1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/DebugInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 /// getCopyFromPartsVector - Create a value that contains the specified legal 218 /// parts combined into the value they represent. If the parts combine to a 219 /// type larger then ValueVT then AssertOp can be used to specify whether the 220 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 221 /// ValueVT (ISD::AssertSext). 222 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 223 const SDValue *Parts, unsigned NumParts, 224 MVT PartVT, EVT ValueVT, const Value *V) { 225 assert(ValueVT.isVector() && "Not a vector value"); 226 assert(NumParts > 0 && "No parts to assemble!"); 227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 228 SDValue Val = Parts[0]; 229 230 // Handle a multi-element vector. 231 if (NumParts > 1) { 232 EVT IntermediateVT; 233 MVT RegisterVT; 234 unsigned NumIntermediates; 235 unsigned NumRegs = 236 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 237 NumIntermediates, RegisterVT); 238 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 239 NumParts = NumRegs; // Silence a compiler warning. 240 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 241 assert(RegisterVT == Parts[0].getSimpleValueType() && 242 "Part type doesn't match part!"); 243 244 // Assemble the parts into intermediate operands. 245 SmallVector<SDValue, 8> Ops(NumIntermediates); 246 if (NumIntermediates == NumParts) { 247 // If the register was not expanded, truncate or copy the value, 248 // as appropriate. 249 for (unsigned i = 0; i != NumParts; ++i) 250 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 251 PartVT, IntermediateVT, V); 252 } else if (NumParts > 0) { 253 // If the intermediate type was expanded, build the intermediate 254 // operands from the parts. 255 assert(NumParts % NumIntermediates == 0 && 256 "Must expand into a divisible number of parts!"); 257 unsigned Factor = NumParts / NumIntermediates; 258 for (unsigned i = 0; i != NumIntermediates; ++i) 259 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 260 PartVT, IntermediateVT, V); 261 } 262 263 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 264 // intermediate operands. 265 Val = DAG.getNode(IntermediateVT.isVector() ? 266 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 267 ValueVT, &Ops[0], NumIntermediates); 268 } 269 270 // There is now one part, held in Val. Correct it to match ValueVT. 271 EVT PartEVT = Val.getValueType(); 272 273 if (PartEVT == ValueVT) 274 return Val; 275 276 if (PartEVT.isVector()) { 277 // If the element type of the source/dest vectors are the same, but the 278 // parts vector has more elements than the value vector, then we have a 279 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 280 // elements we want. 281 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 282 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 283 "Cannot narrow, it would be a lossy transformation"); 284 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 285 DAG.getConstant(0, TLI.getVectorIdxTy())); 286 } 287 288 // Vector/Vector bitcast. 289 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 290 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 291 292 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 293 "Cannot handle this kind of promotion"); 294 // Promoted vector extract 295 bool Smaller = ValueVT.bitsLE(PartEVT); 296 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 297 DL, ValueVT, Val); 298 299 } 300 301 // Trivial bitcast if the types are the same size and the destination 302 // vector type is legal. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 304 TLI.isTypeLegal(ValueVT)) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle cases such as i8 -> <1 x i1> 308 if (ValueVT.getVectorNumElements() != 1) { 309 LLVMContext &Ctx = *DAG.getContext(); 310 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 311 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (isa<InlineAsm>(CI->getCalledValue())) 314 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 315 Ctx.emitError(I, ErrMsg); 316 } else { 317 Ctx.emitError(ErrMsg); 318 } 319 return DAG.getUNDEF(ValueVT); 320 } 321 322 if (ValueVT.getVectorNumElements() == 1 && 323 ValueVT.getVectorElementType() != PartEVT) { 324 bool Smaller = ValueVT.bitsLE(PartEVT); 325 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 326 DL, ValueVT.getScalarType(), Val); 327 } 328 329 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 330 } 331 332 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 333 SDValue Val, SDValue *Parts, unsigned NumParts, 334 MVT PartVT, const Value *V); 335 336 /// getCopyToParts - Create a series of nodes that contain the specified value 337 /// split into legal parts. If the parts contain more bits than Val, then, for 338 /// integers, ExtendKind can be used to specify how to generate the extra bits. 339 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V, 342 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 343 EVT ValueVT = Val.getValueType(); 344 345 // Handle the vector case separately. 346 if (ValueVT.isVector()) 347 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 unsigned PartBits = PartVT.getSizeInBits(); 351 unsigned OrigNumParts = NumParts; 352 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 353 354 if (NumParts == 0) 355 return; 356 357 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 358 EVT PartEVT = PartVT; 359 if (PartEVT == ValueVT) { 360 assert(NumParts == 1 && "No-op copy with multiple parts!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 366 // If the parts cover more bits than the value has, promote the value. 367 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 368 assert(NumParts == 1 && "Do not know what to promote to!"); 369 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 370 } else { 371 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 372 ValueVT.isInteger() && 373 "Unknown mismatch!"); 374 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 375 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 376 if (PartVT == MVT::x86mmx) 377 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 378 } 379 } else if (PartBits == ValueVT.getSizeInBits()) { 380 // Different types of the same size. 381 assert(NumParts == 1 && PartEVT != ValueVT); 382 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 383 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 384 // If the parts cover less bits than value has, truncate the value. 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 394 // The value may have changed - recompute ValueVT. 395 ValueVT = Val.getValueType(); 396 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 397 "Failed to tile the value with PartVT!"); 398 399 if (NumParts == 1) { 400 if (PartEVT != ValueVT) { 401 LLVMContext &Ctx = *DAG.getContext(); 402 Twine ErrMsg("scalar-to-vector conversion failed"); 403 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 404 if (const CallInst *CI = dyn_cast<CallInst>(I)) 405 if (isa<InlineAsm>(CI->getCalledValue())) 406 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 407 Ctx.emitError(I, ErrMsg); 408 } else { 409 Ctx.emitError(ErrMsg); 410 } 411 } 412 413 Parts[0] = Val; 414 return; 415 } 416 417 // Expand the value into multiple parts. 418 if (NumParts & (NumParts - 1)) { 419 // The number of parts is not a power of 2. Split off and copy the tail. 420 assert(PartVT.isInteger() && ValueVT.isInteger() && 421 "Do not know what to expand to!"); 422 unsigned RoundParts = 1 << Log2_32(NumParts); 423 unsigned RoundBits = RoundParts * PartBits; 424 unsigned OddParts = NumParts - RoundParts; 425 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 426 DAG.getIntPtrConstant(RoundBits)); 427 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 428 429 if (TLI.isBigEndian()) 430 // The odd parts were reversed by getCopyToParts - unreverse them. 431 std::reverse(Parts + RoundParts, Parts + NumParts); 432 433 NumParts = RoundParts; 434 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 435 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 436 } 437 438 // The number of parts is a power of 2. Repeatedly bisect the value using 439 // EXTRACT_ELEMENT. 440 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 441 EVT::getIntegerVT(*DAG.getContext(), 442 ValueVT.getSizeInBits()), 443 Val); 444 445 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 446 for (unsigned i = 0; i < NumParts; i += StepSize) { 447 unsigned ThisBits = StepSize * PartBits / 2; 448 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 449 SDValue &Part0 = Parts[i]; 450 SDValue &Part1 = Parts[i+StepSize/2]; 451 452 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(1)); 454 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(0)); 456 457 if (ThisBits == PartBits && ThisVT != PartVT) { 458 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 459 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 } 467 468 469 /// getCopyToPartsVector - Create a series of nodes that contain the specified 470 /// value split into legal parts. 471 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V) { 474 EVT ValueVT = Val.getValueType(); 475 assert(ValueVT.isVector() && "Not a vector"); 476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 477 478 if (NumParts == 1) { 479 EVT PartEVT = PartVT; 480 if (PartEVT == ValueVT) { 481 // Nothing to do. 482 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 483 // Bitconvert vector->vector case. 484 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 485 } else if (PartVT.isVector() && 486 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 487 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 488 EVT ElementVT = PartVT.getVectorElementType(); 489 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 490 // undef elements. 491 SmallVector<SDValue, 16> Ops; 492 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 494 ElementVT, Val, DAG.getConstant(i, 495 TLI.getVectorIdxTy()))); 496 497 for (unsigned i = ValueVT.getVectorNumElements(), 498 e = PartVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getUNDEF(ElementVT)); 500 501 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 502 503 // FIXME: Use CONCAT for 2x -> 4x. 504 505 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 506 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType().bitsGE( 509 ValueVT.getVectorElementType()) && 510 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 511 512 // Promoted vector extract 513 bool Smaller = PartEVT.bitsLE(ValueVT); 514 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 515 DL, PartVT, Val); 516 } else{ 517 // Vector -> scalar conversion. 518 assert(ValueVT.getVectorNumElements() == 1 && 519 "Only trivial vector-to-scalar conversions should get here!"); 520 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 521 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 522 523 bool Smaller = ValueVT.bitsLE(PartVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } 527 528 Parts[0] = Val; 529 return; 530 } 531 532 // Handle a multi-element vector. 533 EVT IntermediateVT; 534 MVT RegisterVT; 535 unsigned NumIntermediates; 536 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 537 IntermediateVT, 538 NumIntermediates, RegisterVT); 539 unsigned NumElements = ValueVT.getVectorNumElements(); 540 541 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 542 NumParts = NumRegs; // Silence a compiler warning. 543 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 544 545 // Split the vector into intermediate operands. 546 SmallVector<SDValue, 8> Ops(NumIntermediates); 547 for (unsigned i = 0; i != NumIntermediates; ++i) { 548 if (IntermediateVT.isVector()) 549 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 550 IntermediateVT, Val, 551 DAG.getConstant(i * (NumElements / NumIntermediates), 552 TLI.getVectorIdxTy())); 553 else 554 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 555 IntermediateVT, Val, 556 DAG.getConstant(i, TLI.getVectorIdxTy())); 557 } 558 559 // Split the intermediate operands into legal parts. 560 if (NumParts == NumIntermediates) { 561 // If the register was not expanded, promote or copy the value, 562 // as appropriate. 563 for (unsigned i = 0; i != NumParts; ++i) 564 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 565 } else if (NumParts > 0) { 566 // If the intermediate type was expanded, split each the value into 567 // legal parts. 568 assert(NumParts % NumIntermediates == 0 && 569 "Must expand into a divisible number of parts!"); 570 unsigned Factor = NumParts / NumIntermediates; 571 for (unsigned i = 0; i != NumIntermediates; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 573 } 574 } 575 576 namespace { 577 /// RegsForValue - This struct represents the registers (physical or virtual) 578 /// that a particular set of values is assigned, and the type information 579 /// about the value. The most common situation is to represent one value at a 580 /// time, but struct or array values are handled element-wise as multiple 581 /// values. The splitting of aggregates is performed recursively, so that we 582 /// never have aggregate-typed registers. The values at this point do not 583 /// necessarily have legal types, so each value may require one or more 584 /// registers of some legal type. 585 /// 586 struct RegsForValue { 587 /// ValueVTs - The value types of the values, which may not be legal, and 588 /// may need be promoted or synthesized from one or more registers. 589 /// 590 SmallVector<EVT, 4> ValueVTs; 591 592 /// RegVTs - The value types of the registers. This is the same size as 593 /// ValueVTs and it records, for each value, what the type of the assigned 594 /// register or registers are. (Individual values are never synthesized 595 /// from more than one type of register.) 596 /// 597 /// With virtual registers, the contents of RegVTs is redundant with TLI's 598 /// getRegisterType member function, however when with physical registers 599 /// it is necessary to have a separate record of the types. 600 /// 601 SmallVector<MVT, 4> RegVTs; 602 603 /// Regs - This list holds the registers assigned to the values. 604 /// Each legal or promoted value requires one register, and each 605 /// expanded value requires multiple registers. 606 /// 607 SmallVector<unsigned, 4> Regs; 608 609 RegsForValue() {} 610 611 RegsForValue(const SmallVector<unsigned, 4> ®s, 612 MVT regvt, EVT valuevt) 613 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 614 615 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 616 unsigned Reg, Type *Ty) { 617 ComputeValueVTs(tli, Ty, ValueVTs); 618 619 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 622 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 623 for (unsigned i = 0; i != NumRegs; ++i) 624 Regs.push_back(Reg + i); 625 RegVTs.push_back(RegisterVT); 626 Reg += NumRegs; 627 } 628 } 629 630 /// areValueTypesLegal - Return true if types of all the values are legal. 631 bool areValueTypesLegal(const TargetLowering &TLI) { 632 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 633 MVT RegisterVT = RegVTs[Value]; 634 if (!TLI.isTypeLegal(RegisterVT)) 635 return false; 636 } 637 return true; 638 } 639 640 /// append - Add the specified values to this one. 641 void append(const RegsForValue &RHS) { 642 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 643 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 644 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 645 } 646 647 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 648 /// this value and returns the result as a ValueVTs value. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 652 SDLoc dl, 653 SDValue &Chain, SDValue *Flag, 654 const Value *V = 0) const; 655 656 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 657 /// specified value into the registers specified by this object. This uses 658 /// Chain/Flag as the input and updates them for the output Chain/Flag. 659 /// If the Flag pointer is NULL, no flag is used. 660 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 661 SDValue &Chain, SDValue *Flag, const Value *V) const; 662 663 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 664 /// operand list. This adds the code marker, matching input operand index 665 /// (if applicable), and includes the number of values added into it. 666 void AddInlineAsmOperands(unsigned Kind, 667 bool HasMatching, unsigned MatchingIdx, 668 SelectionDAG &DAG, 669 std::vector<SDValue> &Ops) const; 670 }; 671 } 672 673 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 674 /// this value and returns the result as a ValueVT value. This uses 675 /// Chain/Flag as the input and updates them for the output Chain/Flag. 676 /// If the Flag pointer is NULL, no flag is used. 677 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 678 FunctionLoweringInfo &FuncInfo, 679 SDLoc dl, 680 SDValue &Chain, SDValue *Flag, 681 const Value *V) const { 682 // A Value with type {} or [0 x %t] needs no registers. 683 if (ValueVTs.empty()) 684 return SDValue(); 685 686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 687 688 // Assemble the legal parts into the final values. 689 SmallVector<SDValue, 4> Values(ValueVTs.size()); 690 SmallVector<SDValue, 8> Parts; 691 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 692 // Copy the legal parts from the registers. 693 EVT ValueVT = ValueVTs[Value]; 694 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 695 MVT RegisterVT = RegVTs[Value]; 696 697 Parts.resize(NumRegs); 698 for (unsigned i = 0; i != NumRegs; ++i) { 699 SDValue P; 700 if (Flag == 0) { 701 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 702 } else { 703 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 704 *Flag = P.getValue(2); 705 } 706 707 Chain = P.getValue(1); 708 Parts[i] = P; 709 710 // If the source register was virtual and if we know something about it, 711 // add an assert node. 712 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 713 !RegisterVT.isInteger() || RegisterVT.isVector()) 714 continue; 715 716 const FunctionLoweringInfo::LiveOutInfo *LOI = 717 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 718 if (!LOI) 719 continue; 720 721 unsigned RegSize = RegisterVT.getSizeInBits(); 722 unsigned NumSignBits = LOI->NumSignBits; 723 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 724 725 if (NumZeroBits == RegSize) { 726 // The current value is a zero. 727 // Explicitly express that as it would be easier for 728 // optimizations to kick in. 729 Parts[i] = DAG.getConstant(0, RegisterVT); 730 continue; 731 } 732 733 // FIXME: We capture more information than the dag can represent. For 734 // now, just use the tightest assertzext/assertsext possible. 735 bool isSExt = true; 736 EVT FromVT(MVT::Other); 737 if (NumSignBits == RegSize) 738 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 739 else if (NumZeroBits >= RegSize-1) 740 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 741 else if (NumSignBits > RegSize-8) 742 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 743 else if (NumZeroBits >= RegSize-8) 744 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 745 else if (NumSignBits > RegSize-16) 746 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 747 else if (NumZeroBits >= RegSize-16) 748 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 749 else if (NumSignBits > RegSize-32) 750 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 751 else if (NumZeroBits >= RegSize-32) 752 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 753 else 754 continue; 755 756 // Add an assertion node. 757 assert(FromVT != MVT::Other); 758 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 759 RegisterVT, P, DAG.getValueType(FromVT)); 760 } 761 762 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 763 NumRegs, RegisterVT, ValueVT, V); 764 Part += NumRegs; 765 Parts.clear(); 766 } 767 768 return DAG.getNode(ISD::MERGE_VALUES, dl, 769 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 770 &Values[0], ValueVTs.size()); 771 } 772 773 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 774 /// specified value into the registers specified by this object. This uses 775 /// Chain/Flag as the input and updates them for the output Chain/Flag. 776 /// If the Flag pointer is NULL, no flag is used. 777 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 778 SDValue &Chain, SDValue *Flag, 779 const Value *V) const { 780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 781 782 // Get the list of the values's legal parts. 783 unsigned NumRegs = Regs.size(); 784 SmallVector<SDValue, 8> Parts(NumRegs); 785 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 786 EVT ValueVT = ValueVTs[Value]; 787 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 788 MVT RegisterVT = RegVTs[Value]; 789 ISD::NodeType ExtendKind = 790 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 791 792 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 793 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 794 Part += NumParts; 795 } 796 797 // Copy the parts into the registers. 798 SmallVector<SDValue, 8> Chains(NumRegs); 799 for (unsigned i = 0; i != NumRegs; ++i) { 800 SDValue Part; 801 if (Flag == 0) { 802 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 803 } else { 804 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 805 *Flag = Part.getValue(1); 806 } 807 808 Chains[i] = Part.getValue(0); 809 } 810 811 if (NumRegs == 1 || Flag) 812 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 813 // flagged to it. That is the CopyToReg nodes and the user are considered 814 // a single scheduling unit. If we create a TokenFactor and return it as 815 // chain, then the TokenFactor is both a predecessor (operand) of the 816 // user as well as a successor (the TF operands are flagged to the user). 817 // c1, f1 = CopyToReg 818 // c2, f2 = CopyToReg 819 // c3 = TokenFactor c1, c2 820 // ... 821 // = op c3, ..., f2 822 Chain = Chains[NumRegs-1]; 823 else 824 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 825 } 826 827 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 828 /// operand list. This adds the code marker and includes the number of 829 /// values added into it. 830 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 831 unsigned MatchingIdx, 832 SelectionDAG &DAG, 833 std::vector<SDValue> &Ops) const { 834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 835 836 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 837 if (HasMatching) 838 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 839 else if (!Regs.empty() && 840 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 841 // Put the register class of the virtual registers in the flag word. That 842 // way, later passes can recompute register class constraints for inline 843 // assembly as well as normal instructions. 844 // Don't do this for tied operands that can use the regclass information 845 // from the def. 846 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 847 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 848 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 849 } 850 851 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 852 Ops.push_back(Res); 853 854 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 855 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 856 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 857 MVT RegisterVT = RegVTs[Value]; 858 for (unsigned i = 0; i != NumRegs; ++i) { 859 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 860 unsigned TheReg = Regs[Reg++]; 861 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 862 863 // Notice if we clobbered the stack pointer. Yes, inline asm can do this. 864 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 865 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 866 MFI->setHasInlineAsmWithSPAdjust(true); 867 } 868 } 869 } 870 } 871 872 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 873 const TargetLibraryInfo *li) { 874 AA = &aa; 875 GFI = gfi; 876 LibInfo = li; 877 TD = DAG.getTarget().getDataLayout(); 878 Context = DAG.getContext(); 879 LPadToCallSiteMap.clear(); 880 } 881 882 /// clear - Clear out the current SelectionDAG and the associated 883 /// state and prepare this SelectionDAGBuilder object to be used 884 /// for a new block. This doesn't clear out information about 885 /// additional blocks that are needed to complete switch lowering 886 /// or PHI node updating; that information is cleared out as it is 887 /// consumed. 888 void SelectionDAGBuilder::clear() { 889 NodeMap.clear(); 890 UnusedArgNodeMap.clear(); 891 PendingLoads.clear(); 892 PendingExports.clear(); 893 CurInst = NULL; 894 HasTailCall = false; 895 SDNodeOrder = LowestSDNodeOrder; 896 } 897 898 /// clearDanglingDebugInfo - Clear the dangling debug information 899 /// map. This function is separated from the clear so that debug 900 /// information that is dangling in a basic block can be properly 901 /// resolved in a different basic block. This allows the 902 /// SelectionDAG to resolve dangling debug information attached 903 /// to PHI nodes. 904 void SelectionDAGBuilder::clearDanglingDebugInfo() { 905 DanglingDebugInfoMap.clear(); 906 } 907 908 /// getRoot - Return the current virtual root of the Selection DAG, 909 /// flushing any PendingLoad items. This must be done before emitting 910 /// a store or any other node that may need to be ordered after any 911 /// prior load instructions. 912 /// 913 SDValue SelectionDAGBuilder::getRoot() { 914 if (PendingLoads.empty()) 915 return DAG.getRoot(); 916 917 if (PendingLoads.size() == 1) { 918 SDValue Root = PendingLoads[0]; 919 DAG.setRoot(Root); 920 PendingLoads.clear(); 921 return Root; 922 } 923 924 // Otherwise, we have to make a token factor node. 925 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 &PendingLoads[0], PendingLoads.size()); 927 PendingLoads.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// getControlRoot - Similar to getRoot, but instead of flushing all the 933 /// PendingLoad items, flush all the PendingExports items. It is necessary 934 /// to do this before emitting a terminator instruction. 935 /// 936 SDValue SelectionDAGBuilder::getControlRoot() { 937 SDValue Root = DAG.getRoot(); 938 939 if (PendingExports.empty()) 940 return Root; 941 942 // Turn all of the CopyToReg chains into one factored node. 943 if (Root.getOpcode() != ISD::EntryToken) { 944 unsigned i = 0, e = PendingExports.size(); 945 for (; i != e; ++i) { 946 assert(PendingExports[i].getNode()->getNumOperands() > 1); 947 if (PendingExports[i].getNode()->getOperand(0) == Root) 948 break; // Don't add the root if we already indirectly depend on it. 949 } 950 951 if (i == e) 952 PendingExports.push_back(Root); 953 } 954 955 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 956 &PendingExports[0], 957 PendingExports.size()); 958 PendingExports.clear(); 959 DAG.setRoot(Root); 960 return Root; 961 } 962 963 void SelectionDAGBuilder::visit(const Instruction &I) { 964 // Set up outgoing PHI node register values before emitting the terminator. 965 if (isa<TerminatorInst>(&I)) 966 HandlePHINodesInSuccessorBlocks(I.getParent()); 967 968 ++SDNodeOrder; 969 970 CurInst = &I; 971 972 visit(I.getOpcode(), I); 973 974 if (!isa<TerminatorInst>(&I) && !HasTailCall) 975 CopyToExportRegsIfNeeded(&I); 976 977 CurInst = NULL; 978 } 979 980 void SelectionDAGBuilder::visitPHI(const PHINode &) { 981 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 982 } 983 984 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 985 // Note: this doesn't use InstVisitor, because it has to work with 986 // ConstantExpr's in addition to instructions. 987 switch (Opcode) { 988 default: llvm_unreachable("Unknown instruction type encountered!"); 989 // Build the switch statement using the Instruction.def file. 990 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 991 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 992 #include "llvm/IR/Instruction.def" 993 } 994 } 995 996 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 997 // generate the debug data structures now that we've seen its definition. 998 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 999 SDValue Val) { 1000 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1001 if (DDI.getDI()) { 1002 const DbgValueInst *DI = DDI.getDI(); 1003 DebugLoc dl = DDI.getdl(); 1004 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1005 MDNode *Variable = DI->getVariable(); 1006 uint64_t Offset = DI->getOffset(); 1007 SDDbgValue *SDV; 1008 if (Val.getNode()) { 1009 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1010 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1011 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1012 DAG.AddDbgValue(SDV, Val.getNode(), false); 1013 } 1014 } else 1015 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1016 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1017 } 1018 } 1019 1020 /// getValue - Return an SDValue for the given Value. 1021 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1022 // If we already have an SDValue for this value, use it. It's important 1023 // to do this first, so that we don't create a CopyFromReg if we already 1024 // have a regular SDValue. 1025 SDValue &N = NodeMap[V]; 1026 if (N.getNode()) return N; 1027 1028 // If there's a virtual register allocated and initialized for this 1029 // value, use it. 1030 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1031 if (It != FuncInfo.ValueMap.end()) { 1032 unsigned InReg = It->second; 1033 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1034 InReg, V->getType()); 1035 SDValue Chain = DAG.getEntryNode(); 1036 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1037 resolveDanglingDebugInfo(V, N); 1038 return N; 1039 } 1040 1041 // Otherwise create a new SDValue and remember it. 1042 SDValue Val = getValueImpl(V); 1043 NodeMap[V] = Val; 1044 resolveDanglingDebugInfo(V, Val); 1045 return Val; 1046 } 1047 1048 /// getNonRegisterValue - Return an SDValue for the given Value, but 1049 /// don't look in FuncInfo.ValueMap for a virtual register. 1050 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1051 // If we already have an SDValue for this value, use it. 1052 SDValue &N = NodeMap[V]; 1053 if (N.getNode()) return N; 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1063 /// Create an SDValue for the given value. 1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1065 const TargetLowering *TLI = TM.getTargetLowering(); 1066 1067 if (const Constant *C = dyn_cast<Constant>(V)) { 1068 EVT VT = TLI->getValueType(V->getType(), true); 1069 1070 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1071 return DAG.getConstant(*CI, VT); 1072 1073 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1074 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1075 1076 if (isa<ConstantPointerNull>(C)) { 1077 unsigned AS = V->getType()->getPointerAddressSpace(); 1078 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1079 } 1080 1081 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1082 return DAG.getConstantFP(*CFP, VT); 1083 1084 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1085 return DAG.getUNDEF(VT); 1086 1087 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1088 visit(CE->getOpcode(), *CE); 1089 SDValue N1 = NodeMap[V]; 1090 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1091 return N1; 1092 } 1093 1094 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1095 SmallVector<SDValue, 4> Constants; 1096 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1097 OI != OE; ++OI) { 1098 SDNode *Val = getValue(*OI).getNode(); 1099 // If the operand is an empty aggregate, there are no values. 1100 if (!Val) continue; 1101 // Add each leaf value from the operand to the Constants list 1102 // to form a flattened list of all the values. 1103 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1104 Constants.push_back(SDValue(Val, i)); 1105 } 1106 1107 return DAG.getMergeValues(&Constants[0], Constants.size(), 1108 getCurSDLoc()); 1109 } 1110 1111 if (const ConstantDataSequential *CDS = 1112 dyn_cast<ConstantDataSequential>(C)) { 1113 SmallVector<SDValue, 4> Ops; 1114 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1115 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1116 // Add each leaf value from the operand to the Constants list 1117 // to form a flattened list of all the values. 1118 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1119 Ops.push_back(SDValue(Val, i)); 1120 } 1121 1122 if (isa<ArrayType>(CDS->getType())) 1123 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1124 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1125 VT, &Ops[0], Ops.size()); 1126 } 1127 1128 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1129 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1130 "Unknown struct or array constant!"); 1131 1132 SmallVector<EVT, 4> ValueVTs; 1133 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1134 unsigned NumElts = ValueVTs.size(); 1135 if (NumElts == 0) 1136 return SDValue(); // empty struct 1137 SmallVector<SDValue, 4> Constants(NumElts); 1138 for (unsigned i = 0; i != NumElts; ++i) { 1139 EVT EltVT = ValueVTs[i]; 1140 if (isa<UndefValue>(C)) 1141 Constants[i] = DAG.getUNDEF(EltVT); 1142 else if (EltVT.isFloatingPoint()) 1143 Constants[i] = DAG.getConstantFP(0, EltVT); 1144 else 1145 Constants[i] = DAG.getConstant(0, EltVT); 1146 } 1147 1148 return DAG.getMergeValues(&Constants[0], NumElts, 1149 getCurSDLoc()); 1150 } 1151 1152 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1153 return DAG.getBlockAddress(BA, VT); 1154 1155 VectorType *VecTy = cast<VectorType>(V->getType()); 1156 unsigned NumElements = VecTy->getNumElements(); 1157 1158 // Now that we know the number and type of the elements, get that number of 1159 // elements into the Ops array based on what kind of constant it is. 1160 SmallVector<SDValue, 16> Ops; 1161 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1162 for (unsigned i = 0; i != NumElements; ++i) 1163 Ops.push_back(getValue(CV->getOperand(i))); 1164 } else { 1165 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1166 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1167 1168 SDValue Op; 1169 if (EltVT.isFloatingPoint()) 1170 Op = DAG.getConstantFP(0, EltVT); 1171 else 1172 Op = DAG.getConstant(0, EltVT); 1173 Ops.assign(NumElements, Op); 1174 } 1175 1176 // Create a BUILD_VECTOR node. 1177 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1178 VT, &Ops[0], Ops.size()); 1179 } 1180 1181 // If this is a static alloca, generate it as the frameindex instead of 1182 // computation. 1183 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1184 DenseMap<const AllocaInst*, int>::iterator SI = 1185 FuncInfo.StaticAllocaMap.find(AI); 1186 if (SI != FuncInfo.StaticAllocaMap.end()) 1187 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1188 } 1189 1190 // If this is an instruction which fast-isel has deferred, select it now. 1191 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1192 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1193 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1194 SDValue Chain = DAG.getEntryNode(); 1195 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1196 } 1197 1198 llvm_unreachable("Can't get register for value!"); 1199 } 1200 1201 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1202 const TargetLowering *TLI = TM.getTargetLowering(); 1203 SDValue Chain = getControlRoot(); 1204 SmallVector<ISD::OutputArg, 8> Outs; 1205 SmallVector<SDValue, 8> OutVals; 1206 1207 if (!FuncInfo.CanLowerReturn) { 1208 unsigned DemoteReg = FuncInfo.DemoteRegister; 1209 const Function *F = I.getParent()->getParent(); 1210 1211 // Emit a store of the return value through the virtual register. 1212 // Leave Outs empty so that LowerReturn won't try to load return 1213 // registers the usual way. 1214 SmallVector<EVT, 1> PtrValueVTs; 1215 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1216 PtrValueVTs); 1217 1218 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1219 SDValue RetOp = getValue(I.getOperand(0)); 1220 1221 SmallVector<EVT, 4> ValueVTs; 1222 SmallVector<uint64_t, 4> Offsets; 1223 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1224 unsigned NumValues = ValueVTs.size(); 1225 1226 SmallVector<SDValue, 4> Chains(NumValues); 1227 for (unsigned i = 0; i != NumValues; ++i) { 1228 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1229 RetPtr.getValueType(), RetPtr, 1230 DAG.getIntPtrConstant(Offsets[i])); 1231 Chains[i] = 1232 DAG.getStore(Chain, getCurSDLoc(), 1233 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1234 // FIXME: better loc info would be nice. 1235 Add, MachinePointerInfo(), false, false, 0); 1236 } 1237 1238 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1239 MVT::Other, &Chains[0], NumValues); 1240 } else if (I.getNumOperands() != 0) { 1241 SmallVector<EVT, 4> ValueVTs; 1242 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1243 unsigned NumValues = ValueVTs.size(); 1244 if (NumValues) { 1245 SDValue RetOp = getValue(I.getOperand(0)); 1246 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1247 EVT VT = ValueVTs[j]; 1248 1249 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1250 1251 const Function *F = I.getParent()->getParent(); 1252 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1253 Attribute::SExt)) 1254 ExtendKind = ISD::SIGN_EXTEND; 1255 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1256 Attribute::ZExt)) 1257 ExtendKind = ISD::ZERO_EXTEND; 1258 1259 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1260 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1261 1262 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1263 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1264 SmallVector<SDValue, 4> Parts(NumParts); 1265 getCopyToParts(DAG, getCurSDLoc(), 1266 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1267 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1268 1269 // 'inreg' on function refers to return value 1270 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1271 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1272 Attribute::InReg)) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1294 Outs, OutVals, getCurSDLoc(), 1295 DAG); 1296 1297 // Verify that the target's LowerReturn behaved as expected. 1298 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1299 "LowerReturn didn't return a valid chain!"); 1300 1301 // Update the DAG with the new chain value resulting from return lowering. 1302 DAG.setRoot(Chain); 1303 } 1304 1305 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1306 /// created for it, emit nodes to copy the value into the virtual 1307 /// registers. 1308 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1309 // Skip empty types 1310 if (V->getType()->isEmptyTy()) 1311 return; 1312 1313 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1314 if (VMI != FuncInfo.ValueMap.end()) { 1315 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1316 CopyValueToVirtualRegister(V, VMI->second); 1317 } 1318 } 1319 1320 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1321 /// the current basic block, add it to ValueMap now so that we'll get a 1322 /// CopyTo/FromReg. 1323 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1324 // No need to export constants. 1325 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1326 1327 // Already exported? 1328 if (FuncInfo.isExportedInst(V)) return; 1329 1330 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1331 CopyValueToVirtualRegister(V, Reg); 1332 } 1333 1334 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1335 const BasicBlock *FromBB) { 1336 // The operands of the setcc have to be in this block. We don't know 1337 // how to export them from some other block. 1338 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1339 // Can export from current BB. 1340 if (VI->getParent() == FromBB) 1341 return true; 1342 1343 // Is already exported, noop. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // If this is an argument, we can export it if the BB is the entry block or 1348 // if it is already exported. 1349 if (isa<Argument>(V)) { 1350 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1351 return true; 1352 1353 // Otherwise, can only export this if it is already exported. 1354 return FuncInfo.isExportedInst(V); 1355 } 1356 1357 // Otherwise, constants can always be exported. 1358 return true; 1359 } 1360 1361 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1362 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1363 const MachineBasicBlock *Dst) const { 1364 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1365 if (!BPI) 1366 return 0; 1367 const BasicBlock *SrcBB = Src->getBasicBlock(); 1368 const BasicBlock *DstBB = Dst->getBasicBlock(); 1369 return BPI->getEdgeWeight(SrcBB, DstBB); 1370 } 1371 1372 void SelectionDAGBuilder:: 1373 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1374 uint32_t Weight /* = 0 */) { 1375 if (!Weight) 1376 Weight = getEdgeWeight(Src, Dst); 1377 Src->addSuccessor(Dst, Weight); 1378 } 1379 1380 1381 static bool InBlock(const Value *V, const BasicBlock *BB) { 1382 if (const Instruction *I = dyn_cast<Instruction>(V)) 1383 return I->getParent() == BB; 1384 return true; 1385 } 1386 1387 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1388 /// This function emits a branch and is used at the leaves of an OR or an 1389 /// AND operator tree. 1390 /// 1391 void 1392 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1393 MachineBasicBlock *TBB, 1394 MachineBasicBlock *FBB, 1395 MachineBasicBlock *CurBB, 1396 MachineBasicBlock *SwitchBB) { 1397 const BasicBlock *BB = CurBB->getBasicBlock(); 1398 1399 // If the leaf of the tree is a comparison, merge the condition into 1400 // the caseblock. 1401 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1402 // The operands of the cmp have to be in this block. We don't know 1403 // how to export them from some other block. If this is the first block 1404 // of the sequence, no exporting is needed. 1405 if (CurBB == SwitchBB || 1406 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1407 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1408 ISD::CondCode Condition; 1409 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1410 Condition = getICmpCondCode(IC->getPredicate()); 1411 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1412 Condition = getFCmpCondCode(FC->getPredicate()); 1413 if (TM.Options.NoNaNsFPMath) 1414 Condition = getFCmpCodeWithoutNaN(Condition); 1415 } else { 1416 Condition = ISD::SETEQ; // silence warning. 1417 llvm_unreachable("Unknown compare instruction"); 1418 } 1419 1420 CaseBlock CB(Condition, BOp->getOperand(0), 1421 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1422 SwitchCases.push_back(CB); 1423 return; 1424 } 1425 } 1426 1427 // Create a CaseBlock record representing this branch. 1428 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1429 NULL, TBB, FBB, CurBB); 1430 SwitchCases.push_back(CB); 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc) { 1440 // If this node is not part of the or/and tree, emit it as a branch. 1441 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1442 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1443 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1444 BOp->getParent() != CurBB->getBasicBlock() || 1445 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1446 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1447 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // jmp_if_X TBB 1460 // jmp TmpBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 1466 // Emit the LHS condition. 1467 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1468 1469 // Emit the RHS condition into TmpBB. 1470 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1471 } else { 1472 assert(Opc == Instruction::And && "Unknown merge op!"); 1473 // Codegen X & Y as: 1474 // jmp_if_X TmpBB 1475 // jmp FBB 1476 // TmpBB: 1477 // jmp_if_Y TBB 1478 // jmp FBB 1479 // 1480 // This requires creation of TmpBB after CurBB. 1481 1482 // Emit the LHS condition. 1483 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1484 1485 // Emit the RHS condition into TmpBB. 1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1487 } 1488 } 1489 1490 /// If the set of cases should be emitted as a series of branches, return true. 1491 /// If we should emit this as a bunch of and/or'd together conditions, return 1492 /// false. 1493 bool 1494 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1495 if (Cases.size() != 2) return true; 1496 1497 // If this is two comparisons of the same values or'd or and'd together, they 1498 // will get folded into a single comparison, so don't emit two blocks. 1499 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1500 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1501 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1502 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1503 return false; 1504 } 1505 1506 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1507 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1508 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1509 Cases[0].CC == Cases[1].CC && 1510 isa<Constant>(Cases[0].CmpRHS) && 1511 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1512 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1513 return false; 1514 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1515 return false; 1516 } 1517 1518 return true; 1519 } 1520 1521 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1522 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1523 1524 // Update machine-CFG edges. 1525 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1526 1527 // Figure out which block is immediately after the current one. 1528 MachineBasicBlock *NextBlock = 0; 1529 MachineFunction::iterator BBI = BrMBB; 1530 if (++BBI != FuncInfo.MF->end()) 1531 NextBlock = BBI; 1532 1533 if (I.isUnconditional()) { 1534 // Update machine-CFG edges. 1535 BrMBB->addSuccessor(Succ0MBB); 1536 1537 // If this is not a fall-through branch, emit the branch. 1538 if (Succ0MBB != NextBlock) 1539 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1540 MVT::Other, getControlRoot(), 1541 DAG.getBasicBlock(Succ0MBB))); 1542 1543 return; 1544 } 1545 1546 // If this condition is one of the special cases we handle, do special stuff 1547 // now. 1548 const Value *CondVal = I.getCondition(); 1549 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1550 1551 // If this is a series of conditions that are or'd or and'd together, emit 1552 // this as a sequence of branches instead of setcc's with and/or operations. 1553 // As long as jumps are not expensive, this should improve performance. 1554 // For example, instead of something like: 1555 // cmp A, B 1556 // C = seteq 1557 // cmp D, E 1558 // F = setle 1559 // or C, F 1560 // jnz foo 1561 // Emit: 1562 // cmp A, B 1563 // je foo 1564 // cmp D, E 1565 // jle foo 1566 // 1567 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1568 if (!TM.getTargetLowering()->isJumpExpensive() && 1569 BOp->hasOneUse() && 1570 (BOp->getOpcode() == Instruction::And || 1571 BOp->getOpcode() == Instruction::Or)) { 1572 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1573 BOp->getOpcode()); 1574 // If the compares in later blocks need to use values not currently 1575 // exported from this block, export them now. This block should always 1576 // be the first entry. 1577 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1578 1579 // Allow some cases to be rejected. 1580 if (ShouldEmitAsBranches(SwitchCases)) { 1581 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1582 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1583 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1584 } 1585 1586 // Emit the branch for this block. 1587 visitSwitchCase(SwitchCases[0], BrMBB); 1588 SwitchCases.erase(SwitchCases.begin()); 1589 return; 1590 } 1591 1592 // Okay, we decided not to do this, remove any inserted MBB's and clear 1593 // SwitchCases. 1594 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1595 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1596 1597 SwitchCases.clear(); 1598 } 1599 } 1600 1601 // Create a CaseBlock record representing this branch. 1602 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1603 NULL, Succ0MBB, Succ1MBB, BrMBB); 1604 1605 // Use visitSwitchCase to actually insert the fast branch sequence for this 1606 // cond branch. 1607 visitSwitchCase(CB, BrMBB); 1608 } 1609 1610 /// visitSwitchCase - Emits the necessary code to represent a single node in 1611 /// the binary search tree resulting from lowering a switch instruction. 1612 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1613 MachineBasicBlock *SwitchBB) { 1614 SDValue Cond; 1615 SDValue CondLHS = getValue(CB.CmpLHS); 1616 SDLoc dl = getCurSDLoc(); 1617 1618 // Build the setcc now. 1619 if (CB.CmpMHS == NULL) { 1620 // Fold "(X == true)" to X and "(X == false)" to !X to 1621 // handle common cases produced by branch lowering. 1622 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1623 CB.CC == ISD::SETEQ) 1624 Cond = CondLHS; 1625 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1626 CB.CC == ISD::SETEQ) { 1627 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1628 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1629 } else 1630 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1631 } else { 1632 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1633 1634 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1635 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1636 1637 SDValue CmpOp = getValue(CB.CmpMHS); 1638 EVT VT = CmpOp.getValueType(); 1639 1640 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1641 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1642 ISD::SETLE); 1643 } else { 1644 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1645 VT, CmpOp, DAG.getConstant(Low, VT)); 1646 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1647 DAG.getConstant(High-Low, VT), ISD::SETULE); 1648 } 1649 } 1650 1651 // Update successor info 1652 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1653 // TrueBB and FalseBB are always different unless the incoming IR is 1654 // degenerate. This only happens when running llc on weird IR. 1655 if (CB.TrueBB != CB.FalseBB) 1656 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1657 1658 // Set NextBlock to be the MBB immediately after the current one, if any. 1659 // This is used to avoid emitting unnecessary branches to the next block. 1660 MachineBasicBlock *NextBlock = 0; 1661 MachineFunction::iterator BBI = SwitchBB; 1662 if (++BBI != FuncInfo.MF->end()) 1663 NextBlock = BBI; 1664 1665 // If the lhs block is the next block, invert the condition so that we can 1666 // fall through to the lhs instead of the rhs block. 1667 if (CB.TrueBB == NextBlock) { 1668 std::swap(CB.TrueBB, CB.FalseBB); 1669 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1670 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1671 } 1672 1673 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1674 MVT::Other, getControlRoot(), Cond, 1675 DAG.getBasicBlock(CB.TrueBB)); 1676 1677 // Insert the false branch. Do this even if it's a fall through branch, 1678 // this makes it easier to do DAG optimizations which require inverting 1679 // the branch condition. 1680 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1681 DAG.getBasicBlock(CB.FalseBB)); 1682 1683 DAG.setRoot(BrCond); 1684 } 1685 1686 /// visitJumpTable - Emit JumpTable node in the current MBB 1687 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1688 // Emit the code for the jump table 1689 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1690 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1691 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1692 JT.Reg, PTy); 1693 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1694 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1695 MVT::Other, Index.getValue(1), 1696 Table, Index); 1697 DAG.setRoot(BrJumpTable); 1698 } 1699 1700 /// visitJumpTableHeader - This function emits necessary code to produce index 1701 /// in the JumpTable from switch case. 1702 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1703 JumpTableHeader &JTH, 1704 MachineBasicBlock *SwitchBB) { 1705 // Subtract the lowest switch case value from the value being switched on and 1706 // conditional branch to default mbb if the result is greater than the 1707 // difference between smallest and largest cases. 1708 SDValue SwitchOp = getValue(JTH.SValue); 1709 EVT VT = SwitchOp.getValueType(); 1710 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1711 DAG.getConstant(JTH.First, VT)); 1712 1713 // The SDNode we just created, which holds the value being switched on minus 1714 // the smallest case value, needs to be copied to a virtual register so it 1715 // can be used as an index into the jump table in a subsequent basic block. 1716 // This value may be smaller or larger than the target's pointer type, and 1717 // therefore require extension or truncating. 1718 const TargetLowering *TLI = TM.getTargetLowering(); 1719 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1720 1721 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1722 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1723 JumpTableReg, SwitchOp); 1724 JT.Reg = JumpTableReg; 1725 1726 // Emit the range check for the jump table, and branch to the default block 1727 // for the switch statement if the value being switched on exceeds the largest 1728 // case in the switch. 1729 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1730 TLI->getSetCCResultType(*DAG.getContext(), 1731 Sub.getValueType()), 1732 Sub, 1733 DAG.getConstant(JTH.Last - JTH.First,VT), 1734 ISD::SETUGT); 1735 1736 // Set NextBlock to be the MBB immediately after the current one, if any. 1737 // This is used to avoid emitting unnecessary branches to the next block. 1738 MachineBasicBlock *NextBlock = 0; 1739 MachineFunction::iterator BBI = SwitchBB; 1740 1741 if (++BBI != FuncInfo.MF->end()) 1742 NextBlock = BBI; 1743 1744 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1745 MVT::Other, CopyTo, CMP, 1746 DAG.getBasicBlock(JT.Default)); 1747 1748 if (JT.MBB != NextBlock) 1749 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1750 DAG.getBasicBlock(JT.MBB)); 1751 1752 DAG.setRoot(BrCond); 1753 } 1754 1755 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1756 /// tail spliced into a stack protector check success bb. 1757 /// 1758 /// For a high level explanation of how this fits into the stack protector 1759 /// generation see the comment on the declaration of class 1760 /// StackProtectorDescriptor. 1761 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1762 MachineBasicBlock *ParentBB) { 1763 1764 // First create the loads to the guard/stack slot for the comparison. 1765 const TargetLowering *TLI = TM.getTargetLowering(); 1766 EVT PtrTy = TLI->getPointerTy(); 1767 1768 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1769 int FI = MFI->getStackProtectorIndex(); 1770 1771 const Value *IRGuard = SPD.getGuard(); 1772 SDValue GuardPtr = getValue(IRGuard); 1773 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1774 1775 unsigned Align = 1776 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1777 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1778 GuardPtr, MachinePointerInfo(IRGuard, 0), 1779 true, false, false, Align); 1780 1781 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1782 StackSlotPtr, 1783 MachinePointerInfo::getFixedStack(FI), 1784 true, false, false, Align); 1785 1786 // Perform the comparison via a subtract/getsetcc. 1787 EVT VT = Guard.getValueType(); 1788 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1789 1790 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1791 TLI->getSetCCResultType(*DAG.getContext(), 1792 Sub.getValueType()), 1793 Sub, DAG.getConstant(0, VT), 1794 ISD::SETNE); 1795 1796 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1797 // branch to failure MBB. 1798 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1799 MVT::Other, StackSlot.getOperand(0), 1800 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1801 // Otherwise branch to success MBB. 1802 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1803 MVT::Other, BrCond, 1804 DAG.getBasicBlock(SPD.getSuccessMBB())); 1805 1806 DAG.setRoot(Br); 1807 } 1808 1809 /// Codegen the failure basic block for a stack protector check. 1810 /// 1811 /// A failure stack protector machine basic block consists simply of a call to 1812 /// __stack_chk_fail(). 1813 /// 1814 /// For a high level explanation of how this fits into the stack protector 1815 /// generation see the comment on the declaration of class 1816 /// StackProtectorDescriptor. 1817 void 1818 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1819 const TargetLowering *TLI = TM.getTargetLowering(); 1820 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1821 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1822 false, false).second; 1823 DAG.setRoot(Chain); 1824 } 1825 1826 /// visitBitTestHeader - This function emits necessary code to produce value 1827 /// suitable for "bit tests" 1828 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1829 MachineBasicBlock *SwitchBB) { 1830 // Subtract the minimum value 1831 SDValue SwitchOp = getValue(B.SValue); 1832 EVT VT = SwitchOp.getValueType(); 1833 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1834 DAG.getConstant(B.First, VT)); 1835 1836 // Check range 1837 const TargetLowering *TLI = TM.getTargetLowering(); 1838 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1839 TLI->getSetCCResultType(*DAG.getContext(), 1840 Sub.getValueType()), 1841 Sub, DAG.getConstant(B.Range, VT), 1842 ISD::SETUGT); 1843 1844 // Determine the type of the test operands. 1845 bool UsePtrType = false; 1846 if (!TLI->isTypeLegal(VT)) 1847 UsePtrType = true; 1848 else { 1849 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1850 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1851 // Switch table case range are encoded into series of masks. 1852 // Just use pointer type, it's guaranteed to fit. 1853 UsePtrType = true; 1854 break; 1855 } 1856 } 1857 if (UsePtrType) { 1858 VT = TLI->getPointerTy(); 1859 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1860 } 1861 1862 B.RegVT = VT.getSimpleVT(); 1863 B.Reg = FuncInfo.CreateReg(B.RegVT); 1864 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1865 B.Reg, Sub); 1866 1867 // Set NextBlock to be the MBB immediately after the current one, if any. 1868 // This is used to avoid emitting unnecessary branches to the next block. 1869 MachineBasicBlock *NextBlock = 0; 1870 MachineFunction::iterator BBI = SwitchBB; 1871 if (++BBI != FuncInfo.MF->end()) 1872 NextBlock = BBI; 1873 1874 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1875 1876 addSuccessorWithWeight(SwitchBB, B.Default); 1877 addSuccessorWithWeight(SwitchBB, MBB); 1878 1879 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1880 MVT::Other, CopyTo, RangeCmp, 1881 DAG.getBasicBlock(B.Default)); 1882 1883 if (MBB != NextBlock) 1884 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1885 DAG.getBasicBlock(MBB)); 1886 1887 DAG.setRoot(BrRange); 1888 } 1889 1890 /// visitBitTestCase - this function produces one "bit test" 1891 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1892 MachineBasicBlock* NextMBB, 1893 uint32_t BranchWeightToNext, 1894 unsigned Reg, 1895 BitTestCase &B, 1896 MachineBasicBlock *SwitchBB) { 1897 MVT VT = BB.RegVT; 1898 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1899 Reg, VT); 1900 SDValue Cmp; 1901 unsigned PopCount = CountPopulation_64(B.Mask); 1902 const TargetLowering *TLI = TM.getTargetLowering(); 1903 if (PopCount == 1) { 1904 // Testing for a single bit; just compare the shift count with what it 1905 // would need to be to shift a 1 bit in that position. 1906 Cmp = DAG.getSetCC(getCurSDLoc(), 1907 TLI->getSetCCResultType(*DAG.getContext(), VT), 1908 ShiftOp, 1909 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1910 ISD::SETEQ); 1911 } else if (PopCount == BB.Range) { 1912 // There is only one zero bit in the range, test for it directly. 1913 Cmp = DAG.getSetCC(getCurSDLoc(), 1914 TLI->getSetCCResultType(*DAG.getContext(), VT), 1915 ShiftOp, 1916 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1917 ISD::SETNE); 1918 } else { 1919 // Make desired shift 1920 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1921 DAG.getConstant(1, VT), ShiftOp); 1922 1923 // Emit bit tests and jumps 1924 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1925 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1926 Cmp = DAG.getSetCC(getCurSDLoc(), 1927 TLI->getSetCCResultType(*DAG.getContext(), VT), 1928 AndOp, DAG.getConstant(0, VT), 1929 ISD::SETNE); 1930 } 1931 1932 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1933 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1934 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1935 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1936 1937 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1938 MVT::Other, getControlRoot(), 1939 Cmp, DAG.getBasicBlock(B.TargetBB)); 1940 1941 // Set NextBlock to be the MBB immediately after the current one, if any. 1942 // This is used to avoid emitting unnecessary branches to the next block. 1943 MachineBasicBlock *NextBlock = 0; 1944 MachineFunction::iterator BBI = SwitchBB; 1945 if (++BBI != FuncInfo.MF->end()) 1946 NextBlock = BBI; 1947 1948 if (NextMBB != NextBlock) 1949 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1950 DAG.getBasicBlock(NextMBB)); 1951 1952 DAG.setRoot(BrAnd); 1953 } 1954 1955 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1956 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1957 1958 // Retrieve successors. 1959 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1960 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1961 1962 const Value *Callee(I.getCalledValue()); 1963 const Function *Fn = dyn_cast<Function>(Callee); 1964 if (isa<InlineAsm>(Callee)) 1965 visitInlineAsm(&I); 1966 else if (Fn && Fn->isIntrinsic()) { 1967 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1968 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1969 } else 1970 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1971 1972 // If the value of the invoke is used outside of its defining block, make it 1973 // available as a virtual register. 1974 CopyToExportRegsIfNeeded(&I); 1975 1976 // Update successor info 1977 addSuccessorWithWeight(InvokeMBB, Return); 1978 addSuccessorWithWeight(InvokeMBB, LandingPad); 1979 1980 // Drop into normal successor. 1981 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 DAG.getBasicBlock(Return))); 1984 } 1985 1986 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1987 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1988 } 1989 1990 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1991 assert(FuncInfo.MBB->isLandingPad() && 1992 "Call to landingpad not in landing pad!"); 1993 1994 MachineBasicBlock *MBB = FuncInfo.MBB; 1995 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1996 AddLandingPadInfo(LP, MMI, MBB); 1997 1998 // If there aren't registers to copy the values into (e.g., during SjLj 1999 // exceptions), then don't bother to create these DAG nodes. 2000 const TargetLowering *TLI = TM.getTargetLowering(); 2001 if (TLI->getExceptionPointerRegister() == 0 && 2002 TLI->getExceptionSelectorRegister() == 0) 2003 return; 2004 2005 SmallVector<EVT, 2> ValueVTs; 2006 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2007 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2008 2009 // Get the two live-in registers as SDValues. The physregs have already been 2010 // copied into virtual registers. 2011 SDValue Ops[2]; 2012 Ops[0] = DAG.getZExtOrTrunc( 2013 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2014 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2015 getCurSDLoc(), ValueVTs[0]); 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2018 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2019 getCurSDLoc(), ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2023 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2024 &Ops[0], 2); 2025 setValue(&LP, Res); 2026 } 2027 2028 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2029 /// small case ranges). 2030 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2031 CaseRecVector& WorkList, 2032 const Value* SV, 2033 MachineBasicBlock *Default, 2034 MachineBasicBlock *SwitchBB) { 2035 // Size is the number of Cases represented by this range. 2036 size_t Size = CR.Range.second - CR.Range.first; 2037 if (Size > 3) 2038 return false; 2039 2040 // Get the MachineFunction which holds the current MBB. This is used when 2041 // inserting any additional MBBs necessary to represent the switch. 2042 MachineFunction *CurMF = FuncInfo.MF; 2043 2044 // Figure out which block is immediately after the current one. 2045 MachineBasicBlock *NextBlock = 0; 2046 MachineFunction::iterator BBI = CR.CaseBB; 2047 2048 if (++BBI != FuncInfo.MF->end()) 2049 NextBlock = BBI; 2050 2051 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2052 // If any two of the cases has the same destination, and if one value 2053 // is the same as the other, but has one bit unset that the other has set, 2054 // use bit manipulation to do two compares at once. For example: 2055 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2056 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2057 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2058 if (Size == 2 && CR.CaseBB == SwitchBB) { 2059 Case &Small = *CR.Range.first; 2060 Case &Big = *(CR.Range.second-1); 2061 2062 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2063 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2064 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2065 2066 // Check that there is only one bit different. 2067 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2068 (SmallValue | BigValue) == BigValue) { 2069 // Isolate the common bit. 2070 APInt CommonBit = BigValue & ~SmallValue; 2071 assert((SmallValue | CommonBit) == BigValue && 2072 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2073 2074 SDValue CondLHS = getValue(SV); 2075 EVT VT = CondLHS.getValueType(); 2076 SDLoc DL = getCurSDLoc(); 2077 2078 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2079 DAG.getConstant(CommonBit, VT)); 2080 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2081 Or, DAG.getConstant(BigValue, VT), 2082 ISD::SETEQ); 2083 2084 // Update successor info. 2085 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2086 addSuccessorWithWeight(SwitchBB, Small.BB, 2087 Small.ExtraWeight + Big.ExtraWeight); 2088 addSuccessorWithWeight(SwitchBB, Default, 2089 // The default destination is the first successor in IR. 2090 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2091 2092 // Insert the true branch. 2093 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2094 getControlRoot(), Cond, 2095 DAG.getBasicBlock(Small.BB)); 2096 2097 // Insert the false branch. 2098 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2099 DAG.getBasicBlock(Default)); 2100 2101 DAG.setRoot(BrCond); 2102 return true; 2103 } 2104 } 2105 } 2106 2107 // Order cases by weight so the most likely case will be checked first. 2108 uint32_t UnhandledWeights = 0; 2109 if (BPI) { 2110 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2111 uint32_t IWeight = I->ExtraWeight; 2112 UnhandledWeights += IWeight; 2113 for (CaseItr J = CR.Range.first; J < I; ++J) { 2114 uint32_t JWeight = J->ExtraWeight; 2115 if (IWeight > JWeight) 2116 std::swap(*I, *J); 2117 } 2118 } 2119 } 2120 // Rearrange the case blocks so that the last one falls through if possible. 2121 Case &BackCase = *(CR.Range.second-1); 2122 if (Size > 1 && 2123 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2124 // The last case block won't fall through into 'NextBlock' if we emit the 2125 // branches in this order. See if rearranging a case value would help. 2126 // We start at the bottom as it's the case with the least weight. 2127 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2128 if (I->BB == NextBlock) { 2129 std::swap(*I, BackCase); 2130 break; 2131 } 2132 } 2133 2134 // Create a CaseBlock record representing a conditional branch to 2135 // the Case's target mbb if the value being switched on SV is equal 2136 // to C. 2137 MachineBasicBlock *CurBlock = CR.CaseBB; 2138 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2139 MachineBasicBlock *FallThrough; 2140 if (I != E-1) { 2141 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2142 CurMF->insert(BBI, FallThrough); 2143 2144 // Put SV in a virtual register to make it available from the new blocks. 2145 ExportFromCurrentBlock(SV); 2146 } else { 2147 // If the last case doesn't match, go to the default block. 2148 FallThrough = Default; 2149 } 2150 2151 const Value *RHS, *LHS, *MHS; 2152 ISD::CondCode CC; 2153 if (I->High == I->Low) { 2154 // This is just small small case range :) containing exactly 1 case 2155 CC = ISD::SETEQ; 2156 LHS = SV; RHS = I->High; MHS = NULL; 2157 } else { 2158 CC = ISD::SETLE; 2159 LHS = I->Low; MHS = SV; RHS = I->High; 2160 } 2161 2162 // The false weight should be sum of all un-handled cases. 2163 UnhandledWeights -= I->ExtraWeight; 2164 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2165 /* me */ CurBlock, 2166 /* trueweight */ I->ExtraWeight, 2167 /* falseweight */ UnhandledWeights); 2168 2169 // If emitting the first comparison, just call visitSwitchCase to emit the 2170 // code into the current block. Otherwise, push the CaseBlock onto the 2171 // vector to be later processed by SDISel, and insert the node's MBB 2172 // before the next MBB. 2173 if (CurBlock == SwitchBB) 2174 visitSwitchCase(CB, SwitchBB); 2175 else 2176 SwitchCases.push_back(CB); 2177 2178 CurBlock = FallThrough; 2179 } 2180 2181 return true; 2182 } 2183 2184 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2185 return TLI.supportJumpTables() && 2186 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2187 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2188 } 2189 2190 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2191 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2192 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2193 return (LastExt - FirstExt + 1ULL); 2194 } 2195 2196 /// handleJTSwitchCase - Emit jumptable for current switch case range 2197 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2198 CaseRecVector &WorkList, 2199 const Value *SV, 2200 MachineBasicBlock *Default, 2201 MachineBasicBlock *SwitchBB) { 2202 Case& FrontCase = *CR.Range.first; 2203 Case& BackCase = *(CR.Range.second-1); 2204 2205 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2206 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2207 2208 APInt TSize(First.getBitWidth(), 0); 2209 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2210 TSize += I->size(); 2211 2212 const TargetLowering *TLI = TM.getTargetLowering(); 2213 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2214 return false; 2215 2216 APInt Range = ComputeRange(First, Last); 2217 // The density is TSize / Range. Require at least 40%. 2218 // It should not be possible for IntTSize to saturate for sane code, but make 2219 // sure we handle Range saturation correctly. 2220 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2221 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2222 if (IntTSize * 10 < IntRange * 4) 2223 return false; 2224 2225 DEBUG(dbgs() << "Lowering jump table\n" 2226 << "First entry: " << First << ". Last entry: " << Last << '\n' 2227 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2228 2229 // Get the MachineFunction which holds the current MBB. This is used when 2230 // inserting any additional MBBs necessary to represent the switch. 2231 MachineFunction *CurMF = FuncInfo.MF; 2232 2233 // Figure out which block is immediately after the current one. 2234 MachineFunction::iterator BBI = CR.CaseBB; 2235 ++BBI; 2236 2237 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2238 2239 // Create a new basic block to hold the code for loading the address 2240 // of the jump table, and jumping to it. Update successor information; 2241 // we will either branch to the default case for the switch, or the jump 2242 // table. 2243 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2244 CurMF->insert(BBI, JumpTableBB); 2245 2246 addSuccessorWithWeight(CR.CaseBB, Default); 2247 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2248 2249 // Build a vector of destination BBs, corresponding to each target 2250 // of the jump table. If the value of the jump table slot corresponds to 2251 // a case statement, push the case's BB onto the vector, otherwise, push 2252 // the default BB. 2253 std::vector<MachineBasicBlock*> DestBBs; 2254 APInt TEI = First; 2255 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2256 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2257 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2258 2259 if (Low.sle(TEI) && TEI.sle(High)) { 2260 DestBBs.push_back(I->BB); 2261 if (TEI==High) 2262 ++I; 2263 } else { 2264 DestBBs.push_back(Default); 2265 } 2266 } 2267 2268 // Calculate weight for each unique destination in CR. 2269 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2270 if (FuncInfo.BPI) 2271 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2272 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2273 DestWeights.find(I->BB); 2274 if (Itr != DestWeights.end()) 2275 Itr->second += I->ExtraWeight; 2276 else 2277 DestWeights[I->BB] = I->ExtraWeight; 2278 } 2279 2280 // Update successor info. Add one edge to each unique successor. 2281 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2282 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2283 E = DestBBs.end(); I != E; ++I) { 2284 if (!SuccsHandled[(*I)->getNumber()]) { 2285 SuccsHandled[(*I)->getNumber()] = true; 2286 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2287 DestWeights.find(*I); 2288 addSuccessorWithWeight(JumpTableBB, *I, 2289 Itr != DestWeights.end() ? Itr->second : 0); 2290 } 2291 } 2292 2293 // Create a jump table index for this jump table. 2294 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2295 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2296 ->createJumpTableIndex(DestBBs); 2297 2298 // Set the jump table information so that we can codegen it as a second 2299 // MachineBasicBlock 2300 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2301 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2302 if (CR.CaseBB == SwitchBB) 2303 visitJumpTableHeader(JT, JTH, SwitchBB); 2304 2305 JTCases.push_back(JumpTableBlock(JTH, JT)); 2306 return true; 2307 } 2308 2309 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2310 /// 2 subtrees. 2311 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2312 CaseRecVector& WorkList, 2313 const Value* SV, 2314 MachineBasicBlock* Default, 2315 MachineBasicBlock* SwitchBB) { 2316 // Get the MachineFunction which holds the current MBB. This is used when 2317 // inserting any additional MBBs necessary to represent the switch. 2318 MachineFunction *CurMF = FuncInfo.MF; 2319 2320 // Figure out which block is immediately after the current one. 2321 MachineFunction::iterator BBI = CR.CaseBB; 2322 ++BBI; 2323 2324 Case& FrontCase = *CR.Range.first; 2325 Case& BackCase = *(CR.Range.second-1); 2326 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2327 2328 // Size is the number of Cases represented by this range. 2329 unsigned Size = CR.Range.second - CR.Range.first; 2330 2331 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2332 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2333 double FMetric = 0; 2334 CaseItr Pivot = CR.Range.first + Size/2; 2335 2336 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2337 // (heuristically) allow us to emit JumpTable's later. 2338 APInt TSize(First.getBitWidth(), 0); 2339 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2340 I!=E; ++I) 2341 TSize += I->size(); 2342 2343 APInt LSize = FrontCase.size(); 2344 APInt RSize = TSize-LSize; 2345 DEBUG(dbgs() << "Selecting best pivot: \n" 2346 << "First: " << First << ", Last: " << Last <<'\n' 2347 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2348 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2349 J!=E; ++I, ++J) { 2350 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2351 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2352 APInt Range = ComputeRange(LEnd, RBegin); 2353 assert((Range - 2ULL).isNonNegative() && 2354 "Invalid case distance"); 2355 // Use volatile double here to avoid excess precision issues on some hosts, 2356 // e.g. that use 80-bit X87 registers. 2357 volatile double LDensity = 2358 (double)LSize.roundToDouble() / 2359 (LEnd - First + 1ULL).roundToDouble(); 2360 volatile double RDensity = 2361 (double)RSize.roundToDouble() / 2362 (Last - RBegin + 1ULL).roundToDouble(); 2363 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2364 // Should always split in some non-trivial place 2365 DEBUG(dbgs() <<"=>Step\n" 2366 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2367 << "LDensity: " << LDensity 2368 << ", RDensity: " << RDensity << '\n' 2369 << "Metric: " << Metric << '\n'); 2370 if (FMetric < Metric) { 2371 Pivot = J; 2372 FMetric = Metric; 2373 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2374 } 2375 2376 LSize += J->size(); 2377 RSize -= J->size(); 2378 } 2379 2380 const TargetLowering *TLI = TM.getTargetLowering(); 2381 if (areJTsAllowed(*TLI)) { 2382 // If our case is dense we *really* should handle it earlier! 2383 assert((FMetric > 0) && "Should handle dense range earlier!"); 2384 } else { 2385 Pivot = CR.Range.first + Size/2; 2386 } 2387 2388 CaseRange LHSR(CR.Range.first, Pivot); 2389 CaseRange RHSR(Pivot, CR.Range.second); 2390 const Constant *C = Pivot->Low; 2391 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2392 2393 // We know that we branch to the LHS if the Value being switched on is 2394 // less than the Pivot value, C. We use this to optimize our binary 2395 // tree a bit, by recognizing that if SV is greater than or equal to the 2396 // LHS's Case Value, and that Case Value is exactly one less than the 2397 // Pivot's Value, then we can branch directly to the LHS's Target, 2398 // rather than creating a leaf node for it. 2399 if ((LHSR.second - LHSR.first) == 1 && 2400 LHSR.first->High == CR.GE && 2401 cast<ConstantInt>(C)->getValue() == 2402 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2403 TrueBB = LHSR.first->BB; 2404 } else { 2405 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2406 CurMF->insert(BBI, TrueBB); 2407 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2408 2409 // Put SV in a virtual register to make it available from the new blocks. 2410 ExportFromCurrentBlock(SV); 2411 } 2412 2413 // Similar to the optimization above, if the Value being switched on is 2414 // known to be less than the Constant CR.LT, and the current Case Value 2415 // is CR.LT - 1, then we can branch directly to the target block for 2416 // the current Case Value, rather than emitting a RHS leaf node for it. 2417 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2418 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2419 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2420 FalseBB = RHSR.first->BB; 2421 } else { 2422 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2423 CurMF->insert(BBI, FalseBB); 2424 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2425 2426 // Put SV in a virtual register to make it available from the new blocks. 2427 ExportFromCurrentBlock(SV); 2428 } 2429 2430 // Create a CaseBlock record representing a conditional branch to 2431 // the LHS node if the value being switched on SV is less than C. 2432 // Otherwise, branch to LHS. 2433 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2434 2435 if (CR.CaseBB == SwitchBB) 2436 visitSwitchCase(CB, SwitchBB); 2437 else 2438 SwitchCases.push_back(CB); 2439 2440 return true; 2441 } 2442 2443 /// handleBitTestsSwitchCase - if current case range has few destination and 2444 /// range span less, than machine word bitwidth, encode case range into series 2445 /// of masks and emit bit tests with these masks. 2446 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2447 CaseRecVector& WorkList, 2448 const Value* SV, 2449 MachineBasicBlock* Default, 2450 MachineBasicBlock* SwitchBB) { 2451 const TargetLowering *TLI = TM.getTargetLowering(); 2452 EVT PTy = TLI->getPointerTy(); 2453 unsigned IntPtrBits = PTy.getSizeInBits(); 2454 2455 Case& FrontCase = *CR.Range.first; 2456 Case& BackCase = *(CR.Range.second-1); 2457 2458 // Get the MachineFunction which holds the current MBB. This is used when 2459 // inserting any additional MBBs necessary to represent the switch. 2460 MachineFunction *CurMF = FuncInfo.MF; 2461 2462 // If target does not have legal shift left, do not emit bit tests at all. 2463 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2464 return false; 2465 2466 size_t numCmps = 0; 2467 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2468 I!=E; ++I) { 2469 // Single case counts one, case range - two. 2470 numCmps += (I->Low == I->High ? 1 : 2); 2471 } 2472 2473 // Count unique destinations 2474 SmallSet<MachineBasicBlock*, 4> Dests; 2475 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2476 Dests.insert(I->BB); 2477 if (Dests.size() > 3) 2478 // Don't bother the code below, if there are too much unique destinations 2479 return false; 2480 } 2481 DEBUG(dbgs() << "Total number of unique destinations: " 2482 << Dests.size() << '\n' 2483 << "Total number of comparisons: " << numCmps << '\n'); 2484 2485 // Compute span of values. 2486 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2487 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2488 APInt cmpRange = maxValue - minValue; 2489 2490 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2491 << "Low bound: " << minValue << '\n' 2492 << "High bound: " << maxValue << '\n'); 2493 2494 if (cmpRange.uge(IntPtrBits) || 2495 (!(Dests.size() == 1 && numCmps >= 3) && 2496 !(Dests.size() == 2 && numCmps >= 5) && 2497 !(Dests.size() >= 3 && numCmps >= 6))) 2498 return false; 2499 2500 DEBUG(dbgs() << "Emitting bit tests\n"); 2501 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2502 2503 // Optimize the case where all the case values fit in a 2504 // word without having to subtract minValue. In this case, 2505 // we can optimize away the subtraction. 2506 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2507 cmpRange = maxValue; 2508 } else { 2509 lowBound = minValue; 2510 } 2511 2512 CaseBitsVector CasesBits; 2513 unsigned i, count = 0; 2514 2515 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2516 MachineBasicBlock* Dest = I->BB; 2517 for (i = 0; i < count; ++i) 2518 if (Dest == CasesBits[i].BB) 2519 break; 2520 2521 if (i == count) { 2522 assert((count < 3) && "Too much destinations to test!"); 2523 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2524 count++; 2525 } 2526 2527 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2528 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2529 2530 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2531 uint64_t hi = (highValue - lowBound).getZExtValue(); 2532 CasesBits[i].ExtraWeight += I->ExtraWeight; 2533 2534 for (uint64_t j = lo; j <= hi; j++) { 2535 CasesBits[i].Mask |= 1ULL << j; 2536 CasesBits[i].Bits++; 2537 } 2538 2539 } 2540 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2541 2542 BitTestInfo BTC; 2543 2544 // Figure out which block is immediately after the current one. 2545 MachineFunction::iterator BBI = CR.CaseBB; 2546 ++BBI; 2547 2548 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2549 2550 DEBUG(dbgs() << "Cases:\n"); 2551 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2552 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2553 << ", Bits: " << CasesBits[i].Bits 2554 << ", BB: " << CasesBits[i].BB << '\n'); 2555 2556 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2557 CurMF->insert(BBI, CaseBB); 2558 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2559 CaseBB, 2560 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2561 2562 // Put SV in a virtual register to make it available from the new blocks. 2563 ExportFromCurrentBlock(SV); 2564 } 2565 2566 BitTestBlock BTB(lowBound, cmpRange, SV, 2567 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2568 CR.CaseBB, Default, BTC); 2569 2570 if (CR.CaseBB == SwitchBB) 2571 visitBitTestHeader(BTB, SwitchBB); 2572 2573 BitTestCases.push_back(BTB); 2574 2575 return true; 2576 } 2577 2578 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2579 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2580 const SwitchInst& SI) { 2581 size_t numCmps = 0; 2582 2583 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2584 // Start with "simple" cases 2585 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2586 i != e; ++i) { 2587 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2588 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2589 2590 uint32_t ExtraWeight = 2591 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2592 2593 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2594 SMBB, ExtraWeight)); 2595 } 2596 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2597 2598 // Merge case into clusters 2599 if (Cases.size() >= 2) 2600 // Must recompute end() each iteration because it may be 2601 // invalidated by erase if we hold on to it 2602 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2603 J != Cases.end(); ) { 2604 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2605 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2606 MachineBasicBlock* nextBB = J->BB; 2607 MachineBasicBlock* currentBB = I->BB; 2608 2609 // If the two neighboring cases go to the same destination, merge them 2610 // into a single case. 2611 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2612 I->High = J->High; 2613 I->ExtraWeight += J->ExtraWeight; 2614 J = Cases.erase(J); 2615 } else { 2616 I = J++; 2617 } 2618 } 2619 2620 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2621 if (I->Low != I->High) 2622 // A range counts double, since it requires two compares. 2623 ++numCmps; 2624 } 2625 2626 return numCmps; 2627 } 2628 2629 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2630 MachineBasicBlock *Last) { 2631 // Update JTCases. 2632 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2633 if (JTCases[i].first.HeaderBB == First) 2634 JTCases[i].first.HeaderBB = Last; 2635 2636 // Update BitTestCases. 2637 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2638 if (BitTestCases[i].Parent == First) 2639 BitTestCases[i].Parent = Last; 2640 } 2641 2642 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2643 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2644 2645 // Figure out which block is immediately after the current one. 2646 MachineBasicBlock *NextBlock = 0; 2647 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2648 2649 // If there is only the default destination, branch to it if it is not the 2650 // next basic block. Otherwise, just fall through. 2651 if (!SI.getNumCases()) { 2652 // Update machine-CFG edges. 2653 2654 // If this is not a fall-through branch, emit the branch. 2655 SwitchMBB->addSuccessor(Default); 2656 if (Default != NextBlock) 2657 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2658 MVT::Other, getControlRoot(), 2659 DAG.getBasicBlock(Default))); 2660 2661 return; 2662 } 2663 2664 // If there are any non-default case statements, create a vector of Cases 2665 // representing each one, and sort the vector so that we can efficiently 2666 // create a binary search tree from them. 2667 CaseVector Cases; 2668 size_t numCmps = Clusterify(Cases, SI); 2669 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2670 << ". Total compares: " << numCmps << '\n'); 2671 (void)numCmps; 2672 2673 // Get the Value to be switched on and default basic blocks, which will be 2674 // inserted into CaseBlock records, representing basic blocks in the binary 2675 // search tree. 2676 const Value *SV = SI.getCondition(); 2677 2678 // Push the initial CaseRec onto the worklist 2679 CaseRecVector WorkList; 2680 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2681 CaseRange(Cases.begin(),Cases.end()))); 2682 2683 while (!WorkList.empty()) { 2684 // Grab a record representing a case range to process off the worklist 2685 CaseRec CR = WorkList.back(); 2686 WorkList.pop_back(); 2687 2688 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2689 continue; 2690 2691 // If the range has few cases (two or less) emit a series of specific 2692 // tests. 2693 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2694 continue; 2695 2696 // If the switch has more than N blocks, and is at least 40% dense, and the 2697 // target supports indirect branches, then emit a jump table rather than 2698 // lowering the switch to a binary tree of conditional branches. 2699 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2700 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2701 continue; 2702 2703 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2704 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2705 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2706 } 2707 } 2708 2709 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2710 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2711 2712 // Update machine-CFG edges with unique successors. 2713 SmallSet<BasicBlock*, 32> Done; 2714 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2715 BasicBlock *BB = I.getSuccessor(i); 2716 bool Inserted = Done.insert(BB); 2717 if (!Inserted) 2718 continue; 2719 2720 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2721 addSuccessorWithWeight(IndirectBrMBB, Succ); 2722 } 2723 2724 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2725 MVT::Other, getControlRoot(), 2726 getValue(I.getAddress()))); 2727 } 2728 2729 void SelectionDAGBuilder::visitFSub(const User &I) { 2730 // -0.0 - X --> fneg 2731 Type *Ty = I.getType(); 2732 if (isa<Constant>(I.getOperand(0)) && 2733 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2734 SDValue Op2 = getValue(I.getOperand(1)); 2735 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2736 Op2.getValueType(), Op2)); 2737 return; 2738 } 2739 2740 visitBinary(I, ISD::FSUB); 2741 } 2742 2743 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2744 SDValue Op1 = getValue(I.getOperand(0)); 2745 SDValue Op2 = getValue(I.getOperand(1)); 2746 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2747 Op1.getValueType(), Op1, Op2)); 2748 } 2749 2750 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2751 SDValue Op1 = getValue(I.getOperand(0)); 2752 SDValue Op2 = getValue(I.getOperand(1)); 2753 2754 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2755 2756 // Coerce the shift amount to the right type if we can. 2757 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2758 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2759 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2760 SDLoc DL = getCurSDLoc(); 2761 2762 // If the operand is smaller than the shift count type, promote it. 2763 if (ShiftSize > Op2Size) 2764 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2765 2766 // If the operand is larger than the shift count type but the shift 2767 // count type has enough bits to represent any shift value, truncate 2768 // it now. This is a common case and it exposes the truncate to 2769 // optimization early. 2770 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2771 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2772 // Otherwise we'll need to temporarily settle for some other convenient 2773 // type. Type legalization will make adjustments once the shiftee is split. 2774 else 2775 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2776 } 2777 2778 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2779 Op1.getValueType(), Op1, Op2)); 2780 } 2781 2782 void SelectionDAGBuilder::visitSDiv(const User &I) { 2783 SDValue Op1 = getValue(I.getOperand(0)); 2784 SDValue Op2 = getValue(I.getOperand(1)); 2785 2786 // Turn exact SDivs into multiplications. 2787 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2788 // exact bit. 2789 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2790 !isa<ConstantSDNode>(Op1) && 2791 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2792 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2793 getCurSDLoc(), DAG)); 2794 else 2795 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2796 Op1, Op2)); 2797 } 2798 2799 void SelectionDAGBuilder::visitICmp(const User &I) { 2800 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2801 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2802 predicate = IC->getPredicate(); 2803 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2804 predicate = ICmpInst::Predicate(IC->getPredicate()); 2805 SDValue Op1 = getValue(I.getOperand(0)); 2806 SDValue Op2 = getValue(I.getOperand(1)); 2807 ISD::CondCode Opcode = getICmpCondCode(predicate); 2808 2809 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2810 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2811 } 2812 2813 void SelectionDAGBuilder::visitFCmp(const User &I) { 2814 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2815 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2816 predicate = FC->getPredicate(); 2817 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2818 predicate = FCmpInst::Predicate(FC->getPredicate()); 2819 SDValue Op1 = getValue(I.getOperand(0)); 2820 SDValue Op2 = getValue(I.getOperand(1)); 2821 ISD::CondCode Condition = getFCmpCondCode(predicate); 2822 if (TM.Options.NoNaNsFPMath) 2823 Condition = getFCmpCodeWithoutNaN(Condition); 2824 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2825 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2826 } 2827 2828 void SelectionDAGBuilder::visitSelect(const User &I) { 2829 SmallVector<EVT, 4> ValueVTs; 2830 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2831 unsigned NumValues = ValueVTs.size(); 2832 if (NumValues == 0) return; 2833 2834 SmallVector<SDValue, 4> Values(NumValues); 2835 SDValue Cond = getValue(I.getOperand(0)); 2836 SDValue TrueVal = getValue(I.getOperand(1)); 2837 SDValue FalseVal = getValue(I.getOperand(2)); 2838 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2839 ISD::VSELECT : ISD::SELECT; 2840 2841 for (unsigned i = 0; i != NumValues; ++i) 2842 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2843 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2844 Cond, 2845 SDValue(TrueVal.getNode(), 2846 TrueVal.getResNo() + i), 2847 SDValue(FalseVal.getNode(), 2848 FalseVal.getResNo() + i)); 2849 2850 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2851 DAG.getVTList(&ValueVTs[0], NumValues), 2852 &Values[0], NumValues)); 2853 } 2854 2855 void SelectionDAGBuilder::visitTrunc(const User &I) { 2856 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2857 SDValue N = getValue(I.getOperand(0)); 2858 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2859 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2860 } 2861 2862 void SelectionDAGBuilder::visitZExt(const User &I) { 2863 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2864 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2865 SDValue N = getValue(I.getOperand(0)); 2866 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2867 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2868 } 2869 2870 void SelectionDAGBuilder::visitSExt(const User &I) { 2871 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2872 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2873 SDValue N = getValue(I.getOperand(0)); 2874 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2875 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2876 } 2877 2878 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2879 // FPTrunc is never a no-op cast, no need to check 2880 SDValue N = getValue(I.getOperand(0)); 2881 const TargetLowering *TLI = TM.getTargetLowering(); 2882 EVT DestVT = TLI->getValueType(I.getType()); 2883 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2884 DestVT, N, 2885 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2886 } 2887 2888 void SelectionDAGBuilder::visitFPExt(const User &I) { 2889 // FPExt is never a no-op cast, no need to check 2890 SDValue N = getValue(I.getOperand(0)); 2891 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2892 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2893 } 2894 2895 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2896 // FPToUI is never a no-op cast, no need to check 2897 SDValue N = getValue(I.getOperand(0)); 2898 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2899 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2900 } 2901 2902 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2903 // FPToSI is never a no-op cast, no need to check 2904 SDValue N = getValue(I.getOperand(0)); 2905 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2906 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2907 } 2908 2909 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2910 // UIToFP is never a no-op cast, no need to check 2911 SDValue N = getValue(I.getOperand(0)); 2912 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2913 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2914 } 2915 2916 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2917 // SIToFP is never a no-op cast, no need to check 2918 SDValue N = getValue(I.getOperand(0)); 2919 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2920 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2921 } 2922 2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2924 // What to do depends on the size of the integer and the size of the pointer. 2925 // We can either truncate, zero extend, or no-op, accordingly. 2926 SDValue N = getValue(I.getOperand(0)); 2927 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2928 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2929 } 2930 2931 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2932 // What to do depends on the size of the integer and the size of the pointer. 2933 // We can either truncate, zero extend, or no-op, accordingly. 2934 SDValue N = getValue(I.getOperand(0)); 2935 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2936 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2937 } 2938 2939 void SelectionDAGBuilder::visitBitCast(const User &I) { 2940 SDValue N = getValue(I.getOperand(0)); 2941 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2942 2943 // BitCast assures us that source and destination are the same size so this is 2944 // either a BITCAST or a no-op. 2945 if (DestVT != N.getValueType()) 2946 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2947 DestVT, N)); // convert types. 2948 else if(ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 2949 setValue(&I, DAG.getConstant(C->getAPIntValue(), C->getValueType(0), 2950 /*isTarget=*/false, /*isOpaque*/true)); 2951 else 2952 setValue(&I, N); // noop cast. 2953 } 2954 2955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2957 const Value *SV = I.getOperand(0); 2958 SDValue N = getValue(SV); 2959 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2960 2961 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2962 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2963 2964 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2965 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2966 2967 setValue(&I, N); 2968 } 2969 2970 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2972 SDValue InVec = getValue(I.getOperand(0)); 2973 SDValue InVal = getValue(I.getOperand(1)); 2974 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2975 getCurSDLoc(), TLI.getVectorIdxTy()); 2976 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2977 TM.getTargetLowering()->getValueType(I.getType()), 2978 InVec, InVal, InIdx)); 2979 } 2980 2981 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2983 SDValue InVec = getValue(I.getOperand(0)); 2984 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2985 getCurSDLoc(), TLI.getVectorIdxTy()); 2986 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2987 TM.getTargetLowering()->getValueType(I.getType()), 2988 InVec, InIdx)); 2989 } 2990 2991 // Utility for visitShuffleVector - Return true if every element in Mask, 2992 // beginning from position Pos and ending in Pos+Size, falls within the 2993 // specified sequential range [L, L+Pos). or is undef. 2994 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2995 unsigned Pos, unsigned Size, int Low) { 2996 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2997 if (Mask[i] >= 0 && Mask[i] != Low) 2998 return false; 2999 return true; 3000 } 3001 3002 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3003 SDValue Src1 = getValue(I.getOperand(0)); 3004 SDValue Src2 = getValue(I.getOperand(1)); 3005 3006 SmallVector<int, 8> Mask; 3007 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3008 unsigned MaskNumElts = Mask.size(); 3009 3010 const TargetLowering *TLI = TM.getTargetLowering(); 3011 EVT VT = TLI->getValueType(I.getType()); 3012 EVT SrcVT = Src1.getValueType(); 3013 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3014 3015 if (SrcNumElts == MaskNumElts) { 3016 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3017 &Mask[0])); 3018 return; 3019 } 3020 3021 // Normalize the shuffle vector since mask and vector length don't match. 3022 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3023 // Mask is longer than the source vectors and is a multiple of the source 3024 // vectors. We can use concatenate vector to make the mask and vectors 3025 // lengths match. 3026 if (SrcNumElts*2 == MaskNumElts) { 3027 // First check for Src1 in low and Src2 in high 3028 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3029 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3030 // The shuffle is concatenating two vectors together. 3031 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3032 VT, Src1, Src2)); 3033 return; 3034 } 3035 // Then check for Src2 in low and Src1 in high 3036 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3037 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3038 // The shuffle is concatenating two vectors together. 3039 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3040 VT, Src2, Src1)); 3041 return; 3042 } 3043 } 3044 3045 // Pad both vectors with undefs to make them the same length as the mask. 3046 unsigned NumConcat = MaskNumElts / SrcNumElts; 3047 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3048 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3049 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3050 3051 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3052 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3053 MOps1[0] = Src1; 3054 MOps2[0] = Src2; 3055 3056 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3057 getCurSDLoc(), VT, 3058 &MOps1[0], NumConcat); 3059 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3060 getCurSDLoc(), VT, 3061 &MOps2[0], NumConcat); 3062 3063 // Readjust mask for new input vector length. 3064 SmallVector<int, 8> MappedOps; 3065 for (unsigned i = 0; i != MaskNumElts; ++i) { 3066 int Idx = Mask[i]; 3067 if (Idx >= (int)SrcNumElts) 3068 Idx -= SrcNumElts - MaskNumElts; 3069 MappedOps.push_back(Idx); 3070 } 3071 3072 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3073 &MappedOps[0])); 3074 return; 3075 } 3076 3077 if (SrcNumElts > MaskNumElts) { 3078 // Analyze the access pattern of the vector to see if we can extract 3079 // two subvectors and do the shuffle. The analysis is done by calculating 3080 // the range of elements the mask access on both vectors. 3081 int MinRange[2] = { static_cast<int>(SrcNumElts), 3082 static_cast<int>(SrcNumElts)}; 3083 int MaxRange[2] = {-1, -1}; 3084 3085 for (unsigned i = 0; i != MaskNumElts; ++i) { 3086 int Idx = Mask[i]; 3087 unsigned Input = 0; 3088 if (Idx < 0) 3089 continue; 3090 3091 if (Idx >= (int)SrcNumElts) { 3092 Input = 1; 3093 Idx -= SrcNumElts; 3094 } 3095 if (Idx > MaxRange[Input]) 3096 MaxRange[Input] = Idx; 3097 if (Idx < MinRange[Input]) 3098 MinRange[Input] = Idx; 3099 } 3100 3101 // Check if the access is smaller than the vector size and can we find 3102 // a reasonable extract index. 3103 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3104 // Extract. 3105 int StartIdx[2]; // StartIdx to extract from 3106 for (unsigned Input = 0; Input < 2; ++Input) { 3107 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3108 RangeUse[Input] = 0; // Unused 3109 StartIdx[Input] = 0; 3110 continue; 3111 } 3112 3113 // Find a good start index that is a multiple of the mask length. Then 3114 // see if the rest of the elements are in range. 3115 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3116 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3117 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3118 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3119 } 3120 3121 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3122 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3123 return; 3124 } 3125 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3126 // Extract appropriate subvector and generate a vector shuffle 3127 for (unsigned Input = 0; Input < 2; ++Input) { 3128 SDValue &Src = Input == 0 ? Src1 : Src2; 3129 if (RangeUse[Input] == 0) 3130 Src = DAG.getUNDEF(VT); 3131 else 3132 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3133 Src, DAG.getConstant(StartIdx[Input], 3134 TLI->getVectorIdxTy())); 3135 } 3136 3137 // Calculate new mask. 3138 SmallVector<int, 8> MappedOps; 3139 for (unsigned i = 0; i != MaskNumElts; ++i) { 3140 int Idx = Mask[i]; 3141 if (Idx >= 0) { 3142 if (Idx < (int)SrcNumElts) 3143 Idx -= StartIdx[0]; 3144 else 3145 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3146 } 3147 MappedOps.push_back(Idx); 3148 } 3149 3150 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3151 &MappedOps[0])); 3152 return; 3153 } 3154 } 3155 3156 // We can't use either concat vectors or extract subvectors so fall back to 3157 // replacing the shuffle with extract and build vector. 3158 // to insert and build vector. 3159 EVT EltVT = VT.getVectorElementType(); 3160 EVT IdxVT = TLI->getVectorIdxTy(); 3161 SmallVector<SDValue,8> Ops; 3162 for (unsigned i = 0; i != MaskNumElts; ++i) { 3163 int Idx = Mask[i]; 3164 SDValue Res; 3165 3166 if (Idx < 0) { 3167 Res = DAG.getUNDEF(EltVT); 3168 } else { 3169 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3170 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3171 3172 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3173 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3174 } 3175 3176 Ops.push_back(Res); 3177 } 3178 3179 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3180 VT, &Ops[0], Ops.size())); 3181 } 3182 3183 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3184 const Value *Op0 = I.getOperand(0); 3185 const Value *Op1 = I.getOperand(1); 3186 Type *AggTy = I.getType(); 3187 Type *ValTy = Op1->getType(); 3188 bool IntoUndef = isa<UndefValue>(Op0); 3189 bool FromUndef = isa<UndefValue>(Op1); 3190 3191 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3192 3193 const TargetLowering *TLI = TM.getTargetLowering(); 3194 SmallVector<EVT, 4> AggValueVTs; 3195 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3196 SmallVector<EVT, 4> ValValueVTs; 3197 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3198 3199 unsigned NumAggValues = AggValueVTs.size(); 3200 unsigned NumValValues = ValValueVTs.size(); 3201 SmallVector<SDValue, 4> Values(NumAggValues); 3202 3203 SDValue Agg = getValue(Op0); 3204 unsigned i = 0; 3205 // Copy the beginning value(s) from the original aggregate. 3206 for (; i != LinearIndex; ++i) 3207 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3208 SDValue(Agg.getNode(), Agg.getResNo() + i); 3209 // Copy values from the inserted value(s). 3210 if (NumValValues) { 3211 SDValue Val = getValue(Op1); 3212 for (; i != LinearIndex + NumValValues; ++i) 3213 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3214 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3215 } 3216 // Copy remaining value(s) from the original aggregate. 3217 for (; i != NumAggValues; ++i) 3218 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3219 SDValue(Agg.getNode(), Agg.getResNo() + i); 3220 3221 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3222 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3223 &Values[0], NumAggValues)); 3224 } 3225 3226 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3227 const Value *Op0 = I.getOperand(0); 3228 Type *AggTy = Op0->getType(); 3229 Type *ValTy = I.getType(); 3230 bool OutOfUndef = isa<UndefValue>(Op0); 3231 3232 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3233 3234 const TargetLowering *TLI = TM.getTargetLowering(); 3235 SmallVector<EVT, 4> ValValueVTs; 3236 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3237 3238 unsigned NumValValues = ValValueVTs.size(); 3239 3240 // Ignore a extractvalue that produces an empty object 3241 if (!NumValValues) { 3242 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3243 return; 3244 } 3245 3246 SmallVector<SDValue, 4> Values(NumValValues); 3247 3248 SDValue Agg = getValue(Op0); 3249 // Copy out the selected value(s). 3250 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3251 Values[i - LinearIndex] = 3252 OutOfUndef ? 3253 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3254 SDValue(Agg.getNode(), Agg.getResNo() + i); 3255 3256 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3257 DAG.getVTList(&ValValueVTs[0], NumValValues), 3258 &Values[0], NumValValues)); 3259 } 3260 3261 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3262 Value *Op0 = I.getOperand(0); 3263 // Note that the pointer operand may be a vector of pointers. Take the scalar 3264 // element which holds a pointer. 3265 Type *Ty = Op0->getType()->getScalarType(); 3266 unsigned AS = Ty->getPointerAddressSpace(); 3267 SDValue N = getValue(Op0); 3268 3269 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3270 OI != E; ++OI) { 3271 const Value *Idx = *OI; 3272 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3273 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3274 if (Field) { 3275 // N = N + Offset 3276 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3277 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3278 DAG.getConstant(Offset, N.getValueType())); 3279 } 3280 3281 Ty = StTy->getElementType(Field); 3282 } else { 3283 Ty = cast<SequentialType>(Ty)->getElementType(); 3284 3285 // If this is a constant subscript, handle it quickly. 3286 const TargetLowering *TLI = TM.getTargetLowering(); 3287 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3288 if (CI->isZero()) continue; 3289 uint64_t Offs = 3290 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3291 SDValue OffsVal; 3292 EVT PTy = TLI->getPointerTy(AS); 3293 unsigned PtrBits = PTy.getSizeInBits(); 3294 if (PtrBits < 64) 3295 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3296 DAG.getConstant(Offs, MVT::i64)); 3297 else 3298 OffsVal = DAG.getConstant(Offs, PTy); 3299 3300 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3301 OffsVal); 3302 continue; 3303 } 3304 3305 // N = N + Idx * ElementSize; 3306 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3307 TD->getTypeAllocSize(Ty)); 3308 SDValue IdxN = getValue(Idx); 3309 3310 // If the index is smaller or larger than intptr_t, truncate or extend 3311 // it. 3312 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3313 3314 // If this is a multiply by a power of two, turn it into a shl 3315 // immediately. This is a very common case. 3316 if (ElementSize != 1) { 3317 if (ElementSize.isPowerOf2()) { 3318 unsigned Amt = ElementSize.logBase2(); 3319 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3320 N.getValueType(), IdxN, 3321 DAG.getConstant(Amt, IdxN.getValueType())); 3322 } else { 3323 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3324 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3325 N.getValueType(), IdxN, Scale); 3326 } 3327 } 3328 3329 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3330 N.getValueType(), N, IdxN); 3331 } 3332 } 3333 3334 setValue(&I, N); 3335 } 3336 3337 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3338 // If this is a fixed sized alloca in the entry block of the function, 3339 // allocate it statically on the stack. 3340 if (FuncInfo.StaticAllocaMap.count(&I)) 3341 return; // getValue will auto-populate this. 3342 3343 Type *Ty = I.getAllocatedType(); 3344 const TargetLowering *TLI = TM.getTargetLowering(); 3345 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3346 unsigned Align = 3347 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3348 I.getAlignment()); 3349 3350 SDValue AllocSize = getValue(I.getArraySize()); 3351 3352 EVT IntPtr = TLI->getPointerTy(); 3353 if (AllocSize.getValueType() != IntPtr) 3354 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3355 3356 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3357 AllocSize, 3358 DAG.getConstant(TySize, IntPtr)); 3359 3360 // Handle alignment. If the requested alignment is less than or equal to 3361 // the stack alignment, ignore it. If the size is greater than or equal to 3362 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3363 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3364 if (Align <= StackAlign) 3365 Align = 0; 3366 3367 // Round the size of the allocation up to the stack alignment size 3368 // by add SA-1 to the size. 3369 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3370 AllocSize.getValueType(), AllocSize, 3371 DAG.getIntPtrConstant(StackAlign-1)); 3372 3373 // Mask out the low bits for alignment purposes. 3374 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3375 AllocSize.getValueType(), AllocSize, 3376 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3377 3378 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3379 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3380 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3381 VTs, Ops, 3); 3382 setValue(&I, DSA); 3383 DAG.setRoot(DSA.getValue(1)); 3384 3385 // Inform the Frame Information that we have just allocated a variable-sized 3386 // object. 3387 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, &I); 3388 } 3389 3390 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3391 if (I.isAtomic()) 3392 return visitAtomicLoad(I); 3393 3394 const Value *SV = I.getOperand(0); 3395 SDValue Ptr = getValue(SV); 3396 3397 Type *Ty = I.getType(); 3398 3399 bool isVolatile = I.isVolatile(); 3400 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3401 bool isInvariant = I.getMetadata("invariant.load") != 0; 3402 unsigned Alignment = I.getAlignment(); 3403 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3404 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3405 3406 SmallVector<EVT, 4> ValueVTs; 3407 SmallVector<uint64_t, 4> Offsets; 3408 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3409 unsigned NumValues = ValueVTs.size(); 3410 if (NumValues == 0) 3411 return; 3412 3413 SDValue Root; 3414 bool ConstantMemory = false; 3415 if (isVolatile || NumValues > MaxParallelChains) 3416 // Serialize volatile loads with other side effects. 3417 Root = getRoot(); 3418 else if (AA->pointsToConstantMemory( 3419 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3420 // Do not serialize (non-volatile) loads of constant memory with anything. 3421 Root = DAG.getEntryNode(); 3422 ConstantMemory = true; 3423 } else { 3424 // Do not serialize non-volatile loads against each other. 3425 Root = DAG.getRoot(); 3426 } 3427 3428 const TargetLowering *TLI = TM.getTargetLowering(); 3429 if (isVolatile) 3430 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3431 3432 SmallVector<SDValue, 4> Values(NumValues); 3433 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3434 NumValues)); 3435 EVT PtrVT = Ptr.getValueType(); 3436 unsigned ChainI = 0; 3437 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3438 // Serializing loads here may result in excessive register pressure, and 3439 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3440 // could recover a bit by hoisting nodes upward in the chain by recognizing 3441 // they are side-effect free or do not alias. The optimizer should really 3442 // avoid this case by converting large object/array copies to llvm.memcpy 3443 // (MaxParallelChains should always remain as failsafe). 3444 if (ChainI == MaxParallelChains) { 3445 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3446 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3447 MVT::Other, &Chains[0], ChainI); 3448 Root = Chain; 3449 ChainI = 0; 3450 } 3451 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3452 PtrVT, Ptr, 3453 DAG.getConstant(Offsets[i], PtrVT)); 3454 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3455 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3456 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3457 Ranges); 3458 3459 Values[i] = L; 3460 Chains[ChainI] = L.getValue(1); 3461 } 3462 3463 if (!ConstantMemory) { 3464 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3465 MVT::Other, &Chains[0], ChainI); 3466 if (isVolatile) 3467 DAG.setRoot(Chain); 3468 else 3469 PendingLoads.push_back(Chain); 3470 } 3471 3472 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3473 DAG.getVTList(&ValueVTs[0], NumValues), 3474 &Values[0], NumValues)); 3475 } 3476 3477 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3478 if (I.isAtomic()) 3479 return visitAtomicStore(I); 3480 3481 const Value *SrcV = I.getOperand(0); 3482 const Value *PtrV = I.getOperand(1); 3483 3484 SmallVector<EVT, 4> ValueVTs; 3485 SmallVector<uint64_t, 4> Offsets; 3486 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3487 unsigned NumValues = ValueVTs.size(); 3488 if (NumValues == 0) 3489 return; 3490 3491 // Get the lowered operands. Note that we do this after 3492 // checking if NumResults is zero, because with zero results 3493 // the operands won't have values in the map. 3494 SDValue Src = getValue(SrcV); 3495 SDValue Ptr = getValue(PtrV); 3496 3497 SDValue Root = getRoot(); 3498 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3499 NumValues)); 3500 EVT PtrVT = Ptr.getValueType(); 3501 bool isVolatile = I.isVolatile(); 3502 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3503 unsigned Alignment = I.getAlignment(); 3504 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3505 3506 unsigned ChainI = 0; 3507 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3508 // See visitLoad comments. 3509 if (ChainI == MaxParallelChains) { 3510 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3511 MVT::Other, &Chains[0], ChainI); 3512 Root = Chain; 3513 ChainI = 0; 3514 } 3515 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3516 DAG.getConstant(Offsets[i], PtrVT)); 3517 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3518 SDValue(Src.getNode(), Src.getResNo() + i), 3519 Add, MachinePointerInfo(PtrV, Offsets[i]), 3520 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3521 Chains[ChainI] = St; 3522 } 3523 3524 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3525 MVT::Other, &Chains[0], ChainI); 3526 DAG.setRoot(StoreNode); 3527 } 3528 3529 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3530 SynchronizationScope Scope, 3531 bool Before, SDLoc dl, 3532 SelectionDAG &DAG, 3533 const TargetLowering &TLI) { 3534 // Fence, if necessary 3535 if (Before) { 3536 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3537 Order = Release; 3538 else if (Order == Acquire || Order == Monotonic) 3539 return Chain; 3540 } else { 3541 if (Order == AcquireRelease) 3542 Order = Acquire; 3543 else if (Order == Release || Order == Monotonic) 3544 return Chain; 3545 } 3546 SDValue Ops[3]; 3547 Ops[0] = Chain; 3548 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3549 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3550 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3551 } 3552 3553 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3554 SDLoc dl = getCurSDLoc(); 3555 AtomicOrdering Order = I.getOrdering(); 3556 SynchronizationScope Scope = I.getSynchScope(); 3557 3558 SDValue InChain = getRoot(); 3559 3560 const TargetLowering *TLI = TM.getTargetLowering(); 3561 if (TLI->getInsertFencesForAtomic()) 3562 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3563 DAG, *TLI); 3564 3565 SDValue L = 3566 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3567 getValue(I.getCompareOperand()).getSimpleValueType(), 3568 InChain, 3569 getValue(I.getPointerOperand()), 3570 getValue(I.getCompareOperand()), 3571 getValue(I.getNewValOperand()), 3572 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3573 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3574 Scope); 3575 3576 SDValue OutChain = L.getValue(1); 3577 3578 if (TLI->getInsertFencesForAtomic()) 3579 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3580 DAG, *TLI); 3581 3582 setValue(&I, L); 3583 DAG.setRoot(OutChain); 3584 } 3585 3586 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3587 SDLoc dl = getCurSDLoc(); 3588 ISD::NodeType NT; 3589 switch (I.getOperation()) { 3590 default: llvm_unreachable("Unknown atomicrmw operation"); 3591 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3592 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3593 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3594 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3595 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3596 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3597 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3598 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3599 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3600 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3601 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3602 } 3603 AtomicOrdering Order = I.getOrdering(); 3604 SynchronizationScope Scope = I.getSynchScope(); 3605 3606 SDValue InChain = getRoot(); 3607 3608 const TargetLowering *TLI = TM.getTargetLowering(); 3609 if (TLI->getInsertFencesForAtomic()) 3610 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3611 DAG, *TLI); 3612 3613 SDValue L = 3614 DAG.getAtomic(NT, dl, 3615 getValue(I.getValOperand()).getSimpleValueType(), 3616 InChain, 3617 getValue(I.getPointerOperand()), 3618 getValue(I.getValOperand()), 3619 I.getPointerOperand(), 0 /* Alignment */, 3620 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3621 Scope); 3622 3623 SDValue OutChain = L.getValue(1); 3624 3625 if (TLI->getInsertFencesForAtomic()) 3626 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3627 DAG, *TLI); 3628 3629 setValue(&I, L); 3630 DAG.setRoot(OutChain); 3631 } 3632 3633 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3634 SDLoc dl = getCurSDLoc(); 3635 const TargetLowering *TLI = TM.getTargetLowering(); 3636 SDValue Ops[3]; 3637 Ops[0] = getRoot(); 3638 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3639 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3640 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3641 } 3642 3643 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3644 SDLoc dl = getCurSDLoc(); 3645 AtomicOrdering Order = I.getOrdering(); 3646 SynchronizationScope Scope = I.getSynchScope(); 3647 3648 SDValue InChain = getRoot(); 3649 3650 const TargetLowering *TLI = TM.getTargetLowering(); 3651 EVT VT = TLI->getValueType(I.getType()); 3652 3653 if (I.getAlignment() < VT.getSizeInBits() / 8) 3654 report_fatal_error("Cannot generate unaligned atomic load"); 3655 3656 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3657 SDValue L = 3658 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3659 getValue(I.getPointerOperand()), 3660 I.getPointerOperand(), I.getAlignment(), 3661 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3662 Scope); 3663 3664 SDValue OutChain = L.getValue(1); 3665 3666 if (TLI->getInsertFencesForAtomic()) 3667 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3668 DAG, *TLI); 3669 3670 setValue(&I, L); 3671 DAG.setRoot(OutChain); 3672 } 3673 3674 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3675 SDLoc dl = getCurSDLoc(); 3676 3677 AtomicOrdering Order = I.getOrdering(); 3678 SynchronizationScope Scope = I.getSynchScope(); 3679 3680 SDValue InChain = getRoot(); 3681 3682 const TargetLowering *TLI = TM.getTargetLowering(); 3683 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3684 3685 if (I.getAlignment() < VT.getSizeInBits() / 8) 3686 report_fatal_error("Cannot generate unaligned atomic store"); 3687 3688 if (TLI->getInsertFencesForAtomic()) 3689 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3690 DAG, *TLI); 3691 3692 SDValue OutChain = 3693 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3694 InChain, 3695 getValue(I.getPointerOperand()), 3696 getValue(I.getValueOperand()), 3697 I.getPointerOperand(), I.getAlignment(), 3698 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3699 Scope); 3700 3701 if (TLI->getInsertFencesForAtomic()) 3702 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3703 DAG, *TLI); 3704 3705 DAG.setRoot(OutChain); 3706 } 3707 3708 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3709 /// node. 3710 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3711 unsigned Intrinsic) { 3712 bool HasChain = !I.doesNotAccessMemory(); 3713 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3714 3715 // Build the operand list. 3716 SmallVector<SDValue, 8> Ops; 3717 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3718 if (OnlyLoad) { 3719 // We don't need to serialize loads against other loads. 3720 Ops.push_back(DAG.getRoot()); 3721 } else { 3722 Ops.push_back(getRoot()); 3723 } 3724 } 3725 3726 // Info is set by getTgtMemInstrinsic 3727 TargetLowering::IntrinsicInfo Info; 3728 const TargetLowering *TLI = TM.getTargetLowering(); 3729 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3730 3731 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3732 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3733 Info.opc == ISD::INTRINSIC_W_CHAIN) 3734 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3735 3736 // Add all operands of the call to the operand list. 3737 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3738 SDValue Op = getValue(I.getArgOperand(i)); 3739 Ops.push_back(Op); 3740 } 3741 3742 SmallVector<EVT, 4> ValueVTs; 3743 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3744 3745 if (HasChain) 3746 ValueVTs.push_back(MVT::Other); 3747 3748 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3749 3750 // Create the node. 3751 SDValue Result; 3752 if (IsTgtIntrinsic) { 3753 // This is target intrinsic that touches memory 3754 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3755 VTs, &Ops[0], Ops.size(), 3756 Info.memVT, 3757 MachinePointerInfo(Info.ptrVal, Info.offset), 3758 Info.align, Info.vol, 3759 Info.readMem, Info.writeMem); 3760 } else if (!HasChain) { 3761 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3762 VTs, &Ops[0], Ops.size()); 3763 } else if (!I.getType()->isVoidTy()) { 3764 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3765 VTs, &Ops[0], Ops.size()); 3766 } else { 3767 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3768 VTs, &Ops[0], Ops.size()); 3769 } 3770 3771 if (HasChain) { 3772 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3773 if (OnlyLoad) 3774 PendingLoads.push_back(Chain); 3775 else 3776 DAG.setRoot(Chain); 3777 } 3778 3779 if (!I.getType()->isVoidTy()) { 3780 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3781 EVT VT = TLI->getValueType(PTy); 3782 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3783 } 3784 3785 setValue(&I, Result); 3786 } 3787 } 3788 3789 /// GetSignificand - Get the significand and build it into a floating-point 3790 /// number with exponent of 1: 3791 /// 3792 /// Op = (Op & 0x007fffff) | 0x3f800000; 3793 /// 3794 /// where Op is the hexadecimal representation of floating point value. 3795 static SDValue 3796 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3797 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3798 DAG.getConstant(0x007fffff, MVT::i32)); 3799 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3800 DAG.getConstant(0x3f800000, MVT::i32)); 3801 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3802 } 3803 3804 /// GetExponent - Get the exponent: 3805 /// 3806 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3807 /// 3808 /// where Op is the hexadecimal representation of floating point value. 3809 static SDValue 3810 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3811 SDLoc dl) { 3812 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3813 DAG.getConstant(0x7f800000, MVT::i32)); 3814 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3815 DAG.getConstant(23, TLI.getPointerTy())); 3816 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3817 DAG.getConstant(127, MVT::i32)); 3818 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3819 } 3820 3821 /// getF32Constant - Get 32-bit floating point constant. 3822 static SDValue 3823 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3824 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3825 MVT::f32); 3826 } 3827 3828 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3829 /// limited-precision mode. 3830 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3831 const TargetLowering &TLI) { 3832 if (Op.getValueType() == MVT::f32 && 3833 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3834 3835 // Put the exponent in the right bit position for later addition to the 3836 // final result: 3837 // 3838 // #define LOG2OFe 1.4426950f 3839 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3840 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3841 getF32Constant(DAG, 0x3fb8aa3b)); 3842 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3843 3844 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3845 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3846 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3847 3848 // IntegerPartOfX <<= 23; 3849 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3850 DAG.getConstant(23, TLI.getPointerTy())); 3851 3852 SDValue TwoToFracPartOfX; 3853 if (LimitFloatPrecision <= 6) { 3854 // For floating-point precision of 6: 3855 // 3856 // TwoToFractionalPartOfX = 3857 // 0.997535578f + 3858 // (0.735607626f + 0.252464424f * x) * x; 3859 // 3860 // error 0.0144103317, which is 6 bits 3861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3862 getF32Constant(DAG, 0x3e814304)); 3863 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3864 getF32Constant(DAG, 0x3f3c50c8)); 3865 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3866 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3867 getF32Constant(DAG, 0x3f7f5e7e)); 3868 } else if (LimitFloatPrecision <= 12) { 3869 // For floating-point precision of 12: 3870 // 3871 // TwoToFractionalPartOfX = 3872 // 0.999892986f + 3873 // (0.696457318f + 3874 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3875 // 3876 // 0.000107046256 error, which is 13 to 14 bits 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3878 getF32Constant(DAG, 0x3da235e3)); 3879 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3880 getF32Constant(DAG, 0x3e65b8f3)); 3881 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3882 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3883 getF32Constant(DAG, 0x3f324b07)); 3884 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3885 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3886 getF32Constant(DAG, 0x3f7ff8fd)); 3887 } else { // LimitFloatPrecision <= 18 3888 // For floating-point precision of 18: 3889 // 3890 // TwoToFractionalPartOfX = 3891 // 0.999999982f + 3892 // (0.693148872f + 3893 // (0.240227044f + 3894 // (0.554906021e-1f + 3895 // (0.961591928e-2f + 3896 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3897 // 3898 // error 2.47208000*10^(-7), which is better than 18 bits 3899 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3900 getF32Constant(DAG, 0x3924b03e)); 3901 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3902 getF32Constant(DAG, 0x3ab24b87)); 3903 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3904 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3905 getF32Constant(DAG, 0x3c1d8c17)); 3906 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3907 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3908 getF32Constant(DAG, 0x3d634a1d)); 3909 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3910 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3911 getF32Constant(DAG, 0x3e75fe14)); 3912 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3913 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3914 getF32Constant(DAG, 0x3f317234)); 3915 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3916 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3917 getF32Constant(DAG, 0x3f800000)); 3918 } 3919 3920 // Add the exponent into the result in integer domain. 3921 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3922 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3923 DAG.getNode(ISD::ADD, dl, MVT::i32, 3924 t13, IntegerPartOfX)); 3925 } 3926 3927 // No special expansion. 3928 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3929 } 3930 3931 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3932 /// limited-precision mode. 3933 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3934 const TargetLowering &TLI) { 3935 if (Op.getValueType() == MVT::f32 && 3936 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3937 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3938 3939 // Scale the exponent by log(2) [0.69314718f]. 3940 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3941 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3942 getF32Constant(DAG, 0x3f317218)); 3943 3944 // Get the significand and build it into a floating-point number with 3945 // exponent of 1. 3946 SDValue X = GetSignificand(DAG, Op1, dl); 3947 3948 SDValue LogOfMantissa; 3949 if (LimitFloatPrecision <= 6) { 3950 // For floating-point precision of 6: 3951 // 3952 // LogofMantissa = 3953 // -1.1609546f + 3954 // (1.4034025f - 0.23903021f * x) * x; 3955 // 3956 // error 0.0034276066, which is better than 8 bits 3957 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3958 getF32Constant(DAG, 0xbe74c456)); 3959 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3960 getF32Constant(DAG, 0x3fb3a2b1)); 3961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3962 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3963 getF32Constant(DAG, 0x3f949a29)); 3964 } else if (LimitFloatPrecision <= 12) { 3965 // For floating-point precision of 12: 3966 // 3967 // LogOfMantissa = 3968 // -1.7417939f + 3969 // (2.8212026f + 3970 // (-1.4699568f + 3971 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3972 // 3973 // error 0.000061011436, which is 14 bits 3974 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3975 getF32Constant(DAG, 0xbd67b6d6)); 3976 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3977 getF32Constant(DAG, 0x3ee4f4b8)); 3978 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3979 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3980 getF32Constant(DAG, 0x3fbc278b)); 3981 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3982 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3983 getF32Constant(DAG, 0x40348e95)); 3984 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3985 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3986 getF32Constant(DAG, 0x3fdef31a)); 3987 } else { // LimitFloatPrecision <= 18 3988 // For floating-point precision of 18: 3989 // 3990 // LogOfMantissa = 3991 // -2.1072184f + 3992 // (4.2372794f + 3993 // (-3.7029485f + 3994 // (2.2781945f + 3995 // (-0.87823314f + 3996 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3997 // 3998 // error 0.0000023660568, which is better than 18 bits 3999 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4000 getF32Constant(DAG, 0xbc91e5ac)); 4001 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4002 getF32Constant(DAG, 0x3e4350aa)); 4003 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4004 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4005 getF32Constant(DAG, 0x3f60d3e3)); 4006 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4007 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4008 getF32Constant(DAG, 0x4011cdf0)); 4009 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4010 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4011 getF32Constant(DAG, 0x406cfd1c)); 4012 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4013 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4014 getF32Constant(DAG, 0x408797cb)); 4015 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4016 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4017 getF32Constant(DAG, 0x4006dcab)); 4018 } 4019 4020 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4021 } 4022 4023 // No special expansion. 4024 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4025 } 4026 4027 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4028 /// limited-precision mode. 4029 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4030 const TargetLowering &TLI) { 4031 if (Op.getValueType() == MVT::f32 && 4032 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4033 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4034 4035 // Get the exponent. 4036 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4037 4038 // Get the significand and build it into a floating-point number with 4039 // exponent of 1. 4040 SDValue X = GetSignificand(DAG, Op1, dl); 4041 4042 // Different possible minimax approximations of significand in 4043 // floating-point for various degrees of accuracy over [1,2]. 4044 SDValue Log2ofMantissa; 4045 if (LimitFloatPrecision <= 6) { 4046 // For floating-point precision of 6: 4047 // 4048 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4049 // 4050 // error 0.0049451742, which is more than 7 bits 4051 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4052 getF32Constant(DAG, 0xbeb08fe0)); 4053 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4054 getF32Constant(DAG, 0x40019463)); 4055 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4056 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4057 getF32Constant(DAG, 0x3fd6633d)); 4058 } else if (LimitFloatPrecision <= 12) { 4059 // For floating-point precision of 12: 4060 // 4061 // Log2ofMantissa = 4062 // -2.51285454f + 4063 // (4.07009056f + 4064 // (-2.12067489f + 4065 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4066 // 4067 // error 0.0000876136000, which is better than 13 bits 4068 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4069 getF32Constant(DAG, 0xbda7262e)); 4070 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4071 getF32Constant(DAG, 0x3f25280b)); 4072 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4073 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4074 getF32Constant(DAG, 0x4007b923)); 4075 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4076 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4077 getF32Constant(DAG, 0x40823e2f)); 4078 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4079 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4080 getF32Constant(DAG, 0x4020d29c)); 4081 } else { // LimitFloatPrecision <= 18 4082 // For floating-point precision of 18: 4083 // 4084 // Log2ofMantissa = 4085 // -3.0400495f + 4086 // (6.1129976f + 4087 // (-5.3420409f + 4088 // (3.2865683f + 4089 // (-1.2669343f + 4090 // (0.27515199f - 4091 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4092 // 4093 // error 0.0000018516, which is better than 18 bits 4094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4095 getF32Constant(DAG, 0xbcd2769e)); 4096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4097 getF32Constant(DAG, 0x3e8ce0b9)); 4098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4099 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4100 getF32Constant(DAG, 0x3fa22ae7)); 4101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4102 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4103 getF32Constant(DAG, 0x40525723)); 4104 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4105 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4106 getF32Constant(DAG, 0x40aaf200)); 4107 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4108 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4109 getF32Constant(DAG, 0x40c39dad)); 4110 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4111 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4112 getF32Constant(DAG, 0x4042902c)); 4113 } 4114 4115 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4116 } 4117 4118 // No special expansion. 4119 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4120 } 4121 4122 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4123 /// limited-precision mode. 4124 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4125 const TargetLowering &TLI) { 4126 if (Op.getValueType() == MVT::f32 && 4127 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4128 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4129 4130 // Scale the exponent by log10(2) [0.30102999f]. 4131 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4132 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4133 getF32Constant(DAG, 0x3e9a209a)); 4134 4135 // Get the significand and build it into a floating-point number with 4136 // exponent of 1. 4137 SDValue X = GetSignificand(DAG, Op1, dl); 4138 4139 SDValue Log10ofMantissa; 4140 if (LimitFloatPrecision <= 6) { 4141 // For floating-point precision of 6: 4142 // 4143 // Log10ofMantissa = 4144 // -0.50419619f + 4145 // (0.60948995f - 0.10380950f * x) * x; 4146 // 4147 // error 0.0014886165, which is 6 bits 4148 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4149 getF32Constant(DAG, 0xbdd49a13)); 4150 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4151 getF32Constant(DAG, 0x3f1c0789)); 4152 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4153 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4154 getF32Constant(DAG, 0x3f011300)); 4155 } else if (LimitFloatPrecision <= 12) { 4156 // For floating-point precision of 12: 4157 // 4158 // Log10ofMantissa = 4159 // -0.64831180f + 4160 // (0.91751397f + 4161 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4162 // 4163 // error 0.00019228036, which is better than 12 bits 4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4165 getF32Constant(DAG, 0x3d431f31)); 4166 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4167 getF32Constant(DAG, 0x3ea21fb2)); 4168 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4169 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4170 getF32Constant(DAG, 0x3f6ae232)); 4171 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4172 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4173 getF32Constant(DAG, 0x3f25f7c3)); 4174 } else { // LimitFloatPrecision <= 18 4175 // For floating-point precision of 18: 4176 // 4177 // Log10ofMantissa = 4178 // -0.84299375f + 4179 // (1.5327582f + 4180 // (-1.0688956f + 4181 // (0.49102474f + 4182 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4183 // 4184 // error 0.0000037995730, which is better than 18 bits 4185 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4186 getF32Constant(DAG, 0x3c5d51ce)); 4187 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4188 getF32Constant(DAG, 0x3e00685a)); 4189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4190 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4191 getF32Constant(DAG, 0x3efb6798)); 4192 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4193 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4194 getF32Constant(DAG, 0x3f88d192)); 4195 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4196 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4197 getF32Constant(DAG, 0x3fc4316c)); 4198 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4199 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4200 getF32Constant(DAG, 0x3f57ce70)); 4201 } 4202 4203 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4204 } 4205 4206 // No special expansion. 4207 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4208 } 4209 4210 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4211 /// limited-precision mode. 4212 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4213 const TargetLowering &TLI) { 4214 if (Op.getValueType() == MVT::f32 && 4215 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4216 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4217 4218 // FractionalPartOfX = x - (float)IntegerPartOfX; 4219 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4220 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4221 4222 // IntegerPartOfX <<= 23; 4223 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4224 DAG.getConstant(23, TLI.getPointerTy())); 4225 4226 SDValue TwoToFractionalPartOfX; 4227 if (LimitFloatPrecision <= 6) { 4228 // For floating-point precision of 6: 4229 // 4230 // TwoToFractionalPartOfX = 4231 // 0.997535578f + 4232 // (0.735607626f + 0.252464424f * x) * x; 4233 // 4234 // error 0.0144103317, which is 6 bits 4235 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4236 getF32Constant(DAG, 0x3e814304)); 4237 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4238 getF32Constant(DAG, 0x3f3c50c8)); 4239 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4240 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4241 getF32Constant(DAG, 0x3f7f5e7e)); 4242 } else if (LimitFloatPrecision <= 12) { 4243 // For floating-point precision of 12: 4244 // 4245 // TwoToFractionalPartOfX = 4246 // 0.999892986f + 4247 // (0.696457318f + 4248 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4249 // 4250 // error 0.000107046256, which is 13 to 14 bits 4251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4252 getF32Constant(DAG, 0x3da235e3)); 4253 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4254 getF32Constant(DAG, 0x3e65b8f3)); 4255 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4256 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4257 getF32Constant(DAG, 0x3f324b07)); 4258 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4259 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4260 getF32Constant(DAG, 0x3f7ff8fd)); 4261 } else { // LimitFloatPrecision <= 18 4262 // For floating-point precision of 18: 4263 // 4264 // TwoToFractionalPartOfX = 4265 // 0.999999982f + 4266 // (0.693148872f + 4267 // (0.240227044f + 4268 // (0.554906021e-1f + 4269 // (0.961591928e-2f + 4270 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4271 // error 2.47208000*10^(-7), which is better than 18 bits 4272 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4273 getF32Constant(DAG, 0x3924b03e)); 4274 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4275 getF32Constant(DAG, 0x3ab24b87)); 4276 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4277 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4278 getF32Constant(DAG, 0x3c1d8c17)); 4279 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4280 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4281 getF32Constant(DAG, 0x3d634a1d)); 4282 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4283 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4284 getF32Constant(DAG, 0x3e75fe14)); 4285 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4286 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4287 getF32Constant(DAG, 0x3f317234)); 4288 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4289 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4290 getF32Constant(DAG, 0x3f800000)); 4291 } 4292 4293 // Add the exponent into the result in integer domain. 4294 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4295 TwoToFractionalPartOfX); 4296 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4297 DAG.getNode(ISD::ADD, dl, MVT::i32, 4298 t13, IntegerPartOfX)); 4299 } 4300 4301 // No special expansion. 4302 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4303 } 4304 4305 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4306 /// limited-precision mode with x == 10.0f. 4307 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4308 SelectionDAG &DAG, const TargetLowering &TLI) { 4309 bool IsExp10 = false; 4310 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4311 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4312 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4313 APFloat Ten(10.0f); 4314 IsExp10 = LHSC->isExactlyValue(Ten); 4315 } 4316 } 4317 4318 if (IsExp10) { 4319 // Put the exponent in the right bit position for later addition to the 4320 // final result: 4321 // 4322 // #define LOG2OF10 3.3219281f 4323 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4324 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4325 getF32Constant(DAG, 0x40549a78)); 4326 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4327 4328 // FractionalPartOfX = x - (float)IntegerPartOfX; 4329 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4330 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4331 4332 // IntegerPartOfX <<= 23; 4333 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4334 DAG.getConstant(23, TLI.getPointerTy())); 4335 4336 SDValue TwoToFractionalPartOfX; 4337 if (LimitFloatPrecision <= 6) { 4338 // For floating-point precision of 6: 4339 // 4340 // twoToFractionalPartOfX = 4341 // 0.997535578f + 4342 // (0.735607626f + 0.252464424f * x) * x; 4343 // 4344 // error 0.0144103317, which is 6 bits 4345 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4346 getF32Constant(DAG, 0x3e814304)); 4347 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4348 getF32Constant(DAG, 0x3f3c50c8)); 4349 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4350 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4351 getF32Constant(DAG, 0x3f7f5e7e)); 4352 } else if (LimitFloatPrecision <= 12) { 4353 // For floating-point precision of 12: 4354 // 4355 // TwoToFractionalPartOfX = 4356 // 0.999892986f + 4357 // (0.696457318f + 4358 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4359 // 4360 // error 0.000107046256, which is 13 to 14 bits 4361 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4362 getF32Constant(DAG, 0x3da235e3)); 4363 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4364 getF32Constant(DAG, 0x3e65b8f3)); 4365 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4366 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4367 getF32Constant(DAG, 0x3f324b07)); 4368 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4369 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4370 getF32Constant(DAG, 0x3f7ff8fd)); 4371 } else { // LimitFloatPrecision <= 18 4372 // For floating-point precision of 18: 4373 // 4374 // TwoToFractionalPartOfX = 4375 // 0.999999982f + 4376 // (0.693148872f + 4377 // (0.240227044f + 4378 // (0.554906021e-1f + 4379 // (0.961591928e-2f + 4380 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4381 // error 2.47208000*10^(-7), which is better than 18 bits 4382 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4383 getF32Constant(DAG, 0x3924b03e)); 4384 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4385 getF32Constant(DAG, 0x3ab24b87)); 4386 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4387 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4388 getF32Constant(DAG, 0x3c1d8c17)); 4389 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4390 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4391 getF32Constant(DAG, 0x3d634a1d)); 4392 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4393 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4394 getF32Constant(DAG, 0x3e75fe14)); 4395 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4396 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4397 getF32Constant(DAG, 0x3f317234)); 4398 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4399 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4400 getF32Constant(DAG, 0x3f800000)); 4401 } 4402 4403 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4404 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4405 DAG.getNode(ISD::ADD, dl, MVT::i32, 4406 t13, IntegerPartOfX)); 4407 } 4408 4409 // No special expansion. 4410 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4411 } 4412 4413 4414 /// ExpandPowI - Expand a llvm.powi intrinsic. 4415 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4416 SelectionDAG &DAG) { 4417 // If RHS is a constant, we can expand this out to a multiplication tree, 4418 // otherwise we end up lowering to a call to __powidf2 (for example). When 4419 // optimizing for size, we only want to do this if the expansion would produce 4420 // a small number of multiplies, otherwise we do the full expansion. 4421 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4422 // Get the exponent as a positive value. 4423 unsigned Val = RHSC->getSExtValue(); 4424 if ((int)Val < 0) Val = -Val; 4425 4426 // powi(x, 0) -> 1.0 4427 if (Val == 0) 4428 return DAG.getConstantFP(1.0, LHS.getValueType()); 4429 4430 const Function *F = DAG.getMachineFunction().getFunction(); 4431 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4432 Attribute::OptimizeForSize) || 4433 // If optimizing for size, don't insert too many multiplies. This 4434 // inserts up to 5 multiplies. 4435 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4436 // We use the simple binary decomposition method to generate the multiply 4437 // sequence. There are more optimal ways to do this (for example, 4438 // powi(x,15) generates one more multiply than it should), but this has 4439 // the benefit of being both really simple and much better than a libcall. 4440 SDValue Res; // Logically starts equal to 1.0 4441 SDValue CurSquare = LHS; 4442 while (Val) { 4443 if (Val & 1) { 4444 if (Res.getNode()) 4445 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4446 else 4447 Res = CurSquare; // 1.0*CurSquare. 4448 } 4449 4450 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4451 CurSquare, CurSquare); 4452 Val >>= 1; 4453 } 4454 4455 // If the original was negative, invert the result, producing 1/(x*x*x). 4456 if (RHSC->getSExtValue() < 0) 4457 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4458 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4459 return Res; 4460 } 4461 } 4462 4463 // Otherwise, expand to a libcall. 4464 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4465 } 4466 4467 // getTruncatedArgReg - Find underlying register used for an truncated 4468 // argument. 4469 static unsigned getTruncatedArgReg(const SDValue &N) { 4470 if (N.getOpcode() != ISD::TRUNCATE) 4471 return 0; 4472 4473 const SDValue &Ext = N.getOperand(0); 4474 if (Ext.getOpcode() == ISD::AssertZext || 4475 Ext.getOpcode() == ISD::AssertSext) { 4476 const SDValue &CFR = Ext.getOperand(0); 4477 if (CFR.getOpcode() == ISD::CopyFromReg) 4478 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4479 if (CFR.getOpcode() == ISD::TRUNCATE) 4480 return getTruncatedArgReg(CFR); 4481 } 4482 return 0; 4483 } 4484 4485 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4486 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4487 /// At the end of instruction selection, they will be inserted to the entry BB. 4488 bool 4489 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4490 int64_t Offset, 4491 const SDValue &N) { 4492 const Argument *Arg = dyn_cast<Argument>(V); 4493 if (!Arg) 4494 return false; 4495 4496 MachineFunction &MF = DAG.getMachineFunction(); 4497 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4498 4499 // Ignore inlined function arguments here. 4500 DIVariable DV(Variable); 4501 if (DV.isInlinedFnArgument(MF.getFunction())) 4502 return false; 4503 4504 Optional<MachineOperand> Op; 4505 // Some arguments' frame index is recorded during argument lowering. 4506 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4507 Op = MachineOperand::CreateFI(FI); 4508 4509 if (!Op && N.getNode()) { 4510 unsigned Reg; 4511 if (N.getOpcode() == ISD::CopyFromReg) 4512 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4513 else 4514 Reg = getTruncatedArgReg(N); 4515 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4516 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4517 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4518 if (PR) 4519 Reg = PR; 4520 } 4521 if (Reg) 4522 Op = MachineOperand::CreateReg(Reg, false); 4523 } 4524 4525 if (!Op) { 4526 // Check if ValueMap has reg number. 4527 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4528 if (VMI != FuncInfo.ValueMap.end()) 4529 Op = MachineOperand::CreateReg(VMI->second, false); 4530 } 4531 4532 if (!Op && N.getNode()) 4533 // Check if frame index is available. 4534 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4535 if (FrameIndexSDNode *FINode = 4536 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4537 Op = MachineOperand::CreateFI(FINode->getIndex()); 4538 4539 if (!Op) 4540 return false; 4541 4542 // FIXME: This does not handle register-indirect values at offset 0. 4543 bool IsIndirect = Offset != 0; 4544 if (Op->isReg()) 4545 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4546 TII->get(TargetOpcode::DBG_VALUE), 4547 IsIndirect, 4548 Op->getReg(), Offset, Variable)); 4549 else 4550 FuncInfo.ArgDbgValues.push_back( 4551 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4552 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4553 4554 return true; 4555 } 4556 4557 // VisualStudio defines setjmp as _setjmp 4558 #if defined(_MSC_VER) && defined(setjmp) && \ 4559 !defined(setjmp_undefined_for_msvc) 4560 # pragma push_macro("setjmp") 4561 # undef setjmp 4562 # define setjmp_undefined_for_msvc 4563 #endif 4564 4565 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4566 /// we want to emit this as a call to a named external function, return the name 4567 /// otherwise lower it and return null. 4568 const char * 4569 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4570 const TargetLowering *TLI = TM.getTargetLowering(); 4571 SDLoc sdl = getCurSDLoc(); 4572 DebugLoc dl = getCurDebugLoc(); 4573 SDValue Res; 4574 4575 switch (Intrinsic) { 4576 default: 4577 // By default, turn this into a target intrinsic node. 4578 visitTargetIntrinsic(I, Intrinsic); 4579 return 0; 4580 case Intrinsic::vastart: visitVAStart(I); return 0; 4581 case Intrinsic::vaend: visitVAEnd(I); return 0; 4582 case Intrinsic::vacopy: visitVACopy(I); return 0; 4583 case Intrinsic::returnaddress: 4584 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4585 getValue(I.getArgOperand(0)))); 4586 return 0; 4587 case Intrinsic::frameaddress: 4588 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4589 getValue(I.getArgOperand(0)))); 4590 return 0; 4591 case Intrinsic::setjmp: 4592 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4593 case Intrinsic::longjmp: 4594 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4595 case Intrinsic::memcpy: { 4596 // Assert for address < 256 since we support only user defined address 4597 // spaces. 4598 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4599 < 256 && 4600 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4601 < 256 && 4602 "Unknown address space"); 4603 SDValue Op1 = getValue(I.getArgOperand(0)); 4604 SDValue Op2 = getValue(I.getArgOperand(1)); 4605 SDValue Op3 = getValue(I.getArgOperand(2)); 4606 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4607 if (!Align) 4608 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4609 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4610 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4611 MachinePointerInfo(I.getArgOperand(0)), 4612 MachinePointerInfo(I.getArgOperand(1)))); 4613 return 0; 4614 } 4615 case Intrinsic::memset: { 4616 // Assert for address < 256 since we support only user defined address 4617 // spaces. 4618 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4619 < 256 && 4620 "Unknown address space"); 4621 SDValue Op1 = getValue(I.getArgOperand(0)); 4622 SDValue Op2 = getValue(I.getArgOperand(1)); 4623 SDValue Op3 = getValue(I.getArgOperand(2)); 4624 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4625 if (!Align) 4626 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4627 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4628 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4629 MachinePointerInfo(I.getArgOperand(0)))); 4630 return 0; 4631 } 4632 case Intrinsic::memmove: { 4633 // Assert for address < 256 since we support only user defined address 4634 // spaces. 4635 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4636 < 256 && 4637 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4638 < 256 && 4639 "Unknown address space"); 4640 SDValue Op1 = getValue(I.getArgOperand(0)); 4641 SDValue Op2 = getValue(I.getArgOperand(1)); 4642 SDValue Op3 = getValue(I.getArgOperand(2)); 4643 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4644 if (!Align) 4645 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4646 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4647 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4648 MachinePointerInfo(I.getArgOperand(0)), 4649 MachinePointerInfo(I.getArgOperand(1)))); 4650 return 0; 4651 } 4652 case Intrinsic::dbg_declare: { 4653 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4654 MDNode *Variable = DI.getVariable(); 4655 const Value *Address = DI.getAddress(); 4656 DIVariable DIVar(Variable); 4657 assert((!DIVar || DIVar.isVariable()) && 4658 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4659 if (!Address || !DIVar) { 4660 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4661 return 0; 4662 } 4663 4664 // Check if address has undef value. 4665 if (isa<UndefValue>(Address) || 4666 (Address->use_empty() && !isa<Argument>(Address))) { 4667 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4668 return 0; 4669 } 4670 4671 SDValue &N = NodeMap[Address]; 4672 if (!N.getNode() && isa<Argument>(Address)) 4673 // Check unused arguments map. 4674 N = UnusedArgNodeMap[Address]; 4675 SDDbgValue *SDV; 4676 if (N.getNode()) { 4677 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4678 Address = BCI->getOperand(0); 4679 // Parameters are handled specially. 4680 bool isParameter = 4681 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4682 isa<Argument>(Address)); 4683 4684 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4685 4686 if (isParameter && !AI) { 4687 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4688 if (FINode) 4689 // Byval parameter. We have a frame index at this point. 4690 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4691 0, dl, SDNodeOrder); 4692 else { 4693 // Address is an argument, so try to emit its dbg value using 4694 // virtual register info from the FuncInfo.ValueMap. 4695 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4696 return 0; 4697 } 4698 } else if (AI) 4699 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4700 0, dl, SDNodeOrder); 4701 else { 4702 // Can't do anything with other non-AI cases yet. 4703 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4704 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4705 DEBUG(Address->dump()); 4706 return 0; 4707 } 4708 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4709 } else { 4710 // If Address is an argument then try to emit its dbg value using 4711 // virtual register info from the FuncInfo.ValueMap. 4712 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4713 // If variable is pinned by a alloca in dominating bb then 4714 // use StaticAllocaMap. 4715 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4716 if (AI->getParent() != DI.getParent()) { 4717 DenseMap<const AllocaInst*, int>::iterator SI = 4718 FuncInfo.StaticAllocaMap.find(AI); 4719 if (SI != FuncInfo.StaticAllocaMap.end()) { 4720 SDV = DAG.getDbgValue(Variable, SI->second, 4721 0, dl, SDNodeOrder); 4722 DAG.AddDbgValue(SDV, 0, false); 4723 return 0; 4724 } 4725 } 4726 } 4727 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4728 } 4729 } 4730 return 0; 4731 } 4732 case Intrinsic::dbg_value: { 4733 const DbgValueInst &DI = cast<DbgValueInst>(I); 4734 DIVariable DIVar(DI.getVariable()); 4735 assert((!DIVar || DIVar.isVariable()) && 4736 "Variable in DbgValueInst should be either null or a DIVariable."); 4737 if (!DIVar) 4738 return 0; 4739 4740 MDNode *Variable = DI.getVariable(); 4741 uint64_t Offset = DI.getOffset(); 4742 const Value *V = DI.getValue(); 4743 if (!V) 4744 return 0; 4745 4746 SDDbgValue *SDV; 4747 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4748 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4749 DAG.AddDbgValue(SDV, 0, false); 4750 } else { 4751 // Do not use getValue() in here; we don't want to generate code at 4752 // this point if it hasn't been done yet. 4753 SDValue N = NodeMap[V]; 4754 if (!N.getNode() && isa<Argument>(V)) 4755 // Check unused arguments map. 4756 N = UnusedArgNodeMap[V]; 4757 if (N.getNode()) { 4758 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4759 SDV = DAG.getDbgValue(Variable, N.getNode(), 4760 N.getResNo(), Offset, dl, SDNodeOrder); 4761 DAG.AddDbgValue(SDV, N.getNode(), false); 4762 } 4763 } else if (!V->use_empty() ) { 4764 // Do not call getValue(V) yet, as we don't want to generate code. 4765 // Remember it for later. 4766 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4767 DanglingDebugInfoMap[V] = DDI; 4768 } else { 4769 // We may expand this to cover more cases. One case where we have no 4770 // data available is an unreferenced parameter. 4771 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4772 } 4773 } 4774 4775 // Build a debug info table entry. 4776 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4777 V = BCI->getOperand(0); 4778 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4779 // Don't handle byval struct arguments or VLAs, for example. 4780 if (!AI) { 4781 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4782 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4783 return 0; 4784 } 4785 DenseMap<const AllocaInst*, int>::iterator SI = 4786 FuncInfo.StaticAllocaMap.find(AI); 4787 if (SI == FuncInfo.StaticAllocaMap.end()) 4788 return 0; // VLAs. 4789 int FI = SI->second; 4790 4791 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4792 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4793 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4794 return 0; 4795 } 4796 4797 case Intrinsic::eh_typeid_for: { 4798 // Find the type id for the given typeinfo. 4799 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4800 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4801 Res = DAG.getConstant(TypeID, MVT::i32); 4802 setValue(&I, Res); 4803 return 0; 4804 } 4805 4806 case Intrinsic::eh_return_i32: 4807 case Intrinsic::eh_return_i64: 4808 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4809 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4810 MVT::Other, 4811 getControlRoot(), 4812 getValue(I.getArgOperand(0)), 4813 getValue(I.getArgOperand(1)))); 4814 return 0; 4815 case Intrinsic::eh_unwind_init: 4816 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4817 return 0; 4818 case Intrinsic::eh_dwarf_cfa: { 4819 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4820 TLI->getPointerTy()); 4821 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4822 CfaArg.getValueType(), 4823 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4824 CfaArg.getValueType()), 4825 CfaArg); 4826 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4827 TLI->getPointerTy(), 4828 DAG.getConstant(0, TLI->getPointerTy())); 4829 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4830 FA, Offset)); 4831 return 0; 4832 } 4833 case Intrinsic::eh_sjlj_callsite: { 4834 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4835 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4836 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4837 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4838 4839 MMI.setCurrentCallSite(CI->getZExtValue()); 4840 return 0; 4841 } 4842 case Intrinsic::eh_sjlj_functioncontext: { 4843 // Get and store the index of the function context. 4844 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4845 AllocaInst *FnCtx = 4846 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4847 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4848 MFI->setFunctionContextIndex(FI); 4849 return 0; 4850 } 4851 case Intrinsic::eh_sjlj_setjmp: { 4852 SDValue Ops[2]; 4853 Ops[0] = getRoot(); 4854 Ops[1] = getValue(I.getArgOperand(0)); 4855 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4856 DAG.getVTList(MVT::i32, MVT::Other), 4857 Ops, 2); 4858 setValue(&I, Op.getValue(0)); 4859 DAG.setRoot(Op.getValue(1)); 4860 return 0; 4861 } 4862 case Intrinsic::eh_sjlj_longjmp: { 4863 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4864 getRoot(), getValue(I.getArgOperand(0)))); 4865 return 0; 4866 } 4867 4868 case Intrinsic::x86_mmx_pslli_w: 4869 case Intrinsic::x86_mmx_pslli_d: 4870 case Intrinsic::x86_mmx_pslli_q: 4871 case Intrinsic::x86_mmx_psrli_w: 4872 case Intrinsic::x86_mmx_psrli_d: 4873 case Intrinsic::x86_mmx_psrli_q: 4874 case Intrinsic::x86_mmx_psrai_w: 4875 case Intrinsic::x86_mmx_psrai_d: { 4876 SDValue ShAmt = getValue(I.getArgOperand(1)); 4877 if (isa<ConstantSDNode>(ShAmt)) { 4878 visitTargetIntrinsic(I, Intrinsic); 4879 return 0; 4880 } 4881 unsigned NewIntrinsic = 0; 4882 EVT ShAmtVT = MVT::v2i32; 4883 switch (Intrinsic) { 4884 case Intrinsic::x86_mmx_pslli_w: 4885 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4886 break; 4887 case Intrinsic::x86_mmx_pslli_d: 4888 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4889 break; 4890 case Intrinsic::x86_mmx_pslli_q: 4891 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4892 break; 4893 case Intrinsic::x86_mmx_psrli_w: 4894 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4895 break; 4896 case Intrinsic::x86_mmx_psrli_d: 4897 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4898 break; 4899 case Intrinsic::x86_mmx_psrli_q: 4900 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4901 break; 4902 case Intrinsic::x86_mmx_psrai_w: 4903 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4904 break; 4905 case Intrinsic::x86_mmx_psrai_d: 4906 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4907 break; 4908 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4909 } 4910 4911 // The vector shift intrinsics with scalars uses 32b shift amounts but 4912 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4913 // to be zero. 4914 // We must do this early because v2i32 is not a legal type. 4915 SDValue ShOps[2]; 4916 ShOps[0] = ShAmt; 4917 ShOps[1] = DAG.getConstant(0, MVT::i32); 4918 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4919 EVT DestVT = TLI->getValueType(I.getType()); 4920 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4921 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4922 DAG.getConstant(NewIntrinsic, MVT::i32), 4923 getValue(I.getArgOperand(0)), ShAmt); 4924 setValue(&I, Res); 4925 return 0; 4926 } 4927 case Intrinsic::x86_avx_vinsertf128_pd_256: 4928 case Intrinsic::x86_avx_vinsertf128_ps_256: 4929 case Intrinsic::x86_avx_vinsertf128_si_256: 4930 case Intrinsic::x86_avx2_vinserti128: { 4931 EVT DestVT = TLI->getValueType(I.getType()); 4932 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4933 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4934 ElVT.getVectorNumElements(); 4935 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4936 getValue(I.getArgOperand(0)), 4937 getValue(I.getArgOperand(1)), 4938 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4939 setValue(&I, Res); 4940 return 0; 4941 } 4942 case Intrinsic::x86_avx_vextractf128_pd_256: 4943 case Intrinsic::x86_avx_vextractf128_ps_256: 4944 case Intrinsic::x86_avx_vextractf128_si_256: 4945 case Intrinsic::x86_avx2_vextracti128: { 4946 EVT DestVT = TLI->getValueType(I.getType()); 4947 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4948 DestVT.getVectorNumElements(); 4949 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4950 getValue(I.getArgOperand(0)), 4951 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4952 setValue(&I, Res); 4953 return 0; 4954 } 4955 case Intrinsic::convertff: 4956 case Intrinsic::convertfsi: 4957 case Intrinsic::convertfui: 4958 case Intrinsic::convertsif: 4959 case Intrinsic::convertuif: 4960 case Intrinsic::convertss: 4961 case Intrinsic::convertsu: 4962 case Intrinsic::convertus: 4963 case Intrinsic::convertuu: { 4964 ISD::CvtCode Code = ISD::CVT_INVALID; 4965 switch (Intrinsic) { 4966 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4967 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4968 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4969 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4970 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4971 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4972 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4973 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4974 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4975 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4976 } 4977 EVT DestVT = TLI->getValueType(I.getType()); 4978 const Value *Op1 = I.getArgOperand(0); 4979 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4980 DAG.getValueType(DestVT), 4981 DAG.getValueType(getValue(Op1).getValueType()), 4982 getValue(I.getArgOperand(1)), 4983 getValue(I.getArgOperand(2)), 4984 Code); 4985 setValue(&I, Res); 4986 return 0; 4987 } 4988 case Intrinsic::powi: 4989 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4990 getValue(I.getArgOperand(1)), DAG)); 4991 return 0; 4992 case Intrinsic::log: 4993 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4994 return 0; 4995 case Intrinsic::log2: 4996 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4997 return 0; 4998 case Intrinsic::log10: 4999 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5000 return 0; 5001 case Intrinsic::exp: 5002 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5003 return 0; 5004 case Intrinsic::exp2: 5005 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5006 return 0; 5007 case Intrinsic::pow: 5008 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5009 getValue(I.getArgOperand(1)), DAG, *TLI)); 5010 return 0; 5011 case Intrinsic::sqrt: 5012 case Intrinsic::fabs: 5013 case Intrinsic::sin: 5014 case Intrinsic::cos: 5015 case Intrinsic::floor: 5016 case Intrinsic::ceil: 5017 case Intrinsic::trunc: 5018 case Intrinsic::rint: 5019 case Intrinsic::nearbyint: 5020 case Intrinsic::round: { 5021 unsigned Opcode; 5022 switch (Intrinsic) { 5023 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5024 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5025 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5026 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5027 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5028 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5029 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5030 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5031 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5032 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5033 case Intrinsic::round: Opcode = ISD::FROUND; break; 5034 } 5035 5036 setValue(&I, DAG.getNode(Opcode, sdl, 5037 getValue(I.getArgOperand(0)).getValueType(), 5038 getValue(I.getArgOperand(0)))); 5039 return 0; 5040 } 5041 case Intrinsic::copysign: 5042 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5043 getValue(I.getArgOperand(0)).getValueType(), 5044 getValue(I.getArgOperand(0)), 5045 getValue(I.getArgOperand(1)))); 5046 return 0; 5047 case Intrinsic::fma: 5048 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5049 getValue(I.getArgOperand(0)).getValueType(), 5050 getValue(I.getArgOperand(0)), 5051 getValue(I.getArgOperand(1)), 5052 getValue(I.getArgOperand(2)))); 5053 return 0; 5054 case Intrinsic::fmuladd: { 5055 EVT VT = TLI->getValueType(I.getType()); 5056 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5057 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5058 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5059 getValue(I.getArgOperand(0)).getValueType(), 5060 getValue(I.getArgOperand(0)), 5061 getValue(I.getArgOperand(1)), 5062 getValue(I.getArgOperand(2)))); 5063 } else { 5064 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5065 getValue(I.getArgOperand(0)).getValueType(), 5066 getValue(I.getArgOperand(0)), 5067 getValue(I.getArgOperand(1))); 5068 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5069 getValue(I.getArgOperand(0)).getValueType(), 5070 Mul, 5071 getValue(I.getArgOperand(2))); 5072 setValue(&I, Add); 5073 } 5074 return 0; 5075 } 5076 case Intrinsic::convert_to_fp16: 5077 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5078 MVT::i16, getValue(I.getArgOperand(0)))); 5079 return 0; 5080 case Intrinsic::convert_from_fp16: 5081 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5082 MVT::f32, getValue(I.getArgOperand(0)))); 5083 return 0; 5084 case Intrinsic::pcmarker: { 5085 SDValue Tmp = getValue(I.getArgOperand(0)); 5086 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5087 return 0; 5088 } 5089 case Intrinsic::readcyclecounter: { 5090 SDValue Op = getRoot(); 5091 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5092 DAG.getVTList(MVT::i64, MVT::Other), 5093 &Op, 1); 5094 setValue(&I, Res); 5095 DAG.setRoot(Res.getValue(1)); 5096 return 0; 5097 } 5098 case Intrinsic::bswap: 5099 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5100 getValue(I.getArgOperand(0)).getValueType(), 5101 getValue(I.getArgOperand(0)))); 5102 return 0; 5103 case Intrinsic::cttz: { 5104 SDValue Arg = getValue(I.getArgOperand(0)); 5105 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5106 EVT Ty = Arg.getValueType(); 5107 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5108 sdl, Ty, Arg)); 5109 return 0; 5110 } 5111 case Intrinsic::ctlz: { 5112 SDValue Arg = getValue(I.getArgOperand(0)); 5113 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5114 EVT Ty = Arg.getValueType(); 5115 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5116 sdl, Ty, Arg)); 5117 return 0; 5118 } 5119 case Intrinsic::ctpop: { 5120 SDValue Arg = getValue(I.getArgOperand(0)); 5121 EVT Ty = Arg.getValueType(); 5122 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5123 return 0; 5124 } 5125 case Intrinsic::stacksave: { 5126 SDValue Op = getRoot(); 5127 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5128 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5129 setValue(&I, Res); 5130 DAG.setRoot(Res.getValue(1)); 5131 return 0; 5132 } 5133 case Intrinsic::stackrestore: { 5134 Res = getValue(I.getArgOperand(0)); 5135 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5136 return 0; 5137 } 5138 case Intrinsic::stackprotector: { 5139 // Emit code into the DAG to store the stack guard onto the stack. 5140 MachineFunction &MF = DAG.getMachineFunction(); 5141 MachineFrameInfo *MFI = MF.getFrameInfo(); 5142 EVT PtrTy = TLI->getPointerTy(); 5143 5144 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5145 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5146 5147 int FI = FuncInfo.StaticAllocaMap[Slot]; 5148 MFI->setStackProtectorIndex(FI); 5149 5150 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5151 5152 // Store the stack protector onto the stack. 5153 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5154 MachinePointerInfo::getFixedStack(FI), 5155 true, false, 0); 5156 setValue(&I, Res); 5157 DAG.setRoot(Res); 5158 return 0; 5159 } 5160 case Intrinsic::objectsize: { 5161 // If we don't know by now, we're never going to know. 5162 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5163 5164 assert(CI && "Non-constant type in __builtin_object_size?"); 5165 5166 SDValue Arg = getValue(I.getCalledValue()); 5167 EVT Ty = Arg.getValueType(); 5168 5169 if (CI->isZero()) 5170 Res = DAG.getConstant(-1ULL, Ty); 5171 else 5172 Res = DAG.getConstant(0, Ty); 5173 5174 setValue(&I, Res); 5175 return 0; 5176 } 5177 case Intrinsic::annotation: 5178 case Intrinsic::ptr_annotation: 5179 // Drop the intrinsic, but forward the value 5180 setValue(&I, getValue(I.getOperand(0))); 5181 return 0; 5182 case Intrinsic::var_annotation: 5183 // Discard annotate attributes 5184 return 0; 5185 5186 case Intrinsic::init_trampoline: { 5187 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5188 5189 SDValue Ops[6]; 5190 Ops[0] = getRoot(); 5191 Ops[1] = getValue(I.getArgOperand(0)); 5192 Ops[2] = getValue(I.getArgOperand(1)); 5193 Ops[3] = getValue(I.getArgOperand(2)); 5194 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5195 Ops[5] = DAG.getSrcValue(F); 5196 5197 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5198 5199 DAG.setRoot(Res); 5200 return 0; 5201 } 5202 case Intrinsic::adjust_trampoline: { 5203 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5204 TLI->getPointerTy(), 5205 getValue(I.getArgOperand(0)))); 5206 return 0; 5207 } 5208 case Intrinsic::gcroot: 5209 if (GFI) { 5210 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5211 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5212 5213 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5214 GFI->addStackRoot(FI->getIndex(), TypeMap); 5215 } 5216 return 0; 5217 case Intrinsic::gcread: 5218 case Intrinsic::gcwrite: 5219 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5220 case Intrinsic::flt_rounds: 5221 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5222 return 0; 5223 5224 case Intrinsic::expect: { 5225 // Just replace __builtin_expect(exp, c) with EXP. 5226 setValue(&I, getValue(I.getArgOperand(0))); 5227 return 0; 5228 } 5229 5230 case Intrinsic::debugtrap: 5231 case Intrinsic::trap: { 5232 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5233 if (TrapFuncName.empty()) { 5234 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5235 ISD::TRAP : ISD::DEBUGTRAP; 5236 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5237 return 0; 5238 } 5239 TargetLowering::ArgListTy Args; 5240 TargetLowering:: 5241 CallLoweringInfo CLI(getRoot(), I.getType(), 5242 false, false, false, false, 0, CallingConv::C, 5243 /*isTailCall=*/false, 5244 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5245 DAG.getExternalSymbol(TrapFuncName.data(), 5246 TLI->getPointerTy()), 5247 Args, DAG, sdl); 5248 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5249 DAG.setRoot(Result.second); 5250 return 0; 5251 } 5252 5253 case Intrinsic::uadd_with_overflow: 5254 case Intrinsic::sadd_with_overflow: 5255 case Intrinsic::usub_with_overflow: 5256 case Intrinsic::ssub_with_overflow: 5257 case Intrinsic::umul_with_overflow: 5258 case Intrinsic::smul_with_overflow: { 5259 ISD::NodeType Op; 5260 switch (Intrinsic) { 5261 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5262 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5263 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5264 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5265 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5266 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5267 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5268 } 5269 SDValue Op1 = getValue(I.getArgOperand(0)); 5270 SDValue Op2 = getValue(I.getArgOperand(1)); 5271 5272 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5273 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5274 return 0; 5275 } 5276 case Intrinsic::prefetch: { 5277 SDValue Ops[5]; 5278 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5279 Ops[0] = getRoot(); 5280 Ops[1] = getValue(I.getArgOperand(0)); 5281 Ops[2] = getValue(I.getArgOperand(1)); 5282 Ops[3] = getValue(I.getArgOperand(2)); 5283 Ops[4] = getValue(I.getArgOperand(3)); 5284 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5285 DAG.getVTList(MVT::Other), 5286 &Ops[0], 5, 5287 EVT::getIntegerVT(*Context, 8), 5288 MachinePointerInfo(I.getArgOperand(0)), 5289 0, /* align */ 5290 false, /* volatile */ 5291 rw==0, /* read */ 5292 rw==1)); /* write */ 5293 return 0; 5294 } 5295 case Intrinsic::lifetime_start: 5296 case Intrinsic::lifetime_end: { 5297 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5298 // Stack coloring is not enabled in O0, discard region information. 5299 if (TM.getOptLevel() == CodeGenOpt::None) 5300 return 0; 5301 5302 SmallVector<Value *, 4> Allocas; 5303 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5304 5305 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5306 E = Allocas.end(); Object != E; ++Object) { 5307 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5308 5309 // Could not find an Alloca. 5310 if (!LifetimeObject) 5311 continue; 5312 5313 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5314 5315 SDValue Ops[2]; 5316 Ops[0] = getRoot(); 5317 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5318 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5319 5320 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5321 DAG.setRoot(Res); 5322 } 5323 return 0; 5324 } 5325 case Intrinsic::invariant_start: 5326 // Discard region information. 5327 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5328 return 0; 5329 case Intrinsic::invariant_end: 5330 // Discard region information. 5331 return 0; 5332 case Intrinsic::stackprotectorcheck: { 5333 // Do not actually emit anything for this basic block. Instead we initialize 5334 // the stack protector descriptor and export the guard variable so we can 5335 // access it in FinishBasicBlock. 5336 const BasicBlock *BB = I.getParent(); 5337 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5338 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5339 5340 // Flush our exports since we are going to process a terminator. 5341 (void)getControlRoot(); 5342 return 0; 5343 } 5344 case Intrinsic::donothing: 5345 // ignore 5346 return 0; 5347 case Intrinsic::experimental_stackmap: { 5348 visitStackmap(I); 5349 return 0; 5350 } 5351 case Intrinsic::experimental_patchpoint_void: 5352 case Intrinsic::experimental_patchpoint_i64: { 5353 visitPatchpoint(I); 5354 return 0; 5355 } 5356 } 5357 } 5358 5359 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5360 bool isTailCall, 5361 MachineBasicBlock *LandingPad) { 5362 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5363 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5364 Type *RetTy = FTy->getReturnType(); 5365 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5366 MCSymbol *BeginLabel = 0; 5367 5368 TargetLowering::ArgListTy Args; 5369 TargetLowering::ArgListEntry Entry; 5370 Args.reserve(CS.arg_size()); 5371 5372 // Check whether the function can return without sret-demotion. 5373 SmallVector<ISD::OutputArg, 4> Outs; 5374 const TargetLowering *TLI = TM.getTargetLowering(); 5375 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5376 5377 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5378 DAG.getMachineFunction(), 5379 FTy->isVarArg(), Outs, 5380 FTy->getContext()); 5381 5382 SDValue DemoteStackSlot; 5383 int DemoteStackIdx = -100; 5384 5385 if (!CanLowerReturn) { 5386 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5387 FTy->getReturnType()); 5388 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5389 FTy->getReturnType()); 5390 MachineFunction &MF = DAG.getMachineFunction(); 5391 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5392 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5393 5394 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5395 Entry.Node = DemoteStackSlot; 5396 Entry.Ty = StackSlotPtrType; 5397 Entry.isSExt = false; 5398 Entry.isZExt = false; 5399 Entry.isInReg = false; 5400 Entry.isSRet = true; 5401 Entry.isNest = false; 5402 Entry.isByVal = false; 5403 Entry.isReturned = false; 5404 Entry.Alignment = Align; 5405 Args.push_back(Entry); 5406 RetTy = Type::getVoidTy(FTy->getContext()); 5407 } 5408 5409 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5410 i != e; ++i) { 5411 const Value *V = *i; 5412 5413 // Skip empty types 5414 if (V->getType()->isEmptyTy()) 5415 continue; 5416 5417 SDValue ArgNode = getValue(V); 5418 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5419 5420 // Skip the first return-type Attribute to get to params. 5421 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5422 Args.push_back(Entry); 5423 } 5424 5425 if (LandingPad) { 5426 // Insert a label before the invoke call to mark the try range. This can be 5427 // used to detect deletion of the invoke via the MachineModuleInfo. 5428 BeginLabel = MMI.getContext().CreateTempSymbol(); 5429 5430 // For SjLj, keep track of which landing pads go with which invokes 5431 // so as to maintain the ordering of pads in the LSDA. 5432 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5433 if (CallSiteIndex) { 5434 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5435 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5436 5437 // Now that the call site is handled, stop tracking it. 5438 MMI.setCurrentCallSite(0); 5439 } 5440 5441 // Both PendingLoads and PendingExports must be flushed here; 5442 // this call might not return. 5443 (void)getRoot(); 5444 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5445 } 5446 5447 // Check if target-independent constraints permit a tail call here. 5448 // Target-dependent constraints are checked within TLI->LowerCallTo. 5449 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5450 isTailCall = false; 5451 5452 TargetLowering:: 5453 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5454 getCurSDLoc(), CS); 5455 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5456 assert((isTailCall || Result.second.getNode()) && 5457 "Non-null chain expected with non-tail call!"); 5458 assert((Result.second.getNode() || !Result.first.getNode()) && 5459 "Null value expected with tail call!"); 5460 if (Result.first.getNode()) { 5461 setValue(CS.getInstruction(), Result.first); 5462 } else if (!CanLowerReturn && Result.second.getNode()) { 5463 // The instruction result is the result of loading from the 5464 // hidden sret parameter. 5465 SmallVector<EVT, 1> PVTs; 5466 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5467 5468 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5469 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5470 EVT PtrVT = PVTs[0]; 5471 5472 SmallVector<EVT, 4> RetTys; 5473 SmallVector<uint64_t, 4> Offsets; 5474 RetTy = FTy->getReturnType(); 5475 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5476 5477 unsigned NumValues = RetTys.size(); 5478 SmallVector<SDValue, 4> Values(NumValues); 5479 SmallVector<SDValue, 4> Chains(NumValues); 5480 5481 for (unsigned i = 0; i < NumValues; ++i) { 5482 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5483 DemoteStackSlot, 5484 DAG.getConstant(Offsets[i], PtrVT)); 5485 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5486 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5487 false, false, false, 1); 5488 Values[i] = L; 5489 Chains[i] = L.getValue(1); 5490 } 5491 5492 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5493 MVT::Other, &Chains[0], NumValues); 5494 PendingLoads.push_back(Chain); 5495 5496 setValue(CS.getInstruction(), 5497 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5498 DAG.getVTList(&RetTys[0], RetTys.size()), 5499 &Values[0], Values.size())); 5500 } 5501 5502 if (!Result.second.getNode()) { 5503 // As a special case, a null chain means that a tail call has been emitted 5504 // and the DAG root is already updated. 5505 HasTailCall = true; 5506 5507 // Since there's no actual continuation from this block, nothing can be 5508 // relying on us setting vregs for them. 5509 PendingExports.clear(); 5510 } else { 5511 DAG.setRoot(Result.second); 5512 } 5513 5514 if (LandingPad) { 5515 // Insert a label at the end of the invoke call to mark the try range. This 5516 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5517 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5518 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5519 5520 // Inform MachineModuleInfo of range. 5521 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5522 } 5523 } 5524 5525 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5526 /// value is equal or not-equal to zero. 5527 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5528 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5529 UI != E; ++UI) { 5530 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5531 if (IC->isEquality()) 5532 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5533 if (C->isNullValue()) 5534 continue; 5535 // Unknown instruction. 5536 return false; 5537 } 5538 return true; 5539 } 5540 5541 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5542 Type *LoadTy, 5543 SelectionDAGBuilder &Builder) { 5544 5545 // Check to see if this load can be trivially constant folded, e.g. if the 5546 // input is from a string literal. 5547 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5548 // Cast pointer to the type we really want to load. 5549 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5550 PointerType::getUnqual(LoadTy)); 5551 5552 if (const Constant *LoadCst = 5553 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5554 Builder.TD)) 5555 return Builder.getValue(LoadCst); 5556 } 5557 5558 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5559 // still constant memory, the input chain can be the entry node. 5560 SDValue Root; 5561 bool ConstantMemory = false; 5562 5563 // Do not serialize (non-volatile) loads of constant memory with anything. 5564 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5565 Root = Builder.DAG.getEntryNode(); 5566 ConstantMemory = true; 5567 } else { 5568 // Do not serialize non-volatile loads against each other. 5569 Root = Builder.DAG.getRoot(); 5570 } 5571 5572 SDValue Ptr = Builder.getValue(PtrVal); 5573 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5574 Ptr, MachinePointerInfo(PtrVal), 5575 false /*volatile*/, 5576 false /*nontemporal*/, 5577 false /*isinvariant*/, 1 /* align=1 */); 5578 5579 if (!ConstantMemory) 5580 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5581 return LoadVal; 5582 } 5583 5584 /// processIntegerCallValue - Record the value for an instruction that 5585 /// produces an integer result, converting the type where necessary. 5586 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5587 SDValue Value, 5588 bool IsSigned) { 5589 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5590 if (IsSigned) 5591 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5592 else 5593 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5594 setValue(&I, Value); 5595 } 5596 5597 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5598 /// If so, return true and lower it, otherwise return false and it will be 5599 /// lowered like a normal call. 5600 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5601 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5602 if (I.getNumArgOperands() != 3) 5603 return false; 5604 5605 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5606 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5607 !I.getArgOperand(2)->getType()->isIntegerTy() || 5608 !I.getType()->isIntegerTy()) 5609 return false; 5610 5611 const Value *Size = I.getArgOperand(2); 5612 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5613 if (CSize && CSize->getZExtValue() == 0) { 5614 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5615 setValue(&I, DAG.getConstant(0, CallVT)); 5616 return true; 5617 } 5618 5619 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5620 std::pair<SDValue, SDValue> Res = 5621 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5622 getValue(LHS), getValue(RHS), getValue(Size), 5623 MachinePointerInfo(LHS), 5624 MachinePointerInfo(RHS)); 5625 if (Res.first.getNode()) { 5626 processIntegerCallValue(I, Res.first, true); 5627 PendingLoads.push_back(Res.second); 5628 return true; 5629 } 5630 5631 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5632 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5633 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5634 bool ActuallyDoIt = true; 5635 MVT LoadVT; 5636 Type *LoadTy; 5637 switch (CSize->getZExtValue()) { 5638 default: 5639 LoadVT = MVT::Other; 5640 LoadTy = 0; 5641 ActuallyDoIt = false; 5642 break; 5643 case 2: 5644 LoadVT = MVT::i16; 5645 LoadTy = Type::getInt16Ty(CSize->getContext()); 5646 break; 5647 case 4: 5648 LoadVT = MVT::i32; 5649 LoadTy = Type::getInt32Ty(CSize->getContext()); 5650 break; 5651 case 8: 5652 LoadVT = MVT::i64; 5653 LoadTy = Type::getInt64Ty(CSize->getContext()); 5654 break; 5655 /* 5656 case 16: 5657 LoadVT = MVT::v4i32; 5658 LoadTy = Type::getInt32Ty(CSize->getContext()); 5659 LoadTy = VectorType::get(LoadTy, 4); 5660 break; 5661 */ 5662 } 5663 5664 // This turns into unaligned loads. We only do this if the target natively 5665 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5666 // we'll only produce a small number of byte loads. 5667 5668 // Require that we can find a legal MVT, and only do this if the target 5669 // supports unaligned loads of that type. Expanding into byte loads would 5670 // bloat the code. 5671 const TargetLowering *TLI = TM.getTargetLowering(); 5672 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5673 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5674 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5675 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) 5676 ActuallyDoIt = false; 5677 } 5678 5679 if (ActuallyDoIt) { 5680 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5681 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5682 5683 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5684 ISD::SETNE); 5685 processIntegerCallValue(I, Res, false); 5686 return true; 5687 } 5688 } 5689 5690 5691 return false; 5692 } 5693 5694 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5695 /// form. If so, return true and lower it, otherwise return false and it 5696 /// will be lowered like a normal call. 5697 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5698 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5699 if (I.getNumArgOperands() != 3) 5700 return false; 5701 5702 const Value *Src = I.getArgOperand(0); 5703 const Value *Char = I.getArgOperand(1); 5704 const Value *Length = I.getArgOperand(2); 5705 if (!Src->getType()->isPointerTy() || 5706 !Char->getType()->isIntegerTy() || 5707 !Length->getType()->isIntegerTy() || 5708 !I.getType()->isPointerTy()) 5709 return false; 5710 5711 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5712 std::pair<SDValue, SDValue> Res = 5713 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5714 getValue(Src), getValue(Char), getValue(Length), 5715 MachinePointerInfo(Src)); 5716 if (Res.first.getNode()) { 5717 setValue(&I, Res.first); 5718 PendingLoads.push_back(Res.second); 5719 return true; 5720 } 5721 5722 return false; 5723 } 5724 5725 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5726 /// optimized form. If so, return true and lower it, otherwise return false 5727 /// and it will be lowered like a normal call. 5728 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5729 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5730 if (I.getNumArgOperands() != 2) 5731 return false; 5732 5733 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5734 if (!Arg0->getType()->isPointerTy() || 5735 !Arg1->getType()->isPointerTy() || 5736 !I.getType()->isPointerTy()) 5737 return false; 5738 5739 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5740 std::pair<SDValue, SDValue> Res = 5741 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5742 getValue(Arg0), getValue(Arg1), 5743 MachinePointerInfo(Arg0), 5744 MachinePointerInfo(Arg1), isStpcpy); 5745 if (Res.first.getNode()) { 5746 setValue(&I, Res.first); 5747 DAG.setRoot(Res.second); 5748 return true; 5749 } 5750 5751 return false; 5752 } 5753 5754 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5755 /// If so, return true and lower it, otherwise return false and it will be 5756 /// lowered like a normal call. 5757 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5758 // Verify that the prototype makes sense. int strcmp(void*,void*) 5759 if (I.getNumArgOperands() != 2) 5760 return false; 5761 5762 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5763 if (!Arg0->getType()->isPointerTy() || 5764 !Arg1->getType()->isPointerTy() || 5765 !I.getType()->isIntegerTy()) 5766 return false; 5767 5768 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5769 std::pair<SDValue, SDValue> Res = 5770 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5771 getValue(Arg0), getValue(Arg1), 5772 MachinePointerInfo(Arg0), 5773 MachinePointerInfo(Arg1)); 5774 if (Res.first.getNode()) { 5775 processIntegerCallValue(I, Res.first, true); 5776 PendingLoads.push_back(Res.second); 5777 return true; 5778 } 5779 5780 return false; 5781 } 5782 5783 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5784 /// form. If so, return true and lower it, otherwise return false and it 5785 /// will be lowered like a normal call. 5786 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5787 // Verify that the prototype makes sense. size_t strlen(char *) 5788 if (I.getNumArgOperands() != 1) 5789 return false; 5790 5791 const Value *Arg0 = I.getArgOperand(0); 5792 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5793 return false; 5794 5795 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5796 std::pair<SDValue, SDValue> Res = 5797 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5798 getValue(Arg0), MachinePointerInfo(Arg0)); 5799 if (Res.first.getNode()) { 5800 processIntegerCallValue(I, Res.first, false); 5801 PendingLoads.push_back(Res.second); 5802 return true; 5803 } 5804 5805 return false; 5806 } 5807 5808 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5809 /// form. If so, return true and lower it, otherwise return false and it 5810 /// will be lowered like a normal call. 5811 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5812 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5813 if (I.getNumArgOperands() != 2) 5814 return false; 5815 5816 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5817 if (!Arg0->getType()->isPointerTy() || 5818 !Arg1->getType()->isIntegerTy() || 5819 !I.getType()->isIntegerTy()) 5820 return false; 5821 5822 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5823 std::pair<SDValue, SDValue> Res = 5824 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5825 getValue(Arg0), getValue(Arg1), 5826 MachinePointerInfo(Arg0)); 5827 if (Res.first.getNode()) { 5828 processIntegerCallValue(I, Res.first, false); 5829 PendingLoads.push_back(Res.second); 5830 return true; 5831 } 5832 5833 return false; 5834 } 5835 5836 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5837 /// operation (as expected), translate it to an SDNode with the specified opcode 5838 /// and return true. 5839 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5840 unsigned Opcode) { 5841 // Sanity check that it really is a unary floating-point call. 5842 if (I.getNumArgOperands() != 1 || 5843 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5844 I.getType() != I.getArgOperand(0)->getType() || 5845 !I.onlyReadsMemory()) 5846 return false; 5847 5848 SDValue Tmp = getValue(I.getArgOperand(0)); 5849 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5850 return true; 5851 } 5852 5853 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5854 // Handle inline assembly differently. 5855 if (isa<InlineAsm>(I.getCalledValue())) { 5856 visitInlineAsm(&I); 5857 return; 5858 } 5859 5860 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5861 ComputeUsesVAFloatArgument(I, &MMI); 5862 5863 const char *RenameFn = 0; 5864 if (Function *F = I.getCalledFunction()) { 5865 if (F->isDeclaration()) { 5866 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5867 if (unsigned IID = II->getIntrinsicID(F)) { 5868 RenameFn = visitIntrinsicCall(I, IID); 5869 if (!RenameFn) 5870 return; 5871 } 5872 } 5873 if (unsigned IID = F->getIntrinsicID()) { 5874 RenameFn = visitIntrinsicCall(I, IID); 5875 if (!RenameFn) 5876 return; 5877 } 5878 } 5879 5880 // Check for well-known libc/libm calls. If the function is internal, it 5881 // can't be a library call. 5882 LibFunc::Func Func; 5883 if (!F->hasLocalLinkage() && F->hasName() && 5884 LibInfo->getLibFunc(F->getName(), Func) && 5885 LibInfo->hasOptimizedCodeGen(Func)) { 5886 switch (Func) { 5887 default: break; 5888 case LibFunc::copysign: 5889 case LibFunc::copysignf: 5890 case LibFunc::copysignl: 5891 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5892 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5893 I.getType() == I.getArgOperand(0)->getType() && 5894 I.getType() == I.getArgOperand(1)->getType() && 5895 I.onlyReadsMemory()) { 5896 SDValue LHS = getValue(I.getArgOperand(0)); 5897 SDValue RHS = getValue(I.getArgOperand(1)); 5898 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5899 LHS.getValueType(), LHS, RHS)); 5900 return; 5901 } 5902 break; 5903 case LibFunc::fabs: 5904 case LibFunc::fabsf: 5905 case LibFunc::fabsl: 5906 if (visitUnaryFloatCall(I, ISD::FABS)) 5907 return; 5908 break; 5909 case LibFunc::sin: 5910 case LibFunc::sinf: 5911 case LibFunc::sinl: 5912 if (visitUnaryFloatCall(I, ISD::FSIN)) 5913 return; 5914 break; 5915 case LibFunc::cos: 5916 case LibFunc::cosf: 5917 case LibFunc::cosl: 5918 if (visitUnaryFloatCall(I, ISD::FCOS)) 5919 return; 5920 break; 5921 case LibFunc::sqrt: 5922 case LibFunc::sqrtf: 5923 case LibFunc::sqrtl: 5924 case LibFunc::sqrt_finite: 5925 case LibFunc::sqrtf_finite: 5926 case LibFunc::sqrtl_finite: 5927 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5928 return; 5929 break; 5930 case LibFunc::floor: 5931 case LibFunc::floorf: 5932 case LibFunc::floorl: 5933 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5934 return; 5935 break; 5936 case LibFunc::nearbyint: 5937 case LibFunc::nearbyintf: 5938 case LibFunc::nearbyintl: 5939 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5940 return; 5941 break; 5942 case LibFunc::ceil: 5943 case LibFunc::ceilf: 5944 case LibFunc::ceill: 5945 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5946 return; 5947 break; 5948 case LibFunc::rint: 5949 case LibFunc::rintf: 5950 case LibFunc::rintl: 5951 if (visitUnaryFloatCall(I, ISD::FRINT)) 5952 return; 5953 break; 5954 case LibFunc::round: 5955 case LibFunc::roundf: 5956 case LibFunc::roundl: 5957 if (visitUnaryFloatCall(I, ISD::FROUND)) 5958 return; 5959 break; 5960 case LibFunc::trunc: 5961 case LibFunc::truncf: 5962 case LibFunc::truncl: 5963 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5964 return; 5965 break; 5966 case LibFunc::log2: 5967 case LibFunc::log2f: 5968 case LibFunc::log2l: 5969 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5970 return; 5971 break; 5972 case LibFunc::exp2: 5973 case LibFunc::exp2f: 5974 case LibFunc::exp2l: 5975 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5976 return; 5977 break; 5978 case LibFunc::memcmp: 5979 if (visitMemCmpCall(I)) 5980 return; 5981 break; 5982 case LibFunc::memchr: 5983 if (visitMemChrCall(I)) 5984 return; 5985 break; 5986 case LibFunc::strcpy: 5987 if (visitStrCpyCall(I, false)) 5988 return; 5989 break; 5990 case LibFunc::stpcpy: 5991 if (visitStrCpyCall(I, true)) 5992 return; 5993 break; 5994 case LibFunc::strcmp: 5995 if (visitStrCmpCall(I)) 5996 return; 5997 break; 5998 case LibFunc::strlen: 5999 if (visitStrLenCall(I)) 6000 return; 6001 break; 6002 case LibFunc::strnlen: 6003 if (visitStrNLenCall(I)) 6004 return; 6005 break; 6006 } 6007 } 6008 } 6009 6010 SDValue Callee; 6011 if (!RenameFn) 6012 Callee = getValue(I.getCalledValue()); 6013 else 6014 Callee = DAG.getExternalSymbol(RenameFn, 6015 TM.getTargetLowering()->getPointerTy()); 6016 6017 // Check if we can potentially perform a tail call. More detailed checking is 6018 // be done within LowerCallTo, after more information about the call is known. 6019 LowerCallTo(&I, Callee, I.isTailCall()); 6020 } 6021 6022 namespace { 6023 6024 /// AsmOperandInfo - This contains information for each constraint that we are 6025 /// lowering. 6026 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6027 public: 6028 /// CallOperand - If this is the result output operand or a clobber 6029 /// this is null, otherwise it is the incoming operand to the CallInst. 6030 /// This gets modified as the asm is processed. 6031 SDValue CallOperand; 6032 6033 /// AssignedRegs - If this is a register or register class operand, this 6034 /// contains the set of register corresponding to the operand. 6035 RegsForValue AssignedRegs; 6036 6037 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6038 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6039 } 6040 6041 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6042 /// corresponds to. If there is no Value* for this operand, it returns 6043 /// MVT::Other. 6044 EVT getCallOperandValEVT(LLVMContext &Context, 6045 const TargetLowering &TLI, 6046 const DataLayout *TD) const { 6047 if (CallOperandVal == 0) return MVT::Other; 6048 6049 if (isa<BasicBlock>(CallOperandVal)) 6050 return TLI.getPointerTy(); 6051 6052 llvm::Type *OpTy = CallOperandVal->getType(); 6053 6054 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6055 // If this is an indirect operand, the operand is a pointer to the 6056 // accessed type. 6057 if (isIndirect) { 6058 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6059 if (!PtrTy) 6060 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6061 OpTy = PtrTy->getElementType(); 6062 } 6063 6064 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6065 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6066 if (STy->getNumElements() == 1) 6067 OpTy = STy->getElementType(0); 6068 6069 // If OpTy is not a single value, it may be a struct/union that we 6070 // can tile with integers. 6071 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6072 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 6073 switch (BitSize) { 6074 default: break; 6075 case 1: 6076 case 8: 6077 case 16: 6078 case 32: 6079 case 64: 6080 case 128: 6081 OpTy = IntegerType::get(Context, BitSize); 6082 break; 6083 } 6084 } 6085 6086 return TLI.getValueType(OpTy, true); 6087 } 6088 }; 6089 6090 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6091 6092 } // end anonymous namespace 6093 6094 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6095 /// specified operand. We prefer to assign virtual registers, to allow the 6096 /// register allocator to handle the assignment process. However, if the asm 6097 /// uses features that we can't model on machineinstrs, we have SDISel do the 6098 /// allocation. This produces generally horrible, but correct, code. 6099 /// 6100 /// OpInfo describes the operand. 6101 /// 6102 static void GetRegistersForValue(SelectionDAG &DAG, 6103 const TargetLowering &TLI, 6104 SDLoc DL, 6105 SDISelAsmOperandInfo &OpInfo) { 6106 LLVMContext &Context = *DAG.getContext(); 6107 6108 MachineFunction &MF = DAG.getMachineFunction(); 6109 SmallVector<unsigned, 4> Regs; 6110 6111 // If this is a constraint for a single physreg, or a constraint for a 6112 // register class, find it. 6113 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6114 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6115 OpInfo.ConstraintVT); 6116 6117 unsigned NumRegs = 1; 6118 if (OpInfo.ConstraintVT != MVT::Other) { 6119 // If this is a FP input in an integer register (or visa versa) insert a bit 6120 // cast of the input value. More generally, handle any case where the input 6121 // value disagrees with the register class we plan to stick this in. 6122 if (OpInfo.Type == InlineAsm::isInput && 6123 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6124 // Try to convert to the first EVT that the reg class contains. If the 6125 // types are identical size, use a bitcast to convert (e.g. two differing 6126 // vector types). 6127 MVT RegVT = *PhysReg.second->vt_begin(); 6128 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 6129 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6130 RegVT, OpInfo.CallOperand); 6131 OpInfo.ConstraintVT = RegVT; 6132 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6133 // If the input is a FP value and we want it in FP registers, do a 6134 // bitcast to the corresponding integer type. This turns an f64 value 6135 // into i64, which can be passed with two i32 values on a 32-bit 6136 // machine. 6137 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6138 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6139 RegVT, OpInfo.CallOperand); 6140 OpInfo.ConstraintVT = RegVT; 6141 } 6142 } 6143 6144 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6145 } 6146 6147 MVT RegVT; 6148 EVT ValueVT = OpInfo.ConstraintVT; 6149 6150 // If this is a constraint for a specific physical register, like {r17}, 6151 // assign it now. 6152 if (unsigned AssignedReg = PhysReg.first) { 6153 const TargetRegisterClass *RC = PhysReg.second; 6154 if (OpInfo.ConstraintVT == MVT::Other) 6155 ValueVT = *RC->vt_begin(); 6156 6157 // Get the actual register value type. This is important, because the user 6158 // may have asked for (e.g.) the AX register in i32 type. We need to 6159 // remember that AX is actually i16 to get the right extension. 6160 RegVT = *RC->vt_begin(); 6161 6162 // This is a explicit reference to a physical register. 6163 Regs.push_back(AssignedReg); 6164 6165 // If this is an expanded reference, add the rest of the regs to Regs. 6166 if (NumRegs != 1) { 6167 TargetRegisterClass::iterator I = RC->begin(); 6168 for (; *I != AssignedReg; ++I) 6169 assert(I != RC->end() && "Didn't find reg!"); 6170 6171 // Already added the first reg. 6172 --NumRegs; ++I; 6173 for (; NumRegs; --NumRegs, ++I) { 6174 assert(I != RC->end() && "Ran out of registers to allocate!"); 6175 Regs.push_back(*I); 6176 } 6177 } 6178 6179 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6180 return; 6181 } 6182 6183 // Otherwise, if this was a reference to an LLVM register class, create vregs 6184 // for this reference. 6185 if (const TargetRegisterClass *RC = PhysReg.second) { 6186 RegVT = *RC->vt_begin(); 6187 if (OpInfo.ConstraintVT == MVT::Other) 6188 ValueVT = RegVT; 6189 6190 // Create the appropriate number of virtual registers. 6191 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6192 for (; NumRegs; --NumRegs) 6193 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6194 6195 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6196 return; 6197 } 6198 6199 // Otherwise, we couldn't allocate enough registers for this. 6200 } 6201 6202 /// visitInlineAsm - Handle a call to an InlineAsm object. 6203 /// 6204 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6205 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6206 6207 /// ConstraintOperands - Information about all of the constraints. 6208 SDISelAsmOperandInfoVector ConstraintOperands; 6209 6210 const TargetLowering *TLI = TM.getTargetLowering(); 6211 TargetLowering::AsmOperandInfoVector 6212 TargetConstraints = TLI->ParseConstraints(CS); 6213 6214 bool hasMemory = false; 6215 6216 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6217 unsigned ResNo = 0; // ResNo - The result number of the next output. 6218 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6219 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6220 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6221 6222 MVT OpVT = MVT::Other; 6223 6224 // Compute the value type for each operand. 6225 switch (OpInfo.Type) { 6226 case InlineAsm::isOutput: 6227 // Indirect outputs just consume an argument. 6228 if (OpInfo.isIndirect) { 6229 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6230 break; 6231 } 6232 6233 // The return value of the call is this value. As such, there is no 6234 // corresponding argument. 6235 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6236 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6237 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6238 } else { 6239 assert(ResNo == 0 && "Asm only has one result!"); 6240 OpVT = TLI->getSimpleValueType(CS.getType()); 6241 } 6242 ++ResNo; 6243 break; 6244 case InlineAsm::isInput: 6245 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6246 break; 6247 case InlineAsm::isClobber: 6248 // Nothing to do. 6249 break; 6250 } 6251 6252 // If this is an input or an indirect output, process the call argument. 6253 // BasicBlocks are labels, currently appearing only in asm's. 6254 if (OpInfo.CallOperandVal) { 6255 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6256 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6257 } else { 6258 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6259 } 6260 6261 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 6262 getSimpleVT(); 6263 } 6264 6265 OpInfo.ConstraintVT = OpVT; 6266 6267 // Indirect operand accesses access memory. 6268 if (OpInfo.isIndirect) 6269 hasMemory = true; 6270 else { 6271 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6272 TargetLowering::ConstraintType 6273 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6274 if (CType == TargetLowering::C_Memory) { 6275 hasMemory = true; 6276 break; 6277 } 6278 } 6279 } 6280 } 6281 6282 SDValue Chain, Flag; 6283 6284 // We won't need to flush pending loads if this asm doesn't touch 6285 // memory and is nonvolatile. 6286 if (hasMemory || IA->hasSideEffects()) 6287 Chain = getRoot(); 6288 else 6289 Chain = DAG.getRoot(); 6290 6291 // Second pass over the constraints: compute which constraint option to use 6292 // and assign registers to constraints that want a specific physreg. 6293 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6294 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6295 6296 // If this is an output operand with a matching input operand, look up the 6297 // matching input. If their types mismatch, e.g. one is an integer, the 6298 // other is floating point, or their sizes are different, flag it as an 6299 // error. 6300 if (OpInfo.hasMatchingInput()) { 6301 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6302 6303 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6304 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6305 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6306 OpInfo.ConstraintVT); 6307 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6308 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6309 Input.ConstraintVT); 6310 if ((OpInfo.ConstraintVT.isInteger() != 6311 Input.ConstraintVT.isInteger()) || 6312 (MatchRC.second != InputRC.second)) { 6313 report_fatal_error("Unsupported asm: input constraint" 6314 " with a matching output constraint of" 6315 " incompatible type!"); 6316 } 6317 Input.ConstraintVT = OpInfo.ConstraintVT; 6318 } 6319 } 6320 6321 // Compute the constraint code and ConstraintType to use. 6322 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6323 6324 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6325 OpInfo.Type == InlineAsm::isClobber) 6326 continue; 6327 6328 // If this is a memory input, and if the operand is not indirect, do what we 6329 // need to to provide an address for the memory input. 6330 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6331 !OpInfo.isIndirect) { 6332 assert((OpInfo.isMultipleAlternative || 6333 (OpInfo.Type == InlineAsm::isInput)) && 6334 "Can only indirectify direct input operands!"); 6335 6336 // Memory operands really want the address of the value. If we don't have 6337 // an indirect input, put it in the constpool if we can, otherwise spill 6338 // it to a stack slot. 6339 // TODO: This isn't quite right. We need to handle these according to 6340 // the addressing mode that the constraint wants. Also, this may take 6341 // an additional register for the computation and we don't want that 6342 // either. 6343 6344 // If the operand is a float, integer, or vector constant, spill to a 6345 // constant pool entry to get its address. 6346 const Value *OpVal = OpInfo.CallOperandVal; 6347 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6348 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6349 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6350 TLI->getPointerTy()); 6351 } else { 6352 // Otherwise, create a stack slot and emit a store to it before the 6353 // asm. 6354 Type *Ty = OpVal->getType(); 6355 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6356 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6357 MachineFunction &MF = DAG.getMachineFunction(); 6358 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6359 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6360 Chain = DAG.getStore(Chain, getCurSDLoc(), 6361 OpInfo.CallOperand, StackSlot, 6362 MachinePointerInfo::getFixedStack(SSFI), 6363 false, false, 0); 6364 OpInfo.CallOperand = StackSlot; 6365 } 6366 6367 // There is no longer a Value* corresponding to this operand. 6368 OpInfo.CallOperandVal = 0; 6369 6370 // It is now an indirect operand. 6371 OpInfo.isIndirect = true; 6372 } 6373 6374 // If this constraint is for a specific register, allocate it before 6375 // anything else. 6376 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6377 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6378 } 6379 6380 // Second pass - Loop over all of the operands, assigning virtual or physregs 6381 // to register class operands. 6382 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6383 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6384 6385 // C_Register operands have already been allocated, Other/Memory don't need 6386 // to be. 6387 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6388 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6389 } 6390 6391 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6392 std::vector<SDValue> AsmNodeOperands; 6393 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6394 AsmNodeOperands.push_back( 6395 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6396 TLI->getPointerTy())); 6397 6398 // If we have a !srcloc metadata node associated with it, we want to attach 6399 // this to the ultimately generated inline asm machineinstr. To do this, we 6400 // pass in the third operand as this (potentially null) inline asm MDNode. 6401 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6402 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6403 6404 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6405 // bits as operand 3. 6406 unsigned ExtraInfo = 0; 6407 if (IA->hasSideEffects()) 6408 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6409 if (IA->isAlignStack()) 6410 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6411 // Set the asm dialect. 6412 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6413 6414 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6415 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6416 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6417 6418 // Compute the constraint code and ConstraintType to use. 6419 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6420 6421 // Ideally, we would only check against memory constraints. However, the 6422 // meaning of an other constraint can be target-specific and we can't easily 6423 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6424 // for other constriants as well. 6425 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6426 OpInfo.ConstraintType == TargetLowering::C_Other) { 6427 if (OpInfo.Type == InlineAsm::isInput) 6428 ExtraInfo |= InlineAsm::Extra_MayLoad; 6429 else if (OpInfo.Type == InlineAsm::isOutput) 6430 ExtraInfo |= InlineAsm::Extra_MayStore; 6431 else if (OpInfo.Type == InlineAsm::isClobber) 6432 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6433 } 6434 } 6435 6436 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6437 TLI->getPointerTy())); 6438 6439 // Loop over all of the inputs, copying the operand values into the 6440 // appropriate registers and processing the output regs. 6441 RegsForValue RetValRegs; 6442 6443 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6444 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6445 6446 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6447 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6448 6449 switch (OpInfo.Type) { 6450 case InlineAsm::isOutput: { 6451 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6452 OpInfo.ConstraintType != TargetLowering::C_Register) { 6453 // Memory output, or 'other' output (e.g. 'X' constraint). 6454 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6455 6456 // Add information to the INLINEASM node to know about this output. 6457 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6458 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6459 TLI->getPointerTy())); 6460 AsmNodeOperands.push_back(OpInfo.CallOperand); 6461 break; 6462 } 6463 6464 // Otherwise, this is a register or register class output. 6465 6466 // Copy the output from the appropriate register. Find a register that 6467 // we can use. 6468 if (OpInfo.AssignedRegs.Regs.empty()) { 6469 LLVMContext &Ctx = *DAG.getContext(); 6470 Ctx.emitError(CS.getInstruction(), 6471 "couldn't allocate output register for constraint '" + 6472 Twine(OpInfo.ConstraintCode) + "'"); 6473 return; 6474 } 6475 6476 // If this is an indirect operand, store through the pointer after the 6477 // asm. 6478 if (OpInfo.isIndirect) { 6479 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6480 OpInfo.CallOperandVal)); 6481 } else { 6482 // This is the result value of the call. 6483 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6484 // Concatenate this output onto the outputs list. 6485 RetValRegs.append(OpInfo.AssignedRegs); 6486 } 6487 6488 // Add information to the INLINEASM node to know that this register is 6489 // set. 6490 OpInfo.AssignedRegs 6491 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6492 ? InlineAsm::Kind_RegDefEarlyClobber 6493 : InlineAsm::Kind_RegDef, 6494 false, 0, DAG, AsmNodeOperands); 6495 break; 6496 } 6497 case InlineAsm::isInput: { 6498 SDValue InOperandVal = OpInfo.CallOperand; 6499 6500 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6501 // If this is required to match an output register we have already set, 6502 // just use its register. 6503 unsigned OperandNo = OpInfo.getMatchedOperand(); 6504 6505 // Scan until we find the definition we already emitted of this operand. 6506 // When we find it, create a RegsForValue operand. 6507 unsigned CurOp = InlineAsm::Op_FirstOperand; 6508 for (; OperandNo; --OperandNo) { 6509 // Advance to the next operand. 6510 unsigned OpFlag = 6511 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6512 assert((InlineAsm::isRegDefKind(OpFlag) || 6513 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6514 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6515 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6516 } 6517 6518 unsigned OpFlag = 6519 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6520 if (InlineAsm::isRegDefKind(OpFlag) || 6521 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6522 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6523 if (OpInfo.isIndirect) { 6524 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6525 LLVMContext &Ctx = *DAG.getContext(); 6526 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6527 " don't know how to handle tied " 6528 "indirect register inputs"); 6529 return; 6530 } 6531 6532 RegsForValue MatchedRegs; 6533 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6534 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6535 MatchedRegs.RegVTs.push_back(RegVT); 6536 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6537 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6538 i != e; ++i) { 6539 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6540 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6541 else { 6542 LLVMContext &Ctx = *DAG.getContext(); 6543 Ctx.emitError(CS.getInstruction(), 6544 "inline asm error: This value" 6545 " type register class is not natively supported!"); 6546 return; 6547 } 6548 } 6549 // Use the produced MatchedRegs object to 6550 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6551 Chain, &Flag, CS.getInstruction()); 6552 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6553 true, OpInfo.getMatchedOperand(), 6554 DAG, AsmNodeOperands); 6555 break; 6556 } 6557 6558 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6559 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6560 "Unexpected number of operands"); 6561 // Add information to the INLINEASM node to know about this input. 6562 // See InlineAsm.h isUseOperandTiedToDef. 6563 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6564 OpInfo.getMatchedOperand()); 6565 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6566 TLI->getPointerTy())); 6567 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6568 break; 6569 } 6570 6571 // Treat indirect 'X' constraint as memory. 6572 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6573 OpInfo.isIndirect) 6574 OpInfo.ConstraintType = TargetLowering::C_Memory; 6575 6576 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6577 std::vector<SDValue> Ops; 6578 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6579 Ops, DAG); 6580 if (Ops.empty()) { 6581 LLVMContext &Ctx = *DAG.getContext(); 6582 Ctx.emitError(CS.getInstruction(), 6583 "invalid operand for inline asm constraint '" + 6584 Twine(OpInfo.ConstraintCode) + "'"); 6585 return; 6586 } 6587 6588 // Add information to the INLINEASM node to know about this input. 6589 unsigned ResOpType = 6590 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6591 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6592 TLI->getPointerTy())); 6593 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6594 break; 6595 } 6596 6597 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6598 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6599 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6600 "Memory operands expect pointer values"); 6601 6602 // Add information to the INLINEASM node to know about this input. 6603 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6604 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6605 TLI->getPointerTy())); 6606 AsmNodeOperands.push_back(InOperandVal); 6607 break; 6608 } 6609 6610 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6611 OpInfo.ConstraintType == TargetLowering::C_Register) && 6612 "Unknown constraint type!"); 6613 6614 // TODO: Support this. 6615 if (OpInfo.isIndirect) { 6616 LLVMContext &Ctx = *DAG.getContext(); 6617 Ctx.emitError(CS.getInstruction(), 6618 "Don't know how to handle indirect register inputs yet " 6619 "for constraint '" + 6620 Twine(OpInfo.ConstraintCode) + "'"); 6621 return; 6622 } 6623 6624 // Copy the input into the appropriate registers. 6625 if (OpInfo.AssignedRegs.Regs.empty()) { 6626 LLVMContext &Ctx = *DAG.getContext(); 6627 Ctx.emitError(CS.getInstruction(), 6628 "couldn't allocate input reg for constraint '" + 6629 Twine(OpInfo.ConstraintCode) + "'"); 6630 return; 6631 } 6632 6633 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6634 Chain, &Flag, CS.getInstruction()); 6635 6636 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6637 DAG, AsmNodeOperands); 6638 break; 6639 } 6640 case InlineAsm::isClobber: { 6641 // Add the clobbered value to the operand list, so that the register 6642 // allocator is aware that the physreg got clobbered. 6643 if (!OpInfo.AssignedRegs.Regs.empty()) 6644 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6645 false, 0, DAG, 6646 AsmNodeOperands); 6647 break; 6648 } 6649 } 6650 } 6651 6652 // Finish up input operands. Set the input chain and add the flag last. 6653 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6654 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6655 6656 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6657 DAG.getVTList(MVT::Other, MVT::Glue), 6658 &AsmNodeOperands[0], AsmNodeOperands.size()); 6659 Flag = Chain.getValue(1); 6660 6661 // If this asm returns a register value, copy the result from that register 6662 // and set it as the value of the call. 6663 if (!RetValRegs.Regs.empty()) { 6664 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6665 Chain, &Flag, CS.getInstruction()); 6666 6667 // FIXME: Why don't we do this for inline asms with MRVs? 6668 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6669 EVT ResultType = TLI->getValueType(CS.getType()); 6670 6671 // If any of the results of the inline asm is a vector, it may have the 6672 // wrong width/num elts. This can happen for register classes that can 6673 // contain multiple different value types. The preg or vreg allocated may 6674 // not have the same VT as was expected. Convert it to the right type 6675 // with bit_convert. 6676 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6677 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6678 ResultType, Val); 6679 6680 } else if (ResultType != Val.getValueType() && 6681 ResultType.isInteger() && Val.getValueType().isInteger()) { 6682 // If a result value was tied to an input value, the computed result may 6683 // have a wider width than the expected result. Extract the relevant 6684 // portion. 6685 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6686 } 6687 6688 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6689 } 6690 6691 setValue(CS.getInstruction(), Val); 6692 // Don't need to use this as a chain in this case. 6693 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6694 return; 6695 } 6696 6697 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6698 6699 // Process indirect outputs, first output all of the flagged copies out of 6700 // physregs. 6701 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6702 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6703 const Value *Ptr = IndirectStoresToEmit[i].second; 6704 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6705 Chain, &Flag, IA); 6706 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6707 } 6708 6709 // Emit the non-flagged stores from the physregs. 6710 SmallVector<SDValue, 8> OutChains; 6711 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6712 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6713 StoresToEmit[i].first, 6714 getValue(StoresToEmit[i].second), 6715 MachinePointerInfo(StoresToEmit[i].second), 6716 false, false, 0); 6717 OutChains.push_back(Val); 6718 } 6719 6720 if (!OutChains.empty()) 6721 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6722 &OutChains[0], OutChains.size()); 6723 6724 DAG.setRoot(Chain); 6725 } 6726 6727 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6728 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6729 MVT::Other, getRoot(), 6730 getValue(I.getArgOperand(0)), 6731 DAG.getSrcValue(I.getArgOperand(0)))); 6732 } 6733 6734 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6735 const TargetLowering *TLI = TM.getTargetLowering(); 6736 const DataLayout &TD = *TLI->getDataLayout(); 6737 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6738 getRoot(), getValue(I.getOperand(0)), 6739 DAG.getSrcValue(I.getOperand(0)), 6740 TD.getABITypeAlignment(I.getType())); 6741 setValue(&I, V); 6742 DAG.setRoot(V.getValue(1)); 6743 } 6744 6745 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6746 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6747 MVT::Other, getRoot(), 6748 getValue(I.getArgOperand(0)), 6749 DAG.getSrcValue(I.getArgOperand(0)))); 6750 } 6751 6752 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6753 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6754 MVT::Other, getRoot(), 6755 getValue(I.getArgOperand(0)), 6756 getValue(I.getArgOperand(1)), 6757 DAG.getSrcValue(I.getArgOperand(0)), 6758 DAG.getSrcValue(I.getArgOperand(1)))); 6759 } 6760 6761 /// \brief Lower an argument list according to the target calling convention. 6762 /// 6763 /// \return A tuple of <return-value, token-chain> 6764 /// 6765 /// This is a helper for lowering intrinsics that follow a target calling 6766 /// convention or require stack pointer adjustment. Only a subset of the 6767 /// intrinsic's operands need to participate in the calling convention. 6768 std::pair<SDValue, SDValue> 6769 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6770 unsigned NumArgs, SDValue Callee, 6771 bool useVoidTy) { 6772 TargetLowering::ArgListTy Args; 6773 Args.reserve(NumArgs); 6774 6775 // Populate the argument list. 6776 // Attributes for args start at offset 1, after the return attribute. 6777 ImmutableCallSite CS(&CI); 6778 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6779 ArgI != ArgE; ++ArgI) { 6780 const Value *V = CI.getOperand(ArgI); 6781 6782 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6783 6784 TargetLowering::ArgListEntry Entry; 6785 Entry.Node = getValue(V); 6786 Entry.Ty = V->getType(); 6787 Entry.setAttributes(&CS, AttrI); 6788 Args.push_back(Entry); 6789 } 6790 6791 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6792 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6793 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6794 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6795 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6796 6797 const TargetLowering *TLI = TM.getTargetLowering(); 6798 return TLI->LowerCallTo(CLI); 6799 } 6800 6801 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6802 /// or patchpoint target node's operand list. 6803 /// 6804 /// Constants are converted to TargetConstants purely as an optimization to 6805 /// avoid constant materialization and register allocation. 6806 /// 6807 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6808 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6809 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6810 /// address materialization and register allocation, but may also be required 6811 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6812 /// alloca in the entry block, then the runtime may assume that the alloca's 6813 /// StackMap location can be read immediately after compilation and that the 6814 /// location is valid at any point during execution (this is similar to the 6815 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6816 /// only available in a register, then the runtime would need to trap when 6817 /// execution reaches the StackMap in order to read the alloca's location. 6818 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6819 SmallVectorImpl<SDValue> &Ops, 6820 SelectionDAGBuilder &Builder) { 6821 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6822 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6823 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6824 Ops.push_back( 6825 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6826 Ops.push_back( 6827 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6828 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6829 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6830 Ops.push_back( 6831 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6832 } else 6833 Ops.push_back(OpVal); 6834 } 6835 } 6836 6837 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6838 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6839 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6840 // [live variables...]) 6841 6842 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6843 6844 SDValue Callee = getValue(CI.getCalledValue()); 6845 6846 // Lower into a call sequence with no args and no return value. 6847 std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee); 6848 // Set the root to the target-lowered call chain. 6849 SDValue Chain = Result.second; 6850 DAG.setRoot(Chain); 6851 6852 /// Get a call instruction from the call sequence chain. 6853 /// Tail calls are not allowed. 6854 SDNode *CallEnd = Chain.getNode(); 6855 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6856 "Expected a callseq node."); 6857 SDNode *Call = CallEnd->getOperand(0).getNode(); 6858 bool hasGlue = Call->getGluedNode(); 6859 6860 // Replace the target specific call node with the stackmap intrinsic. 6861 SmallVector<SDValue, 8> Ops; 6862 6863 // Add the <id> and <numShadowBytes> constants. 6864 for (unsigned i = 0; i < 2; ++i) { 6865 SDValue tmp = getValue(CI.getOperand(i)); 6866 Ops.push_back(DAG.getTargetConstant( 6867 cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32)); 6868 } 6869 // Push live variables for the stack map. 6870 addStackMapLiveVars(CI, 2, Ops, *this); 6871 6872 // Push the chain (this is originally the first operand of the call, but 6873 // becomes now the last or second to last operand). 6874 Ops.push_back(*(Call->op_begin())); 6875 6876 // Push the glue flag (last operand). 6877 if (hasGlue) 6878 Ops.push_back(*(Call->op_end()-1)); 6879 6880 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6881 6882 // Replace the target specific call node with a STACKMAP node. 6883 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(), 6884 NodeTys, Ops); 6885 6886 // StackMap generates no value, so nothing goes in the NodeMap. 6887 6888 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6889 // call sequence. 6890 DAG.ReplaceAllUsesWith(Call, MN); 6891 6892 DAG.DeleteNode(Call); 6893 6894 // Inform the Frame Information that we have a stackmap in this function. 6895 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6896 } 6897 6898 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6899 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6900 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6901 // i32 <numBytes>, 6902 // i8* <target>, 6903 // i32 <numArgs>, 6904 // [Args...], 6905 // [live variables...]) 6906 6907 CallingConv::ID CC = CI.getCallingConv(); 6908 bool isAnyRegCC = CC == CallingConv::AnyReg; 6909 bool hasDef = !CI.getType()->isVoidTy(); 6910 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6911 6912 // Get the real number of arguments participating in the call <numArgs> 6913 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6914 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6915 6916 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6917 // Intrinsics include all meta-operands up to but not including CC. 6918 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6919 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6920 "Not enough arguments provided to the patchpoint intrinsic"); 6921 6922 // For AnyRegCC the arguments are lowered later on manually. 6923 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6924 std::pair<SDValue, SDValue> Result = 6925 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6926 6927 // Set the root to the target-lowered call chain. 6928 SDValue Chain = Result.second; 6929 DAG.setRoot(Chain); 6930 6931 SDNode *CallEnd = Chain.getNode(); 6932 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6933 CallEnd = CallEnd->getOperand(0).getNode(); 6934 6935 /// Get a call instruction from the call sequence chain. 6936 /// Tail calls are not allowed. 6937 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6938 "Expected a callseq node."); 6939 SDNode *Call = CallEnd->getOperand(0).getNode(); 6940 bool hasGlue = Call->getGluedNode(); 6941 6942 // Replace the target specific call node with the patchable intrinsic. 6943 SmallVector<SDValue, 8> Ops; 6944 6945 // Add the <id> and <numBytes> constants. 6946 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6947 Ops.push_back(DAG.getTargetConstant( 6948 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6949 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6950 Ops.push_back(DAG.getTargetConstant( 6951 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6952 6953 // Assume that the Callee is a constant address. 6954 // FIXME: handle function symbols in the future. 6955 Ops.push_back( 6956 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6957 /*isTarget=*/true)); 6958 6959 // Adjust <numArgs> to account for any arguments that have been passed on the 6960 // stack instead. 6961 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6962 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 6963 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 6964 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6965 6966 // Add the calling convention 6967 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6968 6969 // Add the arguments we omitted previously. The register allocator should 6970 // place these in any free register. 6971 if (isAnyRegCC) 6972 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6973 Ops.push_back(getValue(CI.getArgOperand(i))); 6974 6975 // Push the arguments from the call instruction up to the register mask. 6976 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 6977 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 6978 Ops.push_back(*i); 6979 6980 // Push live variables for the stack map. 6981 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 6982 6983 // Push the register mask info. 6984 if (hasGlue) 6985 Ops.push_back(*(Call->op_end()-2)); 6986 else 6987 Ops.push_back(*(Call->op_end()-1)); 6988 6989 // Push the chain (this is originally the first operand of the call, but 6990 // becomes now the last or second to last operand). 6991 Ops.push_back(*(Call->op_begin())); 6992 6993 // Push the glue flag (last operand). 6994 if (hasGlue) 6995 Ops.push_back(*(Call->op_end()-1)); 6996 6997 SDVTList NodeTys; 6998 if (isAnyRegCC && hasDef) { 6999 // Create the return types based on the intrinsic definition 7000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7001 SmallVector<EVT, 3> ValueVTs; 7002 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7003 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7004 7005 // There is always a chain and a glue type at the end 7006 ValueVTs.push_back(MVT::Other); 7007 ValueVTs.push_back(MVT::Glue); 7008 NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 7009 } else 7010 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7011 7012 // Replace the target specific call node with a PATCHPOINT node. 7013 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7014 getCurSDLoc(), NodeTys, Ops); 7015 7016 // Update the NodeMap. 7017 if (hasDef) { 7018 if (isAnyRegCC) 7019 setValue(&CI, SDValue(MN, 0)); 7020 else 7021 setValue(&CI, Result.first); 7022 } 7023 7024 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7025 // call sequence. Furthermore the location of the chain and glue can change 7026 // when the AnyReg calling convention is used and the intrinsic returns a 7027 // value. 7028 if (isAnyRegCC && hasDef) { 7029 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7030 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7031 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7032 } else 7033 DAG.ReplaceAllUsesWith(Call, MN); 7034 DAG.DeleteNode(Call); 7035 7036 // Inform the Frame Information that we have a patchpoint in this function. 7037 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7038 } 7039 7040 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7041 /// implementation, which just calls LowerCall. 7042 /// FIXME: When all targets are 7043 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7044 std::pair<SDValue, SDValue> 7045 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7046 // Handle the incoming return values from the call. 7047 CLI.Ins.clear(); 7048 SmallVector<EVT, 4> RetTys; 7049 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7050 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7051 EVT VT = RetTys[I]; 7052 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7053 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7054 for (unsigned i = 0; i != NumRegs; ++i) { 7055 ISD::InputArg MyFlags; 7056 MyFlags.VT = RegisterVT; 7057 MyFlags.ArgVT = VT; 7058 MyFlags.Used = CLI.IsReturnValueUsed; 7059 if (CLI.RetSExt) 7060 MyFlags.Flags.setSExt(); 7061 if (CLI.RetZExt) 7062 MyFlags.Flags.setZExt(); 7063 if (CLI.IsInReg) 7064 MyFlags.Flags.setInReg(); 7065 CLI.Ins.push_back(MyFlags); 7066 } 7067 } 7068 7069 // Handle all of the outgoing arguments. 7070 CLI.Outs.clear(); 7071 CLI.OutVals.clear(); 7072 ArgListTy &Args = CLI.Args; 7073 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7074 SmallVector<EVT, 4> ValueVTs; 7075 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7076 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7077 Value != NumValues; ++Value) { 7078 EVT VT = ValueVTs[Value]; 7079 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7080 SDValue Op = SDValue(Args[i].Node.getNode(), 7081 Args[i].Node.getResNo() + Value); 7082 ISD::ArgFlagsTy Flags; 7083 unsigned OriginalAlignment = 7084 getDataLayout()->getABITypeAlignment(ArgTy); 7085 7086 if (Args[i].isZExt) 7087 Flags.setZExt(); 7088 if (Args[i].isSExt) 7089 Flags.setSExt(); 7090 if (Args[i].isInReg) 7091 Flags.setInReg(); 7092 if (Args[i].isSRet) 7093 Flags.setSRet(); 7094 if (Args[i].isByVal) { 7095 Flags.setByVal(); 7096 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7097 Type *ElementTy = Ty->getElementType(); 7098 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7099 // For ByVal, alignment should come from FE. BE will guess if this 7100 // info is not there but there are cases it cannot get right. 7101 unsigned FrameAlign; 7102 if (Args[i].Alignment) 7103 FrameAlign = Args[i].Alignment; 7104 else 7105 FrameAlign = getByValTypeAlignment(ElementTy); 7106 Flags.setByValAlign(FrameAlign); 7107 } 7108 if (Args[i].isNest) 7109 Flags.setNest(); 7110 Flags.setOrigAlign(OriginalAlignment); 7111 7112 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7113 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7114 SmallVector<SDValue, 4> Parts(NumParts); 7115 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7116 7117 if (Args[i].isSExt) 7118 ExtendKind = ISD::SIGN_EXTEND; 7119 else if (Args[i].isZExt) 7120 ExtendKind = ISD::ZERO_EXTEND; 7121 7122 // Conservatively only handle 'returned' on non-vectors for now 7123 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7124 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7125 "unexpected use of 'returned'"); 7126 // Before passing 'returned' to the target lowering code, ensure that 7127 // either the register MVT and the actual EVT are the same size or that 7128 // the return value and argument are extended in the same way; in these 7129 // cases it's safe to pass the argument register value unchanged as the 7130 // return register value (although it's at the target's option whether 7131 // to do so) 7132 // TODO: allow code generation to take advantage of partially preserved 7133 // registers rather than clobbering the entire register when the 7134 // parameter extension method is not compatible with the return 7135 // extension method 7136 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7137 (ExtendKind != ISD::ANY_EXTEND && 7138 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7139 Flags.setReturned(); 7140 } 7141 7142 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 7143 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 7144 7145 for (unsigned j = 0; j != NumParts; ++j) { 7146 // if it isn't first piece, alignment must be 1 7147 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7148 i < CLI.NumFixedArgs, 7149 i, j*Parts[j].getValueType().getStoreSize()); 7150 if (NumParts > 1 && j == 0) 7151 MyFlags.Flags.setSplit(); 7152 else if (j != 0) 7153 MyFlags.Flags.setOrigAlign(1); 7154 7155 CLI.Outs.push_back(MyFlags); 7156 CLI.OutVals.push_back(Parts[j]); 7157 } 7158 } 7159 } 7160 7161 SmallVector<SDValue, 4> InVals; 7162 CLI.Chain = LowerCall(CLI, InVals); 7163 7164 // Verify that the target's LowerCall behaved as expected. 7165 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7166 "LowerCall didn't return a valid chain!"); 7167 assert((!CLI.IsTailCall || InVals.empty()) && 7168 "LowerCall emitted a return value for a tail call!"); 7169 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7170 "LowerCall didn't emit the correct number of values!"); 7171 7172 // For a tail call, the return value is merely live-out and there aren't 7173 // any nodes in the DAG representing it. Return a special value to 7174 // indicate that a tail call has been emitted and no more Instructions 7175 // should be processed in the current block. 7176 if (CLI.IsTailCall) { 7177 CLI.DAG.setRoot(CLI.Chain); 7178 return std::make_pair(SDValue(), SDValue()); 7179 } 7180 7181 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7182 assert(InVals[i].getNode() && 7183 "LowerCall emitted a null value!"); 7184 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7185 "LowerCall emitted a value with the wrong type!"); 7186 }); 7187 7188 // Collect the legal value parts into potentially illegal values 7189 // that correspond to the original function's return values. 7190 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7191 if (CLI.RetSExt) 7192 AssertOp = ISD::AssertSext; 7193 else if (CLI.RetZExt) 7194 AssertOp = ISD::AssertZext; 7195 SmallVector<SDValue, 4> ReturnValues; 7196 unsigned CurReg = 0; 7197 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7198 EVT VT = RetTys[I]; 7199 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7200 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7201 7202 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7203 NumRegs, RegisterVT, VT, NULL, 7204 AssertOp)); 7205 CurReg += NumRegs; 7206 } 7207 7208 // For a function returning void, there is no return value. We can't create 7209 // such a node, so we just return a null return value in that case. In 7210 // that case, nothing will actually look at the value. 7211 if (ReturnValues.empty()) 7212 return std::make_pair(SDValue(), CLI.Chain); 7213 7214 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7215 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 7216 &ReturnValues[0], ReturnValues.size()); 7217 return std::make_pair(Res, CLI.Chain); 7218 } 7219 7220 void TargetLowering::LowerOperationWrapper(SDNode *N, 7221 SmallVectorImpl<SDValue> &Results, 7222 SelectionDAG &DAG) const { 7223 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7224 if (Res.getNode()) 7225 Results.push_back(Res); 7226 } 7227 7228 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7229 llvm_unreachable("LowerOperation not implemented for this target!"); 7230 } 7231 7232 void 7233 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7234 SDValue Op = getNonRegisterValue(V); 7235 assert((Op.getOpcode() != ISD::CopyFromReg || 7236 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7237 "Copy from a reg to the same reg!"); 7238 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7239 7240 const TargetLowering *TLI = TM.getTargetLowering(); 7241 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7242 SDValue Chain = DAG.getEntryNode(); 7243 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 7244 PendingExports.push_back(Chain); 7245 } 7246 7247 #include "llvm/CodeGen/SelectionDAGISel.h" 7248 7249 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7250 /// entry block, return true. This includes arguments used by switches, since 7251 /// the switch may expand into multiple basic blocks. 7252 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7253 // With FastISel active, we may be splitting blocks, so force creation 7254 // of virtual registers for all non-dead arguments. 7255 if (FastISel) 7256 return A->use_empty(); 7257 7258 const BasicBlock *Entry = A->getParent()->begin(); 7259 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 7260 UI != E; ++UI) { 7261 const User *U = *UI; 7262 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7263 return false; // Use not in entry block. 7264 } 7265 return true; 7266 } 7267 7268 void SelectionDAGISel::LowerArguments(const Function &F) { 7269 SelectionDAG &DAG = SDB->DAG; 7270 SDLoc dl = SDB->getCurSDLoc(); 7271 const TargetLowering *TLI = getTargetLowering(); 7272 const DataLayout *TD = TLI->getDataLayout(); 7273 SmallVector<ISD::InputArg, 16> Ins; 7274 7275 if (!FuncInfo->CanLowerReturn) { 7276 // Put in an sret pointer parameter before all the other parameters. 7277 SmallVector<EVT, 1> ValueVTs; 7278 ComputeValueVTs(*getTargetLowering(), 7279 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7280 7281 // NOTE: Assuming that a pointer will never break down to more than one VT 7282 // or one register. 7283 ISD::ArgFlagsTy Flags; 7284 Flags.setSRet(); 7285 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7286 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7287 Ins.push_back(RetArg); 7288 } 7289 7290 // Set up the incoming argument description vector. 7291 unsigned Idx = 1; 7292 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7293 I != E; ++I, ++Idx) { 7294 SmallVector<EVT, 4> ValueVTs; 7295 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7296 bool isArgValueUsed = !I->use_empty(); 7297 unsigned PartBase = 0; 7298 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7299 Value != NumValues; ++Value) { 7300 EVT VT = ValueVTs[Value]; 7301 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7302 ISD::ArgFlagsTy Flags; 7303 unsigned OriginalAlignment = 7304 TD->getABITypeAlignment(ArgTy); 7305 7306 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7307 Flags.setZExt(); 7308 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7309 Flags.setSExt(); 7310 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7311 Flags.setInReg(); 7312 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7313 Flags.setSRet(); 7314 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 7315 Flags.setByVal(); 7316 PointerType *Ty = cast<PointerType>(I->getType()); 7317 Type *ElementTy = Ty->getElementType(); 7318 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 7319 // For ByVal, alignment should be passed from FE. BE will guess if 7320 // this info is not there but there are cases it cannot get right. 7321 unsigned FrameAlign; 7322 if (F.getParamAlignment(Idx)) 7323 FrameAlign = F.getParamAlignment(Idx); 7324 else 7325 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7326 Flags.setByValAlign(FrameAlign); 7327 } 7328 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7329 Flags.setNest(); 7330 Flags.setOrigAlign(OriginalAlignment); 7331 7332 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7333 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7334 for (unsigned i = 0; i != NumRegs; ++i) { 7335 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7336 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7337 if (NumRegs > 1 && i == 0) 7338 MyFlags.Flags.setSplit(); 7339 // if it isn't first piece, alignment must be 1 7340 else if (i > 0) 7341 MyFlags.Flags.setOrigAlign(1); 7342 Ins.push_back(MyFlags); 7343 } 7344 PartBase += VT.getStoreSize(); 7345 } 7346 } 7347 7348 // Call the target to set up the argument values. 7349 SmallVector<SDValue, 8> InVals; 7350 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7351 F.isVarArg(), Ins, 7352 dl, DAG, InVals); 7353 7354 // Verify that the target's LowerFormalArguments behaved as expected. 7355 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7356 "LowerFormalArguments didn't return a valid chain!"); 7357 assert(InVals.size() == Ins.size() && 7358 "LowerFormalArguments didn't emit the correct number of values!"); 7359 DEBUG({ 7360 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7361 assert(InVals[i].getNode() && 7362 "LowerFormalArguments emitted a null value!"); 7363 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7364 "LowerFormalArguments emitted a value with the wrong type!"); 7365 } 7366 }); 7367 7368 // Update the DAG with the new chain value resulting from argument lowering. 7369 DAG.setRoot(NewRoot); 7370 7371 // Set up the argument values. 7372 unsigned i = 0; 7373 Idx = 1; 7374 if (!FuncInfo->CanLowerReturn) { 7375 // Create a virtual register for the sret pointer, and put in a copy 7376 // from the sret argument into it. 7377 SmallVector<EVT, 1> ValueVTs; 7378 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7379 MVT VT = ValueVTs[0].getSimpleVT(); 7380 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7381 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7382 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7383 RegVT, VT, NULL, AssertOp); 7384 7385 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7386 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7387 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7388 FuncInfo->DemoteRegister = SRetReg; 7389 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7390 SRetReg, ArgValue); 7391 DAG.setRoot(NewRoot); 7392 7393 // i indexes lowered arguments. Bump it past the hidden sret argument. 7394 // Idx indexes LLVM arguments. Don't touch it. 7395 ++i; 7396 } 7397 7398 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7399 ++I, ++Idx) { 7400 SmallVector<SDValue, 4> ArgValues; 7401 SmallVector<EVT, 4> ValueVTs; 7402 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7403 unsigned NumValues = ValueVTs.size(); 7404 7405 // If this argument is unused then remember its value. It is used to generate 7406 // debugging information. 7407 if (I->use_empty() && NumValues) { 7408 SDB->setUnusedArgValue(I, InVals[i]); 7409 7410 // Also remember any frame index for use in FastISel. 7411 if (FrameIndexSDNode *FI = 7412 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7413 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7414 } 7415 7416 for (unsigned Val = 0; Val != NumValues; ++Val) { 7417 EVT VT = ValueVTs[Val]; 7418 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7419 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7420 7421 if (!I->use_empty()) { 7422 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7423 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7424 AssertOp = ISD::AssertSext; 7425 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7426 AssertOp = ISD::AssertZext; 7427 7428 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7429 NumParts, PartVT, VT, 7430 NULL, AssertOp)); 7431 } 7432 7433 i += NumParts; 7434 } 7435 7436 // We don't need to do anything else for unused arguments. 7437 if (ArgValues.empty()) 7438 continue; 7439 7440 // Note down frame index. 7441 if (FrameIndexSDNode *FI = 7442 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7443 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7444 7445 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7446 SDB->getCurSDLoc()); 7447 7448 SDB->setValue(I, Res); 7449 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7450 if (LoadSDNode *LNode = 7451 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7452 if (FrameIndexSDNode *FI = 7453 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7454 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7455 } 7456 7457 // If this argument is live outside of the entry block, insert a copy from 7458 // wherever we got it to the vreg that other BB's will reference it as. 7459 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7460 // If we can, though, try to skip creating an unnecessary vreg. 7461 // FIXME: This isn't very clean... it would be nice to make this more 7462 // general. It's also subtly incompatible with the hacks FastISel 7463 // uses with vregs. 7464 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7465 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7466 FuncInfo->ValueMap[I] = Reg; 7467 continue; 7468 } 7469 } 7470 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7471 FuncInfo->InitializeRegForValue(I); 7472 SDB->CopyToExportRegsIfNeeded(I); 7473 } 7474 } 7475 7476 assert(i == InVals.size() && "Argument register count mismatch!"); 7477 7478 // Finally, if the target has anything special to do, allow it to do so. 7479 // FIXME: this should insert code into the DAG! 7480 EmitFunctionEntryCode(); 7481 } 7482 7483 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7484 /// ensure constants are generated when needed. Remember the virtual registers 7485 /// that need to be added to the Machine PHI nodes as input. We cannot just 7486 /// directly add them, because expansion might result in multiple MBB's for one 7487 /// BB. As such, the start of the BB might correspond to a different MBB than 7488 /// the end. 7489 /// 7490 void 7491 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7492 const TerminatorInst *TI = LLVMBB->getTerminator(); 7493 7494 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7495 7496 // Check successor nodes' PHI nodes that expect a constant to be available 7497 // from this block. 7498 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7499 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7500 if (!isa<PHINode>(SuccBB->begin())) continue; 7501 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7502 7503 // If this terminator has multiple identical successors (common for 7504 // switches), only handle each succ once. 7505 if (!SuccsHandled.insert(SuccMBB)) continue; 7506 7507 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7508 7509 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7510 // nodes and Machine PHI nodes, but the incoming operands have not been 7511 // emitted yet. 7512 for (BasicBlock::const_iterator I = SuccBB->begin(); 7513 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7514 // Ignore dead phi's. 7515 if (PN->use_empty()) continue; 7516 7517 // Skip empty types 7518 if (PN->getType()->isEmptyTy()) 7519 continue; 7520 7521 unsigned Reg; 7522 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7523 7524 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7525 unsigned &RegOut = ConstantsOut[C]; 7526 if (RegOut == 0) { 7527 RegOut = FuncInfo.CreateRegs(C->getType()); 7528 CopyValueToVirtualRegister(C, RegOut); 7529 } 7530 Reg = RegOut; 7531 } else { 7532 DenseMap<const Value *, unsigned>::iterator I = 7533 FuncInfo.ValueMap.find(PHIOp); 7534 if (I != FuncInfo.ValueMap.end()) 7535 Reg = I->second; 7536 else { 7537 assert(isa<AllocaInst>(PHIOp) && 7538 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7539 "Didn't codegen value into a register!??"); 7540 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7541 CopyValueToVirtualRegister(PHIOp, Reg); 7542 } 7543 } 7544 7545 // Remember that this register needs to added to the machine PHI node as 7546 // the input for this MBB. 7547 SmallVector<EVT, 4> ValueVTs; 7548 const TargetLowering *TLI = TM.getTargetLowering(); 7549 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7550 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7551 EVT VT = ValueVTs[vti]; 7552 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7553 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7554 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7555 Reg += NumRegisters; 7556 } 7557 } 7558 } 7559 7560 ConstantsOut.clear(); 7561 } 7562 7563 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7564 /// is 0. 7565 MachineBasicBlock * 7566 SelectionDAGBuilder::StackProtectorDescriptor:: 7567 AddSuccessorMBB(const BasicBlock *BB, 7568 MachineBasicBlock *ParentMBB, 7569 MachineBasicBlock *SuccMBB) { 7570 // If SuccBB has not been created yet, create it. 7571 if (!SuccMBB) { 7572 MachineFunction *MF = ParentMBB->getParent(); 7573 MachineFunction::iterator BBI = ParentMBB; 7574 SuccMBB = MF->CreateMachineBasicBlock(BB); 7575 MF->insert(++BBI, SuccMBB); 7576 } 7577 // Add it as a successor of ParentMBB. 7578 ParentMBB->addSuccessor(SuccMBB); 7579 return SuccMBB; 7580 } 7581