress()))); 2536 } 2537 2538 void SelectionDAGBuilder::visitFSub(const User &I) { 2539 // -0.0 - X --> fneg 2540 Type *Ty = I.getType(); 2541 if (isa<Constant>(I.getOperand(0)) && 2542 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2543 SDValue Op2 = getValue(I.getOperand(1)); 2544 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2545 Op2.getValueType(), Op2)); 2546 return; 2547 } 2548 2549 visitBinary(I, ISD::FSUB); 2550 } 2551 2552 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2553 SDValue Op1 = getValue(I.getOperand(0)); 2554 SDValue Op2 = getValue(I.getOperand(1)); 2555 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2556 Op1.getValueType(), Op1, Op2)); 2557 } 2558 2559 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2560 SDValue Op1 = getValue(I.getOperand(0)); 2561 SDValue Op2 = getValue(I.getOperand(1)); 2562 2563 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2564 2565 // Coerce the shift amount to the right type if we can. 2566 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2567 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2568 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2569 DebugLoc DL = getCurDebugLoc(); 2570 2571 // If the operand is smaller than the shift count type, promote it. 2572 if (ShiftSize > Op2Size) 2573 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2574 2575 // If the operand is larger than the shift count type but the shift 2576 // count type has enough bits to represent any shift value, truncate 2577 // it now. This is a common case and it exposes the truncate to 2578 // optimization early. 2579 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2580 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2581 // Otherwise we'll need to temporarily settle for some other convenient 2582 // type. Type legalization will make adjustments once the shiftee is split. 2583 else 2584 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2585 } 2586 2587 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2588 Op1.getValueType(), Op1, Op2)); 2589 } 2590 2591 void SelectionDAGBuilder::visitSDiv(const User &I) { 2592 SDValue Op1 = getValue(I.getOperand(0)); 2593 SDValue Op2 = getValue(I.getOperand(1)); 2594 2595 // Turn exact SDivs into multiplications. 2596 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2597 // exact bit. 2598 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2599 !isa<ConstantSDNode>(Op1) && 2600 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2601 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2602 else 2603 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2604 Op1, Op2)); 2605 } 2606 2607 void SelectionDAGBuilder::visitICmp(const User &I) { 2608 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2609 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2610 predicate = IC->getPredicate(); 2611 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2612 predicate = ICmpInst::Predicate(IC->getPredicate()); 2613 SDValue Op1 = getValue(I.getOperand(0)); 2614 SDValue Op2 = getValue(I.getOperand(1)); 2615 ISD::CondCode Opcode = getICmpCondCode(predicate); 2616 2617 EVT DestVT = TLI.getValueType(I.getType()); 2618 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2619 } 2620 2621 void SelectionDAGBuilder::visitFCmp(const User &I) { 2622 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2623 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2624 predicate = FC->getPredicate(); 2625 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2626 predicate = FCmpInst::Predicate(FC->getPredicate()); 2627 SDValue Op1 = getValue(I.getOperand(0)); 2628 SDValue Op2 = getValue(I.getOperand(1)); 2629 ISD::CondCode Condition = getFCmpCondCode(predicate); 2630 if (TM.Options.NoNaNsFPMath) 2631 Condition = getFCmpCodeWithoutNaN(Condition); 2632 EVT DestVT = TLI.getValueType(I.getType()); 2633 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2634 } 2635 2636 void SelectionDAGBuilder::visitSelect(const User &I) { 2637 SmallVector<EVT, 4> ValueVTs; 2638 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2639 unsigned NumValues = ValueVTs.size(); 2640 if (NumValues == 0) return; 2641 2642 SmallVector<SDValue, 4> Values(NumValues); 2643 SDValue Cond = getValue(I.getOperand(0)); 2644 SDValue TrueVal = getValue(I.getOperand(1)); 2645 SDValue FalseVal = getValue(I.getOperand(2)); 2646 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2647 ISD::VSELECT : ISD::SELECT; 2648 2649 for (unsigned i = 0; i != NumValues; ++i) 2650 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2651 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2652 Cond, 2653 SDValue(TrueVal.getNode(), 2654 TrueVal.getResNo() + i), 2655 SDValue(FalseVal.getNode(), 2656 FalseVal.getResNo() + i)); 2657 2658 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2659 DAG.getVTList(&ValueVTs[0], NumValues), 2660 &Values[0], NumValues)); 2661 } 2662 2663 void SelectionDAGBuilder::visitTrunc(const User &I) { 2664 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2665 SDValue N = getValue(I.getOperand(0)); 2666 EVT DestVT = TLI.getValueType(I.getType()); 2667 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2668 } 2669 2670 void SelectionDAGBuilder::visitZExt(const User &I) { 2671 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2672 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2673 SDValue N = getValue(I.getOperand(0)); 2674 EVT DestVT = TLI.getValueType(I.getType()); 2675 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2676 } 2677 2678 void SelectionDAGBuilder::visitSExt(const User &I) { 2679 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2680 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2681 SDValue N = getValue(I.getOperand(0)); 2682 EVT DestVT = TLI.getValueType(I.getType()); 2683 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2684 } 2685 2686 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2687 // FPTrunc is never a no-op cast, no need to check 2688 SDValue N = getValue(I.getOperand(0)); 2689 EVT DestVT = TLI.getValueType(I.getType()); 2690 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2691 DestVT, N, DAG.getIntPtrConstant(0))); 2692 } 2693 2694 void SelectionDAGBuilder::visitFPExt(const User &I){ 2695 // FPExt is never a no-op cast, no need to check 2696 SDValue N = getValue(I.getOperand(0)); 2697 EVT DestVT = TLI.getValueType(I.getType()); 2698 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2699 } 2700 2701 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2702 // FPToUI is never a no-op cast, no need to check 2703 SDValue N = getValue(I.getOperand(0)); 2704 EVT DestVT = TLI.getValueType(I.getType()); 2705 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2706 } 2707 2708 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2709 // FPToSI is never a no-op cast, no need to check 2710 SDValue N = getValue(I.getOperand(0)); 2711 EVT DestVT = TLI.getValueType(I.getType()); 2712 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2713 } 2714 2715 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2716 // UIToFP is never a no-op cast, no need to check 2717 SDValue N = getValue(I.getOperand(0)); 2718 EVT DestVT = TLI.getValueType(I.getType()); 2719 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2720 } 2721 2722 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2723 // SIToFP is never a no-op cast, no need to check 2724 SDValue N = getValue(I.getOperand(0)); 2725 EVT DestVT = TLI.getValueType(I.getType()); 2726 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2727 } 2728 2729 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2730 // What to do depends on the size of the integer and the size of the pointer. 2731 // We can either truncate, zero extend, or no-op, accordingly. 2732 SDValue N = getValue(I.getOperand(0)); 2733 EVT DestVT = TLI.getValueType(I.getType()); 2734 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2735 } 2736 2737 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2738 // What to do depends on the size of the integer and the size of the pointer. 2739 // We can either truncate, zero extend, or no-op, accordingly. 2740 SDValue N = getValue(I.getOperand(0)); 2741 EVT DestVT = TLI.getValueType(I.getType()); 2742 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2743 } 2744 2745 void SelectionDAGBuilder::visitBitCast(const User &I) { 2746 SDValue N = getValue(I.getOperand(0)); 2747 EVT DestVT = TLI.getValueType(I.getType()); 2748 2749 // BitCast assures us that source and destination are the same size so this is 2750 // either a BITCAST or a no-op. 2751 if (DestVT != N.getValueType()) 2752 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2753 DestVT, N)); // convert types. 2754 else 2755 setValue(&I, N); // noop cast. 2756 } 2757 2758 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2759 SDValue InVec = getValue(I.getOperand(0)); 2760 SDValue InVal = getValue(I.getOperand(1)); 2761 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2762 TLI.getPointerTy(), 2763 getValue(I.getOperand(2))); 2764 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2765 TLI.getValueType(I.getType()), 2766 InVec, InVal, InIdx)); 2767 } 2768 2769 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2770 SDValue InVec = getValue(I.getOperand(0)); 2771 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2772 TLI.getPointerTy(), 2773 getValue(I.getOperand(1))); 2774 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2775 TLI.getValueType(I.getType()), InVec, InIdx)); 2776 } 2777 2778 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2779 // from SIndx and increasing to the element length (undefs are allowed). 2780 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2781 unsigned MaskNumElts = Mask.size(); 2782 for (unsigned i = 0; i != MaskNumElts; ++i) 2783 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2784 return false; 2785 return true; 2786 } 2787 2788 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2789 SmallVector<int, 8> Mask; 2790 SDValue Src1 = getValue(I.getOperand(0)); 2791 SDValue Src2 = getValue(I.getOperand(1)); 2792 2793 // Convert the ConstantVector mask operand into an array of ints, with -1 2794 // representing undef values. 2795 SmallVector<Constant*, 8> MaskElts; 2796 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2797 unsigned MaskNumElts = MaskElts.size(); 2798 for (unsigned i = 0; i != MaskNumElts; ++i) { 2799 if (isa<UndefValue>(MaskElts[i])) 2800 Mask.push_back(-1); 2801 else 2802 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2803 } 2804 2805 EVT VT = TLI.getValueType(I.getType()); 2806 EVT SrcVT = Src1.getValueType(); 2807 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2808 2809 if (SrcNumElts == MaskNumElts) { 2810 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2811 &Mask[0])); 2812 return; 2813 } 2814 2815 // Normalize the shuffle vector since mask and vector length don't match. 2816 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2817 // Mask is longer than the source vectors and is a multiple of the source 2818 // vectors. We can use concatenate vector to make the mask and vectors 2819 // lengths match. 2820 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2821 // The shuffle is concatenating two vectors together. 2822 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2823 VT, Src1, Src2)); 2824 return; 2825 } 2826 2827 // Pad both vectors with undefs to make them the same length as the mask. 2828 unsigned NumConcat = MaskNumElts / SrcNumElts; 2829 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2830 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2831 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2832 2833 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2834 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2835 MOps1[0] = Src1; 2836 MOps2[0] = Src2; 2837 2838 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2839 getCurDebugLoc(), VT, 2840 &MOps1[0], NumConcat); 2841 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2842 getCurDebugLoc(), VT, 2843 &MOps2[0], NumConcat); 2844 2845 // Readjust mask for new input vector length. 2846 SmallVector<int, 8> MappedOps; 2847 for (unsigned i = 0; i != MaskNumElts; ++i) { 2848 int Idx = Mask[i]; 2849 if (Idx < (int)SrcNumElts) 2850 MappedOps.push_back(Idx); 2851 else 2852 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2853 } 2854 2855 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2856 &MappedOps[0])); 2857 return; 2858 } 2859 2860 if (SrcNumElts > MaskNumElts) { 2861 // Analyze the access pattern of the vector to see if we can extract 2862 // two subvectors and do the shuffle. The analysis is done by calculating 2863 // the range of elements the mask access on both vectors. 2864 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2865 static_cast<int>(SrcNumElts+1)}; 2866 int MaxRange[2] = {-1, -1}; 2867 2868 for (unsigned i = 0; i != MaskNumElts; ++i) { 2869 int Idx = Mask[i]; 2870 int Input = 0; 2871 if (Idx < 0) 2872 continue; 2873 2874 if (Idx >= (int)SrcNumElts) { 2875 Input = 1; 2876 Idx -= SrcNumElts; 2877 } 2878 if (Idx > MaxRange[Input]) 2879 MaxRange[Input] = Idx; 2880 if (Idx < MinRange[Input]) 2881 MinRange[Input] = Idx; 2882 } 2883 2884 // Check if the access is smaller than the vector size and can we find 2885 // a reasonable extract index. 2886 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2887 // Extract. 2888 int StartIdx[2]; // StartIdx to extract from 2889 for (int Input=0; Input < 2; ++Input) { 2890 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2891 RangeUse[Input] = 0; // Unused 2892 StartIdx[Input] = 0; 2893 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2894 // Fits within range but we should see if we can find a good 2895 // start index that is a multiple of the mask length. 2896 if (MaxRange[Input] < (int)MaskNumElts) { 2897 RangeUse[Input] = 1; // Extract from beginning of the vector 2898 StartIdx[Input] = 0; 2899 } else { 2900 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2901 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2902 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2903 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2904 } 2905 } 2906 } 2907 2908 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2909 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2910 return; 2911 } 2912 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2913 // Extract appropriate subvector and generate a vector shuffle 2914 for (int Input=0; Input < 2; ++Input) { 2915 SDValue &Src = Input == 0 ? Src1 : Src2; 2916 if (RangeUse[Input] == 0) 2917 Src = DAG.getUNDEF(VT); 2918 else 2919 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2920 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2921 } 2922 2923 // Calculate new mask. 2924 SmallVector<int, 8> MappedOps; 2925 for (unsigned i = 0; i != MaskNumElts; ++i) { 2926 int Idx = Mask[i]; 2927 if (Idx < 0) 2928 MappedOps.push_back(Idx); 2929 else if (Idx < (int)SrcNumElts) 2930 MappedOps.push_back(Idx - StartIdx[0]); 2931 else 2932 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2933 } 2934 2935 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2936 &MappedOps[0])); 2937 return; 2938 } 2939 } 2940 2941 // We can't use either concat vectors or extract subvectors so fall back to 2942 // replacing the shuffle with extract and build vector. 2943 // to insert and build vector. 2944 EVT EltVT = VT.getVectorElementType(); 2945 EVT PtrVT = TLI.getPointerTy(); 2946 SmallVector<SDValue,8> Ops; 2947 for (unsigned i = 0; i != MaskNumElts; ++i) { 2948 if (Mask[i] < 0) { 2949 Ops.push_back(DAG.getUNDEF(EltVT)); 2950 } else { 2951 int Idx = Mask[i]; 2952 SDValue Res; 2953 2954 if (Idx < (int)SrcNumElts) 2955 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2956 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2957 else 2958 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2959 EltVT, Src2, 2960 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2961 2962 Ops.push_back(Res); 2963 } 2964 } 2965 2966 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2967 VT, &Ops[0], Ops.size())); 2968 } 2969 2970 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2971 const Value *Op0 = I.getOperand(0); 2972 const Value *Op1 = I.getOperand(1); 2973 Type *AggTy = I.getType(); 2974 Type *ValTy = Op1->getType(); 2975 bool IntoUndef = isa<UndefValue>(Op0); 2976 bool FromUndef = isa<UndefValue>(Op1); 2977 2978 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2979 2980 SmallVector<EVT, 4> AggValueVTs; 2981 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2982 SmallVector<EVT, 4> ValValueVTs; 2983 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2984 2985 unsigned NumAggValues = AggValueVTs.size(); 2986 unsigned NumValValues = ValValueVTs.size(); 2987 SmallVector<SDValue, 4> Values(NumAggValues); 2988 2989 SDValue Agg = getValue(Op0); 2990 unsigned i = 0; 2991 // Copy the beginning value(s) from the original aggregate. 2992 for (; i != LinearIndex; ++i) 2993 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2994 SDValue(Agg.getNode(), Agg.getResNo() + i); 2995 // Copy values from the inserted value(s). 2996 if (NumValValues) { 2997 SDValue Val = getValue(Op1); 2998 for (; i != LinearIndex + NumValValues; ++i) 2999 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3000 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3001 } 3002 // Copy remaining value(s) from the original aggregate. 3003 for (; i != NumAggValues; ++i) 3004 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3005 SDValue(Agg.getNode(), Agg.getResNo() + i); 3006 3007 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3008 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3009 &Values[0], NumAggValues)); 3010 } 3011 3012 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3013 const Value *Op0 = I.getOperand(0); 3014 Type *AggTy = Op0->getType(); 3015 Type *ValTy = I.getType(); 3016 bool OutOfUndef = isa<UndefValue>(Op0); 3017 3018 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3019 3020 SmallVector<EVT, 4> ValValueVTs; 3021 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3022 3023 unsigned NumValValues = ValValueVTs.size(); 3024 3025 // Ignore a extractvalue that produces an empty object 3026 if (!NumValValues) { 3027 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3028 return; 3029 } 3030 3031 SmallVector<SDValue, 4> Values(NumValValues); 3032 3033 SDValue Agg = getValue(Op0); 3034 // Copy out the selected value(s). 3035 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3036 Values[i - LinearIndex] = 3037 OutOfUndef ? 3038 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3039 SDValue(Agg.getNode(), Agg.getResNo() + i); 3040 3041 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3042 DAG.getVTList(&ValValueVTs[0], NumValValues), 3043 &Values[0], NumValValues)); 3044 } 3045 3046 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3047 SDValue N = getValue(I.getOperand(0)); 3048 Type *Ty = I.getOperand(0)->getType(); 3049 3050 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3051 OI != E; ++OI) { 3052 const Value *Idx = *OI; 3053 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3054 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3055 if (Field) { 3056 // N = N + Offset 3057 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3058 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3059 DAG.getIntPtrConstant(Offset)); 3060 } 3061 3062 Ty = StTy->getElementType(Field); 3063 } else { 3064 Ty = cast<SequentialType>(Ty)->getElementType(); 3065 3066 // If this is a constant subscript, handle it quickly. 3067 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3068 if (CI->isZero()) continue; 3069 uint64_t Offs = 3070 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3071 SDValue OffsVal; 3072 EVT PTy = TLI.getPointerTy(); 3073 unsigned PtrBits = PTy.getSizeInBits(); 3074 if (PtrBits < 64) 3075 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3076 TLI.getPointerTy(), 3077 DAG.getConstant(Offs, MVT::i64)); 3078 else 3079 OffsVal = DAG.getIntPtrConstant(Offs); 3080 3081 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3082 OffsVal); 3083 continue; 3084 } 3085 3086 // N = N + Idx * ElementSize; 3087 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3088 TD->getTypeAllocSize(Ty)); 3089 SDValue IdxN = getValue(Idx); 3090 3091 // If the index is smaller or larger than intptr_t, truncate or extend 3092 // it. 3093 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3094 3095 // If this is a multiply by a power of two, turn it into a shl 3096 // immediately. This is a very common case. 3097 if (ElementSize != 1) { 3098 if (ElementSize.isPowerOf2()) { 3099 unsigned Amt = ElementSize.logBase2(); 3100 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3101 N.getValueType(), IdxN, 3102 DAG.getConstant(Amt, TLI.getPointerTy())); 3103 } else { 3104 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3105 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3106 N.getValueType(), IdxN, Scale); 3107 } 3108 } 3109 3110 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3111 N.getValueType(), N, IdxN); 3112 } 3113 } 3114 3115 setValue(&I, N); 3116 } 3117 3118 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3119 // If this is a fixed sized alloca in the entry block of the function, 3120 // allocate it statically on the stack. 3121 if (FuncInfo.StaticAllocaMap.count(&I)) 3122 return; // getValue will auto-populate this. 3123 3124 Type *Ty = I.getAllocatedType(); 3125 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3126 unsigned Align = 3127 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3128 I.getAlignment()); 3129 3130 SDValue AllocSize = getValue(I.getArraySize()); 3131 3132 EVT IntPtr = TLI.getPointerTy(); 3133 if (AllocSize.getValueType() != IntPtr) 3134 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3135 3136 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3137 AllocSize, 3138 DAG.getConstant(TySize, IntPtr)); 3139 3140 // Handle alignment. If the requested alignment is less than or equal to 3141 // the stack alignment, ignore it. If the size is greater than or equal to 3142 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3143 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3144 if (Align <= StackAlign) 3145 Align = 0; 3146 3147 // Round the size of the allocation up to the stack alignment size 3148 // by add SA-1 to the size. 3149 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3150 AllocSize.getValueType(), AllocSize, 3151 DAG.getIntPtrConstant(StackAlign-1)); 3152 3153 // Mask out the low bits for alignment purposes. 3154 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3155 AllocSize.getValueType(), AllocSize, 3156 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3157 3158 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3159 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3160 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3161 VTs, Ops, 3); 3162 setValue(&I, DSA); 3163 DAG.setRoot(DSA.getValue(1)); 3164 3165 // Inform the Frame Information that we have just allocated a variable-sized 3166 // object. 3167 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3168 } 3169 3170 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3171 if (I.isAtomic()) 3172 return visitAtomicLoad(I); 3173 3174 const Value *SV = I.getOperand(0); 3175 SDValue Ptr = getValue(SV); 3176 3177 Type *Ty = I.getType(); 3178 3179 bool isVolatile = I.isVolatile(); 3180 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3181 bool isInvariant = I.getMetadata("invariant.load") != 0; 3182 unsigned Alignment = I.getAlignment(); 3183 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3184 3185 SmallVector<EVT, 4> ValueVTs; 3186 SmallVector<uint64_t, 4> Offsets; 3187 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3188 unsigned NumValues = ValueVTs.size(); 3189 if (NumValues == 0) 3190 return; 3191 3192 SDValue Root; 3193 bool ConstantMemory = false; 3194 if (I.isVolatile() || NumValues > MaxParallelChains) 3195 // Serialize volatile loads with other side effects. 3196 Root = getRoot(); 3197 else if (AA->pointsToConstantMemory( 3198 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3199 // Do not serialize (non-volatile) loads of constant memory with anything. 3200 Root = DAG.getEntryNode(); 3201 ConstantMemory = true; 3202 } else { 3203 // Do not serialize non-volatile loads against each other. 3204 Root = DAG.getRoot(); 3205 } 3206 3207 SmallVector<SDValue, 4> Values(NumValues); 3208 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3209 NumValues)); 3210 EVT PtrVT = Ptr.getValueType(); 3211 unsigned ChainI = 0; 3212 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3213 // Serializing loads here may result in excessive register pressure, and 3214 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3215 // could recover a bit by hoisting nodes upward in the chain by recognizing 3216 // they are side-effect free or do not alias. The optimizer should really 3217 // avoid this case by converting large object/array copies to llvm.memcpy 3218 // (MaxParallelChains should always remain as failsafe). 3219 if (ChainI == MaxParallelChains) { 3220 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3221 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3222 MVT::Other, &Chains[0], ChainI); 3223 Root = Chain; 3224 ChainI = 0; 3225 } 3226 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3227 PtrVT, Ptr, 3228 DAG.getConstant(Offsets[i], PtrVT)); 3229 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3230 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3231 isNonTemporal, isInvariant, Alignment, TBAAInfo); 3232 3233 Values[i] = L; 3234 Chains[ChainI] = L.getValue(1); 3235 } 3236 3237 if (!ConstantMemory) { 3238 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3239 MVT::Other, &Chains[0], ChainI); 3240 if (isVolatile) 3241 DAG.setRoot(Chain); 3242 else 3243 PendingLoads.push_back(Chain); 3244 } 3245 3246 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3247 DAG.getVTList(&ValueVTs[0], NumValues), 3248 &Values[0], NumValues)); 3249 } 3250 3251 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3252 if (I.isAtomic()) 3253 return visitAtomicStore(I); 3254 3255 const Value *SrcV = I.getOperand(0); 3256 const Value *PtrV = I.getOperand(1); 3257 3258 SmallVector<EVT, 4> ValueVTs; 3259 SmallVector<uint64_t, 4> Offsets; 3260 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3261 unsigned NumValues = ValueVTs.size(); 3262 if (NumValues == 0) 3263 return; 3264 3265 // Get the lowered operands. Note that we do this after 3266 // checking if NumResults is zero, because with zero results 3267 // the operands won't have values in the map. 3268 SDValue Src = getValue(SrcV); 3269 SDValue Ptr = getValue(PtrV); 3270 3271 SDValue Root = getRoot(); 3272 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3273 NumValues)); 3274 EVT PtrVT = Ptr.getValueType(); 3275 bool isVolatile = I.isVolatile(); 3276 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3277 unsigned Alignment = I.getAlignment(); 3278 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3279 3280 unsigned ChainI = 0; 3281 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3282 // See visitLoad comments. 3283 if (ChainI == MaxParallelChains) { 3284 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3285 MVT::Other, &Chains[0], ChainI); 3286 Root = Chain; 3287 ChainI = 0; 3288 } 3289 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3290 DAG.getConstant(Offsets[i], PtrVT)); 3291 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3292 SDValue(Src.getNode(), Src.getResNo() + i), 3293 Add, MachinePointerInfo(PtrV, Offsets[i]), 3294 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3295 Chains[ChainI] = St; 3296 } 3297 3298 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3299 MVT::Other, &Chains[0], ChainI); 3300 ++SDNodeOrder; 3301 AssignOrderingToNode(StoreNode.getNode()); 3302 DAG.setRoot(StoreNode); 3303 } 3304 3305 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3306 SynchronizationScope Scope, 3307 bool Before, DebugLoc dl, 3308 SelectionDAG &DAG, 3309 const TargetLowering &TLI) { 3310 // Fence, if necessary 3311 if (Before) { 3312 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3313 Order = Release; 3314 else if (Order == Acquire || Order == Monotonic) 3315 return Chain; 3316 } else { 3317 if (Order == AcquireRelease) 3318 Order = Acquire; 3319 else if (Order == Release || Order == Monotonic) 3320 return Chain; 3321 } 3322 SDValue Ops[3]; 3323 Ops[0] = Chain; 3324 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3325 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3326 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3327 } 3328 3329 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3330 DebugLoc dl = getCurDebugLoc(); 3331 AtomicOrdering Order = I.getOrdering(); 3332 SynchronizationScope Scope = I.getSynchScope(); 3333 3334 SDValue InChain = getRoot(); 3335 3336 if (TLI.getInsertFencesForAtomic()) 3337 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3338 DAG, TLI); 3339 3340 SDValue L = 3341 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3342 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3343 InChain, 3344 getValue(I.getPointerOperand()), 3345 getValue(I.getCompareOperand()), 3346 getValue(I.getNewValOperand()), 3347 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3348 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3349 Scope); 3350 3351 SDValue OutChain = L.getValue(1); 3352 3353 if (TLI.getInsertFencesForAtomic()) 3354 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3355 DAG, TLI); 3356 3357 setValue(&I, L); 3358 DAG.setRoot(OutChain); 3359 } 3360 3361 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3362 DebugLoc dl = getCurDebugLoc(); 3363 ISD::NodeType NT; 3364 switch (I.getOperation()) { 3365 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3366 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3367 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3368 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3369 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3370 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3371 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3372 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3373 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3374 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3375 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3376 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3377 } 3378 AtomicOrdering Order = I.getOrdering(); 3379 SynchronizationScope Scope = I.getSynchScope(); 3380 3381 SDValue InChain = getRoot(); 3382 3383 if (TLI.getInsertFencesForAtomic()) 3384 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3385 DAG, TLI); 3386 3387 SDValue L = 3388 DAG.getAtomic(NT, dl, 3389 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3390 InChain, 3391 getValue(I.getPointerOperand()), 3392 getValue(I.getValOperand()), 3393 I.getPointerOperand(), 0 /* Alignment */, 3394 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3395 Scope); 3396 3397 SDValue OutChain = L.getValue(1); 3398 3399 if (TLI.getInsertFencesForAtomic()) 3400 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3401 DAG, TLI); 3402 3403 setValue(&I, L); 3404 DAG.setRoot(OutChain); 3405 } 3406 3407 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3408 DebugLoc dl = getCurDebugLoc(); 3409 SDValue Ops[3]; 3410 Ops[0] = getRoot(); 3411 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3412 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3413 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3414 } 3415 3416 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3417 DebugLoc dl = getCurDebugLoc(); 3418 AtomicOrdering Order = I.getOrdering(); 3419 SynchronizationScope Scope = I.getSynchScope(); 3420 3421 SDValue InChain = getRoot(); 3422 3423 EVT VT = EVT::getEVT(I.getType()); 3424 3425 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3426 report_fatal_error("Cannot generate unaligned atomic load"); 3427 3428 SDValue L = 3429 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3430 getValue(I.getPointerOperand()), 3431 I.getPointerOperand(), I.getAlignment(), 3432 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3433 Scope); 3434 3435 SDValue OutChain = L.getValue(1); 3436 3437 if (TLI.getInsertFencesForAtomic()) 3438 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3439 DAG, TLI); 3440 3441 setValue(&I, L); 3442 DAG.setRoot(OutChain); 3443 } 3444 3445 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3446 DebugLoc dl = getCurDebugLoc(); 3447 3448 AtomicOrdering Order = I.getOrdering(); 3449 SynchronizationScope Scope = I.getSynchScope(); 3450 3451 SDValue InChain = getRoot(); 3452 3453 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3454 3455 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3456 report_fatal_error("Cannot generate unaligned atomic store"); 3457 3458 if (TLI.getInsertFencesForAtomic()) 3459 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3460 DAG, TLI); 3461 3462 SDValue OutChain = 3463 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3464 InChain, 3465 getValue(I.getPointerOperand()), 3466 getValue(I.getValueOperand()), 3467 I.getPointerOperand(), I.getAlignment(), 3468 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3469 Scope); 3470 3471 if (TLI.getInsertFencesForAtomic()) 3472 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3473 DAG, TLI); 3474 3475 DAG.setRoot(OutChain); 3476 } 3477 3478 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3479 /// node. 3480 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3481 unsigned Intrinsic) { 3482 bool HasChain = !I.doesNotAccessMemory(); 3483 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3484 3485 // Build the operand list. 3486 SmallVector<SDValue, 8> Ops; 3487 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3488 if (OnlyLoad) { 3489 // We don't need to serialize loads against other loads. 3490 Ops.push_back(DAG.getRoot()); 3491 } else { 3492 Ops.push_back(getRoot()); 3493 } 3494 } 3495 3496 // Info is set by getTgtMemInstrinsic 3497 TargetLowering::IntrinsicInfo Info; 3498 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3499 3500 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3501 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3502 Info.opc == ISD::INTRINSIC_W_CHAIN) 3503 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3504 3505 // Add all operands of the call to the operand list. 3506 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3507 SDValue Op = getValue(I.getArgOperand(i)); 3508 assert(TLI.isTypeLegal(Op.getValueType()) && 3509 "Intrinsic uses a non-legal type?"); 3510 Ops.push_back(Op); 3511 } 3512 3513 SmallVector<EVT, 4> ValueVTs; 3514 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3515 #ifndef NDEBUG 3516 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3517 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3518 "Intrinsic uses a non-legal type?"); 3519 } 3520 #endif // NDEBUG 3521 3522 if (HasChain) 3523 ValueVTs.push_back(MVT::Other); 3524 3525 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3526 3527 // Create the node. 3528 SDValue Result; 3529 if (IsTgtIntrinsic) { 3530 // This is target intrinsic that touches memory 3531 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3532 VTs, &Ops[0], Ops.size(), 3533 Info.memVT, 3534 MachinePointerInfo(Info.ptrVal, Info.offset), 3535 Info.align, Info.vol, 3536 Info.readMem, Info.writeMem); 3537 } else if (!HasChain) { 3538 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3539 VTs, &Ops[0], Ops.size()); 3540 } else if (!I.getType()->isVoidTy()) { 3541 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3542 VTs, &Ops[0], Ops.size()); 3543 } else { 3544 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3545 VTs, &Ops[0], Ops.size()); 3546 } 3547 3548 if (HasChain) { 3549 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3550 if (OnlyLoad) 3551 PendingLoads.push_back(Chain); 3552 else 3553 DAG.setRoot(Chain); 3554 } 3555 3556 if (!I.getType()->isVoidTy()) { 3557 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3558 EVT VT = TLI.getValueType(PTy); 3559 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3560 } 3561 3562 setValue(&I, Result); 3563 } 3564 } 3565 3566 /// GetSignificand - Get the significand and build it into a floating-point 3567 /// number with exponent of 1: 3568 /// 3569 /// Op = (Op & 0x007fffff) | 0x3f800000; 3570 /// 3571 /// where Op is the hexidecimal representation of floating point value. 3572 static SDValue 3573 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3574 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3575 DAG.getConstant(0x007fffff, MVT::i32)); 3576 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3577 DAG.getConstant(0x3f800000, MVT::i32)); 3578 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3579 } 3580 3581 /// GetExponent - Get the exponent: 3582 /// 3583 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3584 /// 3585 /// where Op is the hexidecimal representation of floating point value. 3586 static SDValue 3587 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3588 DebugLoc dl) { 3589 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3590 DAG.getConstant(0x7f800000, MVT::i32)); 3591 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3592 DAG.getConstant(23, TLI.getPointerTy())); 3593 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3594 DAG.getConstant(127, MVT::i32)); 3595 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3596 } 3597 3598 /// getF32Constant - Get 32-bit floating point constant. 3599 static SDValue 3600 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3601 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3602 } 3603 3604 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3605 const char * 3606 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3607 SDValue Op1 = getValue(I.getArgOperand(0)); 3608 SDValue Op2 = getValue(I.getArgOperand(1)); 3609 3610 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3611 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3612 return 0; 3613 } 3614 3615 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3616 /// limited-precision mode. 3617 void 3618 SelectionDAGBuilder::visitExp(const CallInst &I) { 3619 SDValue result; 3620 DebugLoc dl = getCurDebugLoc(); 3621 3622 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3623 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3624 SDValue Op = getValue(I.getArgOperand(0)); 3625 3626 // Put the exponent in the right bit position for later addition to the 3627 // final result: 3628 // 3629 // #define LOG2OFe 1.4426950f 3630 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3631 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3632 getF32Constant(DAG, 0x3fb8aa3b)); 3633 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3634 3635 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3636 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3637 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3638 3639 // IntegerPartOfX <<= 23; 3640 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3641 DAG.getConstant(23, TLI.getPointerTy())); 3642 3643 if (LimitFloatPrecision <= 6) { 3644 // For floating-point precision of 6: 3645 // 3646 // TwoToFractionalPartOfX = 3647 // 0.997535578f + 3648 // (0.735607626f + 0.252464424f * x) * x; 3649 // 3650 // error 0.0144103317, which is 6 bits 3651 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3652 getF32Constant(DAG, 0x3e814304)); 3653 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3654 getF32Constant(DAG, 0x3f3c50c8)); 3655 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3656 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3657 getF32Constant(DAG, 0x3f7f5e7e)); 3658 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3659 3660 // Add the exponent into the result in integer domain. 3661 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3662 TwoToFracPartOfX, IntegerPartOfX); 3663 3664 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3665 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3666 // For floating-point precision of 12: 3667 // 3668 // TwoToFractionalPartOfX = 3669 // 0.999892986f + 3670 // (0.696457318f + 3671 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3672 // 3673 // 0.000107046256 error, which is 13 to 14 bits 3674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3675 getF32Constant(DAG, 0x3da235e3)); 3676 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3677 getF32Constant(DAG, 0x3e65b8f3)); 3678 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3679 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3680 getF32Constant(DAG, 0x3f324b07)); 3681 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3682 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3683 getF32Constant(DAG, 0x3f7ff8fd)); 3684 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3685 3686 // Add the exponent into the result in integer domain. 3687 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3688 TwoToFracPartOfX, IntegerPartOfX); 3689 3690 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3691 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3692 // For floating-point precision of 18: 3693 // 3694 // TwoToFractionalPartOfX = 3695 // 0.999999982f + 3696 // (0.693148872f + 3697 // (0.240227044f + 3698 // (0.554906021e-1f + 3699 // (0.961591928e-2f + 3700 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3701 // 3702 // error 2.47208000*10^(-7), which is better than 18 bits 3703 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3704 getF32Constant(DAG, 0x3924b03e)); 3705 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3706 getF32Constant(DAG, 0x3ab24b87)); 3707 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3708 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3709 getF32Constant(DAG, 0x3c1d8c17)); 3710 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3711 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3712 getF32Constant(DAG, 0x3d634a1d)); 3713 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3714 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3715 getF32Constant(DAG, 0x3e75fe14)); 3716 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3717 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3718 getF32Constant(DAG, 0x3f317234)); 3719 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3720 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3721 getF32Constant(DAG, 0x3f800000)); 3722 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3723 MVT::i32, t13); 3724 3725 // Add the exponent into the result in integer domain. 3726 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3727 TwoToFracPartOfX, IntegerPartOfX); 3728 3729 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3730 } 3731 } else { 3732 // No special expansion. 3733 result = DAG.getNode(ISD::FEXP, dl, 3734 getValue(I.getArgOperand(0)).getValueType(), 3735 getValue(I.getArgOperand(0))); 3736 } 3737 3738 setValue(&I, result); 3739 } 3740 3741 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3742 /// limited-precision mode. 3743 void 3744 SelectionDAGBuilder::visitLog(const CallInst &I) { 3745 SDValue result; 3746 DebugLoc dl = getCurDebugLoc(); 3747 3748 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3749 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3750 SDValue Op = getValue(I.getArgOperand(0)); 3751 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3752 3753 // Scale the exponent by log(2) [0.69314718f]. 3754 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3755 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3756 getF32Constant(DAG, 0x3f317218)); 3757 3758 // Get the significand and build it into a floating-point number with 3759 // exponent of 1. 3760 SDValue X = GetSignificand(DAG, Op1, dl); 3761 3762 if (LimitFloatPrecision <= 6) { 3763 // For floating-point precision of 6: 3764 // 3765 // LogofMantissa = 3766 // -1.1609546f + 3767 // (1.4034025f - 0.23903021f * x) * x; 3768 // 3769 // error 0.0034276066, which is better than 8 bits 3770 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0xbe74c456)); 3772 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3773 getF32Constant(DAG, 0x3fb3a2b1)); 3774 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3775 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3f949a29)); 3777 3778 result = DAG.getNode(ISD::FADD, dl, 3779 MVT::f32, LogOfExponent, LogOfMantissa); 3780 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3781 // For floating-point precision of 12: 3782 // 3783 // LogOfMantissa = 3784 // -1.7417939f + 3785 // (2.8212026f + 3786 // (-1.4699568f + 3787 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3788 // 3789 // error 0.000061011436, which is 14 bits 3790 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0xbd67b6d6)); 3792 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3793 getF32Constant(DAG, 0x3ee4f4b8)); 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3795 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3796 getF32Constant(DAG, 0x3fbc278b)); 3797 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3798 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3799 getF32Constant(DAG, 0x40348e95)); 3800 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3801 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3802 getF32Constant(DAG, 0x3fdef31a)); 3803 3804 result = DAG.getNode(ISD::FADD, dl, 3805 MVT::f32, LogOfExponent, LogOfMantissa); 3806 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3807 // For floating-point precision of 18: 3808 // 3809 // LogOfMantissa = 3810 // -2.1072184f + 3811 // (4.2372794f + 3812 // (-3.7029485f + 3813 // (2.2781945f + 3814 // (-0.87823314f + 3815 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3816 // 3817 // error 0.0000023660568, which is better than 18 bits 3818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3819 getF32Constant(DAG, 0xbc91e5ac)); 3820 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3821 getF32Constant(DAG, 0x3e4350aa)); 3822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3823 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3824 getF32Constant(DAG, 0x3f60d3e3)); 3825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3826 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3827 getF32Constant(DAG, 0x4011cdf0)); 3828 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3829 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3830 getF32Constant(DAG, 0x406cfd1c)); 3831 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3832 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3833 getF32Constant(DAG, 0x408797cb)); 3834 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3835 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3836 getF32Constant(DAG, 0x4006dcab)); 3837 3838 result = DAG.getNode(ISD::FADD, dl, 3839 MVT::f32, LogOfExponent, LogOfMantissa); 3840 } 3841 } else { 3842 // No special expansion. 3843 result = DAG.getNode(ISD::FLOG, dl, 3844 getValue(I.getArgOperand(0)).getValueType(), 3845 getValue(I.getArgOperand(0))); 3846 } 3847 3848 setValue(&I, result); 3849 } 3850 3851 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3852 /// limited-precision mode. 3853 void 3854 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3855 SDValue result; 3856 DebugLoc dl = getCurDebugLoc(); 3857 3858 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3859 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3860 SDValue Op = getValue(I.getArgOperand(0)); 3861 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3862 3863 // Get the exponent. 3864 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3865 3866 // Get the significand and build it into a floating-point number with 3867 // exponent of 1. 3868 SDValue X = GetSignificand(DAG, Op1, dl); 3869 3870 // Different possible minimax approximations of significand in 3871 // floating-point for various degrees of accuracy over [1,2]. 3872 if (LimitFloatPrecision <= 6) { 3873 // For floating-point precision of 6: 3874 // 3875 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3876 // 3877 // error 0.0049451742, which is more than 7 bits 3878 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3879 getF32Constant(DAG, 0xbeb08fe0)); 3880 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3881 getF32Constant(DAG, 0x40019463)); 3882 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3883 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3884 getF32Constant(DAG, 0x3fd6633d)); 3885 3886 result = DAG.getNode(ISD::FADD, dl, 3887 MVT::f32, LogOfExponent, Log2ofMantissa); 3888 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3889 // For floating-point precision of 12: 3890 // 3891 // Log2ofMantissa = 3892 // -2.51285454f + 3893 // (4.07009056f + 3894 // (-2.12067489f + 3895 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3896 // 3897 // error 0.0000876136000, which is better than 13 bits 3898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3899 getF32Constant(DAG, 0xbda7262e)); 3900 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3901 getF32Constant(DAG, 0x3f25280b)); 3902 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3903 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3904 getF32Constant(DAG, 0x4007b923)); 3905 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3906 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3907 getF32Constant(DAG, 0x40823e2f)); 3908 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3909 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3910 getF32Constant(DAG, 0x4020d29c)); 3911 3912 result = DAG.getNode(ISD::FADD, dl, 3913 MVT::f32, LogOfExponent, Log2ofMantissa); 3914 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3915 // For floating-point precision of 18: 3916 // 3917 // Log2ofMantissa = 3918 // -3.0400495f + 3919 // (6.1129976f + 3920 // (-5.3420409f + 3921 // (3.2865683f + 3922 // (-1.2669343f + 3923 // (0.27515199f - 3924 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3925 // 3926 // error 0.0000018516, which is better than 18 bits 3927 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3928 getF32Constant(DAG, 0xbcd2769e)); 3929 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3930 getF32Constant(DAG, 0x3e8ce0b9)); 3931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3932 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3933 getF32Constant(DAG, 0x3fa22ae7)); 3934 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3935 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3936 getF32Constant(DAG, 0x40525723)); 3937 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3938 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3939 getF32Constant(DAG, 0x40aaf200)); 3940 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3941 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3942 getF32Constant(DAG, 0x40c39dad)); 3943 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3944 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3945 getF32Constant(DAG, 0x4042902c)); 3946 3947 result = DAG.getNode(ISD::FADD, dl, 3948 MVT::f32, LogOfExponent, Log2ofMantissa); 3949 } 3950 } else { 3951 // No special expansion. 3952 result = DAG.getNode(ISD::FLOG2, dl, 3953 getValue(I.getArgOperand(0)).getValueType(), 3954 getValue(I.getArgOperand(0))); 3955 } 3956 3957 setValue(&I, result); 3958 } 3959 3960 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3961 /// limited-precision mode. 3962 void 3963 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3964 SDValue result; 3965 DebugLoc dl = getCurDebugLoc(); 3966 3967 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3968 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3969 SDValue Op = getValue(I.getArgOperand(0)); 3970 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3971 3972 // Scale the exponent by log10(2) [0.30102999f]. 3973 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3974 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3975 getF32Constant(DAG, 0x3e9a209a)); 3976 3977 // Get the significand and build it into a floating-point number with 3978 // exponent of 1. 3979 SDValue X = GetSignificand(DAG, Op1, dl); 3980 3981 if (LimitFloatPrecision <= 6) { 3982 // For floating-point precision of 6: 3983 // 3984 // Log10ofMantissa = 3985 // -0.50419619f + 3986 // (0.60948995f - 0.10380950f * x) * x; 3987 // 3988 // error 0.0014886165, which is 6 bits 3989 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0xbdd49a13)); 3991 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3992 getF32Constant(DAG, 0x3f1c0789)); 3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3994 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3995 getF32Constant(DAG, 0x3f011300)); 3996 3997 result = DAG.getNode(ISD::FADD, dl, 3998 MVT::f32, LogOfExponent, Log10ofMantissa); 3999 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4000 // For floating-point precision of 12: 4001 // 4002 // Log10ofMantissa = 4003 // -0.64831180f + 4004 // (0.91751397f + 4005 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4006 // 4007 // error 0.00019228036, which is better than 12 bits 4008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4009 getF32Constant(DAG, 0x3d431f31)); 4010 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4011 getF32Constant(DAG, 0x3ea21fb2)); 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3f6ae232)); 4015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4016 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4017 getF32Constant(DAG, 0x3f25f7c3)); 4018 4019 result = DAG.getNode(ISD::FADD, dl, 4020 MVT::f32, LogOfExponent, Log10ofMantissa); 4021 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4022 // For floating-point precision of 18: 4023 // 4024 // Log10ofMantissa = 4025 // -0.84299375f + 4026 // (1.5327582f + 4027 // (-1.0688956f + 4028 // (0.49102474f + 4029 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4030 // 4031 // error 0.0000037995730, which is better than 18 bits 4032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4033 getF32Constant(DAG, 0x3c5d51ce)); 4034 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4035 getF32Constant(DAG, 0x3e00685a)); 4036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4037 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4038 getF32Constant(DAG, 0x3efb6798)); 4039 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4040 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4041 getF32Constant(DAG, 0x3f88d192)); 4042 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4043 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4044 getF32Constant(DAG, 0x3fc4316c)); 4045 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4046 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4047 getF32Constant(DAG, 0x3f57ce70)); 4048 4049 result = DAG.getNode(ISD::FADD, dl, 4050 MVT::f32, LogOfExponent, Log10ofMantissa); 4051 } 4052 } else { 4053 // No special expansion. 4054 result = DAG.getNode(ISD::FLOG10, dl, 4055 getValue(I.getArgOperand(0)).getValueType(), 4056 getValue(I.getArgOperand(0))); 4057 } 4058 4059 setValue(&I, result); 4060 } 4061 4062 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4063 /// limited-precision mode. 4064 void 4065 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4066 SDValue result; 4067 DebugLoc dl = getCurDebugLoc(); 4068 4069 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4070 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4071 SDValue Op = getValue(I.getArgOperand(0)); 4072 4073 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4074 4075 // FractionalPartOfX = x - (float)IntegerPartOfX; 4076 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4077 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4078 4079 // IntegerPartOfX <<= 23; 4080 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4081 DAG.getConstant(23, TLI.getPointerTy())); 4082 4083 if (LimitFloatPrecision <= 6) { 4084 // For floating-point precision of 6: 4085 // 4086 // TwoToFractionalPartOfX = 4087 // 0.997535578f + 4088 // (0.735607626f + 0.252464424f * x) * x; 4089 // 4090 // error 0.0144103317, which is 6 bits 4091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4092 getF32Constant(DAG, 0x3e814304)); 4093 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4094 getF32Constant(DAG, 0x3f3c50c8)); 4095 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4096 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4097 getF32Constant(DAG, 0x3f7f5e7e)); 4098 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4099 SDValue TwoToFractionalPartOfX = 4100 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4101 4102 result = DAG.getNode(ISD::BITCAST, dl, 4103 MVT::f32, TwoToFractionalPartOfX); 4104 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4105 // For floating-point precision of 12: 4106 // 4107 // TwoToFractionalPartOfX = 4108 // 0.999892986f + 4109 // (0.696457318f + 4110 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4111 // 4112 // error 0.000107046256, which is 13 to 14 bits 4113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4114 getF32Constant(DAG, 0x3da235e3)); 4115 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x3e65b8f3)); 4117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4118 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4119 getF32Constant(DAG, 0x3f324b07)); 4120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4121 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4122 getF32Constant(DAG, 0x3f7ff8fd)); 4123 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4124 SDValue TwoToFractionalPartOfX = 4125 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4126 4127 result = DAG.getNode(ISD::BITCAST, dl, 4128 MVT::f32, TwoToFractionalPartOfX); 4129 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4130 // For floating-point precision of 18: 4131 // 4132 // TwoToFractionalPartOfX = 4133 // 0.999999982f + 4134 // (0.693148872f + 4135 // (0.240227044f + 4136 // (0.554906021e-1f + 4137 // (0.961591928e-2f + 4138 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4139 // error 2.47208000*10^(-7), which is better than 18 bits 4140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4141 getF32Constant(DAG, 0x3924b03e)); 4142 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4143 getF32Constant(DAG, 0x3ab24b87)); 4144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4145 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4146 getF32Constant(DAG, 0x3c1d8c17)); 4147 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4148 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4149 getF32Constant(DAG, 0x3d634a1d)); 4150 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4151 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4152 getF32Constant(DAG, 0x3e75fe14)); 4153 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4154 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4155 getF32Constant(DAG, 0x3f317234)); 4156 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4157 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4158 getF32Constant(DAG, 0x3f800000)); 4159 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4160 SDValue TwoToFractionalPartOfX = 4161 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4162 4163 result = DAG.getNode(ISD::BITCAST, dl, 4164 MVT::f32, TwoToFractionalPartOfX); 4165 } 4166 } else { 4167 // No special expansion. 4168 result = DAG.getNode(ISD::FEXP2, dl, 4169 getValue(I.getArgOperand(0)).getValueType(), 4170 getValue(I.getArgOperand(0))); 4171 } 4172 4173 setValue(&I, result); 4174 } 4175 4176 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4177 /// limited-precision mode with x == 10.0f. 4178 void 4179 SelectionDAGBuilder::visitPow(const CallInst &I) { 4180 SDValue result; 4181 const Value *Val = I.getArgOperand(0); 4182 DebugLoc dl = getCurDebugLoc(); 4183 bool IsExp10 = false; 4184 4185 if (getValue(Val).getValueType() == MVT::f32 && 4186 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4187 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4188 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4189 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4190 APFloat Ten(10.0f); 4191 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4192 } 4193 } 4194 } 4195 4196 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4197 SDValue Op = getValue(I.getArgOperand(1)); 4198 4199 // Put the exponent in the right bit position for later addition to the 4200 // final result: 4201 // 4202 // #define LOG2OF10 3.3219281f 4203 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4205 getF32Constant(DAG, 0x40549a78)); 4206 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4207 4208 // FractionalPartOfX = x - (float)IntegerPartOfX; 4209 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4210 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4211 4212 // IntegerPartOfX <<= 23; 4213 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4214 DAG.getConstant(23, TLI.getPointerTy())); 4215 4216 if (LimitFloatPrecision <= 6) { 4217 // For floating-point precision of 6: 4218 // 4219 // twoToFractionalPartOfX = 4220 // 0.997535578f + 4221 // (0.735607626f + 0.252464424f * x) * x; 4222 // 4223 // error 0.0144103317, which is 6 bits 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4225 getF32Constant(DAG, 0x3e814304)); 4226 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4227 getF32Constant(DAG, 0x3f3c50c8)); 4228 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4229 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4230 getF32Constant(DAG, 0x3f7f5e7e)); 4231 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4232 SDValue TwoToFractionalPartOfX = 4233 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4234 4235 result = DAG.getNode(ISD::BITCAST, dl, 4236 MVT::f32, TwoToFractionalPartOfX); 4237 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4238 // For floating-point precision of 12: 4239 // 4240 // TwoToFractionalPartOfX = 4241 // 0.999892986f + 4242 // (0.696457318f + 4243 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4244 // 4245 // error 0.000107046256, which is 13 to 14 bits 4246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4247 getF32Constant(DAG, 0x3da235e3)); 4248 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4249 getF32Constant(DAG, 0x3e65b8f3)); 4250 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4251 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4252 getF32Constant(DAG, 0x3f324b07)); 4253 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4254 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4255 getF32Constant(DAG, 0x3f7ff8fd)); 4256 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4257 SDValue TwoToFractionalPartOfX = 4258 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4259 4260 result = DAG.getNode(ISD::BITCAST, dl, 4261 MVT::f32, TwoToFractionalPartOfX); 4262 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4263 // For floating-point precision of 18: 4264 // 4265 // TwoToFractionalPartOfX = 4266 // 0.999999982f + 4267 // (0.693148872f + 4268 // (0.240227044f + 4269 // (0.554906021e-1f + 4270 // (0.961591928e-2f + 4271 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4272 // error 2.47208000*10^(-7), which is better than 18 bits 4273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4274 getF32Constant(DAG, 0x3924b03e)); 4275 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4276 getF32Constant(DAG, 0x3ab24b87)); 4277 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4278 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4279 getF32Constant(DAG, 0x3c1d8c17)); 4280 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4281 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4282 getF32Constant(DAG, 0x3d634a1d)); 4283 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4284 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4285 getF32Constant(DAG, 0x3e75fe14)); 4286 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4287 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4288 getF32Constant(DAG, 0x3f317234)); 4289 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4290 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4291 getF32Constant(DAG, 0x3f800000)); 4292 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4293 SDValue TwoToFractionalPartOfX = 4294 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4295 4296 result = DAG.getNode(ISD::BITCAST, dl, 4297 MVT::f32, TwoToFractionalPartOfX); 4298 } 4299 } else { 4300 // No special expansion. 4301 result = DAG.getNode(ISD::FPOW, dl, 4302 getValue(I.getArgOperand(0)).getValueType(), 4303 getValue(I.getArgOperand(0)), 4304 getValue(I.getArgOperand(1))); 4305 } 4306 4307 setValue(&I, result); 4308 } 4309 4310 4311 /// ExpandPowI - Expand a llvm.powi intrinsic. 4312 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4313 SelectionDAG &DAG) { 4314 // If RHS is a constant, we can expand this out to a multiplication tree, 4315 // otherwise we end up lowering to a call to __powidf2 (for example). When 4316 // optimizing for size, we only want to do this if the expansion would produce 4317 // a small number of multiplies, otherwise we do the full expansion. 4318 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4319 // Get the exponent as a positive value. 4320 unsigned Val = RHSC->getSExtValue(); 4321 if ((int)Val < 0) Val = -Val; 4322 4323 // powi(x, 0) -> 1.0 4324 if (Val == 0) 4325 return DAG.getConstantFP(1.0, LHS.getValueType()); 4326 4327 const Function *F = DAG.getMachineFunction().getFunction(); 4328 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4329 // If optimizing for size, don't insert too many multiplies. This 4330 // inserts up to 5 multiplies. 4331 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4332 // We use the simple binary decomposition method to generate the multiply 4333 // sequence. There are more optimal ways to do this (for example, 4334 // powi(x,15) generates one more multiply than it should), but this has 4335 // the benefit of being both really simple and much better than a libcall. 4336 SDValue Res; // Logically starts equal to 1.0 4337 SDValue CurSquare = LHS; 4338 while (Val) { 4339 if (Val & 1) { 4340 if (Res.getNode()) 4341 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4342 else 4343 Res = CurSquare; // 1.0*CurSquare. 4344 } 4345 4346 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4347 CurSquare, CurSquare); 4348 Val >>= 1; 4349 } 4350 4351 // If the original was negative, invert the result, producing 1/(x*x*x). 4352 if (RHSC->getSExtValue() < 0) 4353 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4354 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4355 return Res; 4356 } 4357 } 4358 4359 // Otherwise, expand to a libcall. 4360 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4361 } 4362 4363 // getTruncatedArgReg - Find underlying register used for an truncated 4364 // argument. 4365 static unsigned getTruncatedArgReg(const SDValue &N) { 4366 if (N.getOpcode() != ISD::TRUNCATE) 4367 return 0; 4368 4369 const SDValue &Ext = N.getOperand(0); 4370 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4371 const SDValue &CFR = Ext.getOperand(0); 4372 if (CFR.getOpcode() == ISD::CopyFromReg) 4373 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4374 else 4375 if (CFR.getOpcode() == ISD::TRUNCATE) 4376 return getTruncatedArgReg(CFR); 4377 } 4378 return 0; 4379 } 4380 4381 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4382 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4383 /// At the end of instruction selection, they will be inserted to the entry BB. 4384 bool 4385 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4386 int64_t Offset, 4387 const SDValue &N) { 4388 const Argument *Arg = dyn_cast<Argument>(V); 4389 if (!Arg) 4390 return false; 4391 4392 MachineFunction &MF = DAG.getMachineFunction(); 4393 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4394 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4395 4396 // Ignore inlined function arguments here. 4397 DIVariable DV(Variable); 4398 if (DV.isInlinedFnArgument(MF.getFunction())) 4399 return false; 4400 4401 unsigned Reg = 0; 4402 // Some arguments' frame index is recorded during argument lowering. 4403 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4404 if (Offset) 4405 Reg = TRI->getFrameRegister(MF); 4406 4407 if (!Reg && N.getNode()) { 4408 if (N.getOpcode() == ISD::CopyFromReg) 4409 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4410 else 4411 Reg = getTruncatedArgReg(N); 4412 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4413 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4414 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4415 if (PR) 4416 Reg = PR; 4417 } 4418 } 4419 4420 if (!Reg) { 4421 // Check if ValueMap has reg number. 4422 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4423 if (VMI != FuncInfo.ValueMap.end()) 4424 Reg = VMI->second; 4425 } 4426 4427 if (!Reg && N.getNode()) { 4428 // Check if frame index is available. 4429 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4430 if (FrameIndexSDNode *FINode = 4431 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4432 Reg = TRI->getFrameRegister(MF); 4433 Offset = FINode->getIndex(); 4434 } 4435 } 4436 4437 if (!Reg) 4438 return false; 4439 4440 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4441 TII->get(TargetOpcode::DBG_VALUE)) 4442 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4443 FuncInfo.ArgDbgValues.push_back(&*MIB); 4444 return true; 4445 } 4446 4447 // VisualStudio defines setjmp as _setjmp 4448 #if defined(_MSC_VER) && defined(setjmp) && \ 4449 !defined(setjmp_undefined_for_msvc) 4450 # pragma push_macro("setjmp") 4451 # undef setjmp 4452 # define setjmp_undefined_for_msvc 4453 #endif 4454 4455 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4456 /// we want to emit this as a call to a named external function, return the name 4457 /// otherwise lower it and return null. 4458 const char * 4459 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4460 DebugLoc dl = getCurDebugLoc(); 4461 SDValue Res; 4462 4463 switch (Intrinsic) { 4464 default: 4465 // By default, turn this into a target intrinsic node. 4466 visitTargetIntrinsic(I, Intrinsic); 4467 return 0; 4468 case Intrinsic::vastart: visitVAStart(I); return 0; 4469 case Intrinsic::vaend: visitVAEnd(I); return 0; 4470 case Intrinsic::vacopy: visitVACopy(I); return 0; 4471 case Intrinsic::returnaddress: 4472 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4473 getValue(I.getArgOperand(0)))); 4474 return 0; 4475 case Intrinsic::frameaddress: 4476 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4477 getValue(I.getArgOperand(0)))); 4478 return 0; 4479 case Intrinsic::setjmp: 4480 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4481 case Intrinsic::longjmp: 4482 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4483 case Intrinsic::memcpy: { 4484 // Assert for address < 256 since we support only user defined address 4485 // spaces. 4486 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4487 < 256 && 4488 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4489 < 256 && 4490 "Unknown address space"); 4491 SDValue Op1 = getValue(I.getArgOperand(0)); 4492 SDValue Op2 = getValue(I.getArgOperand(1)); 4493 SDValue Op3 = getValue(I.getArgOperand(2)); 4494 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4495 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4496 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4497 MachinePointerInfo(I.getArgOperand(0)), 4498 MachinePointerInfo(I.getArgOperand(1)))); 4499 return 0; 4500 } 4501 case Intrinsic::memset: { 4502 // Assert for address < 256 since we support only user defined address 4503 // spaces. 4504 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4505 < 256 && 4506 "Unknown address space"); 4507 SDValue Op1 = getValue(I.getArgOperand(0)); 4508 SDValue Op2 = getValue(I.getArgOperand(1)); 4509 SDValue Op3 = getValue(I.getArgOperand(2)); 4510 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4511 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4512 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4513 MachinePointerInfo(I.getArgOperand(0)))); 4514 return 0; 4515 } 4516 case Intrinsic::memmove: { 4517 // Assert for address < 256 since we support only user defined address 4518 // spaces. 4519 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4520 < 256 && 4521 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4522 < 256 && 4523 "Unknown address space"); 4524 SDValue Op1 = getValue(I.getArgOperand(0)); 4525 SDValue Op2 = getValue(I.getArgOperand(1)); 4526 SDValue Op3 = getValue(I.getArgOperand(2)); 4527 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4528 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4529 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4530 MachinePointerInfo(I.getArgOperand(0)), 4531 MachinePointerInfo(I.getArgOperand(1)))); 4532 return 0; 4533 } 4534 case Intrinsic::dbg_declare: { 4535 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4536 MDNode *Variable = DI.getVariable(); 4537 const Value *Address = DI.getAddress(); 4538 if (!Address || !DIVariable(Variable).Verify()) 4539 return 0; 4540 4541 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4542 // but do not always have a corresponding SDNode built. The SDNodeOrder 4543 // absolute, but not relative, values are different depending on whether 4544 // debug info exists. 4545 ++SDNodeOrder; 4546 4547 // Check if address has undef value. 4548 if (isa<UndefValue>(Address) || 4549 (Address->use_empty() && !isa<Argument>(Address))) { 4550 DEBUG(dbgs() << "Dropping debug info for " << DI); 4551 return 0; 4552 } 4553 4554 SDValue &N = NodeMap[Address]; 4555 if (!N.getNode() && isa<Argument>(Address)) 4556 // Check unused arguments map. 4557 N = UnusedArgNodeMap[Address]; 4558 SDDbgValue *SDV; 4559 if (N.getNode()) { 4560 // Parameters are handled specially. 4561 bool isParameter = 4562 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4563 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4564 Address = BCI->getOperand(0); 4565 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4566 4567 if (isParameter && !AI) { 4568 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4569 if (FINode) 4570 // Byval parameter. We have a frame index at this point. 4571 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4572 0, dl, SDNodeOrder); 4573 else { 4574 // Address is an argument, so try to emit its dbg value using 4575 // virtual register info from the FuncInfo.ValueMap. 4576 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4577 return 0; 4578 } 4579 } else if (AI) 4580 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4581 0, dl, SDNodeOrder); 4582 else { 4583 // Can't do anything with other non-AI cases yet. 4584 DEBUG(dbgs() << "Dropping debug info for " << DI); 4585 return 0; 4586 } 4587 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4588 } else { 4589 // If Address is an argument then try to emit its dbg value using 4590 // virtual register info from the FuncInfo.ValueMap. 4591 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4592 // If variable is pinned by a alloca in dominating bb then 4593 // use StaticAllocaMap. 4594 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4595 if (AI->getParent() != DI.getParent()) { 4596 DenseMap<const AllocaInst*, int>::iterator SI = 4597 FuncInfo.StaticAllocaMap.find(AI); 4598 if (SI != FuncInfo.StaticAllocaMap.end()) { 4599 SDV = DAG.getDbgValue(Variable, SI->second, 4600 0, dl, SDNodeOrder); 4601 DAG.AddDbgValue(SDV, 0, false); 4602 return 0; 4603 } 4604 } 4605 } 4606 DEBUG(dbgs() << "Dropping debug info for " << DI); 4607 } 4608 } 4609 return 0; 4610 } 4611 case Intrinsic::dbg_value: { 4612 const DbgValueInst &DI = cast<DbgValueInst>(I); 4613 if (!DIVariable(DI.getVariable()).Verify()) 4614 return 0; 4615 4616 MDNode *Variable = DI.getVariable(); 4617 uint64_t Offset = DI.getOffset(); 4618 const Value *V = DI.getValue(); 4619 if (!V) 4620 return 0; 4621 4622 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4623 // but do not always have a corresponding SDNode built. The SDNodeOrder 4624 // absolute, but not relative, values are different depending on whether 4625 // debug info exists. 4626 ++SDNodeOrder; 4627 SDDbgValue *SDV; 4628 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4629 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4630 DAG.AddDbgValue(SDV, 0, false); 4631 } else { 4632 // Do not use getValue() in here; we don't want to generate code at 4633 // this point if it hasn't been done yet. 4634 SDValue N = NodeMap[V]; 4635 if (!N.getNode() && isa<Argument>(V)) 4636 // Check unused arguments map. 4637 N = UnusedArgNodeMap[V]; 4638 if (N.getNode()) { 4639 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4640 SDV = DAG.getDbgValue(Variable, N.getNode(), 4641 N.getResNo(), Offset, dl, SDNodeOrder); 4642 DAG.AddDbgValue(SDV, N.getNode(), false); 4643 } 4644 } else if (!V->use_empty() ) { 4645 // Do not call getValue(V) yet, as we don't want to generate code. 4646 // Remember it for later. 4647 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4648 DanglingDebugInfoMap[V] = DDI; 4649 } else { 4650 // We may expand this to cover more cases. One case where we have no 4651 // data available is an unreferenced parameter. 4652 DEBUG(dbgs() << "Dropping debug info for " << DI); 4653 } 4654 } 4655 4656 // Build a debug info table entry. 4657 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4658 V = BCI->getOperand(0); 4659 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4660 // Don't handle byval struct arguments or VLAs, for example. 4661 if (!AI) 4662 return 0; 4663 DenseMap<const AllocaInst*, int>::iterator SI = 4664 FuncInfo.StaticAllocaMap.find(AI); 4665 if (SI == FuncInfo.StaticAllocaMap.end()) 4666 return 0; // VLAs. 4667 int FI = SI->second; 4668 4669 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4670 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4671 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4672 return 0; 4673 } 4674 case Intrinsic::eh_exception: { 4675 // Insert the EXCEPTIONADDR instruction. 4676 assert(FuncInfo.MBB->isLandingPad() && 4677 "Call to eh.exception not in landing pad!"); 4678 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4679 SDValue Ops[1]; 4680 Ops[0] = DAG.getRoot(); 4681 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4682 setValue(&I, Op); 4683 DAG.setRoot(Op.getValue(1)); 4684 return 0; 4685 } 4686 4687 case Intrinsic::eh_selector: { 4688 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4689 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4690 if (CallMBB->isLandingPad()) 4691 AddCatchInfo(I, &MMI, CallMBB); 4692 else { 4693 #ifndef NDEBUG 4694 FuncInfo.CatchInfoLost.insert(&I); 4695 #endif 4696 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4697 unsigned Reg = TLI.getExceptionSelectorRegister(); 4698 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4699 } 4700 4701 // Insert the EHSELECTION instruction. 4702 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4703 SDValue Ops[2]; 4704 Ops[0] = getValue(I.getArgOperand(0)); 4705 Ops[1] = getRoot(); 4706 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4707 DAG.setRoot(Op.getValue(1)); 4708 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4709 return 0; 4710 } 4711 4712 case Intrinsic::eh_typeid_for: { 4713 // Find the type id for the given typeinfo. 4714 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4715 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4716 Res = DAG.getConstant(TypeID, MVT::i32); 4717 setValue(&I, Res); 4718 return 0; 4719 } 4720 4721 case Intrinsic::eh_return_i32: 4722 case Intrinsic::eh_return_i64: 4723 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4724 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4725 MVT::Other, 4726 getControlRoot(), 4727 getValue(I.getArgOperand(0)), 4728 getValue(I.getArgOperand(1)))); 4729 return 0; 4730 case Intrinsic::eh_unwind_init: 4731 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4732 return 0; 4733 case Intrinsic::eh_dwarf_cfa: { 4734 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4735 TLI.getPointerTy()); 4736 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4737 TLI.getPointerTy(), 4738 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4739 TLI.getPointerTy()), 4740 CfaArg); 4741 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4742 TLI.getPointerTy(), 4743 DAG.getConstant(0, TLI.getPointerTy())); 4744 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4745 FA, Offset)); 4746 return 0; 4747 } 4748 case Intrinsic::eh_sjlj_callsite: { 4749 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4750 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4751 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4752 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4753 4754 MMI.setCurrentCallSite(CI->getZExtValue()); 4755 return 0; 4756 } 4757 case Intrinsic::eh_sjlj_functioncontext: { 4758 // Get and store the index of the function context. 4759 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4760 AllocaInst *FnCtx = 4761 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4762 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4763 MFI->setFunctionContextIndex(FI); 4764 return 0; 4765 } 4766 case Intrinsic::eh_sjlj_setjmp: { 4767 SDValue Ops[2]; 4768 Ops[0] = getRoot(); 4769 Ops[1] = getValue(I.getArgOperand(0)); 4770 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4771 DAG.getVTList(MVT::i32, MVT::Other), 4772 Ops, 2); 4773 setValue(&I, Op.getValue(0)); 4774 DAG.setRoot(Op.getValue(1)); 4775 return 0; 4776 } 4777 case Intrinsic::eh_sjlj_longjmp: { 4778 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4779 getRoot(), getValue(I.getArgOperand(0)))); 4780 return 0; 4781 } 4782 4783 case Intrinsic::x86_mmx_pslli_w: 4784 case Intrinsic::x86_mmx_pslli_d: 4785 case Intrinsic::x86_mmx_pslli_q: 4786 case Intrinsic::x86_mmx_psrli_w: 4787 case Intrinsic::x86_mmx_psrli_d: 4788 case Intrinsic::x86_mmx_psrli_q: 4789 case Intrinsic::x86_mmx_psrai_w: 4790 case Intrinsic::x86_mmx_psrai_d: { 4791 SDValue ShAmt = getValue(I.getArgOperand(1)); 4792 if (isa<ConstantSDNode>(ShAmt)) { 4793 visitTargetIntrinsic(I, Intrinsic); 4794 return 0; 4795 } 4796 unsigned NewIntrinsic = 0; 4797 EVT ShAmtVT = MVT::v2i32; 4798 switch (Intrinsic) { 4799 case Intrinsic::x86_mmx_pslli_w: 4800 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4801 break; 4802 case Intrinsic::x86_mmx_pslli_d: 4803 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4804 break; 4805 case Intrinsic::x86_mmx_pslli_q: 4806 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4807 break; 4808 case Intrinsic::x86_mmx_psrli_w: 4809 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4810 break; 4811 case Intrinsic::x86_mmx_psrli_d: 4812 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4813 break; 4814 case Intrinsic::x86_mmx_psrli_q: 4815 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4816 break; 4817 case Intrinsic::x86_mmx_psrai_w: 4818 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4819 break; 4820 case Intrinsic::x86_mmx_psrai_d: 4821 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4822 break; 4823 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4824 } 4825 4826 // The vector shift intrinsics with scalars uses 32b shift amounts but 4827 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4828 // to be zero. 4829 // We must do this early because v2i32 is not a legal type. 4830 DebugLoc dl = getCurDebugLoc(); 4831 SDValue ShOps[2]; 4832 ShOps[0] = ShAmt; 4833 ShOps[1] = DAG.getConstant(0, MVT::i32); 4834 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4835 EVT DestVT = TLI.getValueType(I.getType()); 4836 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4837 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4838 DAG.getConstant(NewIntrinsic, MVT::i32), 4839 getValue(I.getArgOperand(0)), ShAmt); 4840 setValue(&I, Res); 4841 return 0; 4842 } 4843 case Intrinsic::convertff: 4844 case Intrinsic::convertfsi: 4845 case Intrinsic::convertfui: 4846 case Intrinsic::convertsif: 4847 case Intrinsic::convertuif: 4848 case Intrinsic::convertss: 4849 case Intrinsic::convertsu: 4850 case Intrinsic::convertus: 4851 case Intrinsic::convertuu: { 4852 ISD::CvtCode Code = ISD::CVT_INVALID; 4853 switch (Intrinsic) { 4854 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4855 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4856 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4857 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4858 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4859 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4860 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4861 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4862 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4863 } 4864 EVT DestVT = TLI.getValueType(I.getType()); 4865 const Value *Op1 = I.getArgOperand(0); 4866 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4867 DAG.getValueType(DestVT), 4868 DAG.getValueType(getValue(Op1).getValueType()), 4869 getValue(I.getArgOperand(1)), 4870 getValue(I.getArgOperand(2)), 4871 Code); 4872 setValue(&I, Res); 4873 return 0; 4874 } 4875 case Intrinsic::sqrt: 4876 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4877 getValue(I.getArgOperand(0)).getValueType(), 4878 getValue(I.getArgOperand(0)))); 4879 return 0; 4880 case Intrinsic::powi: 4881 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4882 getValue(I.getArgOperand(1)), DAG)); 4883 return 0; 4884 case Intrinsic::sin: 4885 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4886 getValue(I.getArgOperand(0)).getValueType(), 4887 getValue(I.getArgOperand(0)))); 4888 return 0; 4889 case Intrinsic::cos: 4890 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4891 getValue(I.getArgOperand(0)).getValueType(), 4892 getValue(I.getArgOperand(0)))); 4893 return 0; 4894 case Intrinsic::log: 4895 visitLog(I); 4896 return 0; 4897 case Intrinsic::log2: 4898 visitLog2(I); 4899 return 0; 4900 case Intrinsic::log10: 4901 visitLog10(I); 4902 return 0; 4903 case Intrinsic::exp: 4904 visitExp(I); 4905 return 0; 4906 case Intrinsic::exp2: 4907 visitExp2(I); 4908 return 0; 4909 case Intrinsic::pow: 4910 visitPow(I); 4911 return 0; 4912 case Intrinsic::fma: 4913 setValue(&I, DAG.getNode(ISD::FMA, dl, 4914 getValue(I.getArgOperand(0)).getValueType(), 4915 getValue(I.getArgOperand(0)), 4916 getValue(I.getArgOperand(1)), 4917 getValue(I.getArgOperand(2)))); 4918 return 0; 4919 case Intrinsic::convert_to_fp16: 4920 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4921 MVT::i16, getValue(I.getArgOperand(0)))); 4922 return 0; 4923 case Intrinsic::convert_from_fp16: 4924 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4925 MVT::f32, getValue(I.getArgOperand(0)))); 4926 return 0; 4927 case Intrinsic::pcmarker: { 4928 SDValue Tmp = getValue(I.getArgOperand(0)); 4929 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4930 return 0; 4931 } 4932 case Intrinsic::readcyclecounter: { 4933 SDValue Op = getRoot(); 4934 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4935 DAG.getVTList(MVT::i64, MVT::Other), 4936 &Op, 1); 4937 setValue(&I, Res); 4938 DAG.setRoot(Res.getValue(1)); 4939 return 0; 4940 } 4941 case Intrinsic::bswap: 4942 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4943 getValue(I.getArgOperand(0)).getValueType(), 4944 getValue(I.getArgOperand(0)))); 4945 return 0; 4946 case Intrinsic::cttz: { 4947 SDValue Arg = getValue(I.getArgOperand(0)); 4948 EVT Ty = Arg.getValueType(); 4949 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4950 return 0; 4951 } 4952 case Intrinsic::ctlz: { 4953 SDValue Arg = getValue(I.getArgOperand(0)); 4954 EVT Ty = Arg.getValueType(); 4955 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4956 return 0; 4957 } 4958 case Intrinsic::ctpop: { 4959 SDValue Arg = getValue(I.getArgOperand(0)); 4960 EVT Ty = Arg.getValueType(); 4961 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4962 return 0; 4963 } 4964 case Intrinsic::stacksave: { 4965 SDValue Op = getRoot(); 4966 Res = DAG.getNode(ISD::STACKSAVE, dl, 4967 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4968 setValue(&I, Res); 4969 DAG.setRoot(Res.getValue(1)); 4970 return 0; 4971 } 4972 case Intrinsic::stackrestore: { 4973 Res = getValue(I.getArgOperand(0)); 4974 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4975 return 0; 4976 } 4977 case Intrinsic::stackprotector: { 4978 // Emit code into the DAG to store the stack guard onto the stack. 4979 MachineFunction &MF = DAG.getMachineFunction(); 4980 MachineFrameInfo *MFI = MF.getFrameInfo(); 4981 EVT PtrTy = TLI.getPointerTy(); 4982 4983 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4984 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4985 4986 int FI = FuncInfo.StaticAllocaMap[Slot]; 4987 MFI->setStackProtectorIndex(FI); 4988 4989 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4990 4991 // Store the stack protector onto the stack. 4992 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4993 MachinePointerInfo::getFixedStack(FI), 4994 true, false, 0); 4995 setValue(&I, Res); 4996 DAG.setRoot(Res); 4997 return 0; 4998 } 4999 case Intrinsic::objectsize: { 5000 // If we don't know by now, we're never going to know. 5001 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5002 5003 assert(CI && "Non-constant type in __builtin_object_size?"); 5004 5005 SDValue Arg = getValue(I.getCalledValue()); 5006 EVT Ty = Arg.getValueType(); 5007 5008 if (CI->isZero()) 5009 Res = DAG.getConstant(-1ULL, Ty); 5010 else 5011 Res = DAG.getConstant(0, Ty); 5012 5013 setValue(&I, Res); 5014 return 0; 5015 } 5016 case Intrinsic::var_annotation: 5017 // Discard annotate attributes 5018 return 0; 5019 5020 case Intrinsic::init_trampoline: { 5021 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5022 5023 SDValue Ops[6]; 5024 Ops[0] = getRoot(); 5025 Ops[1] = getValue(I.getArgOperand(0)); 5026 Ops[2] = getValue(I.getArgOperand(1)); 5027 Ops[3] = getValue(I.getArgOperand(2)); 5028 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5029 Ops[5] = DAG.getSrcValue(F); 5030 5031 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5032 5033 DAG.setRoot(Res); 5034 return 0; 5035 } 5036 case Intrinsic::adjust_trampoline: { 5037 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5038 TLI.getPointerTy(), 5039 getValue(I.getArgOperand(0)))); 5040 return 0; 5041 } 5042 case Intrinsic::gcroot: 5043 if (GFI) { 5044 const Value *Alloca = I.getArgOperand(0); 5045 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5046 5047 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5048 GFI->addStackRoot(FI->getIndex(), TypeMap); 5049 } 5050 return 0; 5051 case Intrinsic::gcread: 5052 case Intrinsic::gcwrite: 5053 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5054 return 0; 5055 case Intrinsic::flt_rounds: 5056 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5057 return 0; 5058 5059 case Intrinsic::expect: { 5060 // Just replace __builtin_expect(exp, c) with EXP. 5061 setValue(&I, getValue(I.getArgOperand(0))); 5062 return 0; 5063 } 5064 5065 case Intrinsic::trap: { 5066 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5067 if (TrapFuncName.empty()) { 5068 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5069 return 0; 5070 } 5071 TargetLowering::ArgListTy Args; 5072 std::pair<SDValue, SDValue> Result = 5073 TLI.LowerCallTo(getRoot(), I.getType(), 5074 false, false, false, false, 0, CallingConv::C, 5075 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5076 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5077 Args, DAG, getCurDebugLoc()); 5078 DAG.setRoot(Result.second); 5079 return 0; 5080 } 5081 case Intrinsic::uadd_with_overflow: 5082 return implVisitAluOverflow(I, ISD::UADDO); 5083 case Intrinsic::sadd_with_overflow: 5084 return implVisitAluOverflow(I, ISD::SADDO); 5085 case Intrinsic::usub_with_overflow: 5086 return implVisitAluOverflow(I, ISD::USUBO); 5087 case Intrinsic::ssub_with_overflow: 5088 return implVisitAluOverflow(I, ISD::SSUBO); 5089 case Intrinsic::umul_with_overflow: 5090 return implVisitAluOverflow(I, ISD::UMULO); 5091 case Intrinsic::smul_with_overflow: 5092 return implVisitAluOverflow(I, ISD::SMULO); 5093 5094 case Intrinsic::prefetch: { 5095 SDValue Ops[5]; 5096 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5097 Ops[0] = getRoot(); 5098 Ops[1] = getValue(I.getArgOperand(0)); 5099 Ops[2] = getValue(I.getArgOperand(1)); 5100 Ops[3] = getValue(I.getArgOperand(2)); 5101 Ops[4] = getValue(I.getArgOperand(3)); 5102 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5103 DAG.getVTList(MVT::Other), 5104 &Ops[0], 5, 5105 EVT::getIntegerVT(*Context, 8), 5106 MachinePointerInfo(I.getArgOperand(0)), 5107 0, /* align */ 5108 false, /* volatile */ 5109 rw==0, /* read */ 5110 rw==1)); /* write */ 5111 return 0; 5112 } 5113 5114 case Intrinsic::invariant_start: 5115 case Intrinsic::lifetime_start: 5116 // Discard region information. 5117 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5118 return 0; 5119 case Intrinsic::invariant_end: 5120 case Intrinsic::lifetime_end: 5121 // Discard region information. 5122 return 0; 5123 } 5124 } 5125 5126 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5127 bool isTailCall, 5128 MachineBasicBlock *LandingPad) { 5129 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5130 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5131 Type *RetTy = FTy->getReturnType(); 5132 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5133 MCSymbol *BeginLabel = 0; 5134 5135 TargetLowering::ArgListTy Args; 5136 TargetLowering::ArgListEntry Entry; 5137 Args.reserve(CS.arg_size()); 5138 5139 // Check whether the function can return without sret-demotion. 5140 SmallVector<ISD::OutputArg, 4> Outs; 5141 SmallVector<uint64_t, 4> Offsets; 5142 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5143 Outs, TLI, &Offsets); 5144 5145 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5146 DAG.getMachineFunction(), 5147 FTy->isVarArg(), Outs, 5148 FTy->getContext()); 5149 5150 SDValue DemoteStackSlot; 5151 int DemoteStackIdx = -100; 5152 5153 if (!CanLowerReturn) { 5154 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5155 FTy->getReturnType()); 5156 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5157 FTy->getReturnType()); 5158 MachineFunction &MF = DAG.getMachineFunction(); 5159 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5160 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5161 5162 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5163 Entry.Node = DemoteStackSlot; 5164 Entry.Ty = StackSlotPtrType; 5165 Entry.isSExt = false; 5166 Entry.isZExt = false; 5167 Entry.isInReg = false; 5168 Entry.isSRet = true; 5169 Entry.isNest = false; 5170 Entry.isByVal = false; 5171 Entry.Alignment = Align; 5172 Args.push_back(Entry); 5173 RetTy = Type::getVoidTy(FTy->getContext()); 5174 } 5175 5176 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5177 i != e; ++i) { 5178 const Value *V = *i; 5179 5180 // Skip empty types 5181 if (V->getType()->isEmptyTy()) 5182 continue; 5183 5184 SDValue ArgNode = getValue(V); 5185 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5186 5187 unsigned attrInd = i - CS.arg_begin() + 1; 5188 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5189 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5190 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5191 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5192 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5193 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5194 Entry.Alignment = CS.getParamAlignment(attrInd); 5195 Args.push_back(Entry); 5196 } 5197 5198 if (LandingPad) { 5199 // Insert a label before the invoke call to mark the try range. This can be 5200 // used to detect deletion of the invoke via the MachineModuleInfo. 5201 BeginLabel = MMI.getContext().CreateTempSymbol(); 5202 5203 // For SjLj, keep track of which landing pads go with which invokes 5204 // so as to maintain the ordering of pads in the LSDA. 5205 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5206 if (CallSiteIndex) { 5207 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5208 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5209 5210 // Now that the call site is handled, stop tracking it. 5211 MMI.setCurrentCallSite(0); 5212 } 5213 5214 // Both PendingLoads and PendingExports must be flushed here; 5215 // this call might not return. 5216 (void)getRoot(); 5217 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5218 } 5219 5220 // Check if target-independent constraints permit a tail call here. 5221 // Target-dependent constraints are checked within TLI.LowerCallTo. 5222 if (isTailCall && 5223 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5224 isTailCall = false; 5225 5226 // If there's a possibility that fast-isel has already selected some amount 5227 // of the current basic block, don't emit a tail call. 5228 if (isTailCall && TM.Options.EnableFastISel) 5229 isTailCall = false; 5230 5231 std::pair<SDValue,SDValue> Result = 5232 TLI.LowerCallTo(getRoot(), RetTy, 5233 CS.paramHasAttr(0, Attribute::SExt), 5234 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5235 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5236 CS.getCallingConv(), 5237 isTailCall, 5238 !CS.getInstruction()->use_empty(), 5239 Callee, Args, DAG, getCurDebugLoc()); 5240 assert((isTailCall || Result.second.getNode()) && 5241 "Non-null chain expected with non-tail call!"); 5242 assert((Result.second.getNode() || !Result.first.getNode()) && 5243 "Null value expected with tail call!"); 5244 if (Result.first.getNode()) { 5245 setValue(CS.getInstruction(), Result.first); 5246 } else if (!CanLowerReturn && Result.second.getNode()) { 5247 // The instruction result is the result of loading from the 5248 // hidden sret parameter. 5249 SmallVector<EVT, 1> PVTs; 5250 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5251 5252 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5253 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5254 EVT PtrVT = PVTs[0]; 5255 unsigned NumValues = Outs.size(); 5256 SmallVector<SDValue, 4> Values(NumValues); 5257 SmallVector<SDValue, 4> Chains(NumValues); 5258 5259 for (unsigned i = 0; i < NumValues; ++i) { 5260 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5261 DemoteStackSlot, 5262 DAG.getConstant(Offsets[i], PtrVT)); 5263 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5264 Add, 5265 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5266 false, false, false, 1); 5267 Values[i] = L; 5268 Chains[i] = L.getValue(1); 5269 } 5270 5271 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5272 MVT::Other, &Chains[0], NumValues); 5273 PendingLoads.push_back(Chain); 5274 5275 // Collect the legal value parts into potentially illegal values 5276 // that correspond to the original function's return values. 5277 SmallVector<EVT, 4> RetTys; 5278 RetTy = FTy->getReturnType(); 5279 ComputeValueVTs(TLI, RetTy, RetTys); 5280 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5281 SmallVector<SDValue, 4> ReturnValues; 5282 unsigned CurReg = 0; 5283 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5284 EVT VT = RetTys[I]; 5285 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5286 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5287 5288 SDValue ReturnValue = 5289 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5290 RegisterVT, VT, AssertOp); 5291 ReturnValues.push_back(ReturnValue); 5292 CurReg += NumRegs; 5293 } 5294 5295 setValue(CS.getInstruction(), 5296 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5297 DAG.getVTList(&RetTys[0], RetTys.size()), 5298 &ReturnValues[0], ReturnValues.size())); 5299 } 5300 5301 // Assign order to nodes here. If the call does not produce a result, it won't 5302 // be mapped to a SDNode and visit() will not assign it an order number. 5303 if (!Result.second.getNode()) { 5304 // As a special case, a null chain means that a tail call has been emitted and 5305 // the DAG root is already updated. 5306 HasTailCall = true; 5307 ++SDNodeOrder; 5308 AssignOrderingToNode(DAG.getRoot().getNode()); 5309 } else { 5310 DAG.setRoot(Result.second); 5311 ++SDNodeOrder; 5312 AssignOrderingToNode(Result.second.getNode()); 5313 } 5314 5315 if (LandingPad) { 5316 // Insert a label at the end of the invoke call to mark the try range. This 5317 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5318 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5319 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5320 5321 // Inform MachineModuleInfo of range. 5322 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5323 } 5324 } 5325 5326 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5327 /// value is equal or not-equal to zero. 5328 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5329 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5330 UI != E; ++UI) { 5331 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5332 if (IC->isEquality()) 5333 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5334 if (C->isNullValue()) 5335 continue; 5336 // Unknown instruction. 5337 return false; 5338 } 5339 return true; 5340 } 5341 5342 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5343 Type *LoadTy, 5344 SelectionDAGBuilder &Builder) { 5345 5346 // Check to see if this load can be trivially constant folded, e.g. if the 5347 // input is from a string literal. 5348 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5349 // Cast pointer to the type we really want to load. 5350 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5351 PointerType::getUnqual(LoadTy)); 5352 5353 if (const Constant *LoadCst = 5354 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5355 Builder.TD)) 5356 return Builder.getValue(LoadCst); 5357 } 5358 5359 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5360 // still constant memory, the input chain can be the entry node. 5361 SDValue Root; 5362 bool ConstantMemory = false; 5363 5364 // Do not serialize (non-volatile) loads of constant memory with anything. 5365 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5366 Root = Builder.DAG.getEntryNode(); 5367 ConstantMemory = true; 5368 } else { 5369 // Do not serialize non-volatile loads against each other. 5370 Root = Builder.DAG.getRoot(); 5371 } 5372 5373 SDValue Ptr = Builder.getValue(PtrVal); 5374 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5375 Ptr, MachinePointerInfo(PtrVal), 5376 false /*volatile*/, 5377 false /*nontemporal*/, 5378 false /*isinvariant*/, 1 /* align=1 */); 5379 5380 if (!ConstantMemory) 5381 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5382 return LoadVal; 5383 } 5384 5385 5386 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5387 /// If so, return true and lower it, otherwise return false and it will be 5388 /// lowered like a normal call. 5389 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5390 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5391 if (I.getNumArgOperands() != 3) 5392 return false; 5393 5394 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5395 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5396 !I.getArgOperand(2)->getType()->isIntegerTy() || 5397 !I.getType()->isIntegerTy()) 5398 return false; 5399 5400 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5401 5402 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5403 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5404 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5405 bool ActuallyDoIt = true; 5406 MVT LoadVT; 5407 Type *LoadTy; 5408 switch (Size->getZExtValue()) { 5409 default: 5410 LoadVT = MVT::Other; 5411 LoadTy = 0; 5412 ActuallyDoIt = false; 5413 break; 5414 case 2: 5415 LoadVT = MVT::i16; 5416 LoadTy = Type::getInt16Ty(Size->getContext()); 5417 break; 5418 case 4: 5419 LoadVT = MVT::i32; 5420 LoadTy = Type::getInt32Ty(Size->getContext()); 5421 break; 5422 case 8: 5423 LoadVT = MVT::i64; 5424 LoadTy = Type::getInt64Ty(Size->getContext()); 5425 break; 5426 /* 5427 case 16: 5428 LoadVT = MVT::v4i32; 5429 LoadTy = Type::getInt32Ty(Size->getContext()); 5430 LoadTy = VectorType::get(LoadTy, 4); 5431 break; 5432 */ 5433 } 5434 5435 // This turns into unaligned loads. We only do this if the target natively 5436 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5437 // we'll only produce a small number of byte loads. 5438 5439 // Require that we can find a legal MVT, and only do this if the target 5440 // supports unaligned loads of that type. Expanding into byte loads would 5441 // bloat the code. 5442 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5443 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5444 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5445 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5446 ActuallyDoIt = false; 5447 } 5448 5449 if (ActuallyDoIt) { 5450 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5451 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5452 5453 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5454 ISD::SETNE); 5455 EVT CallVT = TLI.getValueType(I.getType(), true); 5456 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5457 return true; 5458 } 5459 } 5460 5461 5462 return false; 5463 } 5464 5465 5466 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5467 // Handle inline assembly differently. 5468 if (isa<InlineAsm>(I.getCalledValue())) { 5469 visitInlineAsm(&I); 5470 return; 5471 } 5472 5473 // See if any floating point values are being passed to this function. This is 5474 // used to emit an undefined reference to fltused on Windows. 5475 FunctionType *FT = 5476 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5477 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5478 if (FT->isVarArg() && 5479 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5480 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5481 Type* T = I.getArgOperand(i)->getType(); 5482 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5483 i != e; ++i) { 5484 if (!i->isFloatingPointTy()) continue; 5485 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5486 break; 5487 } 5488 } 5489 } 5490 5491 const char *RenameFn = 0; 5492 if (Function *F = I.getCalledFunction()) { 5493 if (F->isDeclaration()) { 5494 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5495 if (unsigned IID = II->getIntrinsicID(F)) { 5496 RenameFn = visitIntrinsicCall(I, IID); 5497 if (!RenameFn) 5498 return; 5499 } 5500 } 5501 if (unsigned IID = F->getIntrinsicID()) { 5502 RenameFn = visitIntrinsicCall(I, IID); 5503 if (!RenameFn) 5504 return; 5505 } 5506 } 5507 5508 // Check for well-known libc/libm calls. If the function is internal, it 5509 // can't be a library call. 5510 if (!F->hasLocalLinkage() && F->hasName()) { 5511 StringRef Name = F->getName(); 5512 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5513 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5514 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5515 I.getType() == I.getArgOperand(0)->getType() && 5516 I.getType() == I.getArgOperand(1)->getType()) { 5517 SDValue LHS = getValue(I.getArgOperand(0)); 5518 SDValue RHS = getValue(I.getArgOperand(1)); 5519 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5520 LHS.getValueType(), LHS, RHS)); 5521 return; 5522 } 5523 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5524 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5525 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5526 I.getType() == I.getArgOperand(0)->getType()) { 5527 SDValue Tmp = getValue(I.getArgOperand(0)); 5528 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5529 Tmp.getValueType(), Tmp)); 5530 return; 5531 } 5532 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5533 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5534 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5535 I.getType() == I.getArgOperand(0)->getType() && 5536 I.onlyReadsMemory()) { 5537 SDValue Tmp = getValue(I.getArgOperand(0)); 5538 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5539 Tmp.getValueType(), Tmp)); 5540 return; 5541 } 5542 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5543 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5544 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5545 I.getType() == I.getArgOperand(0)->getType() && 5546 I.onlyReadsMemory()) { 5547 SDValue Tmp = getValue(I.getArgOperand(0)); 5548 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5549 Tmp.getValueType(), Tmp)); 5550 return; 5551 } 5552 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5553 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5554 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5555 I.getType() == I.getArgOperand(0)->getType() && 5556 I.onlyReadsMemory()) { 5557 SDValue Tmp = getValue(I.getArgOperand(0)); 5558 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5559 Tmp.getValueType(), Tmp)); 5560 return; 5561 } 5562 } else if (Name == "memcmp") { 5563 if (visitMemCmpCall(I)) 5564 return; 5565 } 5566 } 5567 } 5568 5569 SDValue Callee; 5570 if (!RenameFn) 5571 Callee = getValue(I.getCalledValue()); 5572 else 5573 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5574 5575 // Check if we can potentially perform a tail call. More detailed checking is 5576 // be done within LowerCallTo, after more information about the call is known. 5577 LowerCallTo(&I, Callee, I.isTailCall()); 5578 } 5579 5580 namespace { 5581 5582 /// AsmOperandInfo - This contains information for each constraint that we are 5583 /// lowering. 5584 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5585 public: 5586 /// CallOperand - If this is the result output operand or a clobber 5587 /// this is null, otherwise it is the incoming operand to the CallInst. 5588 /// This gets modified as the asm is processed. 5589 SDValue CallOperand; 5590 5591 /// AssignedRegs - If this is a register or register class operand, this 5592 /// contains the set of register corresponding to the operand. 5593 RegsForValue AssignedRegs; 5594 5595 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5596 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5597 } 5598 5599 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5600 /// busy in OutputRegs/InputRegs. 5601 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5602 std::set<unsigned> &OutputRegs, 5603 std::set<unsigned> &InputRegs, 5604 const TargetRegisterInfo &TRI) const { 5605 if (isOutReg) { 5606 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5607 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5608 } 5609 if (isInReg) { 5610 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5611 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5612 } 5613 } 5614 5615 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5616 /// corresponds to. If there is no Value* for this operand, it returns 5617 /// MVT::Other. 5618 EVT getCallOperandValEVT(LLVMContext &Context, 5619 const TargetLowering &TLI, 5620 const TargetData *TD) const { 5621 if (CallOperandVal == 0) return MVT::Other; 5622 5623 if (isa<BasicBlock>(CallOperandVal)) 5624 return TLI.getPointerTy(); 5625 5626 llvm::Type *OpTy = CallOperandVal->getType(); 5627 5628 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5629 // If this is an indirect operand, the operand is a pointer to the 5630 // accessed type. 5631 if (isIndirect) { 5632 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5633 if (!PtrTy) 5634 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5635 OpTy = PtrTy->getElementType(); 5636 } 5637 5638 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5639 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5640 if (STy->getNumElements() == 1) 5641 OpTy = STy->getElementType(0); 5642 5643 // If OpTy is not a single value, it may be a struct/union that we 5644 // can tile with integers. 5645 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5646 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5647 switch (BitSize) { 5648 default: break; 5649 case 1: 5650 case 8: 5651 case 16: 5652 case 32: 5653 case 64: 5654 case 128: 5655 OpTy = IntegerType::get(Context, BitSize); 5656 break; 5657 } 5658 } 5659 5660 return TLI.getValueType(OpTy, true); 5661 } 5662 5663 private: 5664 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5665 /// specified set. 5666 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5667 const TargetRegisterInfo &TRI) { 5668 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5669 Regs.insert(Reg); 5670 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5671 for (; *Aliases; ++Aliases) 5672 Regs.insert(*Aliases); 5673 } 5674 }; 5675 5676 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5677 5678 } // end anonymous namespace 5679 5680 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5681 /// specified operand. We prefer to assign virtual registers, to allow the 5682 /// register allocator to handle the assignment process. However, if the asm 5683 /// uses features that we can't model on machineinstrs, we have SDISel do the 5684 /// allocation. This produces generally horrible, but correct, code. 5685 /// 5686 /// OpInfo describes the operand. 5687 /// Input and OutputRegs are the set of already allocated physical registers. 5688 /// 5689 static void GetRegistersForValue(SelectionDAG &DAG, 5690 const TargetLowering &TLI, 5691 DebugLoc DL, 5692 SDISelAsmOperandInfo &OpInfo, 5693 std::set<unsigned> &OutputRegs, 5694 std::set<unsigned> &InputRegs) { 5695 LLVMContext &Context = *DAG.getContext(); 5696 5697 // Compute whether this value requires an input register, an output register, 5698 // or both. 5699 bool isOutReg = false; 5700 bool isInReg = false; 5701 switch (OpInfo.Type) { 5702 case InlineAsm::isOutput: 5703 isOutReg = true; 5704 5705 // If there is an input constraint that matches this, we need to reserve 5706 // the input register so no other inputs allocate to it. 5707 isInReg = OpInfo.hasMatchingInput(); 5708 break; 5709 case InlineAsm::isInput: 5710 isInReg = true; 5711 isOutReg = false; 5712 break; 5713 case InlineAsm::isClobber: 5714 isOutReg = true; 5715 isInReg = true; 5716 break; 5717 } 5718 5719 5720 MachineFunction &MF = DAG.getMachineFunction(); 5721 SmallVector<unsigned, 4> Regs; 5722 5723 // If this is a constraint for a single physreg, or a constraint for a 5724 // register class, find it. 5725 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5726 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5727 OpInfo.ConstraintVT); 5728 5729 unsigned NumRegs = 1; 5730 if (OpInfo.ConstraintVT != MVT::Other) { 5731 // If this is a FP input in an integer register (or visa versa) insert a bit 5732 // cast of the input value. More generally, handle any case where the input 5733 // value disagrees with the register class we plan to stick this in. 5734 if (OpInfo.Type == InlineAsm::isInput && 5735 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5736 // Try to convert to the first EVT that the reg class contains. If the 5737 // types are identical size, use a bitcast to convert (e.g. two differing 5738 // vector types). 5739 EVT RegVT = *PhysReg.second->vt_begin(); 5740 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5741 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5742 RegVT, OpInfo.CallOperand); 5743 OpInfo.ConstraintVT = RegVT; 5744 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5745 // If the input is a FP value and we want it in FP registers, do a 5746 // bitcast to the corresponding integer type. This turns an f64 value 5747 // into i64, which can be passed with two i32 values on a 32-bit 5748 // machine. 5749 RegVT = EVT::getIntegerVT(Context, 5750 OpInfo.ConstraintVT.getSizeInBits()); 5751 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5752 RegVT, OpInfo.CallOperand); 5753 OpInfo.ConstraintVT = RegVT; 5754 } 5755 } 5756 5757 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5758 } 5759 5760 EVT RegVT; 5761 EVT ValueVT = OpInfo.ConstraintVT; 5762 5763 // If this is a constraint for a specific physical register, like {r17}, 5764 // assign it now. 5765 if (unsigned AssignedReg = PhysReg.first) { 5766 const TargetRegisterClass *RC = PhysReg.second; 5767 if (OpInfo.ConstraintVT == MVT::Other) 5768 ValueVT = *RC->vt_begin(); 5769 5770 // Get the actual register value type. This is important, because the user 5771 // may have asked for (e.g.) the AX register in i32 type. We need to 5772 // remember that AX is actually i16 to get the right extension. 5773 RegVT = *RC->vt_begin(); 5774 5775 // This is a explicit reference to a physical register. 5776 Regs.push_back(AssignedReg); 5777 5778 // If this is an expanded reference, add the rest of the regs to Regs. 5779 if (NumRegs != 1) { 5780 TargetRegisterClass::iterator I = RC->begin(); 5781 for (; *I != AssignedReg; ++I) 5782 assert(I != RC->end() && "Didn't find reg!"); 5783 5784 // Already added the first reg. 5785 --NumRegs; ++I; 5786 for (; NumRegs; --NumRegs, ++I) { 5787 assert(I != RC->end() && "Ran out of registers to allocate!"); 5788 Regs.push_back(*I); 5789 } 5790 } 5791 5792 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5793 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5794 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5795 return; 5796 } 5797 5798 // Otherwise, if this was a reference to an LLVM register class, create vregs 5799 // for this reference. 5800 if (const TargetRegisterClass *RC = PhysReg.second) { 5801 RegVT = *RC->vt_begin(); 5802 if (OpInfo.ConstraintVT == MVT::Other) 5803 ValueVT = RegVT; 5804 5805 // Create the appropriate number of virtual registers. 5806 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5807 for (; NumRegs; --NumRegs) 5808 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5809 5810 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5811 return; 5812 } 5813 5814 // Otherwise, we couldn't allocate enough registers for this. 5815 } 5816 5817 /// visitInlineAsm - Handle a call to an InlineAsm object. 5818 /// 5819 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5820 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5821 5822 /// ConstraintOperands - Information about all of the constraints. 5823 SDISelAsmOperandInfoVector ConstraintOperands; 5824 5825 std::set<unsigned> OutputRegs, InputRegs; 5826 5827 TargetLowering::AsmOperandInfoVector 5828 TargetConstraints = TLI.ParseConstraints(CS); 5829 5830 bool hasMemory = false; 5831 5832 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5833 unsigned ResNo = 0; // ResNo - The result number of the next output. 5834 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5835 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5836 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5837 5838 EVT OpVT = MVT::Other; 5839 5840 // Compute the value type for each operand. 5841 switch (OpInfo.Type) { 5842 case InlineAsm::isOutput: 5843 // Indirect outputs just consume an argument. 5844 if (OpInfo.isIndirect) { 5845 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5846 break; 5847 } 5848 5849 // The return value of the call is this value. As such, there is no 5850 // corresponding argument. 5851 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5852 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5853 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5854 } else { 5855 assert(ResNo == 0 && "Asm only has one result!"); 5856 OpVT = TLI.getValueType(CS.getType()); 5857 } 5858 ++ResNo; 5859 break; 5860 case InlineAsm::isInput: 5861 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5862 break; 5863 case InlineAsm::isClobber: 5864 // Nothing to do. 5865 break; 5866 } 5867 5868 // If this is an input or an indirect output, process the call argument. 5869 // BasicBlocks are labels, currently appearing only in asm's. 5870 if (OpInfo.CallOperandVal) { 5871 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5872 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5873 } else { 5874 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5875 } 5876 5877 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5878 } 5879 5880 OpInfo.ConstraintVT = OpVT; 5881 5882 // Indirect operand accesses access memory. 5883 if (OpInfo.isIndirect) 5884 hasMemory = true; 5885 else { 5886 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5887 TargetLowering::ConstraintType 5888 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5889 if (CType == TargetLowering::C_Memory) { 5890 hasMemory = true; 5891 break; 5892 } 5893 } 5894 } 5895 } 5896 5897 SDValue Chain, Flag; 5898 5899 // We won't need to flush pending loads if this asm doesn't touch 5900 // memory and is nonvolatile. 5901 if (hasMemory || IA->hasSideEffects()) 5902 Chain = getRoot(); 5903 else 5904 Chain = DAG.getRoot(); 5905 5906 // Second pass over the constraints: compute which constraint option to use 5907 // and assign registers to constraints that want a specific physreg. 5908 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5909 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5910 5911 // If this is an output operand with a matching input operand, look up the 5912 // matching input. If their types mismatch, e.g. one is an integer, the 5913 // other is floating point, or their sizes are different, flag it as an 5914 // error. 5915 if (OpInfo.hasMatchingInput()) { 5916 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5917 5918 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5919 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5920 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5921 OpInfo.ConstraintVT); 5922 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5923 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5924 Input.ConstraintVT); 5925 if ((OpInfo.ConstraintVT.isInteger() != 5926 Input.ConstraintVT.isInteger()) || 5927 (MatchRC.second != InputRC.second)) { 5928 report_fatal_error("Unsupported asm: input constraint" 5929 " with a matching output constraint of" 5930 " incompatible type!"); 5931 } 5932 Input.ConstraintVT = OpInfo.ConstraintVT; 5933 } 5934 } 5935 5936 // Compute the constraint code and ConstraintType to use. 5937 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5938 5939 // If this is a memory input, and if the operand is not indirect, do what we 5940 // need to to provide an address for the memory input. 5941 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5942 !OpInfo.isIndirect) { 5943 assert((OpInfo.isMultipleAlternative || 5944 (OpInfo.Type == InlineAsm::isInput)) && 5945 "Can only indirectify direct input operands!"); 5946 5947 // Memory operands really want the address of the value. If we don't have 5948 // an indirect input, put it in the constpool if we can, otherwise spill 5949 // it to a stack slot. 5950 // TODO: This isn't quite right. We need to handle these according to 5951 // the addressing mode that the constraint wants. Also, this may take 5952 // an additional register for the computation and we don't want that 5953 // either. 5954 5955 // If the operand is a float, integer, or vector constant, spill to a 5956 // constant pool entry to get its address. 5957 const Value *OpVal = OpInfo.CallOperandVal; 5958 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5959 isa<ConstantVector>(OpVal)) { 5960 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5961 TLI.getPointerTy()); 5962 } else { 5963 // Otherwise, create a stack slot and emit a store to it before the 5964 // asm. 5965 Type *Ty = OpVal->getType(); 5966 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5967 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5968 MachineFunction &MF = DAG.getMachineFunction(); 5969 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5970 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5971 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5972 OpInfo.CallOperand, StackSlot, 5973 MachinePointerInfo::getFixedStack(SSFI), 5974 false, false, 0); 5975 OpInfo.CallOperand = StackSlot; 5976 } 5977 5978 // There is no longer a Value* corresponding to this operand. 5979 OpInfo.CallOperandVal = 0; 5980 5981 // It is now an indirect operand. 5982 OpInfo.isIndirect = true; 5983 } 5984 5985 // If this constraint is for a specific register, allocate it before 5986 // anything else. 5987 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5988 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5989 InputRegs); 5990 } 5991 5992 // Second pass - Loop over all of the operands, assigning virtual or physregs 5993 // to register class operands. 5994 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5995 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5996 5997 // C_Register operands have already been allocated, Other/Memory don't need 5998 // to be. 5999 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6000 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6001 InputRegs); 6002 } 6003 6004 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6005 std::vector<SDValue> AsmNodeOperands; 6006 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6007 AsmNodeOperands.push_back( 6008 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6009 TLI.getPointerTy())); 6010 6011 // If we have a !srcloc metadata node associated with it, we want to attach 6012 // this to the ultimately generated inline asm machineinstr. To do this, we 6013 // pass in the third operand as this (potentially null) inline asm MDNode. 6014 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6015 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6016 6017 // Remember the HasSideEffect and AlignStack bits as operand 3. 6018 unsigned ExtraInfo = 0; 6019 if (IA->hasSideEffects()) 6020 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6021 if (IA->isAlignStack()) 6022 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6023 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6024 TLI.getPointerTy())); 6025 6026 // Loop over all of the inputs, copying the operand values into the 6027 // appropriate registers and processing the output regs. 6028 RegsForValue RetValRegs; 6029 6030 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6031 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6032 6033 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6034 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6035 6036 switch (OpInfo.Type) { 6037 case InlineAsm::isOutput: { 6038 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6039 OpInfo.ConstraintType != TargetLowering::C_Register) { 6040 // Memory output, or 'other' output (e.g. 'X' constraint). 6041 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6042 6043 // Add information to the INLINEASM node to know about this output. 6044 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6045 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6046 TLI.getPointerTy())); 6047 AsmNodeOperands.push_back(OpInfo.CallOperand); 6048 break; 6049 } 6050 6051 // Otherwise, this is a register or register class output. 6052 6053 // Copy the output from the appropriate register. Find a register that 6054 // we can use. 6055 if (OpInfo.AssignedRegs.Regs.empty()) 6056 report_fatal_error("Couldn't allocate output reg for constraint '" + 6057 Twine(OpInfo.ConstraintCode) + "'!"); 6058 6059 // If this is an indirect operand, store through the pointer after the 6060 // asm. 6061 if (OpInfo.isIndirect) { 6062 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6063 OpInfo.CallOperandVal)); 6064 } else { 6065 // This is the result value of the call. 6066 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6067 // Concatenate this output onto the outputs list. 6068 RetValRegs.append(OpInfo.AssignedRegs); 6069 } 6070 6071 // Add information to the INLINEASM node to know that this register is 6072 // set. 6073 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6074 InlineAsm::Kind_RegDefEarlyClobber : 6075 InlineAsm::Kind_RegDef, 6076 false, 6077 0, 6078 DAG, 6079 AsmNodeOperands); 6080 break; 6081 } 6082 case InlineAsm::isInput: { 6083 SDValue InOperandVal = OpInfo.CallOperand; 6084 6085 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6086 // If this is required to match an output register we have already set, 6087 // just use its register. 6088 unsigned OperandNo = OpInfo.getMatchedOperand(); 6089 6090 // Scan until we find the definition we already emitted of this operand. 6091 // When we find it, create a RegsForValue operand. 6092 unsigned CurOp = InlineAsm::Op_FirstOperand; 6093 for (; OperandNo; --OperandNo) { 6094 // Advance to the next operand. 6095 unsigned OpFlag = 6096 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6097 assert((InlineAsm::isRegDefKind(OpFlag) || 6098 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6099 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6100 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6101 } 6102 6103 unsigned OpFlag = 6104 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6105 if (InlineAsm::isRegDefKind(OpFlag) || 6106 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6107 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6108 if (OpInfo.isIndirect) { 6109 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6110 LLVMContext &Ctx = *DAG.getContext(); 6111 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6112 " don't know how to handle tied " 6113 "indirect register inputs"); 6114 } 6115 6116 RegsForValue MatchedRegs; 6117 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6118 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6119 MatchedRegs.RegVTs.push_back(RegVT); 6120 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6121 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6122 i != e; ++i) 6123 MatchedRegs.Regs.push_back 6124 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6125 6126 // Use the produced MatchedRegs object to 6127 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6128 Chain, &Flag); 6129 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6130 true, OpInfo.getMatchedOperand(), 6131 DAG, AsmNodeOperands); 6132 break; 6133 } 6134 6135 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6136 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6137 "Unexpected number of operands"); 6138 // Add information to the INLINEASM node to know about this input. 6139 // See InlineAsm.h isUseOperandTiedToDef. 6140 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6141 OpInfo.getMatchedOperand()); 6142 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6143 TLI.getPointerTy())); 6144 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6145 break; 6146 } 6147 6148 // Treat indirect 'X' constraint as memory. 6149 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6150 OpInfo.isIndirect) 6151 OpInfo.ConstraintType = TargetLowering::C_Memory; 6152 6153 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6154 std::vector<SDValue> Ops; 6155 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6156 Ops, DAG); 6157 if (Ops.empty()) 6158 report_fatal_error("Invalid operand for inline asm constraint '" + 6159 Twine(OpInfo.ConstraintCode) + "'!"); 6160 6161 // Add information to the INLINEASM node to know about this input. 6162 unsigned ResOpType = 6163 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6164 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6165 TLI.getPointerTy())); 6166 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6167 break; 6168 } 6169 6170 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6171 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6172 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6173 "Memory operands expect pointer values"); 6174 6175 // Add information to the INLINEASM node to know about this input. 6176 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6177 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6178 TLI.getPointerTy())); 6179 AsmNodeOperands.push_back(InOperandVal); 6180 break; 6181 } 6182 6183 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6184 OpInfo.ConstraintType == TargetLowering::C_Register) && 6185 "Unknown constraint type!"); 6186 assert(!OpInfo.isIndirect && 6187 "Don't know how to handle indirect register inputs yet!"); 6188 6189 // Copy the input into the appropriate registers. 6190 if (OpInfo.AssignedRegs.Regs.empty()) 6191 report_fatal_error("Couldn't allocate input reg for constraint '" + 6192 Twine(OpInfo.ConstraintCode) + "'!"); 6193 6194 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6195 Chain, &Flag); 6196 6197 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6198 DAG, AsmNodeOperands); 6199 break; 6200 } 6201 case InlineAsm::isClobber: { 6202 // Add the clobbered value to the operand list, so that the register 6203 // allocator is aware that the physreg got clobbered. 6204 if (!OpInfo.AssignedRegs.Regs.empty()) 6205 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6206 false, 0, DAG, 6207 AsmNodeOperands); 6208 break; 6209 } 6210 } 6211 } 6212 6213 // Finish up input operands. Set the input chain and add the flag last. 6214 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6215 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6216 6217 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6218 DAG.getVTList(MVT::Other, MVT::Glue), 6219 &AsmNodeOperands[0], AsmNodeOperands.size()); 6220 Flag = Chain.getValue(1); 6221 6222 // If this asm returns a register value, copy the result from that register 6223 // and set it as the value of the call. 6224 if (!RetValRegs.Regs.empty()) { 6225 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6226 Chain, &Flag); 6227 6228 // FIXME: Why don't we do this for inline asms with MRVs? 6229 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6230 EVT ResultType = TLI.getValueType(CS.getType()); 6231 6232 // If any of the results of the inline asm is a vector, it may have the 6233 // wrong width/num elts. This can happen for register classes that can 6234 // contain multiple different value types. The preg or vreg allocated may 6235 // not have the same VT as was expected. Convert it to the right type 6236 // with bit_convert. 6237 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6238 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6239 ResultType, Val); 6240 6241 } else if (ResultType != Val.getValueType() && 6242 ResultType.isInteger() && Val.getValueType().isInteger()) { 6243 // If a result value was tied to an input value, the computed result may 6244 // have a wider width than the expected result. Extract the relevant 6245 // portion. 6246 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6247 } 6248 6249 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6250 } 6251 6252 setValue(CS.getInstruction(), Val); 6253 // Don't need to use this as a chain in this case. 6254 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6255 return; 6256 } 6257 6258 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6259 6260 // Process indirect outputs, first output all of the flagged copies out of 6261 // physregs. 6262 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6263 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6264 const Value *Ptr = IndirectStoresToEmit[i].second; 6265 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6266 Chain, &Flag); 6267 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6268 } 6269 6270 // Emit the non-flagged stores from the physregs. 6271 SmallVector<SDValue, 8> OutChains; 6272 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6273 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6274 StoresToEmit[i].first, 6275 getValue(StoresToEmit[i].second), 6276 MachinePointerInfo(StoresToEmit[i].second), 6277 false, false, 0); 6278 OutChains.push_back(Val); 6279 } 6280 6281 if (!OutChains.empty()) 6282 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6283 &OutChains[0], OutChains.size()); 6284 6285 DAG.setRoot(Chain); 6286 } 6287 6288 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6289 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6290 MVT::Other, getRoot(), 6291 getValue(I.getArgOperand(0)), 6292 DAG.getSrcValue(I.getArgOperand(0)))); 6293 } 6294 6295 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6296 const TargetData &TD = *TLI.getTargetData(); 6297 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6298 getRoot(), getValue(I.getOperand(0)), 6299 DAG.getSrcValue(I.getOperand(0)), 6300 TD.getABITypeAlignment(I.getType())); 6301 setValue(&I, V); 6302 DAG.setRoot(V.getValue(1)); 6303 } 6304 6305 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6306 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6307 MVT::Other, getRoot(), 6308 getValue(I.getArgOperand(0)), 6309 DAG.getSrcValue(I.getArgOperand(0)))); 6310 } 6311 6312 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6313 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6314 MVT::Other, getRoot(), 6315 getValue(I.getArgOperand(0)), 6316 getValue(I.getArgOperand(1)), 6317 DAG.getSrcValue(I.getArgOperand(0)), 6318 DAG.getSrcValue(I.getArgOperand(1)))); 6319 } 6320 6321 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6322 /// implementation, which just calls LowerCall. 6323 /// FIXME: When all targets are 6324 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6325 std::pair<SDValue, SDValue> 6326 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6327 bool RetSExt, bool RetZExt, bool isVarArg, 6328 bool isInreg, unsigned NumFixedArgs, 6329 CallingConv::ID CallConv, bool isTailCall, 6330 bool isReturnValueUsed, 6331 SDValue Callee, 6332 ArgListTy &Args, SelectionDAG &DAG, 6333 DebugLoc dl) const { 6334 // Handle all of the outgoing arguments. 6335 SmallVector<ISD::OutputArg, 32> Outs; 6336 SmallVector<SDValue, 32> OutVals; 6337 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6338 SmallVector<EVT, 4> ValueVTs; 6339 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6340 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6341 Value != NumValues; ++Value) { 6342 EVT VT = ValueVTs[Value]; 6343 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6344 SDValue Op = SDValue(Args[i].Node.getNode(), 6345 Args[i].Node.getResNo() + Value); 6346 ISD::ArgFlagsTy Flags; 6347 unsigned OriginalAlignment = 6348 getTargetData()->getABITypeAlignment(ArgTy); 6349 6350 if (Args[i].isZExt) 6351 Flags.setZExt(); 6352 if (Args[i].isSExt) 6353 Flags.setSExt(); 6354 if (Args[i].isInReg) 6355 Flags.setInReg(); 6356 if (Args[i].isSRet) 6357 Flags.setSRet(); 6358 if (Args[i].isByVal) { 6359 Flags.setByVal(); 6360 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6361 Type *ElementTy = Ty->getElementType(); 6362 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6363 // For ByVal, alignment should come from FE. BE will guess if this 6364 // info is not there but there are cases it cannot get right. 6365 unsigned FrameAlign; 6366 if (Args[i].Alignment) 6367 FrameAlign = Args[i].Alignment; 6368 else 6369 FrameAlign = getByValTypeAlignment(ElementTy); 6370 Flags.setByValAlign(FrameAlign); 6371 } 6372 if (Args[i].isNest) 6373 Flags.setNest(); 6374 Flags.setOrigAlign(OriginalAlignment); 6375 6376 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6377 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6378 SmallVector<SDValue, 4> Parts(NumParts); 6379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6380 6381 if (Args[i].isSExt) 6382 ExtendKind = ISD::SIGN_EXTEND; 6383 else if (Args[i].isZExt) 6384 ExtendKind = ISD::ZERO_EXTEND; 6385 6386 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6387 PartVT, ExtendKind); 6388 6389 for (unsigned j = 0; j != NumParts; ++j) { 6390 // if it isn't first piece, alignment must be 1 6391 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6392 i < NumFixedArgs); 6393 if (NumParts > 1 && j == 0) 6394 MyFlags.Flags.setSplit(); 6395 else if (j != 0) 6396 MyFlags.Flags.setOrigAlign(1); 6397 6398 Outs.push_back(MyFlags); 6399 OutVals.push_back(Parts[j]); 6400 } 6401 } 6402 } 6403 6404 // Handle the incoming return values from the call. 6405 SmallVector<ISD::InputArg, 32> Ins; 6406 SmallVector<EVT, 4> RetTys; 6407 ComputeValueVTs(*this, RetTy, RetTys); 6408 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6409 EVT VT = RetTys[I]; 6410 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6411 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6412 for (unsigned i = 0; i != NumRegs; ++i) { 6413 ISD::InputArg MyFlags; 6414 MyFlags.VT = RegisterVT.getSimpleVT(); 6415 MyFlags.Used = isReturnValueUsed; 6416 if (RetSExt) 6417 MyFlags.Flags.setSExt(); 6418 if (RetZExt) 6419 MyFlags.Flags.setZExt(); 6420 if (isInreg) 6421 MyFlags.Flags.setInReg(); 6422 Ins.push_back(MyFlags); 6423 } 6424 } 6425 6426 SmallVector<SDValue, 4> InVals; 6427 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6428 Outs, OutVals, Ins, dl, DAG, InVals); 6429 6430 // Verify that the target's LowerCall behaved as expected. 6431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6432 "LowerCall didn't return a valid chain!"); 6433 assert((!isTailCall || InVals.empty()) && 6434 "LowerCall emitted a return value for a tail call!"); 6435 assert((isTailCall || InVals.size() == Ins.size()) && 6436 "LowerCall didn't emit the correct number of values!"); 6437 6438 // For a tail call, the return value is merely live-out and there aren't 6439 // any nodes in the DAG representing it. Return a special value to 6440 // indicate that a tail call has been emitted and no more Instructions 6441 // should be processed in the current block. 6442 if (isTailCall) { 6443 DAG.setRoot(Chain); 6444 return std::make_pair(SDValue(), SDValue()); 6445 } 6446 6447 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6448 assert(InVals[i].getNode() && 6449 "LowerCall emitted a null value!"); 6450 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6451 "LowerCall emitted a value with the wrong type!"); 6452 }); 6453 6454 // Collect the legal value parts into potentially illegal values 6455 // that correspond to the original function's return values. 6456 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6457 if (RetSExt) 6458 AssertOp = ISD::AssertSext; 6459 else if (RetZExt) 6460 AssertOp = ISD::AssertZext; 6461 SmallVector<SDValue, 4> ReturnValues; 6462 unsigned CurReg = 0; 6463 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6464 EVT VT = RetTys[I]; 6465 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6466 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6467 6468 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6469 NumRegs, RegisterVT, VT, 6470 AssertOp)); 6471 CurReg += NumRegs; 6472 } 6473 6474 // For a function returning void, there is no return value. We can't create 6475 // such a node, so we just return a null return value in that case. In 6476 // that case, nothing will actually look at the value. 6477 if (ReturnValues.empty()) 6478 return std::make_pair(SDValue(), Chain); 6479 6480 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6481 DAG.getVTList(&RetTys[0], RetTys.size()), 6482 &ReturnValues[0], ReturnValues.size()); 6483 return std::make_pair(Res, Chain); 6484 } 6485 6486 void TargetLowering::LowerOperationWrapper(SDNode *N, 6487 SmallVectorImpl<SDValue> &Results, 6488 SelectionDAG &DAG) const { 6489 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6490 if (Res.getNode()) 6491 Results.push_back(Res); 6492 } 6493 6494 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6495 llvm_unreachable("LowerOperation not implemented for this target!"); 6496 return SDValue(); 6497 } 6498 6499 void 6500 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6501 SDValue Op = getNonRegisterValue(V); 6502 assert((Op.getOpcode() != ISD::CopyFromReg || 6503 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6504 "Copy from a reg to the same reg!"); 6505 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6506 6507 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6508 SDValue Chain = DAG.getEntryNode(); 6509 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6510 PendingExports.push_back(Chain); 6511 } 6512 6513 #include "llvm/CodeGen/SelectionDAGISel.h" 6514 6515 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6516 /// entry block, return true. This includes arguments used by switches, since 6517 /// the switch may expand into multiple basic blocks. 6518 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6519 // With FastISel active, we may be splitting blocks, so force creation 6520 // of virtual registers for all non-dead arguments. 6521 if (FastISel) 6522 return A->use_empty(); 6523 6524 const BasicBlock *Entry = A->getParent()->begin(); 6525 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6526 UI != E; ++UI) { 6527 const User *U = *UI; 6528 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6529 return false; // Use not in entry block. 6530 } 6531 return true; 6532 } 6533 6534 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6535 // If this is the entry block, emit arguments. 6536 const Function &F = *LLVMBB->getParent(); 6537 SelectionDAG &DAG = SDB->DAG; 6538 DebugLoc dl = SDB->getCurDebugLoc(); 6539 const TargetData *TD = TLI.getTargetData(); 6540 SmallVector<ISD::InputArg, 16> Ins; 6541 6542 // Check whether the function can return without sret-demotion. 6543 SmallVector<ISD::OutputArg, 4> Outs; 6544 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6545 Outs, TLI); 6546 6547 if (!FuncInfo->CanLowerReturn) { 6548 // Put in an sret pointer parameter before all the other parameters. 6549 SmallVector<EVT, 1> ValueVTs; 6550 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6551 6552 // NOTE: Assuming that a pointer will never break down to more than one VT 6553 // or one register. 6554 ISD::ArgFlagsTy Flags; 6555 Flags.setSRet(); 6556 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6557 ISD::InputArg RetArg(Flags, RegisterVT, true); 6558 Ins.push_back(RetArg); 6559 } 6560 6561 // Set up the incoming argument description vector. 6562 unsigned Idx = 1; 6563 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6564 I != E; ++I, ++Idx) { 6565 SmallVector<EVT, 4> ValueVTs; 6566 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6567 bool isArgValueUsed = !I->use_empty(); 6568 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6569 Value != NumValues; ++Value) { 6570 EVT VT = ValueVTs[Value]; 6571 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6572 ISD::ArgFlagsTy Flags; 6573 unsigned OriginalAlignment = 6574 TD->getABITypeAlignment(ArgTy); 6575 6576 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6577 Flags.setZExt(); 6578 if (F.paramHasAttr(Idx, Attribute::SExt)) 6579 Flags.setSExt(); 6580 if (F.paramHasAttr(Idx, Attribute::InReg)) 6581 Flags.setInReg(); 6582 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6583 Flags.setSRet(); 6584 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6585 Flags.setByVal(); 6586 PointerType *Ty = cast<PointerType>(I->getType()); 6587 Type *ElementTy = Ty->getElementType(); 6588 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6589 // For ByVal, alignment should be passed from FE. BE will guess if 6590 // this info is not there but there are cases it cannot get right. 6591 unsigned FrameAlign; 6592 if (F.getParamAlignment(Idx)) 6593 FrameAlign = F.getParamAlignment(Idx); 6594 else 6595 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6596 Flags.setByValAlign(FrameAlign); 6597 } 6598 if (F.paramHasAttr(Idx, Attribute::Nest)) 6599 Flags.setNest(); 6600 Flags.setOrigAlign(OriginalAlignment); 6601 6602 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6603 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6604 for (unsigned i = 0; i != NumRegs; ++i) { 6605 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6606 if (NumRegs > 1 && i == 0) 6607 MyFlags.Flags.setSplit(); 6608 // if it isn't first piece, alignment must be 1 6609 else if (i > 0) 6610 MyFlags.Flags.setOrigAlign(1); 6611 Ins.push_back(MyFlags); 6612 } 6613 } 6614 } 6615 6616 // Call the target to set up the argument values. 6617 SmallVector<SDValue, 8> InVals; 6618 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6619 F.isVarArg(), Ins, 6620 dl, DAG, InVals); 6621 6622 // Verify that the target's LowerFormalArguments behaved as expected. 6623 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6624 "LowerFormalArguments didn't return a valid chain!"); 6625 assert(InVals.size() == Ins.size() && 6626 "LowerFormalArguments didn't emit the correct number of values!"); 6627 DEBUG({ 6628 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6629 assert(InVals[i].getNode() && 6630 "LowerFormalArguments emitted a null value!"); 6631 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6632 "LowerFormalArguments emitted a value with the wrong type!"); 6633 } 6634 }); 6635 6636 // Update the DAG with the new chain value resulting from argument lowering. 6637 DAG.setRoot(NewRoot); 6638 6639 // Set up the argument values. 6640 unsigned i = 0; 6641 Idx = 1; 6642 if (!FuncInfo->CanLowerReturn) { 6643 // Create a virtual register for the sret pointer, and put in a copy 6644 // from the sret argument into it. 6645 SmallVector<EVT, 1> ValueVTs; 6646 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6647 EVT VT = ValueVTs[0]; 6648 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6649 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6650 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6651 RegVT, VT, AssertOp); 6652 6653 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6654 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6655 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6656 FuncInfo->DemoteRegister = SRetReg; 6657 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6658 SRetReg, ArgValue); 6659 DAG.setRoot(NewRoot); 6660 6661 // i indexes lowered arguments. Bump it past the hidden sret argument. 6662 // Idx indexes LLVM arguments. Don't touch it. 6663 ++i; 6664 } 6665 6666 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6667 ++I, ++Idx) { 6668 SmallVector<SDValue, 4> ArgValues; 6669 SmallVector<EVT, 4> ValueVTs; 6670 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6671 unsigned NumValues = ValueVTs.size(); 6672 6673 // If this argument is unused then remember its value. It is used to generate 6674 // debugging information. 6675 if (I->use_empty() && NumValues) 6676 SDB->setUnusedArgValue(I, InVals[i]); 6677 6678 for (unsigned Val = 0; Val != NumValues; ++Val) { 6679 EVT VT = ValueVTs[Val]; 6680 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6681 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6682 6683 if (!I->use_empty()) { 6684 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6685 if (F.paramHasAttr(Idx, Attribute::SExt)) 6686 AssertOp = ISD::AssertSext; 6687 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6688 AssertOp = ISD::AssertZext; 6689 6690 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6691 NumParts, PartVT, VT, 6692 AssertOp)); 6693 } 6694 6695 i += NumParts; 6696 } 6697 6698 // We don't need to do anything else for unused arguments. 6699 if (ArgValues.empty()) 6700 continue; 6701 6702 // Note down frame index. 6703 if (FrameIndexSDNode *FI = 6704 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6705 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6706 6707 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6708 SDB->getCurDebugLoc()); 6709 6710 SDB->setValue(I, Res); 6711 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6712 if (LoadSDNode *LNode = 6713 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6714 if (FrameIndexSDNode *FI = 6715 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6716 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6717 } 6718 6719 // If this argument is live outside of the entry block, insert a copy from 6720 // wherever we got it to the vreg that other BB's will reference it as. 6721 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6722 // If we can, though, try to skip creating an unnecessary vreg. 6723 // FIXME: This isn't very clean... it would be nice to make this more 6724 // general. It's also subtly incompatible with the hacks FastISel 6725 // uses with vregs. 6726 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6727 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6728 FuncInfo->ValueMap[I] = Reg; 6729 continue; 6730 } 6731 } 6732 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6733 FuncInfo->InitializeRegForValue(I); 6734 SDB->CopyToExportRegsIfNeeded(I); 6735 } 6736 } 6737 6738 assert(i == InVals.size() && "Argument register count mismatch!"); 6739 6740 // Finally, if the target has anything special to do, allow it to do so. 6741 // FIXME: this should insert code into the DAG! 6742 EmitFunctionEntryCode(); 6743 } 6744 6745 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6746 /// ensure constants are generated when needed. Remember the virtual registers 6747 /// that need to be added to the Machine PHI nodes as input. We cannot just 6748 /// directly add them, because expansion might result in multiple MBB's for one 6749 /// BB. As such, the start of the BB might correspond to a different MBB than 6750 /// the end. 6751 /// 6752 void 6753 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6754 const TerminatorInst *TI = LLVMBB->getTerminator(); 6755 6756 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6757 6758 // Check successor nodes' PHI nodes that expect a constant to be available 6759 // from this block. 6760 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6761 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6762 if (!isa<PHINode>(SuccBB->begin())) continue; 6763 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6764 6765 // If this terminator has multiple identical successors (common for 6766 // switches), only handle each succ once. 6767 if (!SuccsHandled.insert(SuccMBB)) continue; 6768 6769 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6770 6771 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6772 // nodes and Machine PHI nodes, but the incoming operands have not been 6773 // emitted yet. 6774 for (BasicBlock::const_iterator I = SuccBB->begin(); 6775 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6776 // Ignore dead phi's. 6777 if (PN->use_empty()) continue; 6778 6779 // Skip empty types 6780 if (PN->getType()->isEmptyTy()) 6781 continue; 6782 6783 unsigned Reg; 6784 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6785 6786 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6787 unsigned &RegOut = ConstantsOut[C]; 6788 if (RegOut == 0) { 6789 RegOut = FuncInfo.CreateRegs(C->getType()); 6790 CopyValueToVirtualRegister(C, RegOut); 6791 } 6792 Reg = RegOut; 6793 } else { 6794 DenseMap<const Value *, unsigned>::iterator I = 6795 FuncInfo.ValueMap.find(PHIOp); 6796 if (I != FuncInfo.ValueMap.end()) 6797 Reg = I->second; 6798 else { 6799 assert(isa<AllocaInst>(PHIOp) && 6800 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6801 "Didn't codegen value into a register!??"); 6802 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6803 CopyValueToVirtualRegister(PHIOp, Reg); 6804 } 6805 } 6806 6807 // Remember that this register needs to added to the machine PHI node as 6808 // the input for this MBB. 6809 SmallVector<EVT, 4> ValueVTs; 6810 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6811 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6812 EVT VT = ValueVTs[vti]; 6813 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6814 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6815 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6816 Reg += NumRegisters; 6817 } 6818 } 6819 } 6820 ConstantsOut.clear(); 6821 } 6822