xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5081ac27c75542031b4345a298fa623a03b00e44)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 /// Copy swift error to the final virtual register at end of a basic block, as
934 /// specified by SwiftErrorWorklist, if necessary.
935 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
936   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
937   if (!TLI.supportSwiftError())
938     return;
939 
940   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
941     return;
942 
943   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
944   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
945       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
946   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
947       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
948   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
949     unsigned WorkReg = WorklistEntry[I];
950 
951     // Find the swifterror virtual register for the value in SwiftErrorMap.
952     unsigned MapReg = MapEntry[I];
953     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
954            "Entries in SwiftErrorMap should be virtual registers");
955 
956     if (WorkReg == MapReg)
957       continue;
958 
959     // Create copy from SwiftErrorMap to SwiftWorklist.
960     auto &DL = SDB.DAG.getDataLayout();
961     SDValue CopyNode = SDB.DAG.getCopyToReg(
962         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
963         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
964     MapEntry[I] = WorkReg;
965     SDB.DAG.setRoot(CopyNode);
966   }
967 }
968 
969 void SelectionDAGBuilder::visit(const Instruction &I) {
970   // Set up outgoing PHI node register values before emitting the terminator.
971   if (isa<TerminatorInst>(&I)) {
972     copySwiftErrorsToFinalVRegs(*this);
973     HandlePHINodesInSuccessorBlocks(I.getParent());
974   }
975 
976   ++SDNodeOrder;
977 
978   CurInst = &I;
979 
980   visit(I.getOpcode(), I);
981 
982   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
983       !isStatepoint(&I)) // statepoints handle their exports internally
984     CopyToExportRegsIfNeeded(&I);
985 
986   CurInst = nullptr;
987 }
988 
989 void SelectionDAGBuilder::visitPHI(const PHINode &) {
990   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
991 }
992 
993 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
994   // Note: this doesn't use InstVisitor, because it has to work with
995   // ConstantExpr's in addition to instructions.
996   switch (Opcode) {
997   default: llvm_unreachable("Unknown instruction type encountered!");
998     // Build the switch statement using the Instruction.def file.
999 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1000     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1001 #include "llvm/IR/Instruction.def"
1002   }
1003 }
1004 
1005 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1006 // generate the debug data structures now that we've seen its definition.
1007 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1008                                                    SDValue Val) {
1009   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1010   if (DDI.getDI()) {
1011     const DbgValueInst *DI = DDI.getDI();
1012     DebugLoc dl = DDI.getdl();
1013     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1014     DILocalVariable *Variable = DI->getVariable();
1015     DIExpression *Expr = DI->getExpression();
1016     assert(Variable->isValidLocationForIntrinsic(dl) &&
1017            "Expected inlined-at fields to agree");
1018     uint64_t Offset = DI->getOffset();
1019     SDDbgValue *SDV;
1020     if (Val.getNode()) {
1021       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1022                                     Val)) {
1023         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1425                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1426                                // FIXME: better loc info would be nice.
1427                                Add, MachinePointerInfo());
1428     }
1429 
1430     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1431                         MVT::Other, Chains);
1432   } else if (I.getNumOperands() != 0) {
1433     SmallVector<EVT, 4> ValueVTs;
1434     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1435     unsigned NumValues = ValueVTs.size();
1436     if (NumValues) {
1437       SDValue RetOp = getValue(I.getOperand(0));
1438 
1439       const Function *F = I.getParent()->getParent();
1440 
1441       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1442       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1443                                           Attribute::SExt))
1444         ExtendKind = ISD::SIGN_EXTEND;
1445       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446                                                Attribute::ZExt))
1447         ExtendKind = ISD::ZERO_EXTEND;
1448 
1449       LLVMContext &Context = F->getContext();
1450       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1451                                                       Attribute::InReg);
1452 
1453       for (unsigned j = 0; j != NumValues; ++j) {
1454         EVT VT = ValueVTs[j];
1455 
1456         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1457           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1458 
1459         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1460         MVT PartVT = TLI.getRegisterType(Context, VT);
1461         SmallVector<SDValue, 4> Parts(NumParts);
1462         getCopyToParts(DAG, getCurSDLoc(),
1463                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1464                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1465 
1466         // 'inreg' on function refers to return value
1467         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1468         if (RetInReg)
1469           Flags.setInReg();
1470 
1471         // Propagate extension type if any
1472         if (ExtendKind == ISD::SIGN_EXTEND)
1473           Flags.setSExt();
1474         else if (ExtendKind == ISD::ZERO_EXTEND)
1475           Flags.setZExt();
1476 
1477         for (unsigned i = 0; i < NumParts; ++i) {
1478           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1479                                         VT, /*isfixed=*/true, 0, 0));
1480           OutVals.push_back(Parts[i]);
1481         }
1482       }
1483     }
1484   }
1485 
1486   // Push in swifterror virtual register as the last element of Outs. This makes
1487   // sure swifterror virtual register will be returned in the swifterror
1488   // physical register.
1489   const Function *F = I.getParent()->getParent();
1490   if (TLI.supportSwiftError() &&
1491       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1492     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1493     Flags.setSwiftError();
1494     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1495                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1496                                   true /*isfixed*/, 1 /*origidx*/,
1497                                   0 /*partOffs*/));
1498     // Create SDNode for the swifterror virtual register.
1499     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1500                                       EVT(TLI.getPointerTy(DL))));
1501   }
1502 
1503   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1504   CallingConv::ID CallConv =
1505     DAG.getMachineFunction().getFunction()->getCallingConv();
1506   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1507       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1508 
1509   // Verify that the target's LowerReturn behaved as expected.
1510   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1511          "LowerReturn didn't return a valid chain!");
1512 
1513   // Update the DAG with the new chain value resulting from return lowering.
1514   DAG.setRoot(Chain);
1515 }
1516 
1517 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1518 /// created for it, emit nodes to copy the value into the virtual
1519 /// registers.
1520 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1521   // Skip empty types
1522   if (V->getType()->isEmptyTy())
1523     return;
1524 
1525   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1526   if (VMI != FuncInfo.ValueMap.end()) {
1527     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1528     CopyValueToVirtualRegister(V, VMI->second);
1529   }
1530 }
1531 
1532 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1533 /// the current basic block, add it to ValueMap now so that we'll get a
1534 /// CopyTo/FromReg.
1535 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1536   // No need to export constants.
1537   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1538 
1539   // Already exported?
1540   if (FuncInfo.isExportedInst(V)) return;
1541 
1542   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1543   CopyValueToVirtualRegister(V, Reg);
1544 }
1545 
1546 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1547                                                      const BasicBlock *FromBB) {
1548   // The operands of the setcc have to be in this block.  We don't know
1549   // how to export them from some other block.
1550   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1551     // Can export from current BB.
1552     if (VI->getParent() == FromBB)
1553       return true;
1554 
1555     // Is already exported, noop.
1556     return FuncInfo.isExportedInst(V);
1557   }
1558 
1559   // If this is an argument, we can export it if the BB is the entry block or
1560   // if it is already exported.
1561   if (isa<Argument>(V)) {
1562     if (FromBB == &FromBB->getParent()->getEntryBlock())
1563       return true;
1564 
1565     // Otherwise, can only export this if it is already exported.
1566     return FuncInfo.isExportedInst(V);
1567   }
1568 
1569   // Otherwise, constants can always be exported.
1570   return true;
1571 }
1572 
1573 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1574 BranchProbability
1575 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1576                                         const MachineBasicBlock *Dst) const {
1577   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1578   const BasicBlock *SrcBB = Src->getBasicBlock();
1579   const BasicBlock *DstBB = Dst->getBasicBlock();
1580   if (!BPI) {
1581     // If BPI is not available, set the default probability as 1 / N, where N is
1582     // the number of successors.
1583     auto SuccSize = std::max<uint32_t>(
1584         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1585     return BranchProbability(1, SuccSize);
1586   }
1587   return BPI->getEdgeProbability(SrcBB, DstBB);
1588 }
1589 
1590 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1591                                                MachineBasicBlock *Dst,
1592                                                BranchProbability Prob) {
1593   if (!FuncInfo.BPI)
1594     Src->addSuccessorWithoutProb(Dst);
1595   else {
1596     if (Prob.isUnknown())
1597       Prob = getEdgeProbability(Src, Dst);
1598     Src->addSuccessor(Dst, Prob);
1599   }
1600 }
1601 
1602 static bool InBlock(const Value *V, const BasicBlock *BB) {
1603   if (const Instruction *I = dyn_cast<Instruction>(V))
1604     return I->getParent() == BB;
1605   return true;
1606 }
1607 
1608 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1609 /// This function emits a branch and is used at the leaves of an OR or an
1610 /// AND operator tree.
1611 ///
1612 void
1613 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1614                                                   MachineBasicBlock *TBB,
1615                                                   MachineBasicBlock *FBB,
1616                                                   MachineBasicBlock *CurBB,
1617                                                   MachineBasicBlock *SwitchBB,
1618                                                   BranchProbability TProb,
1619                                                   BranchProbability FProb) {
1620   const BasicBlock *BB = CurBB->getBasicBlock();
1621 
1622   // If the leaf of the tree is a comparison, merge the condition into
1623   // the caseblock.
1624   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1625     // The operands of the cmp have to be in this block.  We don't know
1626     // how to export them from some other block.  If this is the first block
1627     // of the sequence, no exporting is needed.
1628     if (CurBB == SwitchBB ||
1629         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1630          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1631       ISD::CondCode Condition;
1632       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1633         Condition = getICmpCondCode(IC->getPredicate());
1634       } else {
1635         const FCmpInst *FC = cast<FCmpInst>(Cond);
1636         Condition = getFCmpCondCode(FC->getPredicate());
1637         if (TM.Options.NoNaNsFPMath)
1638           Condition = getFCmpCodeWithoutNaN(Condition);
1639       }
1640 
1641       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1642                    TBB, FBB, CurBB, TProb, FProb);
1643       SwitchCases.push_back(CB);
1644       return;
1645     }
1646   }
1647 
1648   // Create a CaseBlock record representing this branch.
1649   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1650                nullptr, TBB, FBB, CurBB, TProb, FProb);
1651   SwitchCases.push_back(CB);
1652 }
1653 
1654 /// FindMergedConditions - If Cond is an expression like
1655 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1656                                                MachineBasicBlock *TBB,
1657                                                MachineBasicBlock *FBB,
1658                                                MachineBasicBlock *CurBB,
1659                                                MachineBasicBlock *SwitchBB,
1660                                                Instruction::BinaryOps Opc,
1661                                                BranchProbability TProb,
1662                                                BranchProbability FProb) {
1663   // If this node is not part of the or/and tree, emit it as a branch.
1664   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1665   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1666       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1667       BOp->getParent() != CurBB->getBasicBlock() ||
1668       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1669       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1670     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1671                                  TProb, FProb);
1672     return;
1673   }
1674 
1675   //  Create TmpBB after CurBB.
1676   MachineFunction::iterator BBI(CurBB);
1677   MachineFunction &MF = DAG.getMachineFunction();
1678   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1679   CurBB->getParent()->insert(++BBI, TmpBB);
1680 
1681   if (Opc == Instruction::Or) {
1682     // Codegen X | Y as:
1683     // BB1:
1684     //   jmp_if_X TBB
1685     //   jmp TmpBB
1686     // TmpBB:
1687     //   jmp_if_Y TBB
1688     //   jmp FBB
1689     //
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1694     //     = TrueProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1697     // A/(1+B) and 2B/(1+B). This choice assumes that
1698     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1699     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1700     // TmpBB, but the math is more complicated.
1701 
1702     auto NewTrueProb = TProb / 2;
1703     auto NewFalseProb = TProb / 2 + FProb;
1704     // Emit the LHS condition.
1705     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1706                          NewTrueProb, NewFalseProb);
1707 
1708     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1709     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1710     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1711     // Emit the RHS condition into TmpBB.
1712     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1713                          Probs[0], Probs[1]);
1714   } else {
1715     assert(Opc == Instruction::And && "Unknown merge op!");
1716     // Codegen X & Y as:
1717     // BB1:
1718     //   jmp_if_X TmpBB
1719     //   jmp FBB
1720     // TmpBB:
1721     //   jmp_if_Y TBB
1722     //   jmp FBB
1723     //
1724     //  This requires creation of TmpBB after CurBB.
1725 
1726     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1727     // The requirement is that
1728     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1729     //     = FalseProb for original BB.
1730     // Assuming the original probabilities are A and B, one choice is to set
1731     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1732     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1733     // TrueProb for BB1 * FalseProb for TmpBB.
1734 
1735     auto NewTrueProb = TProb + FProb / 2;
1736     auto NewFalseProb = FProb / 2;
1737     // Emit the LHS condition.
1738     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1739                          NewTrueProb, NewFalseProb);
1740 
1741     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1742     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1743     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1744     // Emit the RHS condition into TmpBB.
1745     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1746                          Probs[0], Probs[1]);
1747   }
1748 }
1749 
1750 /// If the set of cases should be emitted as a series of branches, return true.
1751 /// If we should emit this as a bunch of and/or'd together conditions, return
1752 /// false.
1753 bool
1754 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1755   if (Cases.size() != 2) return true;
1756 
1757   // If this is two comparisons of the same values or'd or and'd together, they
1758   // will get folded into a single comparison, so don't emit two blocks.
1759   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1760        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1761       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1762        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1763     return false;
1764   }
1765 
1766   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1767   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1768   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1769       Cases[0].CC == Cases[1].CC &&
1770       isa<Constant>(Cases[0].CmpRHS) &&
1771       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1772     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1773       return false;
1774     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1775       return false;
1776   }
1777 
1778   return true;
1779 }
1780 
1781 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1782   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1783 
1784   // Update machine-CFG edges.
1785   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1786 
1787   if (I.isUnconditional()) {
1788     // Update machine-CFG edges.
1789     BrMBB->addSuccessor(Succ0MBB);
1790 
1791     // If this is not a fall-through branch or optimizations are switched off,
1792     // emit the branch.
1793     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1794       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1795                               MVT::Other, getControlRoot(),
1796                               DAG.getBasicBlock(Succ0MBB)));
1797 
1798     return;
1799   }
1800 
1801   // If this condition is one of the special cases we handle, do special stuff
1802   // now.
1803   const Value *CondVal = I.getCondition();
1804   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1805 
1806   // If this is a series of conditions that are or'd or and'd together, emit
1807   // this as a sequence of branches instead of setcc's with and/or operations.
1808   // As long as jumps are not expensive, this should improve performance.
1809   // For example, instead of something like:
1810   //     cmp A, B
1811   //     C = seteq
1812   //     cmp D, E
1813   //     F = setle
1814   //     or C, F
1815   //     jnz foo
1816   // Emit:
1817   //     cmp A, B
1818   //     je foo
1819   //     cmp D, E
1820   //     jle foo
1821   //
1822   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1823     Instruction::BinaryOps Opcode = BOp->getOpcode();
1824     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1825         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1826         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1827       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1828                            Opcode,
1829                            getEdgeProbability(BrMBB, Succ0MBB),
1830                            getEdgeProbability(BrMBB, Succ1MBB));
1831       // If the compares in later blocks need to use values not currently
1832       // exported from this block, export them now.  This block should always
1833       // be the first entry.
1834       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1835 
1836       // Allow some cases to be rejected.
1837       if (ShouldEmitAsBranches(SwitchCases)) {
1838         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1839           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1840           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1841         }
1842 
1843         // Emit the branch for this block.
1844         visitSwitchCase(SwitchCases[0], BrMBB);
1845         SwitchCases.erase(SwitchCases.begin());
1846         return;
1847       }
1848 
1849       // Okay, we decided not to do this, remove any inserted MBB's and clear
1850       // SwitchCases.
1851       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1852         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1853 
1854       SwitchCases.clear();
1855     }
1856   }
1857 
1858   // Create a CaseBlock record representing this branch.
1859   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1860                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1861 
1862   // Use visitSwitchCase to actually insert the fast branch sequence for this
1863   // cond branch.
1864   visitSwitchCase(CB, BrMBB);
1865 }
1866 
1867 /// visitSwitchCase - Emits the necessary code to represent a single node in
1868 /// the binary search tree resulting from lowering a switch instruction.
1869 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1870                                           MachineBasicBlock *SwitchBB) {
1871   SDValue Cond;
1872   SDValue CondLHS = getValue(CB.CmpLHS);
1873   SDLoc dl = getCurSDLoc();
1874 
1875   // Build the setcc now.
1876   if (!CB.CmpMHS) {
1877     // Fold "(X == true)" to X and "(X == false)" to !X to
1878     // handle common cases produced by branch lowering.
1879     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1880         CB.CC == ISD::SETEQ)
1881       Cond = CondLHS;
1882     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1883              CB.CC == ISD::SETEQ) {
1884       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1885       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1886     } else
1887       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1888   } else {
1889     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1890 
1891     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1892     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1893 
1894     SDValue CmpOp = getValue(CB.CmpMHS);
1895     EVT VT = CmpOp.getValueType();
1896 
1897     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1898       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1899                           ISD::SETLE);
1900     } else {
1901       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1902                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1903       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1904                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1905     }
1906   }
1907 
1908   // Update successor info
1909   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1910   // TrueBB and FalseBB are always different unless the incoming IR is
1911   // degenerate. This only happens when running llc on weird IR.
1912   if (CB.TrueBB != CB.FalseBB)
1913     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1914   SwitchBB->normalizeSuccProbs();
1915 
1916   // If the lhs block is the next block, invert the condition so that we can
1917   // fall through to the lhs instead of the rhs block.
1918   if (CB.TrueBB == NextBlock(SwitchBB)) {
1919     std::swap(CB.TrueBB, CB.FalseBB);
1920     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1921     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1922   }
1923 
1924   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1925                                MVT::Other, getControlRoot(), Cond,
1926                                DAG.getBasicBlock(CB.TrueBB));
1927 
1928   // Insert the false branch. Do this even if it's a fall through branch,
1929   // this makes it easier to do DAG optimizations which require inverting
1930   // the branch condition.
1931   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1932                        DAG.getBasicBlock(CB.FalseBB));
1933 
1934   DAG.setRoot(BrCond);
1935 }
1936 
1937 /// visitJumpTable - Emit JumpTable node in the current MBB
1938 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1939   // Emit the code for the jump table
1940   assert(JT.Reg != -1U && "Should lower JT Header first!");
1941   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1942   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1943                                      JT.Reg, PTy);
1944   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1945   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1946                                     MVT::Other, Index.getValue(1),
1947                                     Table, Index);
1948   DAG.setRoot(BrJumpTable);
1949 }
1950 
1951 /// visitJumpTableHeader - This function emits necessary code to produce index
1952 /// in the JumpTable from switch case.
1953 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1954                                                JumpTableHeader &JTH,
1955                                                MachineBasicBlock *SwitchBB) {
1956   SDLoc dl = getCurSDLoc();
1957 
1958   // Subtract the lowest switch case value from the value being switched on and
1959   // conditional branch to default mbb if the result is greater than the
1960   // difference between smallest and largest cases.
1961   SDValue SwitchOp = getValue(JTH.SValue);
1962   EVT VT = SwitchOp.getValueType();
1963   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1964                             DAG.getConstant(JTH.First, dl, VT));
1965 
1966   // The SDNode we just created, which holds the value being switched on minus
1967   // the smallest case value, needs to be copied to a virtual register so it
1968   // can be used as an index into the jump table in a subsequent basic block.
1969   // This value may be smaller or larger than the target's pointer type, and
1970   // therefore require extension or truncating.
1971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1972   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1973 
1974   unsigned JumpTableReg =
1975       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1976   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1977                                     JumpTableReg, SwitchOp);
1978   JT.Reg = JumpTableReg;
1979 
1980   // Emit the range check for the jump table, and branch to the default block
1981   // for the switch statement if the value being switched on exceeds the largest
1982   // case in the switch.
1983   SDValue CMP = DAG.getSetCC(
1984       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1985                                  Sub.getValueType()),
1986       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1987 
1988   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1989                                MVT::Other, CopyTo, CMP,
1990                                DAG.getBasicBlock(JT.Default));
1991 
1992   // Avoid emitting unnecessary branches to the next block.
1993   if (JT.MBB != NextBlock(SwitchBB))
1994     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1995                          DAG.getBasicBlock(JT.MBB));
1996 
1997   DAG.setRoot(BrCond);
1998 }
1999 
2000 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2001 /// variable if there exists one.
2002 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2003                                  SDValue &Chain) {
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2006   MachineFunction &MF = DAG.getMachineFunction();
2007   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2008   MachineSDNode *Node =
2009       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2010   if (Global) {
2011     MachinePointerInfo MPInfo(Global);
2012     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2013     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2014     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2015                                        DAG.getEVTAlignment(PtrTy));
2016     Node->setMemRefs(MemRefs, MemRefs + 1);
2017   }
2018   return SDValue(Node, 0);
2019 }
2020 
2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2022 /// tail spliced into a stack protector check success bb.
2023 ///
2024 /// For a high level explanation of how this fits into the stack protector
2025 /// generation see the comment on the declaration of class
2026 /// StackProtectorDescriptor.
2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2028                                                   MachineBasicBlock *ParentBB) {
2029 
2030   // First create the loads to the guard/stack slot for the comparison.
2031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2032   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2033 
2034   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2035   int FI = MFI.getStackProtectorIndex();
2036 
2037   SDValue Guard;
2038   SDLoc dl = getCurSDLoc();
2039   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2040   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2041   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2042 
2043   // Generate code to load the content of the guard slot.
2044   SDValue StackSlot = DAG.getLoad(
2045       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2046       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2047       MachineMemOperand::MOVolatile);
2048 
2049   // Retrieve guard check function, nullptr if instrumentation is inlined.
2050   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2051     // The target provides a guard check function to validate the guard value.
2052     // Generate a call to that function with the content of the guard slot as
2053     // argument.
2054     auto *Fn = cast<Function>(GuardCheck);
2055     FunctionType *FnTy = Fn->getFunctionType();
2056     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2057 
2058     TargetLowering::ArgListTy Args;
2059     TargetLowering::ArgListEntry Entry;
2060     Entry.Node = StackSlot;
2061     Entry.Ty = FnTy->getParamType(0);
2062     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2063       Entry.isInReg = true;
2064     Args.push_back(Entry);
2065 
2066     TargetLowering::CallLoweringInfo CLI(DAG);
2067     CLI.setDebugLoc(getCurSDLoc())
2068       .setChain(DAG.getEntryNode())
2069       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2070                  getValue(GuardCheck), std::move(Args));
2071 
2072     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2073     DAG.setRoot(Result.second);
2074     return;
2075   }
2076 
2077   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2078   // Otherwise, emit a volatile load to retrieve the stack guard value.
2079   SDValue Chain = DAG.getEntryNode();
2080   if (TLI.useLoadStackGuardNode()) {
2081     Guard = getLoadStackGuard(DAG, dl, Chain);
2082   } else {
2083     const Value *IRGuard = TLI.getSDagStackGuard(M);
2084     SDValue GuardPtr = getValue(IRGuard);
2085 
2086     Guard =
2087         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2088                     Align, MachineMemOperand::MOVolatile);
2089   }
2090 
2091   // Perform the comparison via a subtract/getsetcc.
2092   EVT VT = Guard.getValueType();
2093   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2094 
2095   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2096                                                         *DAG.getContext(),
2097                                                         Sub.getValueType()),
2098                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2099 
2100   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2101   // branch to failure MBB.
2102   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2103                                MVT::Other, StackSlot.getOperand(0),
2104                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2105   // Otherwise branch to success MBB.
2106   SDValue Br = DAG.getNode(ISD::BR, dl,
2107                            MVT::Other, BrCond,
2108                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2109 
2110   DAG.setRoot(Br);
2111 }
2112 
2113 /// Codegen the failure basic block for a stack protector check.
2114 ///
2115 /// A failure stack protector machine basic block consists simply of a call to
2116 /// __stack_chk_fail().
2117 ///
2118 /// For a high level explanation of how this fits into the stack protector
2119 /// generation see the comment on the declaration of class
2120 /// StackProtectorDescriptor.
2121 void
2122 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2124   SDValue Chain =
2125       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2126                       None, false, getCurSDLoc(), false, false).second;
2127   DAG.setRoot(Chain);
2128 }
2129 
2130 /// visitBitTestHeader - This function emits necessary code to produce value
2131 /// suitable for "bit tests"
2132 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2133                                              MachineBasicBlock *SwitchBB) {
2134   SDLoc dl = getCurSDLoc();
2135 
2136   // Subtract the minimum value
2137   SDValue SwitchOp = getValue(B.SValue);
2138   EVT VT = SwitchOp.getValueType();
2139   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2140                             DAG.getConstant(B.First, dl, VT));
2141 
2142   // Check range
2143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2144   SDValue RangeCmp = DAG.getSetCC(
2145       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2146                                  Sub.getValueType()),
2147       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2148 
2149   // Determine the type of the test operands.
2150   bool UsePtrType = false;
2151   if (!TLI.isTypeLegal(VT))
2152     UsePtrType = true;
2153   else {
2154     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2155       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2156         // Switch table case range are encoded into series of masks.
2157         // Just use pointer type, it's guaranteed to fit.
2158         UsePtrType = true;
2159         break;
2160       }
2161   }
2162   if (UsePtrType) {
2163     VT = TLI.getPointerTy(DAG.getDataLayout());
2164     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2165   }
2166 
2167   B.RegVT = VT.getSimpleVT();
2168   B.Reg = FuncInfo.CreateReg(B.RegVT);
2169   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2170 
2171   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2172 
2173   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2174   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2175   SwitchBB->normalizeSuccProbs();
2176 
2177   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2178                                 MVT::Other, CopyTo, RangeCmp,
2179                                 DAG.getBasicBlock(B.Default));
2180 
2181   // Avoid emitting unnecessary branches to the next block.
2182   if (MBB != NextBlock(SwitchBB))
2183     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2184                           DAG.getBasicBlock(MBB));
2185 
2186   DAG.setRoot(BrRange);
2187 }
2188 
2189 /// visitBitTestCase - this function produces one "bit test"
2190 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2191                                            MachineBasicBlock* NextMBB,
2192                                            BranchProbability BranchProbToNext,
2193                                            unsigned Reg,
2194                                            BitTestCase &B,
2195                                            MachineBasicBlock *SwitchBB) {
2196   SDLoc dl = getCurSDLoc();
2197   MVT VT = BB.RegVT;
2198   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2199   SDValue Cmp;
2200   unsigned PopCount = countPopulation(B.Mask);
2201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2202   if (PopCount == 1) {
2203     // Testing for a single bit; just compare the shift count with what it
2204     // would need to be to shift a 1 bit in that position.
2205     Cmp = DAG.getSetCC(
2206         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2207         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2208         ISD::SETEQ);
2209   } else if (PopCount == BB.Range) {
2210     // There is only one zero bit in the range, test for it directly.
2211     Cmp = DAG.getSetCC(
2212         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2213         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2214         ISD::SETNE);
2215   } else {
2216     // Make desired shift
2217     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2218                                     DAG.getConstant(1, dl, VT), ShiftOp);
2219 
2220     // Emit bit tests and jumps
2221     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2222                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2223     Cmp = DAG.getSetCC(
2224         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2225         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2226   }
2227 
2228   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2229   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2230   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2231   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2232   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2233   // one as they are relative probabilities (and thus work more like weights),
2234   // and hence we need to normalize them to let the sum of them become one.
2235   SwitchBB->normalizeSuccProbs();
2236 
2237   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2238                               MVT::Other, getControlRoot(),
2239                               Cmp, DAG.getBasicBlock(B.TargetBB));
2240 
2241   // Avoid emitting unnecessary branches to the next block.
2242   if (NextMBB != NextBlock(SwitchBB))
2243     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2244                         DAG.getBasicBlock(NextMBB));
2245 
2246   DAG.setRoot(BrAnd);
2247 }
2248 
2249 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2250   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2251 
2252   // Retrieve successors. Look through artificial IR level blocks like
2253   // catchswitch for successors.
2254   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2255   const BasicBlock *EHPadBB = I.getSuccessor(1);
2256 
2257   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2258   // have to do anything here to lower funclet bundles.
2259   assert(!I.hasOperandBundlesOtherThan(
2260              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2261          "Cannot lower invokes with arbitrary operand bundles yet!");
2262 
2263   const Value *Callee(I.getCalledValue());
2264   const Function *Fn = dyn_cast<Function>(Callee);
2265   if (isa<InlineAsm>(Callee))
2266     visitInlineAsm(&I);
2267   else if (Fn && Fn->isIntrinsic()) {
2268     switch (Fn->getIntrinsicID()) {
2269     default:
2270       llvm_unreachable("Cannot invoke this intrinsic");
2271     case Intrinsic::donothing:
2272       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2273       break;
2274     case Intrinsic::experimental_patchpoint_void:
2275     case Intrinsic::experimental_patchpoint_i64:
2276       visitPatchpoint(&I, EHPadBB);
2277       break;
2278     case Intrinsic::experimental_gc_statepoint:
2279       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2280       break;
2281     }
2282   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2283     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2284     // Eventually we will support lowering the @llvm.experimental.deoptimize
2285     // intrinsic, and right now there are no plans to support other intrinsics
2286     // with deopt state.
2287     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2288   } else {
2289     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2290   }
2291 
2292   // If the value of the invoke is used outside of its defining block, make it
2293   // available as a virtual register.
2294   // We already took care of the exported value for the statepoint instruction
2295   // during call to the LowerStatepoint.
2296   if (!isStatepoint(I)) {
2297     CopyToExportRegsIfNeeded(&I);
2298   }
2299 
2300   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2301   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2302   BranchProbability EHPadBBProb =
2303       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2304           : BranchProbability::getZero();
2305   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2306 
2307   // Update successor info.
2308   addSuccessorWithProb(InvokeMBB, Return);
2309   for (auto &UnwindDest : UnwindDests) {
2310     UnwindDest.first->setIsEHPad();
2311     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2312   }
2313   InvokeMBB->normalizeSuccProbs();
2314 
2315   // Drop into normal successor.
2316   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2317                           MVT::Other, getControlRoot(),
2318                           DAG.getBasicBlock(Return)));
2319 }
2320 
2321 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2322   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2323 }
2324 
2325 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2326   assert(FuncInfo.MBB->isEHPad() &&
2327          "Call to landingpad not in landing pad!");
2328 
2329   MachineBasicBlock *MBB = FuncInfo.MBB;
2330   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2331   AddLandingPadInfo(LP, MMI, MBB);
2332 
2333   // If there aren't registers to copy the values into (e.g., during SjLj
2334   // exceptions), then don't bother to create these DAG nodes.
2335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2336   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2337   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2338       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2339     return;
2340 
2341   // If landingpad's return type is token type, we don't create DAG nodes
2342   // for its exception pointer and selector value. The extraction of exception
2343   // pointer or selector value from token type landingpads is not currently
2344   // supported.
2345   if (LP.getType()->isTokenTy())
2346     return;
2347 
2348   SmallVector<EVT, 2> ValueVTs;
2349   SDLoc dl = getCurSDLoc();
2350   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2351   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2352 
2353   // Get the two live-in registers as SDValues. The physregs have already been
2354   // copied into virtual registers.
2355   SDValue Ops[2];
2356   if (FuncInfo.ExceptionPointerVirtReg) {
2357     Ops[0] = DAG.getZExtOrTrunc(
2358         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2359                            FuncInfo.ExceptionPointerVirtReg,
2360                            TLI.getPointerTy(DAG.getDataLayout())),
2361         dl, ValueVTs[0]);
2362   } else {
2363     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2364   }
2365   Ops[1] = DAG.getZExtOrTrunc(
2366       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2367                          FuncInfo.ExceptionSelectorVirtReg,
2368                          TLI.getPointerTy(DAG.getDataLayout())),
2369       dl, ValueVTs[1]);
2370 
2371   // Merge into one.
2372   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2373                             DAG.getVTList(ValueVTs), Ops);
2374   setValue(&LP, Res);
2375 }
2376 
2377 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2378 #ifndef NDEBUG
2379   for (const CaseCluster &CC : Clusters)
2380     assert(CC.Low == CC.High && "Input clusters must be single-case");
2381 #endif
2382 
2383   std::sort(Clusters.begin(), Clusters.end(),
2384             [](const CaseCluster &a, const CaseCluster &b) {
2385     return a.Low->getValue().slt(b.Low->getValue());
2386   });
2387 
2388   // Merge adjacent clusters with the same destination.
2389   const unsigned N = Clusters.size();
2390   unsigned DstIndex = 0;
2391   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2392     CaseCluster &CC = Clusters[SrcIndex];
2393     const ConstantInt *CaseVal = CC.Low;
2394     MachineBasicBlock *Succ = CC.MBB;
2395 
2396     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2397         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2398       // If this case has the same successor and is a neighbour, merge it into
2399       // the previous cluster.
2400       Clusters[DstIndex - 1].High = CaseVal;
2401       Clusters[DstIndex - 1].Prob += CC.Prob;
2402     } else {
2403       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2404                    sizeof(Clusters[SrcIndex]));
2405     }
2406   }
2407   Clusters.resize(DstIndex);
2408 }
2409 
2410 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2411                                            MachineBasicBlock *Last) {
2412   // Update JTCases.
2413   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2414     if (JTCases[i].first.HeaderBB == First)
2415       JTCases[i].first.HeaderBB = Last;
2416 
2417   // Update BitTestCases.
2418   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2419     if (BitTestCases[i].Parent == First)
2420       BitTestCases[i].Parent = Last;
2421 }
2422 
2423 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2424   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2425 
2426   // Update machine-CFG edges with unique successors.
2427   SmallSet<BasicBlock*, 32> Done;
2428   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2429     BasicBlock *BB = I.getSuccessor(i);
2430     bool Inserted = Done.insert(BB).second;
2431     if (!Inserted)
2432         continue;
2433 
2434     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2435     addSuccessorWithProb(IndirectBrMBB, Succ);
2436   }
2437   IndirectBrMBB->normalizeSuccProbs();
2438 
2439   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2440                           MVT::Other, getControlRoot(),
2441                           getValue(I.getAddress())));
2442 }
2443 
2444 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2445   if (DAG.getTarget().Options.TrapUnreachable)
2446     DAG.setRoot(
2447         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2448 }
2449 
2450 void SelectionDAGBuilder::visitFSub(const User &I) {
2451   // -0.0 - X --> fneg
2452   Type *Ty = I.getType();
2453   if (isa<Constant>(I.getOperand(0)) &&
2454       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2455     SDValue Op2 = getValue(I.getOperand(1));
2456     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2457                              Op2.getValueType(), Op2));
2458     return;
2459   }
2460 
2461   visitBinary(I, ISD::FSUB);
2462 }
2463 
2464 /// Checks if the given instruction performs a vector reduction, in which case
2465 /// we have the freedom to alter the elements in the result as long as the
2466 /// reduction of them stays unchanged.
2467 static bool isVectorReductionOp(const User *I) {
2468   const Instruction *Inst = dyn_cast<Instruction>(I);
2469   if (!Inst || !Inst->getType()->isVectorTy())
2470     return false;
2471 
2472   auto OpCode = Inst->getOpcode();
2473   switch (OpCode) {
2474   case Instruction::Add:
2475   case Instruction::Mul:
2476   case Instruction::And:
2477   case Instruction::Or:
2478   case Instruction::Xor:
2479     break;
2480   case Instruction::FAdd:
2481   case Instruction::FMul:
2482     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2483       if (FPOp->getFastMathFlags().unsafeAlgebra())
2484         break;
2485     LLVM_FALLTHROUGH;
2486   default:
2487     return false;
2488   }
2489 
2490   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2491   unsigned ElemNumToReduce = ElemNum;
2492 
2493   // Do DFS search on the def-use chain from the given instruction. We only
2494   // allow four kinds of operations during the search until we reach the
2495   // instruction that extracts the first element from the vector:
2496   //
2497   //   1. The reduction operation of the same opcode as the given instruction.
2498   //
2499   //   2. PHI node.
2500   //
2501   //   3. ShuffleVector instruction together with a reduction operation that
2502   //      does a partial reduction.
2503   //
2504   //   4. ExtractElement that extracts the first element from the vector, and we
2505   //      stop searching the def-use chain here.
2506   //
2507   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2508   // from 1-3 to the stack to continue the DFS. The given instruction is not
2509   // a reduction operation if we meet any other instructions other than those
2510   // listed above.
2511 
2512   SmallVector<const User *, 16> UsersToVisit{Inst};
2513   SmallPtrSet<const User *, 16> Visited;
2514   bool ReduxExtracted = false;
2515 
2516   while (!UsersToVisit.empty()) {
2517     auto User = UsersToVisit.back();
2518     UsersToVisit.pop_back();
2519     if (!Visited.insert(User).second)
2520       continue;
2521 
2522     for (const auto &U : User->users()) {
2523       auto Inst = dyn_cast<Instruction>(U);
2524       if (!Inst)
2525         return false;
2526 
2527       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2528         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2529           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2530             return false;
2531         UsersToVisit.push_back(U);
2532       } else if (const ShuffleVectorInst *ShufInst =
2533                      dyn_cast<ShuffleVectorInst>(U)) {
2534         // Detect the following pattern: A ShuffleVector instruction together
2535         // with a reduction that do partial reduction on the first and second
2536         // ElemNumToReduce / 2 elements, and store the result in
2537         // ElemNumToReduce / 2 elements in another vector.
2538 
2539         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2540         if (ResultElements < ElemNum)
2541           return false;
2542 
2543         if (ElemNumToReduce == 1)
2544           return false;
2545         if (!isa<UndefValue>(U->getOperand(1)))
2546           return false;
2547         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2548           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2549             return false;
2550         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2551           if (ShufInst->getMaskValue(i) != -1)
2552             return false;
2553 
2554         // There is only one user of this ShuffleVector instruction, which
2555         // must be a reduction operation.
2556         if (!U->hasOneUse())
2557           return false;
2558 
2559         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2560         if (!U2 || U2->getOpcode() != OpCode)
2561           return false;
2562 
2563         // Check operands of the reduction operation.
2564         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2565             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2566           UsersToVisit.push_back(U2);
2567           ElemNumToReduce /= 2;
2568         } else
2569           return false;
2570       } else if (isa<ExtractElementInst>(U)) {
2571         // At this moment we should have reduced all elements in the vector.
2572         if (ElemNumToReduce != 1)
2573           return false;
2574 
2575         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2576         if (!Val || Val->getZExtValue() != 0)
2577           return false;
2578 
2579         ReduxExtracted = true;
2580       } else
2581         return false;
2582     }
2583   }
2584   return ReduxExtracted;
2585 }
2586 
2587 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2588   SDValue Op1 = getValue(I.getOperand(0));
2589   SDValue Op2 = getValue(I.getOperand(1));
2590 
2591   bool nuw = false;
2592   bool nsw = false;
2593   bool exact = false;
2594   bool vec_redux = false;
2595   FastMathFlags FMF;
2596 
2597   if (const OverflowingBinaryOperator *OFBinOp =
2598           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2599     nuw = OFBinOp->hasNoUnsignedWrap();
2600     nsw = OFBinOp->hasNoSignedWrap();
2601   }
2602   if (const PossiblyExactOperator *ExactOp =
2603           dyn_cast<const PossiblyExactOperator>(&I))
2604     exact = ExactOp->isExact();
2605   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2606     FMF = FPOp->getFastMathFlags();
2607 
2608   if (isVectorReductionOp(&I)) {
2609     vec_redux = true;
2610     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2611   }
2612 
2613   SDNodeFlags Flags;
2614   Flags.setExact(exact);
2615   Flags.setNoSignedWrap(nsw);
2616   Flags.setNoUnsignedWrap(nuw);
2617   Flags.setVectorReduction(vec_redux);
2618   if (EnableFMFInDAG) {
2619     Flags.setAllowReciprocal(FMF.allowReciprocal());
2620     Flags.setNoInfs(FMF.noInfs());
2621     Flags.setNoNaNs(FMF.noNaNs());
2622     Flags.setNoSignedZeros(FMF.noSignedZeros());
2623     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2624   }
2625   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2626                                      Op1, Op2, &Flags);
2627   setValue(&I, BinNodeValue);
2628 }
2629 
2630 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2631   SDValue Op1 = getValue(I.getOperand(0));
2632   SDValue Op2 = getValue(I.getOperand(1));
2633 
2634   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2635       Op2.getValueType(), DAG.getDataLayout());
2636 
2637   // Coerce the shift amount to the right type if we can.
2638   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2639     unsigned ShiftSize = ShiftTy.getSizeInBits();
2640     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2641     SDLoc DL = getCurSDLoc();
2642 
2643     // If the operand is smaller than the shift count type, promote it.
2644     if (ShiftSize > Op2Size)
2645       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2646 
2647     // If the operand is larger than the shift count type but the shift
2648     // count type has enough bits to represent any shift value, truncate
2649     // it now. This is a common case and it exposes the truncate to
2650     // optimization early.
2651     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2652       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2653     // Otherwise we'll need to temporarily settle for some other convenient
2654     // type.  Type legalization will make adjustments once the shiftee is split.
2655     else
2656       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2657   }
2658 
2659   bool nuw = false;
2660   bool nsw = false;
2661   bool exact = false;
2662 
2663   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2664 
2665     if (const OverflowingBinaryOperator *OFBinOp =
2666             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2667       nuw = OFBinOp->hasNoUnsignedWrap();
2668       nsw = OFBinOp->hasNoSignedWrap();
2669     }
2670     if (const PossiblyExactOperator *ExactOp =
2671             dyn_cast<const PossiblyExactOperator>(&I))
2672       exact = ExactOp->isExact();
2673   }
2674   SDNodeFlags Flags;
2675   Flags.setExact(exact);
2676   Flags.setNoSignedWrap(nsw);
2677   Flags.setNoUnsignedWrap(nuw);
2678   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2679                             &Flags);
2680   setValue(&I, Res);
2681 }
2682 
2683 void SelectionDAGBuilder::visitSDiv(const User &I) {
2684   SDValue Op1 = getValue(I.getOperand(0));
2685   SDValue Op2 = getValue(I.getOperand(1));
2686 
2687   SDNodeFlags Flags;
2688   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2689                  cast<PossiblyExactOperator>(&I)->isExact());
2690   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2691                            Op2, &Flags));
2692 }
2693 
2694 void SelectionDAGBuilder::visitICmp(const User &I) {
2695   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2696   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2697     predicate = IC->getPredicate();
2698   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2699     predicate = ICmpInst::Predicate(IC->getPredicate());
2700   SDValue Op1 = getValue(I.getOperand(0));
2701   SDValue Op2 = getValue(I.getOperand(1));
2702   ISD::CondCode Opcode = getICmpCondCode(predicate);
2703 
2704   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2705                                                         I.getType());
2706   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2707 }
2708 
2709 void SelectionDAGBuilder::visitFCmp(const User &I) {
2710   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2711   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2712     predicate = FC->getPredicate();
2713   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2714     predicate = FCmpInst::Predicate(FC->getPredicate());
2715   SDValue Op1 = getValue(I.getOperand(0));
2716   SDValue Op2 = getValue(I.getOperand(1));
2717   ISD::CondCode Condition = getFCmpCondCode(predicate);
2718 
2719   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2720   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2721   // further optimization, but currently FMF is only applicable to binary nodes.
2722   if (TM.Options.NoNaNsFPMath)
2723     Condition = getFCmpCodeWithoutNaN(Condition);
2724   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2725                                                         I.getType());
2726   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2727 }
2728 
2729 // Check if the condition of the select has one use or two users that are both
2730 // selects with the same condition.
2731 static bool hasOnlySelectUsers(const Value *Cond) {
2732   return all_of(Cond->users(), [](const Value *V) {
2733     return isa<SelectInst>(V);
2734   });
2735 }
2736 
2737 void SelectionDAGBuilder::visitSelect(const User &I) {
2738   SmallVector<EVT, 4> ValueVTs;
2739   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2740                   ValueVTs);
2741   unsigned NumValues = ValueVTs.size();
2742   if (NumValues == 0) return;
2743 
2744   SmallVector<SDValue, 4> Values(NumValues);
2745   SDValue Cond     = getValue(I.getOperand(0));
2746   SDValue LHSVal   = getValue(I.getOperand(1));
2747   SDValue RHSVal   = getValue(I.getOperand(2));
2748   auto BaseOps = {Cond};
2749   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2750     ISD::VSELECT : ISD::SELECT;
2751 
2752   // Min/max matching is only viable if all output VTs are the same.
2753   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2754     EVT VT = ValueVTs[0];
2755     LLVMContext &Ctx = *DAG.getContext();
2756     auto &TLI = DAG.getTargetLoweringInfo();
2757 
2758     // We care about the legality of the operation after it has been type
2759     // legalized.
2760     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2761            VT != TLI.getTypeToTransformTo(Ctx, VT))
2762       VT = TLI.getTypeToTransformTo(Ctx, VT);
2763 
2764     // If the vselect is legal, assume we want to leave this as a vector setcc +
2765     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2766     // min/max is legal on the scalar type.
2767     bool UseScalarMinMax = VT.isVector() &&
2768       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2769 
2770     Value *LHS, *RHS;
2771     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2772     ISD::NodeType Opc = ISD::DELETED_NODE;
2773     switch (SPR.Flavor) {
2774     case SPF_UMAX:    Opc = ISD::UMAX; break;
2775     case SPF_UMIN:    Opc = ISD::UMIN; break;
2776     case SPF_SMAX:    Opc = ISD::SMAX; break;
2777     case SPF_SMIN:    Opc = ISD::SMIN; break;
2778     case SPF_FMINNUM:
2779       switch (SPR.NaNBehavior) {
2780       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2781       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2782       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2783       case SPNB_RETURNS_ANY: {
2784         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2785           Opc = ISD::FMINNUM;
2786         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2787           Opc = ISD::FMINNAN;
2788         else if (UseScalarMinMax)
2789           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2790             ISD::FMINNUM : ISD::FMINNAN;
2791         break;
2792       }
2793       }
2794       break;
2795     case SPF_FMAXNUM:
2796       switch (SPR.NaNBehavior) {
2797       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2798       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2799       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2800       case SPNB_RETURNS_ANY:
2801 
2802         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2803           Opc = ISD::FMAXNUM;
2804         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2805           Opc = ISD::FMAXNAN;
2806         else if (UseScalarMinMax)
2807           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2808             ISD::FMAXNUM : ISD::FMAXNAN;
2809         break;
2810       }
2811       break;
2812     default: break;
2813     }
2814 
2815     if (Opc != ISD::DELETED_NODE &&
2816         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2817          (UseScalarMinMax &&
2818           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2819         // If the underlying comparison instruction is used by any other
2820         // instruction, the consumed instructions won't be destroyed, so it is
2821         // not profitable to convert to a min/max.
2822         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2823       OpCode = Opc;
2824       LHSVal = getValue(LHS);
2825       RHSVal = getValue(RHS);
2826       BaseOps = {};
2827     }
2828   }
2829 
2830   for (unsigned i = 0; i != NumValues; ++i) {
2831     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2832     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2833     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2834     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2835                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2836                             Ops);
2837   }
2838 
2839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2840                            DAG.getVTList(ValueVTs), Values));
2841 }
2842 
2843 void SelectionDAGBuilder::visitTrunc(const User &I) {
2844   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2845   SDValue N = getValue(I.getOperand(0));
2846   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2847                                                         I.getType());
2848   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2849 }
2850 
2851 void SelectionDAGBuilder::visitZExt(const User &I) {
2852   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2853   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2854   SDValue N = getValue(I.getOperand(0));
2855   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2856                                                         I.getType());
2857   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2858 }
2859 
2860 void SelectionDAGBuilder::visitSExt(const User &I) {
2861   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2862   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2863   SDValue N = getValue(I.getOperand(0));
2864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2865                                                         I.getType());
2866   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2867 }
2868 
2869 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2870   // FPTrunc is never a no-op cast, no need to check
2871   SDValue N = getValue(I.getOperand(0));
2872   SDLoc dl = getCurSDLoc();
2873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2875   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2876                            DAG.getTargetConstant(
2877                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2878 }
2879 
2880 void SelectionDAGBuilder::visitFPExt(const User &I) {
2881   // FPExt is never a no-op cast, no need to check
2882   SDValue N = getValue(I.getOperand(0));
2883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2884                                                         I.getType());
2885   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2886 }
2887 
2888 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2889   // FPToUI is never a no-op cast, no need to check
2890   SDValue N = getValue(I.getOperand(0));
2891   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2892                                                         I.getType());
2893   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2894 }
2895 
2896 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2897   // FPToSI is never a no-op cast, no need to check
2898   SDValue N = getValue(I.getOperand(0));
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2902 }
2903 
2904 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2905   // UIToFP is never a no-op cast, no need to check
2906   SDValue N = getValue(I.getOperand(0));
2907   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2908                                                         I.getType());
2909   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2910 }
2911 
2912 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2913   // SIToFP is never a no-op cast, no need to check
2914   SDValue N = getValue(I.getOperand(0));
2915   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2916                                                         I.getType());
2917   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2918 }
2919 
2920 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2921   // What to do depends on the size of the integer and the size of the pointer.
2922   // We can either truncate, zero extend, or no-op, accordingly.
2923   SDValue N = getValue(I.getOperand(0));
2924   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2925                                                         I.getType());
2926   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2927 }
2928 
2929 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2930   // What to do depends on the size of the integer and the size of the pointer.
2931   // We can either truncate, zero extend, or no-op, accordingly.
2932   SDValue N = getValue(I.getOperand(0));
2933   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2934                                                         I.getType());
2935   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2936 }
2937 
2938 void SelectionDAGBuilder::visitBitCast(const User &I) {
2939   SDValue N = getValue(I.getOperand(0));
2940   SDLoc dl = getCurSDLoc();
2941   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2942                                                         I.getType());
2943 
2944   // BitCast assures us that source and destination are the same size so this is
2945   // either a BITCAST or a no-op.
2946   if (DestVT != N.getValueType())
2947     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2948                              DestVT, N)); // convert types.
2949   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2950   // might fold any kind of constant expression to an integer constant and that
2951   // is not what we are looking for. Only regcognize a bitcast of a genuine
2952   // constant integer as an opaque constant.
2953   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2954     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2955                                  /*isOpaque*/true));
2956   else
2957     setValue(&I, N);            // noop cast.
2958 }
2959 
2960 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2962   const Value *SV = I.getOperand(0);
2963   SDValue N = getValue(SV);
2964   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2965 
2966   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2967   unsigned DestAS = I.getType()->getPointerAddressSpace();
2968 
2969   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2970     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2971 
2972   setValue(&I, N);
2973 }
2974 
2975 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2976   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2977   SDValue InVec = getValue(I.getOperand(0));
2978   SDValue InVal = getValue(I.getOperand(1));
2979   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2980                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2981   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2982                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2983                            InVec, InVal, InIdx));
2984 }
2985 
2986 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2988   SDValue InVec = getValue(I.getOperand(0));
2989   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2990                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2991   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2992                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2993                            InVec, InIdx));
2994 }
2995 
2996 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2997   SDValue Src1 = getValue(I.getOperand(0));
2998   SDValue Src2 = getValue(I.getOperand(1));
2999   SDLoc DL = getCurSDLoc();
3000 
3001   SmallVector<int, 8> Mask;
3002   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3003   unsigned MaskNumElts = Mask.size();
3004 
3005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3006   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3007   EVT SrcVT = Src1.getValueType();
3008   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3009 
3010   if (SrcNumElts == MaskNumElts) {
3011     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3012     return;
3013   }
3014 
3015   // Normalize the shuffle vector since mask and vector length don't match.
3016   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3017     // Mask is longer than the source vectors and is a multiple of the source
3018     // vectors.  We can use concatenate vector to make the mask and vectors
3019     // lengths match.
3020 
3021     unsigned NumConcat = MaskNumElts / SrcNumElts;
3022 
3023     // Check if the shuffle is some kind of concatenation of the input vectors.
3024     bool IsConcat = true;
3025     SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3026     for (unsigned i = 0; i != MaskNumElts; ++i) {
3027       int Idx = Mask[i];
3028       if (Idx < 0)
3029         continue;
3030       // Ensure the indices in each SrcVT sized piece are sequential and that
3031       // the same source is used for the whole piece.
3032       if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3033           (ConcatSrcs[i / SrcNumElts] >= 0 &&
3034            ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3035         IsConcat = false;
3036         break;
3037       }
3038       // Remember which source this index came from.
3039       ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3040     }
3041 
3042     // The shuffle is concatenating multiple vectors together. Just emit
3043     // a CONCAT_VECTORS operation.
3044     if (IsConcat) {
3045       SmallVector<SDValue, 8> ConcatOps;
3046       for (auto Src : ConcatSrcs) {
3047         if (Src < 0)
3048           ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3049         else if (Src == 0)
3050           ConcatOps.push_back(Src1);
3051         else
3052           ConcatOps.push_back(Src2);
3053       }
3054       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3055       return;
3056     }
3057 
3058     // Pad both vectors with undefs to make them the same length as the mask.
3059     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3060 
3061     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3062     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3063     MOps1[0] = Src1;
3064     MOps2[0] = Src2;
3065 
3066     Src1 = Src1.isUndef() ? DAG.getUNDEF(VT)
3067                           : DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, MOps1);
3068     Src2 = Src2.isUndef() ? DAG.getUNDEF(VT)
3069                           : DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, MOps2);
3070 
3071     // Readjust mask for new input vector length.
3072     SmallVector<int, 8> MappedOps;
3073     for (unsigned i = 0; i != MaskNumElts; ++i) {
3074       int Idx = Mask[i];
3075       if (Idx >= (int)SrcNumElts)
3076         Idx -= SrcNumElts - MaskNumElts;
3077       MappedOps.push_back(Idx);
3078     }
3079 
3080     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3081     return;
3082   }
3083 
3084   if (SrcNumElts > MaskNumElts) {
3085     // Analyze the access pattern of the vector to see if we can extract
3086     // two subvectors and do the shuffle. The analysis is done by calculating
3087     // the range of elements the mask access on both vectors.
3088     int MinRange[2] = { static_cast<int>(SrcNumElts),
3089                         static_cast<int>(SrcNumElts)};
3090     int MaxRange[2] = {-1, -1};
3091 
3092     for (unsigned i = 0; i != MaskNumElts; ++i) {
3093       int Idx = Mask[i];
3094       unsigned Input = 0;
3095       if (Idx < 0)
3096         continue;
3097 
3098       if (Idx >= (int)SrcNumElts) {
3099         Input = 1;
3100         Idx -= SrcNumElts;
3101       }
3102       if (Idx > MaxRange[Input])
3103         MaxRange[Input] = Idx;
3104       if (Idx < MinRange[Input])
3105         MinRange[Input] = Idx;
3106     }
3107 
3108     // Check if the access is smaller than the vector size and can we find
3109     // a reasonable extract index.
3110     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3111                                    // Extract.
3112     int StartIdx[2];  // StartIdx to extract from
3113     for (unsigned Input = 0; Input < 2; ++Input) {
3114       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3115         RangeUse[Input] = 0; // Unused
3116         StartIdx[Input] = 0;
3117         continue;
3118       }
3119 
3120       // Find a good start index that is a multiple of the mask length. Then
3121       // see if the rest of the elements are in range.
3122       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3123       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3124           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3125         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3126     }
3127 
3128     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3129       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3130       return;
3131     }
3132     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3133       // Extract appropriate subvector and generate a vector shuffle
3134       for (unsigned Input = 0; Input < 2; ++Input) {
3135         SDValue &Src = Input == 0 ? Src1 : Src2;
3136         if (RangeUse[Input] == 0)
3137           Src = DAG.getUNDEF(VT);
3138         else {
3139           Src = DAG.getNode(
3140               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3141               DAG.getConstant(StartIdx[Input], DL,
3142                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3143         }
3144       }
3145 
3146       // Calculate new mask.
3147       SmallVector<int, 8> MappedOps;
3148       for (unsigned i = 0; i != MaskNumElts; ++i) {
3149         int Idx = Mask[i];
3150         if (Idx >= 0) {
3151           if (Idx < (int)SrcNumElts)
3152             Idx -= StartIdx[0];
3153           else
3154             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3155         }
3156         MappedOps.push_back(Idx);
3157       }
3158 
3159       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3160       return;
3161     }
3162   }
3163 
3164   // We can't use either concat vectors or extract subvectors so fall back to
3165   // replacing the shuffle with extract and build vector.
3166   // to insert and build vector.
3167   EVT EltVT = VT.getVectorElementType();
3168   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3169   SmallVector<SDValue,8> Ops;
3170   for (unsigned i = 0; i != MaskNumElts; ++i) {
3171     int Idx = Mask[i];
3172     SDValue Res;
3173 
3174     if (Idx < 0) {
3175       Res = DAG.getUNDEF(EltVT);
3176     } else {
3177       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3178       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3179 
3180       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3181                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3182     }
3183 
3184     Ops.push_back(Res);
3185   }
3186 
3187   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3188 }
3189 
3190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3191   const Value *Op0 = I.getOperand(0);
3192   const Value *Op1 = I.getOperand(1);
3193   Type *AggTy = I.getType();
3194   Type *ValTy = Op1->getType();
3195   bool IntoUndef = isa<UndefValue>(Op0);
3196   bool FromUndef = isa<UndefValue>(Op1);
3197 
3198   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3199 
3200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3201   SmallVector<EVT, 4> AggValueVTs;
3202   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3203   SmallVector<EVT, 4> ValValueVTs;
3204   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3205 
3206   unsigned NumAggValues = AggValueVTs.size();
3207   unsigned NumValValues = ValValueVTs.size();
3208   SmallVector<SDValue, 4> Values(NumAggValues);
3209 
3210   // Ignore an insertvalue that produces an empty object
3211   if (!NumAggValues) {
3212     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3213     return;
3214   }
3215 
3216   SDValue Agg = getValue(Op0);
3217   unsigned i = 0;
3218   // Copy the beginning value(s) from the original aggregate.
3219   for (; i != LinearIndex; ++i)
3220     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3221                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3222   // Copy values from the inserted value(s).
3223   if (NumValValues) {
3224     SDValue Val = getValue(Op1);
3225     for (; i != LinearIndex + NumValValues; ++i)
3226       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3227                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3228   }
3229   // Copy remaining value(s) from the original aggregate.
3230   for (; i != NumAggValues; ++i)
3231     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3232                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3233 
3234   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3235                            DAG.getVTList(AggValueVTs), Values));
3236 }
3237 
3238 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3239   const Value *Op0 = I.getOperand(0);
3240   Type *AggTy = Op0->getType();
3241   Type *ValTy = I.getType();
3242   bool OutOfUndef = isa<UndefValue>(Op0);
3243 
3244   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3245 
3246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3247   SmallVector<EVT, 4> ValValueVTs;
3248   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3249 
3250   unsigned NumValValues = ValValueVTs.size();
3251 
3252   // Ignore a extractvalue that produces an empty object
3253   if (!NumValValues) {
3254     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3255     return;
3256   }
3257 
3258   SmallVector<SDValue, 4> Values(NumValValues);
3259 
3260   SDValue Agg = getValue(Op0);
3261   // Copy out the selected value(s).
3262   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3263     Values[i - LinearIndex] =
3264       OutOfUndef ?
3265         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3266         SDValue(Agg.getNode(), Agg.getResNo() + i);
3267 
3268   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3269                            DAG.getVTList(ValValueVTs), Values));
3270 }
3271 
3272 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3273   Value *Op0 = I.getOperand(0);
3274   // Note that the pointer operand may be a vector of pointers. Take the scalar
3275   // element which holds a pointer.
3276   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3277   SDValue N = getValue(Op0);
3278   SDLoc dl = getCurSDLoc();
3279 
3280   // Normalize Vector GEP - all scalar operands should be converted to the
3281   // splat vector.
3282   unsigned VectorWidth = I.getType()->isVectorTy() ?
3283     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3284 
3285   if (VectorWidth && !N.getValueType().isVector()) {
3286     LLVMContext &Context = *DAG.getContext();
3287     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3288     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3289     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3290   }
3291   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3292        GTI != E; ++GTI) {
3293     const Value *Idx = GTI.getOperand();
3294     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3295       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3296       if (Field) {
3297         // N = N + Offset
3298         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3299 
3300         // In an inbouds GEP with an offset that is nonnegative even when
3301         // interpreted as signed, assume there is no unsigned overflow.
3302         SDNodeFlags Flags;
3303         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3304           Flags.setNoUnsignedWrap(true);
3305 
3306         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3307                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3308       }
3309     } else {
3310       MVT PtrTy =
3311           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3312       unsigned PtrSize = PtrTy.getSizeInBits();
3313       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3314 
3315       // If this is a scalar constant or a splat vector of constants,
3316       // handle it quickly.
3317       const auto *CI = dyn_cast<ConstantInt>(Idx);
3318       if (!CI && isa<ConstantDataVector>(Idx) &&
3319           cast<ConstantDataVector>(Idx)->getSplatValue())
3320         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3321 
3322       if (CI) {
3323         if (CI->isZero())
3324           continue;
3325         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3326         LLVMContext &Context = *DAG.getContext();
3327         SDValue OffsVal = VectorWidth ?
3328           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3329           DAG.getConstant(Offs, dl, PtrTy);
3330 
3331         // In an inbouds GEP with an offset that is nonnegative even when
3332         // interpreted as signed, assume there is no unsigned overflow.
3333         SDNodeFlags Flags;
3334         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3335           Flags.setNoUnsignedWrap(true);
3336 
3337         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3338         continue;
3339       }
3340 
3341       // N = N + Idx * ElementSize;
3342       SDValue IdxN = getValue(Idx);
3343 
3344       if (!IdxN.getValueType().isVector() && VectorWidth) {
3345         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3346         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3347         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3348       }
3349       // If the index is smaller or larger than intptr_t, truncate or extend
3350       // it.
3351       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3352 
3353       // If this is a multiply by a power of two, turn it into a shl
3354       // immediately.  This is a very common case.
3355       if (ElementSize != 1) {
3356         if (ElementSize.isPowerOf2()) {
3357           unsigned Amt = ElementSize.logBase2();
3358           IdxN = DAG.getNode(ISD::SHL, dl,
3359                              N.getValueType(), IdxN,
3360                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3361         } else {
3362           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3363           IdxN = DAG.getNode(ISD::MUL, dl,
3364                              N.getValueType(), IdxN, Scale);
3365         }
3366       }
3367 
3368       N = DAG.getNode(ISD::ADD, dl,
3369                       N.getValueType(), N, IdxN);
3370     }
3371   }
3372 
3373   setValue(&I, N);
3374 }
3375 
3376 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3377   // If this is a fixed sized alloca in the entry block of the function,
3378   // allocate it statically on the stack.
3379   if (FuncInfo.StaticAllocaMap.count(&I))
3380     return;   // getValue will auto-populate this.
3381 
3382   SDLoc dl = getCurSDLoc();
3383   Type *Ty = I.getAllocatedType();
3384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3385   auto &DL = DAG.getDataLayout();
3386   uint64_t TySize = DL.getTypeAllocSize(Ty);
3387   unsigned Align =
3388       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3389 
3390   SDValue AllocSize = getValue(I.getArraySize());
3391 
3392   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3393   if (AllocSize.getValueType() != IntPtr)
3394     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3395 
3396   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3397                           AllocSize,
3398                           DAG.getConstant(TySize, dl, IntPtr));
3399 
3400   // Handle alignment.  If the requested alignment is less than or equal to
3401   // the stack alignment, ignore it.  If the size is greater than or equal to
3402   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3403   unsigned StackAlign =
3404       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3405   if (Align <= StackAlign)
3406     Align = 0;
3407 
3408   // Round the size of the allocation up to the stack alignment size
3409   // by add SA-1 to the size. This doesn't overflow because we're computing
3410   // an address inside an alloca.
3411   SDNodeFlags Flags;
3412   Flags.setNoUnsignedWrap(true);
3413   AllocSize = DAG.getNode(ISD::ADD, dl,
3414                           AllocSize.getValueType(), AllocSize,
3415                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3416 
3417   // Mask out the low bits for alignment purposes.
3418   AllocSize = DAG.getNode(ISD::AND, dl,
3419                           AllocSize.getValueType(), AllocSize,
3420                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3421                                                 dl));
3422 
3423   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3424   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3425   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3426   setValue(&I, DSA);
3427   DAG.setRoot(DSA.getValue(1));
3428 
3429   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3430 }
3431 
3432 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3433   if (I.isAtomic())
3434     return visitAtomicLoad(I);
3435 
3436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3437   const Value *SV = I.getOperand(0);
3438   if (TLI.supportSwiftError()) {
3439     // Swifterror values can come from either a function parameter with
3440     // swifterror attribute or an alloca with swifterror attribute.
3441     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3442       if (Arg->hasSwiftErrorAttr())
3443         return visitLoadFromSwiftError(I);
3444     }
3445 
3446     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3447       if (Alloca->isSwiftError())
3448         return visitLoadFromSwiftError(I);
3449     }
3450   }
3451 
3452   SDValue Ptr = getValue(SV);
3453 
3454   Type *Ty = I.getType();
3455 
3456   bool isVolatile = I.isVolatile();
3457   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3458 
3459   // The IR notion of invariant_load only guarantees that all *non-faulting*
3460   // invariant loads result in the same value.  The MI notion of invariant load
3461   // guarantees that the load can be legally moved to any location within its
3462   // containing function.  The MI notion of invariant_load is stronger than the
3463   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3464   // with a guarantee that the location being loaded from is dereferenceable
3465   // throughout the function's lifetime.
3466 
3467   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3468                      isDereferenceablePointer(SV, DAG.getDataLayout());
3469   unsigned Alignment = I.getAlignment();
3470 
3471   AAMDNodes AAInfo;
3472   I.getAAMetadata(AAInfo);
3473   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3474 
3475   SmallVector<EVT, 4> ValueVTs;
3476   SmallVector<uint64_t, 4> Offsets;
3477   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3478   unsigned NumValues = ValueVTs.size();
3479   if (NumValues == 0)
3480     return;
3481 
3482   SDValue Root;
3483   bool ConstantMemory = false;
3484   if (isVolatile || NumValues > MaxParallelChains)
3485     // Serialize volatile loads with other side effects.
3486     Root = getRoot();
3487   else if (AA->pointsToConstantMemory(MemoryLocation(
3488                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3489     // Do not serialize (non-volatile) loads of constant memory with anything.
3490     Root = DAG.getEntryNode();
3491     ConstantMemory = true;
3492   } else {
3493     // Do not serialize non-volatile loads against each other.
3494     Root = DAG.getRoot();
3495   }
3496 
3497   SDLoc dl = getCurSDLoc();
3498 
3499   if (isVolatile)
3500     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3501 
3502   // An aggregate load cannot wrap around the address space, so offsets to its
3503   // parts don't wrap either.
3504   SDNodeFlags Flags;
3505   Flags.setNoUnsignedWrap(true);
3506 
3507   SmallVector<SDValue, 4> Values(NumValues);
3508   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3509   EVT PtrVT = Ptr.getValueType();
3510   unsigned ChainI = 0;
3511   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3512     // Serializing loads here may result in excessive register pressure, and
3513     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3514     // could recover a bit by hoisting nodes upward in the chain by recognizing
3515     // they are side-effect free or do not alias. The optimizer should really
3516     // avoid this case by converting large object/array copies to llvm.memcpy
3517     // (MaxParallelChains should always remain as failsafe).
3518     if (ChainI == MaxParallelChains) {
3519       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3520       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3521                                   makeArrayRef(Chains.data(), ChainI));
3522       Root = Chain;
3523       ChainI = 0;
3524     }
3525     SDValue A = DAG.getNode(ISD::ADD, dl,
3526                             PtrVT, Ptr,
3527                             DAG.getConstant(Offsets[i], dl, PtrVT),
3528                             &Flags);
3529     auto MMOFlags = MachineMemOperand::MONone;
3530     if (isVolatile)
3531       MMOFlags |= MachineMemOperand::MOVolatile;
3532     if (isNonTemporal)
3533       MMOFlags |= MachineMemOperand::MONonTemporal;
3534     if (isInvariant)
3535       MMOFlags |= MachineMemOperand::MOInvariant;
3536 
3537     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3538                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3539                             MMOFlags, AAInfo, Ranges);
3540 
3541     Values[i] = L;
3542     Chains[ChainI] = L.getValue(1);
3543   }
3544 
3545   if (!ConstantMemory) {
3546     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3547                                 makeArrayRef(Chains.data(), ChainI));
3548     if (isVolatile)
3549       DAG.setRoot(Chain);
3550     else
3551       PendingLoads.push_back(Chain);
3552   }
3553 
3554   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3555                            DAG.getVTList(ValueVTs), Values));
3556 }
3557 
3558 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   assert(TLI.supportSwiftError() &&
3561          "call visitStoreToSwiftError when backend supports swifterror");
3562 
3563   SmallVector<EVT, 4> ValueVTs;
3564   SmallVector<uint64_t, 4> Offsets;
3565   const Value *SrcV = I.getOperand(0);
3566   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3567                   SrcV->getType(), ValueVTs, &Offsets);
3568   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3569          "expect a single EVT for swifterror");
3570 
3571   SDValue Src = getValue(SrcV);
3572   // Create a virtual register, then update the virtual register.
3573   auto &DL = DAG.getDataLayout();
3574   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3575   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3576   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3577   // Chain can be getRoot or getControlRoot.
3578   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3579                                       SDValue(Src.getNode(), Src.getResNo()));
3580   DAG.setRoot(CopyNode);
3581   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3582 }
3583 
3584 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3585   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3586          "call visitLoadFromSwiftError when backend supports swifterror");
3587 
3588   assert(!I.isVolatile() &&
3589          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3590          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3591          "Support volatile, non temporal, invariant for load_from_swift_error");
3592 
3593   const Value *SV = I.getOperand(0);
3594   Type *Ty = I.getType();
3595   AAMDNodes AAInfo;
3596   I.getAAMetadata(AAInfo);
3597   assert(!AA->pointsToConstantMemory(MemoryLocation(
3598              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3599          "load_from_swift_error should not be constant memory");
3600 
3601   SmallVector<EVT, 4> ValueVTs;
3602   SmallVector<uint64_t, 4> Offsets;
3603   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3604                   ValueVTs, &Offsets);
3605   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3606          "expect a single EVT for swifterror");
3607 
3608   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3609   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3610                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3611                                  ValueVTs[0]);
3612 
3613   setValue(&I, L);
3614 }
3615 
3616 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3617   if (I.isAtomic())
3618     return visitAtomicStore(I);
3619 
3620   const Value *SrcV = I.getOperand(0);
3621   const Value *PtrV = I.getOperand(1);
3622 
3623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3624   if (TLI.supportSwiftError()) {
3625     // Swifterror values can come from either a function parameter with
3626     // swifterror attribute or an alloca with swifterror attribute.
3627     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3628       if (Arg->hasSwiftErrorAttr())
3629         return visitStoreToSwiftError(I);
3630     }
3631 
3632     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3633       if (Alloca->isSwiftError())
3634         return visitStoreToSwiftError(I);
3635     }
3636   }
3637 
3638   SmallVector<EVT, 4> ValueVTs;
3639   SmallVector<uint64_t, 4> Offsets;
3640   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3641                   SrcV->getType(), ValueVTs, &Offsets);
3642   unsigned NumValues = ValueVTs.size();
3643   if (NumValues == 0)
3644     return;
3645 
3646   // Get the lowered operands. Note that we do this after
3647   // checking if NumResults is zero, because with zero results
3648   // the operands won't have values in the map.
3649   SDValue Src = getValue(SrcV);
3650   SDValue Ptr = getValue(PtrV);
3651 
3652   SDValue Root = getRoot();
3653   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3654   SDLoc dl = getCurSDLoc();
3655   EVT PtrVT = Ptr.getValueType();
3656   unsigned Alignment = I.getAlignment();
3657   AAMDNodes AAInfo;
3658   I.getAAMetadata(AAInfo);
3659 
3660   auto MMOFlags = MachineMemOperand::MONone;
3661   if (I.isVolatile())
3662     MMOFlags |= MachineMemOperand::MOVolatile;
3663   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3664     MMOFlags |= MachineMemOperand::MONonTemporal;
3665 
3666   // An aggregate load cannot wrap around the address space, so offsets to its
3667   // parts don't wrap either.
3668   SDNodeFlags Flags;
3669   Flags.setNoUnsignedWrap(true);
3670 
3671   unsigned ChainI = 0;
3672   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3673     // See visitLoad comments.
3674     if (ChainI == MaxParallelChains) {
3675       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3676                                   makeArrayRef(Chains.data(), ChainI));
3677       Root = Chain;
3678       ChainI = 0;
3679     }
3680     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3681                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3682     SDValue St = DAG.getStore(
3683         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3684         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3685     Chains[ChainI] = St;
3686   }
3687 
3688   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3689                                   makeArrayRef(Chains.data(), ChainI));
3690   DAG.setRoot(StoreNode);
3691 }
3692 
3693 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3694   SDLoc sdl = getCurSDLoc();
3695 
3696   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3697   Value  *PtrOperand = I.getArgOperand(1);
3698   SDValue Ptr = getValue(PtrOperand);
3699   SDValue Src0 = getValue(I.getArgOperand(0));
3700   SDValue Mask = getValue(I.getArgOperand(3));
3701   EVT VT = Src0.getValueType();
3702   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3703   if (!Alignment)
3704     Alignment = DAG.getEVTAlignment(VT);
3705 
3706   AAMDNodes AAInfo;
3707   I.getAAMetadata(AAInfo);
3708 
3709   MachineMemOperand *MMO =
3710     DAG.getMachineFunction().
3711     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3712                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3713                           Alignment, AAInfo);
3714   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3715                                          MMO, false);
3716   DAG.setRoot(StoreNode);
3717   setValue(&I, StoreNode);
3718 }
3719 
3720 // Get a uniform base for the Gather/Scatter intrinsic.
3721 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3722 // We try to represent it as a base pointer + vector of indices.
3723 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3724 // The first operand of the GEP may be a single pointer or a vector of pointers
3725 // Example:
3726 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3727 //  or
3728 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3729 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3730 //
3731 // When the first GEP operand is a single pointer - it is the uniform base we
3732 // are looking for. If first operand of the GEP is a splat vector - we
3733 // extract the spalt value and use it as a uniform base.
3734 // In all other cases the function returns 'false'.
3735 //
3736 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3737                            SelectionDAGBuilder* SDB) {
3738 
3739   SelectionDAG& DAG = SDB->DAG;
3740   LLVMContext &Context = *DAG.getContext();
3741 
3742   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3743   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3744   if (!GEP || GEP->getNumOperands() > 2)
3745     return false;
3746 
3747   const Value *GEPPtr = GEP->getPointerOperand();
3748   if (!GEPPtr->getType()->isVectorTy())
3749     Ptr = GEPPtr;
3750   else if (!(Ptr = getSplatValue(GEPPtr)))
3751     return false;
3752 
3753   Value *IndexVal = GEP->getOperand(1);
3754 
3755   // The operands of the GEP may be defined in another basic block.
3756   // In this case we'll not find nodes for the operands.
3757   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3758     return false;
3759 
3760   Base = SDB->getValue(Ptr);
3761   Index = SDB->getValue(IndexVal);
3762 
3763   // Suppress sign extension.
3764   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3765     if (SDB->findValue(Sext->getOperand(0))) {
3766       IndexVal = Sext->getOperand(0);
3767       Index = SDB->getValue(IndexVal);
3768     }
3769   }
3770   if (!Index.getValueType().isVector()) {
3771     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3772     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3773     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3774     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3775   }
3776   return true;
3777 }
3778 
3779 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3780   SDLoc sdl = getCurSDLoc();
3781 
3782   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3783   const Value *Ptr = I.getArgOperand(1);
3784   SDValue Src0 = getValue(I.getArgOperand(0));
3785   SDValue Mask = getValue(I.getArgOperand(3));
3786   EVT VT = Src0.getValueType();
3787   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3788   if (!Alignment)
3789     Alignment = DAG.getEVTAlignment(VT);
3790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3791 
3792   AAMDNodes AAInfo;
3793   I.getAAMetadata(AAInfo);
3794 
3795   SDValue Base;
3796   SDValue Index;
3797   const Value *BasePtr = Ptr;
3798   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3799 
3800   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3801   MachineMemOperand *MMO = DAG.getMachineFunction().
3802     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3803                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3804                          Alignment, AAInfo);
3805   if (!UniformBase) {
3806     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3807     Index = getValue(Ptr);
3808   }
3809   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3810   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3811                                          Ops, MMO);
3812   DAG.setRoot(Scatter);
3813   setValue(&I, Scatter);
3814 }
3815 
3816 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3817   SDLoc sdl = getCurSDLoc();
3818 
3819   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3820   Value  *PtrOperand = I.getArgOperand(0);
3821   SDValue Ptr = getValue(PtrOperand);
3822   SDValue Src0 = getValue(I.getArgOperand(3));
3823   SDValue Mask = getValue(I.getArgOperand(2));
3824 
3825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3826   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3827   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3828   if (!Alignment)
3829     Alignment = DAG.getEVTAlignment(VT);
3830 
3831   AAMDNodes AAInfo;
3832   I.getAAMetadata(AAInfo);
3833   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3834 
3835   // Do not serialize masked loads of constant memory with anything.
3836   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3837       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3838   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3839 
3840   MachineMemOperand *MMO =
3841     DAG.getMachineFunction().
3842     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3843                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3844                           Alignment, AAInfo, Ranges);
3845 
3846   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3847                                    ISD::NON_EXTLOAD);
3848   if (AddToChain) {
3849     SDValue OutChain = Load.getValue(1);
3850     DAG.setRoot(OutChain);
3851   }
3852   setValue(&I, Load);
3853 }
3854 
3855 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3856   SDLoc sdl = getCurSDLoc();
3857 
3858   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3859   const Value *Ptr = I.getArgOperand(0);
3860   SDValue Src0 = getValue(I.getArgOperand(3));
3861   SDValue Mask = getValue(I.getArgOperand(2));
3862 
3863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3864   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3865   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3866   if (!Alignment)
3867     Alignment = DAG.getEVTAlignment(VT);
3868 
3869   AAMDNodes AAInfo;
3870   I.getAAMetadata(AAInfo);
3871   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3872 
3873   SDValue Root = DAG.getRoot();
3874   SDValue Base;
3875   SDValue Index;
3876   const Value *BasePtr = Ptr;
3877   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3878   bool ConstantMemory = false;
3879   if (UniformBase &&
3880       AA->pointsToConstantMemory(MemoryLocation(
3881           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3882           AAInfo))) {
3883     // Do not serialize (non-volatile) loads of constant memory with anything.
3884     Root = DAG.getEntryNode();
3885     ConstantMemory = true;
3886   }
3887 
3888   MachineMemOperand *MMO =
3889     DAG.getMachineFunction().
3890     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3891                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3892                          Alignment, AAInfo, Ranges);
3893 
3894   if (!UniformBase) {
3895     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3896     Index = getValue(Ptr);
3897   }
3898   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3899   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3900                                        Ops, MMO);
3901 
3902   SDValue OutChain = Gather.getValue(1);
3903   if (!ConstantMemory)
3904     PendingLoads.push_back(OutChain);
3905   setValue(&I, Gather);
3906 }
3907 
3908 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3909   SDLoc dl = getCurSDLoc();
3910   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3911   AtomicOrdering FailureOrder = I.getFailureOrdering();
3912   SynchronizationScope Scope = I.getSynchScope();
3913 
3914   SDValue InChain = getRoot();
3915 
3916   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3917   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3918   SDValue L = DAG.getAtomicCmpSwap(
3919       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3920       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3921       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3922       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3923 
3924   SDValue OutChain = L.getValue(2);
3925 
3926   setValue(&I, L);
3927   DAG.setRoot(OutChain);
3928 }
3929 
3930 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3931   SDLoc dl = getCurSDLoc();
3932   ISD::NodeType NT;
3933   switch (I.getOperation()) {
3934   default: llvm_unreachable("Unknown atomicrmw operation");
3935   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3936   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3937   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3938   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3939   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3940   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3941   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3942   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3943   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3944   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3945   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3946   }
3947   AtomicOrdering Order = I.getOrdering();
3948   SynchronizationScope Scope = I.getSynchScope();
3949 
3950   SDValue InChain = getRoot();
3951 
3952   SDValue L =
3953     DAG.getAtomic(NT, dl,
3954                   getValue(I.getValOperand()).getSimpleValueType(),
3955                   InChain,
3956                   getValue(I.getPointerOperand()),
3957                   getValue(I.getValOperand()),
3958                   I.getPointerOperand(),
3959                   /* Alignment=*/ 0, Order, Scope);
3960 
3961   SDValue OutChain = L.getValue(1);
3962 
3963   setValue(&I, L);
3964   DAG.setRoot(OutChain);
3965 }
3966 
3967 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3968   SDLoc dl = getCurSDLoc();
3969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3970   SDValue Ops[3];
3971   Ops[0] = getRoot();
3972   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3973                            TLI.getPointerTy(DAG.getDataLayout()));
3974   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3975                            TLI.getPointerTy(DAG.getDataLayout()));
3976   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3977 }
3978 
3979 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3980   SDLoc dl = getCurSDLoc();
3981   AtomicOrdering Order = I.getOrdering();
3982   SynchronizationScope Scope = I.getSynchScope();
3983 
3984   SDValue InChain = getRoot();
3985 
3986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3987   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3988 
3989   if (I.getAlignment() < VT.getSizeInBits() / 8)
3990     report_fatal_error("Cannot generate unaligned atomic load");
3991 
3992   MachineMemOperand *MMO =
3993       DAG.getMachineFunction().
3994       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3995                            MachineMemOperand::MOVolatile |
3996                            MachineMemOperand::MOLoad,
3997                            VT.getStoreSize(),
3998                            I.getAlignment() ? I.getAlignment() :
3999                                               DAG.getEVTAlignment(VT));
4000 
4001   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4002   SDValue L =
4003       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4004                     getValue(I.getPointerOperand()), MMO,
4005                     Order, Scope);
4006 
4007   SDValue OutChain = L.getValue(1);
4008 
4009   setValue(&I, L);
4010   DAG.setRoot(OutChain);
4011 }
4012 
4013 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4014   SDLoc dl = getCurSDLoc();
4015 
4016   AtomicOrdering Order = I.getOrdering();
4017   SynchronizationScope Scope = I.getSynchScope();
4018 
4019   SDValue InChain = getRoot();
4020 
4021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4022   EVT VT =
4023       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4024 
4025   if (I.getAlignment() < VT.getSizeInBits() / 8)
4026     report_fatal_error("Cannot generate unaligned atomic store");
4027 
4028   SDValue OutChain =
4029     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4030                   InChain,
4031                   getValue(I.getPointerOperand()),
4032                   getValue(I.getValueOperand()),
4033                   I.getPointerOperand(), I.getAlignment(),
4034                   Order, Scope);
4035 
4036   DAG.setRoot(OutChain);
4037 }
4038 
4039 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4040 /// node.
4041 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4042                                                unsigned Intrinsic) {
4043   bool HasChain = !I.doesNotAccessMemory();
4044   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4045 
4046   // Build the operand list.
4047   SmallVector<SDValue, 8> Ops;
4048   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4049     if (OnlyLoad) {
4050       // We don't need to serialize loads against other loads.
4051       Ops.push_back(DAG.getRoot());
4052     } else {
4053       Ops.push_back(getRoot());
4054     }
4055   }
4056 
4057   // Info is set by getTgtMemInstrinsic
4058   TargetLowering::IntrinsicInfo Info;
4059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4060   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4061 
4062   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4063   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4064       Info.opc == ISD::INTRINSIC_W_CHAIN)
4065     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4066                                         TLI.getPointerTy(DAG.getDataLayout())));
4067 
4068   // Add all operands of the call to the operand list.
4069   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4070     SDValue Op = getValue(I.getArgOperand(i));
4071     Ops.push_back(Op);
4072   }
4073 
4074   SmallVector<EVT, 4> ValueVTs;
4075   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4076 
4077   if (HasChain)
4078     ValueVTs.push_back(MVT::Other);
4079 
4080   SDVTList VTs = DAG.getVTList(ValueVTs);
4081 
4082   // Create the node.
4083   SDValue Result;
4084   if (IsTgtIntrinsic) {
4085     // This is target intrinsic that touches memory
4086     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4087                                      VTs, Ops, Info.memVT,
4088                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4089                                      Info.align, Info.vol,
4090                                      Info.readMem, Info.writeMem, Info.size);
4091   } else if (!HasChain) {
4092     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4093   } else if (!I.getType()->isVoidTy()) {
4094     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4095   } else {
4096     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4097   }
4098 
4099   if (HasChain) {
4100     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4101     if (OnlyLoad)
4102       PendingLoads.push_back(Chain);
4103     else
4104       DAG.setRoot(Chain);
4105   }
4106 
4107   if (!I.getType()->isVoidTy()) {
4108     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4109       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4110       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4111     } else
4112       Result = lowerRangeToAssertZExt(DAG, I, Result);
4113 
4114     setValue(&I, Result);
4115   }
4116 }
4117 
4118 /// GetSignificand - Get the significand and build it into a floating-point
4119 /// number with exponent of 1:
4120 ///
4121 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4122 ///
4123 /// where Op is the hexadecimal representation of floating point value.
4124 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4125   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4126                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4127   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4128                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4129   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4130 }
4131 
4132 /// GetExponent - Get the exponent:
4133 ///
4134 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4135 ///
4136 /// where Op is the hexadecimal representation of floating point value.
4137 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4138                            const TargetLowering &TLI, const SDLoc &dl) {
4139   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4140                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4141   SDValue t1 = DAG.getNode(
4142       ISD::SRL, dl, MVT::i32, t0,
4143       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4144   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4145                            DAG.getConstant(127, dl, MVT::i32));
4146   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4147 }
4148 
4149 /// getF32Constant - Get 32-bit floating point constant.
4150 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4151                               const SDLoc &dl) {
4152   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4153                            MVT::f32);
4154 }
4155 
4156 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4157                                        SelectionDAG &DAG) {
4158   // TODO: What fast-math-flags should be set on the floating-point nodes?
4159 
4160   //   IntegerPartOfX = ((int32_t)(t0);
4161   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4162 
4163   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4164   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4165   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4166 
4167   //   IntegerPartOfX <<= 23;
4168   IntegerPartOfX = DAG.getNode(
4169       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4170       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4171                                   DAG.getDataLayout())));
4172 
4173   SDValue TwoToFractionalPartOfX;
4174   if (LimitFloatPrecision <= 6) {
4175     // For floating-point precision of 6:
4176     //
4177     //   TwoToFractionalPartOfX =
4178     //     0.997535578f +
4179     //       (0.735607626f + 0.252464424f * x) * x;
4180     //
4181     // error 0.0144103317, which is 6 bits
4182     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4183                              getF32Constant(DAG, 0x3e814304, dl));
4184     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4185                              getF32Constant(DAG, 0x3f3c50c8, dl));
4186     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4187     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4188                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4189   } else if (LimitFloatPrecision <= 12) {
4190     // For floating-point precision of 12:
4191     //
4192     //   TwoToFractionalPartOfX =
4193     //     0.999892986f +
4194     //       (0.696457318f +
4195     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4196     //
4197     // error 0.000107046256, which is 13 to 14 bits
4198     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4199                              getF32Constant(DAG, 0x3da235e3, dl));
4200     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4201                              getF32Constant(DAG, 0x3e65b8f3, dl));
4202     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4203     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4204                              getF32Constant(DAG, 0x3f324b07, dl));
4205     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4206     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4207                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4208   } else { // LimitFloatPrecision <= 18
4209     // For floating-point precision of 18:
4210     //
4211     //   TwoToFractionalPartOfX =
4212     //     0.999999982f +
4213     //       (0.693148872f +
4214     //         (0.240227044f +
4215     //           (0.554906021e-1f +
4216     //             (0.961591928e-2f +
4217     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4218     // error 2.47208000*10^(-7), which is better than 18 bits
4219     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4220                              getF32Constant(DAG, 0x3924b03e, dl));
4221     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4222                              getF32Constant(DAG, 0x3ab24b87, dl));
4223     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4224     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4225                              getF32Constant(DAG, 0x3c1d8c17, dl));
4226     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4227     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4228                              getF32Constant(DAG, 0x3d634a1d, dl));
4229     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4230     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4231                              getF32Constant(DAG, 0x3e75fe14, dl));
4232     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4233     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4234                               getF32Constant(DAG, 0x3f317234, dl));
4235     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4236     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4237                                          getF32Constant(DAG, 0x3f800000, dl));
4238   }
4239 
4240   // Add the exponent into the result in integer domain.
4241   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4242   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4243                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4244 }
4245 
4246 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4247 /// limited-precision mode.
4248 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4249                          const TargetLowering &TLI) {
4250   if (Op.getValueType() == MVT::f32 &&
4251       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4252 
4253     // Put the exponent in the right bit position for later addition to the
4254     // final result:
4255     //
4256     //   #define LOG2OFe 1.4426950f
4257     //   t0 = Op * LOG2OFe
4258 
4259     // TODO: What fast-math-flags should be set here?
4260     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4261                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4262     return getLimitedPrecisionExp2(t0, dl, DAG);
4263   }
4264 
4265   // No special expansion.
4266   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4267 }
4268 
4269 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4270 /// limited-precision mode.
4271 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4272                          const TargetLowering &TLI) {
4273 
4274   // TODO: What fast-math-flags should be set on the floating-point nodes?
4275 
4276   if (Op.getValueType() == MVT::f32 &&
4277       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4278     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4279 
4280     // Scale the exponent by log(2) [0.69314718f].
4281     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4282     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4283                                         getF32Constant(DAG, 0x3f317218, dl));
4284 
4285     // Get the significand and build it into a floating-point number with
4286     // exponent of 1.
4287     SDValue X = GetSignificand(DAG, Op1, dl);
4288 
4289     SDValue LogOfMantissa;
4290     if (LimitFloatPrecision <= 6) {
4291       // For floating-point precision of 6:
4292       //
4293       //   LogofMantissa =
4294       //     -1.1609546f +
4295       //       (1.4034025f - 0.23903021f * x) * x;
4296       //
4297       // error 0.0034276066, which is better than 8 bits
4298       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4299                                getF32Constant(DAG, 0xbe74c456, dl));
4300       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4301                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4302       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4303       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4304                                   getF32Constant(DAG, 0x3f949a29, dl));
4305     } else if (LimitFloatPrecision <= 12) {
4306       // For floating-point precision of 12:
4307       //
4308       //   LogOfMantissa =
4309       //     -1.7417939f +
4310       //       (2.8212026f +
4311       //         (-1.4699568f +
4312       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4313       //
4314       // error 0.000061011436, which is 14 bits
4315       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4316                                getF32Constant(DAG, 0xbd67b6d6, dl));
4317       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4318                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4319       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4320       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4321                                getF32Constant(DAG, 0x3fbc278b, dl));
4322       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4323       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4324                                getF32Constant(DAG, 0x40348e95, dl));
4325       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4326       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4327                                   getF32Constant(DAG, 0x3fdef31a, dl));
4328     } else { // LimitFloatPrecision <= 18
4329       // For floating-point precision of 18:
4330       //
4331       //   LogOfMantissa =
4332       //     -2.1072184f +
4333       //       (4.2372794f +
4334       //         (-3.7029485f +
4335       //           (2.2781945f +
4336       //             (-0.87823314f +
4337       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4338       //
4339       // error 0.0000023660568, which is better than 18 bits
4340       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4341                                getF32Constant(DAG, 0xbc91e5ac, dl));
4342       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4343                                getF32Constant(DAG, 0x3e4350aa, dl));
4344       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4345       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4346                                getF32Constant(DAG, 0x3f60d3e3, dl));
4347       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4348       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4349                                getF32Constant(DAG, 0x4011cdf0, dl));
4350       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4351       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4352                                getF32Constant(DAG, 0x406cfd1c, dl));
4353       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4354       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4355                                getF32Constant(DAG, 0x408797cb, dl));
4356       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4357       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4358                                   getF32Constant(DAG, 0x4006dcab, dl));
4359     }
4360 
4361     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4362   }
4363 
4364   // No special expansion.
4365   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4366 }
4367 
4368 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4369 /// limited-precision mode.
4370 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4371                           const TargetLowering &TLI) {
4372 
4373   // TODO: What fast-math-flags should be set on the floating-point nodes?
4374 
4375   if (Op.getValueType() == MVT::f32 &&
4376       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4377     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4378 
4379     // Get the exponent.
4380     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4381 
4382     // Get the significand and build it into a floating-point number with
4383     // exponent of 1.
4384     SDValue X = GetSignificand(DAG, Op1, dl);
4385 
4386     // Different possible minimax approximations of significand in
4387     // floating-point for various degrees of accuracy over [1,2].
4388     SDValue Log2ofMantissa;
4389     if (LimitFloatPrecision <= 6) {
4390       // For floating-point precision of 6:
4391       //
4392       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4393       //
4394       // error 0.0049451742, which is more than 7 bits
4395       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4396                                getF32Constant(DAG, 0xbeb08fe0, dl));
4397       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4398                                getF32Constant(DAG, 0x40019463, dl));
4399       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4400       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4401                                    getF32Constant(DAG, 0x3fd6633d, dl));
4402     } else if (LimitFloatPrecision <= 12) {
4403       // For floating-point precision of 12:
4404       //
4405       //   Log2ofMantissa =
4406       //     -2.51285454f +
4407       //       (4.07009056f +
4408       //         (-2.12067489f +
4409       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4410       //
4411       // error 0.0000876136000, which is better than 13 bits
4412       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4413                                getF32Constant(DAG, 0xbda7262e, dl));
4414       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4415                                getF32Constant(DAG, 0x3f25280b, dl));
4416       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4417       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4418                                getF32Constant(DAG, 0x4007b923, dl));
4419       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4420       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4421                                getF32Constant(DAG, 0x40823e2f, dl));
4422       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4423       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4424                                    getF32Constant(DAG, 0x4020d29c, dl));
4425     } else { // LimitFloatPrecision <= 18
4426       // For floating-point precision of 18:
4427       //
4428       //   Log2ofMantissa =
4429       //     -3.0400495f +
4430       //       (6.1129976f +
4431       //         (-5.3420409f +
4432       //           (3.2865683f +
4433       //             (-1.2669343f +
4434       //               (0.27515199f -
4435       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4436       //
4437       // error 0.0000018516, which is better than 18 bits
4438       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4439                                getF32Constant(DAG, 0xbcd2769e, dl));
4440       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4441                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4442       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4443       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4444                                getF32Constant(DAG, 0x3fa22ae7, dl));
4445       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4446       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4447                                getF32Constant(DAG, 0x40525723, dl));
4448       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4449       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4450                                getF32Constant(DAG, 0x40aaf200, dl));
4451       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4452       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4453                                getF32Constant(DAG, 0x40c39dad, dl));
4454       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4455       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4456                                    getF32Constant(DAG, 0x4042902c, dl));
4457     }
4458 
4459     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4460   }
4461 
4462   // No special expansion.
4463   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4464 }
4465 
4466 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4467 /// limited-precision mode.
4468 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4469                            const TargetLowering &TLI) {
4470 
4471   // TODO: What fast-math-flags should be set on the floating-point nodes?
4472 
4473   if (Op.getValueType() == MVT::f32 &&
4474       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4475     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4476 
4477     // Scale the exponent by log10(2) [0.30102999f].
4478     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4479     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4480                                         getF32Constant(DAG, 0x3e9a209a, dl));
4481 
4482     // Get the significand and build it into a floating-point number with
4483     // exponent of 1.
4484     SDValue X = GetSignificand(DAG, Op1, dl);
4485 
4486     SDValue Log10ofMantissa;
4487     if (LimitFloatPrecision <= 6) {
4488       // For floating-point precision of 6:
4489       //
4490       //   Log10ofMantissa =
4491       //     -0.50419619f +
4492       //       (0.60948995f - 0.10380950f * x) * x;
4493       //
4494       // error 0.0014886165, which is 6 bits
4495       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4496                                getF32Constant(DAG, 0xbdd49a13, dl));
4497       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4498                                getF32Constant(DAG, 0x3f1c0789, dl));
4499       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4500       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4501                                     getF32Constant(DAG, 0x3f011300, dl));
4502     } else if (LimitFloatPrecision <= 12) {
4503       // For floating-point precision of 12:
4504       //
4505       //   Log10ofMantissa =
4506       //     -0.64831180f +
4507       //       (0.91751397f +
4508       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4509       //
4510       // error 0.00019228036, which is better than 12 bits
4511       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4512                                getF32Constant(DAG, 0x3d431f31, dl));
4513       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4514                                getF32Constant(DAG, 0x3ea21fb2, dl));
4515       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4516       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4517                                getF32Constant(DAG, 0x3f6ae232, dl));
4518       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4519       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4520                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4521     } else { // LimitFloatPrecision <= 18
4522       // For floating-point precision of 18:
4523       //
4524       //   Log10ofMantissa =
4525       //     -0.84299375f +
4526       //       (1.5327582f +
4527       //         (-1.0688956f +
4528       //           (0.49102474f +
4529       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4530       //
4531       // error 0.0000037995730, which is better than 18 bits
4532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4533                                getF32Constant(DAG, 0x3c5d51ce, dl));
4534       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4535                                getF32Constant(DAG, 0x3e00685a, dl));
4536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4537       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4538                                getF32Constant(DAG, 0x3efb6798, dl));
4539       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4540       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4541                                getF32Constant(DAG, 0x3f88d192, dl));
4542       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4543       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4544                                getF32Constant(DAG, 0x3fc4316c, dl));
4545       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4546       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4547                                     getF32Constant(DAG, 0x3f57ce70, dl));
4548     }
4549 
4550     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4551   }
4552 
4553   // No special expansion.
4554   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4555 }
4556 
4557 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4558 /// limited-precision mode.
4559 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4560                           const TargetLowering &TLI) {
4561   if (Op.getValueType() == MVT::f32 &&
4562       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4563     return getLimitedPrecisionExp2(Op, dl, DAG);
4564 
4565   // No special expansion.
4566   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4567 }
4568 
4569 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4570 /// limited-precision mode with x == 10.0f.
4571 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4572                          SelectionDAG &DAG, const TargetLowering &TLI) {
4573   bool IsExp10 = false;
4574   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4575       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4576     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4577       APFloat Ten(10.0f);
4578       IsExp10 = LHSC->isExactlyValue(Ten);
4579     }
4580   }
4581 
4582   // TODO: What fast-math-flags should be set on the FMUL node?
4583   if (IsExp10) {
4584     // Put the exponent in the right bit position for later addition to the
4585     // final result:
4586     //
4587     //   #define LOG2OF10 3.3219281f
4588     //   t0 = Op * LOG2OF10;
4589     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4590                              getF32Constant(DAG, 0x40549a78, dl));
4591     return getLimitedPrecisionExp2(t0, dl, DAG);
4592   }
4593 
4594   // No special expansion.
4595   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4596 }
4597 
4598 
4599 /// ExpandPowI - Expand a llvm.powi intrinsic.
4600 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4601                           SelectionDAG &DAG) {
4602   // If RHS is a constant, we can expand this out to a multiplication tree,
4603   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4604   // optimizing for size, we only want to do this if the expansion would produce
4605   // a small number of multiplies, otherwise we do the full expansion.
4606   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4607     // Get the exponent as a positive value.
4608     unsigned Val = RHSC->getSExtValue();
4609     if ((int)Val < 0) Val = -Val;
4610 
4611     // powi(x, 0) -> 1.0
4612     if (Val == 0)
4613       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4614 
4615     const Function *F = DAG.getMachineFunction().getFunction();
4616     if (!F->optForSize() ||
4617         // If optimizing for size, don't insert too many multiplies.
4618         // This inserts up to 5 multiplies.
4619         countPopulation(Val) + Log2_32(Val) < 7) {
4620       // We use the simple binary decomposition method to generate the multiply
4621       // sequence.  There are more optimal ways to do this (for example,
4622       // powi(x,15) generates one more multiply than it should), but this has
4623       // the benefit of being both really simple and much better than a libcall.
4624       SDValue Res;  // Logically starts equal to 1.0
4625       SDValue CurSquare = LHS;
4626       // TODO: Intrinsics should have fast-math-flags that propagate to these
4627       // nodes.
4628       while (Val) {
4629         if (Val & 1) {
4630           if (Res.getNode())
4631             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4632           else
4633             Res = CurSquare;  // 1.0*CurSquare.
4634         }
4635 
4636         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4637                                 CurSquare, CurSquare);
4638         Val >>= 1;
4639       }
4640 
4641       // If the original was negative, invert the result, producing 1/(x*x*x).
4642       if (RHSC->getSExtValue() < 0)
4643         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4644                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4645       return Res;
4646     }
4647   }
4648 
4649   // Otherwise, expand to a libcall.
4650   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4651 }
4652 
4653 // getUnderlyingArgReg - Find underlying register used for a truncated or
4654 // bitcasted argument.
4655 static unsigned getUnderlyingArgReg(const SDValue &N) {
4656   switch (N.getOpcode()) {
4657   case ISD::CopyFromReg:
4658     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4659   case ISD::BITCAST:
4660   case ISD::AssertZext:
4661   case ISD::AssertSext:
4662   case ISD::TRUNCATE:
4663     return getUnderlyingArgReg(N.getOperand(0));
4664   default:
4665     return 0;
4666   }
4667 }
4668 
4669 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4670 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4671 /// At the end of instruction selection, they will be inserted to the entry BB.
4672 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4673     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4674     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4675   const Argument *Arg = dyn_cast<Argument>(V);
4676   if (!Arg)
4677     return false;
4678 
4679   MachineFunction &MF = DAG.getMachineFunction();
4680   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4681 
4682   // Ignore inlined function arguments here.
4683   //
4684   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4685   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4686     return false;
4687 
4688   Optional<MachineOperand> Op;
4689   // Some arguments' frame index is recorded during argument lowering.
4690   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4691     Op = MachineOperand::CreateFI(FI);
4692 
4693   if (!Op && N.getNode()) {
4694     unsigned Reg = getUnderlyingArgReg(N);
4695     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4696       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4697       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4698       if (PR)
4699         Reg = PR;
4700     }
4701     if (Reg)
4702       Op = MachineOperand::CreateReg(Reg, false);
4703   }
4704 
4705   if (!Op) {
4706     // Check if ValueMap has reg number.
4707     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4708     if (VMI != FuncInfo.ValueMap.end())
4709       Op = MachineOperand::CreateReg(VMI->second, false);
4710   }
4711 
4712   if (!Op && N.getNode())
4713     // Check if frame index is available.
4714     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4715       if (FrameIndexSDNode *FINode =
4716           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4717         Op = MachineOperand::CreateFI(FINode->getIndex());
4718 
4719   if (!Op)
4720     return false;
4721 
4722   assert(Variable->isValidLocationForIntrinsic(DL) &&
4723          "Expected inlined-at fields to agree");
4724   if (Op->isReg())
4725     FuncInfo.ArgDbgValues.push_back(
4726         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4727                 Op->getReg(), Offset, Variable, Expr));
4728   else
4729     FuncInfo.ArgDbgValues.push_back(
4730         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4731             .addOperand(*Op)
4732             .addImm(Offset)
4733             .addMetadata(Variable)
4734             .addMetadata(Expr));
4735 
4736   return true;
4737 }
4738 
4739 /// Return the appropriate SDDbgValue based on N.
4740 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4741                                              DILocalVariable *Variable,
4742                                              DIExpression *Expr, int64_t Offset,
4743                                              DebugLoc dl,
4744                                              unsigned DbgSDNodeOrder) {
4745   SDDbgValue *SDV;
4746   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4747   if (FISDN && Expr->startsWithDeref()) {
4748     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4749     // stack slot locations as such instead of as indirectly addressed
4750     // locations.
4751     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4752                                         Expr->elements_end());
4753     DIExpression *DerefedDIExpr =
4754         DIExpression::get(*DAG.getContext(), TrailingElements);
4755     int FI = FISDN->getIndex();
4756     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4757                                     DbgSDNodeOrder);
4758   } else {
4759     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4760                           Offset, dl, DbgSDNodeOrder);
4761   }
4762   return SDV;
4763 }
4764 
4765 // VisualStudio defines setjmp as _setjmp
4766 #if defined(_MSC_VER) && defined(setjmp) && \
4767                          !defined(setjmp_undefined_for_msvc)
4768 #  pragma push_macro("setjmp")
4769 #  undef setjmp
4770 #  define setjmp_undefined_for_msvc
4771 #endif
4772 
4773 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4774 /// we want to emit this as a call to a named external function, return the name
4775 /// otherwise lower it and return null.
4776 const char *
4777 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4779   SDLoc sdl = getCurSDLoc();
4780   DebugLoc dl = getCurDebugLoc();
4781   SDValue Res;
4782 
4783   switch (Intrinsic) {
4784   default:
4785     // By default, turn this into a target intrinsic node.
4786     visitTargetIntrinsic(I, Intrinsic);
4787     return nullptr;
4788   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4789   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4790   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4791   case Intrinsic::returnaddress:
4792     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4793                              TLI.getPointerTy(DAG.getDataLayout()),
4794                              getValue(I.getArgOperand(0))));
4795     return nullptr;
4796   case Intrinsic::frameaddress:
4797     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4798                              TLI.getPointerTy(DAG.getDataLayout()),
4799                              getValue(I.getArgOperand(0))));
4800     return nullptr;
4801   case Intrinsic::read_register: {
4802     Value *Reg = I.getArgOperand(0);
4803     SDValue Chain = getRoot();
4804     SDValue RegName =
4805         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4806     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4807     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4808       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4809     setValue(&I, Res);
4810     DAG.setRoot(Res.getValue(1));
4811     return nullptr;
4812   }
4813   case Intrinsic::write_register: {
4814     Value *Reg = I.getArgOperand(0);
4815     Value *RegValue = I.getArgOperand(1);
4816     SDValue Chain = getRoot();
4817     SDValue RegName =
4818         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4819     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4820                             RegName, getValue(RegValue)));
4821     return nullptr;
4822   }
4823   case Intrinsic::setjmp:
4824     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4825   case Intrinsic::longjmp:
4826     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4827   case Intrinsic::memcpy: {
4828     SDValue Op1 = getValue(I.getArgOperand(0));
4829     SDValue Op2 = getValue(I.getArgOperand(1));
4830     SDValue Op3 = getValue(I.getArgOperand(2));
4831     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4832     if (!Align)
4833       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4834     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4835     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4836     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4837                                false, isTC,
4838                                MachinePointerInfo(I.getArgOperand(0)),
4839                                MachinePointerInfo(I.getArgOperand(1)));
4840     updateDAGForMaybeTailCall(MC);
4841     return nullptr;
4842   }
4843   case Intrinsic::memset: {
4844     SDValue Op1 = getValue(I.getArgOperand(0));
4845     SDValue Op2 = getValue(I.getArgOperand(1));
4846     SDValue Op3 = getValue(I.getArgOperand(2));
4847     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4848     if (!Align)
4849       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4850     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4851     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4852     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4853                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4854     updateDAGForMaybeTailCall(MS);
4855     return nullptr;
4856   }
4857   case Intrinsic::memmove: {
4858     SDValue Op1 = getValue(I.getArgOperand(0));
4859     SDValue Op2 = getValue(I.getArgOperand(1));
4860     SDValue Op3 = getValue(I.getArgOperand(2));
4861     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4862     if (!Align)
4863       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4864     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4865     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4866     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4867                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4868                                 MachinePointerInfo(I.getArgOperand(1)));
4869     updateDAGForMaybeTailCall(MM);
4870     return nullptr;
4871   }
4872   case Intrinsic::dbg_declare: {
4873     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4874     DILocalVariable *Variable = DI.getVariable();
4875     DIExpression *Expression = DI.getExpression();
4876     const Value *Address = DI.getAddress();
4877     assert(Variable && "Missing variable");
4878     if (!Address) {
4879       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4880       return nullptr;
4881     }
4882 
4883     // Check if address has undef value.
4884     if (isa<UndefValue>(Address) ||
4885         (Address->use_empty() && !isa<Argument>(Address))) {
4886       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4887       return nullptr;
4888     }
4889 
4890     SDValue &N = NodeMap[Address];
4891     if (!N.getNode() && isa<Argument>(Address))
4892       // Check unused arguments map.
4893       N = UnusedArgNodeMap[Address];
4894     SDDbgValue *SDV;
4895     if (N.getNode()) {
4896       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4897         Address = BCI->getOperand(0);
4898       // Parameters are handled specially.
4899       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4900       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4901       if (isParameter && FINode) {
4902         // Byval parameter. We have a frame index at this point.
4903         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4904                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4905       } else if (isa<Argument>(Address)) {
4906         // Address is an argument, so try to emit its dbg value using
4907         // virtual register info from the FuncInfo.ValueMap.
4908         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4909                                  N);
4910         return nullptr;
4911       } else {
4912         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4913                               true, 0, dl, SDNodeOrder);
4914       }
4915       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4916     } else {
4917       // If Address is an argument then try to emit its dbg value using
4918       // virtual register info from the FuncInfo.ValueMap.
4919       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4920                                     N)) {
4921         // If variable is pinned by a alloca in dominating bb then
4922         // use StaticAllocaMap.
4923         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4924           if (AI->getParent() != DI.getParent()) {
4925             DenseMap<const AllocaInst*, int>::iterator SI =
4926               FuncInfo.StaticAllocaMap.find(AI);
4927             if (SI != FuncInfo.StaticAllocaMap.end()) {
4928               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4929                                               0, dl, SDNodeOrder);
4930               DAG.AddDbgValue(SDV, nullptr, false);
4931               return nullptr;
4932             }
4933           }
4934         }
4935         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4936       }
4937     }
4938     return nullptr;
4939   }
4940   case Intrinsic::dbg_value: {
4941     const DbgValueInst &DI = cast<DbgValueInst>(I);
4942     assert(DI.getVariable() && "Missing variable");
4943 
4944     DILocalVariable *Variable = DI.getVariable();
4945     DIExpression *Expression = DI.getExpression();
4946     uint64_t Offset = DI.getOffset();
4947     const Value *V = DI.getValue();
4948     if (!V)
4949       return nullptr;
4950 
4951     SDDbgValue *SDV;
4952     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4953       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4954                                     SDNodeOrder);
4955       DAG.AddDbgValue(SDV, nullptr, false);
4956     } else {
4957       // Do not use getValue() in here; we don't want to generate code at
4958       // this point if it hasn't been done yet.
4959       SDValue N = NodeMap[V];
4960       if (!N.getNode() && isa<Argument>(V))
4961         // Check unused arguments map.
4962         N = UnusedArgNodeMap[V];
4963       if (N.getNode()) {
4964         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4965                                       false, N)) {
4966           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
4967           DAG.AddDbgValue(SDV, N.getNode(), false);
4968         }
4969       } else if (!V->use_empty() ) {
4970         // Do not call getValue(V) yet, as we don't want to generate code.
4971         // Remember it for later.
4972         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4973         DanglingDebugInfoMap[V] = DDI;
4974       } else {
4975         // We may expand this to cover more cases.  One case where we have no
4976         // data available is an unreferenced parameter.
4977         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4978       }
4979     }
4980 
4981     // Build a debug info table entry.
4982     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4983       V = BCI->getOperand(0);
4984     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4985     // Don't handle byval struct arguments or VLAs, for example.
4986     if (!AI) {
4987       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4988       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4989       return nullptr;
4990     }
4991     DenseMap<const AllocaInst*, int>::iterator SI =
4992       FuncInfo.StaticAllocaMap.find(AI);
4993     if (SI == FuncInfo.StaticAllocaMap.end())
4994       return nullptr; // VLAs.
4995     return nullptr;
4996   }
4997 
4998   case Intrinsic::eh_typeid_for: {
4999     // Find the type id for the given typeinfo.
5000     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5001     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
5002     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5003     setValue(&I, Res);
5004     return nullptr;
5005   }
5006 
5007   case Intrinsic::eh_return_i32:
5008   case Intrinsic::eh_return_i64:
5009     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
5010     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5011                             MVT::Other,
5012                             getControlRoot(),
5013                             getValue(I.getArgOperand(0)),
5014                             getValue(I.getArgOperand(1))));
5015     return nullptr;
5016   case Intrinsic::eh_unwind_init:
5017     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
5018     return nullptr;
5019   case Intrinsic::eh_dwarf_cfa: {
5020     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5021                              TLI.getPointerTy(DAG.getDataLayout()),
5022                              getValue(I.getArgOperand(0))));
5023     return nullptr;
5024   }
5025   case Intrinsic::eh_sjlj_callsite: {
5026     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5027     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5028     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5029     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5030 
5031     MMI.setCurrentCallSite(CI->getZExtValue());
5032     return nullptr;
5033   }
5034   case Intrinsic::eh_sjlj_functioncontext: {
5035     // Get and store the index of the function context.
5036     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5037     AllocaInst *FnCtx =
5038       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5039     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5040     MFI.setFunctionContextIndex(FI);
5041     return nullptr;
5042   }
5043   case Intrinsic::eh_sjlj_setjmp: {
5044     SDValue Ops[2];
5045     Ops[0] = getRoot();
5046     Ops[1] = getValue(I.getArgOperand(0));
5047     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5048                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5049     setValue(&I, Op.getValue(0));
5050     DAG.setRoot(Op.getValue(1));
5051     return nullptr;
5052   }
5053   case Intrinsic::eh_sjlj_longjmp: {
5054     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5055                             getRoot(), getValue(I.getArgOperand(0))));
5056     return nullptr;
5057   }
5058   case Intrinsic::eh_sjlj_setup_dispatch: {
5059     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5060                             getRoot()));
5061     return nullptr;
5062   }
5063 
5064   case Intrinsic::masked_gather:
5065     visitMaskedGather(I);
5066     return nullptr;
5067   case Intrinsic::masked_load:
5068     visitMaskedLoad(I);
5069     return nullptr;
5070   case Intrinsic::masked_scatter:
5071     visitMaskedScatter(I);
5072     return nullptr;
5073   case Intrinsic::masked_store:
5074     visitMaskedStore(I);
5075     return nullptr;
5076   case Intrinsic::x86_mmx_pslli_w:
5077   case Intrinsic::x86_mmx_pslli_d:
5078   case Intrinsic::x86_mmx_pslli_q:
5079   case Intrinsic::x86_mmx_psrli_w:
5080   case Intrinsic::x86_mmx_psrli_d:
5081   case Intrinsic::x86_mmx_psrli_q:
5082   case Intrinsic::x86_mmx_psrai_w:
5083   case Intrinsic::x86_mmx_psrai_d: {
5084     SDValue ShAmt = getValue(I.getArgOperand(1));
5085     if (isa<ConstantSDNode>(ShAmt)) {
5086       visitTargetIntrinsic(I, Intrinsic);
5087       return nullptr;
5088     }
5089     unsigned NewIntrinsic = 0;
5090     EVT ShAmtVT = MVT::v2i32;
5091     switch (Intrinsic) {
5092     case Intrinsic::x86_mmx_pslli_w:
5093       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5094       break;
5095     case Intrinsic::x86_mmx_pslli_d:
5096       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5097       break;
5098     case Intrinsic::x86_mmx_pslli_q:
5099       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5100       break;
5101     case Intrinsic::x86_mmx_psrli_w:
5102       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5103       break;
5104     case Intrinsic::x86_mmx_psrli_d:
5105       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5106       break;
5107     case Intrinsic::x86_mmx_psrli_q:
5108       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5109       break;
5110     case Intrinsic::x86_mmx_psrai_w:
5111       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5112       break;
5113     case Intrinsic::x86_mmx_psrai_d:
5114       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5115       break;
5116     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5117     }
5118 
5119     // The vector shift intrinsics with scalars uses 32b shift amounts but
5120     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5121     // to be zero.
5122     // We must do this early because v2i32 is not a legal type.
5123     SDValue ShOps[2];
5124     ShOps[0] = ShAmt;
5125     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5126     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5127     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5128     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5129     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5130                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5131                        getValue(I.getArgOperand(0)), ShAmt);
5132     setValue(&I, Res);
5133     return nullptr;
5134   }
5135   case Intrinsic::convertff:
5136   case Intrinsic::convertfsi:
5137   case Intrinsic::convertfui:
5138   case Intrinsic::convertsif:
5139   case Intrinsic::convertuif:
5140   case Intrinsic::convertss:
5141   case Intrinsic::convertsu:
5142   case Intrinsic::convertus:
5143   case Intrinsic::convertuu: {
5144     ISD::CvtCode Code = ISD::CVT_INVALID;
5145     switch (Intrinsic) {
5146     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5147     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5148     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5149     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5150     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5151     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5152     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5153     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5154     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5155     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5156     }
5157     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5158     const Value *Op1 = I.getArgOperand(0);
5159     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5160                                DAG.getValueType(DestVT),
5161                                DAG.getValueType(getValue(Op1).getValueType()),
5162                                getValue(I.getArgOperand(1)),
5163                                getValue(I.getArgOperand(2)),
5164                                Code);
5165     setValue(&I, Res);
5166     return nullptr;
5167   }
5168   case Intrinsic::powi:
5169     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5170                             getValue(I.getArgOperand(1)), DAG));
5171     return nullptr;
5172   case Intrinsic::log:
5173     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5174     return nullptr;
5175   case Intrinsic::log2:
5176     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5177     return nullptr;
5178   case Intrinsic::log10:
5179     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5180     return nullptr;
5181   case Intrinsic::exp:
5182     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5183     return nullptr;
5184   case Intrinsic::exp2:
5185     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5186     return nullptr;
5187   case Intrinsic::pow:
5188     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5189                            getValue(I.getArgOperand(1)), DAG, TLI));
5190     return nullptr;
5191   case Intrinsic::sqrt:
5192   case Intrinsic::fabs:
5193   case Intrinsic::sin:
5194   case Intrinsic::cos:
5195   case Intrinsic::floor:
5196   case Intrinsic::ceil:
5197   case Intrinsic::trunc:
5198   case Intrinsic::rint:
5199   case Intrinsic::nearbyint:
5200   case Intrinsic::round:
5201   case Intrinsic::canonicalize: {
5202     unsigned Opcode;
5203     switch (Intrinsic) {
5204     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5205     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5206     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5207     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5208     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5209     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5210     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5211     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5212     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5213     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5214     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5215     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5216     }
5217 
5218     setValue(&I, DAG.getNode(Opcode, sdl,
5219                              getValue(I.getArgOperand(0)).getValueType(),
5220                              getValue(I.getArgOperand(0))));
5221     return nullptr;
5222   }
5223   case Intrinsic::minnum: {
5224     auto VT = getValue(I.getArgOperand(0)).getValueType();
5225     unsigned Opc =
5226         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5227             ? ISD::FMINNAN
5228             : ISD::FMINNUM;
5229     setValue(&I, DAG.getNode(Opc, sdl, VT,
5230                              getValue(I.getArgOperand(0)),
5231                              getValue(I.getArgOperand(1))));
5232     return nullptr;
5233   }
5234   case Intrinsic::maxnum: {
5235     auto VT = getValue(I.getArgOperand(0)).getValueType();
5236     unsigned Opc =
5237         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5238             ? ISD::FMAXNAN
5239             : ISD::FMAXNUM;
5240     setValue(&I, DAG.getNode(Opc, sdl, VT,
5241                              getValue(I.getArgOperand(0)),
5242                              getValue(I.getArgOperand(1))));
5243     return nullptr;
5244   }
5245   case Intrinsic::copysign:
5246     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5247                              getValue(I.getArgOperand(0)).getValueType(),
5248                              getValue(I.getArgOperand(0)),
5249                              getValue(I.getArgOperand(1))));
5250     return nullptr;
5251   case Intrinsic::fma:
5252     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5253                              getValue(I.getArgOperand(0)).getValueType(),
5254                              getValue(I.getArgOperand(0)),
5255                              getValue(I.getArgOperand(1)),
5256                              getValue(I.getArgOperand(2))));
5257     return nullptr;
5258   case Intrinsic::fmuladd: {
5259     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5260     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5261         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5262       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5263                                getValue(I.getArgOperand(0)).getValueType(),
5264                                getValue(I.getArgOperand(0)),
5265                                getValue(I.getArgOperand(1)),
5266                                getValue(I.getArgOperand(2))));
5267     } else {
5268       // TODO: Intrinsic calls should have fast-math-flags.
5269       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5270                                 getValue(I.getArgOperand(0)).getValueType(),
5271                                 getValue(I.getArgOperand(0)),
5272                                 getValue(I.getArgOperand(1)));
5273       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5274                                 getValue(I.getArgOperand(0)).getValueType(),
5275                                 Mul,
5276                                 getValue(I.getArgOperand(2)));
5277       setValue(&I, Add);
5278     }
5279     return nullptr;
5280   }
5281   case Intrinsic::convert_to_fp16:
5282     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5283                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5284                                          getValue(I.getArgOperand(0)),
5285                                          DAG.getTargetConstant(0, sdl,
5286                                                                MVT::i32))));
5287     return nullptr;
5288   case Intrinsic::convert_from_fp16:
5289     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5290                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5291                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5292                                          getValue(I.getArgOperand(0)))));
5293     return nullptr;
5294   case Intrinsic::pcmarker: {
5295     SDValue Tmp = getValue(I.getArgOperand(0));
5296     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5297     return nullptr;
5298   }
5299   case Intrinsic::readcyclecounter: {
5300     SDValue Op = getRoot();
5301     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5302                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5303     setValue(&I, Res);
5304     DAG.setRoot(Res.getValue(1));
5305     return nullptr;
5306   }
5307   case Intrinsic::bitreverse:
5308     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5309                              getValue(I.getArgOperand(0)).getValueType(),
5310                              getValue(I.getArgOperand(0))));
5311     return nullptr;
5312   case Intrinsic::bswap:
5313     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5314                              getValue(I.getArgOperand(0)).getValueType(),
5315                              getValue(I.getArgOperand(0))));
5316     return nullptr;
5317   case Intrinsic::cttz: {
5318     SDValue Arg = getValue(I.getArgOperand(0));
5319     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5320     EVT Ty = Arg.getValueType();
5321     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5322                              sdl, Ty, Arg));
5323     return nullptr;
5324   }
5325   case Intrinsic::ctlz: {
5326     SDValue Arg = getValue(I.getArgOperand(0));
5327     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5328     EVT Ty = Arg.getValueType();
5329     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5330                              sdl, Ty, Arg));
5331     return nullptr;
5332   }
5333   case Intrinsic::ctpop: {
5334     SDValue Arg = getValue(I.getArgOperand(0));
5335     EVT Ty = Arg.getValueType();
5336     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5337     return nullptr;
5338   }
5339   case Intrinsic::stacksave: {
5340     SDValue Op = getRoot();
5341     Res = DAG.getNode(
5342         ISD::STACKSAVE, sdl,
5343         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5344     setValue(&I, Res);
5345     DAG.setRoot(Res.getValue(1));
5346     return nullptr;
5347   }
5348   case Intrinsic::stackrestore: {
5349     Res = getValue(I.getArgOperand(0));
5350     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5351     return nullptr;
5352   }
5353   case Intrinsic::get_dynamic_area_offset: {
5354     SDValue Op = getRoot();
5355     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5356     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5357     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5358     // target.
5359     if (PtrTy != ResTy)
5360       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5361                          " intrinsic!");
5362     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5363                       Op);
5364     DAG.setRoot(Op);
5365     setValue(&I, Res);
5366     return nullptr;
5367   }
5368   case Intrinsic::stackguard: {
5369     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5370     MachineFunction &MF = DAG.getMachineFunction();
5371     const Module &M = *MF.getFunction()->getParent();
5372     SDValue Chain = getRoot();
5373     if (TLI.useLoadStackGuardNode()) {
5374       Res = getLoadStackGuard(DAG, sdl, Chain);
5375     } else {
5376       const Value *Global = TLI.getSDagStackGuard(M);
5377       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5378       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5379                         MachinePointerInfo(Global, 0), Align,
5380                         MachineMemOperand::MOVolatile);
5381     }
5382     DAG.setRoot(Chain);
5383     setValue(&I, Res);
5384     return nullptr;
5385   }
5386   case Intrinsic::stackprotector: {
5387     // Emit code into the DAG to store the stack guard onto the stack.
5388     MachineFunction &MF = DAG.getMachineFunction();
5389     MachineFrameInfo &MFI = MF.getFrameInfo();
5390     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5391     SDValue Src, Chain = getRoot();
5392 
5393     if (TLI.useLoadStackGuardNode())
5394       Src = getLoadStackGuard(DAG, sdl, Chain);
5395     else
5396       Src = getValue(I.getArgOperand(0));   // The guard's value.
5397 
5398     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5399 
5400     int FI = FuncInfo.StaticAllocaMap[Slot];
5401     MFI.setStackProtectorIndex(FI);
5402 
5403     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5404 
5405     // Store the stack protector onto the stack.
5406     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5407                                                  DAG.getMachineFunction(), FI),
5408                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5409     setValue(&I, Res);
5410     DAG.setRoot(Res);
5411     return nullptr;
5412   }
5413   case Intrinsic::objectsize: {
5414     // If we don't know by now, we're never going to know.
5415     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5416 
5417     assert(CI && "Non-constant type in __builtin_object_size?");
5418 
5419     SDValue Arg = getValue(I.getCalledValue());
5420     EVT Ty = Arg.getValueType();
5421 
5422     if (CI->isZero())
5423       Res = DAG.getConstant(-1ULL, sdl, Ty);
5424     else
5425       Res = DAG.getConstant(0, sdl, Ty);
5426 
5427     setValue(&I, Res);
5428     return nullptr;
5429   }
5430   case Intrinsic::annotation:
5431   case Intrinsic::ptr_annotation:
5432     // Drop the intrinsic, but forward the value
5433     setValue(&I, getValue(I.getOperand(0)));
5434     return nullptr;
5435   case Intrinsic::assume:
5436   case Intrinsic::var_annotation:
5437     // Discard annotate attributes and assumptions
5438     return nullptr;
5439 
5440   case Intrinsic::init_trampoline: {
5441     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5442 
5443     SDValue Ops[6];
5444     Ops[0] = getRoot();
5445     Ops[1] = getValue(I.getArgOperand(0));
5446     Ops[2] = getValue(I.getArgOperand(1));
5447     Ops[3] = getValue(I.getArgOperand(2));
5448     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5449     Ops[5] = DAG.getSrcValue(F);
5450 
5451     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5452 
5453     DAG.setRoot(Res);
5454     return nullptr;
5455   }
5456   case Intrinsic::adjust_trampoline: {
5457     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5458                              TLI.getPointerTy(DAG.getDataLayout()),
5459                              getValue(I.getArgOperand(0))));
5460     return nullptr;
5461   }
5462   case Intrinsic::gcroot: {
5463     MachineFunction &MF = DAG.getMachineFunction();
5464     const Function *F = MF.getFunction();
5465     (void)F;
5466     assert(F->hasGC() &&
5467            "only valid in functions with gc specified, enforced by Verifier");
5468     assert(GFI && "implied by previous");
5469     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5470     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5471 
5472     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5473     GFI->addStackRoot(FI->getIndex(), TypeMap);
5474     return nullptr;
5475   }
5476   case Intrinsic::gcread:
5477   case Intrinsic::gcwrite:
5478     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5479   case Intrinsic::flt_rounds:
5480     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5481     return nullptr;
5482 
5483   case Intrinsic::expect: {
5484     // Just replace __builtin_expect(exp, c) with EXP.
5485     setValue(&I, getValue(I.getArgOperand(0)));
5486     return nullptr;
5487   }
5488 
5489   case Intrinsic::debugtrap:
5490   case Intrinsic::trap: {
5491     StringRef TrapFuncName =
5492         I.getAttributes()
5493             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5494             .getValueAsString();
5495     if (TrapFuncName.empty()) {
5496       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5497         ISD::TRAP : ISD::DEBUGTRAP;
5498       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5499       return nullptr;
5500     }
5501     TargetLowering::ArgListTy Args;
5502 
5503     TargetLowering::CallLoweringInfo CLI(DAG);
5504     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5505         CallingConv::C, I.getType(),
5506         DAG.getExternalSymbol(TrapFuncName.data(),
5507                               TLI.getPointerTy(DAG.getDataLayout())),
5508         std::move(Args));
5509 
5510     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5511     DAG.setRoot(Result.second);
5512     return nullptr;
5513   }
5514 
5515   case Intrinsic::uadd_with_overflow:
5516   case Intrinsic::sadd_with_overflow:
5517   case Intrinsic::usub_with_overflow:
5518   case Intrinsic::ssub_with_overflow:
5519   case Intrinsic::umul_with_overflow:
5520   case Intrinsic::smul_with_overflow: {
5521     ISD::NodeType Op;
5522     switch (Intrinsic) {
5523     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5524     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5525     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5526     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5527     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5528     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5529     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5530     }
5531     SDValue Op1 = getValue(I.getArgOperand(0));
5532     SDValue Op2 = getValue(I.getArgOperand(1));
5533 
5534     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5535     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5536     return nullptr;
5537   }
5538   case Intrinsic::prefetch: {
5539     SDValue Ops[5];
5540     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5541     Ops[0] = getRoot();
5542     Ops[1] = getValue(I.getArgOperand(0));
5543     Ops[2] = getValue(I.getArgOperand(1));
5544     Ops[3] = getValue(I.getArgOperand(2));
5545     Ops[4] = getValue(I.getArgOperand(3));
5546     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5547                                         DAG.getVTList(MVT::Other), Ops,
5548                                         EVT::getIntegerVT(*Context, 8),
5549                                         MachinePointerInfo(I.getArgOperand(0)),
5550                                         0, /* align */
5551                                         false, /* volatile */
5552                                         rw==0, /* read */
5553                                         rw==1)); /* write */
5554     return nullptr;
5555   }
5556   case Intrinsic::lifetime_start:
5557   case Intrinsic::lifetime_end: {
5558     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5559     // Stack coloring is not enabled in O0, discard region information.
5560     if (TM.getOptLevel() == CodeGenOpt::None)
5561       return nullptr;
5562 
5563     SmallVector<Value *, 4> Allocas;
5564     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5565 
5566     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5567            E = Allocas.end(); Object != E; ++Object) {
5568       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5569 
5570       // Could not find an Alloca.
5571       if (!LifetimeObject)
5572         continue;
5573 
5574       // First check that the Alloca is static, otherwise it won't have a
5575       // valid frame index.
5576       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5577       if (SI == FuncInfo.StaticAllocaMap.end())
5578         return nullptr;
5579 
5580       int FI = SI->second;
5581 
5582       SDValue Ops[2];
5583       Ops[0] = getRoot();
5584       Ops[1] =
5585           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5586       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5587 
5588       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5589       DAG.setRoot(Res);
5590     }
5591     return nullptr;
5592   }
5593   case Intrinsic::invariant_start:
5594     // Discard region information.
5595     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5596     return nullptr;
5597   case Intrinsic::invariant_end:
5598     // Discard region information.
5599     return nullptr;
5600   case Intrinsic::clear_cache:
5601     return TLI.getClearCacheBuiltinName();
5602   case Intrinsic::donothing:
5603     // ignore
5604     return nullptr;
5605   case Intrinsic::experimental_stackmap: {
5606     visitStackmap(I);
5607     return nullptr;
5608   }
5609   case Intrinsic::experimental_patchpoint_void:
5610   case Intrinsic::experimental_patchpoint_i64: {
5611     visitPatchpoint(&I);
5612     return nullptr;
5613   }
5614   case Intrinsic::experimental_gc_statepoint: {
5615     LowerStatepoint(ImmutableStatepoint(&I));
5616     return nullptr;
5617   }
5618   case Intrinsic::experimental_gc_result: {
5619     visitGCResult(cast<GCResultInst>(I));
5620     return nullptr;
5621   }
5622   case Intrinsic::experimental_gc_relocate: {
5623     visitGCRelocate(cast<GCRelocateInst>(I));
5624     return nullptr;
5625   }
5626   case Intrinsic::instrprof_increment:
5627     llvm_unreachable("instrprof failed to lower an increment");
5628   case Intrinsic::instrprof_value_profile:
5629     llvm_unreachable("instrprof failed to lower a value profiling call");
5630   case Intrinsic::localescape: {
5631     MachineFunction &MF = DAG.getMachineFunction();
5632     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5633 
5634     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5635     // is the same on all targets.
5636     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5637       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5638       if (isa<ConstantPointerNull>(Arg))
5639         continue; // Skip null pointers. They represent a hole in index space.
5640       AllocaInst *Slot = cast<AllocaInst>(Arg);
5641       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5642              "can only escape static allocas");
5643       int FI = FuncInfo.StaticAllocaMap[Slot];
5644       MCSymbol *FrameAllocSym =
5645           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5646               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5647       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5648               TII->get(TargetOpcode::LOCAL_ESCAPE))
5649           .addSym(FrameAllocSym)
5650           .addFrameIndex(FI);
5651     }
5652 
5653     return nullptr;
5654   }
5655 
5656   case Intrinsic::localrecover: {
5657     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5658     MachineFunction &MF = DAG.getMachineFunction();
5659     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5660 
5661     // Get the symbol that defines the frame offset.
5662     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5663     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5664     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5665     MCSymbol *FrameAllocSym =
5666         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5667             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5668 
5669     // Create a MCSymbol for the label to avoid any target lowering
5670     // that would make this PC relative.
5671     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5672     SDValue OffsetVal =
5673         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5674 
5675     // Add the offset to the FP.
5676     Value *FP = I.getArgOperand(1);
5677     SDValue FPVal = getValue(FP);
5678     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5679     setValue(&I, Add);
5680 
5681     return nullptr;
5682   }
5683 
5684   case Intrinsic::eh_exceptionpointer:
5685   case Intrinsic::eh_exceptioncode: {
5686     // Get the exception pointer vreg, copy from it, and resize it to fit.
5687     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5688     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5689     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5690     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5691     SDValue N =
5692         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5693     if (Intrinsic == Intrinsic::eh_exceptioncode)
5694       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5695     setValue(&I, N);
5696     return nullptr;
5697   }
5698 
5699   case Intrinsic::experimental_deoptimize:
5700     LowerDeoptimizeCall(&I);
5701     return nullptr;
5702   }
5703 }
5704 
5705 std::pair<SDValue, SDValue>
5706 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5707                                     const BasicBlock *EHPadBB) {
5708   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5709   MCSymbol *BeginLabel = nullptr;
5710 
5711   if (EHPadBB) {
5712     // Insert a label before the invoke call to mark the try range.  This can be
5713     // used to detect deletion of the invoke via the MachineModuleInfo.
5714     BeginLabel = MMI.getContext().createTempSymbol();
5715 
5716     // For SjLj, keep track of which landing pads go with which invokes
5717     // so as to maintain the ordering of pads in the LSDA.
5718     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5719     if (CallSiteIndex) {
5720       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5721       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5722 
5723       // Now that the call site is handled, stop tracking it.
5724       MMI.setCurrentCallSite(0);
5725     }
5726 
5727     // Both PendingLoads and PendingExports must be flushed here;
5728     // this call might not return.
5729     (void)getRoot();
5730     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5731 
5732     CLI.setChain(getRoot());
5733   }
5734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5735   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5736 
5737   assert((CLI.IsTailCall || Result.second.getNode()) &&
5738          "Non-null chain expected with non-tail call!");
5739   assert((Result.second.getNode() || !Result.first.getNode()) &&
5740          "Null value expected with tail call!");
5741 
5742   if (!Result.second.getNode()) {
5743     // As a special case, a null chain means that a tail call has been emitted
5744     // and the DAG root is already updated.
5745     HasTailCall = true;
5746 
5747     // Since there's no actual continuation from this block, nothing can be
5748     // relying on us setting vregs for them.
5749     PendingExports.clear();
5750   } else {
5751     DAG.setRoot(Result.second);
5752   }
5753 
5754   if (EHPadBB) {
5755     // Insert a label at the end of the invoke call to mark the try range.  This
5756     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5757     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5758     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5759 
5760     // Inform MachineModuleInfo of range.
5761     if (MMI.hasEHFunclets()) {
5762       assert(CLI.CS);
5763       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5764       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5765                                 BeginLabel, EndLabel);
5766     } else {
5767       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5768     }
5769   }
5770 
5771   return Result;
5772 }
5773 
5774 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5775                                       bool isTailCall,
5776                                       const BasicBlock *EHPadBB) {
5777   auto &DL = DAG.getDataLayout();
5778   FunctionType *FTy = CS.getFunctionType();
5779   Type *RetTy = CS.getType();
5780 
5781   TargetLowering::ArgListTy Args;
5782   TargetLowering::ArgListEntry Entry;
5783   Args.reserve(CS.arg_size());
5784 
5785   const Value *SwiftErrorVal = nullptr;
5786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5787   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5788        i != e; ++i) {
5789     const Value *V = *i;
5790 
5791     // Skip empty types
5792     if (V->getType()->isEmptyTy())
5793       continue;
5794 
5795     SDValue ArgNode = getValue(V);
5796     Entry.Node = ArgNode; Entry.Ty = V->getType();
5797 
5798     // Skip the first return-type Attribute to get to params.
5799     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5800 
5801     // Use swifterror virtual register as input to the call.
5802     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5803       SwiftErrorVal = V;
5804       // We find the virtual register for the actual swifterror argument.
5805       // Instead of using the Value, we use the virtual register instead.
5806       Entry.Node = DAG.getRegister(
5807           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5808           EVT(TLI.getPointerTy(DL)));
5809     }
5810 
5811     Args.push_back(Entry);
5812 
5813     // If we have an explicit sret argument that is an Instruction, (i.e., it
5814     // might point to function-local memory), we can't meaningfully tail-call.
5815     if (Entry.isSRet && isa<Instruction>(V))
5816       isTailCall = false;
5817   }
5818 
5819   // Check if target-independent constraints permit a tail call here.
5820   // Target-dependent constraints are checked within TLI->LowerCallTo.
5821   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5822     isTailCall = false;
5823 
5824   TargetLowering::CallLoweringInfo CLI(DAG);
5825   CLI.setDebugLoc(getCurSDLoc())
5826       .setChain(getRoot())
5827       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5828       .setTailCall(isTailCall)
5829       .setConvergent(CS.isConvergent());
5830   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5831 
5832   if (Result.first.getNode()) {
5833     const Instruction *Inst = CS.getInstruction();
5834     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5835     setValue(Inst, Result.first);
5836   }
5837 
5838   // The last element of CLI.InVals has the SDValue for swifterror return.
5839   // Here we copy it to a virtual register and update SwiftErrorMap for
5840   // book-keeping.
5841   if (SwiftErrorVal && TLI.supportSwiftError()) {
5842     // Get the last element of InVals.
5843     SDValue Src = CLI.InVals.back();
5844     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5845     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5846     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5847     // We update the virtual register for the actual swifterror argument.
5848     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5849     DAG.setRoot(CopyNode);
5850   }
5851 }
5852 
5853 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5854 /// value is equal or not-equal to zero.
5855 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5856   for (const User *U : V->users()) {
5857     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5858       if (IC->isEquality())
5859         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5860           if (C->isNullValue())
5861             continue;
5862     // Unknown instruction.
5863     return false;
5864   }
5865   return true;
5866 }
5867 
5868 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5869                              Type *LoadTy,
5870                              SelectionDAGBuilder &Builder) {
5871 
5872   // Check to see if this load can be trivially constant folded, e.g. if the
5873   // input is from a string literal.
5874   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5875     // Cast pointer to the type we really want to load.
5876     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5877                                          PointerType::getUnqual(LoadTy));
5878 
5879     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5880             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5881       return Builder.getValue(LoadCst);
5882   }
5883 
5884   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5885   // still constant memory, the input chain can be the entry node.
5886   SDValue Root;
5887   bool ConstantMemory = false;
5888 
5889   // Do not serialize (non-volatile) loads of constant memory with anything.
5890   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5891     Root = Builder.DAG.getEntryNode();
5892     ConstantMemory = true;
5893   } else {
5894     // Do not serialize non-volatile loads against each other.
5895     Root = Builder.DAG.getRoot();
5896   }
5897 
5898   SDValue Ptr = Builder.getValue(PtrVal);
5899   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5900                                         Ptr, MachinePointerInfo(PtrVal),
5901                                         /* Alignment = */ 1);
5902 
5903   if (!ConstantMemory)
5904     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5905   return LoadVal;
5906 }
5907 
5908 /// processIntegerCallValue - Record the value for an instruction that
5909 /// produces an integer result, converting the type where necessary.
5910 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5911                                                   SDValue Value,
5912                                                   bool IsSigned) {
5913   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5914                                                     I.getType(), true);
5915   if (IsSigned)
5916     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5917   else
5918     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5919   setValue(&I, Value);
5920 }
5921 
5922 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5923 /// If so, return true and lower it, otherwise return false and it will be
5924 /// lowered like a normal call.
5925 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5926   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5927   if (I.getNumArgOperands() != 3)
5928     return false;
5929 
5930   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5931   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5932       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5933       !I.getType()->isIntegerTy())
5934     return false;
5935 
5936   const Value *Size = I.getArgOperand(2);
5937   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5938   if (CSize && CSize->getZExtValue() == 0) {
5939     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5940                                                           I.getType(), true);
5941     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5942     return true;
5943   }
5944 
5945   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5946   std::pair<SDValue, SDValue> Res =
5947     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5948                                 getValue(LHS), getValue(RHS), getValue(Size),
5949                                 MachinePointerInfo(LHS),
5950                                 MachinePointerInfo(RHS));
5951   if (Res.first.getNode()) {
5952     processIntegerCallValue(I, Res.first, true);
5953     PendingLoads.push_back(Res.second);
5954     return true;
5955   }
5956 
5957   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5958   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5959   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5960     bool ActuallyDoIt = true;
5961     MVT LoadVT;
5962     Type *LoadTy;
5963     switch (CSize->getZExtValue()) {
5964     default:
5965       LoadVT = MVT::Other;
5966       LoadTy = nullptr;
5967       ActuallyDoIt = false;
5968       break;
5969     case 2:
5970       LoadVT = MVT::i16;
5971       LoadTy = Type::getInt16Ty(CSize->getContext());
5972       break;
5973     case 4:
5974       LoadVT = MVT::i32;
5975       LoadTy = Type::getInt32Ty(CSize->getContext());
5976       break;
5977     case 8:
5978       LoadVT = MVT::i64;
5979       LoadTy = Type::getInt64Ty(CSize->getContext());
5980       break;
5981         /*
5982     case 16:
5983       LoadVT = MVT::v4i32;
5984       LoadTy = Type::getInt32Ty(CSize->getContext());
5985       LoadTy = VectorType::get(LoadTy, 4);
5986       break;
5987          */
5988     }
5989 
5990     // This turns into unaligned loads.  We only do this if the target natively
5991     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5992     // we'll only produce a small number of byte loads.
5993 
5994     // Require that we can find a legal MVT, and only do this if the target
5995     // supports unaligned loads of that type.  Expanding into byte loads would
5996     // bloat the code.
5997     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5998     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5999       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6000       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6001       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6002       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6003       // TODO: Check alignment of src and dest ptrs.
6004       if (!TLI.isTypeLegal(LoadVT) ||
6005           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6006           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6007         ActuallyDoIt = false;
6008     }
6009 
6010     if (ActuallyDoIt) {
6011       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6012       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6013 
6014       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6015                                  ISD::SETNE);
6016       processIntegerCallValue(I, Res, false);
6017       return true;
6018     }
6019   }
6020 
6021 
6022   return false;
6023 }
6024 
6025 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6026 /// form.  If so, return true and lower it, otherwise return false and it
6027 /// will be lowered like a normal call.
6028 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6029   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6030   if (I.getNumArgOperands() != 3)
6031     return false;
6032 
6033   const Value *Src = I.getArgOperand(0);
6034   const Value *Char = I.getArgOperand(1);
6035   const Value *Length = I.getArgOperand(2);
6036   if (!Src->getType()->isPointerTy() ||
6037       !Char->getType()->isIntegerTy() ||
6038       !Length->getType()->isIntegerTy() ||
6039       !I.getType()->isPointerTy())
6040     return false;
6041 
6042   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6043   std::pair<SDValue, SDValue> Res =
6044     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6045                                 getValue(Src), getValue(Char), getValue(Length),
6046                                 MachinePointerInfo(Src));
6047   if (Res.first.getNode()) {
6048     setValue(&I, Res.first);
6049     PendingLoads.push_back(Res.second);
6050     return true;
6051   }
6052 
6053   return false;
6054 }
6055 
6056 ///
6057 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6058 /// to adjust the dst pointer by the size of the copied memory.
6059 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6060 
6061   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6062   if (I.getNumArgOperands() != 3)
6063     return false;
6064 
6065   SDValue Dst = getValue(I.getArgOperand(0));
6066   SDValue Src = getValue(I.getArgOperand(1));
6067   SDValue Size = getValue(I.getArgOperand(2));
6068 
6069   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6070   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6071   unsigned Align = std::min(DstAlign, SrcAlign);
6072   if (Align == 0) // Alignment of one or both could not be inferred.
6073     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6074 
6075   bool isVol = false;
6076   SDLoc sdl = getCurSDLoc();
6077 
6078   // In the mempcpy context we need to pass in a false value for isTailCall
6079   // because the return pointer needs to be adjusted by the size of
6080   // the copied memory.
6081   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6082                              false, /*isTailCall=*/false,
6083                              MachinePointerInfo(I.getArgOperand(0)),
6084                              MachinePointerInfo(I.getArgOperand(1)));
6085   assert(MC.getNode() != nullptr &&
6086          "** memcpy should not be lowered as TailCall in mempcpy context **");
6087   DAG.setRoot(MC);
6088 
6089   // Check if Size needs to be truncated or extended.
6090   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6091 
6092   // Adjust return pointer to point just past the last dst byte.
6093   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6094                                     Dst, Size);
6095   setValue(&I, DstPlusSize);
6096   return true;
6097 }
6098 
6099 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6100 /// optimized form.  If so, return true and lower it, otherwise return false
6101 /// and it will be lowered like a normal call.
6102 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6103   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6104   if (I.getNumArgOperands() != 2)
6105     return false;
6106 
6107   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6108   if (!Arg0->getType()->isPointerTy() ||
6109       !Arg1->getType()->isPointerTy() ||
6110       !I.getType()->isPointerTy())
6111     return false;
6112 
6113   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6114   std::pair<SDValue, SDValue> Res =
6115     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6116                                 getValue(Arg0), getValue(Arg1),
6117                                 MachinePointerInfo(Arg0),
6118                                 MachinePointerInfo(Arg1), isStpcpy);
6119   if (Res.first.getNode()) {
6120     setValue(&I, Res.first);
6121     DAG.setRoot(Res.second);
6122     return true;
6123   }
6124 
6125   return false;
6126 }
6127 
6128 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6129 /// If so, return true and lower it, otherwise return false and it will be
6130 /// lowered like a normal call.
6131 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6132   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6133   if (I.getNumArgOperands() != 2)
6134     return false;
6135 
6136   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6137   if (!Arg0->getType()->isPointerTy() ||
6138       !Arg1->getType()->isPointerTy() ||
6139       !I.getType()->isIntegerTy())
6140     return false;
6141 
6142   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6143   std::pair<SDValue, SDValue> Res =
6144     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6145                                 getValue(Arg0), getValue(Arg1),
6146                                 MachinePointerInfo(Arg0),
6147                                 MachinePointerInfo(Arg1));
6148   if (Res.first.getNode()) {
6149     processIntegerCallValue(I, Res.first, true);
6150     PendingLoads.push_back(Res.second);
6151     return true;
6152   }
6153 
6154   return false;
6155 }
6156 
6157 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6158 /// form.  If so, return true and lower it, otherwise return false and it
6159 /// will be lowered like a normal call.
6160 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6161   // Verify that the prototype makes sense.  size_t strlen(char *)
6162   if (I.getNumArgOperands() != 1)
6163     return false;
6164 
6165   const Value *Arg0 = I.getArgOperand(0);
6166   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6167     return false;
6168 
6169   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6170   std::pair<SDValue, SDValue> Res =
6171     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6172                                 getValue(Arg0), MachinePointerInfo(Arg0));
6173   if (Res.first.getNode()) {
6174     processIntegerCallValue(I, Res.first, false);
6175     PendingLoads.push_back(Res.second);
6176     return true;
6177   }
6178 
6179   return false;
6180 }
6181 
6182 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6183 /// form.  If so, return true and lower it, otherwise return false and it
6184 /// will be lowered like a normal call.
6185 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6186   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6187   if (I.getNumArgOperands() != 2)
6188     return false;
6189 
6190   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6191   if (!Arg0->getType()->isPointerTy() ||
6192       !Arg1->getType()->isIntegerTy() ||
6193       !I.getType()->isIntegerTy())
6194     return false;
6195 
6196   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6197   std::pair<SDValue, SDValue> Res =
6198     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6199                                  getValue(Arg0), getValue(Arg1),
6200                                  MachinePointerInfo(Arg0));
6201   if (Res.first.getNode()) {
6202     processIntegerCallValue(I, Res.first, false);
6203     PendingLoads.push_back(Res.second);
6204     return true;
6205   }
6206 
6207   return false;
6208 }
6209 
6210 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6211 /// operation (as expected), translate it to an SDNode with the specified opcode
6212 /// and return true.
6213 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6214                                               unsigned Opcode) {
6215   // Sanity check that it really is a unary floating-point call.
6216   if (I.getNumArgOperands() != 1 ||
6217       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6218       I.getType() != I.getArgOperand(0)->getType() ||
6219       !I.onlyReadsMemory())
6220     return false;
6221 
6222   SDValue Tmp = getValue(I.getArgOperand(0));
6223   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6224   return true;
6225 }
6226 
6227 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6228 /// operation (as expected), translate it to an SDNode with the specified opcode
6229 /// and return true.
6230 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6231                                                unsigned Opcode) {
6232   // Sanity check that it really is a binary floating-point call.
6233   if (I.getNumArgOperands() != 2 ||
6234       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6235       I.getType() != I.getArgOperand(0)->getType() ||
6236       I.getType() != I.getArgOperand(1)->getType() ||
6237       !I.onlyReadsMemory())
6238     return false;
6239 
6240   SDValue Tmp0 = getValue(I.getArgOperand(0));
6241   SDValue Tmp1 = getValue(I.getArgOperand(1));
6242   EVT VT = Tmp0.getValueType();
6243   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6244   return true;
6245 }
6246 
6247 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6248   // Handle inline assembly differently.
6249   if (isa<InlineAsm>(I.getCalledValue())) {
6250     visitInlineAsm(&I);
6251     return;
6252   }
6253 
6254   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6255   ComputeUsesVAFloatArgument(I, &MMI);
6256 
6257   const char *RenameFn = nullptr;
6258   if (Function *F = I.getCalledFunction()) {
6259     if (F->isDeclaration()) {
6260       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6261         if (unsigned IID = II->getIntrinsicID(F)) {
6262           RenameFn = visitIntrinsicCall(I, IID);
6263           if (!RenameFn)
6264             return;
6265         }
6266       }
6267       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6268         RenameFn = visitIntrinsicCall(I, IID);
6269         if (!RenameFn)
6270           return;
6271       }
6272     }
6273 
6274     // Check for well-known libc/libm calls.  If the function is internal, it
6275     // can't be a library call.  Don't do the check if marked as nobuiltin for
6276     // some reason.
6277     LibFunc::Func Func;
6278     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6279         LibInfo->getLibFunc(F->getName(), Func) &&
6280         LibInfo->hasOptimizedCodeGen(Func)) {
6281       switch (Func) {
6282       default: break;
6283       case LibFunc::copysign:
6284       case LibFunc::copysignf:
6285       case LibFunc::copysignl:
6286         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6287             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6288             I.getType() == I.getArgOperand(0)->getType() &&
6289             I.getType() == I.getArgOperand(1)->getType() &&
6290             I.onlyReadsMemory()) {
6291           SDValue LHS = getValue(I.getArgOperand(0));
6292           SDValue RHS = getValue(I.getArgOperand(1));
6293           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6294                                    LHS.getValueType(), LHS, RHS));
6295           return;
6296         }
6297         break;
6298       case LibFunc::fabs:
6299       case LibFunc::fabsf:
6300       case LibFunc::fabsl:
6301         if (visitUnaryFloatCall(I, ISD::FABS))
6302           return;
6303         break;
6304       case LibFunc::fmin:
6305       case LibFunc::fminf:
6306       case LibFunc::fminl:
6307         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6308           return;
6309         break;
6310       case LibFunc::fmax:
6311       case LibFunc::fmaxf:
6312       case LibFunc::fmaxl:
6313         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6314           return;
6315         break;
6316       case LibFunc::sin:
6317       case LibFunc::sinf:
6318       case LibFunc::sinl:
6319         if (visitUnaryFloatCall(I, ISD::FSIN))
6320           return;
6321         break;
6322       case LibFunc::cos:
6323       case LibFunc::cosf:
6324       case LibFunc::cosl:
6325         if (visitUnaryFloatCall(I, ISD::FCOS))
6326           return;
6327         break;
6328       case LibFunc::sqrt:
6329       case LibFunc::sqrtf:
6330       case LibFunc::sqrtl:
6331       case LibFunc::sqrt_finite:
6332       case LibFunc::sqrtf_finite:
6333       case LibFunc::sqrtl_finite:
6334         if (visitUnaryFloatCall(I, ISD::FSQRT))
6335           return;
6336         break;
6337       case LibFunc::floor:
6338       case LibFunc::floorf:
6339       case LibFunc::floorl:
6340         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6341           return;
6342         break;
6343       case LibFunc::nearbyint:
6344       case LibFunc::nearbyintf:
6345       case LibFunc::nearbyintl:
6346         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6347           return;
6348         break;
6349       case LibFunc::ceil:
6350       case LibFunc::ceilf:
6351       case LibFunc::ceill:
6352         if (visitUnaryFloatCall(I, ISD::FCEIL))
6353           return;
6354         break;
6355       case LibFunc::rint:
6356       case LibFunc::rintf:
6357       case LibFunc::rintl:
6358         if (visitUnaryFloatCall(I, ISD::FRINT))
6359           return;
6360         break;
6361       case LibFunc::round:
6362       case LibFunc::roundf:
6363       case LibFunc::roundl:
6364         if (visitUnaryFloatCall(I, ISD::FROUND))
6365           return;
6366         break;
6367       case LibFunc::trunc:
6368       case LibFunc::truncf:
6369       case LibFunc::truncl:
6370         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6371           return;
6372         break;
6373       case LibFunc::log2:
6374       case LibFunc::log2f:
6375       case LibFunc::log2l:
6376         if (visitUnaryFloatCall(I, ISD::FLOG2))
6377           return;
6378         break;
6379       case LibFunc::exp2:
6380       case LibFunc::exp2f:
6381       case LibFunc::exp2l:
6382         if (visitUnaryFloatCall(I, ISD::FEXP2))
6383           return;
6384         break;
6385       case LibFunc::memcmp:
6386         if (visitMemCmpCall(I))
6387           return;
6388         break;
6389       case LibFunc::mempcpy:
6390         if (visitMemPCpyCall(I))
6391           return;
6392         break;
6393       case LibFunc::memchr:
6394         if (visitMemChrCall(I))
6395           return;
6396         break;
6397       case LibFunc::strcpy:
6398         if (visitStrCpyCall(I, false))
6399           return;
6400         break;
6401       case LibFunc::stpcpy:
6402         if (visitStrCpyCall(I, true))
6403           return;
6404         break;
6405       case LibFunc::strcmp:
6406         if (visitStrCmpCall(I))
6407           return;
6408         break;
6409       case LibFunc::strlen:
6410         if (visitStrLenCall(I))
6411           return;
6412         break;
6413       case LibFunc::strnlen:
6414         if (visitStrNLenCall(I))
6415           return;
6416         break;
6417       }
6418     }
6419   }
6420 
6421   SDValue Callee;
6422   if (!RenameFn)
6423     Callee = getValue(I.getCalledValue());
6424   else
6425     Callee = DAG.getExternalSymbol(
6426         RenameFn,
6427         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6428 
6429   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6430   // have to do anything here to lower funclet bundles.
6431   assert(!I.hasOperandBundlesOtherThan(
6432              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6433          "Cannot lower calls with arbitrary operand bundles!");
6434 
6435   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6436     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6437   else
6438     // Check if we can potentially perform a tail call. More detailed checking
6439     // is be done within LowerCallTo, after more information about the call is
6440     // known.
6441     LowerCallTo(&I, Callee, I.isTailCall());
6442 }
6443 
6444 namespace {
6445 
6446 /// AsmOperandInfo - This contains information for each constraint that we are
6447 /// lowering.
6448 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6449 public:
6450   /// CallOperand - If this is the result output operand or a clobber
6451   /// this is null, otherwise it is the incoming operand to the CallInst.
6452   /// This gets modified as the asm is processed.
6453   SDValue CallOperand;
6454 
6455   /// AssignedRegs - If this is a register or register class operand, this
6456   /// contains the set of register corresponding to the operand.
6457   RegsForValue AssignedRegs;
6458 
6459   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6460     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6461   }
6462 
6463   /// Whether or not this operand accesses memory
6464   bool hasMemory(const TargetLowering &TLI) const {
6465     // Indirect operand accesses access memory.
6466     if (isIndirect)
6467       return true;
6468 
6469     for (const auto &Code : Codes)
6470       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6471         return true;
6472 
6473     return false;
6474   }
6475 
6476   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6477   /// corresponds to.  If there is no Value* for this operand, it returns
6478   /// MVT::Other.
6479   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6480                            const DataLayout &DL) const {
6481     if (!CallOperandVal) return MVT::Other;
6482 
6483     if (isa<BasicBlock>(CallOperandVal))
6484       return TLI.getPointerTy(DL);
6485 
6486     llvm::Type *OpTy = CallOperandVal->getType();
6487 
6488     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6489     // If this is an indirect operand, the operand is a pointer to the
6490     // accessed type.
6491     if (isIndirect) {
6492       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6493       if (!PtrTy)
6494         report_fatal_error("Indirect operand for inline asm not a pointer!");
6495       OpTy = PtrTy->getElementType();
6496     }
6497 
6498     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6499     if (StructType *STy = dyn_cast<StructType>(OpTy))
6500       if (STy->getNumElements() == 1)
6501         OpTy = STy->getElementType(0);
6502 
6503     // If OpTy is not a single value, it may be a struct/union that we
6504     // can tile with integers.
6505     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6506       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6507       switch (BitSize) {
6508       default: break;
6509       case 1:
6510       case 8:
6511       case 16:
6512       case 32:
6513       case 64:
6514       case 128:
6515         OpTy = IntegerType::get(Context, BitSize);
6516         break;
6517       }
6518     }
6519 
6520     return TLI.getValueType(DL, OpTy, true);
6521   }
6522 };
6523 
6524 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6525 
6526 } // end anonymous namespace
6527 
6528 /// Make sure that the output operand \p OpInfo and its corresponding input
6529 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6530 /// out).
6531 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6532                                SDISelAsmOperandInfo &MatchingOpInfo,
6533                                SelectionDAG &DAG) {
6534   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6535     return;
6536 
6537   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6538   const auto &TLI = DAG.getTargetLoweringInfo();
6539 
6540   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6541       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6542                                        OpInfo.ConstraintVT);
6543   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6544       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6545                                        MatchingOpInfo.ConstraintVT);
6546   if ((OpInfo.ConstraintVT.isInteger() !=
6547        MatchingOpInfo.ConstraintVT.isInteger()) ||
6548       (MatchRC.second != InputRC.second)) {
6549     // FIXME: error out in a more elegant fashion
6550     report_fatal_error("Unsupported asm: input constraint"
6551                        " with a matching output constraint of"
6552                        " incompatible type!");
6553   }
6554   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6555 }
6556 
6557 /// Get a direct memory input to behave well as an indirect operand.
6558 /// This may introduce stores, hence the need for a \p Chain.
6559 /// \return The (possibly updated) chain.
6560 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6561                                         SDISelAsmOperandInfo &OpInfo,
6562                                         SelectionDAG &DAG) {
6563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6564 
6565   // If we don't have an indirect input, put it in the constpool if we can,
6566   // otherwise spill it to a stack slot.
6567   // TODO: This isn't quite right. We need to handle these according to
6568   // the addressing mode that the constraint wants. Also, this may take
6569   // an additional register for the computation and we don't want that
6570   // either.
6571 
6572   // If the operand is a float, integer, or vector constant, spill to a
6573   // constant pool entry to get its address.
6574   const Value *OpVal = OpInfo.CallOperandVal;
6575   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6576       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6577     OpInfo.CallOperand = DAG.getConstantPool(
6578         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6579     return Chain;
6580   }
6581 
6582   // Otherwise, create a stack slot and emit a store to it before the asm.
6583   Type *Ty = OpVal->getType();
6584   auto &DL = DAG.getDataLayout();
6585   uint64_t TySize = DL.getTypeAllocSize(Ty);
6586   unsigned Align = DL.getPrefTypeAlignment(Ty);
6587   MachineFunction &MF = DAG.getMachineFunction();
6588   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6589   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6590   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6591                        MachinePointerInfo::getFixedStack(MF, SSFI));
6592   OpInfo.CallOperand = StackSlot;
6593 
6594   return Chain;
6595 }
6596 
6597 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6598 /// specified operand.  We prefer to assign virtual registers, to allow the
6599 /// register allocator to handle the assignment process.  However, if the asm
6600 /// uses features that we can't model on machineinstrs, we have SDISel do the
6601 /// allocation.  This produces generally horrible, but correct, code.
6602 ///
6603 ///   OpInfo describes the operand.
6604 ///
6605 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6606                                  const SDLoc &DL,
6607                                  SDISelAsmOperandInfo &OpInfo) {
6608   LLVMContext &Context = *DAG.getContext();
6609 
6610   MachineFunction &MF = DAG.getMachineFunction();
6611   SmallVector<unsigned, 4> Regs;
6612 
6613   // If this is a constraint for a single physreg, or a constraint for a
6614   // register class, find it.
6615   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6616       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6617                                        OpInfo.ConstraintCode,
6618                                        OpInfo.ConstraintVT);
6619 
6620   unsigned NumRegs = 1;
6621   if (OpInfo.ConstraintVT != MVT::Other) {
6622     // If this is a FP input in an integer register (or visa versa) insert a bit
6623     // cast of the input value.  More generally, handle any case where the input
6624     // value disagrees with the register class we plan to stick this in.
6625     if (OpInfo.Type == InlineAsm::isInput &&
6626         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6627       // Try to convert to the first EVT that the reg class contains.  If the
6628       // types are identical size, use a bitcast to convert (e.g. two differing
6629       // vector types).
6630       MVT RegVT = *PhysReg.second->vt_begin();
6631       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6632         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6633                                          RegVT, OpInfo.CallOperand);
6634         OpInfo.ConstraintVT = RegVT;
6635       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6636         // If the input is a FP value and we want it in FP registers, do a
6637         // bitcast to the corresponding integer type.  This turns an f64 value
6638         // into i64, which can be passed with two i32 values on a 32-bit
6639         // machine.
6640         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6641         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6642                                          RegVT, OpInfo.CallOperand);
6643         OpInfo.ConstraintVT = RegVT;
6644       }
6645     }
6646 
6647     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6648   }
6649 
6650   MVT RegVT;
6651   EVT ValueVT = OpInfo.ConstraintVT;
6652 
6653   // If this is a constraint for a specific physical register, like {r17},
6654   // assign it now.
6655   if (unsigned AssignedReg = PhysReg.first) {
6656     const TargetRegisterClass *RC = PhysReg.second;
6657     if (OpInfo.ConstraintVT == MVT::Other)
6658       ValueVT = *RC->vt_begin();
6659 
6660     // Get the actual register value type.  This is important, because the user
6661     // may have asked for (e.g.) the AX register in i32 type.  We need to
6662     // remember that AX is actually i16 to get the right extension.
6663     RegVT = *RC->vt_begin();
6664 
6665     // This is a explicit reference to a physical register.
6666     Regs.push_back(AssignedReg);
6667 
6668     // If this is an expanded reference, add the rest of the regs to Regs.
6669     if (NumRegs != 1) {
6670       TargetRegisterClass::iterator I = RC->begin();
6671       for (; *I != AssignedReg; ++I)
6672         assert(I != RC->end() && "Didn't find reg!");
6673 
6674       // Already added the first reg.
6675       --NumRegs; ++I;
6676       for (; NumRegs; --NumRegs, ++I) {
6677         assert(I != RC->end() && "Ran out of registers to allocate!");
6678         Regs.push_back(*I);
6679       }
6680     }
6681 
6682     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6683     return;
6684   }
6685 
6686   // Otherwise, if this was a reference to an LLVM register class, create vregs
6687   // for this reference.
6688   if (const TargetRegisterClass *RC = PhysReg.second) {
6689     RegVT = *RC->vt_begin();
6690     if (OpInfo.ConstraintVT == MVT::Other)
6691       ValueVT = RegVT;
6692 
6693     // Create the appropriate number of virtual registers.
6694     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6695     for (; NumRegs; --NumRegs)
6696       Regs.push_back(RegInfo.createVirtualRegister(RC));
6697 
6698     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6699     return;
6700   }
6701 
6702   // Otherwise, we couldn't allocate enough registers for this.
6703 }
6704 
6705 static unsigned
6706 findMatchingInlineAsmOperand(unsigned OperandNo,
6707                              const std::vector<SDValue> &AsmNodeOperands) {
6708   // Scan until we find the definition we already emitted of this operand.
6709   unsigned CurOp = InlineAsm::Op_FirstOperand;
6710   for (; OperandNo; --OperandNo) {
6711     // Advance to the next operand.
6712     unsigned OpFlag =
6713         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6714     assert((InlineAsm::isRegDefKind(OpFlag) ||
6715             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6716             InlineAsm::isMemKind(OpFlag)) &&
6717            "Skipped past definitions?");
6718     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6719   }
6720   return CurOp;
6721 }
6722 
6723 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6724 /// \return true if it has succeeded, false otherwise
6725 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6726                               MVT RegVT, SelectionDAG &DAG) {
6727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6728   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6729   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6730     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6731       Regs.push_back(RegInfo.createVirtualRegister(RC));
6732     else
6733       return false;
6734   }
6735   return true;
6736 }
6737 
6738 class ExtraFlags {
6739   unsigned Flags = 0;
6740 
6741 public:
6742   explicit ExtraFlags(ImmutableCallSite CS) {
6743     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6744     if (IA->hasSideEffects())
6745       Flags |= InlineAsm::Extra_HasSideEffects;
6746     if (IA->isAlignStack())
6747       Flags |= InlineAsm::Extra_IsAlignStack;
6748     if (CS.isConvergent())
6749       Flags |= InlineAsm::Extra_IsConvergent;
6750     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6751   }
6752 
6753   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6754     // Ideally, we would only check against memory constraints.  However, the
6755     // meaning of an Other constraint can be target-specific and we can't easily
6756     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6757     // for Other constraints as well.
6758     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6759         OpInfo.ConstraintType == TargetLowering::C_Other) {
6760       if (OpInfo.Type == InlineAsm::isInput)
6761         Flags |= InlineAsm::Extra_MayLoad;
6762       else if (OpInfo.Type == InlineAsm::isOutput)
6763         Flags |= InlineAsm::Extra_MayStore;
6764       else if (OpInfo.Type == InlineAsm::isClobber)
6765         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6766     }
6767   }
6768 
6769   unsigned get() const { return Flags; }
6770 };
6771 
6772 /// visitInlineAsm - Handle a call to an InlineAsm object.
6773 ///
6774 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6775   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6776 
6777   /// ConstraintOperands - Information about all of the constraints.
6778   SDISelAsmOperandInfoVector ConstraintOperands;
6779 
6780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6781   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6782       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6783 
6784   bool hasMemory = false;
6785 
6786   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6787   ExtraFlags ExtraInfo(CS);
6788 
6789   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6790   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6791   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6792     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6793     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6794 
6795     MVT OpVT = MVT::Other;
6796 
6797     // Compute the value type for each operand.
6798     if (OpInfo.Type == InlineAsm::isInput ||
6799         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6800       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6801 
6802       // Process the call argument. BasicBlocks are labels, currently appearing
6803       // only in asm's.
6804       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6805         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6806       } else {
6807         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6808       }
6809 
6810       OpVT =
6811           OpInfo
6812               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6813               .getSimpleVT();
6814     }
6815 
6816     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6817       // The return value of the call is this value.  As such, there is no
6818       // corresponding argument.
6819       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6820       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6821         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6822                                       STy->getElementType(ResNo));
6823       } else {
6824         assert(ResNo == 0 && "Asm only has one result!");
6825         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6826       }
6827       ++ResNo;
6828     }
6829 
6830     OpInfo.ConstraintVT = OpVT;
6831 
6832     if (!hasMemory)
6833       hasMemory = OpInfo.hasMemory(TLI);
6834 
6835     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6836     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6837     auto TargetConstraint = TargetConstraints[i];
6838 
6839     // Compute the constraint code and ConstraintType to use.
6840     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6841 
6842     ExtraInfo.update(TargetConstraint);
6843   }
6844 
6845   SDValue Chain, Flag;
6846 
6847   // We won't need to flush pending loads if this asm doesn't touch
6848   // memory and is nonvolatile.
6849   if (hasMemory || IA->hasSideEffects())
6850     Chain = getRoot();
6851   else
6852     Chain = DAG.getRoot();
6853 
6854   // Second pass over the constraints: compute which constraint option to use
6855   // and assign registers to constraints that want a specific physreg.
6856   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6857     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6858 
6859     // If this is an output operand with a matching input operand, look up the
6860     // matching input. If their types mismatch, e.g. one is an integer, the
6861     // other is floating point, or their sizes are different, flag it as an
6862     // error.
6863     if (OpInfo.hasMatchingInput()) {
6864       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6865       patchMatchingInput(OpInfo, Input, DAG);
6866     }
6867 
6868     // Compute the constraint code and ConstraintType to use.
6869     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6870 
6871     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6872         OpInfo.Type == InlineAsm::isClobber)
6873       continue;
6874 
6875     // If this is a memory input, and if the operand is not indirect, do what we
6876     // need to to provide an address for the memory input.
6877     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6878         !OpInfo.isIndirect) {
6879       assert((OpInfo.isMultipleAlternative ||
6880               (OpInfo.Type == InlineAsm::isInput)) &&
6881              "Can only indirectify direct input operands!");
6882 
6883       // Memory operands really want the address of the value.
6884       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6885 
6886       // There is no longer a Value* corresponding to this operand.
6887       OpInfo.CallOperandVal = nullptr;
6888 
6889       // It is now an indirect operand.
6890       OpInfo.isIndirect = true;
6891     }
6892 
6893     // If this constraint is for a specific register, allocate it before
6894     // anything else.
6895     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6896       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6897   }
6898 
6899   // Third pass - Loop over all of the operands, assigning virtual or physregs
6900   // to register class operands.
6901   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6902     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6903 
6904     // C_Register operands have already been allocated, Other/Memory don't need
6905     // to be.
6906     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6907       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6908   }
6909 
6910   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6911   std::vector<SDValue> AsmNodeOperands;
6912   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6913   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6914       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6915 
6916   // If we have a !srcloc metadata node associated with it, we want to attach
6917   // this to the ultimately generated inline asm machineinstr.  To do this, we
6918   // pass in the third operand as this (potentially null) inline asm MDNode.
6919   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6920   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6921 
6922   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6923   // bits as operand 3.
6924   AsmNodeOperands.push_back(DAG.getTargetConstant(
6925       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6926 
6927   // Loop over all of the inputs, copying the operand values into the
6928   // appropriate registers and processing the output regs.
6929   RegsForValue RetValRegs;
6930 
6931   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6932   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6933 
6934   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6935     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6936 
6937     switch (OpInfo.Type) {
6938     case InlineAsm::isOutput: {
6939       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6940           OpInfo.ConstraintType != TargetLowering::C_Register) {
6941         // Memory output, or 'other' output (e.g. 'X' constraint).
6942         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6943 
6944         unsigned ConstraintID =
6945             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6946         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6947                "Failed to convert memory constraint code to constraint id.");
6948 
6949         // Add information to the INLINEASM node to know about this output.
6950         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6951         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6952         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6953                                                         MVT::i32));
6954         AsmNodeOperands.push_back(OpInfo.CallOperand);
6955         break;
6956       }
6957 
6958       // Otherwise, this is a register or register class output.
6959 
6960       // Copy the output from the appropriate register.  Find a register that
6961       // we can use.
6962       if (OpInfo.AssignedRegs.Regs.empty()) {
6963         emitInlineAsmError(
6964             CS, "couldn't allocate output register for constraint '" +
6965                     Twine(OpInfo.ConstraintCode) + "'");
6966         return;
6967       }
6968 
6969       // If this is an indirect operand, store through the pointer after the
6970       // asm.
6971       if (OpInfo.isIndirect) {
6972         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6973                                                       OpInfo.CallOperandVal));
6974       } else {
6975         // This is the result value of the call.
6976         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6977         // Concatenate this output onto the outputs list.
6978         RetValRegs.append(OpInfo.AssignedRegs);
6979       }
6980 
6981       // Add information to the INLINEASM node to know that this register is
6982       // set.
6983       OpInfo.AssignedRegs
6984           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6985                                     ? InlineAsm::Kind_RegDefEarlyClobber
6986                                     : InlineAsm::Kind_RegDef,
6987                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6988       break;
6989     }
6990     case InlineAsm::isInput: {
6991       SDValue InOperandVal = OpInfo.CallOperand;
6992 
6993       if (OpInfo.isMatchingInputConstraint()) {
6994         // If this is required to match an output register we have already set,
6995         // just use its register.
6996         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
6997                                                   AsmNodeOperands);
6998         unsigned OpFlag =
6999           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7000         if (InlineAsm::isRegDefKind(OpFlag) ||
7001             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7002           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7003           if (OpInfo.isIndirect) {
7004             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7005             emitInlineAsmError(CS, "inline asm not supported yet:"
7006                                    " don't know how to handle tied "
7007                                    "indirect register inputs");
7008             return;
7009           }
7010 
7011           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7012           SmallVector<unsigned, 4> Regs;
7013 
7014           if (!createVirtualRegs(Regs,
7015                                  InlineAsm::getNumOperandRegisters(OpFlag),
7016                                  RegVT, DAG)) {
7017             emitInlineAsmError(CS, "inline asm error: This value type register "
7018                                    "class is not natively supported!");
7019             return;
7020           }
7021 
7022           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7023 
7024           SDLoc dl = getCurSDLoc();
7025           // Use the produced MatchedRegs object to
7026           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7027                                     Chain, &Flag, CS.getInstruction());
7028           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7029                                            true, OpInfo.getMatchedOperand(), dl,
7030                                            DAG, AsmNodeOperands);
7031           break;
7032         }
7033 
7034         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7035         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7036                "Unexpected number of operands");
7037         // Add information to the INLINEASM node to know about this input.
7038         // See InlineAsm.h isUseOperandTiedToDef.
7039         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7040         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7041                                                     OpInfo.getMatchedOperand());
7042         AsmNodeOperands.push_back(DAG.getTargetConstant(
7043             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7044         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7045         break;
7046       }
7047 
7048       // Treat indirect 'X' constraint as memory.
7049       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7050           OpInfo.isIndirect)
7051         OpInfo.ConstraintType = TargetLowering::C_Memory;
7052 
7053       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7054         std::vector<SDValue> Ops;
7055         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7056                                           Ops, DAG);
7057         if (Ops.empty()) {
7058           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7059                                      Twine(OpInfo.ConstraintCode) + "'");
7060           return;
7061         }
7062 
7063         // Add information to the INLINEASM node to know about this input.
7064         unsigned ResOpType =
7065           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7066         AsmNodeOperands.push_back(DAG.getTargetConstant(
7067             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7068         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7069         break;
7070       }
7071 
7072       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7073         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7074         assert(InOperandVal.getValueType() ==
7075                    TLI.getPointerTy(DAG.getDataLayout()) &&
7076                "Memory operands expect pointer values");
7077 
7078         unsigned ConstraintID =
7079             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7080         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7081                "Failed to convert memory constraint code to constraint id.");
7082 
7083         // Add information to the INLINEASM node to know about this input.
7084         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7085         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7086         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7087                                                         getCurSDLoc(),
7088                                                         MVT::i32));
7089         AsmNodeOperands.push_back(InOperandVal);
7090         break;
7091       }
7092 
7093       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7094               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7095              "Unknown constraint type!");
7096 
7097       // TODO: Support this.
7098       if (OpInfo.isIndirect) {
7099         emitInlineAsmError(
7100             CS, "Don't know how to handle indirect register inputs yet "
7101                 "for constraint '" +
7102                     Twine(OpInfo.ConstraintCode) + "'");
7103         return;
7104       }
7105 
7106       // Copy the input into the appropriate registers.
7107       if (OpInfo.AssignedRegs.Regs.empty()) {
7108         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7109                                    Twine(OpInfo.ConstraintCode) + "'");
7110         return;
7111       }
7112 
7113       SDLoc dl = getCurSDLoc();
7114 
7115       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7116                                         Chain, &Flag, CS.getInstruction());
7117 
7118       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7119                                                dl, DAG, AsmNodeOperands);
7120       break;
7121     }
7122     case InlineAsm::isClobber: {
7123       // Add the clobbered value to the operand list, so that the register
7124       // allocator is aware that the physreg got clobbered.
7125       if (!OpInfo.AssignedRegs.Regs.empty())
7126         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7127                                                  false, 0, getCurSDLoc(), DAG,
7128                                                  AsmNodeOperands);
7129       break;
7130     }
7131     }
7132   }
7133 
7134   // Finish up input operands.  Set the input chain and add the flag last.
7135   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7136   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7137 
7138   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7139                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7140   Flag = Chain.getValue(1);
7141 
7142   // If this asm returns a register value, copy the result from that register
7143   // and set it as the value of the call.
7144   if (!RetValRegs.Regs.empty()) {
7145     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7146                                              Chain, &Flag, CS.getInstruction());
7147 
7148     // FIXME: Why don't we do this for inline asms with MRVs?
7149     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7150       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7151 
7152       // If any of the results of the inline asm is a vector, it may have the
7153       // wrong width/num elts.  This can happen for register classes that can
7154       // contain multiple different value types.  The preg or vreg allocated may
7155       // not have the same VT as was expected.  Convert it to the right type
7156       // with bit_convert.
7157       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7158         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7159                           ResultType, Val);
7160 
7161       } else if (ResultType != Val.getValueType() &&
7162                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7163         // If a result value was tied to an input value, the computed result may
7164         // have a wider width than the expected result.  Extract the relevant
7165         // portion.
7166         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7167       }
7168 
7169       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7170     }
7171 
7172     setValue(CS.getInstruction(), Val);
7173     // Don't need to use this as a chain in this case.
7174     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7175       return;
7176   }
7177 
7178   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7179 
7180   // Process indirect outputs, first output all of the flagged copies out of
7181   // physregs.
7182   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7183     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7184     const Value *Ptr = IndirectStoresToEmit[i].second;
7185     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7186                                              Chain, &Flag, IA);
7187     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7188   }
7189 
7190   // Emit the non-flagged stores from the physregs.
7191   SmallVector<SDValue, 8> OutChains;
7192   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7193     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7194                                getValue(StoresToEmit[i].second),
7195                                MachinePointerInfo(StoresToEmit[i].second));
7196     OutChains.push_back(Val);
7197   }
7198 
7199   if (!OutChains.empty())
7200     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7201 
7202   DAG.setRoot(Chain);
7203 }
7204 
7205 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7206                                              const Twine &Message) {
7207   LLVMContext &Ctx = *DAG.getContext();
7208   Ctx.emitError(CS.getInstruction(), Message);
7209 
7210   // Make sure we leave the DAG in a valid state
7211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7212   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7213   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7214 }
7215 
7216 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7217   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7218                           MVT::Other, getRoot(),
7219                           getValue(I.getArgOperand(0)),
7220                           DAG.getSrcValue(I.getArgOperand(0))));
7221 }
7222 
7223 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7224   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7225   const DataLayout &DL = DAG.getDataLayout();
7226   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7227                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7228                            DAG.getSrcValue(I.getOperand(0)),
7229                            DL.getABITypeAlignment(I.getType()));
7230   setValue(&I, V);
7231   DAG.setRoot(V.getValue(1));
7232 }
7233 
7234 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7235   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7236                           MVT::Other, getRoot(),
7237                           getValue(I.getArgOperand(0)),
7238                           DAG.getSrcValue(I.getArgOperand(0))));
7239 }
7240 
7241 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7242   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7243                           MVT::Other, getRoot(),
7244                           getValue(I.getArgOperand(0)),
7245                           getValue(I.getArgOperand(1)),
7246                           DAG.getSrcValue(I.getArgOperand(0)),
7247                           DAG.getSrcValue(I.getArgOperand(1))));
7248 }
7249 
7250 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7251                                                     const Instruction &I,
7252                                                     SDValue Op) {
7253   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7254   if (!Range)
7255     return Op;
7256 
7257   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7258   if (!Lo->isNullValue())
7259     return Op;
7260 
7261   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7262   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7263 
7264   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7265 
7266   SDLoc SL = getCurSDLoc();
7267 
7268   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7269                              Op, DAG.getValueType(SmallVT));
7270   unsigned NumVals = Op.getNode()->getNumValues();
7271   if (NumVals == 1)
7272     return ZExt;
7273 
7274   SmallVector<SDValue, 4> Ops;
7275 
7276   Ops.push_back(ZExt);
7277   for (unsigned I = 1; I != NumVals; ++I)
7278     Ops.push_back(Op.getValue(I));
7279 
7280   return DAG.getMergeValues(Ops, SL);
7281 }
7282 
7283 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7284 /// the call being lowered.
7285 ///
7286 /// This is a helper for lowering intrinsics that follow a target calling
7287 /// convention or require stack pointer adjustment. Only a subset of the
7288 /// intrinsic's operands need to participate in the calling convention.
7289 void SelectionDAGBuilder::populateCallLoweringInfo(
7290     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7291     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7292     bool IsPatchPoint) {
7293   TargetLowering::ArgListTy Args;
7294   Args.reserve(NumArgs);
7295 
7296   // Populate the argument list.
7297   // Attributes for args start at offset 1, after the return attribute.
7298   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7299        ArgI != ArgE; ++ArgI) {
7300     const Value *V = CS->getOperand(ArgI);
7301 
7302     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7303 
7304     TargetLowering::ArgListEntry Entry;
7305     Entry.Node = getValue(V);
7306     Entry.Ty = V->getType();
7307     Entry.setAttributes(&CS, AttrI);
7308     Args.push_back(Entry);
7309   }
7310 
7311   CLI.setDebugLoc(getCurSDLoc())
7312       .setChain(getRoot())
7313       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7314       .setDiscardResult(CS->use_empty())
7315       .setIsPatchPoint(IsPatchPoint);
7316 }
7317 
7318 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7319 /// or patchpoint target node's operand list.
7320 ///
7321 /// Constants are converted to TargetConstants purely as an optimization to
7322 /// avoid constant materialization and register allocation.
7323 ///
7324 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7325 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7326 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7327 /// address materialization and register allocation, but may also be required
7328 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7329 /// alloca in the entry block, then the runtime may assume that the alloca's
7330 /// StackMap location can be read immediately after compilation and that the
7331 /// location is valid at any point during execution (this is similar to the
7332 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7333 /// only available in a register, then the runtime would need to trap when
7334 /// execution reaches the StackMap in order to read the alloca's location.
7335 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7336                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7337                                 SelectionDAGBuilder &Builder) {
7338   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7339     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7340     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7341       Ops.push_back(
7342         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7343       Ops.push_back(
7344         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7345     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7346       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7347       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7348           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7349     } else
7350       Ops.push_back(OpVal);
7351   }
7352 }
7353 
7354 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7355 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7356   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7357   //                                  [live variables...])
7358 
7359   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7360 
7361   SDValue Chain, InFlag, Callee, NullPtr;
7362   SmallVector<SDValue, 32> Ops;
7363 
7364   SDLoc DL = getCurSDLoc();
7365   Callee = getValue(CI.getCalledValue());
7366   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7367 
7368   // The stackmap intrinsic only records the live variables (the arguemnts
7369   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7370   // intrinsic, this won't be lowered to a function call. This means we don't
7371   // have to worry about calling conventions and target specific lowering code.
7372   // Instead we perform the call lowering right here.
7373   //
7374   // chain, flag = CALLSEQ_START(chain, 0)
7375   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7376   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7377   //
7378   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7379   InFlag = Chain.getValue(1);
7380 
7381   // Add the <id> and <numBytes> constants.
7382   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7383   Ops.push_back(DAG.getTargetConstant(
7384                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7385   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7386   Ops.push_back(DAG.getTargetConstant(
7387                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7388                   MVT::i32));
7389 
7390   // Push live variables for the stack map.
7391   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7392 
7393   // We are not pushing any register mask info here on the operands list,
7394   // because the stackmap doesn't clobber anything.
7395 
7396   // Push the chain and the glue flag.
7397   Ops.push_back(Chain);
7398   Ops.push_back(InFlag);
7399 
7400   // Create the STACKMAP node.
7401   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7402   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7403   Chain = SDValue(SM, 0);
7404   InFlag = Chain.getValue(1);
7405 
7406   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7407 
7408   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7409 
7410   // Set the root to the target-lowered call chain.
7411   DAG.setRoot(Chain);
7412 
7413   // Inform the Frame Information that we have a stackmap in this function.
7414   FuncInfo.MF->getFrameInfo().setHasStackMap();
7415 }
7416 
7417 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7418 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7419                                           const BasicBlock *EHPadBB) {
7420   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7421   //                                                 i32 <numBytes>,
7422   //                                                 i8* <target>,
7423   //                                                 i32 <numArgs>,
7424   //                                                 [Args...],
7425   //                                                 [live variables...])
7426 
7427   CallingConv::ID CC = CS.getCallingConv();
7428   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7429   bool HasDef = !CS->getType()->isVoidTy();
7430   SDLoc dl = getCurSDLoc();
7431   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7432 
7433   // Handle immediate and symbolic callees.
7434   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7435     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7436                                    /*isTarget=*/true);
7437   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7438     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7439                                          SDLoc(SymbolicCallee),
7440                                          SymbolicCallee->getValueType(0));
7441 
7442   // Get the real number of arguments participating in the call <numArgs>
7443   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7444   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7445 
7446   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7447   // Intrinsics include all meta-operands up to but not including CC.
7448   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7449   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7450          "Not enough arguments provided to the patchpoint intrinsic");
7451 
7452   // For AnyRegCC the arguments are lowered later on manually.
7453   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7454   Type *ReturnTy =
7455     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7456 
7457   TargetLowering::CallLoweringInfo CLI(DAG);
7458   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7459                            true);
7460   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7461 
7462   SDNode *CallEnd = Result.second.getNode();
7463   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7464     CallEnd = CallEnd->getOperand(0).getNode();
7465 
7466   /// Get a call instruction from the call sequence chain.
7467   /// Tail calls are not allowed.
7468   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7469          "Expected a callseq node.");
7470   SDNode *Call = CallEnd->getOperand(0).getNode();
7471   bool HasGlue = Call->getGluedNode();
7472 
7473   // Replace the target specific call node with the patchable intrinsic.
7474   SmallVector<SDValue, 8> Ops;
7475 
7476   // Add the <id> and <numBytes> constants.
7477   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7478   Ops.push_back(DAG.getTargetConstant(
7479                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7480   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7481   Ops.push_back(DAG.getTargetConstant(
7482                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7483                   MVT::i32));
7484 
7485   // Add the callee.
7486   Ops.push_back(Callee);
7487 
7488   // Adjust <numArgs> to account for any arguments that have been passed on the
7489   // stack instead.
7490   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7491   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7492   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7493   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7494 
7495   // Add the calling convention
7496   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7497 
7498   // Add the arguments we omitted previously. The register allocator should
7499   // place these in any free register.
7500   if (IsAnyRegCC)
7501     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7502       Ops.push_back(getValue(CS.getArgument(i)));
7503 
7504   // Push the arguments from the call instruction up to the register mask.
7505   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7506   Ops.append(Call->op_begin() + 2, e);
7507 
7508   // Push live variables for the stack map.
7509   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7510 
7511   // Push the register mask info.
7512   if (HasGlue)
7513     Ops.push_back(*(Call->op_end()-2));
7514   else
7515     Ops.push_back(*(Call->op_end()-1));
7516 
7517   // Push the chain (this is originally the first operand of the call, but
7518   // becomes now the last or second to last operand).
7519   Ops.push_back(*(Call->op_begin()));
7520 
7521   // Push the glue flag (last operand).
7522   if (HasGlue)
7523     Ops.push_back(*(Call->op_end()-1));
7524 
7525   SDVTList NodeTys;
7526   if (IsAnyRegCC && HasDef) {
7527     // Create the return types based on the intrinsic definition
7528     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7529     SmallVector<EVT, 3> ValueVTs;
7530     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7531     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7532 
7533     // There is always a chain and a glue type at the end
7534     ValueVTs.push_back(MVT::Other);
7535     ValueVTs.push_back(MVT::Glue);
7536     NodeTys = DAG.getVTList(ValueVTs);
7537   } else
7538     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7539 
7540   // Replace the target specific call node with a PATCHPOINT node.
7541   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7542                                          dl, NodeTys, Ops);
7543 
7544   // Update the NodeMap.
7545   if (HasDef) {
7546     if (IsAnyRegCC)
7547       setValue(CS.getInstruction(), SDValue(MN, 0));
7548     else
7549       setValue(CS.getInstruction(), Result.first);
7550   }
7551 
7552   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7553   // call sequence. Furthermore the location of the chain and glue can change
7554   // when the AnyReg calling convention is used and the intrinsic returns a
7555   // value.
7556   if (IsAnyRegCC && HasDef) {
7557     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7558     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7559     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7560   } else
7561     DAG.ReplaceAllUsesWith(Call, MN);
7562   DAG.DeleteNode(Call);
7563 
7564   // Inform the Frame Information that we have a patchpoint in this function.
7565   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7566 }
7567 
7568 /// Returns an AttributeSet representing the attributes applied to the return
7569 /// value of the given call.
7570 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7571   SmallVector<Attribute::AttrKind, 2> Attrs;
7572   if (CLI.RetSExt)
7573     Attrs.push_back(Attribute::SExt);
7574   if (CLI.RetZExt)
7575     Attrs.push_back(Attribute::ZExt);
7576   if (CLI.IsInReg)
7577     Attrs.push_back(Attribute::InReg);
7578 
7579   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7580                            Attrs);
7581 }
7582 
7583 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7584 /// implementation, which just calls LowerCall.
7585 /// FIXME: When all targets are
7586 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7587 std::pair<SDValue, SDValue>
7588 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7589   // Handle the incoming return values from the call.
7590   CLI.Ins.clear();
7591   Type *OrigRetTy = CLI.RetTy;
7592   SmallVector<EVT, 4> RetTys;
7593   SmallVector<uint64_t, 4> Offsets;
7594   auto &DL = CLI.DAG.getDataLayout();
7595   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7596 
7597   SmallVector<ISD::OutputArg, 4> Outs;
7598   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7599 
7600   bool CanLowerReturn =
7601       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7602                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7603 
7604   SDValue DemoteStackSlot;
7605   int DemoteStackIdx = -100;
7606   if (!CanLowerReturn) {
7607     // FIXME: equivalent assert?
7608     // assert(!CS.hasInAllocaArgument() &&
7609     //        "sret demotion is incompatible with inalloca");
7610     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7611     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7612     MachineFunction &MF = CLI.DAG.getMachineFunction();
7613     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7614     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7615 
7616     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7617     ArgListEntry Entry;
7618     Entry.Node = DemoteStackSlot;
7619     Entry.Ty = StackSlotPtrType;
7620     Entry.isSExt = false;
7621     Entry.isZExt = false;
7622     Entry.isInReg = false;
7623     Entry.isSRet = true;
7624     Entry.isNest = false;
7625     Entry.isByVal = false;
7626     Entry.isReturned = false;
7627     Entry.isSwiftSelf = false;
7628     Entry.isSwiftError = false;
7629     Entry.Alignment = Align;
7630     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7631     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7632 
7633     // sret demotion isn't compatible with tail-calls, since the sret argument
7634     // points into the callers stack frame.
7635     CLI.IsTailCall = false;
7636   } else {
7637     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7638       EVT VT = RetTys[I];
7639       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7640       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7641       for (unsigned i = 0; i != NumRegs; ++i) {
7642         ISD::InputArg MyFlags;
7643         MyFlags.VT = RegisterVT;
7644         MyFlags.ArgVT = VT;
7645         MyFlags.Used = CLI.IsReturnValueUsed;
7646         if (CLI.RetSExt)
7647           MyFlags.Flags.setSExt();
7648         if (CLI.RetZExt)
7649           MyFlags.Flags.setZExt();
7650         if (CLI.IsInReg)
7651           MyFlags.Flags.setInReg();
7652         CLI.Ins.push_back(MyFlags);
7653       }
7654     }
7655   }
7656 
7657   // We push in swifterror return as the last element of CLI.Ins.
7658   ArgListTy &Args = CLI.getArgs();
7659   if (supportSwiftError()) {
7660     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7661       if (Args[i].isSwiftError) {
7662         ISD::InputArg MyFlags;
7663         MyFlags.VT = getPointerTy(DL);
7664         MyFlags.ArgVT = EVT(getPointerTy(DL));
7665         MyFlags.Flags.setSwiftError();
7666         CLI.Ins.push_back(MyFlags);
7667       }
7668     }
7669   }
7670 
7671   // Handle all of the outgoing arguments.
7672   CLI.Outs.clear();
7673   CLI.OutVals.clear();
7674   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7675     SmallVector<EVT, 4> ValueVTs;
7676     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7677     Type *FinalType = Args[i].Ty;
7678     if (Args[i].isByVal)
7679       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7680     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7681         FinalType, CLI.CallConv, CLI.IsVarArg);
7682     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7683          ++Value) {
7684       EVT VT = ValueVTs[Value];
7685       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7686       SDValue Op = SDValue(Args[i].Node.getNode(),
7687                            Args[i].Node.getResNo() + Value);
7688       ISD::ArgFlagsTy Flags;
7689       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7690 
7691       if (Args[i].isZExt)
7692         Flags.setZExt();
7693       if (Args[i].isSExt)
7694         Flags.setSExt();
7695       if (Args[i].isInReg)
7696         Flags.setInReg();
7697       if (Args[i].isSRet)
7698         Flags.setSRet();
7699       if (Args[i].isSwiftSelf)
7700         Flags.setSwiftSelf();
7701       if (Args[i].isSwiftError)
7702         Flags.setSwiftError();
7703       if (Args[i].isByVal)
7704         Flags.setByVal();
7705       if (Args[i].isInAlloca) {
7706         Flags.setInAlloca();
7707         // Set the byval flag for CCAssignFn callbacks that don't know about
7708         // inalloca.  This way we can know how many bytes we should've allocated
7709         // and how many bytes a callee cleanup function will pop.  If we port
7710         // inalloca to more targets, we'll have to add custom inalloca handling
7711         // in the various CC lowering callbacks.
7712         Flags.setByVal();
7713       }
7714       if (Args[i].isByVal || Args[i].isInAlloca) {
7715         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7716         Type *ElementTy = Ty->getElementType();
7717         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7718         // For ByVal, alignment should come from FE.  BE will guess if this
7719         // info is not there but there are cases it cannot get right.
7720         unsigned FrameAlign;
7721         if (Args[i].Alignment)
7722           FrameAlign = Args[i].Alignment;
7723         else
7724           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7725         Flags.setByValAlign(FrameAlign);
7726       }
7727       if (Args[i].isNest)
7728         Flags.setNest();
7729       if (NeedsRegBlock)
7730         Flags.setInConsecutiveRegs();
7731       Flags.setOrigAlign(OriginalAlignment);
7732 
7733       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7734       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7735       SmallVector<SDValue, 4> Parts(NumParts);
7736       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7737 
7738       if (Args[i].isSExt)
7739         ExtendKind = ISD::SIGN_EXTEND;
7740       else if (Args[i].isZExt)
7741         ExtendKind = ISD::ZERO_EXTEND;
7742 
7743       // Conservatively only handle 'returned' on non-vectors for now
7744       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7745         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7746                "unexpected use of 'returned'");
7747         // Before passing 'returned' to the target lowering code, ensure that
7748         // either the register MVT and the actual EVT are the same size or that
7749         // the return value and argument are extended in the same way; in these
7750         // cases it's safe to pass the argument register value unchanged as the
7751         // return register value (although it's at the target's option whether
7752         // to do so)
7753         // TODO: allow code generation to take advantage of partially preserved
7754         // registers rather than clobbering the entire register when the
7755         // parameter extension method is not compatible with the return
7756         // extension method
7757         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7758             (ExtendKind != ISD::ANY_EXTEND &&
7759              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7760         Flags.setReturned();
7761       }
7762 
7763       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7764                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7765 
7766       for (unsigned j = 0; j != NumParts; ++j) {
7767         // if it isn't first piece, alignment must be 1
7768         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7769                                i < CLI.NumFixedArgs,
7770                                i, j*Parts[j].getValueType().getStoreSize());
7771         if (NumParts > 1 && j == 0)
7772           MyFlags.Flags.setSplit();
7773         else if (j != 0) {
7774           MyFlags.Flags.setOrigAlign(1);
7775           if (j == NumParts - 1)
7776             MyFlags.Flags.setSplitEnd();
7777         }
7778 
7779         CLI.Outs.push_back(MyFlags);
7780         CLI.OutVals.push_back(Parts[j]);
7781       }
7782 
7783       if (NeedsRegBlock && Value == NumValues - 1)
7784         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7785     }
7786   }
7787 
7788   SmallVector<SDValue, 4> InVals;
7789   CLI.Chain = LowerCall(CLI, InVals);
7790 
7791   // Update CLI.InVals to use outside of this function.
7792   CLI.InVals = InVals;
7793 
7794   // Verify that the target's LowerCall behaved as expected.
7795   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7796          "LowerCall didn't return a valid chain!");
7797   assert((!CLI.IsTailCall || InVals.empty()) &&
7798          "LowerCall emitted a return value for a tail call!");
7799   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7800          "LowerCall didn't emit the correct number of values!");
7801 
7802   // For a tail call, the return value is merely live-out and there aren't
7803   // any nodes in the DAG representing it. Return a special value to
7804   // indicate that a tail call has been emitted and no more Instructions
7805   // should be processed in the current block.
7806   if (CLI.IsTailCall) {
7807     CLI.DAG.setRoot(CLI.Chain);
7808     return std::make_pair(SDValue(), SDValue());
7809   }
7810 
7811 #ifndef NDEBUG
7812   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7813     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7814     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7815            "LowerCall emitted a value with the wrong type!");
7816   }
7817 #endif
7818 
7819   SmallVector<SDValue, 4> ReturnValues;
7820   if (!CanLowerReturn) {
7821     // The instruction result is the result of loading from the
7822     // hidden sret parameter.
7823     SmallVector<EVT, 1> PVTs;
7824     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7825 
7826     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7827     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7828     EVT PtrVT = PVTs[0];
7829 
7830     unsigned NumValues = RetTys.size();
7831     ReturnValues.resize(NumValues);
7832     SmallVector<SDValue, 4> Chains(NumValues);
7833 
7834     // An aggregate return value cannot wrap around the address space, so
7835     // offsets to its parts don't wrap either.
7836     SDNodeFlags Flags;
7837     Flags.setNoUnsignedWrap(true);
7838 
7839     for (unsigned i = 0; i < NumValues; ++i) {
7840       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7841                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7842                                                         PtrVT), &Flags);
7843       SDValue L = CLI.DAG.getLoad(
7844           RetTys[i], CLI.DL, CLI.Chain, Add,
7845           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7846                                             DemoteStackIdx, Offsets[i]),
7847           /* Alignment = */ 1);
7848       ReturnValues[i] = L;
7849       Chains[i] = L.getValue(1);
7850     }
7851 
7852     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7853   } else {
7854     // Collect the legal value parts into potentially illegal values
7855     // that correspond to the original function's return values.
7856     Optional<ISD::NodeType> AssertOp;
7857     if (CLI.RetSExt)
7858       AssertOp = ISD::AssertSext;
7859     else if (CLI.RetZExt)
7860       AssertOp = ISD::AssertZext;
7861     unsigned CurReg = 0;
7862     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7863       EVT VT = RetTys[I];
7864       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7865       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7866 
7867       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7868                                               NumRegs, RegisterVT, VT, nullptr,
7869                                               AssertOp));
7870       CurReg += NumRegs;
7871     }
7872 
7873     // For a function returning void, there is no return value. We can't create
7874     // such a node, so we just return a null return value in that case. In
7875     // that case, nothing will actually look at the value.
7876     if (ReturnValues.empty())
7877       return std::make_pair(SDValue(), CLI.Chain);
7878   }
7879 
7880   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7881                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7882   return std::make_pair(Res, CLI.Chain);
7883 }
7884 
7885 void TargetLowering::LowerOperationWrapper(SDNode *N,
7886                                            SmallVectorImpl<SDValue> &Results,
7887                                            SelectionDAG &DAG) const {
7888   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7889     Results.push_back(Res);
7890 }
7891 
7892 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7893   llvm_unreachable("LowerOperation not implemented for this target!");
7894 }
7895 
7896 void
7897 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7898   SDValue Op = getNonRegisterValue(V);
7899   assert((Op.getOpcode() != ISD::CopyFromReg ||
7900           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7901          "Copy from a reg to the same reg!");
7902   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7903 
7904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7905   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7906                    V->getType());
7907   SDValue Chain = DAG.getEntryNode();
7908 
7909   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7910                               FuncInfo.PreferredExtendType.end())
7911                                  ? ISD::ANY_EXTEND
7912                                  : FuncInfo.PreferredExtendType[V];
7913   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7914   PendingExports.push_back(Chain);
7915 }
7916 
7917 #include "llvm/CodeGen/SelectionDAGISel.h"
7918 
7919 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7920 /// entry block, return true.  This includes arguments used by switches, since
7921 /// the switch may expand into multiple basic blocks.
7922 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7923   // With FastISel active, we may be splitting blocks, so force creation
7924   // of virtual registers for all non-dead arguments.
7925   if (FastISel)
7926     return A->use_empty();
7927 
7928   const BasicBlock &Entry = A->getParent()->front();
7929   for (const User *U : A->users())
7930     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7931       return false;  // Use not in entry block.
7932 
7933   return true;
7934 }
7935 
7936 void SelectionDAGISel::LowerArguments(const Function &F) {
7937   SelectionDAG &DAG = SDB->DAG;
7938   SDLoc dl = SDB->getCurSDLoc();
7939   const DataLayout &DL = DAG.getDataLayout();
7940   SmallVector<ISD::InputArg, 16> Ins;
7941 
7942   if (!FuncInfo->CanLowerReturn) {
7943     // Put in an sret pointer parameter before all the other parameters.
7944     SmallVector<EVT, 1> ValueVTs;
7945     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7946                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7947 
7948     // NOTE: Assuming that a pointer will never break down to more than one VT
7949     // or one register.
7950     ISD::ArgFlagsTy Flags;
7951     Flags.setSRet();
7952     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7953     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7954                          ISD::InputArg::NoArgIndex, 0);
7955     Ins.push_back(RetArg);
7956   }
7957 
7958   // Set up the incoming argument description vector.
7959   unsigned Idx = 1;
7960   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7961        I != E; ++I, ++Idx) {
7962     SmallVector<EVT, 4> ValueVTs;
7963     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7964     bool isArgValueUsed = !I->use_empty();
7965     unsigned PartBase = 0;
7966     Type *FinalType = I->getType();
7967     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7968       FinalType = cast<PointerType>(FinalType)->getElementType();
7969     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7970         FinalType, F.getCallingConv(), F.isVarArg());
7971     for (unsigned Value = 0, NumValues = ValueVTs.size();
7972          Value != NumValues; ++Value) {
7973       EVT VT = ValueVTs[Value];
7974       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7975       ISD::ArgFlagsTy Flags;
7976       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7977 
7978       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7979         Flags.setZExt();
7980       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7981         Flags.setSExt();
7982       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7983         Flags.setInReg();
7984       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7985         Flags.setSRet();
7986       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7987         Flags.setSwiftSelf();
7988       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7989         Flags.setSwiftError();
7990       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7991         Flags.setByVal();
7992       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7993         Flags.setInAlloca();
7994         // Set the byval flag for CCAssignFn callbacks that don't know about
7995         // inalloca.  This way we can know how many bytes we should've allocated
7996         // and how many bytes a callee cleanup function will pop.  If we port
7997         // inalloca to more targets, we'll have to add custom inalloca handling
7998         // in the various CC lowering callbacks.
7999         Flags.setByVal();
8000       }
8001       if (F.getCallingConv() == CallingConv::X86_INTR) {
8002         // IA Interrupt passes frame (1st parameter) by value in the stack.
8003         if (Idx == 1)
8004           Flags.setByVal();
8005       }
8006       if (Flags.isByVal() || Flags.isInAlloca()) {
8007         PointerType *Ty = cast<PointerType>(I->getType());
8008         Type *ElementTy = Ty->getElementType();
8009         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8010         // For ByVal, alignment should be passed from FE.  BE will guess if
8011         // this info is not there but there are cases it cannot get right.
8012         unsigned FrameAlign;
8013         if (F.getParamAlignment(Idx))
8014           FrameAlign = F.getParamAlignment(Idx);
8015         else
8016           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8017         Flags.setByValAlign(FrameAlign);
8018       }
8019       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8020         Flags.setNest();
8021       if (NeedsRegBlock)
8022         Flags.setInConsecutiveRegs();
8023       Flags.setOrigAlign(OriginalAlignment);
8024 
8025       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8026       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8027       for (unsigned i = 0; i != NumRegs; ++i) {
8028         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8029                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8030         if (NumRegs > 1 && i == 0)
8031           MyFlags.Flags.setSplit();
8032         // if it isn't first piece, alignment must be 1
8033         else if (i > 0) {
8034           MyFlags.Flags.setOrigAlign(1);
8035           if (i == NumRegs - 1)
8036             MyFlags.Flags.setSplitEnd();
8037         }
8038         Ins.push_back(MyFlags);
8039       }
8040       if (NeedsRegBlock && Value == NumValues - 1)
8041         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8042       PartBase += VT.getStoreSize();
8043     }
8044   }
8045 
8046   // Call the target to set up the argument values.
8047   SmallVector<SDValue, 8> InVals;
8048   SDValue NewRoot = TLI->LowerFormalArguments(
8049       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8050 
8051   // Verify that the target's LowerFormalArguments behaved as expected.
8052   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8053          "LowerFormalArguments didn't return a valid chain!");
8054   assert(InVals.size() == Ins.size() &&
8055          "LowerFormalArguments didn't emit the correct number of values!");
8056   DEBUG({
8057       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8058         assert(InVals[i].getNode() &&
8059                "LowerFormalArguments emitted a null value!");
8060         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8061                "LowerFormalArguments emitted a value with the wrong type!");
8062       }
8063     });
8064 
8065   // Update the DAG with the new chain value resulting from argument lowering.
8066   DAG.setRoot(NewRoot);
8067 
8068   // Set up the argument values.
8069   unsigned i = 0;
8070   Idx = 1;
8071   if (!FuncInfo->CanLowerReturn) {
8072     // Create a virtual register for the sret pointer, and put in a copy
8073     // from the sret argument into it.
8074     SmallVector<EVT, 1> ValueVTs;
8075     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8076                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8077     MVT VT = ValueVTs[0].getSimpleVT();
8078     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8079     Optional<ISD::NodeType> AssertOp = None;
8080     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8081                                         RegVT, VT, nullptr, AssertOp);
8082 
8083     MachineFunction& MF = SDB->DAG.getMachineFunction();
8084     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8085     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8086     FuncInfo->DemoteRegister = SRetReg;
8087     NewRoot =
8088         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8089     DAG.setRoot(NewRoot);
8090 
8091     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8092     // Idx indexes LLVM arguments.  Don't touch it.
8093     ++i;
8094   }
8095 
8096   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8097       ++I, ++Idx) {
8098     SmallVector<SDValue, 4> ArgValues;
8099     SmallVector<EVT, 4> ValueVTs;
8100     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8101     unsigned NumValues = ValueVTs.size();
8102 
8103     // If this argument is unused then remember its value. It is used to generate
8104     // debugging information.
8105     if (I->use_empty() && NumValues) {
8106       SDB->setUnusedArgValue(&*I, InVals[i]);
8107 
8108       // Also remember any frame index for use in FastISel.
8109       if (FrameIndexSDNode *FI =
8110           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8111         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8112     }
8113 
8114     for (unsigned Val = 0; Val != NumValues; ++Val) {
8115       EVT VT = ValueVTs[Val];
8116       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8117       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8118 
8119       if (!I->use_empty()) {
8120         Optional<ISD::NodeType> AssertOp;
8121         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8122           AssertOp = ISD::AssertSext;
8123         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8124           AssertOp = ISD::AssertZext;
8125 
8126         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8127                                              NumParts, PartVT, VT,
8128                                              nullptr, AssertOp));
8129       }
8130 
8131       i += NumParts;
8132     }
8133 
8134     // We don't need to do anything else for unused arguments.
8135     if (ArgValues.empty())
8136       continue;
8137 
8138     // Note down frame index.
8139     if (FrameIndexSDNode *FI =
8140         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8141       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8142 
8143     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8144                                      SDB->getCurSDLoc());
8145 
8146     SDB->setValue(&*I, Res);
8147     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8148       if (LoadSDNode *LNode =
8149           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8150         if (FrameIndexSDNode *FI =
8151             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8152         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8153     }
8154 
8155     // Update SwiftErrorMap.
8156     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8157         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8158       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8159       if (TargetRegisterInfo::isVirtualRegister(Reg))
8160         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8161     }
8162 
8163     // If this argument is live outside of the entry block, insert a copy from
8164     // wherever we got it to the vreg that other BB's will reference it as.
8165     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8166       // If we can, though, try to skip creating an unnecessary vreg.
8167       // FIXME: This isn't very clean... it would be nice to make this more
8168       // general.  It's also subtly incompatible with the hacks FastISel
8169       // uses with vregs.
8170       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8171       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8172         FuncInfo->ValueMap[&*I] = Reg;
8173         continue;
8174       }
8175     }
8176     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8177       FuncInfo->InitializeRegForValue(&*I);
8178       SDB->CopyToExportRegsIfNeeded(&*I);
8179     }
8180   }
8181 
8182   assert(i == InVals.size() && "Argument register count mismatch!");
8183 
8184   // Finally, if the target has anything special to do, allow it to do so.
8185   EmitFunctionEntryCode();
8186 }
8187 
8188 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8189 /// ensure constants are generated when needed.  Remember the virtual registers
8190 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8191 /// directly add them, because expansion might result in multiple MBB's for one
8192 /// BB.  As such, the start of the BB might correspond to a different MBB than
8193 /// the end.
8194 ///
8195 void
8196 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8197   const TerminatorInst *TI = LLVMBB->getTerminator();
8198 
8199   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8200 
8201   // Check PHI nodes in successors that expect a value to be available from this
8202   // block.
8203   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8204     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8205     if (!isa<PHINode>(SuccBB->begin())) continue;
8206     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8207 
8208     // If this terminator has multiple identical successors (common for
8209     // switches), only handle each succ once.
8210     if (!SuccsHandled.insert(SuccMBB).second)
8211       continue;
8212 
8213     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8214 
8215     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8216     // nodes and Machine PHI nodes, but the incoming operands have not been
8217     // emitted yet.
8218     for (BasicBlock::const_iterator I = SuccBB->begin();
8219          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8220       // Ignore dead phi's.
8221       if (PN->use_empty()) continue;
8222 
8223       // Skip empty types
8224       if (PN->getType()->isEmptyTy())
8225         continue;
8226 
8227       unsigned Reg;
8228       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8229 
8230       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8231         unsigned &RegOut = ConstantsOut[C];
8232         if (RegOut == 0) {
8233           RegOut = FuncInfo.CreateRegs(C->getType());
8234           CopyValueToVirtualRegister(C, RegOut);
8235         }
8236         Reg = RegOut;
8237       } else {
8238         DenseMap<const Value *, unsigned>::iterator I =
8239           FuncInfo.ValueMap.find(PHIOp);
8240         if (I != FuncInfo.ValueMap.end())
8241           Reg = I->second;
8242         else {
8243           assert(isa<AllocaInst>(PHIOp) &&
8244                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8245                  "Didn't codegen value into a register!??");
8246           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8247           CopyValueToVirtualRegister(PHIOp, Reg);
8248         }
8249       }
8250 
8251       // Remember that this register needs to added to the machine PHI node as
8252       // the input for this MBB.
8253       SmallVector<EVT, 4> ValueVTs;
8254       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8255       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8256       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8257         EVT VT = ValueVTs[vti];
8258         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8259         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8260           FuncInfo.PHINodesToUpdate.push_back(
8261               std::make_pair(&*MBBI++, Reg + i));
8262         Reg += NumRegisters;
8263       }
8264     }
8265   }
8266 
8267   ConstantsOut.clear();
8268 }
8269 
8270 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8271 /// is 0.
8272 MachineBasicBlock *
8273 SelectionDAGBuilder::StackProtectorDescriptor::
8274 AddSuccessorMBB(const BasicBlock *BB,
8275                 MachineBasicBlock *ParentMBB,
8276                 bool IsLikely,
8277                 MachineBasicBlock *SuccMBB) {
8278   // If SuccBB has not been created yet, create it.
8279   if (!SuccMBB) {
8280     MachineFunction *MF = ParentMBB->getParent();
8281     MachineFunction::iterator BBI(ParentMBB);
8282     SuccMBB = MF->CreateMachineBasicBlock(BB);
8283     MF->insert(++BBI, SuccMBB);
8284   }
8285   // Add it as a successor of ParentMBB.
8286   ParentMBB->addSuccessor(
8287       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8288   return SuccMBB;
8289 }
8290 
8291 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8292   MachineFunction::iterator I(MBB);
8293   if (++I == FuncInfo.MF->end())
8294     return nullptr;
8295   return &*I;
8296 }
8297 
8298 /// During lowering new call nodes can be created (such as memset, etc.).
8299 /// Those will become new roots of the current DAG, but complications arise
8300 /// when they are tail calls. In such cases, the call lowering will update
8301 /// the root, but the builder still needs to know that a tail call has been
8302 /// lowered in order to avoid generating an additional return.
8303 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8304   // If the node is null, we do have a tail call.
8305   if (MaybeTC.getNode() != nullptr)
8306     DAG.setRoot(MaybeTC);
8307   else
8308     HasTailCall = true;
8309 }
8310 
8311 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8312                                   unsigned *TotalCases, unsigned First,
8313                                   unsigned Last,
8314                                   unsigned Density) {
8315   assert(Last >= First);
8316   assert(TotalCases[Last] >= TotalCases[First]);
8317 
8318   APInt LowCase = Clusters[First].Low->getValue();
8319   APInt HighCase = Clusters[Last].High->getValue();
8320   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8321 
8322   // FIXME: A range of consecutive cases has 100% density, but only requires one
8323   // comparison to lower. We should discriminate against such consecutive ranges
8324   // in jump tables.
8325 
8326   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8327   uint64_t Range = Diff + 1;
8328 
8329   uint64_t NumCases =
8330       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8331 
8332   assert(NumCases < UINT64_MAX / 100);
8333   assert(Range >= NumCases);
8334 
8335   return NumCases * 100 >= Range * Density;
8336 }
8337 
8338 static inline bool areJTsAllowed(const TargetLowering &TLI,
8339                                  const SwitchInst *SI) {
8340   const Function *Fn = SI->getParent()->getParent();
8341   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8342     return false;
8343 
8344   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8345          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8346 }
8347 
8348 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8349                                          unsigned First, unsigned Last,
8350                                          const SwitchInst *SI,
8351                                          MachineBasicBlock *DefaultMBB,
8352                                          CaseCluster &JTCluster) {
8353   assert(First <= Last);
8354 
8355   auto Prob = BranchProbability::getZero();
8356   unsigned NumCmps = 0;
8357   std::vector<MachineBasicBlock*> Table;
8358   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8359 
8360   // Initialize probabilities in JTProbs.
8361   for (unsigned I = First; I <= Last; ++I)
8362     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8363 
8364   for (unsigned I = First; I <= Last; ++I) {
8365     assert(Clusters[I].Kind == CC_Range);
8366     Prob += Clusters[I].Prob;
8367     APInt Low = Clusters[I].Low->getValue();
8368     APInt High = Clusters[I].High->getValue();
8369     NumCmps += (Low == High) ? 1 : 2;
8370     if (I != First) {
8371       // Fill the gap between this and the previous cluster.
8372       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8373       assert(PreviousHigh.slt(Low));
8374       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8375       for (uint64_t J = 0; J < Gap; J++)
8376         Table.push_back(DefaultMBB);
8377     }
8378     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8379     for (uint64_t J = 0; J < ClusterSize; ++J)
8380       Table.push_back(Clusters[I].MBB);
8381     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8382   }
8383 
8384   unsigned NumDests = JTProbs.size();
8385   if (isSuitableForBitTests(NumDests, NumCmps,
8386                             Clusters[First].Low->getValue(),
8387                             Clusters[Last].High->getValue())) {
8388     // Clusters[First..Last] should be lowered as bit tests instead.
8389     return false;
8390   }
8391 
8392   // Create the MBB that will load from and jump through the table.
8393   // Note: We create it here, but it's not inserted into the function yet.
8394   MachineFunction *CurMF = FuncInfo.MF;
8395   MachineBasicBlock *JumpTableMBB =
8396       CurMF->CreateMachineBasicBlock(SI->getParent());
8397 
8398   // Add successors. Note: use table order for determinism.
8399   SmallPtrSet<MachineBasicBlock *, 8> Done;
8400   for (MachineBasicBlock *Succ : Table) {
8401     if (Done.count(Succ))
8402       continue;
8403     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8404     Done.insert(Succ);
8405   }
8406   JumpTableMBB->normalizeSuccProbs();
8407 
8408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8409   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8410                      ->createJumpTableIndex(Table);
8411 
8412   // Set up the jump table info.
8413   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8414   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8415                       Clusters[Last].High->getValue(), SI->getCondition(),
8416                       nullptr, false);
8417   JTCases.emplace_back(std::move(JTH), std::move(JT));
8418 
8419   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8420                                      JTCases.size() - 1, Prob);
8421   return true;
8422 }
8423 
8424 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8425                                          const SwitchInst *SI,
8426                                          MachineBasicBlock *DefaultMBB) {
8427 #ifndef NDEBUG
8428   // Clusters must be non-empty, sorted, and only contain Range clusters.
8429   assert(!Clusters.empty());
8430   for (CaseCluster &C : Clusters)
8431     assert(C.Kind == CC_Range);
8432   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8433     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8434 #endif
8435 
8436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8437   if (!areJTsAllowed(TLI, SI))
8438     return;
8439 
8440   const int64_t N = Clusters.size();
8441   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8442 
8443   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8444   SmallVector<unsigned, 8> TotalCases(N);
8445 
8446   for (unsigned i = 0; i < N; ++i) {
8447     APInt Hi = Clusters[i].High->getValue();
8448     APInt Lo = Clusters[i].Low->getValue();
8449     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8450     if (i != 0)
8451       TotalCases[i] += TotalCases[i - 1];
8452   }
8453 
8454   unsigned MinDensity = JumpTableDensity;
8455   if (DefaultMBB->getParent()->getFunction()->optForSize())
8456     MinDensity = OptsizeJumpTableDensity;
8457   if (N >= MinJumpTableSize
8458       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8459     // Cheap case: the whole range might be suitable for jump table.
8460     CaseCluster JTCluster;
8461     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8462       Clusters[0] = JTCluster;
8463       Clusters.resize(1);
8464       return;
8465     }
8466   }
8467 
8468   // The algorithm below is not suitable for -O0.
8469   if (TM.getOptLevel() == CodeGenOpt::None)
8470     return;
8471 
8472   // Split Clusters into minimum number of dense partitions. The algorithm uses
8473   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8474   // for the Case Statement'" (1994), but builds the MinPartitions array in
8475   // reverse order to make it easier to reconstruct the partitions in ascending
8476   // order. In the choice between two optimal partitionings, it picks the one
8477   // which yields more jump tables.
8478 
8479   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8480   SmallVector<unsigned, 8> MinPartitions(N);
8481   // LastElement[i] is the last element of the partition starting at i.
8482   SmallVector<unsigned, 8> LastElement(N);
8483   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8484   SmallVector<unsigned, 8> NumTables(N);
8485 
8486   // Base case: There is only one way to partition Clusters[N-1].
8487   MinPartitions[N - 1] = 1;
8488   LastElement[N - 1] = N - 1;
8489   assert(MinJumpTableSize > 1);
8490   NumTables[N - 1] = 0;
8491 
8492   // Note: loop indexes are signed to avoid underflow.
8493   for (int64_t i = N - 2; i >= 0; i--) {
8494     // Find optimal partitioning of Clusters[i..N-1].
8495     // Baseline: Put Clusters[i] into a partition on its own.
8496     MinPartitions[i] = MinPartitions[i + 1] + 1;
8497     LastElement[i] = i;
8498     NumTables[i] = NumTables[i + 1];
8499 
8500     // Search for a solution that results in fewer partitions.
8501     for (int64_t j = N - 1; j > i; j--) {
8502       // Try building a partition from Clusters[i..j].
8503       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8504         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8505         bool IsTable = j - i + 1 >= MinJumpTableSize;
8506         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8507 
8508         // If this j leads to fewer partitions, or same number of partitions
8509         // with more lookup tables, it is a better partitioning.
8510         if (NumPartitions < MinPartitions[i] ||
8511             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8512           MinPartitions[i] = NumPartitions;
8513           LastElement[i] = j;
8514           NumTables[i] = Tables;
8515         }
8516       }
8517     }
8518   }
8519 
8520   // Iterate over the partitions, replacing some with jump tables in-place.
8521   unsigned DstIndex = 0;
8522   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8523     Last = LastElement[First];
8524     assert(Last >= First);
8525     assert(DstIndex <= First);
8526     unsigned NumClusters = Last - First + 1;
8527 
8528     CaseCluster JTCluster;
8529     if (NumClusters >= MinJumpTableSize &&
8530         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8531       Clusters[DstIndex++] = JTCluster;
8532     } else {
8533       for (unsigned I = First; I <= Last; ++I)
8534         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8535     }
8536   }
8537   Clusters.resize(DstIndex);
8538 }
8539 
8540 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8541   // FIXME: Using the pointer type doesn't seem ideal.
8542   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8543   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8544   return Range <= BW;
8545 }
8546 
8547 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8548                                                 unsigned NumCmps,
8549                                                 const APInt &Low,
8550                                                 const APInt &High) {
8551   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8552   // range of cases both require only one branch to lower. Just looking at the
8553   // number of clusters and destinations should be enough to decide whether to
8554   // build bit tests.
8555 
8556   // To lower a range with bit tests, the range must fit the bitwidth of a
8557   // machine word.
8558   if (!rangeFitsInWord(Low, High))
8559     return false;
8560 
8561   // Decide whether it's profitable to lower this range with bit tests. Each
8562   // destination requires a bit test and branch, and there is an overall range
8563   // check branch. For a small number of clusters, separate comparisons might be
8564   // cheaper, and for many destinations, splitting the range might be better.
8565   return (NumDests == 1 && NumCmps >= 3) ||
8566          (NumDests == 2 && NumCmps >= 5) ||
8567          (NumDests == 3 && NumCmps >= 6);
8568 }
8569 
8570 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8571                                         unsigned First, unsigned Last,
8572                                         const SwitchInst *SI,
8573                                         CaseCluster &BTCluster) {
8574   assert(First <= Last);
8575   if (First == Last)
8576     return false;
8577 
8578   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8579   unsigned NumCmps = 0;
8580   for (int64_t I = First; I <= Last; ++I) {
8581     assert(Clusters[I].Kind == CC_Range);
8582     Dests.set(Clusters[I].MBB->getNumber());
8583     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8584   }
8585   unsigned NumDests = Dests.count();
8586 
8587   APInt Low = Clusters[First].Low->getValue();
8588   APInt High = Clusters[Last].High->getValue();
8589   assert(Low.slt(High));
8590 
8591   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8592     return false;
8593 
8594   APInt LowBound;
8595   APInt CmpRange;
8596 
8597   const int BitWidth = DAG.getTargetLoweringInfo()
8598                            .getPointerTy(DAG.getDataLayout())
8599                            .getSizeInBits();
8600   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8601 
8602   // Check if the clusters cover a contiguous range such that no value in the
8603   // range will jump to the default statement.
8604   bool ContiguousRange = true;
8605   for (int64_t I = First + 1; I <= Last; ++I) {
8606     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8607       ContiguousRange = false;
8608       break;
8609     }
8610   }
8611 
8612   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8613     // Optimize the case where all the case values fit in a word without having
8614     // to subtract minValue. In this case, we can optimize away the subtraction.
8615     LowBound = APInt::getNullValue(Low.getBitWidth());
8616     CmpRange = High;
8617     ContiguousRange = false;
8618   } else {
8619     LowBound = Low;
8620     CmpRange = High - Low;
8621   }
8622 
8623   CaseBitsVector CBV;
8624   auto TotalProb = BranchProbability::getZero();
8625   for (unsigned i = First; i <= Last; ++i) {
8626     // Find the CaseBits for this destination.
8627     unsigned j;
8628     for (j = 0; j < CBV.size(); ++j)
8629       if (CBV[j].BB == Clusters[i].MBB)
8630         break;
8631     if (j == CBV.size())
8632       CBV.push_back(
8633           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8634     CaseBits *CB = &CBV[j];
8635 
8636     // Update Mask, Bits and ExtraProb.
8637     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8638     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8639     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8640     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8641     CB->Bits += Hi - Lo + 1;
8642     CB->ExtraProb += Clusters[i].Prob;
8643     TotalProb += Clusters[i].Prob;
8644   }
8645 
8646   BitTestInfo BTI;
8647   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8648     // Sort by probability first, number of bits second.
8649     if (a.ExtraProb != b.ExtraProb)
8650       return a.ExtraProb > b.ExtraProb;
8651     return a.Bits > b.Bits;
8652   });
8653 
8654   for (auto &CB : CBV) {
8655     MachineBasicBlock *BitTestBB =
8656         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8657     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8658   }
8659   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8660                             SI->getCondition(), -1U, MVT::Other, false,
8661                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8662                             TotalProb);
8663 
8664   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8665                                     BitTestCases.size() - 1, TotalProb);
8666   return true;
8667 }
8668 
8669 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8670                                               const SwitchInst *SI) {
8671 // Partition Clusters into as few subsets as possible, where each subset has a
8672 // range that fits in a machine word and has <= 3 unique destinations.
8673 
8674 #ifndef NDEBUG
8675   // Clusters must be sorted and contain Range or JumpTable clusters.
8676   assert(!Clusters.empty());
8677   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8678   for (const CaseCluster &C : Clusters)
8679     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8680   for (unsigned i = 1; i < Clusters.size(); ++i)
8681     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8682 #endif
8683 
8684   // The algorithm below is not suitable for -O0.
8685   if (TM.getOptLevel() == CodeGenOpt::None)
8686     return;
8687 
8688   // If target does not have legal shift left, do not emit bit tests at all.
8689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8690   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8691   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8692     return;
8693 
8694   int BitWidth = PTy.getSizeInBits();
8695   const int64_t N = Clusters.size();
8696 
8697   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8698   SmallVector<unsigned, 8> MinPartitions(N);
8699   // LastElement[i] is the last element of the partition starting at i.
8700   SmallVector<unsigned, 8> LastElement(N);
8701 
8702   // FIXME: This might not be the best algorithm for finding bit test clusters.
8703 
8704   // Base case: There is only one way to partition Clusters[N-1].
8705   MinPartitions[N - 1] = 1;
8706   LastElement[N - 1] = N - 1;
8707 
8708   // Note: loop indexes are signed to avoid underflow.
8709   for (int64_t i = N - 2; i >= 0; --i) {
8710     // Find optimal partitioning of Clusters[i..N-1].
8711     // Baseline: Put Clusters[i] into a partition on its own.
8712     MinPartitions[i] = MinPartitions[i + 1] + 1;
8713     LastElement[i] = i;
8714 
8715     // Search for a solution that results in fewer partitions.
8716     // Note: the search is limited by BitWidth, reducing time complexity.
8717     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8718       // Try building a partition from Clusters[i..j].
8719 
8720       // Check the range.
8721       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8722                            Clusters[j].High->getValue()))
8723         continue;
8724 
8725       // Check nbr of destinations and cluster types.
8726       // FIXME: This works, but doesn't seem very efficient.
8727       bool RangesOnly = true;
8728       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8729       for (int64_t k = i; k <= j; k++) {
8730         if (Clusters[k].Kind != CC_Range) {
8731           RangesOnly = false;
8732           break;
8733         }
8734         Dests.set(Clusters[k].MBB->getNumber());
8735       }
8736       if (!RangesOnly || Dests.count() > 3)
8737         break;
8738 
8739       // Check if it's a better partition.
8740       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8741       if (NumPartitions < MinPartitions[i]) {
8742         // Found a better partition.
8743         MinPartitions[i] = NumPartitions;
8744         LastElement[i] = j;
8745       }
8746     }
8747   }
8748 
8749   // Iterate over the partitions, replacing with bit-test clusters in-place.
8750   unsigned DstIndex = 0;
8751   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8752     Last = LastElement[First];
8753     assert(First <= Last);
8754     assert(DstIndex <= First);
8755 
8756     CaseCluster BitTestCluster;
8757     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8758       Clusters[DstIndex++] = BitTestCluster;
8759     } else {
8760       size_t NumClusters = Last - First + 1;
8761       std::memmove(&Clusters[DstIndex], &Clusters[First],
8762                    sizeof(Clusters[0]) * NumClusters);
8763       DstIndex += NumClusters;
8764     }
8765   }
8766   Clusters.resize(DstIndex);
8767 }
8768 
8769 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8770                                         MachineBasicBlock *SwitchMBB,
8771                                         MachineBasicBlock *DefaultMBB) {
8772   MachineFunction *CurMF = FuncInfo.MF;
8773   MachineBasicBlock *NextMBB = nullptr;
8774   MachineFunction::iterator BBI(W.MBB);
8775   if (++BBI != FuncInfo.MF->end())
8776     NextMBB = &*BBI;
8777 
8778   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8779 
8780   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8781 
8782   if (Size == 2 && W.MBB == SwitchMBB) {
8783     // If any two of the cases has the same destination, and if one value
8784     // is the same as the other, but has one bit unset that the other has set,
8785     // use bit manipulation to do two compares at once.  For example:
8786     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8787     // TODO: This could be extended to merge any 2 cases in switches with 3
8788     // cases.
8789     // TODO: Handle cases where W.CaseBB != SwitchBB.
8790     CaseCluster &Small = *W.FirstCluster;
8791     CaseCluster &Big = *W.LastCluster;
8792 
8793     if (Small.Low == Small.High && Big.Low == Big.High &&
8794         Small.MBB == Big.MBB) {
8795       const APInt &SmallValue = Small.Low->getValue();
8796       const APInt &BigValue = Big.Low->getValue();
8797 
8798       // Check that there is only one bit different.
8799       APInt CommonBit = BigValue ^ SmallValue;
8800       if (CommonBit.isPowerOf2()) {
8801         SDValue CondLHS = getValue(Cond);
8802         EVT VT = CondLHS.getValueType();
8803         SDLoc DL = getCurSDLoc();
8804 
8805         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8806                                  DAG.getConstant(CommonBit, DL, VT));
8807         SDValue Cond = DAG.getSetCC(
8808             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8809             ISD::SETEQ);
8810 
8811         // Update successor info.
8812         // Both Small and Big will jump to Small.BB, so we sum up the
8813         // probabilities.
8814         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8815         if (BPI)
8816           addSuccessorWithProb(
8817               SwitchMBB, DefaultMBB,
8818               // The default destination is the first successor in IR.
8819               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8820         else
8821           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8822 
8823         // Insert the true branch.
8824         SDValue BrCond =
8825             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8826                         DAG.getBasicBlock(Small.MBB));
8827         // Insert the false branch.
8828         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8829                              DAG.getBasicBlock(DefaultMBB));
8830 
8831         DAG.setRoot(BrCond);
8832         return;
8833       }
8834     }
8835   }
8836 
8837   if (TM.getOptLevel() != CodeGenOpt::None) {
8838     // Order cases by probability so the most likely case will be checked first.
8839     std::sort(W.FirstCluster, W.LastCluster + 1,
8840               [](const CaseCluster &a, const CaseCluster &b) {
8841       return a.Prob > b.Prob;
8842     });
8843 
8844     // Rearrange the case blocks so that the last one falls through if possible
8845     // without without changing the order of probabilities.
8846     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8847       --I;
8848       if (I->Prob > W.LastCluster->Prob)
8849         break;
8850       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8851         std::swap(*I, *W.LastCluster);
8852         break;
8853       }
8854     }
8855   }
8856 
8857   // Compute total probability.
8858   BranchProbability DefaultProb = W.DefaultProb;
8859   BranchProbability UnhandledProbs = DefaultProb;
8860   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8861     UnhandledProbs += I->Prob;
8862 
8863   MachineBasicBlock *CurMBB = W.MBB;
8864   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8865     MachineBasicBlock *Fallthrough;
8866     if (I == W.LastCluster) {
8867       // For the last cluster, fall through to the default destination.
8868       Fallthrough = DefaultMBB;
8869     } else {
8870       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8871       CurMF->insert(BBI, Fallthrough);
8872       // Put Cond in a virtual register to make it available from the new blocks.
8873       ExportFromCurrentBlock(Cond);
8874     }
8875     UnhandledProbs -= I->Prob;
8876 
8877     switch (I->Kind) {
8878       case CC_JumpTable: {
8879         // FIXME: Optimize away range check based on pivot comparisons.
8880         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8881         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8882 
8883         // The jump block hasn't been inserted yet; insert it here.
8884         MachineBasicBlock *JumpMBB = JT->MBB;
8885         CurMF->insert(BBI, JumpMBB);
8886 
8887         auto JumpProb = I->Prob;
8888         auto FallthroughProb = UnhandledProbs;
8889 
8890         // If the default statement is a target of the jump table, we evenly
8891         // distribute the default probability to successors of CurMBB. Also
8892         // update the probability on the edge from JumpMBB to Fallthrough.
8893         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8894                                               SE = JumpMBB->succ_end();
8895              SI != SE; ++SI) {
8896           if (*SI == DefaultMBB) {
8897             JumpProb += DefaultProb / 2;
8898             FallthroughProb -= DefaultProb / 2;
8899             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8900             JumpMBB->normalizeSuccProbs();
8901             break;
8902           }
8903         }
8904 
8905         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8906         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8907         CurMBB->normalizeSuccProbs();
8908 
8909         // The jump table header will be inserted in our current block, do the
8910         // range check, and fall through to our fallthrough block.
8911         JTH->HeaderBB = CurMBB;
8912         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8913 
8914         // If we're in the right place, emit the jump table header right now.
8915         if (CurMBB == SwitchMBB) {
8916           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8917           JTH->Emitted = true;
8918         }
8919         break;
8920       }
8921       case CC_BitTests: {
8922         // FIXME: Optimize away range check based on pivot comparisons.
8923         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8924 
8925         // The bit test blocks haven't been inserted yet; insert them here.
8926         for (BitTestCase &BTC : BTB->Cases)
8927           CurMF->insert(BBI, BTC.ThisBB);
8928 
8929         // Fill in fields of the BitTestBlock.
8930         BTB->Parent = CurMBB;
8931         BTB->Default = Fallthrough;
8932 
8933         BTB->DefaultProb = UnhandledProbs;
8934         // If the cases in bit test don't form a contiguous range, we evenly
8935         // distribute the probability on the edge to Fallthrough to two
8936         // successors of CurMBB.
8937         if (!BTB->ContiguousRange) {
8938           BTB->Prob += DefaultProb / 2;
8939           BTB->DefaultProb -= DefaultProb / 2;
8940         }
8941 
8942         // If we're in the right place, emit the bit test header right now.
8943         if (CurMBB == SwitchMBB) {
8944           visitBitTestHeader(*BTB, SwitchMBB);
8945           BTB->Emitted = true;
8946         }
8947         break;
8948       }
8949       case CC_Range: {
8950         const Value *RHS, *LHS, *MHS;
8951         ISD::CondCode CC;
8952         if (I->Low == I->High) {
8953           // Check Cond == I->Low.
8954           CC = ISD::SETEQ;
8955           LHS = Cond;
8956           RHS=I->Low;
8957           MHS = nullptr;
8958         } else {
8959           // Check I->Low <= Cond <= I->High.
8960           CC = ISD::SETLE;
8961           LHS = I->Low;
8962           MHS = Cond;
8963           RHS = I->High;
8964         }
8965 
8966         // The false probability is the sum of all unhandled cases.
8967         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8968                      UnhandledProbs);
8969 
8970         if (CurMBB == SwitchMBB)
8971           visitSwitchCase(CB, SwitchMBB);
8972         else
8973           SwitchCases.push_back(CB);
8974 
8975         break;
8976       }
8977     }
8978     CurMBB = Fallthrough;
8979   }
8980 }
8981 
8982 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8983                                               CaseClusterIt First,
8984                                               CaseClusterIt Last) {
8985   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8986     if (X.Prob != CC.Prob)
8987       return X.Prob > CC.Prob;
8988 
8989     // Ties are broken by comparing the case value.
8990     return X.Low->getValue().slt(CC.Low->getValue());
8991   });
8992 }
8993 
8994 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8995                                         const SwitchWorkListItem &W,
8996                                         Value *Cond,
8997                                         MachineBasicBlock *SwitchMBB) {
8998   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8999          "Clusters not sorted?");
9000 
9001   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9002 
9003   // Balance the tree based on branch probabilities to create a near-optimal (in
9004   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9005   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9006   CaseClusterIt LastLeft = W.FirstCluster;
9007   CaseClusterIt FirstRight = W.LastCluster;
9008   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9009   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9010 
9011   // Move LastLeft and FirstRight towards each other from opposite directions to
9012   // find a partitioning of the clusters which balances the probability on both
9013   // sides. If LeftProb and RightProb are equal, alternate which side is
9014   // taken to ensure 0-probability nodes are distributed evenly.
9015   unsigned I = 0;
9016   while (LastLeft + 1 < FirstRight) {
9017     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9018       LeftProb += (++LastLeft)->Prob;
9019     else
9020       RightProb += (--FirstRight)->Prob;
9021     I++;
9022   }
9023 
9024   for (;;) {
9025     // Our binary search tree differs from a typical BST in that ours can have up
9026     // to three values in each leaf. The pivot selection above doesn't take that
9027     // into account, which means the tree might require more nodes and be less
9028     // efficient. We compensate for this here.
9029 
9030     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9031     unsigned NumRight = W.LastCluster - FirstRight + 1;
9032 
9033     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9034       // If one side has less than 3 clusters, and the other has more than 3,
9035       // consider taking a cluster from the other side.
9036 
9037       if (NumLeft < NumRight) {
9038         // Consider moving the first cluster on the right to the left side.
9039         CaseCluster &CC = *FirstRight;
9040         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9041         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9042         if (LeftSideRank <= RightSideRank) {
9043           // Moving the cluster to the left does not demote it.
9044           ++LastLeft;
9045           ++FirstRight;
9046           continue;
9047         }
9048       } else {
9049         assert(NumRight < NumLeft);
9050         // Consider moving the last element on the left to the right side.
9051         CaseCluster &CC = *LastLeft;
9052         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9053         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9054         if (RightSideRank <= LeftSideRank) {
9055           // Moving the cluster to the right does not demot it.
9056           --LastLeft;
9057           --FirstRight;
9058           continue;
9059         }
9060       }
9061     }
9062     break;
9063   }
9064 
9065   assert(LastLeft + 1 == FirstRight);
9066   assert(LastLeft >= W.FirstCluster);
9067   assert(FirstRight <= W.LastCluster);
9068 
9069   // Use the first element on the right as pivot since we will make less-than
9070   // comparisons against it.
9071   CaseClusterIt PivotCluster = FirstRight;
9072   assert(PivotCluster > W.FirstCluster);
9073   assert(PivotCluster <= W.LastCluster);
9074 
9075   CaseClusterIt FirstLeft = W.FirstCluster;
9076   CaseClusterIt LastRight = W.LastCluster;
9077 
9078   const ConstantInt *Pivot = PivotCluster->Low;
9079 
9080   // New blocks will be inserted immediately after the current one.
9081   MachineFunction::iterator BBI(W.MBB);
9082   ++BBI;
9083 
9084   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9085   // we can branch to its destination directly if it's squeezed exactly in
9086   // between the known lower bound and Pivot - 1.
9087   MachineBasicBlock *LeftMBB;
9088   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9089       FirstLeft->Low == W.GE &&
9090       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9091     LeftMBB = FirstLeft->MBB;
9092   } else {
9093     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9094     FuncInfo.MF->insert(BBI, LeftMBB);
9095     WorkList.push_back(
9096         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9097     // Put Cond in a virtual register to make it available from the new blocks.
9098     ExportFromCurrentBlock(Cond);
9099   }
9100 
9101   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9102   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9103   // directly if RHS.High equals the current upper bound.
9104   MachineBasicBlock *RightMBB;
9105   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9106       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9107     RightMBB = FirstRight->MBB;
9108   } else {
9109     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9110     FuncInfo.MF->insert(BBI, RightMBB);
9111     WorkList.push_back(
9112         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9113     // Put Cond in a virtual register to make it available from the new blocks.
9114     ExportFromCurrentBlock(Cond);
9115   }
9116 
9117   // Create the CaseBlock record that will be used to lower the branch.
9118   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9119                LeftProb, RightProb);
9120 
9121   if (W.MBB == SwitchMBB)
9122     visitSwitchCase(CB, SwitchMBB);
9123   else
9124     SwitchCases.push_back(CB);
9125 }
9126 
9127 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9128   // Extract cases from the switch.
9129   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9130   CaseClusterVector Clusters;
9131   Clusters.reserve(SI.getNumCases());
9132   for (auto I : SI.cases()) {
9133     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9134     const ConstantInt *CaseVal = I.getCaseValue();
9135     BranchProbability Prob =
9136         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9137             : BranchProbability(1, SI.getNumCases() + 1);
9138     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9139   }
9140 
9141   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9142 
9143   // Cluster adjacent cases with the same destination. We do this at all
9144   // optimization levels because it's cheap to do and will make codegen faster
9145   // if there are many clusters.
9146   sortAndRangeify(Clusters);
9147 
9148   if (TM.getOptLevel() != CodeGenOpt::None) {
9149     // Replace an unreachable default with the most popular destination.
9150     // FIXME: Exploit unreachable default more aggressively.
9151     bool UnreachableDefault =
9152         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9153     if (UnreachableDefault && !Clusters.empty()) {
9154       DenseMap<const BasicBlock *, unsigned> Popularity;
9155       unsigned MaxPop = 0;
9156       const BasicBlock *MaxBB = nullptr;
9157       for (auto I : SI.cases()) {
9158         const BasicBlock *BB = I.getCaseSuccessor();
9159         if (++Popularity[BB] > MaxPop) {
9160           MaxPop = Popularity[BB];
9161           MaxBB = BB;
9162         }
9163       }
9164       // Set new default.
9165       assert(MaxPop > 0 && MaxBB);
9166       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9167 
9168       // Remove cases that were pointing to the destination that is now the
9169       // default.
9170       CaseClusterVector New;
9171       New.reserve(Clusters.size());
9172       for (CaseCluster &CC : Clusters) {
9173         if (CC.MBB != DefaultMBB)
9174           New.push_back(CC);
9175       }
9176       Clusters = std::move(New);
9177     }
9178   }
9179 
9180   // If there is only the default destination, jump there directly.
9181   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9182   if (Clusters.empty()) {
9183     SwitchMBB->addSuccessor(DefaultMBB);
9184     if (DefaultMBB != NextBlock(SwitchMBB)) {
9185       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9186                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9187     }
9188     return;
9189   }
9190 
9191   findJumpTables(Clusters, &SI, DefaultMBB);
9192   findBitTestClusters(Clusters, &SI);
9193 
9194   DEBUG({
9195     dbgs() << "Case clusters: ";
9196     for (const CaseCluster &C : Clusters) {
9197       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9198       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9199 
9200       C.Low->getValue().print(dbgs(), true);
9201       if (C.Low != C.High) {
9202         dbgs() << '-';
9203         C.High->getValue().print(dbgs(), true);
9204       }
9205       dbgs() << ' ';
9206     }
9207     dbgs() << '\n';
9208   });
9209 
9210   assert(!Clusters.empty());
9211   SwitchWorkList WorkList;
9212   CaseClusterIt First = Clusters.begin();
9213   CaseClusterIt Last = Clusters.end() - 1;
9214   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9215   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9216 
9217   while (!WorkList.empty()) {
9218     SwitchWorkListItem W = WorkList.back();
9219     WorkList.pop_back();
9220     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9221 
9222     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9223       // For optimized builds, lower large range as a balanced binary tree.
9224       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9225       continue;
9226     }
9227 
9228     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9229   }
9230 }
9231