xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 4ece50737d5385fb80cfa23f5297d1111f8eed39)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts =
186           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420     }
421 
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424   }
425 
426   // Trivial bitcast if the types are the same size and the destination
427   // vector type is legal.
428   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
429       TLI.isTypeLegal(ValueVT))
430     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
431 
432   if (ValueVT.getVectorNumElements() != 1) {
433      // Certain ABIs require that vectors are passed as integers. For vectors
434      // are the same size, this is an obvious bitcast.
435      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
436        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437      } else if (ValueVT.bitsLT(PartEVT)) {
438        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
439        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
440        // Drop the extra bits.
441        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
442        return DAG.getBitcast(ValueVT, Val);
443      }
444 
445      diagnosePossiblyInvalidConstraint(
446          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
447      return DAG.getUNDEF(ValueVT);
448   }
449 
450   // Handle cases such as i8 -> <1 x i1>
451   EVT ValueSVT = ValueVT.getVectorElementType();
452   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
453     unsigned ValueSize = ValueSVT.getSizeInBits();
454     if (ValueSize == PartEVT.getSizeInBits()) {
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
457       // It's possible a scalar floating point type gets softened to integer and
458       // then promoted to a larger integer. If PartEVT is the larger integer
459       // we need to truncate it and then bitcast to the FP type.
460       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
461       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463       Val = DAG.getBitcast(ValueSVT, Val);
464     } else {
465       Val = ValueVT.isFloatingPoint()
466                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
467                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
468     }
469   }
470 
471   return DAG.getBuildVector(ValueVT, DL, Val);
472 }
473 
474 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V,
477                                  std::optional<CallingConv::ID> CallConv);
478 
479 /// getCopyToParts - Create a series of nodes that contain the specified value
480 /// split into legal parts.  If the parts contain more bits than Val, then, for
481 /// integers, ExtendKind can be used to specify how to generate the extra bits.
482 static void
483 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
484                unsigned NumParts, MVT PartVT, const Value *V,
485                std::optional<CallingConv::ID> CallConv = std::nullopt,
486                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
487   // Let the target split the parts if it wants to
488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
489   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
490                                       CallConv))
491     return;
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = 1 << Log2_32(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
576 
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
620                                      const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   ElementCount PartNumElts = PartVT.getVectorElementCount();
626   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
627 
628   // We only support widening vectors with equivalent element types and
629   // fixed/scalable properties. If a target needs to widen a fixed-length type
630   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
631   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
632       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
633       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
634     return SDValue();
635 
636   // Widening a scalable vector to another scalable vector is done by inserting
637   // the vector into a larger undef one.
638   if (PartNumElts.isScalable())
639     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
640                        Val, DAG.getVectorIdxConstant(0, DL));
641 
642   EVT ElementVT = PartVT.getVectorElementType();
643   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644   // undef elements.
645   SmallVector<SDValue, 16> Ops;
646   DAG.ExtractVectorElements(Val, Ops);
647   SDValue EltUndef = DAG.getUNDEF(ElementVT);
648   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
649 
650   // FIXME: Use CONCAT for 2x -> 4x.
651   return DAG.getBuildVector(PartVT, DL, Ops);
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  std::optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.has_value();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                    ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorElementCount() ==
678                    ValueVT.getVectorElementCount()) {
679 
680       // Promoted vector extract
681       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682     } else if (PartEVT.isVector() &&
683                PartEVT.getVectorElementType() !=
684                    ValueVT.getVectorElementType() &&
685                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
686                    TargetLowering::TypeWidenVector) {
687       // Combination of widening and promotion.
688       EVT WidenVT =
689           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
690                            PartVT.getVectorElementCount());
691       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
692       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
693     } else {
694       // Don't extract an integer from a float vector. This can happen if the
695       // FP type gets softened to integer and then promoted. The promotion
696       // prevents it from being picked up by the earlier bitcast case.
697       if (ValueVT.getVectorElementCount().isScalar() &&
698           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
699         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
700                           DAG.getVectorIdxConstant(0, DL));
701       } else {
702         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
703         assert(PartVT.getFixedSizeInBits() > ValueSize &&
704                "lossy conversion of vector to scalar type");
705         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
706         Val = DAG.getBitcast(IntermediateType, Val);
707         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
708       }
709     }
710 
711     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
712     Parts[0] = Val;
713     return;
714   }
715 
716   // Handle a multi-element vector.
717   EVT IntermediateVT;
718   MVT RegisterVT;
719   unsigned NumIntermediates;
720   unsigned NumRegs;
721   if (IsABIRegCopy) {
722     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
723         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
724         RegisterVT);
725   } else {
726     NumRegs =
727         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
728                                    NumIntermediates, RegisterVT);
729   }
730 
731   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
732   NumParts = NumRegs; // Silence a compiler warning.
733   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 
735   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
736          "Mixing scalable and fixed vectors when copying in parts");
737 
738   std::optional<ElementCount> DestEltCnt;
739 
740   if (IntermediateVT.isVector())
741     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
742   else
743     DestEltCnt = ElementCount::getFixed(NumIntermediates);
744 
745   EVT BuiltVectorTy = EVT::getVectorVT(
746       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
747 
748   if (ValueVT == BuiltVectorTy) {
749     // Nothing to do.
750   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
751     // Bitconvert vector->vector case.
752     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
753   } else {
754     if (BuiltVectorTy.getVectorElementType().bitsGT(
755             ValueVT.getVectorElementType())) {
756       // Integer promotion.
757       ValueVT = EVT::getVectorVT(*DAG.getContext(),
758                                  BuiltVectorTy.getVectorElementType(),
759                                  ValueVT.getVectorElementCount());
760       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
761     }
762 
763     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
764       Val = Widened;
765     }
766   }
767 
768   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
769 
770   // Split the vector into intermediate operands.
771   SmallVector<SDValue, 8> Ops(NumIntermediates);
772   for (unsigned i = 0; i != NumIntermediates; ++i) {
773     if (IntermediateVT.isVector()) {
774       // This does something sensible for scalable vectors - see the
775       // definition of EXTRACT_SUBVECTOR for further details.
776       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
777       Ops[i] =
778           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
779                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
780     } else {
781       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
782                            DAG.getVectorIdxConstant(i, DL));
783     }
784   }
785 
786   // Split the intermediate operands into legal parts.
787   if (NumParts == NumIntermediates) {
788     // If the register was not expanded, promote or copy the value,
789     // as appropriate.
790     for (unsigned i = 0; i != NumParts; ++i)
791       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
792   } else if (NumParts > 0) {
793     // If the intermediate type was expanded, split each the value into
794     // legal parts.
795     assert(NumIntermediates != 0 && "division by zero");
796     assert(NumParts % NumIntermediates == 0 &&
797            "Must expand into a divisible number of parts!");
798     unsigned Factor = NumParts / NumIntermediates;
799     for (unsigned i = 0; i != NumIntermediates; ++i)
800       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
801                      CallConv);
802   }
803 }
804 
805 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
806                            EVT valuevt, std::optional<CallingConv::ID> CC)
807     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
808       RegCount(1, regs.size()), CallConv(CC) {}
809 
810 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
811                            const DataLayout &DL, unsigned Reg, Type *Ty,
812                            std::optional<CallingConv::ID> CC) {
813   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
814 
815   CallConv = CC;
816 
817   for (EVT ValueVT : ValueVTs) {
818     unsigned NumRegs =
819         isABIMangled()
820             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
821             : TLI.getNumRegisters(Context, ValueVT);
822     MVT RegisterVT =
823         isABIMangled()
824             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
825             : TLI.getRegisterType(Context, ValueVT);
826     for (unsigned i = 0; i != NumRegs; ++i)
827       Regs.push_back(Reg + i);
828     RegVTs.push_back(RegisterVT);
829     RegCount.push_back(NumRegs);
830     Reg += NumRegs;
831   }
832 }
833 
834 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
835                                       FunctionLoweringInfo &FuncInfo,
836                                       const SDLoc &dl, SDValue &Chain,
837                                       SDValue *Flag, const Value *V) const {
838   // A Value with type {} or [0 x %t] needs no registers.
839   if (ValueVTs.empty())
840     return SDValue();
841 
842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
843 
844   // Assemble the legal parts into the final values.
845   SmallVector<SDValue, 4> Values(ValueVTs.size());
846   SmallVector<SDValue, 8> Parts;
847   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
848     // Copy the legal parts from the registers.
849     EVT ValueVT = ValueVTs[Value];
850     unsigned NumRegs = RegCount[Value];
851     MVT RegisterVT = isABIMangled()
852                          ? TLI.getRegisterTypeForCallingConv(
853                                *DAG.getContext(), *CallConv, RegVTs[Value])
854                          : RegVTs[Value];
855 
856     Parts.resize(NumRegs);
857     for (unsigned i = 0; i != NumRegs; ++i) {
858       SDValue P;
859       if (!Flag) {
860         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
861       } else {
862         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
863         *Flag = P.getValue(2);
864       }
865 
866       Chain = P.getValue(1);
867       Parts[i] = P;
868 
869       // If the source register was virtual and if we know something about it,
870       // add an assert node.
871       if (!Register::isVirtualRegister(Regs[Part + i]) ||
872           !RegisterVT.isInteger())
873         continue;
874 
875       const FunctionLoweringInfo::LiveOutInfo *LOI =
876         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
877       if (!LOI)
878         continue;
879 
880       unsigned RegSize = RegisterVT.getScalarSizeInBits();
881       unsigned NumSignBits = LOI->NumSignBits;
882       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
883 
884       if (NumZeroBits == RegSize) {
885         // The current value is a zero.
886         // Explicitly express that as it would be easier for
887         // optimizations to kick in.
888         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
889         continue;
890       }
891 
892       // FIXME: We capture more information than the dag can represent.  For
893       // now, just use the tightest assertzext/assertsext possible.
894       bool isSExt;
895       EVT FromVT(MVT::Other);
896       if (NumZeroBits) {
897         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
898         isSExt = false;
899       } else if (NumSignBits > 1) {
900         FromVT =
901             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
902         isSExt = true;
903       } else {
904         continue;
905       }
906       // Add an assertion node.
907       assert(FromVT != MVT::Other);
908       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
909                              RegisterVT, P, DAG.getValueType(FromVT));
910     }
911 
912     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
913                                      RegisterVT, ValueVT, V, CallConv);
914     Part += NumRegs;
915     Parts.clear();
916   }
917 
918   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
919 }
920 
921 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
922                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
923                                  const Value *V,
924                                  ISD::NodeType PreferredExtendType) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926   ISD::NodeType ExtendKind = PreferredExtendType;
927 
928   // Get the list of the values's legal parts.
929   unsigned NumRegs = Regs.size();
930   SmallVector<SDValue, 8> Parts(NumRegs);
931   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
932     unsigned NumParts = RegCount[Value];
933 
934     MVT RegisterVT = isABIMangled()
935                          ? TLI.getRegisterTypeForCallingConv(
936                                *DAG.getContext(), *CallConv, RegVTs[Value])
937                          : RegVTs[Value];
938 
939     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
940       ExtendKind = ISD::ZERO_EXTEND;
941 
942     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
943                    NumParts, RegisterVT, V, CallConv, ExtendKind);
944     Part += NumParts;
945   }
946 
947   // Copy the parts into the registers.
948   SmallVector<SDValue, 8> Chains(NumRegs);
949   for (unsigned i = 0; i != NumRegs; ++i) {
950     SDValue Part;
951     if (!Flag) {
952       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
953     } else {
954       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
955       *Flag = Part.getValue(1);
956     }
957 
958     Chains[i] = Part.getValue(0);
959   }
960 
961   if (NumRegs == 1 || Flag)
962     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
963     // flagged to it. That is the CopyToReg nodes and the user are considered
964     // a single scheduling unit. If we create a TokenFactor and return it as
965     // chain, then the TokenFactor is both a predecessor (operand) of the
966     // user as well as a successor (the TF operands are flagged to the user).
967     // c1, f1 = CopyToReg
968     // c2, f2 = CopyToReg
969     // c3     = TokenFactor c1, c2
970     // ...
971     //        = op c3, ..., f2
972     Chain = Chains[NumRegs-1];
973   else
974     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
975 }
976 
977 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
978                                         unsigned MatchingIdx, const SDLoc &dl,
979                                         SelectionDAG &DAG,
980                                         std::vector<SDValue> &Ops) const {
981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 
983   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
984   if (HasMatching)
985     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
986   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
987     // Put the register class of the virtual registers in the flag word.  That
988     // way, later passes can recompute register class constraints for inline
989     // assembly as well as normal instructions.
990     // Don't do this for tied operands that can use the regclass information
991     // from the def.
992     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
993     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
994     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
995   }
996 
997   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
998   Ops.push_back(Res);
999 
1000   if (Code == InlineAsm::Kind_Clobber) {
1001     // Clobbers should always have a 1:1 mapping with registers, and may
1002     // reference registers that have illegal (e.g. vector) types. Hence, we
1003     // shouldn't try to apply any sort of splitting logic to them.
1004     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1005            "No 1:1 mapping from clobbers to regs?");
1006     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1007     (void)SP;
1008     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1009       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1010       assert(
1011           (Regs[I] != SP ||
1012            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1013           "If we clobbered the stack pointer, MFI should know about it.");
1014     }
1015     return;
1016   }
1017 
1018   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1019     MVT RegisterVT = RegVTs[Value];
1020     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1021                                            RegisterVT);
1022     for (unsigned i = 0; i != NumRegs; ++i) {
1023       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1024       unsigned TheReg = Regs[Reg++];
1025       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1026     }
1027   }
1028 }
1029 
1030 SmallVector<std::pair<unsigned, TypeSize>, 4>
1031 RegsForValue::getRegsAndSizes() const {
1032   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1033   unsigned I = 0;
1034   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1035     unsigned RegCount = std::get<0>(CountAndVT);
1036     MVT RegisterVT = std::get<1>(CountAndVT);
1037     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1038     for (unsigned E = I + RegCount; I != E; ++I)
1039       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1040   }
1041   return OutVec;
1042 }
1043 
1044 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1045                                AssumptionCache *ac,
1046                                const TargetLibraryInfo *li) {
1047   AA = aa;
1048   AC = ac;
1049   GFI = gfi;
1050   LibInfo = li;
1051   Context = DAG.getContext();
1052   LPadToCallSiteMap.clear();
1053   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1054 }
1055 
1056 void SelectionDAGBuilder::clear() {
1057   NodeMap.clear();
1058   UnusedArgNodeMap.clear();
1059   PendingLoads.clear();
1060   PendingExports.clear();
1061   PendingConstrainedFP.clear();
1062   PendingConstrainedFPStrict.clear();
1063   CurInst = nullptr;
1064   HasTailCall = false;
1065   SDNodeOrder = LowestSDNodeOrder;
1066   StatepointLowering.clear();
1067 }
1068 
1069 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1070   DanglingDebugInfoMap.clear();
1071 }
1072 
1073 // Update DAG root to include dependencies on Pending chains.
1074 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1075   SDValue Root = DAG.getRoot();
1076 
1077   if (Pending.empty())
1078     return Root;
1079 
1080   // Add current root to PendingChains, unless we already indirectly
1081   // depend on it.
1082   if (Root.getOpcode() != ISD::EntryToken) {
1083     unsigned i = 0, e = Pending.size();
1084     for (; i != e; ++i) {
1085       assert(Pending[i].getNode()->getNumOperands() > 1);
1086       if (Pending[i].getNode()->getOperand(0) == Root)
1087         break;  // Don't add the root if we already indirectly depend on it.
1088     }
1089 
1090     if (i == e)
1091       Pending.push_back(Root);
1092   }
1093 
1094   if (Pending.size() == 1)
1095     Root = Pending[0];
1096   else
1097     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1098 
1099   DAG.setRoot(Root);
1100   Pending.clear();
1101   return Root;
1102 }
1103 
1104 SDValue SelectionDAGBuilder::getMemoryRoot() {
1105   return updateRoot(PendingLoads);
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getRoot() {
1109   // Chain up all pending constrained intrinsics together with all
1110   // pending loads, by simply appending them to PendingLoads and
1111   // then calling getMemoryRoot().
1112   PendingLoads.reserve(PendingLoads.size() +
1113                        PendingConstrainedFP.size() +
1114                        PendingConstrainedFPStrict.size());
1115   PendingLoads.append(PendingConstrainedFP.begin(),
1116                       PendingConstrainedFP.end());
1117   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1118                       PendingConstrainedFPStrict.end());
1119   PendingConstrainedFP.clear();
1120   PendingConstrainedFPStrict.clear();
1121   return getMemoryRoot();
1122 }
1123 
1124 SDValue SelectionDAGBuilder::getControlRoot() {
1125   // We need to emit pending fpexcept.strict constrained intrinsics,
1126   // so append them to the PendingExports list.
1127   PendingExports.append(PendingConstrainedFPStrict.begin(),
1128                         PendingConstrainedFPStrict.end());
1129   PendingConstrainedFPStrict.clear();
1130   return updateRoot(PendingExports);
1131 }
1132 
1133 void SelectionDAGBuilder::visit(const Instruction &I) {
1134   // Set up outgoing PHI node register values before emitting the terminator.
1135   if (I.isTerminator()) {
1136     HandlePHINodesInSuccessorBlocks(I.getParent());
1137   }
1138 
1139   // Add SDDbgValue nodes for any var locs here. Do so before updating
1140   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1141   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1142     // Add SDDbgValue nodes for any var locs here. Do so before updating
1143     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1144     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1145          It != End; ++It) {
1146       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1147       dropDanglingDebugInfo(Var, It->Expr);
1148       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1149                             /*IsVariadic=*/false))
1150         addDanglingDebugInfo(It, SDNodeOrder);
1151     }
1152   }
1153 
1154   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1155   if (!isa<DbgInfoIntrinsic>(I))
1156     ++SDNodeOrder;
1157 
1158   CurInst = &I;
1159 
1160   // Set inserted listener only if required.
1161   bool NodeInserted = false;
1162   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1163   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1164   if (PCSectionsMD) {
1165     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1166         DAG, [&](SDNode *) { NodeInserted = true; });
1167   }
1168 
1169   visit(I.getOpcode(), I);
1170 
1171   if (!I.isTerminator() && !HasTailCall &&
1172       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1173     CopyToExportRegsIfNeeded(&I);
1174 
1175   // Handle metadata.
1176   if (PCSectionsMD) {
1177     auto It = NodeMap.find(&I);
1178     if (It != NodeMap.end()) {
1179       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1180     } else if (NodeInserted) {
1181       // This should not happen; if it does, don't let it go unnoticed so we can
1182       // fix it. Relevant visit*() function is probably missing a setValue().
1183       errs() << "warning: loosing !pcsections metadata ["
1184              << I.getModule()->getName() << "]\n";
1185       LLVM_DEBUG(I.dump());
1186       assert(false);
1187     }
1188   }
1189 
1190   CurInst = nullptr;
1191 }
1192 
1193 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1194   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1195 }
1196 
1197 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1198   // Note: this doesn't use InstVisitor, because it has to work with
1199   // ConstantExpr's in addition to instructions.
1200   switch (Opcode) {
1201   default: llvm_unreachable("Unknown instruction type encountered!");
1202     // Build the switch statement using the Instruction.def file.
1203 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1204     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1205 #include "llvm/IR/Instruction.def"
1206   }
1207 }
1208 
1209 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1210                                                unsigned Order) {
1211   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1212 }
1213 
1214 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1215                                                unsigned Order) {
1216   // We treat variadic dbg_values differently at this stage.
1217   if (DI->hasArgList()) {
1218     // For variadic dbg_values we will now insert an undef.
1219     // FIXME: We can potentially recover these!
1220     SmallVector<SDDbgOperand, 2> Locs;
1221     for (const Value *V : DI->getValues()) {
1222       auto Undef = UndefValue::get(V->getType());
1223       Locs.push_back(SDDbgOperand::fromConst(Undef));
1224     }
1225     SDDbgValue *SDV = DAG.getDbgValueList(
1226         DI->getVariable(), DI->getExpression(), Locs, {},
1227         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1228     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1229   } else {
1230     // TODO: Dangling debug info will eventually either be resolved or produce
1231     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1232     // between the original dbg.value location and its resolved DBG_VALUE,
1233     // which we should ideally fill with an extra Undef DBG_VALUE.
1234     assert(DI->getNumVariableLocationOps() == 1 &&
1235            "DbgValueInst without an ArgList should have a single location "
1236            "operand.");
1237     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1238   }
1239 }
1240 
1241 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1242                                                 const DIExpression *Expr) {
1243   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1244     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1245     DIExpression *DanglingExpr = DDI.getExpression();
1246     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1247       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1248                         << "\n");
1249       return true;
1250     }
1251     return false;
1252   };
1253 
1254   for (auto &DDIMI : DanglingDebugInfoMap) {
1255     DanglingDebugInfoVector &DDIV = DDIMI.second;
1256 
1257     // If debug info is to be dropped, run it through final checks to see
1258     // whether it can be salvaged.
1259     for (auto &DDI : DDIV)
1260       if (isMatchingDbgValue(DDI))
1261         salvageUnresolvedDbgValue(DDI);
1262 
1263     erase_if(DDIV, isMatchingDbgValue);
1264   }
1265 }
1266 
1267 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1268 // generate the debug data structures now that we've seen its definition.
1269 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1270                                                    SDValue Val) {
1271   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1272   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1273     return;
1274 
1275   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1276   for (auto &DDI : DDIV) {
1277     DebugLoc DL = DDI.getDebugLoc();
1278     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1279     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1280     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1281     DIExpression *Expr = DDI.getExpression();
1282     assert(Variable->isValidLocationForIntrinsic(DL) &&
1283            "Expected inlined-at fields to agree");
1284     SDDbgValue *SDV;
1285     if (Val.getNode()) {
1286       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1287       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1288       // we couldn't resolve it directly when examining the DbgValue intrinsic
1289       // in the first place we should not be more successful here). Unless we
1290       // have some test case that prove this to be correct we should avoid
1291       // calling EmitFuncArgumentDbgValue here.
1292       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1293                                     FuncArgumentDbgValueKind::Value, Val)) {
1294         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1295                           << "\n");
1296         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1297         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1298         // inserted after the definition of Val when emitting the instructions
1299         // after ISel. An alternative could be to teach
1300         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1301         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1302                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1303                    << ValSDNodeOrder << "\n");
1304         SDV = getDbgValue(Val, Variable, Expr, DL,
1305                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1306         DAG.AddDbgValue(SDV, false);
1307       } else
1308         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1309                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1310     } else {
1311       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1312       auto Undef = UndefValue::get(V->getType());
1313       auto SDV =
1314           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1315       DAG.AddDbgValue(SDV, false);
1316     }
1317   }
1318   DDIV.clear();
1319 }
1320 
1321 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1322   // TODO: For the variadic implementation, instead of only checking the fail
1323   // state of `handleDebugValue`, we need know specifically which values were
1324   // invalid, so that we attempt to salvage only those values when processing
1325   // a DIArgList.
1326   Value *V = DDI.getVariableLocationOp(0);
1327   Value *OrigV = V;
1328   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1329   DIExpression *Expr = DDI.getExpression();
1330   DebugLoc DL = DDI.getDebugLoc();
1331   unsigned SDOrder = DDI.getSDNodeOrder();
1332 
1333   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1334   // that DW_OP_stack_value is desired.
1335   bool StackValue = true;
1336 
1337   // Can this Value can be encoded without any further work?
1338   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1339     return;
1340 
1341   // Attempt to salvage back through as many instructions as possible. Bail if
1342   // a non-instruction is seen, such as a constant expression or global
1343   // variable. FIXME: Further work could recover those too.
1344   while (isa<Instruction>(V)) {
1345     Instruction &VAsInst = *cast<Instruction>(V);
1346     // Temporary "0", awaiting real implementation.
1347     SmallVector<uint64_t, 16> Ops;
1348     SmallVector<Value *, 4> AdditionalValues;
1349     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1350                              AdditionalValues);
1351     // If we cannot salvage any further, and haven't yet found a suitable debug
1352     // expression, bail out.
1353     if (!V)
1354       break;
1355 
1356     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1357     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1358     // here for variadic dbg_values, remove that condition.
1359     if (!AdditionalValues.empty())
1360       break;
1361 
1362     // New value and expr now represent this debuginfo.
1363     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1364 
1365     // Some kind of simplification occurred: check whether the operand of the
1366     // salvaged debug expression can be encoded in this DAG.
1367     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1368       LLVM_DEBUG(
1369           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1370                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1371       return;
1372     }
1373   }
1374 
1375   // This was the final opportunity to salvage this debug information, and it
1376   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1377   // any earlier variable location.
1378   assert(OrigV && "V shouldn't be null");
1379   auto *Undef = UndefValue::get(OrigV->getType());
1380   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1381   DAG.AddDbgValue(SDV, false);
1382   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1383                     << "\n");
1384 }
1385 
1386 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1387                                            DILocalVariable *Var,
1388                                            DIExpression *Expr, DebugLoc DbgLoc,
1389                                            unsigned Order, bool IsVariadic) {
1390   if (Values.empty())
1391     return true;
1392   SmallVector<SDDbgOperand> LocationOps;
1393   SmallVector<SDNode *> Dependencies;
1394   for (const Value *V : Values) {
1395     // Constant value.
1396     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1397         isa<ConstantPointerNull>(V)) {
1398       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1399       continue;
1400     }
1401 
1402     // Look through IntToPtr constants.
1403     if (auto *CE = dyn_cast<ConstantExpr>(V))
1404       if (CE->getOpcode() == Instruction::IntToPtr) {
1405         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1406         continue;
1407       }
1408 
1409     // If the Value is a frame index, we can create a FrameIndex debug value
1410     // without relying on the DAG at all.
1411     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1412       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1413       if (SI != FuncInfo.StaticAllocaMap.end()) {
1414         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1415         continue;
1416       }
1417     }
1418 
1419     // Do not use getValue() in here; we don't want to generate code at
1420     // this point if it hasn't been done yet.
1421     SDValue N = NodeMap[V];
1422     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1423       N = UnusedArgNodeMap[V];
1424     if (N.getNode()) {
1425       // Only emit func arg dbg value for non-variadic dbg.values for now.
1426       if (!IsVariadic &&
1427           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1428                                    FuncArgumentDbgValueKind::Value, N))
1429         return true;
1430       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1431         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1432         // describe stack slot locations.
1433         //
1434         // Consider "int x = 0; int *px = &x;". There are two kinds of
1435         // interesting debug values here after optimization:
1436         //
1437         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1438         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1439         //
1440         // Both describe the direct values of their associated variables.
1441         Dependencies.push_back(N.getNode());
1442         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1443         continue;
1444       }
1445       LocationOps.emplace_back(
1446           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1447       continue;
1448     }
1449 
1450     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1451     // Special rules apply for the first dbg.values of parameter variables in a
1452     // function. Identify them by the fact they reference Argument Values, that
1453     // they're parameters, and they are parameters of the current function. We
1454     // need to let them dangle until they get an SDNode.
1455     bool IsParamOfFunc =
1456         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1457     if (IsParamOfFunc)
1458       return false;
1459 
1460     // The value is not used in this block yet (or it would have an SDNode).
1461     // We still want the value to appear for the user if possible -- if it has
1462     // an associated VReg, we can refer to that instead.
1463     auto VMI = FuncInfo.ValueMap.find(V);
1464     if (VMI != FuncInfo.ValueMap.end()) {
1465       unsigned Reg = VMI->second;
1466       // If this is a PHI node, it may be split up into several MI PHI nodes
1467       // (in FunctionLoweringInfo::set).
1468       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1469                        V->getType(), std::nullopt);
1470       if (RFV.occupiesMultipleRegs()) {
1471         // FIXME: We could potentially support variadic dbg_values here.
1472         if (IsVariadic)
1473           return false;
1474         unsigned Offset = 0;
1475         unsigned BitsToDescribe = 0;
1476         if (auto VarSize = Var->getSizeInBits())
1477           BitsToDescribe = *VarSize;
1478         if (auto Fragment = Expr->getFragmentInfo())
1479           BitsToDescribe = Fragment->SizeInBits;
1480         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1481           // Bail out if all bits are described already.
1482           if (Offset >= BitsToDescribe)
1483             break;
1484           // TODO: handle scalable vectors.
1485           unsigned RegisterSize = RegAndSize.second;
1486           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1487                                       ? BitsToDescribe - Offset
1488                                       : RegisterSize;
1489           auto FragmentExpr = DIExpression::createFragmentExpression(
1490               Expr, Offset, FragmentSize);
1491           if (!FragmentExpr)
1492             continue;
1493           SDDbgValue *SDV = DAG.getVRegDbgValue(
1494               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1495           DAG.AddDbgValue(SDV, false);
1496           Offset += RegisterSize;
1497         }
1498         return true;
1499       }
1500       // We can use simple vreg locations for variadic dbg_values as well.
1501       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1502       continue;
1503     }
1504     // We failed to create a SDDbgOperand for V.
1505     return false;
1506   }
1507 
1508   // We have created a SDDbgOperand for each Value in Values.
1509   // Should use Order instead of SDNodeOrder?
1510   assert(!LocationOps.empty());
1511   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1512                                         /*IsIndirect=*/false, DbgLoc,
1513                                         SDNodeOrder, IsVariadic);
1514   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1515   return true;
1516 }
1517 
1518 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1519   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1520   for (auto &Pair : DanglingDebugInfoMap)
1521     for (auto &DDI : Pair.second)
1522       salvageUnresolvedDbgValue(DDI);
1523   clearDanglingDebugInfo();
1524 }
1525 
1526 /// getCopyFromRegs - If there was virtual register allocated for the value V
1527 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1528 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1529   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1530   SDValue Result;
1531 
1532   if (It != FuncInfo.ValueMap.end()) {
1533     Register InReg = It->second;
1534 
1535     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1536                      DAG.getDataLayout(), InReg, Ty,
1537                      std::nullopt); // This is not an ABI copy.
1538     SDValue Chain = DAG.getEntryNode();
1539     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1540                                  V);
1541     resolveDanglingDebugInfo(V, Result);
1542   }
1543 
1544   return Result;
1545 }
1546 
1547 /// getValue - Return an SDValue for the given Value.
1548 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1549   // If we already have an SDValue for this value, use it. It's important
1550   // to do this first, so that we don't create a CopyFromReg if we already
1551   // have a regular SDValue.
1552   SDValue &N = NodeMap[V];
1553   if (N.getNode()) return N;
1554 
1555   // If there's a virtual register allocated and initialized for this
1556   // value, use it.
1557   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1558     return copyFromReg;
1559 
1560   // Otherwise create a new SDValue and remember it.
1561   SDValue Val = getValueImpl(V);
1562   NodeMap[V] = Val;
1563   resolveDanglingDebugInfo(V, Val);
1564   return Val;
1565 }
1566 
1567 /// getNonRegisterValue - Return an SDValue for the given Value, but
1568 /// don't look in FuncInfo.ValueMap for a virtual register.
1569 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1570   // If we already have an SDValue for this value, use it.
1571   SDValue &N = NodeMap[V];
1572   if (N.getNode()) {
1573     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1574       // Remove the debug location from the node as the node is about to be used
1575       // in a location which may differ from the original debug location.  This
1576       // is relevant to Constant and ConstantFP nodes because they can appear
1577       // as constant expressions inside PHI nodes.
1578       N->setDebugLoc(DebugLoc());
1579     }
1580     return N;
1581   }
1582 
1583   // Otherwise create a new SDValue and remember it.
1584   SDValue Val = getValueImpl(V);
1585   NodeMap[V] = Val;
1586   resolveDanglingDebugInfo(V, Val);
1587   return Val;
1588 }
1589 
1590 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1591 /// Create an SDValue for the given value.
1592 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1594 
1595   if (const Constant *C = dyn_cast<Constant>(V)) {
1596     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1597 
1598     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1599       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1600 
1601     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1602       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1603 
1604     if (isa<ConstantPointerNull>(C)) {
1605       unsigned AS = V->getType()->getPointerAddressSpace();
1606       return DAG.getConstant(0, getCurSDLoc(),
1607                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1608     }
1609 
1610     if (match(C, m_VScale(DAG.getDataLayout())))
1611       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1612 
1613     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1614       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1615 
1616     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1617       return DAG.getUNDEF(VT);
1618 
1619     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1620       visit(CE->getOpcode(), *CE);
1621       SDValue N1 = NodeMap[V];
1622       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1623       return N1;
1624     }
1625 
1626     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1627       SmallVector<SDValue, 4> Constants;
1628       for (const Use &U : C->operands()) {
1629         SDNode *Val = getValue(U).getNode();
1630         // If the operand is an empty aggregate, there are no values.
1631         if (!Val) continue;
1632         // Add each leaf value from the operand to the Constants list
1633         // to form a flattened list of all the values.
1634         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1635           Constants.push_back(SDValue(Val, i));
1636       }
1637 
1638       return DAG.getMergeValues(Constants, getCurSDLoc());
1639     }
1640 
1641     if (const ConstantDataSequential *CDS =
1642           dyn_cast<ConstantDataSequential>(C)) {
1643       SmallVector<SDValue, 4> Ops;
1644       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1646         // Add each leaf value from the operand to the Constants list
1647         // to form a flattened list of all the values.
1648         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1649           Ops.push_back(SDValue(Val, i));
1650       }
1651 
1652       if (isa<ArrayType>(CDS->getType()))
1653         return DAG.getMergeValues(Ops, getCurSDLoc());
1654       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1655     }
1656 
1657     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1658       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1659              "Unknown struct or array constant!");
1660 
1661       SmallVector<EVT, 4> ValueVTs;
1662       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1663       unsigned NumElts = ValueVTs.size();
1664       if (NumElts == 0)
1665         return SDValue(); // empty struct
1666       SmallVector<SDValue, 4> Constants(NumElts);
1667       for (unsigned i = 0; i != NumElts; ++i) {
1668         EVT EltVT = ValueVTs[i];
1669         if (isa<UndefValue>(C))
1670           Constants[i] = DAG.getUNDEF(EltVT);
1671         else if (EltVT.isFloatingPoint())
1672           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1673         else
1674           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1675       }
1676 
1677       return DAG.getMergeValues(Constants, getCurSDLoc());
1678     }
1679 
1680     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1681       return DAG.getBlockAddress(BA, VT);
1682 
1683     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1684       return getValue(Equiv->getGlobalValue());
1685 
1686     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1687       return getValue(NC->getGlobalValue());
1688 
1689     VectorType *VecTy = cast<VectorType>(V->getType());
1690 
1691     // Now that we know the number and type of the elements, get that number of
1692     // elements into the Ops array based on what kind of constant it is.
1693     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1694       SmallVector<SDValue, 16> Ops;
1695       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1696       for (unsigned i = 0; i != NumElements; ++i)
1697         Ops.push_back(getValue(CV->getOperand(i)));
1698 
1699       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1700     }
1701 
1702     if (isa<ConstantAggregateZero>(C)) {
1703       EVT EltVT =
1704           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1705 
1706       SDValue Op;
1707       if (EltVT.isFloatingPoint())
1708         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1709       else
1710         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1711 
1712       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1713     }
1714 
1715     llvm_unreachable("Unknown vector constant");
1716   }
1717 
1718   // If this is a static alloca, generate it as the frameindex instead of
1719   // computation.
1720   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1721     DenseMap<const AllocaInst*, int>::iterator SI =
1722       FuncInfo.StaticAllocaMap.find(AI);
1723     if (SI != FuncInfo.StaticAllocaMap.end())
1724       return DAG.getFrameIndex(
1725           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1726   }
1727 
1728   // If this is an instruction which fast-isel has deferred, select it now.
1729   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1730     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1731 
1732     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1733                      Inst->getType(), std::nullopt);
1734     SDValue Chain = DAG.getEntryNode();
1735     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1736   }
1737 
1738   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1739     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1740 
1741   if (const auto *BB = dyn_cast<BasicBlock>(V))
1742     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1743 
1744   llvm_unreachable("Can't get register for value!");
1745 }
1746 
1747 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1750   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1751   bool IsSEH = isAsynchronousEHPersonality(Pers);
1752   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1753   if (!IsSEH)
1754     CatchPadMBB->setIsEHScopeEntry();
1755   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1756   if (IsMSVCCXX || IsCoreCLR)
1757     CatchPadMBB->setIsEHFuncletEntry();
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1761   // Update machine-CFG edge.
1762   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1763   FuncInfo.MBB->addSuccessor(TargetMBB);
1764   TargetMBB->setIsEHCatchretTarget(true);
1765   DAG.getMachineFunction().setHasEHCatchret(true);
1766 
1767   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1768   bool IsSEH = isAsynchronousEHPersonality(Pers);
1769   if (IsSEH) {
1770     // If this is not a fall-through branch or optimizations are switched off,
1771     // emit the branch.
1772     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1773         TM.getOptLevel() == CodeGenOpt::None)
1774       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1775                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1776     return;
1777   }
1778 
1779   // Figure out the funclet membership for the catchret's successor.
1780   // This will be used by the FuncletLayout pass to determine how to order the
1781   // BB's.
1782   // A 'catchret' returns to the outer scope's color.
1783   Value *ParentPad = I.getCatchSwitchParentPad();
1784   const BasicBlock *SuccessorColor;
1785   if (isa<ConstantTokenNone>(ParentPad))
1786     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1787   else
1788     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1789   assert(SuccessorColor && "No parent funclet for catchret!");
1790   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1791   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1792 
1793   // Create the terminator node.
1794   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1795                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1796                             DAG.getBasicBlock(SuccessorColorMBB));
1797   DAG.setRoot(Ret);
1798 }
1799 
1800 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1801   // Don't emit any special code for the cleanuppad instruction. It just marks
1802   // the start of an EH scope/funclet.
1803   FuncInfo.MBB->setIsEHScopeEntry();
1804   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1805   if (Pers != EHPersonality::Wasm_CXX) {
1806     FuncInfo.MBB->setIsEHFuncletEntry();
1807     FuncInfo.MBB->setIsCleanupFuncletEntry();
1808   }
1809 }
1810 
1811 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1812 // not match, it is OK to add only the first unwind destination catchpad to the
1813 // successors, because there will be at least one invoke instruction within the
1814 // catch scope that points to the next unwind destination, if one exists, so
1815 // CFGSort cannot mess up with BB sorting order.
1816 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1817 // call within them, and catchpads only consisting of 'catch (...)' have a
1818 // '__cxa_end_catch' call within them, both of which generate invokes in case
1819 // the next unwind destination exists, i.e., the next unwind destination is not
1820 // the caller.)
1821 //
1822 // Having at most one EH pad successor is also simpler and helps later
1823 // transformations.
1824 //
1825 // For example,
1826 // current:
1827 //   invoke void @foo to ... unwind label %catch.dispatch
1828 // catch.dispatch:
1829 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1830 // catch.start:
1831 //   ...
1832 //   ... in this BB or some other child BB dominated by this BB there will be an
1833 //   invoke that points to 'next' BB as an unwind destination
1834 //
1835 // next: ; We don't need to add this to 'current' BB's successor
1836 //   ...
1837 static void findWasmUnwindDestinations(
1838     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1839     BranchProbability Prob,
1840     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1841         &UnwindDests) {
1842   while (EHPadBB) {
1843     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1844     if (isa<CleanupPadInst>(Pad)) {
1845       // Stop on cleanup pads.
1846       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1847       UnwindDests.back().first->setIsEHScopeEntry();
1848       break;
1849     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1850       // Add the catchpad handlers to the possible destinations. We don't
1851       // continue to the unwind destination of the catchswitch for wasm.
1852       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1853         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1854         UnwindDests.back().first->setIsEHScopeEntry();
1855       }
1856       break;
1857     } else {
1858       continue;
1859     }
1860   }
1861 }
1862 
1863 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1864 /// many places it could ultimately go. In the IR, we have a single unwind
1865 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1866 /// This function skips over imaginary basic blocks that hold catchswitch
1867 /// instructions, and finds all the "real" machine
1868 /// basic block destinations. As those destinations may not be successors of
1869 /// EHPadBB, here we also calculate the edge probability to those destinations.
1870 /// The passed-in Prob is the edge probability to EHPadBB.
1871 static void findUnwindDestinations(
1872     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1873     BranchProbability Prob,
1874     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1875         &UnwindDests) {
1876   EHPersonality Personality =
1877     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1878   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1879   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1880   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1881   bool IsSEH = isAsynchronousEHPersonality(Personality);
1882 
1883   if (IsWasmCXX) {
1884     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1885     assert(UnwindDests.size() <= 1 &&
1886            "There should be at most one unwind destination for wasm");
1887     return;
1888   }
1889 
1890   while (EHPadBB) {
1891     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1892     BasicBlock *NewEHPadBB = nullptr;
1893     if (isa<LandingPadInst>(Pad)) {
1894       // Stop on landingpads. They are not funclets.
1895       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1896       break;
1897     } else if (isa<CleanupPadInst>(Pad)) {
1898       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1899       // personalities.
1900       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1901       UnwindDests.back().first->setIsEHScopeEntry();
1902       UnwindDests.back().first->setIsEHFuncletEntry();
1903       break;
1904     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1905       // Add the catchpad handlers to the possible destinations.
1906       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1907         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1908         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1909         if (IsMSVCCXX || IsCoreCLR)
1910           UnwindDests.back().first->setIsEHFuncletEntry();
1911         if (!IsSEH)
1912           UnwindDests.back().first->setIsEHScopeEntry();
1913       }
1914       NewEHPadBB = CatchSwitch->getUnwindDest();
1915     } else {
1916       continue;
1917     }
1918 
1919     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1920     if (BPI && NewEHPadBB)
1921       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1922     EHPadBB = NewEHPadBB;
1923   }
1924 }
1925 
1926 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1927   // Update successor info.
1928   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1929   auto UnwindDest = I.getUnwindDest();
1930   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1931   BranchProbability UnwindDestProb =
1932       (BPI && UnwindDest)
1933           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1934           : BranchProbability::getZero();
1935   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1936   for (auto &UnwindDest : UnwindDests) {
1937     UnwindDest.first->setIsEHPad();
1938     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1939   }
1940   FuncInfo.MBB->normalizeSuccProbs();
1941 
1942   // Create the terminator node.
1943   SDValue Ret =
1944       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1945   DAG.setRoot(Ret);
1946 }
1947 
1948 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1949   report_fatal_error("visitCatchSwitch not yet implemented!");
1950 }
1951 
1952 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1954   auto &DL = DAG.getDataLayout();
1955   SDValue Chain = getControlRoot();
1956   SmallVector<ISD::OutputArg, 8> Outs;
1957   SmallVector<SDValue, 8> OutVals;
1958 
1959   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1960   // lower
1961   //
1962   //   %val = call <ty> @llvm.experimental.deoptimize()
1963   //   ret <ty> %val
1964   //
1965   // differently.
1966   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1967     LowerDeoptimizingReturn();
1968     return;
1969   }
1970 
1971   if (!FuncInfo.CanLowerReturn) {
1972     unsigned DemoteReg = FuncInfo.DemoteRegister;
1973     const Function *F = I.getParent()->getParent();
1974 
1975     // Emit a store of the return value through the virtual register.
1976     // Leave Outs empty so that LowerReturn won't try to load return
1977     // registers the usual way.
1978     SmallVector<EVT, 1> PtrValueVTs;
1979     ComputeValueVTs(TLI, DL,
1980                     F->getReturnType()->getPointerTo(
1981                         DAG.getDataLayout().getAllocaAddrSpace()),
1982                     PtrValueVTs);
1983 
1984     SDValue RetPtr =
1985         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1986     SDValue RetOp = getValue(I.getOperand(0));
1987 
1988     SmallVector<EVT, 4> ValueVTs, MemVTs;
1989     SmallVector<uint64_t, 4> Offsets;
1990     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1991                     &Offsets);
1992     unsigned NumValues = ValueVTs.size();
1993 
1994     SmallVector<SDValue, 4> Chains(NumValues);
1995     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1996     for (unsigned i = 0; i != NumValues; ++i) {
1997       // An aggregate return value cannot wrap around the address space, so
1998       // offsets to its parts don't wrap either.
1999       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2000                                            TypeSize::Fixed(Offsets[i]));
2001 
2002       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2003       if (MemVTs[i] != ValueVTs[i])
2004         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2005       Chains[i] = DAG.getStore(
2006           Chain, getCurSDLoc(), Val,
2007           // FIXME: better loc info would be nice.
2008           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2009           commonAlignment(BaseAlign, Offsets[i]));
2010     }
2011 
2012     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2013                         MVT::Other, Chains);
2014   } else if (I.getNumOperands() != 0) {
2015     SmallVector<EVT, 4> ValueVTs;
2016     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2017     unsigned NumValues = ValueVTs.size();
2018     if (NumValues) {
2019       SDValue RetOp = getValue(I.getOperand(0));
2020 
2021       const Function *F = I.getParent()->getParent();
2022 
2023       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2024           I.getOperand(0)->getType(), F->getCallingConv(),
2025           /*IsVarArg*/ false, DL);
2026 
2027       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2028       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2029         ExtendKind = ISD::SIGN_EXTEND;
2030       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2031         ExtendKind = ISD::ZERO_EXTEND;
2032 
2033       LLVMContext &Context = F->getContext();
2034       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2035 
2036       for (unsigned j = 0; j != NumValues; ++j) {
2037         EVT VT = ValueVTs[j];
2038 
2039         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2040           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2041 
2042         CallingConv::ID CC = F->getCallingConv();
2043 
2044         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2045         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2046         SmallVector<SDValue, 4> Parts(NumParts);
2047         getCopyToParts(DAG, getCurSDLoc(),
2048                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2049                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2050 
2051         // 'inreg' on function refers to return value
2052         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2053         if (RetInReg)
2054           Flags.setInReg();
2055 
2056         if (I.getOperand(0)->getType()->isPointerTy()) {
2057           Flags.setPointer();
2058           Flags.setPointerAddrSpace(
2059               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2060         }
2061 
2062         if (NeedsRegBlock) {
2063           Flags.setInConsecutiveRegs();
2064           if (j == NumValues - 1)
2065             Flags.setInConsecutiveRegsLast();
2066         }
2067 
2068         // Propagate extension type if any
2069         if (ExtendKind == ISD::SIGN_EXTEND)
2070           Flags.setSExt();
2071         else if (ExtendKind == ISD::ZERO_EXTEND)
2072           Flags.setZExt();
2073 
2074         for (unsigned i = 0; i < NumParts; ++i) {
2075           Outs.push_back(ISD::OutputArg(Flags,
2076                                         Parts[i].getValueType().getSimpleVT(),
2077                                         VT, /*isfixed=*/true, 0, 0));
2078           OutVals.push_back(Parts[i]);
2079         }
2080       }
2081     }
2082   }
2083 
2084   // Push in swifterror virtual register as the last element of Outs. This makes
2085   // sure swifterror virtual register will be returned in the swifterror
2086   // physical register.
2087   const Function *F = I.getParent()->getParent();
2088   if (TLI.supportSwiftError() &&
2089       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2090     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2091     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2092     Flags.setSwiftError();
2093     Outs.push_back(ISD::OutputArg(
2094         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2095         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2096     // Create SDNode for the swifterror virtual register.
2097     OutVals.push_back(
2098         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2099                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2100                         EVT(TLI.getPointerTy(DL))));
2101   }
2102 
2103   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2104   CallingConv::ID CallConv =
2105     DAG.getMachineFunction().getFunction().getCallingConv();
2106   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2107       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2108 
2109   // Verify that the target's LowerReturn behaved as expected.
2110   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2111          "LowerReturn didn't return a valid chain!");
2112 
2113   // Update the DAG with the new chain value resulting from return lowering.
2114   DAG.setRoot(Chain);
2115 }
2116 
2117 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2118 /// created for it, emit nodes to copy the value into the virtual
2119 /// registers.
2120 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2121   // Skip empty types
2122   if (V->getType()->isEmptyTy())
2123     return;
2124 
2125   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2126   if (VMI != FuncInfo.ValueMap.end()) {
2127     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2128     CopyValueToVirtualRegister(V, VMI->second);
2129   }
2130 }
2131 
2132 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2133 /// the current basic block, add it to ValueMap now so that we'll get a
2134 /// CopyTo/FromReg.
2135 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2136   // No need to export constants.
2137   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2138 
2139   // Already exported?
2140   if (FuncInfo.isExportedInst(V)) return;
2141 
2142   Register Reg = FuncInfo.InitializeRegForValue(V);
2143   CopyValueToVirtualRegister(V, Reg);
2144 }
2145 
2146 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2147                                                      const BasicBlock *FromBB) {
2148   // The operands of the setcc have to be in this block.  We don't know
2149   // how to export them from some other block.
2150   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2151     // Can export from current BB.
2152     if (VI->getParent() == FromBB)
2153       return true;
2154 
2155     // Is already exported, noop.
2156     return FuncInfo.isExportedInst(V);
2157   }
2158 
2159   // If this is an argument, we can export it if the BB is the entry block or
2160   // if it is already exported.
2161   if (isa<Argument>(V)) {
2162     if (FromBB->isEntryBlock())
2163       return true;
2164 
2165     // Otherwise, can only export this if it is already exported.
2166     return FuncInfo.isExportedInst(V);
2167   }
2168 
2169   // Otherwise, constants can always be exported.
2170   return true;
2171 }
2172 
2173 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2174 BranchProbability
2175 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2176                                         const MachineBasicBlock *Dst) const {
2177   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2178   const BasicBlock *SrcBB = Src->getBasicBlock();
2179   const BasicBlock *DstBB = Dst->getBasicBlock();
2180   if (!BPI) {
2181     // If BPI is not available, set the default probability as 1 / N, where N is
2182     // the number of successors.
2183     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2184     return BranchProbability(1, SuccSize);
2185   }
2186   return BPI->getEdgeProbability(SrcBB, DstBB);
2187 }
2188 
2189 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2190                                                MachineBasicBlock *Dst,
2191                                                BranchProbability Prob) {
2192   if (!FuncInfo.BPI)
2193     Src->addSuccessorWithoutProb(Dst);
2194   else {
2195     if (Prob.isUnknown())
2196       Prob = getEdgeProbability(Src, Dst);
2197     Src->addSuccessor(Dst, Prob);
2198   }
2199 }
2200 
2201 static bool InBlock(const Value *V, const BasicBlock *BB) {
2202   if (const Instruction *I = dyn_cast<Instruction>(V))
2203     return I->getParent() == BB;
2204   return true;
2205 }
2206 
2207 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2208 /// This function emits a branch and is used at the leaves of an OR or an
2209 /// AND operator tree.
2210 void
2211 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2212                                                   MachineBasicBlock *TBB,
2213                                                   MachineBasicBlock *FBB,
2214                                                   MachineBasicBlock *CurBB,
2215                                                   MachineBasicBlock *SwitchBB,
2216                                                   BranchProbability TProb,
2217                                                   BranchProbability FProb,
2218                                                   bool InvertCond) {
2219   const BasicBlock *BB = CurBB->getBasicBlock();
2220 
2221   // If the leaf of the tree is a comparison, merge the condition into
2222   // the caseblock.
2223   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2224     // The operands of the cmp have to be in this block.  We don't know
2225     // how to export them from some other block.  If this is the first block
2226     // of the sequence, no exporting is needed.
2227     if (CurBB == SwitchBB ||
2228         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2229          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2230       ISD::CondCode Condition;
2231       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2232         ICmpInst::Predicate Pred =
2233             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2234         Condition = getICmpCondCode(Pred);
2235       } else {
2236         const FCmpInst *FC = cast<FCmpInst>(Cond);
2237         FCmpInst::Predicate Pred =
2238             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2239         Condition = getFCmpCondCode(Pred);
2240         if (TM.Options.NoNaNsFPMath)
2241           Condition = getFCmpCodeWithoutNaN(Condition);
2242       }
2243 
2244       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2245                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2246       SL->SwitchCases.push_back(CB);
2247       return;
2248     }
2249   }
2250 
2251   // Create a CaseBlock record representing this branch.
2252   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2253   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2254                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2255   SL->SwitchCases.push_back(CB);
2256 }
2257 
2258 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2259                                                MachineBasicBlock *TBB,
2260                                                MachineBasicBlock *FBB,
2261                                                MachineBasicBlock *CurBB,
2262                                                MachineBasicBlock *SwitchBB,
2263                                                Instruction::BinaryOps Opc,
2264                                                BranchProbability TProb,
2265                                                BranchProbability FProb,
2266                                                bool InvertCond) {
2267   // Skip over not part of the tree and remember to invert op and operands at
2268   // next level.
2269   Value *NotCond;
2270   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2271       InBlock(NotCond, CurBB->getBasicBlock())) {
2272     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2273                          !InvertCond);
2274     return;
2275   }
2276 
2277   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2278   const Value *BOpOp0, *BOpOp1;
2279   // Compute the effective opcode for Cond, taking into account whether it needs
2280   // to be inverted, e.g.
2281   //   and (not (or A, B)), C
2282   // gets lowered as
2283   //   and (and (not A, not B), C)
2284   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2285   if (BOp) {
2286     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2287                ? Instruction::And
2288                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2289                       ? Instruction::Or
2290                       : (Instruction::BinaryOps)0);
2291     if (InvertCond) {
2292       if (BOpc == Instruction::And)
2293         BOpc = Instruction::Or;
2294       else if (BOpc == Instruction::Or)
2295         BOpc = Instruction::And;
2296     }
2297   }
2298 
2299   // If this node is not part of the or/and tree, emit it as a branch.
2300   // Note that all nodes in the tree should have same opcode.
2301   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2302   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2303       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2304       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2305     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2306                                  TProb, FProb, InvertCond);
2307     return;
2308   }
2309 
2310   //  Create TmpBB after CurBB.
2311   MachineFunction::iterator BBI(CurBB);
2312   MachineFunction &MF = DAG.getMachineFunction();
2313   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2314   CurBB->getParent()->insert(++BBI, TmpBB);
2315 
2316   if (Opc == Instruction::Or) {
2317     // Codegen X | Y as:
2318     // BB1:
2319     //   jmp_if_X TBB
2320     //   jmp TmpBB
2321     // TmpBB:
2322     //   jmp_if_Y TBB
2323     //   jmp FBB
2324     //
2325 
2326     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2327     // The requirement is that
2328     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2329     //     = TrueProb for original BB.
2330     // Assuming the original probabilities are A and B, one choice is to set
2331     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2332     // A/(1+B) and 2B/(1+B). This choice assumes that
2333     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2334     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2335     // TmpBB, but the math is more complicated.
2336 
2337     auto NewTrueProb = TProb / 2;
2338     auto NewFalseProb = TProb / 2 + FProb;
2339     // Emit the LHS condition.
2340     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2341                          NewFalseProb, InvertCond);
2342 
2343     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2344     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2345     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2346     // Emit the RHS condition into TmpBB.
2347     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2348                          Probs[1], InvertCond);
2349   } else {
2350     assert(Opc == Instruction::And && "Unknown merge op!");
2351     // Codegen X & Y as:
2352     // BB1:
2353     //   jmp_if_X TmpBB
2354     //   jmp FBB
2355     // TmpBB:
2356     //   jmp_if_Y TBB
2357     //   jmp FBB
2358     //
2359     //  This requires creation of TmpBB after CurBB.
2360 
2361     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2362     // The requirement is that
2363     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2364     //     = FalseProb for original BB.
2365     // Assuming the original probabilities are A and B, one choice is to set
2366     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2367     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2368     // TrueProb for BB1 * FalseProb for TmpBB.
2369 
2370     auto NewTrueProb = TProb + FProb / 2;
2371     auto NewFalseProb = FProb / 2;
2372     // Emit the LHS condition.
2373     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2374                          NewFalseProb, InvertCond);
2375 
2376     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2377     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2378     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2379     // Emit the RHS condition into TmpBB.
2380     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2381                          Probs[1], InvertCond);
2382   }
2383 }
2384 
2385 /// If the set of cases should be emitted as a series of branches, return true.
2386 /// If we should emit this as a bunch of and/or'd together conditions, return
2387 /// false.
2388 bool
2389 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2390   if (Cases.size() != 2) return true;
2391 
2392   // If this is two comparisons of the same values or'd or and'd together, they
2393   // will get folded into a single comparison, so don't emit two blocks.
2394   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2395        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2396       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2397        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2398     return false;
2399   }
2400 
2401   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2402   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2403   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2404       Cases[0].CC == Cases[1].CC &&
2405       isa<Constant>(Cases[0].CmpRHS) &&
2406       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2407     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2408       return false;
2409     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2410       return false;
2411   }
2412 
2413   return true;
2414 }
2415 
2416 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2417   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2418 
2419   // Update machine-CFG edges.
2420   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2421 
2422   if (I.isUnconditional()) {
2423     // Update machine-CFG edges.
2424     BrMBB->addSuccessor(Succ0MBB);
2425 
2426     // If this is not a fall-through branch or optimizations are switched off,
2427     // emit the branch.
2428     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2429       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2430                               MVT::Other, getControlRoot(),
2431                               DAG.getBasicBlock(Succ0MBB)));
2432 
2433     return;
2434   }
2435 
2436   // If this condition is one of the special cases we handle, do special stuff
2437   // now.
2438   const Value *CondVal = I.getCondition();
2439   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2440 
2441   // If this is a series of conditions that are or'd or and'd together, emit
2442   // this as a sequence of branches instead of setcc's with and/or operations.
2443   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2444   // unpredictable branches, and vector extracts because those jumps are likely
2445   // expensive for any target), this should improve performance.
2446   // For example, instead of something like:
2447   //     cmp A, B
2448   //     C = seteq
2449   //     cmp D, E
2450   //     F = setle
2451   //     or C, F
2452   //     jnz foo
2453   // Emit:
2454   //     cmp A, B
2455   //     je foo
2456   //     cmp D, E
2457   //     jle foo
2458   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2459   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2460       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2461     Value *Vec;
2462     const Value *BOp0, *BOp1;
2463     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2464     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2465       Opcode = Instruction::And;
2466     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2467       Opcode = Instruction::Or;
2468 
2469     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2470                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2471       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2472                            getEdgeProbability(BrMBB, Succ0MBB),
2473                            getEdgeProbability(BrMBB, Succ1MBB),
2474                            /*InvertCond=*/false);
2475       // If the compares in later blocks need to use values not currently
2476       // exported from this block, export them now.  This block should always
2477       // be the first entry.
2478       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2479 
2480       // Allow some cases to be rejected.
2481       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2482         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2484           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2485         }
2486 
2487         // Emit the branch for this block.
2488         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2489         SL->SwitchCases.erase(SL->SwitchCases.begin());
2490         return;
2491       }
2492 
2493       // Okay, we decided not to do this, remove any inserted MBB's and clear
2494       // SwitchCases.
2495       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2496         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2497 
2498       SL->SwitchCases.clear();
2499     }
2500   }
2501 
2502   // Create a CaseBlock record representing this branch.
2503   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2504                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2505 
2506   // Use visitSwitchCase to actually insert the fast branch sequence for this
2507   // cond branch.
2508   visitSwitchCase(CB, BrMBB);
2509 }
2510 
2511 /// visitSwitchCase - Emits the necessary code to represent a single node in
2512 /// the binary search tree resulting from lowering a switch instruction.
2513 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2514                                           MachineBasicBlock *SwitchBB) {
2515   SDValue Cond;
2516   SDValue CondLHS = getValue(CB.CmpLHS);
2517   SDLoc dl = CB.DL;
2518 
2519   if (CB.CC == ISD::SETTRUE) {
2520     // Branch or fall through to TrueBB.
2521     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2522     SwitchBB->normalizeSuccProbs();
2523     if (CB.TrueBB != NextBlock(SwitchBB)) {
2524       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2525                               DAG.getBasicBlock(CB.TrueBB)));
2526     }
2527     return;
2528   }
2529 
2530   auto &TLI = DAG.getTargetLoweringInfo();
2531   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2532 
2533   // Build the setcc now.
2534   if (!CB.CmpMHS) {
2535     // Fold "(X == true)" to X and "(X == false)" to !X to
2536     // handle common cases produced by branch lowering.
2537     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2538         CB.CC == ISD::SETEQ)
2539       Cond = CondLHS;
2540     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2541              CB.CC == ISD::SETEQ) {
2542       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2543       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2544     } else {
2545       SDValue CondRHS = getValue(CB.CmpRHS);
2546 
2547       // If a pointer's DAG type is larger than its memory type then the DAG
2548       // values are zero-extended. This breaks signed comparisons so truncate
2549       // back to the underlying type before doing the compare.
2550       if (CondLHS.getValueType() != MemVT) {
2551         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2552         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2553       }
2554       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2555     }
2556   } else {
2557     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2558 
2559     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2560     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2561 
2562     SDValue CmpOp = getValue(CB.CmpMHS);
2563     EVT VT = CmpOp.getValueType();
2564 
2565     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2566       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2567                           ISD::SETLE);
2568     } else {
2569       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2570                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2571       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2572                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2573     }
2574   }
2575 
2576   // Update successor info
2577   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2578   // TrueBB and FalseBB are always different unless the incoming IR is
2579   // degenerate. This only happens when running llc on weird IR.
2580   if (CB.TrueBB != CB.FalseBB)
2581     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2582   SwitchBB->normalizeSuccProbs();
2583 
2584   // If the lhs block is the next block, invert the condition so that we can
2585   // fall through to the lhs instead of the rhs block.
2586   if (CB.TrueBB == NextBlock(SwitchBB)) {
2587     std::swap(CB.TrueBB, CB.FalseBB);
2588     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2589     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2590   }
2591 
2592   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2593                                MVT::Other, getControlRoot(), Cond,
2594                                DAG.getBasicBlock(CB.TrueBB));
2595 
2596   setValue(CurInst, BrCond);
2597 
2598   // Insert the false branch. Do this even if it's a fall through branch,
2599   // this makes it easier to do DAG optimizations which require inverting
2600   // the branch condition.
2601   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2602                        DAG.getBasicBlock(CB.FalseBB));
2603 
2604   DAG.setRoot(BrCond);
2605 }
2606 
2607 /// visitJumpTable - Emit JumpTable node in the current MBB
2608 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2609   // Emit the code for the jump table
2610   assert(JT.Reg != -1U && "Should lower JT Header first!");
2611   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2612   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2613                                      JT.Reg, PTy);
2614   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2615   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2616                                     MVT::Other, Index.getValue(1),
2617                                     Table, Index);
2618   DAG.setRoot(BrJumpTable);
2619 }
2620 
2621 /// visitJumpTableHeader - This function emits necessary code to produce index
2622 /// in the JumpTable from switch case.
2623 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2624                                                JumpTableHeader &JTH,
2625                                                MachineBasicBlock *SwitchBB) {
2626   SDLoc dl = getCurSDLoc();
2627 
2628   // Subtract the lowest switch case value from the value being switched on.
2629   SDValue SwitchOp = getValue(JTH.SValue);
2630   EVT VT = SwitchOp.getValueType();
2631   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2632                             DAG.getConstant(JTH.First, dl, VT));
2633 
2634   // The SDNode we just created, which holds the value being switched on minus
2635   // the smallest case value, needs to be copied to a virtual register so it
2636   // can be used as an index into the jump table in a subsequent basic block.
2637   // This value may be smaller or larger than the target's pointer type, and
2638   // therefore require extension or truncating.
2639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2640   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2641 
2642   unsigned JumpTableReg =
2643       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2644   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2645                                     JumpTableReg, SwitchOp);
2646   JT.Reg = JumpTableReg;
2647 
2648   if (!JTH.FallthroughUnreachable) {
2649     // Emit the range check for the jump table, and branch to the default block
2650     // for the switch statement if the value being switched on exceeds the
2651     // largest case in the switch.
2652     SDValue CMP = DAG.getSetCC(
2653         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2654                                    Sub.getValueType()),
2655         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2656 
2657     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2658                                  MVT::Other, CopyTo, CMP,
2659                                  DAG.getBasicBlock(JT.Default));
2660 
2661     // Avoid emitting unnecessary branches to the next block.
2662     if (JT.MBB != NextBlock(SwitchBB))
2663       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2664                            DAG.getBasicBlock(JT.MBB));
2665 
2666     DAG.setRoot(BrCond);
2667   } else {
2668     // Avoid emitting unnecessary branches to the next block.
2669     if (JT.MBB != NextBlock(SwitchBB))
2670       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2671                               DAG.getBasicBlock(JT.MBB)));
2672     else
2673       DAG.setRoot(CopyTo);
2674   }
2675 }
2676 
2677 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2678 /// variable if there exists one.
2679 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2680                                  SDValue &Chain) {
2681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2682   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2683   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2684   MachineFunction &MF = DAG.getMachineFunction();
2685   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2686   MachineSDNode *Node =
2687       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2688   if (Global) {
2689     MachinePointerInfo MPInfo(Global);
2690     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2691                  MachineMemOperand::MODereferenceable;
2692     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2693         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2694     DAG.setNodeMemRefs(Node, {MemRef});
2695   }
2696   if (PtrTy != PtrMemTy)
2697     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2698   return SDValue(Node, 0);
2699 }
2700 
2701 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2702 /// tail spliced into a stack protector check success bb.
2703 ///
2704 /// For a high level explanation of how this fits into the stack protector
2705 /// generation see the comment on the declaration of class
2706 /// StackProtectorDescriptor.
2707 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2708                                                   MachineBasicBlock *ParentBB) {
2709 
2710   // First create the loads to the guard/stack slot for the comparison.
2711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2712   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2713   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2714 
2715   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2716   int FI = MFI.getStackProtectorIndex();
2717 
2718   SDValue Guard;
2719   SDLoc dl = getCurSDLoc();
2720   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2721   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2722   Align Align =
2723       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2724 
2725   // Generate code to load the content of the guard slot.
2726   SDValue GuardVal = DAG.getLoad(
2727       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2728       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2729       MachineMemOperand::MOVolatile);
2730 
2731   if (TLI.useStackGuardXorFP())
2732     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2733 
2734   // Retrieve guard check function, nullptr if instrumentation is inlined.
2735   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2736     // The target provides a guard check function to validate the guard value.
2737     // Generate a call to that function with the content of the guard slot as
2738     // argument.
2739     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2740     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2741 
2742     TargetLowering::ArgListTy Args;
2743     TargetLowering::ArgListEntry Entry;
2744     Entry.Node = GuardVal;
2745     Entry.Ty = FnTy->getParamType(0);
2746     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2747       Entry.IsInReg = true;
2748     Args.push_back(Entry);
2749 
2750     TargetLowering::CallLoweringInfo CLI(DAG);
2751     CLI.setDebugLoc(getCurSDLoc())
2752         .setChain(DAG.getEntryNode())
2753         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2754                    getValue(GuardCheckFn), std::move(Args));
2755 
2756     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2757     DAG.setRoot(Result.second);
2758     return;
2759   }
2760 
2761   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2762   // Otherwise, emit a volatile load to retrieve the stack guard value.
2763   SDValue Chain = DAG.getEntryNode();
2764   if (TLI.useLoadStackGuardNode()) {
2765     Guard = getLoadStackGuard(DAG, dl, Chain);
2766   } else {
2767     const Value *IRGuard = TLI.getSDagStackGuard(M);
2768     SDValue GuardPtr = getValue(IRGuard);
2769 
2770     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2771                         MachinePointerInfo(IRGuard, 0), Align,
2772                         MachineMemOperand::MOVolatile);
2773   }
2774 
2775   // Perform the comparison via a getsetcc.
2776   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2777                                                         *DAG.getContext(),
2778                                                         Guard.getValueType()),
2779                              Guard, GuardVal, ISD::SETNE);
2780 
2781   // If the guard/stackslot do not equal, branch to failure MBB.
2782   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2783                                MVT::Other, GuardVal.getOperand(0),
2784                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2785   // Otherwise branch to success MBB.
2786   SDValue Br = DAG.getNode(ISD::BR, dl,
2787                            MVT::Other, BrCond,
2788                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2789 
2790   DAG.setRoot(Br);
2791 }
2792 
2793 /// Codegen the failure basic block for a stack protector check.
2794 ///
2795 /// A failure stack protector machine basic block consists simply of a call to
2796 /// __stack_chk_fail().
2797 ///
2798 /// For a high level explanation of how this fits into the stack protector
2799 /// generation see the comment on the declaration of class
2800 /// StackProtectorDescriptor.
2801 void
2802 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2804   TargetLowering::MakeLibCallOptions CallOptions;
2805   CallOptions.setDiscardResult(true);
2806   SDValue Chain =
2807       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2808                       std::nullopt, CallOptions, getCurSDLoc())
2809           .second;
2810   // On PS4/PS5, the "return address" must still be within the calling
2811   // function, even if it's at the very end, so emit an explicit TRAP here.
2812   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2813   if (TM.getTargetTriple().isPS())
2814     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2815   // WebAssembly needs an unreachable instruction after a non-returning call,
2816   // because the function return type can be different from __stack_chk_fail's
2817   // return type (void).
2818   if (TM.getTargetTriple().isWasm())
2819     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2820 
2821   DAG.setRoot(Chain);
2822 }
2823 
2824 /// visitBitTestHeader - This function emits necessary code to produce value
2825 /// suitable for "bit tests"
2826 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2827                                              MachineBasicBlock *SwitchBB) {
2828   SDLoc dl = getCurSDLoc();
2829 
2830   // Subtract the minimum value.
2831   SDValue SwitchOp = getValue(B.SValue);
2832   EVT VT = SwitchOp.getValueType();
2833   SDValue RangeSub =
2834       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2835 
2836   // Determine the type of the test operands.
2837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2838   bool UsePtrType = false;
2839   if (!TLI.isTypeLegal(VT)) {
2840     UsePtrType = true;
2841   } else {
2842     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2843       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2844         // Switch table case range are encoded into series of masks.
2845         // Just use pointer type, it's guaranteed to fit.
2846         UsePtrType = true;
2847         break;
2848       }
2849   }
2850   SDValue Sub = RangeSub;
2851   if (UsePtrType) {
2852     VT = TLI.getPointerTy(DAG.getDataLayout());
2853     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2854   }
2855 
2856   B.RegVT = VT.getSimpleVT();
2857   B.Reg = FuncInfo.CreateReg(B.RegVT);
2858   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2859 
2860   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2861 
2862   if (!B.FallthroughUnreachable)
2863     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2864   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2865   SwitchBB->normalizeSuccProbs();
2866 
2867   SDValue Root = CopyTo;
2868   if (!B.FallthroughUnreachable) {
2869     // Conditional branch to the default block.
2870     SDValue RangeCmp = DAG.getSetCC(dl,
2871         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2872                                RangeSub.getValueType()),
2873         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2874         ISD::SETUGT);
2875 
2876     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2877                        DAG.getBasicBlock(B.Default));
2878   }
2879 
2880   // Avoid emitting unnecessary branches to the next block.
2881   if (MBB != NextBlock(SwitchBB))
2882     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2883 
2884   DAG.setRoot(Root);
2885 }
2886 
2887 /// visitBitTestCase - this function produces one "bit test"
2888 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2889                                            MachineBasicBlock* NextMBB,
2890                                            BranchProbability BranchProbToNext,
2891                                            unsigned Reg,
2892                                            BitTestCase &B,
2893                                            MachineBasicBlock *SwitchBB) {
2894   SDLoc dl = getCurSDLoc();
2895   MVT VT = BB.RegVT;
2896   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2897   SDValue Cmp;
2898   unsigned PopCount = countPopulation(B.Mask);
2899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2900   if (PopCount == 1) {
2901     // Testing for a single bit; just compare the shift count with what it
2902     // would need to be to shift a 1 bit in that position.
2903     Cmp = DAG.getSetCC(
2904         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2905         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2906         ISD::SETEQ);
2907   } else if (PopCount == BB.Range) {
2908     // There is only one zero bit in the range, test for it directly.
2909     Cmp = DAG.getSetCC(
2910         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2911         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2912         ISD::SETNE);
2913   } else {
2914     // Make desired shift
2915     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2916                                     DAG.getConstant(1, dl, VT), ShiftOp);
2917 
2918     // Emit bit tests and jumps
2919     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2920                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2921     Cmp = DAG.getSetCC(
2922         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2923         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2924   }
2925 
2926   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2927   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2928   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2929   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2930   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2931   // one as they are relative probabilities (and thus work more like weights),
2932   // and hence we need to normalize them to let the sum of them become one.
2933   SwitchBB->normalizeSuccProbs();
2934 
2935   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2936                               MVT::Other, getControlRoot(),
2937                               Cmp, DAG.getBasicBlock(B.TargetBB));
2938 
2939   // Avoid emitting unnecessary branches to the next block.
2940   if (NextMBB != NextBlock(SwitchBB))
2941     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2942                         DAG.getBasicBlock(NextMBB));
2943 
2944   DAG.setRoot(BrAnd);
2945 }
2946 
2947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2948   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2949 
2950   // Retrieve successors. Look through artificial IR level blocks like
2951   // catchswitch for successors.
2952   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2953   const BasicBlock *EHPadBB = I.getSuccessor(1);
2954 
2955   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2956   // have to do anything here to lower funclet bundles.
2957   assert(!I.hasOperandBundlesOtherThan(
2958              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2959               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2960               LLVMContext::OB_cfguardtarget,
2961               LLVMContext::OB_clang_arc_attachedcall}) &&
2962          "Cannot lower invokes with arbitrary operand bundles yet!");
2963 
2964   const Value *Callee(I.getCalledOperand());
2965   const Function *Fn = dyn_cast<Function>(Callee);
2966   if (isa<InlineAsm>(Callee))
2967     visitInlineAsm(I, EHPadBB);
2968   else if (Fn && Fn->isIntrinsic()) {
2969     switch (Fn->getIntrinsicID()) {
2970     default:
2971       llvm_unreachable("Cannot invoke this intrinsic");
2972     case Intrinsic::donothing:
2973       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2974     case Intrinsic::seh_try_begin:
2975     case Intrinsic::seh_scope_begin:
2976     case Intrinsic::seh_try_end:
2977     case Intrinsic::seh_scope_end:
2978       break;
2979     case Intrinsic::experimental_patchpoint_void:
2980     case Intrinsic::experimental_patchpoint_i64:
2981       visitPatchpoint(I, EHPadBB);
2982       break;
2983     case Intrinsic::experimental_gc_statepoint:
2984       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2985       break;
2986     case Intrinsic::wasm_rethrow: {
2987       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2988       // special because it can be invoked, so we manually lower it to a DAG
2989       // node here.
2990       SmallVector<SDValue, 8> Ops;
2991       Ops.push_back(getRoot()); // inchain
2992       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2993       Ops.push_back(
2994           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2995                                 TLI.getPointerTy(DAG.getDataLayout())));
2996       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2997       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2998       break;
2999     }
3000     }
3001   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3002     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3003     // Eventually we will support lowering the @llvm.experimental.deoptimize
3004     // intrinsic, and right now there are no plans to support other intrinsics
3005     // with deopt state.
3006     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3007   } else {
3008     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3009   }
3010 
3011   // If the value of the invoke is used outside of its defining block, make it
3012   // available as a virtual register.
3013   // We already took care of the exported value for the statepoint instruction
3014   // during call to the LowerStatepoint.
3015   if (!isa<GCStatepointInst>(I)) {
3016     CopyToExportRegsIfNeeded(&I);
3017   }
3018 
3019   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3021   BranchProbability EHPadBBProb =
3022       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3023           : BranchProbability::getZero();
3024   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3025 
3026   // Update successor info.
3027   addSuccessorWithProb(InvokeMBB, Return);
3028   for (auto &UnwindDest : UnwindDests) {
3029     UnwindDest.first->setIsEHPad();
3030     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3031   }
3032   InvokeMBB->normalizeSuccProbs();
3033 
3034   // Drop into normal successor.
3035   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3036                           DAG.getBasicBlock(Return)));
3037 }
3038 
3039 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3040   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3041 
3042   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3043   // have to do anything here to lower funclet bundles.
3044   assert(!I.hasOperandBundlesOtherThan(
3045              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3046          "Cannot lower callbrs with arbitrary operand bundles yet!");
3047 
3048   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3049   visitInlineAsm(I);
3050   CopyToExportRegsIfNeeded(&I);
3051 
3052   // Retrieve successors.
3053   SmallPtrSet<BasicBlock *, 8> Dests;
3054   Dests.insert(I.getDefaultDest());
3055   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3056 
3057   // Update successor info.
3058   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3059   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3060     BasicBlock *Dest = I.getIndirectDest(i);
3061     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3062     Target->setIsInlineAsmBrIndirectTarget();
3063     Target->setMachineBlockAddressTaken();
3064     Target->setLabelMustBeEmitted();
3065     // Don't add duplicate machine successors.
3066     if (Dests.insert(Dest).second)
3067       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3068   }
3069   CallBrMBB->normalizeSuccProbs();
3070 
3071   // Drop into default successor.
3072   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3073                           MVT::Other, getControlRoot(),
3074                           DAG.getBasicBlock(Return)));
3075 }
3076 
3077 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3078   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3079 }
3080 
3081 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3082   assert(FuncInfo.MBB->isEHPad() &&
3083          "Call to landingpad not in landing pad!");
3084 
3085   // If there aren't registers to copy the values into (e.g., during SjLj
3086   // exceptions), then don't bother to create these DAG nodes.
3087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3089   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3090       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3091     return;
3092 
3093   // If landingpad's return type is token type, we don't create DAG nodes
3094   // for its exception pointer and selector value. The extraction of exception
3095   // pointer or selector value from token type landingpads is not currently
3096   // supported.
3097   if (LP.getType()->isTokenTy())
3098     return;
3099 
3100   SmallVector<EVT, 2> ValueVTs;
3101   SDLoc dl = getCurSDLoc();
3102   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3103   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3104 
3105   // Get the two live-in registers as SDValues. The physregs have already been
3106   // copied into virtual registers.
3107   SDValue Ops[2];
3108   if (FuncInfo.ExceptionPointerVirtReg) {
3109     Ops[0] = DAG.getZExtOrTrunc(
3110         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3111                            FuncInfo.ExceptionPointerVirtReg,
3112                            TLI.getPointerTy(DAG.getDataLayout())),
3113         dl, ValueVTs[0]);
3114   } else {
3115     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3116   }
3117   Ops[1] = DAG.getZExtOrTrunc(
3118       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3119                          FuncInfo.ExceptionSelectorVirtReg,
3120                          TLI.getPointerTy(DAG.getDataLayout())),
3121       dl, ValueVTs[1]);
3122 
3123   // Merge into one.
3124   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3125                             DAG.getVTList(ValueVTs), Ops);
3126   setValue(&LP, Res);
3127 }
3128 
3129 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3130                                            MachineBasicBlock *Last) {
3131   // Update JTCases.
3132   for (JumpTableBlock &JTB : SL->JTCases)
3133     if (JTB.first.HeaderBB == First)
3134       JTB.first.HeaderBB = Last;
3135 
3136   // Update BitTestCases.
3137   for (BitTestBlock &BTB : SL->BitTestCases)
3138     if (BTB.Parent == First)
3139       BTB.Parent = Last;
3140 }
3141 
3142 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3143   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3144 
3145   // Update machine-CFG edges with unique successors.
3146   SmallSet<BasicBlock*, 32> Done;
3147   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3148     BasicBlock *BB = I.getSuccessor(i);
3149     bool Inserted = Done.insert(BB).second;
3150     if (!Inserted)
3151         continue;
3152 
3153     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3154     addSuccessorWithProb(IndirectBrMBB, Succ);
3155   }
3156   IndirectBrMBB->normalizeSuccProbs();
3157 
3158   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3159                           MVT::Other, getControlRoot(),
3160                           getValue(I.getAddress())));
3161 }
3162 
3163 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3164   if (!DAG.getTarget().Options.TrapUnreachable)
3165     return;
3166 
3167   // We may be able to ignore unreachable behind a noreturn call.
3168   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3169     const BasicBlock &BB = *I.getParent();
3170     if (&I != &BB.front()) {
3171       BasicBlock::const_iterator PredI =
3172         std::prev(BasicBlock::const_iterator(&I));
3173       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3174         if (Call->doesNotReturn())
3175           return;
3176       }
3177     }
3178   }
3179 
3180   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3181 }
3182 
3183 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3184   SDNodeFlags Flags;
3185   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3186     Flags.copyFMF(*FPOp);
3187 
3188   SDValue Op = getValue(I.getOperand(0));
3189   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3190                                     Op, Flags);
3191   setValue(&I, UnNodeValue);
3192 }
3193 
3194 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3195   SDNodeFlags Flags;
3196   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3197     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3198     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3199   }
3200   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3201     Flags.setExact(ExactOp->isExact());
3202   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3203     Flags.copyFMF(*FPOp);
3204 
3205   SDValue Op1 = getValue(I.getOperand(0));
3206   SDValue Op2 = getValue(I.getOperand(1));
3207   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3208                                      Op1, Op2, Flags);
3209   setValue(&I, BinNodeValue);
3210 }
3211 
3212 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3213   SDValue Op1 = getValue(I.getOperand(0));
3214   SDValue Op2 = getValue(I.getOperand(1));
3215 
3216   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3217       Op1.getValueType(), DAG.getDataLayout());
3218 
3219   // Coerce the shift amount to the right type if we can. This exposes the
3220   // truncate or zext to optimization early.
3221   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3222     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3223            "Unexpected shift type");
3224     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3225   }
3226 
3227   bool nuw = false;
3228   bool nsw = false;
3229   bool exact = false;
3230 
3231   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3232 
3233     if (const OverflowingBinaryOperator *OFBinOp =
3234             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3235       nuw = OFBinOp->hasNoUnsignedWrap();
3236       nsw = OFBinOp->hasNoSignedWrap();
3237     }
3238     if (const PossiblyExactOperator *ExactOp =
3239             dyn_cast<const PossiblyExactOperator>(&I))
3240       exact = ExactOp->isExact();
3241   }
3242   SDNodeFlags Flags;
3243   Flags.setExact(exact);
3244   Flags.setNoSignedWrap(nsw);
3245   Flags.setNoUnsignedWrap(nuw);
3246   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3247                             Flags);
3248   setValue(&I, Res);
3249 }
3250 
3251 void SelectionDAGBuilder::visitSDiv(const User &I) {
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   SDNodeFlags Flags;
3256   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3257                  cast<PossiblyExactOperator>(&I)->isExact());
3258   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3259                            Op2, Flags));
3260 }
3261 
3262 void SelectionDAGBuilder::visitICmp(const User &I) {
3263   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3264   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3265     predicate = IC->getPredicate();
3266   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3267     predicate = ICmpInst::Predicate(IC->getPredicate());
3268   SDValue Op1 = getValue(I.getOperand(0));
3269   SDValue Op2 = getValue(I.getOperand(1));
3270   ISD::CondCode Opcode = getICmpCondCode(predicate);
3271 
3272   auto &TLI = DAG.getTargetLoweringInfo();
3273   EVT MemVT =
3274       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3275 
3276   // If a pointer's DAG type is larger than its memory type then the DAG values
3277   // are zero-extended. This breaks signed comparisons so truncate back to the
3278   // underlying type before doing the compare.
3279   if (Op1.getValueType() != MemVT) {
3280     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3281     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3282   }
3283 
3284   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285                                                         I.getType());
3286   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3287 }
3288 
3289 void SelectionDAGBuilder::visitFCmp(const User &I) {
3290   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3291   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3292     predicate = FC->getPredicate();
3293   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3294     predicate = FCmpInst::Predicate(FC->getPredicate());
3295   SDValue Op1 = getValue(I.getOperand(0));
3296   SDValue Op2 = getValue(I.getOperand(1));
3297 
3298   ISD::CondCode Condition = getFCmpCondCode(predicate);
3299   auto *FPMO = cast<FPMathOperator>(&I);
3300   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3301     Condition = getFCmpCodeWithoutNaN(Condition);
3302 
3303   SDNodeFlags Flags;
3304   Flags.copyFMF(*FPMO);
3305   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3306 
3307   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3308                                                         I.getType());
3309   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3310 }
3311 
3312 // Check if the condition of the select has one use or two users that are both
3313 // selects with the same condition.
3314 static bool hasOnlySelectUsers(const Value *Cond) {
3315   return llvm::all_of(Cond->users(), [](const Value *V) {
3316     return isa<SelectInst>(V);
3317   });
3318 }
3319 
3320 void SelectionDAGBuilder::visitSelect(const User &I) {
3321   SmallVector<EVT, 4> ValueVTs;
3322   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3323                   ValueVTs);
3324   unsigned NumValues = ValueVTs.size();
3325   if (NumValues == 0) return;
3326 
3327   SmallVector<SDValue, 4> Values(NumValues);
3328   SDValue Cond     = getValue(I.getOperand(0));
3329   SDValue LHSVal   = getValue(I.getOperand(1));
3330   SDValue RHSVal   = getValue(I.getOperand(2));
3331   SmallVector<SDValue, 1> BaseOps(1, Cond);
3332   ISD::NodeType OpCode =
3333       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3334 
3335   bool IsUnaryAbs = false;
3336   bool Negate = false;
3337 
3338   SDNodeFlags Flags;
3339   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3340     Flags.copyFMF(*FPOp);
3341 
3342   // Min/max matching is only viable if all output VTs are the same.
3343   if (all_equal(ValueVTs)) {
3344     EVT VT = ValueVTs[0];
3345     LLVMContext &Ctx = *DAG.getContext();
3346     auto &TLI = DAG.getTargetLoweringInfo();
3347 
3348     // We care about the legality of the operation after it has been type
3349     // legalized.
3350     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3351       VT = TLI.getTypeToTransformTo(Ctx, VT);
3352 
3353     // If the vselect is legal, assume we want to leave this as a vector setcc +
3354     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3355     // min/max is legal on the scalar type.
3356     bool UseScalarMinMax = VT.isVector() &&
3357       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3358 
3359     Value *LHS, *RHS;
3360     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3361     ISD::NodeType Opc = ISD::DELETED_NODE;
3362     switch (SPR.Flavor) {
3363     case SPF_UMAX:    Opc = ISD::UMAX; break;
3364     case SPF_UMIN:    Opc = ISD::UMIN; break;
3365     case SPF_SMAX:    Opc = ISD::SMAX; break;
3366     case SPF_SMIN:    Opc = ISD::SMIN; break;
3367     case SPF_FMINNUM:
3368       switch (SPR.NaNBehavior) {
3369       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3370       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3371       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3372       case SPNB_RETURNS_ANY: {
3373         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3374           Opc = ISD::FMINNUM;
3375         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3376           Opc = ISD::FMINIMUM;
3377         else if (UseScalarMinMax)
3378           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3379             ISD::FMINNUM : ISD::FMINIMUM;
3380         break;
3381       }
3382       }
3383       break;
3384     case SPF_FMAXNUM:
3385       switch (SPR.NaNBehavior) {
3386       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3387       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3388       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3389       case SPNB_RETURNS_ANY:
3390 
3391         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3392           Opc = ISD::FMAXNUM;
3393         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3394           Opc = ISD::FMAXIMUM;
3395         else if (UseScalarMinMax)
3396           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3397             ISD::FMAXNUM : ISD::FMAXIMUM;
3398         break;
3399       }
3400       break;
3401     case SPF_NABS:
3402       Negate = true;
3403       [[fallthrough]];
3404     case SPF_ABS:
3405       IsUnaryAbs = true;
3406       Opc = ISD::ABS;
3407       break;
3408     default: break;
3409     }
3410 
3411     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3412         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3413          (UseScalarMinMax &&
3414           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3415         // If the underlying comparison instruction is used by any other
3416         // instruction, the consumed instructions won't be destroyed, so it is
3417         // not profitable to convert to a min/max.
3418         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3419       OpCode = Opc;
3420       LHSVal = getValue(LHS);
3421       RHSVal = getValue(RHS);
3422       BaseOps.clear();
3423     }
3424 
3425     if (IsUnaryAbs) {
3426       OpCode = Opc;
3427       LHSVal = getValue(LHS);
3428       BaseOps.clear();
3429     }
3430   }
3431 
3432   if (IsUnaryAbs) {
3433     for (unsigned i = 0; i != NumValues; ++i) {
3434       SDLoc dl = getCurSDLoc();
3435       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3436       Values[i] =
3437           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3438       if (Negate)
3439         Values[i] = DAG.getNegative(Values[i], dl, VT);
3440     }
3441   } else {
3442     for (unsigned i = 0; i != NumValues; ++i) {
3443       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3444       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3445       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3446       Values[i] = DAG.getNode(
3447           OpCode, getCurSDLoc(),
3448           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3449     }
3450   }
3451 
3452   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3453                            DAG.getVTList(ValueVTs), Values));
3454 }
3455 
3456 void SelectionDAGBuilder::visitTrunc(const User &I) {
3457   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3458   SDValue N = getValue(I.getOperand(0));
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3462 }
3463 
3464 void SelectionDAGBuilder::visitZExt(const User &I) {
3465   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3466   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3467   SDValue N = getValue(I.getOperand(0));
3468   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3469                                                         I.getType());
3470   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3471 }
3472 
3473 void SelectionDAGBuilder::visitSExt(const User &I) {
3474   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3475   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3476   SDValue N = getValue(I.getOperand(0));
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3480 }
3481 
3482 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3483   // FPTrunc is never a no-op cast, no need to check
3484   SDValue N = getValue(I.getOperand(0));
3485   SDLoc dl = getCurSDLoc();
3486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3487   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3488   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3489                            DAG.getTargetConstant(
3490                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3491 }
3492 
3493 void SelectionDAGBuilder::visitFPExt(const User &I) {
3494   // FPExt is never a no-op cast, no need to check
3495   SDValue N = getValue(I.getOperand(0));
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3499 }
3500 
3501 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3502   // FPToUI is never a no-op cast, no need to check
3503   SDValue N = getValue(I.getOperand(0));
3504   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3505                                                         I.getType());
3506   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3507 }
3508 
3509 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3510   // FPToSI is never a no-op cast, no need to check
3511   SDValue N = getValue(I.getOperand(0));
3512   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3513                                                         I.getType());
3514   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3515 }
3516 
3517 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3518   // UIToFP is never a no-op cast, no need to check
3519   SDValue N = getValue(I.getOperand(0));
3520   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3521                                                         I.getType());
3522   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3523 }
3524 
3525 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3526   // SIToFP is never a no-op cast, no need to check
3527   SDValue N = getValue(I.getOperand(0));
3528   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3529                                                         I.getType());
3530   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3531 }
3532 
3533 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3534   // What to do depends on the size of the integer and the size of the pointer.
3535   // We can either truncate, zero extend, or no-op, accordingly.
3536   SDValue N = getValue(I.getOperand(0));
3537   auto &TLI = DAG.getTargetLoweringInfo();
3538   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3539                                                         I.getType());
3540   EVT PtrMemVT =
3541       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3542   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3543   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3544   setValue(&I, N);
3545 }
3546 
3547 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3548   // What to do depends on the size of the integer and the size of the pointer.
3549   // We can either truncate, zero extend, or no-op, accordingly.
3550   SDValue N = getValue(I.getOperand(0));
3551   auto &TLI = DAG.getTargetLoweringInfo();
3552   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3553   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3554   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3555   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3556   setValue(&I, N);
3557 }
3558 
3559 void SelectionDAGBuilder::visitBitCast(const User &I) {
3560   SDValue N = getValue(I.getOperand(0));
3561   SDLoc dl = getCurSDLoc();
3562   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3563                                                         I.getType());
3564 
3565   // BitCast assures us that source and destination are the same size so this is
3566   // either a BITCAST or a no-op.
3567   if (DestVT != N.getValueType())
3568     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3569                              DestVT, N)); // convert types.
3570   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3571   // might fold any kind of constant expression to an integer constant and that
3572   // is not what we are looking for. Only recognize a bitcast of a genuine
3573   // constant integer as an opaque constant.
3574   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3575     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3576                                  /*isOpaque*/true));
3577   else
3578     setValue(&I, N);            // noop cast.
3579 }
3580 
3581 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3583   const Value *SV = I.getOperand(0);
3584   SDValue N = getValue(SV);
3585   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3586 
3587   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3588   unsigned DestAS = I.getType()->getPointerAddressSpace();
3589 
3590   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3591     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3592 
3593   setValue(&I, N);
3594 }
3595 
3596 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3597   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598   SDValue InVec = getValue(I.getOperand(0));
3599   SDValue InVal = getValue(I.getOperand(1));
3600   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3601                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3602   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3603                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3604                            InVec, InVal, InIdx));
3605 }
3606 
3607 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3609   SDValue InVec = getValue(I.getOperand(0));
3610   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3611                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3612   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3613                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3614                            InVec, InIdx));
3615 }
3616 
3617 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3618   SDValue Src1 = getValue(I.getOperand(0));
3619   SDValue Src2 = getValue(I.getOperand(1));
3620   ArrayRef<int> Mask;
3621   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3622     Mask = SVI->getShuffleMask();
3623   else
3624     Mask = cast<ConstantExpr>(I).getShuffleMask();
3625   SDLoc DL = getCurSDLoc();
3626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3627   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3628   EVT SrcVT = Src1.getValueType();
3629 
3630   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3631       VT.isScalableVector()) {
3632     // Canonical splat form of first element of first input vector.
3633     SDValue FirstElt =
3634         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3635                     DAG.getVectorIdxConstant(0, DL));
3636     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3637     return;
3638   }
3639 
3640   // For now, we only handle splats for scalable vectors.
3641   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3642   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3643   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3644 
3645   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3646   unsigned MaskNumElts = Mask.size();
3647 
3648   if (SrcNumElts == MaskNumElts) {
3649     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3650     return;
3651   }
3652 
3653   // Normalize the shuffle vector since mask and vector length don't match.
3654   if (SrcNumElts < MaskNumElts) {
3655     // Mask is longer than the source vectors. We can use concatenate vector to
3656     // make the mask and vectors lengths match.
3657 
3658     if (MaskNumElts % SrcNumElts == 0) {
3659       // Mask length is a multiple of the source vector length.
3660       // Check if the shuffle is some kind of concatenation of the input
3661       // vectors.
3662       unsigned NumConcat = MaskNumElts / SrcNumElts;
3663       bool IsConcat = true;
3664       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3665       for (unsigned i = 0; i != MaskNumElts; ++i) {
3666         int Idx = Mask[i];
3667         if (Idx < 0)
3668           continue;
3669         // Ensure the indices in each SrcVT sized piece are sequential and that
3670         // the same source is used for the whole piece.
3671         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3672             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3673              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3674           IsConcat = false;
3675           break;
3676         }
3677         // Remember which source this index came from.
3678         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3679       }
3680 
3681       // The shuffle is concatenating multiple vectors together. Just emit
3682       // a CONCAT_VECTORS operation.
3683       if (IsConcat) {
3684         SmallVector<SDValue, 8> ConcatOps;
3685         for (auto Src : ConcatSrcs) {
3686           if (Src < 0)
3687             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3688           else if (Src == 0)
3689             ConcatOps.push_back(Src1);
3690           else
3691             ConcatOps.push_back(Src2);
3692         }
3693         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3694         return;
3695       }
3696     }
3697 
3698     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3699     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3700     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3701                                     PaddedMaskNumElts);
3702 
3703     // Pad both vectors with undefs to make them the same length as the mask.
3704     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3705 
3706     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3707     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3708     MOps1[0] = Src1;
3709     MOps2[0] = Src2;
3710 
3711     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3712     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3713 
3714     // Readjust mask for new input vector length.
3715     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3716     for (unsigned i = 0; i != MaskNumElts; ++i) {
3717       int Idx = Mask[i];
3718       if (Idx >= (int)SrcNumElts)
3719         Idx -= SrcNumElts - PaddedMaskNumElts;
3720       MappedOps[i] = Idx;
3721     }
3722 
3723     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3724 
3725     // If the concatenated vector was padded, extract a subvector with the
3726     // correct number of elements.
3727     if (MaskNumElts != PaddedMaskNumElts)
3728       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3729                            DAG.getVectorIdxConstant(0, DL));
3730 
3731     setValue(&I, Result);
3732     return;
3733   }
3734 
3735   if (SrcNumElts > MaskNumElts) {
3736     // Analyze the access pattern of the vector to see if we can extract
3737     // two subvectors and do the shuffle.
3738     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3739     bool CanExtract = true;
3740     for (int Idx : Mask) {
3741       unsigned Input = 0;
3742       if (Idx < 0)
3743         continue;
3744 
3745       if (Idx >= (int)SrcNumElts) {
3746         Input = 1;
3747         Idx -= SrcNumElts;
3748       }
3749 
3750       // If all the indices come from the same MaskNumElts sized portion of
3751       // the sources we can use extract. Also make sure the extract wouldn't
3752       // extract past the end of the source.
3753       int NewStartIdx = alignDown(Idx, MaskNumElts);
3754       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3755           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3756         CanExtract = false;
3757       // Make sure we always update StartIdx as we use it to track if all
3758       // elements are undef.
3759       StartIdx[Input] = NewStartIdx;
3760     }
3761 
3762     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3763       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3764       return;
3765     }
3766     if (CanExtract) {
3767       // Extract appropriate subvector and generate a vector shuffle
3768       for (unsigned Input = 0; Input < 2; ++Input) {
3769         SDValue &Src = Input == 0 ? Src1 : Src2;
3770         if (StartIdx[Input] < 0)
3771           Src = DAG.getUNDEF(VT);
3772         else {
3773           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3774                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3775         }
3776       }
3777 
3778       // Calculate new mask.
3779       SmallVector<int, 8> MappedOps(Mask);
3780       for (int &Idx : MappedOps) {
3781         if (Idx >= (int)SrcNumElts)
3782           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3783         else if (Idx >= 0)
3784           Idx -= StartIdx[0];
3785       }
3786 
3787       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3788       return;
3789     }
3790   }
3791 
3792   // We can't use either concat vectors or extract subvectors so fall back to
3793   // replacing the shuffle with extract and build vector.
3794   // to insert and build vector.
3795   EVT EltVT = VT.getVectorElementType();
3796   SmallVector<SDValue,8> Ops;
3797   for (int Idx : Mask) {
3798     SDValue Res;
3799 
3800     if (Idx < 0) {
3801       Res = DAG.getUNDEF(EltVT);
3802     } else {
3803       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3804       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3805 
3806       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3807                         DAG.getVectorIdxConstant(Idx, DL));
3808     }
3809 
3810     Ops.push_back(Res);
3811   }
3812 
3813   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3814 }
3815 
3816 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3817   ArrayRef<unsigned> Indices = I.getIndices();
3818   const Value *Op0 = I.getOperand(0);
3819   const Value *Op1 = I.getOperand(1);
3820   Type *AggTy = I.getType();
3821   Type *ValTy = Op1->getType();
3822   bool IntoUndef = isa<UndefValue>(Op0);
3823   bool FromUndef = isa<UndefValue>(Op1);
3824 
3825   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3826 
3827   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3828   SmallVector<EVT, 4> AggValueVTs;
3829   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3830   SmallVector<EVT, 4> ValValueVTs;
3831   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3832 
3833   unsigned NumAggValues = AggValueVTs.size();
3834   unsigned NumValValues = ValValueVTs.size();
3835   SmallVector<SDValue, 4> Values(NumAggValues);
3836 
3837   // Ignore an insertvalue that produces an empty object
3838   if (!NumAggValues) {
3839     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3840     return;
3841   }
3842 
3843   SDValue Agg = getValue(Op0);
3844   unsigned i = 0;
3845   // Copy the beginning value(s) from the original aggregate.
3846   for (; i != LinearIndex; ++i)
3847     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3848                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3849   // Copy values from the inserted value(s).
3850   if (NumValValues) {
3851     SDValue Val = getValue(Op1);
3852     for (; i != LinearIndex + NumValValues; ++i)
3853       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3854                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3855   }
3856   // Copy remaining value(s) from the original aggregate.
3857   for (; i != NumAggValues; ++i)
3858     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3859                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3860 
3861   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3862                            DAG.getVTList(AggValueVTs), Values));
3863 }
3864 
3865 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3866   ArrayRef<unsigned> Indices = I.getIndices();
3867   const Value *Op0 = I.getOperand(0);
3868   Type *AggTy = Op0->getType();
3869   Type *ValTy = I.getType();
3870   bool OutOfUndef = isa<UndefValue>(Op0);
3871 
3872   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3873 
3874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3875   SmallVector<EVT, 4> ValValueVTs;
3876   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3877 
3878   unsigned NumValValues = ValValueVTs.size();
3879 
3880   // Ignore a extractvalue that produces an empty object
3881   if (!NumValValues) {
3882     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3883     return;
3884   }
3885 
3886   SmallVector<SDValue, 4> Values(NumValValues);
3887 
3888   SDValue Agg = getValue(Op0);
3889   // Copy out the selected value(s).
3890   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3891     Values[i - LinearIndex] =
3892       OutOfUndef ?
3893         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3894         SDValue(Agg.getNode(), Agg.getResNo() + i);
3895 
3896   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3897                            DAG.getVTList(ValValueVTs), Values));
3898 }
3899 
3900 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3901   Value *Op0 = I.getOperand(0);
3902   // Note that the pointer operand may be a vector of pointers. Take the scalar
3903   // element which holds a pointer.
3904   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3905   SDValue N = getValue(Op0);
3906   SDLoc dl = getCurSDLoc();
3907   auto &TLI = DAG.getTargetLoweringInfo();
3908 
3909   // Normalize Vector GEP - all scalar operands should be converted to the
3910   // splat vector.
3911   bool IsVectorGEP = I.getType()->isVectorTy();
3912   ElementCount VectorElementCount =
3913       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3914                   : ElementCount::getFixed(0);
3915 
3916   if (IsVectorGEP && !N.getValueType().isVector()) {
3917     LLVMContext &Context = *DAG.getContext();
3918     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3919     N = DAG.getSplat(VT, dl, N);
3920   }
3921 
3922   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3923        GTI != E; ++GTI) {
3924     const Value *Idx = GTI.getOperand();
3925     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3926       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3927       if (Field) {
3928         // N = N + Offset
3929         uint64_t Offset =
3930             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3931 
3932         // In an inbounds GEP with an offset that is nonnegative even when
3933         // interpreted as signed, assume there is no unsigned overflow.
3934         SDNodeFlags Flags;
3935         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3936           Flags.setNoUnsignedWrap(true);
3937 
3938         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3939                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3940       }
3941     } else {
3942       // IdxSize is the width of the arithmetic according to IR semantics.
3943       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3944       // (and fix up the result later).
3945       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3946       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3947       TypeSize ElementSize =
3948           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3949       // We intentionally mask away the high bits here; ElementSize may not
3950       // fit in IdxTy.
3951       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3952       bool ElementScalable = ElementSize.isScalable();
3953 
3954       // If this is a scalar constant or a splat vector of constants,
3955       // handle it quickly.
3956       const auto *C = dyn_cast<Constant>(Idx);
3957       if (C && isa<VectorType>(C->getType()))
3958         C = C->getSplatValue();
3959 
3960       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3961       if (CI && CI->isZero())
3962         continue;
3963       if (CI && !ElementScalable) {
3964         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3965         LLVMContext &Context = *DAG.getContext();
3966         SDValue OffsVal;
3967         if (IsVectorGEP)
3968           OffsVal = DAG.getConstant(
3969               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3970         else
3971           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3972 
3973         // In an inbounds GEP with an offset that is nonnegative even when
3974         // interpreted as signed, assume there is no unsigned overflow.
3975         SDNodeFlags Flags;
3976         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3977           Flags.setNoUnsignedWrap(true);
3978 
3979         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3980 
3981         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3982         continue;
3983       }
3984 
3985       // N = N + Idx * ElementMul;
3986       SDValue IdxN = getValue(Idx);
3987 
3988       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3989         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3990                                   VectorElementCount);
3991         IdxN = DAG.getSplat(VT, dl, IdxN);
3992       }
3993 
3994       // If the index is smaller or larger than intptr_t, truncate or extend
3995       // it.
3996       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3997 
3998       if (ElementScalable) {
3999         EVT VScaleTy = N.getValueType().getScalarType();
4000         SDValue VScale = DAG.getNode(
4001             ISD::VSCALE, dl, VScaleTy,
4002             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4003         if (IsVectorGEP)
4004           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4005         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4006       } else {
4007         // If this is a multiply by a power of two, turn it into a shl
4008         // immediately.  This is a very common case.
4009         if (ElementMul != 1) {
4010           if (ElementMul.isPowerOf2()) {
4011             unsigned Amt = ElementMul.logBase2();
4012             IdxN = DAG.getNode(ISD::SHL, dl,
4013                                N.getValueType(), IdxN,
4014                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4015           } else {
4016             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4017                                             IdxN.getValueType());
4018             IdxN = DAG.getNode(ISD::MUL, dl,
4019                                N.getValueType(), IdxN, Scale);
4020           }
4021         }
4022       }
4023 
4024       N = DAG.getNode(ISD::ADD, dl,
4025                       N.getValueType(), N, IdxN);
4026     }
4027   }
4028 
4029   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4030   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4031   if (IsVectorGEP) {
4032     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4033     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4034   }
4035 
4036   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4037     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4038 
4039   setValue(&I, N);
4040 }
4041 
4042 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4043   // If this is a fixed sized alloca in the entry block of the function,
4044   // allocate it statically on the stack.
4045   if (FuncInfo.StaticAllocaMap.count(&I))
4046     return;   // getValue will auto-populate this.
4047 
4048   SDLoc dl = getCurSDLoc();
4049   Type *Ty = I.getAllocatedType();
4050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4051   auto &DL = DAG.getDataLayout();
4052   TypeSize TySize = DL.getTypeAllocSize(Ty);
4053   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4054 
4055   SDValue AllocSize = getValue(I.getArraySize());
4056 
4057   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4058   if (AllocSize.getValueType() != IntPtr)
4059     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4060 
4061   if (TySize.isScalable())
4062     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4063                             DAG.getVScale(dl, IntPtr,
4064                                           APInt(IntPtr.getScalarSizeInBits(),
4065                                                 TySize.getKnownMinValue())));
4066   else
4067     AllocSize =
4068         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4069                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4070 
4071   // Handle alignment.  If the requested alignment is less than or equal to
4072   // the stack alignment, ignore it.  If the size is greater than or equal to
4073   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4074   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4075   if (*Alignment <= StackAlign)
4076     Alignment = std::nullopt;
4077 
4078   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4079   // Round the size of the allocation up to the stack alignment size
4080   // by add SA-1 to the size. This doesn't overflow because we're computing
4081   // an address inside an alloca.
4082   SDNodeFlags Flags;
4083   Flags.setNoUnsignedWrap(true);
4084   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4085                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4086 
4087   // Mask out the low bits for alignment purposes.
4088   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4089                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4090 
4091   SDValue Ops[] = {
4092       getRoot(), AllocSize,
4093       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4094   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4095   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4096   setValue(&I, DSA);
4097   DAG.setRoot(DSA.getValue(1));
4098 
4099   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4100 }
4101 
4102 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4103   if (I.isAtomic())
4104     return visitAtomicLoad(I);
4105 
4106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4107   const Value *SV = I.getOperand(0);
4108   if (TLI.supportSwiftError()) {
4109     // Swifterror values can come from either a function parameter with
4110     // swifterror attribute or an alloca with swifterror attribute.
4111     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4112       if (Arg->hasSwiftErrorAttr())
4113         return visitLoadFromSwiftError(I);
4114     }
4115 
4116     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4117       if (Alloca->isSwiftError())
4118         return visitLoadFromSwiftError(I);
4119     }
4120   }
4121 
4122   SDValue Ptr = getValue(SV);
4123 
4124   Type *Ty = I.getType();
4125   SmallVector<EVT, 4> ValueVTs, MemVTs;
4126   SmallVector<uint64_t, 4> Offsets;
4127   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4128   unsigned NumValues = ValueVTs.size();
4129   if (NumValues == 0)
4130     return;
4131 
4132   Align Alignment = I.getAlign();
4133   AAMDNodes AAInfo = I.getAAMetadata();
4134   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4135   bool isVolatile = I.isVolatile();
4136   MachineMemOperand::Flags MMOFlags =
4137       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4138 
4139   SDValue Root;
4140   bool ConstantMemory = false;
4141   if (isVolatile)
4142     // Serialize volatile loads with other side effects.
4143     Root = getRoot();
4144   else if (NumValues > MaxParallelChains)
4145     Root = getMemoryRoot();
4146   else if (AA &&
4147            AA->pointsToConstantMemory(MemoryLocation(
4148                SV,
4149                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4150                AAInfo))) {
4151     // Do not serialize (non-volatile) loads of constant memory with anything.
4152     Root = DAG.getEntryNode();
4153     ConstantMemory = true;
4154     MMOFlags |= MachineMemOperand::MOInvariant;
4155   } else {
4156     // Do not serialize non-volatile loads against each other.
4157     Root = DAG.getRoot();
4158   }
4159 
4160   SDLoc dl = getCurSDLoc();
4161 
4162   if (isVolatile)
4163     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4164 
4165   // An aggregate load cannot wrap around the address space, so offsets to its
4166   // parts don't wrap either.
4167   SDNodeFlags Flags;
4168   Flags.setNoUnsignedWrap(true);
4169 
4170   SmallVector<SDValue, 4> Values(NumValues);
4171   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4172   EVT PtrVT = Ptr.getValueType();
4173 
4174   unsigned ChainI = 0;
4175   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4176     // Serializing loads here may result in excessive register pressure, and
4177     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4178     // could recover a bit by hoisting nodes upward in the chain by recognizing
4179     // they are side-effect free or do not alias. The optimizer should really
4180     // avoid this case by converting large object/array copies to llvm.memcpy
4181     // (MaxParallelChains should always remain as failsafe).
4182     if (ChainI == MaxParallelChains) {
4183       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4184       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4185                                   ArrayRef(Chains.data(), ChainI));
4186       Root = Chain;
4187       ChainI = 0;
4188     }
4189     SDValue A = DAG.getNode(ISD::ADD, dl,
4190                             PtrVT, Ptr,
4191                             DAG.getConstant(Offsets[i], dl, PtrVT),
4192                             Flags);
4193 
4194     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4195                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4196                             MMOFlags, AAInfo, Ranges);
4197     Chains[ChainI] = L.getValue(1);
4198 
4199     if (MemVTs[i] != ValueVTs[i])
4200       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4201 
4202     Values[i] = L;
4203   }
4204 
4205   if (!ConstantMemory) {
4206     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4207                                 ArrayRef(Chains.data(), ChainI));
4208     if (isVolatile)
4209       DAG.setRoot(Chain);
4210     else
4211       PendingLoads.push_back(Chain);
4212   }
4213 
4214   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4215                            DAG.getVTList(ValueVTs), Values));
4216 }
4217 
4218 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4219   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4220          "call visitStoreToSwiftError when backend supports swifterror");
4221 
4222   SmallVector<EVT, 4> ValueVTs;
4223   SmallVector<uint64_t, 4> Offsets;
4224   const Value *SrcV = I.getOperand(0);
4225   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4226                   SrcV->getType(), ValueVTs, &Offsets);
4227   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4228          "expect a single EVT for swifterror");
4229 
4230   SDValue Src = getValue(SrcV);
4231   // Create a virtual register, then update the virtual register.
4232   Register VReg =
4233       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4234   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4235   // Chain can be getRoot or getControlRoot.
4236   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4237                                       SDValue(Src.getNode(), Src.getResNo()));
4238   DAG.setRoot(CopyNode);
4239 }
4240 
4241 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4242   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4243          "call visitLoadFromSwiftError when backend supports swifterror");
4244 
4245   assert(!I.isVolatile() &&
4246          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4247          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4248          "Support volatile, non temporal, invariant for load_from_swift_error");
4249 
4250   const Value *SV = I.getOperand(0);
4251   Type *Ty = I.getType();
4252   assert(
4253       (!AA ||
4254        !AA->pointsToConstantMemory(MemoryLocation(
4255            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4256            I.getAAMetadata()))) &&
4257       "load_from_swift_error should not be constant memory");
4258 
4259   SmallVector<EVT, 4> ValueVTs;
4260   SmallVector<uint64_t, 4> Offsets;
4261   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4262                   ValueVTs, &Offsets);
4263   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4264          "expect a single EVT for swifterror");
4265 
4266   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4267   SDValue L = DAG.getCopyFromReg(
4268       getRoot(), getCurSDLoc(),
4269       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4270 
4271   setValue(&I, L);
4272 }
4273 
4274 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4275   if (I.isAtomic())
4276     return visitAtomicStore(I);
4277 
4278   const Value *SrcV = I.getOperand(0);
4279   const Value *PtrV = I.getOperand(1);
4280 
4281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4282   if (TLI.supportSwiftError()) {
4283     // Swifterror values can come from either a function parameter with
4284     // swifterror attribute or an alloca with swifterror attribute.
4285     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4286       if (Arg->hasSwiftErrorAttr())
4287         return visitStoreToSwiftError(I);
4288     }
4289 
4290     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4291       if (Alloca->isSwiftError())
4292         return visitStoreToSwiftError(I);
4293     }
4294   }
4295 
4296   SmallVector<EVT, 4> ValueVTs, MemVTs;
4297   SmallVector<uint64_t, 4> Offsets;
4298   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4299                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4300   unsigned NumValues = ValueVTs.size();
4301   if (NumValues == 0)
4302     return;
4303 
4304   // Get the lowered operands. Note that we do this after
4305   // checking if NumResults is zero, because with zero results
4306   // the operands won't have values in the map.
4307   SDValue Src = getValue(SrcV);
4308   SDValue Ptr = getValue(PtrV);
4309 
4310   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4311   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4312   SDLoc dl = getCurSDLoc();
4313   Align Alignment = I.getAlign();
4314   AAMDNodes AAInfo = I.getAAMetadata();
4315 
4316   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4317 
4318   // An aggregate load cannot wrap around the address space, so offsets to its
4319   // parts don't wrap either.
4320   SDNodeFlags Flags;
4321   Flags.setNoUnsignedWrap(true);
4322 
4323   unsigned ChainI = 0;
4324   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4325     // See visitLoad comments.
4326     if (ChainI == MaxParallelChains) {
4327       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4328                                   ArrayRef(Chains.data(), ChainI));
4329       Root = Chain;
4330       ChainI = 0;
4331     }
4332     SDValue Add =
4333         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4334     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4335     if (MemVTs[i] != ValueVTs[i])
4336       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4337     SDValue St =
4338         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4339                      Alignment, MMOFlags, AAInfo);
4340     Chains[ChainI] = St;
4341   }
4342 
4343   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4344                                   ArrayRef(Chains.data(), ChainI));
4345   setValue(&I, StoreNode);
4346   DAG.setRoot(StoreNode);
4347 }
4348 
4349 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4350                                            bool IsCompressing) {
4351   SDLoc sdl = getCurSDLoc();
4352 
4353   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4354                                MaybeAlign &Alignment) {
4355     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4356     Src0 = I.getArgOperand(0);
4357     Ptr = I.getArgOperand(1);
4358     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4359     Mask = I.getArgOperand(3);
4360   };
4361   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4362                                     MaybeAlign &Alignment) {
4363     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4364     Src0 = I.getArgOperand(0);
4365     Ptr = I.getArgOperand(1);
4366     Mask = I.getArgOperand(2);
4367     Alignment = std::nullopt;
4368   };
4369 
4370   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4371   MaybeAlign Alignment;
4372   if (IsCompressing)
4373     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4374   else
4375     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4376 
4377   SDValue Ptr = getValue(PtrOperand);
4378   SDValue Src0 = getValue(Src0Operand);
4379   SDValue Mask = getValue(MaskOperand);
4380   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4381 
4382   EVT VT = Src0.getValueType();
4383   if (!Alignment)
4384     Alignment = DAG.getEVTAlign(VT);
4385 
4386   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4387       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4388       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4389   SDValue StoreNode =
4390       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4391                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4392   DAG.setRoot(StoreNode);
4393   setValue(&I, StoreNode);
4394 }
4395 
4396 // Get a uniform base for the Gather/Scatter intrinsic.
4397 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4398 // We try to represent it as a base pointer + vector of indices.
4399 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4400 // The first operand of the GEP may be a single pointer or a vector of pointers
4401 // Example:
4402 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4403 //  or
4404 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4405 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4406 //
4407 // When the first GEP operand is a single pointer - it is the uniform base we
4408 // are looking for. If first operand of the GEP is a splat vector - we
4409 // extract the splat value and use it as a uniform base.
4410 // In all other cases the function returns 'false'.
4411 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4412                            ISD::MemIndexType &IndexType, SDValue &Scale,
4413                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4414                            uint64_t ElemSize) {
4415   SelectionDAG& DAG = SDB->DAG;
4416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4417   const DataLayout &DL = DAG.getDataLayout();
4418 
4419   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4420 
4421   // Handle splat constant pointer.
4422   if (auto *C = dyn_cast<Constant>(Ptr)) {
4423     C = C->getSplatValue();
4424     if (!C)
4425       return false;
4426 
4427     Base = SDB->getValue(C);
4428 
4429     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4430     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4431     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4432     IndexType = ISD::SIGNED_SCALED;
4433     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4434     return true;
4435   }
4436 
4437   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4438   if (!GEP || GEP->getParent() != CurBB)
4439     return false;
4440 
4441   if (GEP->getNumOperands() != 2)
4442     return false;
4443 
4444   const Value *BasePtr = GEP->getPointerOperand();
4445   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4446 
4447   // Make sure the base is scalar and the index is a vector.
4448   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4449     return false;
4450 
4451   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4452 
4453   // Target may not support the required addressing mode.
4454   if (ScaleVal != 1 &&
4455       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4456     return false;
4457 
4458   Base = SDB->getValue(BasePtr);
4459   Index = SDB->getValue(IndexVal);
4460   IndexType = ISD::SIGNED_SCALED;
4461 
4462   Scale =
4463       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4464   return true;
4465 }
4466 
4467 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4468   SDLoc sdl = getCurSDLoc();
4469 
4470   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4471   const Value *Ptr = I.getArgOperand(1);
4472   SDValue Src0 = getValue(I.getArgOperand(0));
4473   SDValue Mask = getValue(I.getArgOperand(3));
4474   EVT VT = Src0.getValueType();
4475   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4476                         ->getMaybeAlignValue()
4477                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4479 
4480   SDValue Base;
4481   SDValue Index;
4482   ISD::MemIndexType IndexType;
4483   SDValue Scale;
4484   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4485                                     I.getParent(), VT.getScalarStoreSize());
4486 
4487   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4488   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4489       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4490       // TODO: Make MachineMemOperands aware of scalable
4491       // vectors.
4492       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4493   if (!UniformBase) {
4494     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4495     Index = getValue(Ptr);
4496     IndexType = ISD::SIGNED_SCALED;
4497     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4498   }
4499 
4500   EVT IdxVT = Index.getValueType();
4501   EVT EltTy = IdxVT.getVectorElementType();
4502   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4503     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4504     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4505   }
4506 
4507   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4508   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4509                                          Ops, MMO, IndexType, false);
4510   DAG.setRoot(Scatter);
4511   setValue(&I, Scatter);
4512 }
4513 
4514 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4515   SDLoc sdl = getCurSDLoc();
4516 
4517   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4518                               MaybeAlign &Alignment) {
4519     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4520     Ptr = I.getArgOperand(0);
4521     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4522     Mask = I.getArgOperand(2);
4523     Src0 = I.getArgOperand(3);
4524   };
4525   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4526                                  MaybeAlign &Alignment) {
4527     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4528     Ptr = I.getArgOperand(0);
4529     Alignment = std::nullopt;
4530     Mask = I.getArgOperand(1);
4531     Src0 = I.getArgOperand(2);
4532   };
4533 
4534   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4535   MaybeAlign Alignment;
4536   if (IsExpanding)
4537     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4538   else
4539     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4540 
4541   SDValue Ptr = getValue(PtrOperand);
4542   SDValue Src0 = getValue(Src0Operand);
4543   SDValue Mask = getValue(MaskOperand);
4544   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4545 
4546   EVT VT = Src0.getValueType();
4547   if (!Alignment)
4548     Alignment = DAG.getEVTAlign(VT);
4549 
4550   AAMDNodes AAInfo = I.getAAMetadata();
4551   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4552 
4553   // Do not serialize masked loads of constant memory with anything.
4554   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4555   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4556 
4557   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4558 
4559   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4560       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4561       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4562 
4563   SDValue Load =
4564       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4565                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4566   if (AddToChain)
4567     PendingLoads.push_back(Load.getValue(1));
4568   setValue(&I, Load);
4569 }
4570 
4571 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4572   SDLoc sdl = getCurSDLoc();
4573 
4574   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4575   const Value *Ptr = I.getArgOperand(0);
4576   SDValue Src0 = getValue(I.getArgOperand(3));
4577   SDValue Mask = getValue(I.getArgOperand(2));
4578 
4579   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4580   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4581   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4582                         ->getMaybeAlignValue()
4583                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4584 
4585   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4586 
4587   SDValue Root = DAG.getRoot();
4588   SDValue Base;
4589   SDValue Index;
4590   ISD::MemIndexType IndexType;
4591   SDValue Scale;
4592   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4593                                     I.getParent(), VT.getScalarStoreSize());
4594   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4595   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4596       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4597       // TODO: Make MachineMemOperands aware of scalable
4598       // vectors.
4599       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4600 
4601   if (!UniformBase) {
4602     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4603     Index = getValue(Ptr);
4604     IndexType = ISD::SIGNED_SCALED;
4605     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4606   }
4607 
4608   EVT IdxVT = Index.getValueType();
4609   EVT EltTy = IdxVT.getVectorElementType();
4610   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4611     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4612     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4613   }
4614 
4615   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4616   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4617                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4618 
4619   PendingLoads.push_back(Gather.getValue(1));
4620   setValue(&I, Gather);
4621 }
4622 
4623 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4624   SDLoc dl = getCurSDLoc();
4625   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4626   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4627   SyncScope::ID SSID = I.getSyncScopeID();
4628 
4629   SDValue InChain = getRoot();
4630 
4631   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4632   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4633 
4634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4636 
4637   MachineFunction &MF = DAG.getMachineFunction();
4638   MachineMemOperand *MMO = MF.getMachineMemOperand(
4639       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4640       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4641       FailureOrdering);
4642 
4643   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4644                                    dl, MemVT, VTs, InChain,
4645                                    getValue(I.getPointerOperand()),
4646                                    getValue(I.getCompareOperand()),
4647                                    getValue(I.getNewValOperand()), MMO);
4648 
4649   SDValue OutChain = L.getValue(2);
4650 
4651   setValue(&I, L);
4652   DAG.setRoot(OutChain);
4653 }
4654 
4655 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4656   SDLoc dl = getCurSDLoc();
4657   ISD::NodeType NT;
4658   switch (I.getOperation()) {
4659   default: llvm_unreachable("Unknown atomicrmw operation");
4660   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4661   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4662   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4663   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4664   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4665   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4666   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4667   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4668   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4669   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4670   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4671   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4672   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4673   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4674   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4675   }
4676   AtomicOrdering Ordering = I.getOrdering();
4677   SyncScope::ID SSID = I.getSyncScopeID();
4678 
4679   SDValue InChain = getRoot();
4680 
4681   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4684 
4685   MachineFunction &MF = DAG.getMachineFunction();
4686   MachineMemOperand *MMO = MF.getMachineMemOperand(
4687       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4688       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4689 
4690   SDValue L =
4691     DAG.getAtomic(NT, dl, MemVT, InChain,
4692                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4693                   MMO);
4694 
4695   SDValue OutChain = L.getValue(1);
4696 
4697   setValue(&I, L);
4698   DAG.setRoot(OutChain);
4699 }
4700 
4701 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4702   SDLoc dl = getCurSDLoc();
4703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4704   SDValue Ops[3];
4705   Ops[0] = getRoot();
4706   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4707                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4708   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4709                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4710   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4711   setValue(&I, N);
4712   DAG.setRoot(N);
4713 }
4714 
4715 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4716   SDLoc dl = getCurSDLoc();
4717   AtomicOrdering Order = I.getOrdering();
4718   SyncScope::ID SSID = I.getSyncScopeID();
4719 
4720   SDValue InChain = getRoot();
4721 
4722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4723   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4724   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4725 
4726   if (!TLI.supportsUnalignedAtomics() &&
4727       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4728     report_fatal_error("Cannot generate unaligned atomic load");
4729 
4730   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4731 
4732   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4733       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4734       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4735 
4736   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4737 
4738   SDValue Ptr = getValue(I.getPointerOperand());
4739 
4740   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4741     // TODO: Once this is better exercised by tests, it should be merged with
4742     // the normal path for loads to prevent future divergence.
4743     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4744     if (MemVT != VT)
4745       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4746 
4747     setValue(&I, L);
4748     SDValue OutChain = L.getValue(1);
4749     if (!I.isUnordered())
4750       DAG.setRoot(OutChain);
4751     else
4752       PendingLoads.push_back(OutChain);
4753     return;
4754   }
4755 
4756   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4757                             Ptr, MMO);
4758 
4759   SDValue OutChain = L.getValue(1);
4760   if (MemVT != VT)
4761     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4762 
4763   setValue(&I, L);
4764   DAG.setRoot(OutChain);
4765 }
4766 
4767 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4768   SDLoc dl = getCurSDLoc();
4769 
4770   AtomicOrdering Ordering = I.getOrdering();
4771   SyncScope::ID SSID = I.getSyncScopeID();
4772 
4773   SDValue InChain = getRoot();
4774 
4775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4776   EVT MemVT =
4777       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4778 
4779   if (!TLI.supportsUnalignedAtomics() &&
4780       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4781     report_fatal_error("Cannot generate unaligned atomic store");
4782 
4783   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4784 
4785   MachineFunction &MF = DAG.getMachineFunction();
4786   MachineMemOperand *MMO = MF.getMachineMemOperand(
4787       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4788       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4789 
4790   SDValue Val = getValue(I.getValueOperand());
4791   if (Val.getValueType() != MemVT)
4792     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4793   SDValue Ptr = getValue(I.getPointerOperand());
4794 
4795   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4796     // TODO: Once this is better exercised by tests, it should be merged with
4797     // the normal path for stores to prevent future divergence.
4798     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4799     setValue(&I, S);
4800     DAG.setRoot(S);
4801     return;
4802   }
4803   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4804                                    Ptr, Val, MMO);
4805 
4806   setValue(&I, OutChain);
4807   DAG.setRoot(OutChain);
4808 }
4809 
4810 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4811 /// node.
4812 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4813                                                unsigned Intrinsic) {
4814   // Ignore the callsite's attributes. A specific call site may be marked with
4815   // readnone, but the lowering code will expect the chain based on the
4816   // definition.
4817   const Function *F = I.getCalledFunction();
4818   bool HasChain = !F->doesNotAccessMemory();
4819   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4820 
4821   // Build the operand list.
4822   SmallVector<SDValue, 8> Ops;
4823   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4824     if (OnlyLoad) {
4825       // We don't need to serialize loads against other loads.
4826       Ops.push_back(DAG.getRoot());
4827     } else {
4828       Ops.push_back(getRoot());
4829     }
4830   }
4831 
4832   // Info is set by getTgtMemIntrinsic
4833   TargetLowering::IntrinsicInfo Info;
4834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4835   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4836                                                DAG.getMachineFunction(),
4837                                                Intrinsic);
4838 
4839   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4840   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4841       Info.opc == ISD::INTRINSIC_W_CHAIN)
4842     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4843                                         TLI.getPointerTy(DAG.getDataLayout())));
4844 
4845   // Add all operands of the call to the operand list.
4846   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4847     const Value *Arg = I.getArgOperand(i);
4848     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4849       Ops.push_back(getValue(Arg));
4850       continue;
4851     }
4852 
4853     // Use TargetConstant instead of a regular constant for immarg.
4854     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4855     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4856       assert(CI->getBitWidth() <= 64 &&
4857              "large intrinsic immediates not handled");
4858       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4859     } else {
4860       Ops.push_back(
4861           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4862     }
4863   }
4864 
4865   SmallVector<EVT, 4> ValueVTs;
4866   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4867 
4868   if (HasChain)
4869     ValueVTs.push_back(MVT::Other);
4870 
4871   SDVTList VTs = DAG.getVTList(ValueVTs);
4872 
4873   // Propagate fast-math-flags from IR to node(s).
4874   SDNodeFlags Flags;
4875   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4876     Flags.copyFMF(*FPMO);
4877   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4878 
4879   // Create the node.
4880   SDValue Result;
4881   // In some cases, custom collection of operands from CallInst I may be needed.
4882   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4883   if (IsTgtIntrinsic) {
4884     // This is target intrinsic that touches memory
4885     //
4886     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4887     //       didn't yield anything useful.
4888     MachinePointerInfo MPI;
4889     if (Info.ptrVal)
4890       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4891     else if (Info.fallbackAddressSpace)
4892       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4893     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4894                                      Info.memVT, MPI, Info.align, Info.flags,
4895                                      Info.size, I.getAAMetadata());
4896   } else if (!HasChain) {
4897     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4898   } else if (!I.getType()->isVoidTy()) {
4899     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4900   } else {
4901     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4902   }
4903 
4904   if (HasChain) {
4905     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4906     if (OnlyLoad)
4907       PendingLoads.push_back(Chain);
4908     else
4909       DAG.setRoot(Chain);
4910   }
4911 
4912   if (!I.getType()->isVoidTy()) {
4913     if (!isa<VectorType>(I.getType()))
4914       Result = lowerRangeToAssertZExt(DAG, I, Result);
4915 
4916     MaybeAlign Alignment = I.getRetAlign();
4917     if (!Alignment)
4918       Alignment = F->getAttributes().getRetAlignment();
4919     // Insert `assertalign` node if there's an alignment.
4920     if (InsertAssertAlign && Alignment) {
4921       Result =
4922           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4923     }
4924 
4925     setValue(&I, Result);
4926   }
4927 }
4928 
4929 /// GetSignificand - Get the significand and build it into a floating-point
4930 /// number with exponent of 1:
4931 ///
4932 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4933 ///
4934 /// where Op is the hexadecimal representation of floating point value.
4935 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4936   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4937                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4938   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4939                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4940   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4941 }
4942 
4943 /// GetExponent - Get the exponent:
4944 ///
4945 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4946 ///
4947 /// where Op is the hexadecimal representation of floating point value.
4948 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4949                            const TargetLowering &TLI, const SDLoc &dl) {
4950   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4951                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4952   SDValue t1 = DAG.getNode(
4953       ISD::SRL, dl, MVT::i32, t0,
4954       DAG.getConstant(23, dl,
4955                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4956   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4957                            DAG.getConstant(127, dl, MVT::i32));
4958   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4959 }
4960 
4961 /// getF32Constant - Get 32-bit floating point constant.
4962 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4963                               const SDLoc &dl) {
4964   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4965                            MVT::f32);
4966 }
4967 
4968 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4969                                        SelectionDAG &DAG) {
4970   // TODO: What fast-math-flags should be set on the floating-point nodes?
4971 
4972   //   IntegerPartOfX = ((int32_t)(t0);
4973   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4974 
4975   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4976   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4977   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4978 
4979   //   IntegerPartOfX <<= 23;
4980   IntegerPartOfX =
4981       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4982                   DAG.getConstant(23, dl,
4983                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4984                                       MVT::i32, DAG.getDataLayout())));
4985 
4986   SDValue TwoToFractionalPartOfX;
4987   if (LimitFloatPrecision <= 6) {
4988     // For floating-point precision of 6:
4989     //
4990     //   TwoToFractionalPartOfX =
4991     //     0.997535578f +
4992     //       (0.735607626f + 0.252464424f * x) * x;
4993     //
4994     // error 0.0144103317, which is 6 bits
4995     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4996                              getF32Constant(DAG, 0x3e814304, dl));
4997     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4998                              getF32Constant(DAG, 0x3f3c50c8, dl));
4999     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5000     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5001                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5002   } else if (LimitFloatPrecision <= 12) {
5003     // For floating-point precision of 12:
5004     //
5005     //   TwoToFractionalPartOfX =
5006     //     0.999892986f +
5007     //       (0.696457318f +
5008     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5009     //
5010     // error 0.000107046256, which is 13 to 14 bits
5011     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012                              getF32Constant(DAG, 0x3da235e3, dl));
5013     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5014                              getF32Constant(DAG, 0x3e65b8f3, dl));
5015     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5016     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5017                              getF32Constant(DAG, 0x3f324b07, dl));
5018     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5019     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5020                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5021   } else { // LimitFloatPrecision <= 18
5022     // For floating-point precision of 18:
5023     //
5024     //   TwoToFractionalPartOfX =
5025     //     0.999999982f +
5026     //       (0.693148872f +
5027     //         (0.240227044f +
5028     //           (0.554906021e-1f +
5029     //             (0.961591928e-2f +
5030     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5031     // error 2.47208000*10^(-7), which is better than 18 bits
5032     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5033                              getF32Constant(DAG, 0x3924b03e, dl));
5034     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5035                              getF32Constant(DAG, 0x3ab24b87, dl));
5036     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5037     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5038                              getF32Constant(DAG, 0x3c1d8c17, dl));
5039     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5040     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5041                              getF32Constant(DAG, 0x3d634a1d, dl));
5042     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5043     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5044                              getF32Constant(DAG, 0x3e75fe14, dl));
5045     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5046     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5047                               getF32Constant(DAG, 0x3f317234, dl));
5048     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5049     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5050                                          getF32Constant(DAG, 0x3f800000, dl));
5051   }
5052 
5053   // Add the exponent into the result in integer domain.
5054   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5055   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5056                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5057 }
5058 
5059 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5060 /// limited-precision mode.
5061 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5062                          const TargetLowering &TLI, SDNodeFlags Flags) {
5063   if (Op.getValueType() == MVT::f32 &&
5064       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5065 
5066     // Put the exponent in the right bit position for later addition to the
5067     // final result:
5068     //
5069     // t0 = Op * log2(e)
5070 
5071     // TODO: What fast-math-flags should be set here?
5072     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5073                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5074     return getLimitedPrecisionExp2(t0, dl, DAG);
5075   }
5076 
5077   // No special expansion.
5078   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5079 }
5080 
5081 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5082 /// limited-precision mode.
5083 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5084                          const TargetLowering &TLI, SDNodeFlags Flags) {
5085   // TODO: What fast-math-flags should be set on the floating-point nodes?
5086 
5087   if (Op.getValueType() == MVT::f32 &&
5088       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5089     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5090 
5091     // Scale the exponent by log(2).
5092     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5093     SDValue LogOfExponent =
5094         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5095                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5096 
5097     // Get the significand and build it into a floating-point number with
5098     // exponent of 1.
5099     SDValue X = GetSignificand(DAG, Op1, dl);
5100 
5101     SDValue LogOfMantissa;
5102     if (LimitFloatPrecision <= 6) {
5103       // For floating-point precision of 6:
5104       //
5105       //   LogofMantissa =
5106       //     -1.1609546f +
5107       //       (1.4034025f - 0.23903021f * x) * x;
5108       //
5109       // error 0.0034276066, which is better than 8 bits
5110       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5111                                getF32Constant(DAG, 0xbe74c456, dl));
5112       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5113                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5114       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5115       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5116                                   getF32Constant(DAG, 0x3f949a29, dl));
5117     } else if (LimitFloatPrecision <= 12) {
5118       // For floating-point precision of 12:
5119       //
5120       //   LogOfMantissa =
5121       //     -1.7417939f +
5122       //       (2.8212026f +
5123       //         (-1.4699568f +
5124       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5125       //
5126       // error 0.000061011436, which is 14 bits
5127       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5128                                getF32Constant(DAG, 0xbd67b6d6, dl));
5129       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5130                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5132       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5133                                getF32Constant(DAG, 0x3fbc278b, dl));
5134       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5135       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5136                                getF32Constant(DAG, 0x40348e95, dl));
5137       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5138       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5139                                   getF32Constant(DAG, 0x3fdef31a, dl));
5140     } else { // LimitFloatPrecision <= 18
5141       // For floating-point precision of 18:
5142       //
5143       //   LogOfMantissa =
5144       //     -2.1072184f +
5145       //       (4.2372794f +
5146       //         (-3.7029485f +
5147       //           (2.2781945f +
5148       //             (-0.87823314f +
5149       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5150       //
5151       // error 0.0000023660568, which is better than 18 bits
5152       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5153                                getF32Constant(DAG, 0xbc91e5ac, dl));
5154       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5155                                getF32Constant(DAG, 0x3e4350aa, dl));
5156       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5157       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5158                                getF32Constant(DAG, 0x3f60d3e3, dl));
5159       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5160       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5161                                getF32Constant(DAG, 0x4011cdf0, dl));
5162       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5163       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5164                                getF32Constant(DAG, 0x406cfd1c, dl));
5165       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5166       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5167                                getF32Constant(DAG, 0x408797cb, dl));
5168       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5169       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5170                                   getF32Constant(DAG, 0x4006dcab, dl));
5171     }
5172 
5173     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5174   }
5175 
5176   // No special expansion.
5177   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5178 }
5179 
5180 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5181 /// limited-precision mode.
5182 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5183                           const TargetLowering &TLI, SDNodeFlags Flags) {
5184   // TODO: What fast-math-flags should be set on the floating-point nodes?
5185 
5186   if (Op.getValueType() == MVT::f32 &&
5187       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5188     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5189 
5190     // Get the exponent.
5191     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5192 
5193     // Get the significand and build it into a floating-point number with
5194     // exponent of 1.
5195     SDValue X = GetSignificand(DAG, Op1, dl);
5196 
5197     // Different possible minimax approximations of significand in
5198     // floating-point for various degrees of accuracy over [1,2].
5199     SDValue Log2ofMantissa;
5200     if (LimitFloatPrecision <= 6) {
5201       // For floating-point precision of 6:
5202       //
5203       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5204       //
5205       // error 0.0049451742, which is more than 7 bits
5206       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5207                                getF32Constant(DAG, 0xbeb08fe0, dl));
5208       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5209                                getF32Constant(DAG, 0x40019463, dl));
5210       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5211       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5212                                    getF32Constant(DAG, 0x3fd6633d, dl));
5213     } else if (LimitFloatPrecision <= 12) {
5214       // For floating-point precision of 12:
5215       //
5216       //   Log2ofMantissa =
5217       //     -2.51285454f +
5218       //       (4.07009056f +
5219       //         (-2.12067489f +
5220       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5221       //
5222       // error 0.0000876136000, which is better than 13 bits
5223       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5224                                getF32Constant(DAG, 0xbda7262e, dl));
5225       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5226                                getF32Constant(DAG, 0x3f25280b, dl));
5227       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5228       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5229                                getF32Constant(DAG, 0x4007b923, dl));
5230       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5231       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5232                                getF32Constant(DAG, 0x40823e2f, dl));
5233       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5234       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5235                                    getF32Constant(DAG, 0x4020d29c, dl));
5236     } else { // LimitFloatPrecision <= 18
5237       // For floating-point precision of 18:
5238       //
5239       //   Log2ofMantissa =
5240       //     -3.0400495f +
5241       //       (6.1129976f +
5242       //         (-5.3420409f +
5243       //           (3.2865683f +
5244       //             (-1.2669343f +
5245       //               (0.27515199f -
5246       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5247       //
5248       // error 0.0000018516, which is better than 18 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0xbcd2769e, dl));
5251       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3fa22ae7, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5258                                getF32Constant(DAG, 0x40525723, dl));
5259       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5260       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5261                                getF32Constant(DAG, 0x40aaf200, dl));
5262       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5263       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5264                                getF32Constant(DAG, 0x40c39dad, dl));
5265       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5266       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5267                                    getF32Constant(DAG, 0x4042902c, dl));
5268     }
5269 
5270     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5271   }
5272 
5273   // No special expansion.
5274   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5275 }
5276 
5277 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5278 /// limited-precision mode.
5279 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5280                            const TargetLowering &TLI, SDNodeFlags Flags) {
5281   // TODO: What fast-math-flags should be set on the floating-point nodes?
5282 
5283   if (Op.getValueType() == MVT::f32 &&
5284       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5285     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5286 
5287     // Scale the exponent by log10(2) [0.30102999f].
5288     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5289     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5290                                         getF32Constant(DAG, 0x3e9a209a, dl));
5291 
5292     // Get the significand and build it into a floating-point number with
5293     // exponent of 1.
5294     SDValue X = GetSignificand(DAG, Op1, dl);
5295 
5296     SDValue Log10ofMantissa;
5297     if (LimitFloatPrecision <= 6) {
5298       // For floating-point precision of 6:
5299       //
5300       //   Log10ofMantissa =
5301       //     -0.50419619f +
5302       //       (0.60948995f - 0.10380950f * x) * x;
5303       //
5304       // error 0.0014886165, which is 6 bits
5305       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5306                                getF32Constant(DAG, 0xbdd49a13, dl));
5307       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5308                                getF32Constant(DAG, 0x3f1c0789, dl));
5309       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5310       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5311                                     getF32Constant(DAG, 0x3f011300, dl));
5312     } else if (LimitFloatPrecision <= 12) {
5313       // For floating-point precision of 12:
5314       //
5315       //   Log10ofMantissa =
5316       //     -0.64831180f +
5317       //       (0.91751397f +
5318       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5319       //
5320       // error 0.00019228036, which is better than 12 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0x3d431f31, dl));
5323       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3ea21fb2, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3f6ae232, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5330                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5331     } else { // LimitFloatPrecision <= 18
5332       // For floating-point precision of 18:
5333       //
5334       //   Log10ofMantissa =
5335       //     -0.84299375f +
5336       //       (1.5327582f +
5337       //         (-1.0688956f +
5338       //           (0.49102474f +
5339       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5340       //
5341       // error 0.0000037995730, which is better than 18 bits
5342       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5343                                getF32Constant(DAG, 0x3c5d51ce, dl));
5344       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5345                                getF32Constant(DAG, 0x3e00685a, dl));
5346       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5347       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5348                                getF32Constant(DAG, 0x3efb6798, dl));
5349       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5350       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5351                                getF32Constant(DAG, 0x3f88d192, dl));
5352       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5353       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5354                                getF32Constant(DAG, 0x3fc4316c, dl));
5355       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5356       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5357                                     getF32Constant(DAG, 0x3f57ce70, dl));
5358     }
5359 
5360     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5361   }
5362 
5363   // No special expansion.
5364   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5365 }
5366 
5367 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5368 /// limited-precision mode.
5369 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5370                           const TargetLowering &TLI, SDNodeFlags Flags) {
5371   if (Op.getValueType() == MVT::f32 &&
5372       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5373     return getLimitedPrecisionExp2(Op, dl, DAG);
5374 
5375   // No special expansion.
5376   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5377 }
5378 
5379 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5380 /// limited-precision mode with x == 10.0f.
5381 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5382                          SelectionDAG &DAG, const TargetLowering &TLI,
5383                          SDNodeFlags Flags) {
5384   bool IsExp10 = false;
5385   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5386       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5387     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5388       APFloat Ten(10.0f);
5389       IsExp10 = LHSC->isExactlyValue(Ten);
5390     }
5391   }
5392 
5393   // TODO: What fast-math-flags should be set on the FMUL node?
5394   if (IsExp10) {
5395     // Put the exponent in the right bit position for later addition to the
5396     // final result:
5397     //
5398     //   #define LOG2OF10 3.3219281f
5399     //   t0 = Op * LOG2OF10;
5400     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5401                              getF32Constant(DAG, 0x40549a78, dl));
5402     return getLimitedPrecisionExp2(t0, dl, DAG);
5403   }
5404 
5405   // No special expansion.
5406   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5407 }
5408 
5409 /// ExpandPowI - Expand a llvm.powi intrinsic.
5410 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5411                           SelectionDAG &DAG) {
5412   // If RHS is a constant, we can expand this out to a multiplication tree if
5413   // it's beneficial on the target, otherwise we end up lowering to a call to
5414   // __powidf2 (for example).
5415   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5416     unsigned Val = RHSC->getSExtValue();
5417 
5418     // powi(x, 0) -> 1.0
5419     if (Val == 0)
5420       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5421 
5422     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5423             Val, DAG.shouldOptForSize())) {
5424       // Get the exponent as a positive value.
5425       if ((int)Val < 0)
5426         Val = -Val;
5427       // We use the simple binary decomposition method to generate the multiply
5428       // sequence.  There are more optimal ways to do this (for example,
5429       // powi(x,15) generates one more multiply than it should), but this has
5430       // the benefit of being both really simple and much better than a libcall.
5431       SDValue Res; // Logically starts equal to 1.0
5432       SDValue CurSquare = LHS;
5433       // TODO: Intrinsics should have fast-math-flags that propagate to these
5434       // nodes.
5435       while (Val) {
5436         if (Val & 1) {
5437           if (Res.getNode())
5438             Res =
5439                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5440           else
5441             Res = CurSquare; // 1.0*CurSquare.
5442         }
5443 
5444         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5445                                 CurSquare, CurSquare);
5446         Val >>= 1;
5447       }
5448 
5449       // If the original was negative, invert the result, producing 1/(x*x*x).
5450       if (RHSC->getSExtValue() < 0)
5451         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5452                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5453       return Res;
5454     }
5455   }
5456 
5457   // Otherwise, expand to a libcall.
5458   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5459 }
5460 
5461 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5462                             SDValue LHS, SDValue RHS, SDValue Scale,
5463                             SelectionDAG &DAG, const TargetLowering &TLI) {
5464   EVT VT = LHS.getValueType();
5465   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5466   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5467   LLVMContext &Ctx = *DAG.getContext();
5468 
5469   // If the type is legal but the operation isn't, this node might survive all
5470   // the way to operation legalization. If we end up there and we do not have
5471   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5472   // node.
5473 
5474   // Coax the legalizer into expanding the node during type legalization instead
5475   // by bumping the size by one bit. This will force it to Promote, enabling the
5476   // early expansion and avoiding the need to expand later.
5477 
5478   // We don't have to do this if Scale is 0; that can always be expanded, unless
5479   // it's a saturating signed operation. Those can experience true integer
5480   // division overflow, a case which we must avoid.
5481 
5482   // FIXME: We wouldn't have to do this (or any of the early
5483   // expansion/promotion) if it was possible to expand a libcall of an
5484   // illegal type during operation legalization. But it's not, so things
5485   // get a bit hacky.
5486   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5487   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5488       (TLI.isTypeLegal(VT) ||
5489        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5490     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5491         Opcode, VT, ScaleInt);
5492     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5493       EVT PromVT;
5494       if (VT.isScalarInteger())
5495         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5496       else if (VT.isVector()) {
5497         PromVT = VT.getVectorElementType();
5498         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5499         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5500       } else
5501         llvm_unreachable("Wrong VT for DIVFIX?");
5502       if (Signed) {
5503         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5504         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5505       } else {
5506         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5507         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5508       }
5509       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5510       // For saturating operations, we need to shift up the LHS to get the
5511       // proper saturation width, and then shift down again afterwards.
5512       if (Saturating)
5513         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5514                           DAG.getConstant(1, DL, ShiftTy));
5515       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5516       if (Saturating)
5517         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5518                           DAG.getConstant(1, DL, ShiftTy));
5519       return DAG.getZExtOrTrunc(Res, DL, VT);
5520     }
5521   }
5522 
5523   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5524 }
5525 
5526 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5527 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5528 static void
5529 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5530                      const SDValue &N) {
5531   switch (N.getOpcode()) {
5532   case ISD::CopyFromReg: {
5533     SDValue Op = N.getOperand(1);
5534     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5535                       Op.getValueType().getSizeInBits());
5536     return;
5537   }
5538   case ISD::BITCAST:
5539   case ISD::AssertZext:
5540   case ISD::AssertSext:
5541   case ISD::TRUNCATE:
5542     getUnderlyingArgRegs(Regs, N.getOperand(0));
5543     return;
5544   case ISD::BUILD_PAIR:
5545   case ISD::BUILD_VECTOR:
5546   case ISD::CONCAT_VECTORS:
5547     for (SDValue Op : N->op_values())
5548       getUnderlyingArgRegs(Regs, Op);
5549     return;
5550   default:
5551     return;
5552   }
5553 }
5554 
5555 /// If the DbgValueInst is a dbg_value of a function argument, create the
5556 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5557 /// instruction selection, they will be inserted to the entry BB.
5558 /// We don't currently support this for variadic dbg_values, as they shouldn't
5559 /// appear for function arguments or in the prologue.
5560 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5561     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5562     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5563   const Argument *Arg = dyn_cast<Argument>(V);
5564   if (!Arg)
5565     return false;
5566 
5567   MachineFunction &MF = DAG.getMachineFunction();
5568   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5569 
5570   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5571   // we've been asked to pursue.
5572   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5573                               bool Indirect) {
5574     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5575       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5576       // pointing at the VReg, which will be patched up later.
5577       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5578       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5579           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5580           /* isKill */ false, /* isDead */ false,
5581           /* isUndef */ false, /* isEarlyClobber */ false,
5582           /* SubReg */ 0, /* isDebug */ true)});
5583 
5584       auto *NewDIExpr = FragExpr;
5585       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5586       // the DIExpression.
5587       if (Indirect)
5588         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5589       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5590       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5591       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5592     } else {
5593       // Create a completely standard DBG_VALUE.
5594       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5595       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5596     }
5597   };
5598 
5599   if (Kind == FuncArgumentDbgValueKind::Value) {
5600     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5601     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5602     // the entry block.
5603     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5604     if (!IsInEntryBlock)
5605       return false;
5606 
5607     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5608     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5609     // variable that also is a param.
5610     //
5611     // Although, if we are at the top of the entry block already, we can still
5612     // emit using ArgDbgValue. This might catch some situations when the
5613     // dbg.value refers to an argument that isn't used in the entry block, so
5614     // any CopyToReg node would be optimized out and the only way to express
5615     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5616     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5617     // we should only emit as ArgDbgValue if the Variable is an argument to the
5618     // current function, and the dbg.value intrinsic is found in the entry
5619     // block.
5620     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5621         !DL->getInlinedAt();
5622     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5623     if (!IsInPrologue && !VariableIsFunctionInputArg)
5624       return false;
5625 
5626     // Here we assume that a function argument on IR level only can be used to
5627     // describe one input parameter on source level. If we for example have
5628     // source code like this
5629     //
5630     //    struct A { long x, y; };
5631     //    void foo(struct A a, long b) {
5632     //      ...
5633     //      b = a.x;
5634     //      ...
5635     //    }
5636     //
5637     // and IR like this
5638     //
5639     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5640     //  entry:
5641     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5642     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5643     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5644     //    ...
5645     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5646     //    ...
5647     //
5648     // then the last dbg.value is describing a parameter "b" using a value that
5649     // is an argument. But since we already has used %a1 to describe a parameter
5650     // we should not handle that last dbg.value here (that would result in an
5651     // incorrect hoisting of the DBG_VALUE to the function entry).
5652     // Notice that we allow one dbg.value per IR level argument, to accommodate
5653     // for the situation with fragments above.
5654     if (VariableIsFunctionInputArg) {
5655       unsigned ArgNo = Arg->getArgNo();
5656       if (ArgNo >= FuncInfo.DescribedArgs.size())
5657         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5658       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5659         return false;
5660       FuncInfo.DescribedArgs.set(ArgNo);
5661     }
5662   }
5663 
5664   bool IsIndirect = false;
5665   std::optional<MachineOperand> Op;
5666   // Some arguments' frame index is recorded during argument lowering.
5667   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5668   if (FI != std::numeric_limits<int>::max())
5669     Op = MachineOperand::CreateFI(FI);
5670 
5671   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5672   if (!Op && N.getNode()) {
5673     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5674     Register Reg;
5675     if (ArgRegsAndSizes.size() == 1)
5676       Reg = ArgRegsAndSizes.front().first;
5677 
5678     if (Reg && Reg.isVirtual()) {
5679       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5680       Register PR = RegInfo.getLiveInPhysReg(Reg);
5681       if (PR)
5682         Reg = PR;
5683     }
5684     if (Reg) {
5685       Op = MachineOperand::CreateReg(Reg, false);
5686       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5687     }
5688   }
5689 
5690   if (!Op && N.getNode()) {
5691     // Check if frame index is available.
5692     SDValue LCandidate = peekThroughBitcasts(N);
5693     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5694       if (FrameIndexSDNode *FINode =
5695           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5696         Op = MachineOperand::CreateFI(FINode->getIndex());
5697   }
5698 
5699   if (!Op) {
5700     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5701     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5702                                          SplitRegs) {
5703       unsigned Offset = 0;
5704       for (const auto &RegAndSize : SplitRegs) {
5705         // If the expression is already a fragment, the current register
5706         // offset+size might extend beyond the fragment. In this case, only
5707         // the register bits that are inside the fragment are relevant.
5708         int RegFragmentSizeInBits = RegAndSize.second;
5709         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5710           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5711           // The register is entirely outside the expression fragment,
5712           // so is irrelevant for debug info.
5713           if (Offset >= ExprFragmentSizeInBits)
5714             break;
5715           // The register is partially outside the expression fragment, only
5716           // the low bits within the fragment are relevant for debug info.
5717           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5718             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5719           }
5720         }
5721 
5722         auto FragmentExpr = DIExpression::createFragmentExpression(
5723             Expr, Offset, RegFragmentSizeInBits);
5724         Offset += RegAndSize.second;
5725         // If a valid fragment expression cannot be created, the variable's
5726         // correct value cannot be determined and so it is set as Undef.
5727         if (!FragmentExpr) {
5728           SDDbgValue *SDV = DAG.getConstantDbgValue(
5729               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5730           DAG.AddDbgValue(SDV, false);
5731           continue;
5732         }
5733         MachineInstr *NewMI =
5734             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5735                              Kind != FuncArgumentDbgValueKind::Value);
5736         FuncInfo.ArgDbgValues.push_back(NewMI);
5737       }
5738     };
5739 
5740     // Check if ValueMap has reg number.
5741     DenseMap<const Value *, Register>::const_iterator
5742       VMI = FuncInfo.ValueMap.find(V);
5743     if (VMI != FuncInfo.ValueMap.end()) {
5744       const auto &TLI = DAG.getTargetLoweringInfo();
5745       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5746                        V->getType(), std::nullopt);
5747       if (RFV.occupiesMultipleRegs()) {
5748         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5749         return true;
5750       }
5751 
5752       Op = MachineOperand::CreateReg(VMI->second, false);
5753       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5754     } else if (ArgRegsAndSizes.size() > 1) {
5755       // This was split due to the calling convention, and no virtual register
5756       // mapping exists for the value.
5757       splitMultiRegDbgValue(ArgRegsAndSizes);
5758       return true;
5759     }
5760   }
5761 
5762   if (!Op)
5763     return false;
5764 
5765   assert(Variable->isValidLocationForIntrinsic(DL) &&
5766          "Expected inlined-at fields to agree");
5767   MachineInstr *NewMI = nullptr;
5768 
5769   if (Op->isReg())
5770     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5771   else
5772     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5773                     Variable, Expr);
5774 
5775   // Otherwise, use ArgDbgValues.
5776   FuncInfo.ArgDbgValues.push_back(NewMI);
5777   return true;
5778 }
5779 
5780 /// Return the appropriate SDDbgValue based on N.
5781 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5782                                              DILocalVariable *Variable,
5783                                              DIExpression *Expr,
5784                                              const DebugLoc &dl,
5785                                              unsigned DbgSDNodeOrder) {
5786   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5787     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5788     // stack slot locations.
5789     //
5790     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5791     // debug values here after optimization:
5792     //
5793     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5794     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5795     //
5796     // Both describe the direct values of their associated variables.
5797     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5798                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5799   }
5800   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5801                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5802 }
5803 
5804 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5805   switch (Intrinsic) {
5806   case Intrinsic::smul_fix:
5807     return ISD::SMULFIX;
5808   case Intrinsic::umul_fix:
5809     return ISD::UMULFIX;
5810   case Intrinsic::smul_fix_sat:
5811     return ISD::SMULFIXSAT;
5812   case Intrinsic::umul_fix_sat:
5813     return ISD::UMULFIXSAT;
5814   case Intrinsic::sdiv_fix:
5815     return ISD::SDIVFIX;
5816   case Intrinsic::udiv_fix:
5817     return ISD::UDIVFIX;
5818   case Intrinsic::sdiv_fix_sat:
5819     return ISD::SDIVFIXSAT;
5820   case Intrinsic::udiv_fix_sat:
5821     return ISD::UDIVFIXSAT;
5822   default:
5823     llvm_unreachable("Unhandled fixed point intrinsic");
5824   }
5825 }
5826 
5827 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5828                                            const char *FunctionName) {
5829   assert(FunctionName && "FunctionName must not be nullptr");
5830   SDValue Callee = DAG.getExternalSymbol(
5831       FunctionName,
5832       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5833   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5834 }
5835 
5836 /// Given a @llvm.call.preallocated.setup, return the corresponding
5837 /// preallocated call.
5838 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5839   assert(cast<CallBase>(PreallocatedSetup)
5840                  ->getCalledFunction()
5841                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5842          "expected call_preallocated_setup Value");
5843   for (const auto *U : PreallocatedSetup->users()) {
5844     auto *UseCall = cast<CallBase>(U);
5845     const Function *Fn = UseCall->getCalledFunction();
5846     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5847       return UseCall;
5848     }
5849   }
5850   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5851 }
5852 
5853 /// Lower the call to the specified intrinsic function.
5854 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5855                                              unsigned Intrinsic) {
5856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5857   SDLoc sdl = getCurSDLoc();
5858   DebugLoc dl = getCurDebugLoc();
5859   SDValue Res;
5860 
5861   SDNodeFlags Flags;
5862   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5863     Flags.copyFMF(*FPOp);
5864 
5865   switch (Intrinsic) {
5866   default:
5867     // By default, turn this into a target intrinsic node.
5868     visitTargetIntrinsic(I, Intrinsic);
5869     return;
5870   case Intrinsic::vscale: {
5871     match(&I, m_VScale(DAG.getDataLayout()));
5872     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5873     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5874     return;
5875   }
5876   case Intrinsic::vastart:  visitVAStart(I); return;
5877   case Intrinsic::vaend:    visitVAEnd(I); return;
5878   case Intrinsic::vacopy:   visitVACopy(I); return;
5879   case Intrinsic::returnaddress:
5880     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5881                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5882                              getValue(I.getArgOperand(0))));
5883     return;
5884   case Intrinsic::addressofreturnaddress:
5885     setValue(&I,
5886              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5887                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5888     return;
5889   case Intrinsic::sponentry:
5890     setValue(&I,
5891              DAG.getNode(ISD::SPONENTRY, sdl,
5892                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5893     return;
5894   case Intrinsic::frameaddress:
5895     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5896                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5897                              getValue(I.getArgOperand(0))));
5898     return;
5899   case Intrinsic::read_volatile_register:
5900   case Intrinsic::read_register: {
5901     Value *Reg = I.getArgOperand(0);
5902     SDValue Chain = getRoot();
5903     SDValue RegName =
5904         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5905     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5906     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5907       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5908     setValue(&I, Res);
5909     DAG.setRoot(Res.getValue(1));
5910     return;
5911   }
5912   case Intrinsic::write_register: {
5913     Value *Reg = I.getArgOperand(0);
5914     Value *RegValue = I.getArgOperand(1);
5915     SDValue Chain = getRoot();
5916     SDValue RegName =
5917         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5918     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5919                             RegName, getValue(RegValue)));
5920     return;
5921   }
5922   case Intrinsic::memcpy: {
5923     const auto &MCI = cast<MemCpyInst>(I);
5924     SDValue Op1 = getValue(I.getArgOperand(0));
5925     SDValue Op2 = getValue(I.getArgOperand(1));
5926     SDValue Op3 = getValue(I.getArgOperand(2));
5927     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5928     Align DstAlign = MCI.getDestAlign().valueOrOne();
5929     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5930     Align Alignment = std::min(DstAlign, SrcAlign);
5931     bool isVol = MCI.isVolatile();
5932     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5933     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5934     // node.
5935     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5936     SDValue MC = DAG.getMemcpy(
5937         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5938         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5939         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5940     updateDAGForMaybeTailCall(MC);
5941     return;
5942   }
5943   case Intrinsic::memcpy_inline: {
5944     const auto &MCI = cast<MemCpyInlineInst>(I);
5945     SDValue Dst = getValue(I.getArgOperand(0));
5946     SDValue Src = getValue(I.getArgOperand(1));
5947     SDValue Size = getValue(I.getArgOperand(2));
5948     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5949     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5950     Align DstAlign = MCI.getDestAlign().valueOrOne();
5951     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5952     Align Alignment = std::min(DstAlign, SrcAlign);
5953     bool isVol = MCI.isVolatile();
5954     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5955     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5956     // node.
5957     SDValue MC = DAG.getMemcpy(
5958         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5959         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5960         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5961     updateDAGForMaybeTailCall(MC);
5962     return;
5963   }
5964   case Intrinsic::memset: {
5965     const auto &MSI = cast<MemSetInst>(I);
5966     SDValue Op1 = getValue(I.getArgOperand(0));
5967     SDValue Op2 = getValue(I.getArgOperand(1));
5968     SDValue Op3 = getValue(I.getArgOperand(2));
5969     // @llvm.memset defines 0 and 1 to both mean no alignment.
5970     Align Alignment = MSI.getDestAlign().valueOrOne();
5971     bool isVol = MSI.isVolatile();
5972     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5973     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5974     SDValue MS = DAG.getMemset(
5975         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5976         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5977     updateDAGForMaybeTailCall(MS);
5978     return;
5979   }
5980   case Intrinsic::memset_inline: {
5981     const auto &MSII = cast<MemSetInlineInst>(I);
5982     SDValue Dst = getValue(I.getArgOperand(0));
5983     SDValue Value = getValue(I.getArgOperand(1));
5984     SDValue Size = getValue(I.getArgOperand(2));
5985     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5986     // @llvm.memset defines 0 and 1 to both mean no alignment.
5987     Align DstAlign = MSII.getDestAlign().valueOrOne();
5988     bool isVol = MSII.isVolatile();
5989     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5990     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5991     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5992                                /* AlwaysInline */ true, isTC,
5993                                MachinePointerInfo(I.getArgOperand(0)),
5994                                I.getAAMetadata());
5995     updateDAGForMaybeTailCall(MC);
5996     return;
5997   }
5998   case Intrinsic::memmove: {
5999     const auto &MMI = cast<MemMoveInst>(I);
6000     SDValue Op1 = getValue(I.getArgOperand(0));
6001     SDValue Op2 = getValue(I.getArgOperand(1));
6002     SDValue Op3 = getValue(I.getArgOperand(2));
6003     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6004     Align DstAlign = MMI.getDestAlign().valueOrOne();
6005     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6006     Align Alignment = std::min(DstAlign, SrcAlign);
6007     bool isVol = MMI.isVolatile();
6008     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6009     // FIXME: Support passing different dest/src alignments to the memmove DAG
6010     // node.
6011     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6012     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6013                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6014                                 MachinePointerInfo(I.getArgOperand(1)),
6015                                 I.getAAMetadata(), AA);
6016     updateDAGForMaybeTailCall(MM);
6017     return;
6018   }
6019   case Intrinsic::memcpy_element_unordered_atomic: {
6020     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6021     SDValue Dst = getValue(MI.getRawDest());
6022     SDValue Src = getValue(MI.getRawSource());
6023     SDValue Length = getValue(MI.getLength());
6024 
6025     Type *LengthTy = MI.getLength()->getType();
6026     unsigned ElemSz = MI.getElementSizeInBytes();
6027     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6028     SDValue MC =
6029         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6030                             isTC, MachinePointerInfo(MI.getRawDest()),
6031                             MachinePointerInfo(MI.getRawSource()));
6032     updateDAGForMaybeTailCall(MC);
6033     return;
6034   }
6035   case Intrinsic::memmove_element_unordered_atomic: {
6036     auto &MI = cast<AtomicMemMoveInst>(I);
6037     SDValue Dst = getValue(MI.getRawDest());
6038     SDValue Src = getValue(MI.getRawSource());
6039     SDValue Length = getValue(MI.getLength());
6040 
6041     Type *LengthTy = MI.getLength()->getType();
6042     unsigned ElemSz = MI.getElementSizeInBytes();
6043     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6044     SDValue MC =
6045         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6046                              isTC, MachinePointerInfo(MI.getRawDest()),
6047                              MachinePointerInfo(MI.getRawSource()));
6048     updateDAGForMaybeTailCall(MC);
6049     return;
6050   }
6051   case Intrinsic::memset_element_unordered_atomic: {
6052     auto &MI = cast<AtomicMemSetInst>(I);
6053     SDValue Dst = getValue(MI.getRawDest());
6054     SDValue Val = getValue(MI.getValue());
6055     SDValue Length = getValue(MI.getLength());
6056 
6057     Type *LengthTy = MI.getLength()->getType();
6058     unsigned ElemSz = MI.getElementSizeInBytes();
6059     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6060     SDValue MC =
6061         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6062                             isTC, MachinePointerInfo(MI.getRawDest()));
6063     updateDAGForMaybeTailCall(MC);
6064     return;
6065   }
6066   case Intrinsic::call_preallocated_setup: {
6067     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6068     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6069     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6070                               getRoot(), SrcValue);
6071     setValue(&I, Res);
6072     DAG.setRoot(Res);
6073     return;
6074   }
6075   case Intrinsic::call_preallocated_arg: {
6076     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6077     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6078     SDValue Ops[3];
6079     Ops[0] = getRoot();
6080     Ops[1] = SrcValue;
6081     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6082                                    MVT::i32); // arg index
6083     SDValue Res = DAG.getNode(
6084         ISD::PREALLOCATED_ARG, sdl,
6085         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6086     setValue(&I, Res);
6087     DAG.setRoot(Res.getValue(1));
6088     return;
6089   }
6090   case Intrinsic::dbg_addr:
6091   case Intrinsic::dbg_declare: {
6092     // Debug intrinsics are handled seperately in assignment tracking mode.
6093     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6094       return;
6095     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6096     // they are non-variadic.
6097     const auto &DI = cast<DbgVariableIntrinsic>(I);
6098     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6099     DILocalVariable *Variable = DI.getVariable();
6100     DIExpression *Expression = DI.getExpression();
6101     dropDanglingDebugInfo(Variable, Expression);
6102     assert(Variable && "Missing variable");
6103     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6104                       << "\n");
6105     // Check if address has undef value.
6106     const Value *Address = DI.getVariableLocationOp(0);
6107     if (!Address || isa<UndefValue>(Address) ||
6108         (Address->use_empty() && !isa<Argument>(Address))) {
6109       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6110                         << " (bad/undef/unused-arg address)\n");
6111       return;
6112     }
6113 
6114     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6115 
6116     // Check if this variable can be described by a frame index, typically
6117     // either as a static alloca or a byval parameter.
6118     int FI = std::numeric_limits<int>::max();
6119     if (const auto *AI =
6120             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6121       if (AI->isStaticAlloca()) {
6122         auto I = FuncInfo.StaticAllocaMap.find(AI);
6123         if (I != FuncInfo.StaticAllocaMap.end())
6124           FI = I->second;
6125       }
6126     } else if (const auto *Arg = dyn_cast<Argument>(
6127                    Address->stripInBoundsConstantOffsets())) {
6128       FI = FuncInfo.getArgumentFrameIndex(Arg);
6129     }
6130 
6131     // llvm.dbg.addr is control dependent and always generates indirect
6132     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6133     // the MachineFunction variable table.
6134     if (FI != std::numeric_limits<int>::max()) {
6135       if (Intrinsic == Intrinsic::dbg_addr) {
6136         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6137             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6138             dl, SDNodeOrder);
6139         DAG.AddDbgValue(SDV, isParameter);
6140       } else {
6141         LLVM_DEBUG(dbgs() << "Skipping " << DI
6142                           << " (variable info stashed in MF side table)\n");
6143       }
6144       return;
6145     }
6146 
6147     SDValue &N = NodeMap[Address];
6148     if (!N.getNode() && isa<Argument>(Address))
6149       // Check unused arguments map.
6150       N = UnusedArgNodeMap[Address];
6151     SDDbgValue *SDV;
6152     if (N.getNode()) {
6153       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6154         Address = BCI->getOperand(0);
6155       // Parameters are handled specially.
6156       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6157       if (isParameter && FINode) {
6158         // Byval parameter. We have a frame index at this point.
6159         SDV =
6160             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6161                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6162       } else if (isa<Argument>(Address)) {
6163         // Address is an argument, so try to emit its dbg value using
6164         // virtual register info from the FuncInfo.ValueMap.
6165         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6166                                  FuncArgumentDbgValueKind::Declare, N);
6167         return;
6168       } else {
6169         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6170                               true, dl, SDNodeOrder);
6171       }
6172       DAG.AddDbgValue(SDV, isParameter);
6173     } else {
6174       // If Address is an argument then try to emit its dbg value using
6175       // virtual register info from the FuncInfo.ValueMap.
6176       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6177                                     FuncArgumentDbgValueKind::Declare, N)) {
6178         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6179                           << " (could not emit func-arg dbg_value)\n");
6180       }
6181     }
6182     return;
6183   }
6184   case Intrinsic::dbg_label: {
6185     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6186     DILabel *Label = DI.getLabel();
6187     assert(Label && "Missing label");
6188 
6189     SDDbgLabel *SDV;
6190     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6191     DAG.AddDbgLabel(SDV);
6192     return;
6193   }
6194   case Intrinsic::dbg_assign: {
6195     // Debug intrinsics are handled seperately in assignment tracking mode.
6196     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6197            "expected assignment tracking to be enabled");
6198     return;
6199   }
6200   case Intrinsic::dbg_value: {
6201     // Debug intrinsics are handled seperately in assignment tracking mode.
6202     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6203       return;
6204     const DbgValueInst &DI = cast<DbgValueInst>(I);
6205     assert(DI.getVariable() && "Missing variable");
6206 
6207     DILocalVariable *Variable = DI.getVariable();
6208     DIExpression *Expression = DI.getExpression();
6209     dropDanglingDebugInfo(Variable, Expression);
6210     SmallVector<Value *, 4> Values(DI.getValues());
6211     if (Values.empty())
6212       return;
6213 
6214     if (llvm::is_contained(Values, nullptr))
6215       return;
6216 
6217     bool IsVariadic = DI.hasArgList();
6218     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6219                           SDNodeOrder, IsVariadic))
6220       addDanglingDebugInfo(&DI, SDNodeOrder);
6221     return;
6222   }
6223 
6224   case Intrinsic::eh_typeid_for: {
6225     // Find the type id for the given typeinfo.
6226     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6227     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6228     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6229     setValue(&I, Res);
6230     return;
6231   }
6232 
6233   case Intrinsic::eh_return_i32:
6234   case Intrinsic::eh_return_i64:
6235     DAG.getMachineFunction().setCallsEHReturn(true);
6236     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6237                             MVT::Other,
6238                             getControlRoot(),
6239                             getValue(I.getArgOperand(0)),
6240                             getValue(I.getArgOperand(1))));
6241     return;
6242   case Intrinsic::eh_unwind_init:
6243     DAG.getMachineFunction().setCallsUnwindInit(true);
6244     return;
6245   case Intrinsic::eh_dwarf_cfa:
6246     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6247                              TLI.getPointerTy(DAG.getDataLayout()),
6248                              getValue(I.getArgOperand(0))));
6249     return;
6250   case Intrinsic::eh_sjlj_callsite: {
6251     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6252     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6253     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6254 
6255     MMI.setCurrentCallSite(CI->getZExtValue());
6256     return;
6257   }
6258   case Intrinsic::eh_sjlj_functioncontext: {
6259     // Get and store the index of the function context.
6260     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6261     AllocaInst *FnCtx =
6262       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6263     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6264     MFI.setFunctionContextIndex(FI);
6265     return;
6266   }
6267   case Intrinsic::eh_sjlj_setjmp: {
6268     SDValue Ops[2];
6269     Ops[0] = getRoot();
6270     Ops[1] = getValue(I.getArgOperand(0));
6271     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6272                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6273     setValue(&I, Op.getValue(0));
6274     DAG.setRoot(Op.getValue(1));
6275     return;
6276   }
6277   case Intrinsic::eh_sjlj_longjmp:
6278     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6279                             getRoot(), getValue(I.getArgOperand(0))));
6280     return;
6281   case Intrinsic::eh_sjlj_setup_dispatch:
6282     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6283                             getRoot()));
6284     return;
6285   case Intrinsic::masked_gather:
6286     visitMaskedGather(I);
6287     return;
6288   case Intrinsic::masked_load:
6289     visitMaskedLoad(I);
6290     return;
6291   case Intrinsic::masked_scatter:
6292     visitMaskedScatter(I);
6293     return;
6294   case Intrinsic::masked_store:
6295     visitMaskedStore(I);
6296     return;
6297   case Intrinsic::masked_expandload:
6298     visitMaskedLoad(I, true /* IsExpanding */);
6299     return;
6300   case Intrinsic::masked_compressstore:
6301     visitMaskedStore(I, true /* IsCompressing */);
6302     return;
6303   case Intrinsic::powi:
6304     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6305                             getValue(I.getArgOperand(1)), DAG));
6306     return;
6307   case Intrinsic::log:
6308     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6309     return;
6310   case Intrinsic::log2:
6311     setValue(&I,
6312              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6313     return;
6314   case Intrinsic::log10:
6315     setValue(&I,
6316              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6317     return;
6318   case Intrinsic::exp:
6319     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6320     return;
6321   case Intrinsic::exp2:
6322     setValue(&I,
6323              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6324     return;
6325   case Intrinsic::pow:
6326     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6327                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6328     return;
6329   case Intrinsic::sqrt:
6330   case Intrinsic::fabs:
6331   case Intrinsic::sin:
6332   case Intrinsic::cos:
6333   case Intrinsic::floor:
6334   case Intrinsic::ceil:
6335   case Intrinsic::trunc:
6336   case Intrinsic::rint:
6337   case Intrinsic::nearbyint:
6338   case Intrinsic::round:
6339   case Intrinsic::roundeven:
6340   case Intrinsic::canonicalize: {
6341     unsigned Opcode;
6342     switch (Intrinsic) {
6343     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6344     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6345     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6346     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6347     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6348     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6349     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6350     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6351     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6352     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6353     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6354     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6355     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6356     }
6357 
6358     setValue(&I, DAG.getNode(Opcode, sdl,
6359                              getValue(I.getArgOperand(0)).getValueType(),
6360                              getValue(I.getArgOperand(0)), Flags));
6361     return;
6362   }
6363   case Intrinsic::lround:
6364   case Intrinsic::llround:
6365   case Intrinsic::lrint:
6366   case Intrinsic::llrint: {
6367     unsigned Opcode;
6368     switch (Intrinsic) {
6369     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6370     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6371     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6372     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6373     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6374     }
6375 
6376     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6377     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6378                              getValue(I.getArgOperand(0))));
6379     return;
6380   }
6381   case Intrinsic::minnum:
6382     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6383                              getValue(I.getArgOperand(0)).getValueType(),
6384                              getValue(I.getArgOperand(0)),
6385                              getValue(I.getArgOperand(1)), Flags));
6386     return;
6387   case Intrinsic::maxnum:
6388     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6389                              getValue(I.getArgOperand(0)).getValueType(),
6390                              getValue(I.getArgOperand(0)),
6391                              getValue(I.getArgOperand(1)), Flags));
6392     return;
6393   case Intrinsic::minimum:
6394     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6395                              getValue(I.getArgOperand(0)).getValueType(),
6396                              getValue(I.getArgOperand(0)),
6397                              getValue(I.getArgOperand(1)), Flags));
6398     return;
6399   case Intrinsic::maximum:
6400     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6401                              getValue(I.getArgOperand(0)).getValueType(),
6402                              getValue(I.getArgOperand(0)),
6403                              getValue(I.getArgOperand(1)), Flags));
6404     return;
6405   case Intrinsic::copysign:
6406     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6407                              getValue(I.getArgOperand(0)).getValueType(),
6408                              getValue(I.getArgOperand(0)),
6409                              getValue(I.getArgOperand(1)), Flags));
6410     return;
6411   case Intrinsic::arithmetic_fence: {
6412     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6413                              getValue(I.getArgOperand(0)).getValueType(),
6414                              getValue(I.getArgOperand(0)), Flags));
6415     return;
6416   }
6417   case Intrinsic::fma:
6418     setValue(&I, DAG.getNode(
6419                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6420                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6421                      getValue(I.getArgOperand(2)), Flags));
6422     return;
6423 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6424   case Intrinsic::INTRINSIC:
6425 #include "llvm/IR/ConstrainedOps.def"
6426     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6427     return;
6428 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6429 #include "llvm/IR/VPIntrinsics.def"
6430     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6431     return;
6432   case Intrinsic::fptrunc_round: {
6433     // Get the last argument, the metadata and convert it to an integer in the
6434     // call
6435     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6436     std::optional<RoundingMode> RoundMode =
6437         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6438 
6439     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6440 
6441     // Propagate fast-math-flags from IR to node(s).
6442     SDNodeFlags Flags;
6443     Flags.copyFMF(*cast<FPMathOperator>(&I));
6444     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6445 
6446     SDValue Result;
6447     Result = DAG.getNode(
6448         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6449         DAG.getTargetConstant((int)*RoundMode, sdl,
6450                               TLI.getPointerTy(DAG.getDataLayout())));
6451     setValue(&I, Result);
6452 
6453     return;
6454   }
6455   case Intrinsic::fmuladd: {
6456     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6457     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6458         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6459       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6460                                getValue(I.getArgOperand(0)).getValueType(),
6461                                getValue(I.getArgOperand(0)),
6462                                getValue(I.getArgOperand(1)),
6463                                getValue(I.getArgOperand(2)), Flags));
6464     } else {
6465       // TODO: Intrinsic calls should have fast-math-flags.
6466       SDValue Mul = DAG.getNode(
6467           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6468           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6469       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6470                                 getValue(I.getArgOperand(0)).getValueType(),
6471                                 Mul, getValue(I.getArgOperand(2)), Flags);
6472       setValue(&I, Add);
6473     }
6474     return;
6475   }
6476   case Intrinsic::convert_to_fp16:
6477     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6478                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6479                                          getValue(I.getArgOperand(0)),
6480                                          DAG.getTargetConstant(0, sdl,
6481                                                                MVT::i32))));
6482     return;
6483   case Intrinsic::convert_from_fp16:
6484     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6485                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6486                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6487                                          getValue(I.getArgOperand(0)))));
6488     return;
6489   case Intrinsic::fptosi_sat: {
6490     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6491     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6492                              getValue(I.getArgOperand(0)),
6493                              DAG.getValueType(VT.getScalarType())));
6494     return;
6495   }
6496   case Intrinsic::fptoui_sat: {
6497     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6498     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6499                              getValue(I.getArgOperand(0)),
6500                              DAG.getValueType(VT.getScalarType())));
6501     return;
6502   }
6503   case Intrinsic::set_rounding:
6504     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6505                       {getRoot(), getValue(I.getArgOperand(0))});
6506     setValue(&I, Res);
6507     DAG.setRoot(Res.getValue(0));
6508     return;
6509   case Intrinsic::is_fpclass: {
6510     const DataLayout DLayout = DAG.getDataLayout();
6511     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6512     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6513     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6514     MachineFunction &MF = DAG.getMachineFunction();
6515     const Function &F = MF.getFunction();
6516     SDValue Op = getValue(I.getArgOperand(0));
6517     SDNodeFlags Flags;
6518     Flags.setNoFPExcept(
6519         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6520     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6521     // expansion can use illegal types. Making expansion early allows
6522     // legalizing these types prior to selection.
6523     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6524       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6525       setValue(&I, Result);
6526       return;
6527     }
6528 
6529     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6530     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6531     setValue(&I, V);
6532     return;
6533   }
6534   case Intrinsic::pcmarker: {
6535     SDValue Tmp = getValue(I.getArgOperand(0));
6536     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6537     return;
6538   }
6539   case Intrinsic::readcyclecounter: {
6540     SDValue Op = getRoot();
6541     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6542                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6543     setValue(&I, Res);
6544     DAG.setRoot(Res.getValue(1));
6545     return;
6546   }
6547   case Intrinsic::bitreverse:
6548     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6549                              getValue(I.getArgOperand(0)).getValueType(),
6550                              getValue(I.getArgOperand(0))));
6551     return;
6552   case Intrinsic::bswap:
6553     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6554                              getValue(I.getArgOperand(0)).getValueType(),
6555                              getValue(I.getArgOperand(0))));
6556     return;
6557   case Intrinsic::cttz: {
6558     SDValue Arg = getValue(I.getArgOperand(0));
6559     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6560     EVT Ty = Arg.getValueType();
6561     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6562                              sdl, Ty, Arg));
6563     return;
6564   }
6565   case Intrinsic::ctlz: {
6566     SDValue Arg = getValue(I.getArgOperand(0));
6567     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6568     EVT Ty = Arg.getValueType();
6569     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6570                              sdl, Ty, Arg));
6571     return;
6572   }
6573   case Intrinsic::ctpop: {
6574     SDValue Arg = getValue(I.getArgOperand(0));
6575     EVT Ty = Arg.getValueType();
6576     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6577     return;
6578   }
6579   case Intrinsic::fshl:
6580   case Intrinsic::fshr: {
6581     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6582     SDValue X = getValue(I.getArgOperand(0));
6583     SDValue Y = getValue(I.getArgOperand(1));
6584     SDValue Z = getValue(I.getArgOperand(2));
6585     EVT VT = X.getValueType();
6586 
6587     if (X == Y) {
6588       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6589       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6590     } else {
6591       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6592       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6593     }
6594     return;
6595   }
6596   case Intrinsic::sadd_sat: {
6597     SDValue Op1 = getValue(I.getArgOperand(0));
6598     SDValue Op2 = getValue(I.getArgOperand(1));
6599     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6600     return;
6601   }
6602   case Intrinsic::uadd_sat: {
6603     SDValue Op1 = getValue(I.getArgOperand(0));
6604     SDValue Op2 = getValue(I.getArgOperand(1));
6605     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6606     return;
6607   }
6608   case Intrinsic::ssub_sat: {
6609     SDValue Op1 = getValue(I.getArgOperand(0));
6610     SDValue Op2 = getValue(I.getArgOperand(1));
6611     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6612     return;
6613   }
6614   case Intrinsic::usub_sat: {
6615     SDValue Op1 = getValue(I.getArgOperand(0));
6616     SDValue Op2 = getValue(I.getArgOperand(1));
6617     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6618     return;
6619   }
6620   case Intrinsic::sshl_sat: {
6621     SDValue Op1 = getValue(I.getArgOperand(0));
6622     SDValue Op2 = getValue(I.getArgOperand(1));
6623     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6624     return;
6625   }
6626   case Intrinsic::ushl_sat: {
6627     SDValue Op1 = getValue(I.getArgOperand(0));
6628     SDValue Op2 = getValue(I.getArgOperand(1));
6629     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6630     return;
6631   }
6632   case Intrinsic::smul_fix:
6633   case Intrinsic::umul_fix:
6634   case Intrinsic::smul_fix_sat:
6635   case Intrinsic::umul_fix_sat: {
6636     SDValue Op1 = getValue(I.getArgOperand(0));
6637     SDValue Op2 = getValue(I.getArgOperand(1));
6638     SDValue Op3 = getValue(I.getArgOperand(2));
6639     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6640                              Op1.getValueType(), Op1, Op2, Op3));
6641     return;
6642   }
6643   case Intrinsic::sdiv_fix:
6644   case Intrinsic::udiv_fix:
6645   case Intrinsic::sdiv_fix_sat:
6646   case Intrinsic::udiv_fix_sat: {
6647     SDValue Op1 = getValue(I.getArgOperand(0));
6648     SDValue Op2 = getValue(I.getArgOperand(1));
6649     SDValue Op3 = getValue(I.getArgOperand(2));
6650     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6651                               Op1, Op2, Op3, DAG, TLI));
6652     return;
6653   }
6654   case Intrinsic::smax: {
6655     SDValue Op1 = getValue(I.getArgOperand(0));
6656     SDValue Op2 = getValue(I.getArgOperand(1));
6657     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6658     return;
6659   }
6660   case Intrinsic::smin: {
6661     SDValue Op1 = getValue(I.getArgOperand(0));
6662     SDValue Op2 = getValue(I.getArgOperand(1));
6663     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6664     return;
6665   }
6666   case Intrinsic::umax: {
6667     SDValue Op1 = getValue(I.getArgOperand(0));
6668     SDValue Op2 = getValue(I.getArgOperand(1));
6669     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6670     return;
6671   }
6672   case Intrinsic::umin: {
6673     SDValue Op1 = getValue(I.getArgOperand(0));
6674     SDValue Op2 = getValue(I.getArgOperand(1));
6675     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6676     return;
6677   }
6678   case Intrinsic::abs: {
6679     // TODO: Preserve "int min is poison" arg in SDAG?
6680     SDValue Op1 = getValue(I.getArgOperand(0));
6681     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6682     return;
6683   }
6684   case Intrinsic::stacksave: {
6685     SDValue Op = getRoot();
6686     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6687     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6688     setValue(&I, Res);
6689     DAG.setRoot(Res.getValue(1));
6690     return;
6691   }
6692   case Intrinsic::stackrestore:
6693     Res = getValue(I.getArgOperand(0));
6694     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6695     return;
6696   case Intrinsic::get_dynamic_area_offset: {
6697     SDValue Op = getRoot();
6698     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6699     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6700     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6701     // target.
6702     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6703       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6704                          " intrinsic!");
6705     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6706                       Op);
6707     DAG.setRoot(Op);
6708     setValue(&I, Res);
6709     return;
6710   }
6711   case Intrinsic::stackguard: {
6712     MachineFunction &MF = DAG.getMachineFunction();
6713     const Module &M = *MF.getFunction().getParent();
6714     SDValue Chain = getRoot();
6715     if (TLI.useLoadStackGuardNode()) {
6716       Res = getLoadStackGuard(DAG, sdl, Chain);
6717     } else {
6718       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6719       const Value *Global = TLI.getSDagStackGuard(M);
6720       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6721       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6722                         MachinePointerInfo(Global, 0), Align,
6723                         MachineMemOperand::MOVolatile);
6724     }
6725     if (TLI.useStackGuardXorFP())
6726       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6727     DAG.setRoot(Chain);
6728     setValue(&I, Res);
6729     return;
6730   }
6731   case Intrinsic::stackprotector: {
6732     // Emit code into the DAG to store the stack guard onto the stack.
6733     MachineFunction &MF = DAG.getMachineFunction();
6734     MachineFrameInfo &MFI = MF.getFrameInfo();
6735     SDValue Src, Chain = getRoot();
6736 
6737     if (TLI.useLoadStackGuardNode())
6738       Src = getLoadStackGuard(DAG, sdl, Chain);
6739     else
6740       Src = getValue(I.getArgOperand(0));   // The guard's value.
6741 
6742     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6743 
6744     int FI = FuncInfo.StaticAllocaMap[Slot];
6745     MFI.setStackProtectorIndex(FI);
6746     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6747 
6748     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6749 
6750     // Store the stack protector onto the stack.
6751     Res = DAG.getStore(
6752         Chain, sdl, Src, FIN,
6753         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6754         MaybeAlign(), MachineMemOperand::MOVolatile);
6755     setValue(&I, Res);
6756     DAG.setRoot(Res);
6757     return;
6758   }
6759   case Intrinsic::objectsize:
6760     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6761 
6762   case Intrinsic::is_constant:
6763     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6764 
6765   case Intrinsic::annotation:
6766   case Intrinsic::ptr_annotation:
6767   case Intrinsic::launder_invariant_group:
6768   case Intrinsic::strip_invariant_group:
6769     // Drop the intrinsic, but forward the value
6770     setValue(&I, getValue(I.getOperand(0)));
6771     return;
6772 
6773   case Intrinsic::assume:
6774   case Intrinsic::experimental_noalias_scope_decl:
6775   case Intrinsic::var_annotation:
6776   case Intrinsic::sideeffect:
6777     // Discard annotate attributes, noalias scope declarations, assumptions, and
6778     // artificial side-effects.
6779     return;
6780 
6781   case Intrinsic::codeview_annotation: {
6782     // Emit a label associated with this metadata.
6783     MachineFunction &MF = DAG.getMachineFunction();
6784     MCSymbol *Label =
6785         MF.getMMI().getContext().createTempSymbol("annotation", true);
6786     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6787     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6788     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6789     DAG.setRoot(Res);
6790     return;
6791   }
6792 
6793   case Intrinsic::init_trampoline: {
6794     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6795 
6796     SDValue Ops[6];
6797     Ops[0] = getRoot();
6798     Ops[1] = getValue(I.getArgOperand(0));
6799     Ops[2] = getValue(I.getArgOperand(1));
6800     Ops[3] = getValue(I.getArgOperand(2));
6801     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6802     Ops[5] = DAG.getSrcValue(F);
6803 
6804     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6805 
6806     DAG.setRoot(Res);
6807     return;
6808   }
6809   case Intrinsic::adjust_trampoline:
6810     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6811                              TLI.getPointerTy(DAG.getDataLayout()),
6812                              getValue(I.getArgOperand(0))));
6813     return;
6814   case Intrinsic::gcroot: {
6815     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6816            "only valid in functions with gc specified, enforced by Verifier");
6817     assert(GFI && "implied by previous");
6818     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6819     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6820 
6821     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6822     GFI->addStackRoot(FI->getIndex(), TypeMap);
6823     return;
6824   }
6825   case Intrinsic::gcread:
6826   case Intrinsic::gcwrite:
6827     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6828   case Intrinsic::get_rounding:
6829     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6830     setValue(&I, Res);
6831     DAG.setRoot(Res.getValue(1));
6832     return;
6833 
6834   case Intrinsic::expect:
6835     // Just replace __builtin_expect(exp, c) with EXP.
6836     setValue(&I, getValue(I.getArgOperand(0)));
6837     return;
6838 
6839   case Intrinsic::ubsantrap:
6840   case Intrinsic::debugtrap:
6841   case Intrinsic::trap: {
6842     StringRef TrapFuncName =
6843         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6844     if (TrapFuncName.empty()) {
6845       switch (Intrinsic) {
6846       case Intrinsic::trap:
6847         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6848         break;
6849       case Intrinsic::debugtrap:
6850         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6851         break;
6852       case Intrinsic::ubsantrap:
6853         DAG.setRoot(DAG.getNode(
6854             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6855             DAG.getTargetConstant(
6856                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6857                 MVT::i32)));
6858         break;
6859       default: llvm_unreachable("unknown trap intrinsic");
6860       }
6861       return;
6862     }
6863     TargetLowering::ArgListTy Args;
6864     if (Intrinsic == Intrinsic::ubsantrap) {
6865       Args.push_back(TargetLoweringBase::ArgListEntry());
6866       Args[0].Val = I.getArgOperand(0);
6867       Args[0].Node = getValue(Args[0].Val);
6868       Args[0].Ty = Args[0].Val->getType();
6869     }
6870 
6871     TargetLowering::CallLoweringInfo CLI(DAG);
6872     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6873         CallingConv::C, I.getType(),
6874         DAG.getExternalSymbol(TrapFuncName.data(),
6875                               TLI.getPointerTy(DAG.getDataLayout())),
6876         std::move(Args));
6877 
6878     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6879     DAG.setRoot(Result.second);
6880     return;
6881   }
6882 
6883   case Intrinsic::uadd_with_overflow:
6884   case Intrinsic::sadd_with_overflow:
6885   case Intrinsic::usub_with_overflow:
6886   case Intrinsic::ssub_with_overflow:
6887   case Intrinsic::umul_with_overflow:
6888   case Intrinsic::smul_with_overflow: {
6889     ISD::NodeType Op;
6890     switch (Intrinsic) {
6891     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6892     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6893     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6894     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6895     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6896     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6897     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6898     }
6899     SDValue Op1 = getValue(I.getArgOperand(0));
6900     SDValue Op2 = getValue(I.getArgOperand(1));
6901 
6902     EVT ResultVT = Op1.getValueType();
6903     EVT OverflowVT = MVT::i1;
6904     if (ResultVT.isVector())
6905       OverflowVT = EVT::getVectorVT(
6906           *Context, OverflowVT, ResultVT.getVectorElementCount());
6907 
6908     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6909     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6910     return;
6911   }
6912   case Intrinsic::prefetch: {
6913     SDValue Ops[5];
6914     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6915     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6916     Ops[0] = DAG.getRoot();
6917     Ops[1] = getValue(I.getArgOperand(0));
6918     Ops[2] = getValue(I.getArgOperand(1));
6919     Ops[3] = getValue(I.getArgOperand(2));
6920     Ops[4] = getValue(I.getArgOperand(3));
6921     SDValue Result = DAG.getMemIntrinsicNode(
6922         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6923         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6924         /* align */ std::nullopt, Flags);
6925 
6926     // Chain the prefetch in parallell with any pending loads, to stay out of
6927     // the way of later optimizations.
6928     PendingLoads.push_back(Result);
6929     Result = getRoot();
6930     DAG.setRoot(Result);
6931     return;
6932   }
6933   case Intrinsic::lifetime_start:
6934   case Intrinsic::lifetime_end: {
6935     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6936     // Stack coloring is not enabled in O0, discard region information.
6937     if (TM.getOptLevel() == CodeGenOpt::None)
6938       return;
6939 
6940     const int64_t ObjectSize =
6941         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6942     Value *const ObjectPtr = I.getArgOperand(1);
6943     SmallVector<const Value *, 4> Allocas;
6944     getUnderlyingObjects(ObjectPtr, Allocas);
6945 
6946     for (const Value *Alloca : Allocas) {
6947       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6948 
6949       // Could not find an Alloca.
6950       if (!LifetimeObject)
6951         continue;
6952 
6953       // First check that the Alloca is static, otherwise it won't have a
6954       // valid frame index.
6955       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6956       if (SI == FuncInfo.StaticAllocaMap.end())
6957         return;
6958 
6959       const int FrameIndex = SI->second;
6960       int64_t Offset;
6961       if (GetPointerBaseWithConstantOffset(
6962               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6963         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6964       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6965                                 Offset);
6966       DAG.setRoot(Res);
6967     }
6968     return;
6969   }
6970   case Intrinsic::pseudoprobe: {
6971     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6972     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6973     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6974     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6975     DAG.setRoot(Res);
6976     return;
6977   }
6978   case Intrinsic::invariant_start:
6979     // Discard region information.
6980     setValue(&I,
6981              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6982     return;
6983   case Intrinsic::invariant_end:
6984     // Discard region information.
6985     return;
6986   case Intrinsic::clear_cache:
6987     /// FunctionName may be null.
6988     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6989       lowerCallToExternalSymbol(I, FunctionName);
6990     return;
6991   case Intrinsic::donothing:
6992   case Intrinsic::seh_try_begin:
6993   case Intrinsic::seh_scope_begin:
6994   case Intrinsic::seh_try_end:
6995   case Intrinsic::seh_scope_end:
6996     // ignore
6997     return;
6998   case Intrinsic::experimental_stackmap:
6999     visitStackmap(I);
7000     return;
7001   case Intrinsic::experimental_patchpoint_void:
7002   case Intrinsic::experimental_patchpoint_i64:
7003     visitPatchpoint(I);
7004     return;
7005   case Intrinsic::experimental_gc_statepoint:
7006     LowerStatepoint(cast<GCStatepointInst>(I));
7007     return;
7008   case Intrinsic::experimental_gc_result:
7009     visitGCResult(cast<GCResultInst>(I));
7010     return;
7011   case Intrinsic::experimental_gc_relocate:
7012     visitGCRelocate(cast<GCRelocateInst>(I));
7013     return;
7014   case Intrinsic::instrprof_cover:
7015     llvm_unreachable("instrprof failed to lower a cover");
7016   case Intrinsic::instrprof_increment:
7017     llvm_unreachable("instrprof failed to lower an increment");
7018   case Intrinsic::instrprof_value_profile:
7019     llvm_unreachable("instrprof failed to lower a value profiling call");
7020   case Intrinsic::localescape: {
7021     MachineFunction &MF = DAG.getMachineFunction();
7022     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7023 
7024     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7025     // is the same on all targets.
7026     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7027       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7028       if (isa<ConstantPointerNull>(Arg))
7029         continue; // Skip null pointers. They represent a hole in index space.
7030       AllocaInst *Slot = cast<AllocaInst>(Arg);
7031       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7032              "can only escape static allocas");
7033       int FI = FuncInfo.StaticAllocaMap[Slot];
7034       MCSymbol *FrameAllocSym =
7035           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7036               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7037       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7038               TII->get(TargetOpcode::LOCAL_ESCAPE))
7039           .addSym(FrameAllocSym)
7040           .addFrameIndex(FI);
7041     }
7042 
7043     return;
7044   }
7045 
7046   case Intrinsic::localrecover: {
7047     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7048     MachineFunction &MF = DAG.getMachineFunction();
7049 
7050     // Get the symbol that defines the frame offset.
7051     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7052     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7053     unsigned IdxVal =
7054         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7055     MCSymbol *FrameAllocSym =
7056         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7057             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7058 
7059     Value *FP = I.getArgOperand(1);
7060     SDValue FPVal = getValue(FP);
7061     EVT PtrVT = FPVal.getValueType();
7062 
7063     // Create a MCSymbol for the label to avoid any target lowering
7064     // that would make this PC relative.
7065     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7066     SDValue OffsetVal =
7067         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7068 
7069     // Add the offset to the FP.
7070     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7071     setValue(&I, Add);
7072 
7073     return;
7074   }
7075 
7076   case Intrinsic::eh_exceptionpointer:
7077   case Intrinsic::eh_exceptioncode: {
7078     // Get the exception pointer vreg, copy from it, and resize it to fit.
7079     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7080     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7081     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7082     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7083     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7084     if (Intrinsic == Intrinsic::eh_exceptioncode)
7085       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7086     setValue(&I, N);
7087     return;
7088   }
7089   case Intrinsic::xray_customevent: {
7090     // Here we want to make sure that the intrinsic behaves as if it has a
7091     // specific calling convention, and only for x86_64.
7092     // FIXME: Support other platforms later.
7093     const auto &Triple = DAG.getTarget().getTargetTriple();
7094     if (Triple.getArch() != Triple::x86_64)
7095       return;
7096 
7097     SmallVector<SDValue, 8> Ops;
7098 
7099     // We want to say that we always want the arguments in registers.
7100     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7101     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7102     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7103     SDValue Chain = getRoot();
7104     Ops.push_back(LogEntryVal);
7105     Ops.push_back(StrSizeVal);
7106     Ops.push_back(Chain);
7107 
7108     // We need to enforce the calling convention for the callsite, so that
7109     // argument ordering is enforced correctly, and that register allocation can
7110     // see that some registers may be assumed clobbered and have to preserve
7111     // them across calls to the intrinsic.
7112     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7113                                            sdl, NodeTys, Ops);
7114     SDValue patchableNode = SDValue(MN, 0);
7115     DAG.setRoot(patchableNode);
7116     setValue(&I, patchableNode);
7117     return;
7118   }
7119   case Intrinsic::xray_typedevent: {
7120     // Here we want to make sure that the intrinsic behaves as if it has a
7121     // specific calling convention, and only for x86_64.
7122     // FIXME: Support other platforms later.
7123     const auto &Triple = DAG.getTarget().getTargetTriple();
7124     if (Triple.getArch() != Triple::x86_64)
7125       return;
7126 
7127     SmallVector<SDValue, 8> Ops;
7128 
7129     // We want to say that we always want the arguments in registers.
7130     // It's unclear to me how manipulating the selection DAG here forces callers
7131     // to provide arguments in registers instead of on the stack.
7132     SDValue LogTypeId = getValue(I.getArgOperand(0));
7133     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7134     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7135     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7136     SDValue Chain = getRoot();
7137     Ops.push_back(LogTypeId);
7138     Ops.push_back(LogEntryVal);
7139     Ops.push_back(StrSizeVal);
7140     Ops.push_back(Chain);
7141 
7142     // We need to enforce the calling convention for the callsite, so that
7143     // argument ordering is enforced correctly, and that register allocation can
7144     // see that some registers may be assumed clobbered and have to preserve
7145     // them across calls to the intrinsic.
7146     MachineSDNode *MN = DAG.getMachineNode(
7147         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7148     SDValue patchableNode = SDValue(MN, 0);
7149     DAG.setRoot(patchableNode);
7150     setValue(&I, patchableNode);
7151     return;
7152   }
7153   case Intrinsic::experimental_deoptimize:
7154     LowerDeoptimizeCall(&I);
7155     return;
7156   case Intrinsic::experimental_stepvector:
7157     visitStepVector(I);
7158     return;
7159   case Intrinsic::vector_reduce_fadd:
7160   case Intrinsic::vector_reduce_fmul:
7161   case Intrinsic::vector_reduce_add:
7162   case Intrinsic::vector_reduce_mul:
7163   case Intrinsic::vector_reduce_and:
7164   case Intrinsic::vector_reduce_or:
7165   case Intrinsic::vector_reduce_xor:
7166   case Intrinsic::vector_reduce_smax:
7167   case Intrinsic::vector_reduce_smin:
7168   case Intrinsic::vector_reduce_umax:
7169   case Intrinsic::vector_reduce_umin:
7170   case Intrinsic::vector_reduce_fmax:
7171   case Intrinsic::vector_reduce_fmin:
7172     visitVectorReduce(I, Intrinsic);
7173     return;
7174 
7175   case Intrinsic::icall_branch_funnel: {
7176     SmallVector<SDValue, 16> Ops;
7177     Ops.push_back(getValue(I.getArgOperand(0)));
7178 
7179     int64_t Offset;
7180     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7181         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7182     if (!Base)
7183       report_fatal_error(
7184           "llvm.icall.branch.funnel operand must be a GlobalValue");
7185     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7186 
7187     struct BranchFunnelTarget {
7188       int64_t Offset;
7189       SDValue Target;
7190     };
7191     SmallVector<BranchFunnelTarget, 8> Targets;
7192 
7193     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7194       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7195           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7196       if (ElemBase != Base)
7197         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7198                            "to the same GlobalValue");
7199 
7200       SDValue Val = getValue(I.getArgOperand(Op + 1));
7201       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7202       if (!GA)
7203         report_fatal_error(
7204             "llvm.icall.branch.funnel operand must be a GlobalValue");
7205       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7206                                      GA->getGlobal(), sdl, Val.getValueType(),
7207                                      GA->getOffset())});
7208     }
7209     llvm::sort(Targets,
7210                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7211                  return T1.Offset < T2.Offset;
7212                });
7213 
7214     for (auto &T : Targets) {
7215       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7216       Ops.push_back(T.Target);
7217     }
7218 
7219     Ops.push_back(DAG.getRoot()); // Chain
7220     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7221                                  MVT::Other, Ops),
7222               0);
7223     DAG.setRoot(N);
7224     setValue(&I, N);
7225     HasTailCall = true;
7226     return;
7227   }
7228 
7229   case Intrinsic::wasm_landingpad_index:
7230     // Information this intrinsic contained has been transferred to
7231     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7232     // delete it now.
7233     return;
7234 
7235   case Intrinsic::aarch64_settag:
7236   case Intrinsic::aarch64_settag_zero: {
7237     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7238     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7239     SDValue Val = TSI.EmitTargetCodeForSetTag(
7240         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7241         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7242         ZeroMemory);
7243     DAG.setRoot(Val);
7244     setValue(&I, Val);
7245     return;
7246   }
7247   case Intrinsic::ptrmask: {
7248     SDValue Ptr = getValue(I.getOperand(0));
7249     SDValue Const = getValue(I.getOperand(1));
7250 
7251     EVT PtrVT = Ptr.getValueType();
7252     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7253                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7254     return;
7255   }
7256   case Intrinsic::threadlocal_address: {
7257     setValue(&I, getValue(I.getOperand(0)));
7258     return;
7259   }
7260   case Intrinsic::get_active_lane_mask: {
7261     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7262     SDValue Index = getValue(I.getOperand(0));
7263     EVT ElementVT = Index.getValueType();
7264 
7265     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7266       visitTargetIntrinsic(I, Intrinsic);
7267       return;
7268     }
7269 
7270     SDValue TripCount = getValue(I.getOperand(1));
7271     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7272 
7273     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7274     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7275     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7276     SDValue VectorInduction = DAG.getNode(
7277         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7278     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7279                                  VectorTripCount, ISD::CondCode::SETULT);
7280     setValue(&I, SetCC);
7281     return;
7282   }
7283   case Intrinsic::vector_insert: {
7284     SDValue Vec = getValue(I.getOperand(0));
7285     SDValue SubVec = getValue(I.getOperand(1));
7286     SDValue Index = getValue(I.getOperand(2));
7287 
7288     // The intrinsic's index type is i64, but the SDNode requires an index type
7289     // suitable for the target. Convert the index as required.
7290     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7291     if (Index.getValueType() != VectorIdxTy)
7292       Index = DAG.getVectorIdxConstant(
7293           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7294 
7295     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7296     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7297                              Index));
7298     return;
7299   }
7300   case Intrinsic::vector_extract: {
7301     SDValue Vec = getValue(I.getOperand(0));
7302     SDValue Index = getValue(I.getOperand(1));
7303     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7304 
7305     // The intrinsic's index type is i64, but the SDNode requires an index type
7306     // suitable for the target. Convert the index as required.
7307     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7308     if (Index.getValueType() != VectorIdxTy)
7309       Index = DAG.getVectorIdxConstant(
7310           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7311 
7312     setValue(&I,
7313              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7314     return;
7315   }
7316   case Intrinsic::experimental_vector_reverse:
7317     visitVectorReverse(I);
7318     return;
7319   case Intrinsic::experimental_vector_splice:
7320     visitVectorSplice(I);
7321     return;
7322   }
7323 }
7324 
7325 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7326     const ConstrainedFPIntrinsic &FPI) {
7327   SDLoc sdl = getCurSDLoc();
7328 
7329   // We do not need to serialize constrained FP intrinsics against
7330   // each other or against (nonvolatile) loads, so they can be
7331   // chained like loads.
7332   SDValue Chain = DAG.getRoot();
7333   SmallVector<SDValue, 4> Opers;
7334   Opers.push_back(Chain);
7335   if (FPI.isUnaryOp()) {
7336     Opers.push_back(getValue(FPI.getArgOperand(0)));
7337   } else if (FPI.isTernaryOp()) {
7338     Opers.push_back(getValue(FPI.getArgOperand(0)));
7339     Opers.push_back(getValue(FPI.getArgOperand(1)));
7340     Opers.push_back(getValue(FPI.getArgOperand(2)));
7341   } else {
7342     Opers.push_back(getValue(FPI.getArgOperand(0)));
7343     Opers.push_back(getValue(FPI.getArgOperand(1)));
7344   }
7345 
7346   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7347     assert(Result.getNode()->getNumValues() == 2);
7348 
7349     // Push node to the appropriate list so that future instructions can be
7350     // chained up correctly.
7351     SDValue OutChain = Result.getValue(1);
7352     switch (EB) {
7353     case fp::ExceptionBehavior::ebIgnore:
7354       // The only reason why ebIgnore nodes still need to be chained is that
7355       // they might depend on the current rounding mode, and therefore must
7356       // not be moved across instruction that may change that mode.
7357       [[fallthrough]];
7358     case fp::ExceptionBehavior::ebMayTrap:
7359       // These must not be moved across calls or instructions that may change
7360       // floating-point exception masks.
7361       PendingConstrainedFP.push_back(OutChain);
7362       break;
7363     case fp::ExceptionBehavior::ebStrict:
7364       // These must not be moved across calls or instructions that may change
7365       // floating-point exception masks or read floating-point exception flags.
7366       // In addition, they cannot be optimized out even if unused.
7367       PendingConstrainedFPStrict.push_back(OutChain);
7368       break;
7369     }
7370   };
7371 
7372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7373   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7374   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7375   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7376 
7377   SDNodeFlags Flags;
7378   if (EB == fp::ExceptionBehavior::ebIgnore)
7379     Flags.setNoFPExcept(true);
7380 
7381   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7382     Flags.copyFMF(*FPOp);
7383 
7384   unsigned Opcode;
7385   switch (FPI.getIntrinsicID()) {
7386   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7387 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7388   case Intrinsic::INTRINSIC:                                                   \
7389     Opcode = ISD::STRICT_##DAGN;                                               \
7390     break;
7391 #include "llvm/IR/ConstrainedOps.def"
7392   case Intrinsic::experimental_constrained_fmuladd: {
7393     Opcode = ISD::STRICT_FMA;
7394     // Break fmuladd into fmul and fadd.
7395     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7396         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7397       Opers.pop_back();
7398       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7399       pushOutChain(Mul, EB);
7400       Opcode = ISD::STRICT_FADD;
7401       Opers.clear();
7402       Opers.push_back(Mul.getValue(1));
7403       Opers.push_back(Mul.getValue(0));
7404       Opers.push_back(getValue(FPI.getArgOperand(2)));
7405     }
7406     break;
7407   }
7408   }
7409 
7410   // A few strict DAG nodes carry additional operands that are not
7411   // set up by the default code above.
7412   switch (Opcode) {
7413   default: break;
7414   case ISD::STRICT_FP_ROUND:
7415     Opers.push_back(
7416         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7417     break;
7418   case ISD::STRICT_FSETCC:
7419   case ISD::STRICT_FSETCCS: {
7420     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7421     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7422     if (TM.Options.NoNaNsFPMath)
7423       Condition = getFCmpCodeWithoutNaN(Condition);
7424     Opers.push_back(DAG.getCondCode(Condition));
7425     break;
7426   }
7427   }
7428 
7429   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7430   pushOutChain(Result, EB);
7431 
7432   SDValue FPResult = Result.getValue(0);
7433   setValue(&FPI, FPResult);
7434 }
7435 
7436 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7437   std::optional<unsigned> ResOPC;
7438   switch (VPIntrin.getIntrinsicID()) {
7439   case Intrinsic::vp_ctlz: {
7440     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7441     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7442     break;
7443   }
7444   case Intrinsic::vp_cttz: {
7445     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7446     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7447     break;
7448   }
7449 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7450   case Intrinsic::VPID:                                                        \
7451     ResOPC = ISD::VPSD;                                                        \
7452     break;
7453 #include "llvm/IR/VPIntrinsics.def"
7454   }
7455 
7456   if (!ResOPC)
7457     llvm_unreachable(
7458         "Inconsistency: no SDNode available for this VPIntrinsic!");
7459 
7460   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7461       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7462     if (VPIntrin.getFastMathFlags().allowReassoc())
7463       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7464                                                 : ISD::VP_REDUCE_FMUL;
7465   }
7466 
7467   return *ResOPC;
7468 }
7469 
7470 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7471                                       SmallVector<SDValue, 7> &OpValues) {
7472   SDLoc DL = getCurSDLoc();
7473   Value *PtrOperand = VPIntrin.getArgOperand(0);
7474   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7475   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7476   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7477   SDValue LD;
7478   bool AddToChain = true;
7479   // Do not serialize variable-length loads of constant memory with
7480   // anything.
7481   if (!Alignment)
7482     Alignment = DAG.getEVTAlign(VT);
7483   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7484   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7485   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7486   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7487       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7488       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7489   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7490                      MMO, false /*IsExpanding */);
7491   if (AddToChain)
7492     PendingLoads.push_back(LD.getValue(1));
7493   setValue(&VPIntrin, LD);
7494 }
7495 
7496 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7497                                         SmallVector<SDValue, 7> &OpValues) {
7498   SDLoc DL = getCurSDLoc();
7499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7500   Value *PtrOperand = VPIntrin.getArgOperand(0);
7501   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7502   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7503   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7504   SDValue LD;
7505   if (!Alignment)
7506     Alignment = DAG.getEVTAlign(VT.getScalarType());
7507   unsigned AS =
7508     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7509   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7510      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7511      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7512   SDValue Base, Index, Scale;
7513   ISD::MemIndexType IndexType;
7514   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7515                                     this, VPIntrin.getParent(),
7516                                     VT.getScalarStoreSize());
7517   if (!UniformBase) {
7518     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7519     Index = getValue(PtrOperand);
7520     IndexType = ISD::SIGNED_SCALED;
7521     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7522   }
7523   EVT IdxVT = Index.getValueType();
7524   EVT EltTy = IdxVT.getVectorElementType();
7525   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7526     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7527     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7528   }
7529   LD = DAG.getGatherVP(
7530       DAG.getVTList(VT, MVT::Other), VT, DL,
7531       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7532       IndexType);
7533   PendingLoads.push_back(LD.getValue(1));
7534   setValue(&VPIntrin, LD);
7535 }
7536 
7537 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7538                                        SmallVector<SDValue, 7> &OpValues) {
7539   SDLoc DL = getCurSDLoc();
7540   Value *PtrOperand = VPIntrin.getArgOperand(1);
7541   EVT VT = OpValues[0].getValueType();
7542   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7543   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7544   SDValue ST;
7545   if (!Alignment)
7546     Alignment = DAG.getEVTAlign(VT);
7547   SDValue Ptr = OpValues[1];
7548   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7549   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7550       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7551       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7552   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7553                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7554                       /* IsTruncating */ false, /*IsCompressing*/ false);
7555   DAG.setRoot(ST);
7556   setValue(&VPIntrin, ST);
7557 }
7558 
7559 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7560                                               SmallVector<SDValue, 7> &OpValues) {
7561   SDLoc DL = getCurSDLoc();
7562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7563   Value *PtrOperand = VPIntrin.getArgOperand(1);
7564   EVT VT = OpValues[0].getValueType();
7565   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7566   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7567   SDValue ST;
7568   if (!Alignment)
7569     Alignment = DAG.getEVTAlign(VT.getScalarType());
7570   unsigned AS =
7571       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7572   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7573       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7574       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7575   SDValue Base, Index, Scale;
7576   ISD::MemIndexType IndexType;
7577   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7578                                     this, VPIntrin.getParent(),
7579                                     VT.getScalarStoreSize());
7580   if (!UniformBase) {
7581     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7582     Index = getValue(PtrOperand);
7583     IndexType = ISD::SIGNED_SCALED;
7584     Scale =
7585       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7586   }
7587   EVT IdxVT = Index.getValueType();
7588   EVT EltTy = IdxVT.getVectorElementType();
7589   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7590     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7591     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7592   }
7593   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7594                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7595                          OpValues[2], OpValues[3]},
7596                         MMO, IndexType);
7597   DAG.setRoot(ST);
7598   setValue(&VPIntrin, ST);
7599 }
7600 
7601 void SelectionDAGBuilder::visitVPStridedLoad(
7602     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7603   SDLoc DL = getCurSDLoc();
7604   Value *PtrOperand = VPIntrin.getArgOperand(0);
7605   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7606   if (!Alignment)
7607     Alignment = DAG.getEVTAlign(VT.getScalarType());
7608   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7609   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7610   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7611   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7612   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7613   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7614       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7615       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7616 
7617   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7618                                     OpValues[2], OpValues[3], MMO,
7619                                     false /*IsExpanding*/);
7620 
7621   if (AddToChain)
7622     PendingLoads.push_back(LD.getValue(1));
7623   setValue(&VPIntrin, LD);
7624 }
7625 
7626 void SelectionDAGBuilder::visitVPStridedStore(
7627     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7628   SDLoc DL = getCurSDLoc();
7629   Value *PtrOperand = VPIntrin.getArgOperand(1);
7630   EVT VT = OpValues[0].getValueType();
7631   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7632   if (!Alignment)
7633     Alignment = DAG.getEVTAlign(VT.getScalarType());
7634   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7635   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7636       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7637       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7638 
7639   SDValue ST = DAG.getStridedStoreVP(
7640       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7641       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7642       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7643       /*IsCompressing*/ false);
7644 
7645   DAG.setRoot(ST);
7646   setValue(&VPIntrin, ST);
7647 }
7648 
7649 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7651   SDLoc DL = getCurSDLoc();
7652 
7653   ISD::CondCode Condition;
7654   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7655   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7656   if (IsFP) {
7657     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7658     // flags, but calls that don't return floating-point types can't be
7659     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7660     Condition = getFCmpCondCode(CondCode);
7661     if (TM.Options.NoNaNsFPMath)
7662       Condition = getFCmpCodeWithoutNaN(Condition);
7663   } else {
7664     Condition = getICmpCondCode(CondCode);
7665   }
7666 
7667   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7668   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7669   // #2 is the condition code
7670   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7671   SDValue EVL = getValue(VPIntrin.getOperand(4));
7672   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7673   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7674          "Unexpected target EVL type");
7675   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7676 
7677   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7678                                                         VPIntrin.getType());
7679   setValue(&VPIntrin,
7680            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7681 }
7682 
7683 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7684     const VPIntrinsic &VPIntrin) {
7685   SDLoc DL = getCurSDLoc();
7686   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7687 
7688   auto IID = VPIntrin.getIntrinsicID();
7689 
7690   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7691     return visitVPCmp(*CmpI);
7692 
7693   SmallVector<EVT, 4> ValueVTs;
7694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7695   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7696   SDVTList VTs = DAG.getVTList(ValueVTs);
7697 
7698   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7699 
7700   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7701   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7702          "Unexpected target EVL type");
7703 
7704   // Request operands.
7705   SmallVector<SDValue, 7> OpValues;
7706   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7707     auto Op = getValue(VPIntrin.getArgOperand(I));
7708     if (I == EVLParamPos)
7709       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7710     OpValues.push_back(Op);
7711   }
7712 
7713   switch (Opcode) {
7714   default: {
7715     SDNodeFlags SDFlags;
7716     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7717       SDFlags.copyFMF(*FPMO);
7718     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7719     setValue(&VPIntrin, Result);
7720     break;
7721   }
7722   case ISD::VP_LOAD:
7723     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7724     break;
7725   case ISD::VP_GATHER:
7726     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7727     break;
7728   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7729     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7730     break;
7731   case ISD::VP_STORE:
7732     visitVPStore(VPIntrin, OpValues);
7733     break;
7734   case ISD::VP_SCATTER:
7735     visitVPScatter(VPIntrin, OpValues);
7736     break;
7737   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7738     visitVPStridedStore(VPIntrin, OpValues);
7739     break;
7740   case ISD::VP_FMULADD: {
7741     assert(OpValues.size() == 5 && "Unexpected number of operands");
7742     SDNodeFlags SDFlags;
7743     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7744       SDFlags.copyFMF(*FPMO);
7745     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7746         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7747       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7748     } else {
7749       SDValue Mul = DAG.getNode(
7750           ISD::VP_FMUL, DL, VTs,
7751           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7752       SDValue Add =
7753           DAG.getNode(ISD::VP_FADD, DL, VTs,
7754                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7755       setValue(&VPIntrin, Add);
7756     }
7757     break;
7758   }
7759   case ISD::VP_INTTOPTR: {
7760     SDValue N = OpValues[0];
7761     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7762     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7763     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7764                                OpValues[2]);
7765     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7766                              OpValues[2]);
7767     setValue(&VPIntrin, N);
7768     break;
7769   }
7770   case ISD::VP_PTRTOINT: {
7771     SDValue N = OpValues[0];
7772     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7773                                                           VPIntrin.getType());
7774     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7775                                        VPIntrin.getOperand(0)->getType());
7776     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7777                                OpValues[2]);
7778     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7779                              OpValues[2]);
7780     setValue(&VPIntrin, N);
7781     break;
7782   }
7783   case ISD::VP_ABS:
7784   case ISD::VP_CTLZ:
7785   case ISD::VP_CTLZ_ZERO_UNDEF:
7786   case ISD::VP_CTTZ:
7787   case ISD::VP_CTTZ_ZERO_UNDEF: {
7788     // Pop is_zero_poison operand for cp.ctlz/cttz or
7789     // is_int_min_poison operand for vp.abs.
7790     OpValues.pop_back();
7791     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7792     setValue(&VPIntrin, Result);
7793     break;
7794   }
7795   }
7796 }
7797 
7798 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7799                                           const BasicBlock *EHPadBB,
7800                                           MCSymbol *&BeginLabel) {
7801   MachineFunction &MF = DAG.getMachineFunction();
7802   MachineModuleInfo &MMI = MF.getMMI();
7803 
7804   // Insert a label before the invoke call to mark the try range.  This can be
7805   // used to detect deletion of the invoke via the MachineModuleInfo.
7806   BeginLabel = MMI.getContext().createTempSymbol();
7807 
7808   // For SjLj, keep track of which landing pads go with which invokes
7809   // so as to maintain the ordering of pads in the LSDA.
7810   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7811   if (CallSiteIndex) {
7812     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7813     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7814 
7815     // Now that the call site is handled, stop tracking it.
7816     MMI.setCurrentCallSite(0);
7817   }
7818 
7819   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7820 }
7821 
7822 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7823                                         const BasicBlock *EHPadBB,
7824                                         MCSymbol *BeginLabel) {
7825   assert(BeginLabel && "BeginLabel should've been set");
7826 
7827   MachineFunction &MF = DAG.getMachineFunction();
7828   MachineModuleInfo &MMI = MF.getMMI();
7829 
7830   // Insert a label at the end of the invoke call to mark the try range.  This
7831   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7832   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7833   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7834 
7835   // Inform MachineModuleInfo of range.
7836   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7837   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7838   // actually use outlined funclets and their LSDA info style.
7839   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7840     assert(II && "II should've been set");
7841     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7842     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7843   } else if (!isScopedEHPersonality(Pers)) {
7844     assert(EHPadBB);
7845     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7846   }
7847 
7848   return Chain;
7849 }
7850 
7851 std::pair<SDValue, SDValue>
7852 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7853                                     const BasicBlock *EHPadBB) {
7854   MCSymbol *BeginLabel = nullptr;
7855 
7856   if (EHPadBB) {
7857     // Both PendingLoads and PendingExports must be flushed here;
7858     // this call might not return.
7859     (void)getRoot();
7860     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7861     CLI.setChain(getRoot());
7862   }
7863 
7864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7865   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7866 
7867   assert((CLI.IsTailCall || Result.second.getNode()) &&
7868          "Non-null chain expected with non-tail call!");
7869   assert((Result.second.getNode() || !Result.first.getNode()) &&
7870          "Null value expected with tail call!");
7871 
7872   if (!Result.second.getNode()) {
7873     // As a special case, a null chain means that a tail call has been emitted
7874     // and the DAG root is already updated.
7875     HasTailCall = true;
7876 
7877     // Since there's no actual continuation from this block, nothing can be
7878     // relying on us setting vregs for them.
7879     PendingExports.clear();
7880   } else {
7881     DAG.setRoot(Result.second);
7882   }
7883 
7884   if (EHPadBB) {
7885     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7886                            BeginLabel));
7887   }
7888 
7889   return Result;
7890 }
7891 
7892 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7893                                       bool isTailCall,
7894                                       bool isMustTailCall,
7895                                       const BasicBlock *EHPadBB) {
7896   auto &DL = DAG.getDataLayout();
7897   FunctionType *FTy = CB.getFunctionType();
7898   Type *RetTy = CB.getType();
7899 
7900   TargetLowering::ArgListTy Args;
7901   Args.reserve(CB.arg_size());
7902 
7903   const Value *SwiftErrorVal = nullptr;
7904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7905 
7906   if (isTailCall) {
7907     // Avoid emitting tail calls in functions with the disable-tail-calls
7908     // attribute.
7909     auto *Caller = CB.getParent()->getParent();
7910     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7911         "true" && !isMustTailCall)
7912       isTailCall = false;
7913 
7914     // We can't tail call inside a function with a swifterror argument. Lowering
7915     // does not support this yet. It would have to move into the swifterror
7916     // register before the call.
7917     if (TLI.supportSwiftError() &&
7918         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7919       isTailCall = false;
7920   }
7921 
7922   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7923     TargetLowering::ArgListEntry Entry;
7924     const Value *V = *I;
7925 
7926     // Skip empty types
7927     if (V->getType()->isEmptyTy())
7928       continue;
7929 
7930     SDValue ArgNode = getValue(V);
7931     Entry.Node = ArgNode; Entry.Ty = V->getType();
7932 
7933     Entry.setAttributes(&CB, I - CB.arg_begin());
7934 
7935     // Use swifterror virtual register as input to the call.
7936     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7937       SwiftErrorVal = V;
7938       // We find the virtual register for the actual swifterror argument.
7939       // Instead of using the Value, we use the virtual register instead.
7940       Entry.Node =
7941           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7942                           EVT(TLI.getPointerTy(DL)));
7943     }
7944 
7945     Args.push_back(Entry);
7946 
7947     // If we have an explicit sret argument that is an Instruction, (i.e., it
7948     // might point to function-local memory), we can't meaningfully tail-call.
7949     if (Entry.IsSRet && isa<Instruction>(V))
7950       isTailCall = false;
7951   }
7952 
7953   // If call site has a cfguardtarget operand bundle, create and add an
7954   // additional ArgListEntry.
7955   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7956     TargetLowering::ArgListEntry Entry;
7957     Value *V = Bundle->Inputs[0];
7958     SDValue ArgNode = getValue(V);
7959     Entry.Node = ArgNode;
7960     Entry.Ty = V->getType();
7961     Entry.IsCFGuardTarget = true;
7962     Args.push_back(Entry);
7963   }
7964 
7965   // Check if target-independent constraints permit a tail call here.
7966   // Target-dependent constraints are checked within TLI->LowerCallTo.
7967   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7968     isTailCall = false;
7969 
7970   // Disable tail calls if there is an swifterror argument. Targets have not
7971   // been updated to support tail calls.
7972   if (TLI.supportSwiftError() && SwiftErrorVal)
7973     isTailCall = false;
7974 
7975   ConstantInt *CFIType = nullptr;
7976   if (CB.isIndirectCall()) {
7977     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7978       if (!TLI.supportKCFIBundles())
7979         report_fatal_error(
7980             "Target doesn't support calls with kcfi operand bundles.");
7981       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7982       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7983     }
7984   }
7985 
7986   TargetLowering::CallLoweringInfo CLI(DAG);
7987   CLI.setDebugLoc(getCurSDLoc())
7988       .setChain(getRoot())
7989       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7990       .setTailCall(isTailCall)
7991       .setConvergent(CB.isConvergent())
7992       .setIsPreallocated(
7993           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7994       .setCFIType(CFIType);
7995   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7996 
7997   if (Result.first.getNode()) {
7998     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7999     setValue(&CB, Result.first);
8000   }
8001 
8002   // The last element of CLI.InVals has the SDValue for swifterror return.
8003   // Here we copy it to a virtual register and update SwiftErrorMap for
8004   // book-keeping.
8005   if (SwiftErrorVal && TLI.supportSwiftError()) {
8006     // Get the last element of InVals.
8007     SDValue Src = CLI.InVals.back();
8008     Register VReg =
8009         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8010     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8011     DAG.setRoot(CopyNode);
8012   }
8013 }
8014 
8015 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8016                              SelectionDAGBuilder &Builder) {
8017   // Check to see if this load can be trivially constant folded, e.g. if the
8018   // input is from a string literal.
8019   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8020     // Cast pointer to the type we really want to load.
8021     Type *LoadTy =
8022         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8023     if (LoadVT.isVector())
8024       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8025 
8026     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8027                                          PointerType::getUnqual(LoadTy));
8028 
8029     if (const Constant *LoadCst =
8030             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8031                                          LoadTy, Builder.DAG.getDataLayout()))
8032       return Builder.getValue(LoadCst);
8033   }
8034 
8035   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8036   // still constant memory, the input chain can be the entry node.
8037   SDValue Root;
8038   bool ConstantMemory = false;
8039 
8040   // Do not serialize (non-volatile) loads of constant memory with anything.
8041   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8042     Root = Builder.DAG.getEntryNode();
8043     ConstantMemory = true;
8044   } else {
8045     // Do not serialize non-volatile loads against each other.
8046     Root = Builder.DAG.getRoot();
8047   }
8048 
8049   SDValue Ptr = Builder.getValue(PtrVal);
8050   SDValue LoadVal =
8051       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8052                           MachinePointerInfo(PtrVal), Align(1));
8053 
8054   if (!ConstantMemory)
8055     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8056   return LoadVal;
8057 }
8058 
8059 /// Record the value for an instruction that produces an integer result,
8060 /// converting the type where necessary.
8061 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8062                                                   SDValue Value,
8063                                                   bool IsSigned) {
8064   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8065                                                     I.getType(), true);
8066   if (IsSigned)
8067     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8068   else
8069     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8070   setValue(&I, Value);
8071 }
8072 
8073 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8074 /// true and lower it. Otherwise return false, and it will be lowered like a
8075 /// normal call.
8076 /// The caller already checked that \p I calls the appropriate LibFunc with a
8077 /// correct prototype.
8078 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8079   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8080   const Value *Size = I.getArgOperand(2);
8081   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8082   if (CSize && CSize->getZExtValue() == 0) {
8083     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8084                                                           I.getType(), true);
8085     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8086     return true;
8087   }
8088 
8089   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8090   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8091       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8092       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8093   if (Res.first.getNode()) {
8094     processIntegerCallValue(I, Res.first, true);
8095     PendingLoads.push_back(Res.second);
8096     return true;
8097   }
8098 
8099   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8100   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8101   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8102     return false;
8103 
8104   // If the target has a fast compare for the given size, it will return a
8105   // preferred load type for that size. Require that the load VT is legal and
8106   // that the target supports unaligned loads of that type. Otherwise, return
8107   // INVALID.
8108   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8109     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8110     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8111     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8112       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8113       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8114       // TODO: Check alignment of src and dest ptrs.
8115       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8116       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8117       if (!TLI.isTypeLegal(LVT) ||
8118           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8119           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8120         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8121     }
8122 
8123     return LVT;
8124   };
8125 
8126   // This turns into unaligned loads. We only do this if the target natively
8127   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8128   // we'll only produce a small number of byte loads.
8129   MVT LoadVT;
8130   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8131   switch (NumBitsToCompare) {
8132   default:
8133     return false;
8134   case 16:
8135     LoadVT = MVT::i16;
8136     break;
8137   case 32:
8138     LoadVT = MVT::i32;
8139     break;
8140   case 64:
8141   case 128:
8142   case 256:
8143     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8144     break;
8145   }
8146 
8147   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8148     return false;
8149 
8150   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8151   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8152 
8153   // Bitcast to a wide integer type if the loads are vectors.
8154   if (LoadVT.isVector()) {
8155     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8156     LoadL = DAG.getBitcast(CmpVT, LoadL);
8157     LoadR = DAG.getBitcast(CmpVT, LoadR);
8158   }
8159 
8160   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8161   processIntegerCallValue(I, Cmp, false);
8162   return true;
8163 }
8164 
8165 /// See if we can lower a memchr call into an optimized form. If so, return
8166 /// true and lower it. Otherwise return false, and it will be lowered like a
8167 /// normal call.
8168 /// The caller already checked that \p I calls the appropriate LibFunc with a
8169 /// correct prototype.
8170 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8171   const Value *Src = I.getArgOperand(0);
8172   const Value *Char = I.getArgOperand(1);
8173   const Value *Length = I.getArgOperand(2);
8174 
8175   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8176   std::pair<SDValue, SDValue> Res =
8177     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8178                                 getValue(Src), getValue(Char), getValue(Length),
8179                                 MachinePointerInfo(Src));
8180   if (Res.first.getNode()) {
8181     setValue(&I, Res.first);
8182     PendingLoads.push_back(Res.second);
8183     return true;
8184   }
8185 
8186   return false;
8187 }
8188 
8189 /// See if we can lower a mempcpy call into an optimized form. If so, return
8190 /// true and lower it. Otherwise return false, and it will be lowered like a
8191 /// normal call.
8192 /// The caller already checked that \p I calls the appropriate LibFunc with a
8193 /// correct prototype.
8194 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8195   SDValue Dst = getValue(I.getArgOperand(0));
8196   SDValue Src = getValue(I.getArgOperand(1));
8197   SDValue Size = getValue(I.getArgOperand(2));
8198 
8199   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8200   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8201   // DAG::getMemcpy needs Alignment to be defined.
8202   Align Alignment = std::min(DstAlign, SrcAlign);
8203 
8204   bool isVol = false;
8205   SDLoc sdl = getCurSDLoc();
8206 
8207   // In the mempcpy context we need to pass in a false value for isTailCall
8208   // because the return pointer needs to be adjusted by the size of
8209   // the copied memory.
8210   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8211   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8212                              /*isTailCall=*/false,
8213                              MachinePointerInfo(I.getArgOperand(0)),
8214                              MachinePointerInfo(I.getArgOperand(1)),
8215                              I.getAAMetadata());
8216   assert(MC.getNode() != nullptr &&
8217          "** memcpy should not be lowered as TailCall in mempcpy context **");
8218   DAG.setRoot(MC);
8219 
8220   // Check if Size needs to be truncated or extended.
8221   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8222 
8223   // Adjust return pointer to point just past the last dst byte.
8224   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8225                                     Dst, Size);
8226   setValue(&I, DstPlusSize);
8227   return true;
8228 }
8229 
8230 /// See if we can lower a strcpy call into an optimized form.  If so, return
8231 /// true and lower it, otherwise return false and it will be lowered like a
8232 /// normal call.
8233 /// The caller already checked that \p I calls the appropriate LibFunc with a
8234 /// correct prototype.
8235 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8236   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8237 
8238   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8239   std::pair<SDValue, SDValue> Res =
8240     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8241                                 getValue(Arg0), getValue(Arg1),
8242                                 MachinePointerInfo(Arg0),
8243                                 MachinePointerInfo(Arg1), isStpcpy);
8244   if (Res.first.getNode()) {
8245     setValue(&I, Res.first);
8246     DAG.setRoot(Res.second);
8247     return true;
8248   }
8249 
8250   return false;
8251 }
8252 
8253 /// See if we can lower a strcmp call into an optimized form.  If so, return
8254 /// true and lower it, otherwise return false and it will be lowered like a
8255 /// normal call.
8256 /// The caller already checked that \p I calls the appropriate LibFunc with a
8257 /// correct prototype.
8258 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8259   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8260 
8261   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8262   std::pair<SDValue, SDValue> Res =
8263     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8264                                 getValue(Arg0), getValue(Arg1),
8265                                 MachinePointerInfo(Arg0),
8266                                 MachinePointerInfo(Arg1));
8267   if (Res.first.getNode()) {
8268     processIntegerCallValue(I, Res.first, true);
8269     PendingLoads.push_back(Res.second);
8270     return true;
8271   }
8272 
8273   return false;
8274 }
8275 
8276 /// See if we can lower a strlen call into an optimized form.  If so, return
8277 /// true and lower it, otherwise return false and it will be lowered like a
8278 /// normal call.
8279 /// The caller already checked that \p I calls the appropriate LibFunc with a
8280 /// correct prototype.
8281 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8282   const Value *Arg0 = I.getArgOperand(0);
8283 
8284   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8285   std::pair<SDValue, SDValue> Res =
8286     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8287                                 getValue(Arg0), MachinePointerInfo(Arg0));
8288   if (Res.first.getNode()) {
8289     processIntegerCallValue(I, Res.first, false);
8290     PendingLoads.push_back(Res.second);
8291     return true;
8292   }
8293 
8294   return false;
8295 }
8296 
8297 /// See if we can lower a strnlen call into an optimized form.  If so, return
8298 /// true and lower it, otherwise return false and it will be lowered like a
8299 /// normal call.
8300 /// The caller already checked that \p I calls the appropriate LibFunc with a
8301 /// correct prototype.
8302 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8303   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8304 
8305   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8306   std::pair<SDValue, SDValue> Res =
8307     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8308                                  getValue(Arg0), getValue(Arg1),
8309                                  MachinePointerInfo(Arg0));
8310   if (Res.first.getNode()) {
8311     processIntegerCallValue(I, Res.first, false);
8312     PendingLoads.push_back(Res.second);
8313     return true;
8314   }
8315 
8316   return false;
8317 }
8318 
8319 /// See if we can lower a unary floating-point operation into an SDNode with
8320 /// the specified Opcode.  If so, return true and lower it, otherwise return
8321 /// false and it will be lowered like a normal call.
8322 /// The caller already checked that \p I calls the appropriate LibFunc with a
8323 /// correct prototype.
8324 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8325                                               unsigned Opcode) {
8326   // We already checked this call's prototype; verify it doesn't modify errno.
8327   if (!I.onlyReadsMemory())
8328     return false;
8329 
8330   SDNodeFlags Flags;
8331   Flags.copyFMF(cast<FPMathOperator>(I));
8332 
8333   SDValue Tmp = getValue(I.getArgOperand(0));
8334   setValue(&I,
8335            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8336   return true;
8337 }
8338 
8339 /// See if we can lower a binary floating-point operation into an SDNode with
8340 /// the specified Opcode. If so, return true and lower it. Otherwise return
8341 /// false, and it will be lowered like a normal call.
8342 /// The caller already checked that \p I calls the appropriate LibFunc with a
8343 /// correct prototype.
8344 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8345                                                unsigned Opcode) {
8346   // We already checked this call's prototype; verify it doesn't modify errno.
8347   if (!I.onlyReadsMemory())
8348     return false;
8349 
8350   SDNodeFlags Flags;
8351   Flags.copyFMF(cast<FPMathOperator>(I));
8352 
8353   SDValue Tmp0 = getValue(I.getArgOperand(0));
8354   SDValue Tmp1 = getValue(I.getArgOperand(1));
8355   EVT VT = Tmp0.getValueType();
8356   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8357   return true;
8358 }
8359 
8360 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8361   // Handle inline assembly differently.
8362   if (I.isInlineAsm()) {
8363     visitInlineAsm(I);
8364     return;
8365   }
8366 
8367   if (Function *F = I.getCalledFunction()) {
8368     diagnoseDontCall(I);
8369 
8370     if (F->isDeclaration()) {
8371       // Is this an LLVM intrinsic or a target-specific intrinsic?
8372       unsigned IID = F->getIntrinsicID();
8373       if (!IID)
8374         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8375           IID = II->getIntrinsicID(F);
8376 
8377       if (IID) {
8378         visitIntrinsicCall(I, IID);
8379         return;
8380       }
8381     }
8382 
8383     // Check for well-known libc/libm calls.  If the function is internal, it
8384     // can't be a library call.  Don't do the check if marked as nobuiltin for
8385     // some reason or the call site requires strict floating point semantics.
8386     LibFunc Func;
8387     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8388         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8389         LibInfo->hasOptimizedCodeGen(Func)) {
8390       switch (Func) {
8391       default: break;
8392       case LibFunc_bcmp:
8393         if (visitMemCmpBCmpCall(I))
8394           return;
8395         break;
8396       case LibFunc_copysign:
8397       case LibFunc_copysignf:
8398       case LibFunc_copysignl:
8399         // We already checked this call's prototype; verify it doesn't modify
8400         // errno.
8401         if (I.onlyReadsMemory()) {
8402           SDValue LHS = getValue(I.getArgOperand(0));
8403           SDValue RHS = getValue(I.getArgOperand(1));
8404           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8405                                    LHS.getValueType(), LHS, RHS));
8406           return;
8407         }
8408         break;
8409       case LibFunc_fabs:
8410       case LibFunc_fabsf:
8411       case LibFunc_fabsl:
8412         if (visitUnaryFloatCall(I, ISD::FABS))
8413           return;
8414         break;
8415       case LibFunc_fmin:
8416       case LibFunc_fminf:
8417       case LibFunc_fminl:
8418         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8419           return;
8420         break;
8421       case LibFunc_fmax:
8422       case LibFunc_fmaxf:
8423       case LibFunc_fmaxl:
8424         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8425           return;
8426         break;
8427       case LibFunc_sin:
8428       case LibFunc_sinf:
8429       case LibFunc_sinl:
8430         if (visitUnaryFloatCall(I, ISD::FSIN))
8431           return;
8432         break;
8433       case LibFunc_cos:
8434       case LibFunc_cosf:
8435       case LibFunc_cosl:
8436         if (visitUnaryFloatCall(I, ISD::FCOS))
8437           return;
8438         break;
8439       case LibFunc_sqrt:
8440       case LibFunc_sqrtf:
8441       case LibFunc_sqrtl:
8442       case LibFunc_sqrt_finite:
8443       case LibFunc_sqrtf_finite:
8444       case LibFunc_sqrtl_finite:
8445         if (visitUnaryFloatCall(I, ISD::FSQRT))
8446           return;
8447         break;
8448       case LibFunc_floor:
8449       case LibFunc_floorf:
8450       case LibFunc_floorl:
8451         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8452           return;
8453         break;
8454       case LibFunc_nearbyint:
8455       case LibFunc_nearbyintf:
8456       case LibFunc_nearbyintl:
8457         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8458           return;
8459         break;
8460       case LibFunc_ceil:
8461       case LibFunc_ceilf:
8462       case LibFunc_ceill:
8463         if (visitUnaryFloatCall(I, ISD::FCEIL))
8464           return;
8465         break;
8466       case LibFunc_rint:
8467       case LibFunc_rintf:
8468       case LibFunc_rintl:
8469         if (visitUnaryFloatCall(I, ISD::FRINT))
8470           return;
8471         break;
8472       case LibFunc_round:
8473       case LibFunc_roundf:
8474       case LibFunc_roundl:
8475         if (visitUnaryFloatCall(I, ISD::FROUND))
8476           return;
8477         break;
8478       case LibFunc_trunc:
8479       case LibFunc_truncf:
8480       case LibFunc_truncl:
8481         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8482           return;
8483         break;
8484       case LibFunc_log2:
8485       case LibFunc_log2f:
8486       case LibFunc_log2l:
8487         if (visitUnaryFloatCall(I, ISD::FLOG2))
8488           return;
8489         break;
8490       case LibFunc_exp2:
8491       case LibFunc_exp2f:
8492       case LibFunc_exp2l:
8493         if (visitUnaryFloatCall(I, ISD::FEXP2))
8494           return;
8495         break;
8496       case LibFunc_memcmp:
8497         if (visitMemCmpBCmpCall(I))
8498           return;
8499         break;
8500       case LibFunc_mempcpy:
8501         if (visitMemPCpyCall(I))
8502           return;
8503         break;
8504       case LibFunc_memchr:
8505         if (visitMemChrCall(I))
8506           return;
8507         break;
8508       case LibFunc_strcpy:
8509         if (visitStrCpyCall(I, false))
8510           return;
8511         break;
8512       case LibFunc_stpcpy:
8513         if (visitStrCpyCall(I, true))
8514           return;
8515         break;
8516       case LibFunc_strcmp:
8517         if (visitStrCmpCall(I))
8518           return;
8519         break;
8520       case LibFunc_strlen:
8521         if (visitStrLenCall(I))
8522           return;
8523         break;
8524       case LibFunc_strnlen:
8525         if (visitStrNLenCall(I))
8526           return;
8527         break;
8528       }
8529     }
8530   }
8531 
8532   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8533   // have to do anything here to lower funclet bundles.
8534   // CFGuardTarget bundles are lowered in LowerCallTo.
8535   assert(!I.hasOperandBundlesOtherThan(
8536              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8537               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8538               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8539          "Cannot lower calls with arbitrary operand bundles!");
8540 
8541   SDValue Callee = getValue(I.getCalledOperand());
8542 
8543   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8544     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8545   else
8546     // Check if we can potentially perform a tail call. More detailed checking
8547     // is be done within LowerCallTo, after more information about the call is
8548     // known.
8549     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8550 }
8551 
8552 namespace {
8553 
8554 /// AsmOperandInfo - This contains information for each constraint that we are
8555 /// lowering.
8556 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8557 public:
8558   /// CallOperand - If this is the result output operand or a clobber
8559   /// this is null, otherwise it is the incoming operand to the CallInst.
8560   /// This gets modified as the asm is processed.
8561   SDValue CallOperand;
8562 
8563   /// AssignedRegs - If this is a register or register class operand, this
8564   /// contains the set of register corresponding to the operand.
8565   RegsForValue AssignedRegs;
8566 
8567   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8568     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8569   }
8570 
8571   /// Whether or not this operand accesses memory
8572   bool hasMemory(const TargetLowering &TLI) const {
8573     // Indirect operand accesses access memory.
8574     if (isIndirect)
8575       return true;
8576 
8577     for (const auto &Code : Codes)
8578       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8579         return true;
8580 
8581     return false;
8582   }
8583 };
8584 
8585 
8586 } // end anonymous namespace
8587 
8588 /// Make sure that the output operand \p OpInfo and its corresponding input
8589 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8590 /// out).
8591 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8592                                SDISelAsmOperandInfo &MatchingOpInfo,
8593                                SelectionDAG &DAG) {
8594   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8595     return;
8596 
8597   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8598   const auto &TLI = DAG.getTargetLoweringInfo();
8599 
8600   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8601       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8602                                        OpInfo.ConstraintVT);
8603   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8604       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8605                                        MatchingOpInfo.ConstraintVT);
8606   if ((OpInfo.ConstraintVT.isInteger() !=
8607        MatchingOpInfo.ConstraintVT.isInteger()) ||
8608       (MatchRC.second != InputRC.second)) {
8609     // FIXME: error out in a more elegant fashion
8610     report_fatal_error("Unsupported asm: input constraint"
8611                        " with a matching output constraint of"
8612                        " incompatible type!");
8613   }
8614   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8615 }
8616 
8617 /// Get a direct memory input to behave well as an indirect operand.
8618 /// This may introduce stores, hence the need for a \p Chain.
8619 /// \return The (possibly updated) chain.
8620 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8621                                         SDISelAsmOperandInfo &OpInfo,
8622                                         SelectionDAG &DAG) {
8623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8624 
8625   // If we don't have an indirect input, put it in the constpool if we can,
8626   // otherwise spill it to a stack slot.
8627   // TODO: This isn't quite right. We need to handle these according to
8628   // the addressing mode that the constraint wants. Also, this may take
8629   // an additional register for the computation and we don't want that
8630   // either.
8631 
8632   // If the operand is a float, integer, or vector constant, spill to a
8633   // constant pool entry to get its address.
8634   const Value *OpVal = OpInfo.CallOperandVal;
8635   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8636       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8637     OpInfo.CallOperand = DAG.getConstantPool(
8638         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8639     return Chain;
8640   }
8641 
8642   // Otherwise, create a stack slot and emit a store to it before the asm.
8643   Type *Ty = OpVal->getType();
8644   auto &DL = DAG.getDataLayout();
8645   uint64_t TySize = DL.getTypeAllocSize(Ty);
8646   MachineFunction &MF = DAG.getMachineFunction();
8647   int SSFI = MF.getFrameInfo().CreateStackObject(
8648       TySize, DL.getPrefTypeAlign(Ty), false);
8649   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8650   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8651                             MachinePointerInfo::getFixedStack(MF, SSFI),
8652                             TLI.getMemValueType(DL, Ty));
8653   OpInfo.CallOperand = StackSlot;
8654 
8655   return Chain;
8656 }
8657 
8658 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8659 /// specified operand.  We prefer to assign virtual registers, to allow the
8660 /// register allocator to handle the assignment process.  However, if the asm
8661 /// uses features that we can't model on machineinstrs, we have SDISel do the
8662 /// allocation.  This produces generally horrible, but correct, code.
8663 ///
8664 ///   OpInfo describes the operand
8665 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8666 static std::optional<unsigned>
8667 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8668                      SDISelAsmOperandInfo &OpInfo,
8669                      SDISelAsmOperandInfo &RefOpInfo) {
8670   LLVMContext &Context = *DAG.getContext();
8671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8672 
8673   MachineFunction &MF = DAG.getMachineFunction();
8674   SmallVector<unsigned, 4> Regs;
8675   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8676 
8677   // No work to do for memory/address operands.
8678   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8679       OpInfo.ConstraintType == TargetLowering::C_Address)
8680     return std::nullopt;
8681 
8682   // If this is a constraint for a single physreg, or a constraint for a
8683   // register class, find it.
8684   unsigned AssignedReg;
8685   const TargetRegisterClass *RC;
8686   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8687       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8688   // RC is unset only on failure. Return immediately.
8689   if (!RC)
8690     return std::nullopt;
8691 
8692   // Get the actual register value type.  This is important, because the user
8693   // may have asked for (e.g.) the AX register in i32 type.  We need to
8694   // remember that AX is actually i16 to get the right extension.
8695   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8696 
8697   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8698     // If this is an FP operand in an integer register (or visa versa), or more
8699     // generally if the operand value disagrees with the register class we plan
8700     // to stick it in, fix the operand type.
8701     //
8702     // If this is an input value, the bitcast to the new type is done now.
8703     // Bitcast for output value is done at the end of visitInlineAsm().
8704     if ((OpInfo.Type == InlineAsm::isOutput ||
8705          OpInfo.Type == InlineAsm::isInput) &&
8706         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8707       // Try to convert to the first EVT that the reg class contains.  If the
8708       // types are identical size, use a bitcast to convert (e.g. two differing
8709       // vector types).  Note: output bitcast is done at the end of
8710       // visitInlineAsm().
8711       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8712         // Exclude indirect inputs while they are unsupported because the code
8713         // to perform the load is missing and thus OpInfo.CallOperand still
8714         // refers to the input address rather than the pointed-to value.
8715         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8716           OpInfo.CallOperand =
8717               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8718         OpInfo.ConstraintVT = RegVT;
8719         // If the operand is an FP value and we want it in integer registers,
8720         // use the corresponding integer type. This turns an f64 value into
8721         // i64, which can be passed with two i32 values on a 32-bit machine.
8722       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8723         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8724         if (OpInfo.Type == InlineAsm::isInput)
8725           OpInfo.CallOperand =
8726               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8727         OpInfo.ConstraintVT = VT;
8728       }
8729     }
8730   }
8731 
8732   // No need to allocate a matching input constraint since the constraint it's
8733   // matching to has already been allocated.
8734   if (OpInfo.isMatchingInputConstraint())
8735     return std::nullopt;
8736 
8737   EVT ValueVT = OpInfo.ConstraintVT;
8738   if (OpInfo.ConstraintVT == MVT::Other)
8739     ValueVT = RegVT;
8740 
8741   // Initialize NumRegs.
8742   unsigned NumRegs = 1;
8743   if (OpInfo.ConstraintVT != MVT::Other)
8744     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8745 
8746   // If this is a constraint for a specific physical register, like {r17},
8747   // assign it now.
8748 
8749   // If this associated to a specific register, initialize iterator to correct
8750   // place. If virtual, make sure we have enough registers
8751 
8752   // Initialize iterator if necessary
8753   TargetRegisterClass::iterator I = RC->begin();
8754   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8755 
8756   // Do not check for single registers.
8757   if (AssignedReg) {
8758     I = std::find(I, RC->end(), AssignedReg);
8759     if (I == RC->end()) {
8760       // RC does not contain the selected register, which indicates a
8761       // mismatch between the register and the required type/bitwidth.
8762       return {AssignedReg};
8763     }
8764   }
8765 
8766   for (; NumRegs; --NumRegs, ++I) {
8767     assert(I != RC->end() && "Ran out of registers to allocate!");
8768     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8769     Regs.push_back(R);
8770   }
8771 
8772   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8773   return std::nullopt;
8774 }
8775 
8776 static unsigned
8777 findMatchingInlineAsmOperand(unsigned OperandNo,
8778                              const std::vector<SDValue> &AsmNodeOperands) {
8779   // Scan until we find the definition we already emitted of this operand.
8780   unsigned CurOp = InlineAsm::Op_FirstOperand;
8781   for (; OperandNo; --OperandNo) {
8782     // Advance to the next operand.
8783     unsigned OpFlag =
8784         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8785     assert((InlineAsm::isRegDefKind(OpFlag) ||
8786             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8787             InlineAsm::isMemKind(OpFlag)) &&
8788            "Skipped past definitions?");
8789     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8790   }
8791   return CurOp;
8792 }
8793 
8794 namespace {
8795 
8796 class ExtraFlags {
8797   unsigned Flags = 0;
8798 
8799 public:
8800   explicit ExtraFlags(const CallBase &Call) {
8801     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8802     if (IA->hasSideEffects())
8803       Flags |= InlineAsm::Extra_HasSideEffects;
8804     if (IA->isAlignStack())
8805       Flags |= InlineAsm::Extra_IsAlignStack;
8806     if (Call.isConvergent())
8807       Flags |= InlineAsm::Extra_IsConvergent;
8808     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8809   }
8810 
8811   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8812     // Ideally, we would only check against memory constraints.  However, the
8813     // meaning of an Other constraint can be target-specific and we can't easily
8814     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8815     // for Other constraints as well.
8816     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8817         OpInfo.ConstraintType == TargetLowering::C_Other) {
8818       if (OpInfo.Type == InlineAsm::isInput)
8819         Flags |= InlineAsm::Extra_MayLoad;
8820       else if (OpInfo.Type == InlineAsm::isOutput)
8821         Flags |= InlineAsm::Extra_MayStore;
8822       else if (OpInfo.Type == InlineAsm::isClobber)
8823         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8824     }
8825   }
8826 
8827   unsigned get() const { return Flags; }
8828 };
8829 
8830 } // end anonymous namespace
8831 
8832 static bool isFunction(SDValue Op) {
8833   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8834     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8835       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8836 
8837       // In normal "call dllimport func" instruction (non-inlineasm) it force
8838       // indirect access by specifing call opcode. And usually specially print
8839       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8840       // not do in this way now. (In fact, this is similar with "Data Access"
8841       // action). So here we ignore dllimport function.
8842       if (Fn && !Fn->hasDLLImportStorageClass())
8843         return true;
8844     }
8845   }
8846   return false;
8847 }
8848 
8849 /// visitInlineAsm - Handle a call to an InlineAsm object.
8850 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8851                                          const BasicBlock *EHPadBB) {
8852   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8853 
8854   /// ConstraintOperands - Information about all of the constraints.
8855   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8856 
8857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8858   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8859       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8860 
8861   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8862   // AsmDialect, MayLoad, MayStore).
8863   bool HasSideEffect = IA->hasSideEffects();
8864   ExtraFlags ExtraInfo(Call);
8865 
8866   for (auto &T : TargetConstraints) {
8867     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8868     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8869 
8870     if (OpInfo.CallOperandVal)
8871       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8872 
8873     if (!HasSideEffect)
8874       HasSideEffect = OpInfo.hasMemory(TLI);
8875 
8876     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8877     // FIXME: Could we compute this on OpInfo rather than T?
8878 
8879     // Compute the constraint code and ConstraintType to use.
8880     TLI.ComputeConstraintToUse(T, SDValue());
8881 
8882     if (T.ConstraintType == TargetLowering::C_Immediate &&
8883         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8884       // We've delayed emitting a diagnostic like the "n" constraint because
8885       // inlining could cause an integer showing up.
8886       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8887                                           "' expects an integer constant "
8888                                           "expression");
8889 
8890     ExtraInfo.update(T);
8891   }
8892 
8893   // We won't need to flush pending loads if this asm doesn't touch
8894   // memory and is nonvolatile.
8895   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8896 
8897   bool EmitEHLabels = isa<InvokeInst>(Call);
8898   if (EmitEHLabels) {
8899     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8900   }
8901   bool IsCallBr = isa<CallBrInst>(Call);
8902 
8903   if (IsCallBr || EmitEHLabels) {
8904     // If this is a callbr or invoke we need to flush pending exports since
8905     // inlineasm_br and invoke are terminators.
8906     // We need to do this before nodes are glued to the inlineasm_br node.
8907     Chain = getControlRoot();
8908   }
8909 
8910   MCSymbol *BeginLabel = nullptr;
8911   if (EmitEHLabels) {
8912     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8913   }
8914 
8915   int OpNo = -1;
8916   SmallVector<StringRef> AsmStrs;
8917   IA->collectAsmStrs(AsmStrs);
8918 
8919   // Second pass over the constraints: compute which constraint option to use.
8920   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8921     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8922       OpNo++;
8923 
8924     // If this is an output operand with a matching input operand, look up the
8925     // matching input. If their types mismatch, e.g. one is an integer, the
8926     // other is floating point, or their sizes are different, flag it as an
8927     // error.
8928     if (OpInfo.hasMatchingInput()) {
8929       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8930       patchMatchingInput(OpInfo, Input, DAG);
8931     }
8932 
8933     // Compute the constraint code and ConstraintType to use.
8934     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8935 
8936     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8937          OpInfo.Type == InlineAsm::isClobber) ||
8938         OpInfo.ConstraintType == TargetLowering::C_Address)
8939       continue;
8940 
8941     // In Linux PIC model, there are 4 cases about value/label addressing:
8942     //
8943     // 1: Function call or Label jmp inside the module.
8944     // 2: Data access (such as global variable, static variable) inside module.
8945     // 3: Function call or Label jmp outside the module.
8946     // 4: Data access (such as global variable) outside the module.
8947     //
8948     // Due to current llvm inline asm architecture designed to not "recognize"
8949     // the asm code, there are quite troubles for us to treat mem addressing
8950     // differently for same value/adress used in different instuctions.
8951     // For example, in pic model, call a func may in plt way or direclty
8952     // pc-related, but lea/mov a function adress may use got.
8953     //
8954     // Here we try to "recognize" function call for the case 1 and case 3 in
8955     // inline asm. And try to adjust the constraint for them.
8956     //
8957     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8958     // label, so here we don't handle jmp function label now, but we need to
8959     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8960     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8961         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8962         TM.getCodeModel() != CodeModel::Large) {
8963       OpInfo.isIndirect = false;
8964       OpInfo.ConstraintType = TargetLowering::C_Address;
8965     }
8966 
8967     // If this is a memory input, and if the operand is not indirect, do what we
8968     // need to provide an address for the memory input.
8969     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8970         !OpInfo.isIndirect) {
8971       assert((OpInfo.isMultipleAlternative ||
8972               (OpInfo.Type == InlineAsm::isInput)) &&
8973              "Can only indirectify direct input operands!");
8974 
8975       // Memory operands really want the address of the value.
8976       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8977 
8978       // There is no longer a Value* corresponding to this operand.
8979       OpInfo.CallOperandVal = nullptr;
8980 
8981       // It is now an indirect operand.
8982       OpInfo.isIndirect = true;
8983     }
8984 
8985   }
8986 
8987   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8988   std::vector<SDValue> AsmNodeOperands;
8989   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8990   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8991       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8992 
8993   // If we have a !srcloc metadata node associated with it, we want to attach
8994   // this to the ultimately generated inline asm machineinstr.  To do this, we
8995   // pass in the third operand as this (potentially null) inline asm MDNode.
8996   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8997   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8998 
8999   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9000   // bits as operand 3.
9001   AsmNodeOperands.push_back(DAG.getTargetConstant(
9002       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9003 
9004   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9005   // this, assign virtual and physical registers for inputs and otput.
9006   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9007     // Assign Registers.
9008     SDISelAsmOperandInfo &RefOpInfo =
9009         OpInfo.isMatchingInputConstraint()
9010             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9011             : OpInfo;
9012     const auto RegError =
9013         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9014     if (RegError) {
9015       const MachineFunction &MF = DAG.getMachineFunction();
9016       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9017       const char *RegName = TRI.getName(*RegError);
9018       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9019                                    "' allocated for constraint '" +
9020                                    Twine(OpInfo.ConstraintCode) +
9021                                    "' does not match required type");
9022       return;
9023     }
9024 
9025     auto DetectWriteToReservedRegister = [&]() {
9026       const MachineFunction &MF = DAG.getMachineFunction();
9027       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9028       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9029         if (Register::isPhysicalRegister(Reg) &&
9030             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9031           const char *RegName = TRI.getName(Reg);
9032           emitInlineAsmError(Call, "write to reserved register '" +
9033                                        Twine(RegName) + "'");
9034           return true;
9035         }
9036       }
9037       return false;
9038     };
9039     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9040             (OpInfo.Type == InlineAsm::isInput &&
9041              !OpInfo.isMatchingInputConstraint())) &&
9042            "Only address as input operand is allowed.");
9043 
9044     switch (OpInfo.Type) {
9045     case InlineAsm::isOutput:
9046       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9047         unsigned ConstraintID =
9048             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9049         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9050                "Failed to convert memory constraint code to constraint id.");
9051 
9052         // Add information to the INLINEASM node to know about this output.
9053         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9054         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9055         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9056                                                         MVT::i32));
9057         AsmNodeOperands.push_back(OpInfo.CallOperand);
9058       } else {
9059         // Otherwise, this outputs to a register (directly for C_Register /
9060         // C_RegisterClass, and a target-defined fashion for
9061         // C_Immediate/C_Other). Find a register that we can use.
9062         if (OpInfo.AssignedRegs.Regs.empty()) {
9063           emitInlineAsmError(
9064               Call, "couldn't allocate output register for constraint '" +
9065                         Twine(OpInfo.ConstraintCode) + "'");
9066           return;
9067         }
9068 
9069         if (DetectWriteToReservedRegister())
9070           return;
9071 
9072         // Add information to the INLINEASM node to know that this register is
9073         // set.
9074         OpInfo.AssignedRegs.AddInlineAsmOperands(
9075             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9076                                   : InlineAsm::Kind_RegDef,
9077             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9078       }
9079       break;
9080 
9081     case InlineAsm::isInput:
9082     case InlineAsm::isLabel: {
9083       SDValue InOperandVal = OpInfo.CallOperand;
9084 
9085       if (OpInfo.isMatchingInputConstraint()) {
9086         // If this is required to match an output register we have already set,
9087         // just use its register.
9088         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9089                                                   AsmNodeOperands);
9090         unsigned OpFlag =
9091           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9092         if (InlineAsm::isRegDefKind(OpFlag) ||
9093             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9094           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9095           if (OpInfo.isIndirect) {
9096             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9097             emitInlineAsmError(Call, "inline asm not supported yet: "
9098                                      "don't know how to handle tied "
9099                                      "indirect register inputs");
9100             return;
9101           }
9102 
9103           SmallVector<unsigned, 4> Regs;
9104           MachineFunction &MF = DAG.getMachineFunction();
9105           MachineRegisterInfo &MRI = MF.getRegInfo();
9106           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9107           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9108           Register TiedReg = R->getReg();
9109           MVT RegVT = R->getSimpleValueType(0);
9110           const TargetRegisterClass *RC =
9111               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9112               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9113                                       : TRI.getMinimalPhysRegClass(TiedReg);
9114           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9115           for (unsigned i = 0; i != NumRegs; ++i)
9116             Regs.push_back(MRI.createVirtualRegister(RC));
9117 
9118           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9119 
9120           SDLoc dl = getCurSDLoc();
9121           // Use the produced MatchedRegs object to
9122           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9123           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9124                                            true, OpInfo.getMatchedOperand(), dl,
9125                                            DAG, AsmNodeOperands);
9126           break;
9127         }
9128 
9129         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9130         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9131                "Unexpected number of operands");
9132         // Add information to the INLINEASM node to know about this input.
9133         // See InlineAsm.h isUseOperandTiedToDef.
9134         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9135         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9136                                                     OpInfo.getMatchedOperand());
9137         AsmNodeOperands.push_back(DAG.getTargetConstant(
9138             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9139         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9140         break;
9141       }
9142 
9143       // Treat indirect 'X' constraint as memory.
9144       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9145           OpInfo.isIndirect)
9146         OpInfo.ConstraintType = TargetLowering::C_Memory;
9147 
9148       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9149           OpInfo.ConstraintType == TargetLowering::C_Other) {
9150         std::vector<SDValue> Ops;
9151         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9152                                           Ops, DAG);
9153         if (Ops.empty()) {
9154           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9155             if (isa<ConstantSDNode>(InOperandVal)) {
9156               emitInlineAsmError(Call, "value out of range for constraint '" +
9157                                            Twine(OpInfo.ConstraintCode) + "'");
9158               return;
9159             }
9160 
9161           emitInlineAsmError(Call,
9162                              "invalid operand for inline asm constraint '" +
9163                                  Twine(OpInfo.ConstraintCode) + "'");
9164           return;
9165         }
9166 
9167         // Add information to the INLINEASM node to know about this input.
9168         unsigned ResOpType =
9169           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9170         AsmNodeOperands.push_back(DAG.getTargetConstant(
9171             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9172         llvm::append_range(AsmNodeOperands, Ops);
9173         break;
9174       }
9175 
9176       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9177         assert((OpInfo.isIndirect ||
9178                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9179                "Operand must be indirect to be a mem!");
9180         assert(InOperandVal.getValueType() ==
9181                    TLI.getPointerTy(DAG.getDataLayout()) &&
9182                "Memory operands expect pointer values");
9183 
9184         unsigned ConstraintID =
9185             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9186         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9187                "Failed to convert memory constraint code to constraint id.");
9188 
9189         // Add information to the INLINEASM node to know about this input.
9190         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9191         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9192         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9193                                                         getCurSDLoc(),
9194                                                         MVT::i32));
9195         AsmNodeOperands.push_back(InOperandVal);
9196         break;
9197       }
9198 
9199       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9200         assert(InOperandVal.getValueType() ==
9201                    TLI.getPointerTy(DAG.getDataLayout()) &&
9202                "Address operands expect pointer values");
9203 
9204         unsigned ConstraintID =
9205             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9206         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9207                "Failed to convert memory constraint code to constraint id.");
9208 
9209         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9210 
9211         SDValue AsmOp = InOperandVal;
9212         if (isFunction(InOperandVal)) {
9213           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9214           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9215           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9216                                              InOperandVal.getValueType(),
9217                                              GA->getOffset());
9218         }
9219 
9220         // Add information to the INLINEASM node to know about this input.
9221         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9222 
9223         AsmNodeOperands.push_back(
9224             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9225 
9226         AsmNodeOperands.push_back(AsmOp);
9227         break;
9228       }
9229 
9230       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9231               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9232              "Unknown constraint type!");
9233 
9234       // TODO: Support this.
9235       if (OpInfo.isIndirect) {
9236         emitInlineAsmError(
9237             Call, "Don't know how to handle indirect register inputs yet "
9238                   "for constraint '" +
9239                       Twine(OpInfo.ConstraintCode) + "'");
9240         return;
9241       }
9242 
9243       // Copy the input into the appropriate registers.
9244       if (OpInfo.AssignedRegs.Regs.empty()) {
9245         emitInlineAsmError(Call,
9246                            "couldn't allocate input reg for constraint '" +
9247                                Twine(OpInfo.ConstraintCode) + "'");
9248         return;
9249       }
9250 
9251       if (DetectWriteToReservedRegister())
9252         return;
9253 
9254       SDLoc dl = getCurSDLoc();
9255 
9256       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9257                                         &Call);
9258 
9259       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9260                                                dl, DAG, AsmNodeOperands);
9261       break;
9262     }
9263     case InlineAsm::isClobber:
9264       // Add the clobbered value to the operand list, so that the register
9265       // allocator is aware that the physreg got clobbered.
9266       if (!OpInfo.AssignedRegs.Regs.empty())
9267         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9268                                                  false, 0, getCurSDLoc(), DAG,
9269                                                  AsmNodeOperands);
9270       break;
9271     }
9272   }
9273 
9274   // Finish up input operands.  Set the input chain and add the flag last.
9275   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9276   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9277 
9278   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9279   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9280                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9281   Flag = Chain.getValue(1);
9282 
9283   // Do additional work to generate outputs.
9284 
9285   SmallVector<EVT, 1> ResultVTs;
9286   SmallVector<SDValue, 1> ResultValues;
9287   SmallVector<SDValue, 8> OutChains;
9288 
9289   llvm::Type *CallResultType = Call.getType();
9290   ArrayRef<Type *> ResultTypes;
9291   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9292     ResultTypes = StructResult->elements();
9293   else if (!CallResultType->isVoidTy())
9294     ResultTypes = ArrayRef(CallResultType);
9295 
9296   auto CurResultType = ResultTypes.begin();
9297   auto handleRegAssign = [&](SDValue V) {
9298     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9299     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9300     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9301     ++CurResultType;
9302     // If the type of the inline asm call site return value is different but has
9303     // same size as the type of the asm output bitcast it.  One example of this
9304     // is for vectors with different width / number of elements.  This can
9305     // happen for register classes that can contain multiple different value
9306     // types.  The preg or vreg allocated may not have the same VT as was
9307     // expected.
9308     //
9309     // This can also happen for a return value that disagrees with the register
9310     // class it is put in, eg. a double in a general-purpose register on a
9311     // 32-bit machine.
9312     if (ResultVT != V.getValueType() &&
9313         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9314       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9315     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9316              V.getValueType().isInteger()) {
9317       // If a result value was tied to an input value, the computed result
9318       // may have a wider width than the expected result.  Extract the
9319       // relevant portion.
9320       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9321     }
9322     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9323     ResultVTs.push_back(ResultVT);
9324     ResultValues.push_back(V);
9325   };
9326 
9327   // Deal with output operands.
9328   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9329     if (OpInfo.Type == InlineAsm::isOutput) {
9330       SDValue Val;
9331       // Skip trivial output operands.
9332       if (OpInfo.AssignedRegs.Regs.empty())
9333         continue;
9334 
9335       switch (OpInfo.ConstraintType) {
9336       case TargetLowering::C_Register:
9337       case TargetLowering::C_RegisterClass:
9338         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9339                                                   Chain, &Flag, &Call);
9340         break;
9341       case TargetLowering::C_Immediate:
9342       case TargetLowering::C_Other:
9343         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9344                                               OpInfo, DAG);
9345         break;
9346       case TargetLowering::C_Memory:
9347         break; // Already handled.
9348       case TargetLowering::C_Address:
9349         break; // Silence warning.
9350       case TargetLowering::C_Unknown:
9351         assert(false && "Unexpected unknown constraint");
9352       }
9353 
9354       // Indirect output manifest as stores. Record output chains.
9355       if (OpInfo.isIndirect) {
9356         const Value *Ptr = OpInfo.CallOperandVal;
9357         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9358         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9359                                      MachinePointerInfo(Ptr));
9360         OutChains.push_back(Store);
9361       } else {
9362         // generate CopyFromRegs to associated registers.
9363         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9364         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9365           for (const SDValue &V : Val->op_values())
9366             handleRegAssign(V);
9367         } else
9368           handleRegAssign(Val);
9369       }
9370     }
9371   }
9372 
9373   // Set results.
9374   if (!ResultValues.empty()) {
9375     assert(CurResultType == ResultTypes.end() &&
9376            "Mismatch in number of ResultTypes");
9377     assert(ResultValues.size() == ResultTypes.size() &&
9378            "Mismatch in number of output operands in asm result");
9379 
9380     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9381                             DAG.getVTList(ResultVTs), ResultValues);
9382     setValue(&Call, V);
9383   }
9384 
9385   // Collect store chains.
9386   if (!OutChains.empty())
9387     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9388 
9389   if (EmitEHLabels) {
9390     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9391   }
9392 
9393   // Only Update Root if inline assembly has a memory effect.
9394   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9395       EmitEHLabels)
9396     DAG.setRoot(Chain);
9397 }
9398 
9399 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9400                                              const Twine &Message) {
9401   LLVMContext &Ctx = *DAG.getContext();
9402   Ctx.emitError(&Call, Message);
9403 
9404   // Make sure we leave the DAG in a valid state
9405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9406   SmallVector<EVT, 1> ValueVTs;
9407   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9408 
9409   if (ValueVTs.empty())
9410     return;
9411 
9412   SmallVector<SDValue, 1> Ops;
9413   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9414     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9415 
9416   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9417 }
9418 
9419 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9420   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9421                           MVT::Other, getRoot(),
9422                           getValue(I.getArgOperand(0)),
9423                           DAG.getSrcValue(I.getArgOperand(0))));
9424 }
9425 
9426 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9428   const DataLayout &DL = DAG.getDataLayout();
9429   SDValue V = DAG.getVAArg(
9430       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9431       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9432       DL.getABITypeAlign(I.getType()).value());
9433   DAG.setRoot(V.getValue(1));
9434 
9435   if (I.getType()->isPointerTy())
9436     V = DAG.getPtrExtOrTrunc(
9437         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9438   setValue(&I, V);
9439 }
9440 
9441 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9442   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9443                           MVT::Other, getRoot(),
9444                           getValue(I.getArgOperand(0)),
9445                           DAG.getSrcValue(I.getArgOperand(0))));
9446 }
9447 
9448 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9449   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9450                           MVT::Other, getRoot(),
9451                           getValue(I.getArgOperand(0)),
9452                           getValue(I.getArgOperand(1)),
9453                           DAG.getSrcValue(I.getArgOperand(0)),
9454                           DAG.getSrcValue(I.getArgOperand(1))));
9455 }
9456 
9457 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9458                                                     const Instruction &I,
9459                                                     SDValue Op) {
9460   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9461   if (!Range)
9462     return Op;
9463 
9464   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9465   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9466     return Op;
9467 
9468   APInt Lo = CR.getUnsignedMin();
9469   if (!Lo.isMinValue())
9470     return Op;
9471 
9472   APInt Hi = CR.getUnsignedMax();
9473   unsigned Bits = std::max(Hi.getActiveBits(),
9474                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9475 
9476   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9477 
9478   SDLoc SL = getCurSDLoc();
9479 
9480   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9481                              DAG.getValueType(SmallVT));
9482   unsigned NumVals = Op.getNode()->getNumValues();
9483   if (NumVals == 1)
9484     return ZExt;
9485 
9486   SmallVector<SDValue, 4> Ops;
9487 
9488   Ops.push_back(ZExt);
9489   for (unsigned I = 1; I != NumVals; ++I)
9490     Ops.push_back(Op.getValue(I));
9491 
9492   return DAG.getMergeValues(Ops, SL);
9493 }
9494 
9495 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9496 /// the call being lowered.
9497 ///
9498 /// This is a helper for lowering intrinsics that follow a target calling
9499 /// convention or require stack pointer adjustment. Only a subset of the
9500 /// intrinsic's operands need to participate in the calling convention.
9501 void SelectionDAGBuilder::populateCallLoweringInfo(
9502     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9503     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9504     bool IsPatchPoint) {
9505   TargetLowering::ArgListTy Args;
9506   Args.reserve(NumArgs);
9507 
9508   // Populate the argument list.
9509   // Attributes for args start at offset 1, after the return attribute.
9510   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9511        ArgI != ArgE; ++ArgI) {
9512     const Value *V = Call->getOperand(ArgI);
9513 
9514     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9515 
9516     TargetLowering::ArgListEntry Entry;
9517     Entry.Node = getValue(V);
9518     Entry.Ty = V->getType();
9519     Entry.setAttributes(Call, ArgI);
9520     Args.push_back(Entry);
9521   }
9522 
9523   CLI.setDebugLoc(getCurSDLoc())
9524       .setChain(getRoot())
9525       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9526       .setDiscardResult(Call->use_empty())
9527       .setIsPatchPoint(IsPatchPoint)
9528       .setIsPreallocated(
9529           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9530 }
9531 
9532 /// Add a stack map intrinsic call's live variable operands to a stackmap
9533 /// or patchpoint target node's operand list.
9534 ///
9535 /// Constants are converted to TargetConstants purely as an optimization to
9536 /// avoid constant materialization and register allocation.
9537 ///
9538 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9539 /// generate addess computation nodes, and so FinalizeISel can convert the
9540 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9541 /// address materialization and register allocation, but may also be required
9542 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9543 /// alloca in the entry block, then the runtime may assume that the alloca's
9544 /// StackMap location can be read immediately after compilation and that the
9545 /// location is valid at any point during execution (this is similar to the
9546 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9547 /// only available in a register, then the runtime would need to trap when
9548 /// execution reaches the StackMap in order to read the alloca's location.
9549 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9550                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9551                                 SelectionDAGBuilder &Builder) {
9552   SelectionDAG &DAG = Builder.DAG;
9553   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9554     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9555 
9556     // Things on the stack are pointer-typed, meaning that they are already
9557     // legal and can be emitted directly to target nodes.
9558     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9559       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9560     } else {
9561       // Otherwise emit a target independent node to be legalised.
9562       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9563     }
9564   }
9565 }
9566 
9567 /// Lower llvm.experimental.stackmap.
9568 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9569   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9570   //                                  [live variables...])
9571 
9572   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9573 
9574   SDValue Chain, InFlag, Callee;
9575   SmallVector<SDValue, 32> Ops;
9576 
9577   SDLoc DL = getCurSDLoc();
9578   Callee = getValue(CI.getCalledOperand());
9579 
9580   // The stackmap intrinsic only records the live variables (the arguments
9581   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9582   // intrinsic, this won't be lowered to a function call. This means we don't
9583   // have to worry about calling conventions and target specific lowering code.
9584   // Instead we perform the call lowering right here.
9585   //
9586   // chain, flag = CALLSEQ_START(chain, 0, 0)
9587   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9588   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9589   //
9590   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9591   InFlag = Chain.getValue(1);
9592 
9593   // Add the STACKMAP operands, starting with DAG house-keeping.
9594   Ops.push_back(Chain);
9595   Ops.push_back(InFlag);
9596 
9597   // Add the <id>, <numShadowBytes> operands.
9598   //
9599   // These do not require legalisation, and can be emitted directly to target
9600   // constant nodes.
9601   SDValue ID = getValue(CI.getArgOperand(0));
9602   assert(ID.getValueType() == MVT::i64);
9603   SDValue IDConst = DAG.getTargetConstant(
9604       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9605   Ops.push_back(IDConst);
9606 
9607   SDValue Shad = getValue(CI.getArgOperand(1));
9608   assert(Shad.getValueType() == MVT::i32);
9609   SDValue ShadConst = DAG.getTargetConstant(
9610       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9611   Ops.push_back(ShadConst);
9612 
9613   // Add the live variables.
9614   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9615 
9616   // Create the STACKMAP node.
9617   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9618   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9619   InFlag = Chain.getValue(1);
9620 
9621   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9622 
9623   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9624 
9625   // Set the root to the target-lowered call chain.
9626   DAG.setRoot(Chain);
9627 
9628   // Inform the Frame Information that we have a stackmap in this function.
9629   FuncInfo.MF->getFrameInfo().setHasStackMap();
9630 }
9631 
9632 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9633 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9634                                           const BasicBlock *EHPadBB) {
9635   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9636   //                                                 i32 <numBytes>,
9637   //                                                 i8* <target>,
9638   //                                                 i32 <numArgs>,
9639   //                                                 [Args...],
9640   //                                                 [live variables...])
9641 
9642   CallingConv::ID CC = CB.getCallingConv();
9643   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9644   bool HasDef = !CB.getType()->isVoidTy();
9645   SDLoc dl = getCurSDLoc();
9646   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9647 
9648   // Handle immediate and symbolic callees.
9649   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9650     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9651                                    /*isTarget=*/true);
9652   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9653     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9654                                          SDLoc(SymbolicCallee),
9655                                          SymbolicCallee->getValueType(0));
9656 
9657   // Get the real number of arguments participating in the call <numArgs>
9658   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9659   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9660 
9661   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9662   // Intrinsics include all meta-operands up to but not including CC.
9663   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9664   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9665          "Not enough arguments provided to the patchpoint intrinsic");
9666 
9667   // For AnyRegCC the arguments are lowered later on manually.
9668   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9669   Type *ReturnTy =
9670       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9671 
9672   TargetLowering::CallLoweringInfo CLI(DAG);
9673   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9674                            ReturnTy, true);
9675   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9676 
9677   SDNode *CallEnd = Result.second.getNode();
9678   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9679     CallEnd = CallEnd->getOperand(0).getNode();
9680 
9681   /// Get a call instruction from the call sequence chain.
9682   /// Tail calls are not allowed.
9683   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9684          "Expected a callseq node.");
9685   SDNode *Call = CallEnd->getOperand(0).getNode();
9686   bool HasGlue = Call->getGluedNode();
9687 
9688   // Replace the target specific call node with the patchable intrinsic.
9689   SmallVector<SDValue, 8> Ops;
9690 
9691   // Push the chain.
9692   Ops.push_back(*(Call->op_begin()));
9693 
9694   // Optionally, push the glue (if any).
9695   if (HasGlue)
9696     Ops.push_back(*(Call->op_end() - 1));
9697 
9698   // Push the register mask info.
9699   if (HasGlue)
9700     Ops.push_back(*(Call->op_end() - 2));
9701   else
9702     Ops.push_back(*(Call->op_end() - 1));
9703 
9704   // Add the <id> and <numBytes> constants.
9705   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9706   Ops.push_back(DAG.getTargetConstant(
9707                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9708   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9709   Ops.push_back(DAG.getTargetConstant(
9710                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9711                   MVT::i32));
9712 
9713   // Add the callee.
9714   Ops.push_back(Callee);
9715 
9716   // Adjust <numArgs> to account for any arguments that have been passed on the
9717   // stack instead.
9718   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9719   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9720   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9721   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9722 
9723   // Add the calling convention
9724   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9725 
9726   // Add the arguments we omitted previously. The register allocator should
9727   // place these in any free register.
9728   if (IsAnyRegCC)
9729     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9730       Ops.push_back(getValue(CB.getArgOperand(i)));
9731 
9732   // Push the arguments from the call instruction.
9733   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9734   Ops.append(Call->op_begin() + 2, e);
9735 
9736   // Push live variables for the stack map.
9737   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9738 
9739   SDVTList NodeTys;
9740   if (IsAnyRegCC && HasDef) {
9741     // Create the return types based on the intrinsic definition
9742     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9743     SmallVector<EVT, 3> ValueVTs;
9744     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9745     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9746 
9747     // There is always a chain and a glue type at the end
9748     ValueVTs.push_back(MVT::Other);
9749     ValueVTs.push_back(MVT::Glue);
9750     NodeTys = DAG.getVTList(ValueVTs);
9751   } else
9752     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9753 
9754   // Replace the target specific call node with a PATCHPOINT node.
9755   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9756 
9757   // Update the NodeMap.
9758   if (HasDef) {
9759     if (IsAnyRegCC)
9760       setValue(&CB, SDValue(PPV.getNode(), 0));
9761     else
9762       setValue(&CB, Result.first);
9763   }
9764 
9765   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9766   // call sequence. Furthermore the location of the chain and glue can change
9767   // when the AnyReg calling convention is used and the intrinsic returns a
9768   // value.
9769   if (IsAnyRegCC && HasDef) {
9770     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9771     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9772     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9773   } else
9774     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9775   DAG.DeleteNode(Call);
9776 
9777   // Inform the Frame Information that we have a patchpoint in this function.
9778   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9779 }
9780 
9781 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9782                                             unsigned Intrinsic) {
9783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9784   SDValue Op1 = getValue(I.getArgOperand(0));
9785   SDValue Op2;
9786   if (I.arg_size() > 1)
9787     Op2 = getValue(I.getArgOperand(1));
9788   SDLoc dl = getCurSDLoc();
9789   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9790   SDValue Res;
9791   SDNodeFlags SDFlags;
9792   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9793     SDFlags.copyFMF(*FPMO);
9794 
9795   switch (Intrinsic) {
9796   case Intrinsic::vector_reduce_fadd:
9797     if (SDFlags.hasAllowReassociation())
9798       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9799                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9800                         SDFlags);
9801     else
9802       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9803     break;
9804   case Intrinsic::vector_reduce_fmul:
9805     if (SDFlags.hasAllowReassociation())
9806       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9807                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9808                         SDFlags);
9809     else
9810       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9811     break;
9812   case Intrinsic::vector_reduce_add:
9813     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9814     break;
9815   case Intrinsic::vector_reduce_mul:
9816     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9817     break;
9818   case Intrinsic::vector_reduce_and:
9819     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9820     break;
9821   case Intrinsic::vector_reduce_or:
9822     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9823     break;
9824   case Intrinsic::vector_reduce_xor:
9825     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9826     break;
9827   case Intrinsic::vector_reduce_smax:
9828     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9829     break;
9830   case Intrinsic::vector_reduce_smin:
9831     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9832     break;
9833   case Intrinsic::vector_reduce_umax:
9834     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9835     break;
9836   case Intrinsic::vector_reduce_umin:
9837     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9838     break;
9839   case Intrinsic::vector_reduce_fmax:
9840     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9841     break;
9842   case Intrinsic::vector_reduce_fmin:
9843     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9844     break;
9845   default:
9846     llvm_unreachable("Unhandled vector reduce intrinsic");
9847   }
9848   setValue(&I, Res);
9849 }
9850 
9851 /// Returns an AttributeList representing the attributes applied to the return
9852 /// value of the given call.
9853 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9854   SmallVector<Attribute::AttrKind, 2> Attrs;
9855   if (CLI.RetSExt)
9856     Attrs.push_back(Attribute::SExt);
9857   if (CLI.RetZExt)
9858     Attrs.push_back(Attribute::ZExt);
9859   if (CLI.IsInReg)
9860     Attrs.push_back(Attribute::InReg);
9861 
9862   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9863                             Attrs);
9864 }
9865 
9866 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9867 /// implementation, which just calls LowerCall.
9868 /// FIXME: When all targets are
9869 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9870 std::pair<SDValue, SDValue>
9871 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9872   // Handle the incoming return values from the call.
9873   CLI.Ins.clear();
9874   Type *OrigRetTy = CLI.RetTy;
9875   SmallVector<EVT, 4> RetTys;
9876   SmallVector<uint64_t, 4> Offsets;
9877   auto &DL = CLI.DAG.getDataLayout();
9878   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9879 
9880   if (CLI.IsPostTypeLegalization) {
9881     // If we are lowering a libcall after legalization, split the return type.
9882     SmallVector<EVT, 4> OldRetTys;
9883     SmallVector<uint64_t, 4> OldOffsets;
9884     RetTys.swap(OldRetTys);
9885     Offsets.swap(OldOffsets);
9886 
9887     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9888       EVT RetVT = OldRetTys[i];
9889       uint64_t Offset = OldOffsets[i];
9890       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9891       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9892       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9893       RetTys.append(NumRegs, RegisterVT);
9894       for (unsigned j = 0; j != NumRegs; ++j)
9895         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9896     }
9897   }
9898 
9899   SmallVector<ISD::OutputArg, 4> Outs;
9900   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9901 
9902   bool CanLowerReturn =
9903       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9904                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9905 
9906   SDValue DemoteStackSlot;
9907   int DemoteStackIdx = -100;
9908   if (!CanLowerReturn) {
9909     // FIXME: equivalent assert?
9910     // assert(!CS.hasInAllocaArgument() &&
9911     //        "sret demotion is incompatible with inalloca");
9912     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9913     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9914     MachineFunction &MF = CLI.DAG.getMachineFunction();
9915     DemoteStackIdx =
9916         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9917     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9918                                               DL.getAllocaAddrSpace());
9919 
9920     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9921     ArgListEntry Entry;
9922     Entry.Node = DemoteStackSlot;
9923     Entry.Ty = StackSlotPtrType;
9924     Entry.IsSExt = false;
9925     Entry.IsZExt = false;
9926     Entry.IsInReg = false;
9927     Entry.IsSRet = true;
9928     Entry.IsNest = false;
9929     Entry.IsByVal = false;
9930     Entry.IsByRef = false;
9931     Entry.IsReturned = false;
9932     Entry.IsSwiftSelf = false;
9933     Entry.IsSwiftAsync = false;
9934     Entry.IsSwiftError = false;
9935     Entry.IsCFGuardTarget = false;
9936     Entry.Alignment = Alignment;
9937     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9938     CLI.NumFixedArgs += 1;
9939     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9940     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9941 
9942     // sret demotion isn't compatible with tail-calls, since the sret argument
9943     // points into the callers stack frame.
9944     CLI.IsTailCall = false;
9945   } else {
9946     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9947         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9948     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9949       ISD::ArgFlagsTy Flags;
9950       if (NeedsRegBlock) {
9951         Flags.setInConsecutiveRegs();
9952         if (I == RetTys.size() - 1)
9953           Flags.setInConsecutiveRegsLast();
9954       }
9955       EVT VT = RetTys[I];
9956       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9957                                                      CLI.CallConv, VT);
9958       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9959                                                        CLI.CallConv, VT);
9960       for (unsigned i = 0; i != NumRegs; ++i) {
9961         ISD::InputArg MyFlags;
9962         MyFlags.Flags = Flags;
9963         MyFlags.VT = RegisterVT;
9964         MyFlags.ArgVT = VT;
9965         MyFlags.Used = CLI.IsReturnValueUsed;
9966         if (CLI.RetTy->isPointerTy()) {
9967           MyFlags.Flags.setPointer();
9968           MyFlags.Flags.setPointerAddrSpace(
9969               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9970         }
9971         if (CLI.RetSExt)
9972           MyFlags.Flags.setSExt();
9973         if (CLI.RetZExt)
9974           MyFlags.Flags.setZExt();
9975         if (CLI.IsInReg)
9976           MyFlags.Flags.setInReg();
9977         CLI.Ins.push_back(MyFlags);
9978       }
9979     }
9980   }
9981 
9982   // We push in swifterror return as the last element of CLI.Ins.
9983   ArgListTy &Args = CLI.getArgs();
9984   if (supportSwiftError()) {
9985     for (const ArgListEntry &Arg : Args) {
9986       if (Arg.IsSwiftError) {
9987         ISD::InputArg MyFlags;
9988         MyFlags.VT = getPointerTy(DL);
9989         MyFlags.ArgVT = EVT(getPointerTy(DL));
9990         MyFlags.Flags.setSwiftError();
9991         CLI.Ins.push_back(MyFlags);
9992       }
9993     }
9994   }
9995 
9996   // Handle all of the outgoing arguments.
9997   CLI.Outs.clear();
9998   CLI.OutVals.clear();
9999   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10000     SmallVector<EVT, 4> ValueVTs;
10001     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10002     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10003     Type *FinalType = Args[i].Ty;
10004     if (Args[i].IsByVal)
10005       FinalType = Args[i].IndirectType;
10006     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10007         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10008     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10009          ++Value) {
10010       EVT VT = ValueVTs[Value];
10011       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10012       SDValue Op = SDValue(Args[i].Node.getNode(),
10013                            Args[i].Node.getResNo() + Value);
10014       ISD::ArgFlagsTy Flags;
10015 
10016       // Certain targets (such as MIPS), may have a different ABI alignment
10017       // for a type depending on the context. Give the target a chance to
10018       // specify the alignment it wants.
10019       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10020       Flags.setOrigAlign(OriginalAlignment);
10021 
10022       if (Args[i].Ty->isPointerTy()) {
10023         Flags.setPointer();
10024         Flags.setPointerAddrSpace(
10025             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10026       }
10027       if (Args[i].IsZExt)
10028         Flags.setZExt();
10029       if (Args[i].IsSExt)
10030         Flags.setSExt();
10031       if (Args[i].IsInReg) {
10032         // If we are using vectorcall calling convention, a structure that is
10033         // passed InReg - is surely an HVA
10034         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10035             isa<StructType>(FinalType)) {
10036           // The first value of a structure is marked
10037           if (0 == Value)
10038             Flags.setHvaStart();
10039           Flags.setHva();
10040         }
10041         // Set InReg Flag
10042         Flags.setInReg();
10043       }
10044       if (Args[i].IsSRet)
10045         Flags.setSRet();
10046       if (Args[i].IsSwiftSelf)
10047         Flags.setSwiftSelf();
10048       if (Args[i].IsSwiftAsync)
10049         Flags.setSwiftAsync();
10050       if (Args[i].IsSwiftError)
10051         Flags.setSwiftError();
10052       if (Args[i].IsCFGuardTarget)
10053         Flags.setCFGuardTarget();
10054       if (Args[i].IsByVal)
10055         Flags.setByVal();
10056       if (Args[i].IsByRef)
10057         Flags.setByRef();
10058       if (Args[i].IsPreallocated) {
10059         Flags.setPreallocated();
10060         // Set the byval flag for CCAssignFn callbacks that don't know about
10061         // preallocated.  This way we can know how many bytes we should've
10062         // allocated and how many bytes a callee cleanup function will pop.  If
10063         // we port preallocated to more targets, we'll have to add custom
10064         // preallocated handling in the various CC lowering callbacks.
10065         Flags.setByVal();
10066       }
10067       if (Args[i].IsInAlloca) {
10068         Flags.setInAlloca();
10069         // Set the byval flag for CCAssignFn callbacks that don't know about
10070         // inalloca.  This way we can know how many bytes we should've allocated
10071         // and how many bytes a callee cleanup function will pop.  If we port
10072         // inalloca to more targets, we'll have to add custom inalloca handling
10073         // in the various CC lowering callbacks.
10074         Flags.setByVal();
10075       }
10076       Align MemAlign;
10077       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10078         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10079         Flags.setByValSize(FrameSize);
10080 
10081         // info is not there but there are cases it cannot get right.
10082         if (auto MA = Args[i].Alignment)
10083           MemAlign = *MA;
10084         else
10085           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10086       } else if (auto MA = Args[i].Alignment) {
10087         MemAlign = *MA;
10088       } else {
10089         MemAlign = OriginalAlignment;
10090       }
10091       Flags.setMemAlign(MemAlign);
10092       if (Args[i].IsNest)
10093         Flags.setNest();
10094       if (NeedsRegBlock)
10095         Flags.setInConsecutiveRegs();
10096 
10097       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10098                                                  CLI.CallConv, VT);
10099       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10100                                                         CLI.CallConv, VT);
10101       SmallVector<SDValue, 4> Parts(NumParts);
10102       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10103 
10104       if (Args[i].IsSExt)
10105         ExtendKind = ISD::SIGN_EXTEND;
10106       else if (Args[i].IsZExt)
10107         ExtendKind = ISD::ZERO_EXTEND;
10108 
10109       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10110       // for now.
10111       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10112           CanLowerReturn) {
10113         assert((CLI.RetTy == Args[i].Ty ||
10114                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10115                  CLI.RetTy->getPointerAddressSpace() ==
10116                      Args[i].Ty->getPointerAddressSpace())) &&
10117                RetTys.size() == NumValues && "unexpected use of 'returned'");
10118         // Before passing 'returned' to the target lowering code, ensure that
10119         // either the register MVT and the actual EVT are the same size or that
10120         // the return value and argument are extended in the same way; in these
10121         // cases it's safe to pass the argument register value unchanged as the
10122         // return register value (although it's at the target's option whether
10123         // to do so)
10124         // TODO: allow code generation to take advantage of partially preserved
10125         // registers rather than clobbering the entire register when the
10126         // parameter extension method is not compatible with the return
10127         // extension method
10128         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10129             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10130              CLI.RetZExt == Args[i].IsZExt))
10131           Flags.setReturned();
10132       }
10133 
10134       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10135                      CLI.CallConv, ExtendKind);
10136 
10137       for (unsigned j = 0; j != NumParts; ++j) {
10138         // if it isn't first piece, alignment must be 1
10139         // For scalable vectors the scalable part is currently handled
10140         // by individual targets, so we just use the known minimum size here.
10141         ISD::OutputArg MyFlags(
10142             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10143             i < CLI.NumFixedArgs, i,
10144             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10145         if (NumParts > 1 && j == 0)
10146           MyFlags.Flags.setSplit();
10147         else if (j != 0) {
10148           MyFlags.Flags.setOrigAlign(Align(1));
10149           if (j == NumParts - 1)
10150             MyFlags.Flags.setSplitEnd();
10151         }
10152 
10153         CLI.Outs.push_back(MyFlags);
10154         CLI.OutVals.push_back(Parts[j]);
10155       }
10156 
10157       if (NeedsRegBlock && Value == NumValues - 1)
10158         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10159     }
10160   }
10161 
10162   SmallVector<SDValue, 4> InVals;
10163   CLI.Chain = LowerCall(CLI, InVals);
10164 
10165   // Update CLI.InVals to use outside of this function.
10166   CLI.InVals = InVals;
10167 
10168   // Verify that the target's LowerCall behaved as expected.
10169   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10170          "LowerCall didn't return a valid chain!");
10171   assert((!CLI.IsTailCall || InVals.empty()) &&
10172          "LowerCall emitted a return value for a tail call!");
10173   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10174          "LowerCall didn't emit the correct number of values!");
10175 
10176   // For a tail call, the return value is merely live-out and there aren't
10177   // any nodes in the DAG representing it. Return a special value to
10178   // indicate that a tail call has been emitted and no more Instructions
10179   // should be processed in the current block.
10180   if (CLI.IsTailCall) {
10181     CLI.DAG.setRoot(CLI.Chain);
10182     return std::make_pair(SDValue(), SDValue());
10183   }
10184 
10185 #ifndef NDEBUG
10186   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10187     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10188     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10189            "LowerCall emitted a value with the wrong type!");
10190   }
10191 #endif
10192 
10193   SmallVector<SDValue, 4> ReturnValues;
10194   if (!CanLowerReturn) {
10195     // The instruction result is the result of loading from the
10196     // hidden sret parameter.
10197     SmallVector<EVT, 1> PVTs;
10198     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10199 
10200     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10201     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10202     EVT PtrVT = PVTs[0];
10203 
10204     unsigned NumValues = RetTys.size();
10205     ReturnValues.resize(NumValues);
10206     SmallVector<SDValue, 4> Chains(NumValues);
10207 
10208     // An aggregate return value cannot wrap around the address space, so
10209     // offsets to its parts don't wrap either.
10210     SDNodeFlags Flags;
10211     Flags.setNoUnsignedWrap(true);
10212 
10213     MachineFunction &MF = CLI.DAG.getMachineFunction();
10214     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10215     for (unsigned i = 0; i < NumValues; ++i) {
10216       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10217                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10218                                                         PtrVT), Flags);
10219       SDValue L = CLI.DAG.getLoad(
10220           RetTys[i], CLI.DL, CLI.Chain, Add,
10221           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10222                                             DemoteStackIdx, Offsets[i]),
10223           HiddenSRetAlign);
10224       ReturnValues[i] = L;
10225       Chains[i] = L.getValue(1);
10226     }
10227 
10228     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10229   } else {
10230     // Collect the legal value parts into potentially illegal values
10231     // that correspond to the original function's return values.
10232     std::optional<ISD::NodeType> AssertOp;
10233     if (CLI.RetSExt)
10234       AssertOp = ISD::AssertSext;
10235     else if (CLI.RetZExt)
10236       AssertOp = ISD::AssertZext;
10237     unsigned CurReg = 0;
10238     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10239       EVT VT = RetTys[I];
10240       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10241                                                      CLI.CallConv, VT);
10242       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10243                                                        CLI.CallConv, VT);
10244 
10245       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10246                                               NumRegs, RegisterVT, VT, nullptr,
10247                                               CLI.CallConv, AssertOp));
10248       CurReg += NumRegs;
10249     }
10250 
10251     // For a function returning void, there is no return value. We can't create
10252     // such a node, so we just return a null return value in that case. In
10253     // that case, nothing will actually look at the value.
10254     if (ReturnValues.empty())
10255       return std::make_pair(SDValue(), CLI.Chain);
10256   }
10257 
10258   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10259                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10260   return std::make_pair(Res, CLI.Chain);
10261 }
10262 
10263 /// Places new result values for the node in Results (their number
10264 /// and types must exactly match those of the original return values of
10265 /// the node), or leaves Results empty, which indicates that the node is not
10266 /// to be custom lowered after all.
10267 void TargetLowering::LowerOperationWrapper(SDNode *N,
10268                                            SmallVectorImpl<SDValue> &Results,
10269                                            SelectionDAG &DAG) const {
10270   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10271 
10272   if (!Res.getNode())
10273     return;
10274 
10275   // If the original node has one result, take the return value from
10276   // LowerOperation as is. It might not be result number 0.
10277   if (N->getNumValues() == 1) {
10278     Results.push_back(Res);
10279     return;
10280   }
10281 
10282   // If the original node has multiple results, then the return node should
10283   // have the same number of results.
10284   assert((N->getNumValues() == Res->getNumValues()) &&
10285       "Lowering returned the wrong number of results!");
10286 
10287   // Places new result values base on N result number.
10288   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10289     Results.push_back(Res.getValue(I));
10290 }
10291 
10292 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10293   llvm_unreachable("LowerOperation not implemented for this target!");
10294 }
10295 
10296 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10297                                                      unsigned Reg,
10298                                                      ISD::NodeType ExtendType) {
10299   SDValue Op = getNonRegisterValue(V);
10300   assert((Op.getOpcode() != ISD::CopyFromReg ||
10301           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10302          "Copy from a reg to the same reg!");
10303   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10304 
10305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10306   // If this is an InlineAsm we have to match the registers required, not the
10307   // notional registers required by the type.
10308 
10309   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10310                    std::nullopt); // This is not an ABI copy.
10311   SDValue Chain = DAG.getEntryNode();
10312 
10313   if (ExtendType == ISD::ANY_EXTEND) {
10314     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10315     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10316       ExtendType = PreferredExtendIt->second;
10317   }
10318   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10319   PendingExports.push_back(Chain);
10320 }
10321 
10322 #include "llvm/CodeGen/SelectionDAGISel.h"
10323 
10324 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10325 /// entry block, return true.  This includes arguments used by switches, since
10326 /// the switch may expand into multiple basic blocks.
10327 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10328   // With FastISel active, we may be splitting blocks, so force creation
10329   // of virtual registers for all non-dead arguments.
10330   if (FastISel)
10331     return A->use_empty();
10332 
10333   const BasicBlock &Entry = A->getParent()->front();
10334   for (const User *U : A->users())
10335     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10336       return false;  // Use not in entry block.
10337 
10338   return true;
10339 }
10340 
10341 using ArgCopyElisionMapTy =
10342     DenseMap<const Argument *,
10343              std::pair<const AllocaInst *, const StoreInst *>>;
10344 
10345 /// Scan the entry block of the function in FuncInfo for arguments that look
10346 /// like copies into a local alloca. Record any copied arguments in
10347 /// ArgCopyElisionCandidates.
10348 static void
10349 findArgumentCopyElisionCandidates(const DataLayout &DL,
10350                                   FunctionLoweringInfo *FuncInfo,
10351                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10352   // Record the state of every static alloca used in the entry block. Argument
10353   // allocas are all used in the entry block, so we need approximately as many
10354   // entries as we have arguments.
10355   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10356   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10357   unsigned NumArgs = FuncInfo->Fn->arg_size();
10358   StaticAllocas.reserve(NumArgs * 2);
10359 
10360   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10361     if (!V)
10362       return nullptr;
10363     V = V->stripPointerCasts();
10364     const auto *AI = dyn_cast<AllocaInst>(V);
10365     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10366       return nullptr;
10367     auto Iter = StaticAllocas.insert({AI, Unknown});
10368     return &Iter.first->second;
10369   };
10370 
10371   // Look for stores of arguments to static allocas. Look through bitcasts and
10372   // GEPs to handle type coercions, as long as the alloca is fully initialized
10373   // by the store. Any non-store use of an alloca escapes it and any subsequent
10374   // unanalyzed store might write it.
10375   // FIXME: Handle structs initialized with multiple stores.
10376   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10377     // Look for stores, and handle non-store uses conservatively.
10378     const auto *SI = dyn_cast<StoreInst>(&I);
10379     if (!SI) {
10380       // We will look through cast uses, so ignore them completely.
10381       if (I.isCast())
10382         continue;
10383       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10384       // to allocas.
10385       if (I.isDebugOrPseudoInst())
10386         continue;
10387       // This is an unknown instruction. Assume it escapes or writes to all
10388       // static alloca operands.
10389       for (const Use &U : I.operands()) {
10390         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10391           *Info = StaticAllocaInfo::Clobbered;
10392       }
10393       continue;
10394     }
10395 
10396     // If the stored value is a static alloca, mark it as escaped.
10397     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10398       *Info = StaticAllocaInfo::Clobbered;
10399 
10400     // Check if the destination is a static alloca.
10401     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10402     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10403     if (!Info)
10404       continue;
10405     const AllocaInst *AI = cast<AllocaInst>(Dst);
10406 
10407     // Skip allocas that have been initialized or clobbered.
10408     if (*Info != StaticAllocaInfo::Unknown)
10409       continue;
10410 
10411     // Check if the stored value is an argument, and that this store fully
10412     // initializes the alloca.
10413     // If the argument type has padding bits we can't directly forward a pointer
10414     // as the upper bits may contain garbage.
10415     // Don't elide copies from the same argument twice.
10416     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10417     const auto *Arg = dyn_cast<Argument>(Val);
10418     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10419         Arg->getType()->isEmptyTy() ||
10420         DL.getTypeStoreSize(Arg->getType()) !=
10421             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10422         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10423         ArgCopyElisionCandidates.count(Arg)) {
10424       *Info = StaticAllocaInfo::Clobbered;
10425       continue;
10426     }
10427 
10428     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10429                       << '\n');
10430 
10431     // Mark this alloca and store for argument copy elision.
10432     *Info = StaticAllocaInfo::Elidable;
10433     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10434 
10435     // Stop scanning if we've seen all arguments. This will happen early in -O0
10436     // builds, which is useful, because -O0 builds have large entry blocks and
10437     // many allocas.
10438     if (ArgCopyElisionCandidates.size() == NumArgs)
10439       break;
10440   }
10441 }
10442 
10443 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10444 /// ArgVal is a load from a suitable fixed stack object.
10445 static void tryToElideArgumentCopy(
10446     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10447     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10448     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10449     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10450     SDValue ArgVal, bool &ArgHasUses) {
10451   // Check if this is a load from a fixed stack object.
10452   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10453   if (!LNode)
10454     return;
10455   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10456   if (!FINode)
10457     return;
10458 
10459   // Check that the fixed stack object is the right size and alignment.
10460   // Look at the alignment that the user wrote on the alloca instead of looking
10461   // at the stack object.
10462   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10463   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10464   const AllocaInst *AI = ArgCopyIter->second.first;
10465   int FixedIndex = FINode->getIndex();
10466   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10467   int OldIndex = AllocaIndex;
10468   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10469   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10470     LLVM_DEBUG(
10471         dbgs() << "  argument copy elision failed due to bad fixed stack "
10472                   "object size\n");
10473     return;
10474   }
10475   Align RequiredAlignment = AI->getAlign();
10476   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10477     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10478                          "greater than stack argument alignment ("
10479                       << DebugStr(RequiredAlignment) << " vs "
10480                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10481     return;
10482   }
10483 
10484   // Perform the elision. Delete the old stack object and replace its only use
10485   // in the variable info map. Mark the stack object as mutable.
10486   LLVM_DEBUG({
10487     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10488            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10489            << '\n';
10490   });
10491   MFI.RemoveStackObject(OldIndex);
10492   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10493   AllocaIndex = FixedIndex;
10494   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10495   Chains.push_back(ArgVal.getValue(1));
10496 
10497   // Avoid emitting code for the store implementing the copy.
10498   const StoreInst *SI = ArgCopyIter->second.second;
10499   ElidedArgCopyInstrs.insert(SI);
10500 
10501   // Check for uses of the argument again so that we can avoid exporting ArgVal
10502   // if it is't used by anything other than the store.
10503   for (const Value *U : Arg.users()) {
10504     if (U != SI) {
10505       ArgHasUses = true;
10506       break;
10507     }
10508   }
10509 }
10510 
10511 void SelectionDAGISel::LowerArguments(const Function &F) {
10512   SelectionDAG &DAG = SDB->DAG;
10513   SDLoc dl = SDB->getCurSDLoc();
10514   const DataLayout &DL = DAG.getDataLayout();
10515   SmallVector<ISD::InputArg, 16> Ins;
10516 
10517   // In Naked functions we aren't going to save any registers.
10518   if (F.hasFnAttribute(Attribute::Naked))
10519     return;
10520 
10521   if (!FuncInfo->CanLowerReturn) {
10522     // Put in an sret pointer parameter before all the other parameters.
10523     SmallVector<EVT, 1> ValueVTs;
10524     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10525                     F.getReturnType()->getPointerTo(
10526                         DAG.getDataLayout().getAllocaAddrSpace()),
10527                     ValueVTs);
10528 
10529     // NOTE: Assuming that a pointer will never break down to more than one VT
10530     // or one register.
10531     ISD::ArgFlagsTy Flags;
10532     Flags.setSRet();
10533     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10534     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10535                          ISD::InputArg::NoArgIndex, 0);
10536     Ins.push_back(RetArg);
10537   }
10538 
10539   // Look for stores of arguments to static allocas. Mark such arguments with a
10540   // flag to ask the target to give us the memory location of that argument if
10541   // available.
10542   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10543   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10544                                     ArgCopyElisionCandidates);
10545 
10546   // Set up the incoming argument description vector.
10547   for (const Argument &Arg : F.args()) {
10548     unsigned ArgNo = Arg.getArgNo();
10549     SmallVector<EVT, 4> ValueVTs;
10550     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10551     bool isArgValueUsed = !Arg.use_empty();
10552     unsigned PartBase = 0;
10553     Type *FinalType = Arg.getType();
10554     if (Arg.hasAttribute(Attribute::ByVal))
10555       FinalType = Arg.getParamByValType();
10556     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10557         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10558     for (unsigned Value = 0, NumValues = ValueVTs.size();
10559          Value != NumValues; ++Value) {
10560       EVT VT = ValueVTs[Value];
10561       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10562       ISD::ArgFlagsTy Flags;
10563 
10564 
10565       if (Arg.getType()->isPointerTy()) {
10566         Flags.setPointer();
10567         Flags.setPointerAddrSpace(
10568             cast<PointerType>(Arg.getType())->getAddressSpace());
10569       }
10570       if (Arg.hasAttribute(Attribute::ZExt))
10571         Flags.setZExt();
10572       if (Arg.hasAttribute(Attribute::SExt))
10573         Flags.setSExt();
10574       if (Arg.hasAttribute(Attribute::InReg)) {
10575         // If we are using vectorcall calling convention, a structure that is
10576         // passed InReg - is surely an HVA
10577         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10578             isa<StructType>(Arg.getType())) {
10579           // The first value of a structure is marked
10580           if (0 == Value)
10581             Flags.setHvaStart();
10582           Flags.setHva();
10583         }
10584         // Set InReg Flag
10585         Flags.setInReg();
10586       }
10587       if (Arg.hasAttribute(Attribute::StructRet))
10588         Flags.setSRet();
10589       if (Arg.hasAttribute(Attribute::SwiftSelf))
10590         Flags.setSwiftSelf();
10591       if (Arg.hasAttribute(Attribute::SwiftAsync))
10592         Flags.setSwiftAsync();
10593       if (Arg.hasAttribute(Attribute::SwiftError))
10594         Flags.setSwiftError();
10595       if (Arg.hasAttribute(Attribute::ByVal))
10596         Flags.setByVal();
10597       if (Arg.hasAttribute(Attribute::ByRef))
10598         Flags.setByRef();
10599       if (Arg.hasAttribute(Attribute::InAlloca)) {
10600         Flags.setInAlloca();
10601         // Set the byval flag for CCAssignFn callbacks that don't know about
10602         // inalloca.  This way we can know how many bytes we should've allocated
10603         // and how many bytes a callee cleanup function will pop.  If we port
10604         // inalloca to more targets, we'll have to add custom inalloca handling
10605         // in the various CC lowering callbacks.
10606         Flags.setByVal();
10607       }
10608       if (Arg.hasAttribute(Attribute::Preallocated)) {
10609         Flags.setPreallocated();
10610         // Set the byval flag for CCAssignFn callbacks that don't know about
10611         // preallocated.  This way we can know how many bytes we should've
10612         // allocated and how many bytes a callee cleanup function will pop.  If
10613         // we port preallocated to more targets, we'll have to add custom
10614         // preallocated handling in the various CC lowering callbacks.
10615         Flags.setByVal();
10616       }
10617 
10618       // Certain targets (such as MIPS), may have a different ABI alignment
10619       // for a type depending on the context. Give the target a chance to
10620       // specify the alignment it wants.
10621       const Align OriginalAlignment(
10622           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10623       Flags.setOrigAlign(OriginalAlignment);
10624 
10625       Align MemAlign;
10626       Type *ArgMemTy = nullptr;
10627       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10628           Flags.isByRef()) {
10629         if (!ArgMemTy)
10630           ArgMemTy = Arg.getPointeeInMemoryValueType();
10631 
10632         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10633 
10634         // For in-memory arguments, size and alignment should be passed from FE.
10635         // BE will guess if this info is not there but there are cases it cannot
10636         // get right.
10637         if (auto ParamAlign = Arg.getParamStackAlign())
10638           MemAlign = *ParamAlign;
10639         else if ((ParamAlign = Arg.getParamAlign()))
10640           MemAlign = *ParamAlign;
10641         else
10642           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10643         if (Flags.isByRef())
10644           Flags.setByRefSize(MemSize);
10645         else
10646           Flags.setByValSize(MemSize);
10647       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10648         MemAlign = *ParamAlign;
10649       } else {
10650         MemAlign = OriginalAlignment;
10651       }
10652       Flags.setMemAlign(MemAlign);
10653 
10654       if (Arg.hasAttribute(Attribute::Nest))
10655         Flags.setNest();
10656       if (NeedsRegBlock)
10657         Flags.setInConsecutiveRegs();
10658       if (ArgCopyElisionCandidates.count(&Arg))
10659         Flags.setCopyElisionCandidate();
10660       if (Arg.hasAttribute(Attribute::Returned))
10661         Flags.setReturned();
10662 
10663       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10664           *CurDAG->getContext(), F.getCallingConv(), VT);
10665       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10666           *CurDAG->getContext(), F.getCallingConv(), VT);
10667       for (unsigned i = 0; i != NumRegs; ++i) {
10668         // For scalable vectors, use the minimum size; individual targets
10669         // are responsible for handling scalable vector arguments and
10670         // return values.
10671         ISD::InputArg MyFlags(
10672             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10673             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10674         if (NumRegs > 1 && i == 0)
10675           MyFlags.Flags.setSplit();
10676         // if it isn't first piece, alignment must be 1
10677         else if (i > 0) {
10678           MyFlags.Flags.setOrigAlign(Align(1));
10679           if (i == NumRegs - 1)
10680             MyFlags.Flags.setSplitEnd();
10681         }
10682         Ins.push_back(MyFlags);
10683       }
10684       if (NeedsRegBlock && Value == NumValues - 1)
10685         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10686       PartBase += VT.getStoreSize().getKnownMinValue();
10687     }
10688   }
10689 
10690   // Call the target to set up the argument values.
10691   SmallVector<SDValue, 8> InVals;
10692   SDValue NewRoot = TLI->LowerFormalArguments(
10693       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10694 
10695   // Verify that the target's LowerFormalArguments behaved as expected.
10696   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10697          "LowerFormalArguments didn't return a valid chain!");
10698   assert(InVals.size() == Ins.size() &&
10699          "LowerFormalArguments didn't emit the correct number of values!");
10700   LLVM_DEBUG({
10701     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10702       assert(InVals[i].getNode() &&
10703              "LowerFormalArguments emitted a null value!");
10704       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10705              "LowerFormalArguments emitted a value with the wrong type!");
10706     }
10707   });
10708 
10709   // Update the DAG with the new chain value resulting from argument lowering.
10710   DAG.setRoot(NewRoot);
10711 
10712   // Set up the argument values.
10713   unsigned i = 0;
10714   if (!FuncInfo->CanLowerReturn) {
10715     // Create a virtual register for the sret pointer, and put in a copy
10716     // from the sret argument into it.
10717     SmallVector<EVT, 1> ValueVTs;
10718     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10719                     F.getReturnType()->getPointerTo(
10720                         DAG.getDataLayout().getAllocaAddrSpace()),
10721                     ValueVTs);
10722     MVT VT = ValueVTs[0].getSimpleVT();
10723     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10724     std::optional<ISD::NodeType> AssertOp;
10725     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10726                                         nullptr, F.getCallingConv(), AssertOp);
10727 
10728     MachineFunction& MF = SDB->DAG.getMachineFunction();
10729     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10730     Register SRetReg =
10731         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10732     FuncInfo->DemoteRegister = SRetReg;
10733     NewRoot =
10734         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10735     DAG.setRoot(NewRoot);
10736 
10737     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10738     ++i;
10739   }
10740 
10741   SmallVector<SDValue, 4> Chains;
10742   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10743   for (const Argument &Arg : F.args()) {
10744     SmallVector<SDValue, 4> ArgValues;
10745     SmallVector<EVT, 4> ValueVTs;
10746     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10747     unsigned NumValues = ValueVTs.size();
10748     if (NumValues == 0)
10749       continue;
10750 
10751     bool ArgHasUses = !Arg.use_empty();
10752 
10753     // Elide the copying store if the target loaded this argument from a
10754     // suitable fixed stack object.
10755     if (Ins[i].Flags.isCopyElisionCandidate()) {
10756       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10757                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10758                              InVals[i], ArgHasUses);
10759     }
10760 
10761     // If this argument is unused then remember its value. It is used to generate
10762     // debugging information.
10763     bool isSwiftErrorArg =
10764         TLI->supportSwiftError() &&
10765         Arg.hasAttribute(Attribute::SwiftError);
10766     if (!ArgHasUses && !isSwiftErrorArg) {
10767       SDB->setUnusedArgValue(&Arg, InVals[i]);
10768 
10769       // Also remember any frame index for use in FastISel.
10770       if (FrameIndexSDNode *FI =
10771           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10772         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10773     }
10774 
10775     for (unsigned Val = 0; Val != NumValues; ++Val) {
10776       EVT VT = ValueVTs[Val];
10777       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10778                                                       F.getCallingConv(), VT);
10779       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10780           *CurDAG->getContext(), F.getCallingConv(), VT);
10781 
10782       // Even an apparent 'unused' swifterror argument needs to be returned. So
10783       // we do generate a copy for it that can be used on return from the
10784       // function.
10785       if (ArgHasUses || isSwiftErrorArg) {
10786         std::optional<ISD::NodeType> AssertOp;
10787         if (Arg.hasAttribute(Attribute::SExt))
10788           AssertOp = ISD::AssertSext;
10789         else if (Arg.hasAttribute(Attribute::ZExt))
10790           AssertOp = ISD::AssertZext;
10791 
10792         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10793                                              PartVT, VT, nullptr,
10794                                              F.getCallingConv(), AssertOp));
10795       }
10796 
10797       i += NumParts;
10798     }
10799 
10800     // We don't need to do anything else for unused arguments.
10801     if (ArgValues.empty())
10802       continue;
10803 
10804     // Note down frame index.
10805     if (FrameIndexSDNode *FI =
10806         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10807       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10808 
10809     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10810                                      SDB->getCurSDLoc());
10811 
10812     SDB->setValue(&Arg, Res);
10813     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10814       // We want to associate the argument with the frame index, among
10815       // involved operands, that correspond to the lowest address. The
10816       // getCopyFromParts function, called earlier, is swapping the order of
10817       // the operands to BUILD_PAIR depending on endianness. The result of
10818       // that swapping is that the least significant bits of the argument will
10819       // be in the first operand of the BUILD_PAIR node, and the most
10820       // significant bits will be in the second operand.
10821       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10822       if (LoadSDNode *LNode =
10823           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10824         if (FrameIndexSDNode *FI =
10825             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10826           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10827     }
10828 
10829     // Analyses past this point are naive and don't expect an assertion.
10830     if (Res.getOpcode() == ISD::AssertZext)
10831       Res = Res.getOperand(0);
10832 
10833     // Update the SwiftErrorVRegDefMap.
10834     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10835       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10836       if (Register::isVirtualRegister(Reg))
10837         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10838                                    Reg);
10839     }
10840 
10841     // If this argument is live outside of the entry block, insert a copy from
10842     // wherever we got it to the vreg that other BB's will reference it as.
10843     if (Res.getOpcode() == ISD::CopyFromReg) {
10844       // If we can, though, try to skip creating an unnecessary vreg.
10845       // FIXME: This isn't very clean... it would be nice to make this more
10846       // general.
10847       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10848       if (Register::isVirtualRegister(Reg)) {
10849         FuncInfo->ValueMap[&Arg] = Reg;
10850         continue;
10851       }
10852     }
10853     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10854       FuncInfo->InitializeRegForValue(&Arg);
10855       SDB->CopyToExportRegsIfNeeded(&Arg);
10856     }
10857   }
10858 
10859   if (!Chains.empty()) {
10860     Chains.push_back(NewRoot);
10861     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10862   }
10863 
10864   DAG.setRoot(NewRoot);
10865 
10866   assert(i == InVals.size() && "Argument register count mismatch!");
10867 
10868   // If any argument copy elisions occurred and we have debug info, update the
10869   // stale frame indices used in the dbg.declare variable info table.
10870   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10871   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10872     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10873       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10874       if (I != ArgCopyElisionFrameIndexMap.end())
10875         VI.Slot = I->second;
10876     }
10877   }
10878 
10879   // Finally, if the target has anything special to do, allow it to do so.
10880   emitFunctionEntryCode();
10881 }
10882 
10883 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10884 /// ensure constants are generated when needed.  Remember the virtual registers
10885 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10886 /// directly add them, because expansion might result in multiple MBB's for one
10887 /// BB.  As such, the start of the BB might correspond to a different MBB than
10888 /// the end.
10889 void
10890 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10892 
10893   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10894 
10895   // Check PHI nodes in successors that expect a value to be available from this
10896   // block.
10897   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10898     if (!isa<PHINode>(SuccBB->begin())) continue;
10899     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10900 
10901     // If this terminator has multiple identical successors (common for
10902     // switches), only handle each succ once.
10903     if (!SuccsHandled.insert(SuccMBB).second)
10904       continue;
10905 
10906     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10907 
10908     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10909     // nodes and Machine PHI nodes, but the incoming operands have not been
10910     // emitted yet.
10911     for (const PHINode &PN : SuccBB->phis()) {
10912       // Ignore dead phi's.
10913       if (PN.use_empty())
10914         continue;
10915 
10916       // Skip empty types
10917       if (PN.getType()->isEmptyTy())
10918         continue;
10919 
10920       unsigned Reg;
10921       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10922 
10923       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10924         unsigned &RegOut = ConstantsOut[C];
10925         if (RegOut == 0) {
10926           RegOut = FuncInfo.CreateRegs(C);
10927           // We need to zero/sign extend ConstantInt phi operands to match
10928           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10929           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10930           if (auto *CI = dyn_cast<ConstantInt>(C))
10931             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10932                                                     : ISD::ZERO_EXTEND;
10933           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10934         }
10935         Reg = RegOut;
10936       } else {
10937         DenseMap<const Value *, Register>::iterator I =
10938           FuncInfo.ValueMap.find(PHIOp);
10939         if (I != FuncInfo.ValueMap.end())
10940           Reg = I->second;
10941         else {
10942           assert(isa<AllocaInst>(PHIOp) &&
10943                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10944                  "Didn't codegen value into a register!??");
10945           Reg = FuncInfo.CreateRegs(PHIOp);
10946           CopyValueToVirtualRegister(PHIOp, Reg);
10947         }
10948       }
10949 
10950       // Remember that this register needs to added to the machine PHI node as
10951       // the input for this MBB.
10952       SmallVector<EVT, 4> ValueVTs;
10953       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10954       for (EVT VT : ValueVTs) {
10955         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10956         for (unsigned i = 0; i != NumRegisters; ++i)
10957           FuncInfo.PHINodesToUpdate.push_back(
10958               std::make_pair(&*MBBI++, Reg + i));
10959         Reg += NumRegisters;
10960       }
10961     }
10962   }
10963 
10964   ConstantsOut.clear();
10965 }
10966 
10967 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10968   MachineFunction::iterator I(MBB);
10969   if (++I == FuncInfo.MF->end())
10970     return nullptr;
10971   return &*I;
10972 }
10973 
10974 /// During lowering new call nodes can be created (such as memset, etc.).
10975 /// Those will become new roots of the current DAG, but complications arise
10976 /// when they are tail calls. In such cases, the call lowering will update
10977 /// the root, but the builder still needs to know that a tail call has been
10978 /// lowered in order to avoid generating an additional return.
10979 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10980   // If the node is null, we do have a tail call.
10981   if (MaybeTC.getNode() != nullptr)
10982     DAG.setRoot(MaybeTC);
10983   else
10984     HasTailCall = true;
10985 }
10986 
10987 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10988                                         MachineBasicBlock *SwitchMBB,
10989                                         MachineBasicBlock *DefaultMBB) {
10990   MachineFunction *CurMF = FuncInfo.MF;
10991   MachineBasicBlock *NextMBB = nullptr;
10992   MachineFunction::iterator BBI(W.MBB);
10993   if (++BBI != FuncInfo.MF->end())
10994     NextMBB = &*BBI;
10995 
10996   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10997 
10998   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10999 
11000   if (Size == 2 && W.MBB == SwitchMBB) {
11001     // If any two of the cases has the same destination, and if one value
11002     // is the same as the other, but has one bit unset that the other has set,
11003     // use bit manipulation to do two compares at once.  For example:
11004     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11005     // TODO: This could be extended to merge any 2 cases in switches with 3
11006     // cases.
11007     // TODO: Handle cases where W.CaseBB != SwitchBB.
11008     CaseCluster &Small = *W.FirstCluster;
11009     CaseCluster &Big = *W.LastCluster;
11010 
11011     if (Small.Low == Small.High && Big.Low == Big.High &&
11012         Small.MBB == Big.MBB) {
11013       const APInt &SmallValue = Small.Low->getValue();
11014       const APInt &BigValue = Big.Low->getValue();
11015 
11016       // Check that there is only one bit different.
11017       APInt CommonBit = BigValue ^ SmallValue;
11018       if (CommonBit.isPowerOf2()) {
11019         SDValue CondLHS = getValue(Cond);
11020         EVT VT = CondLHS.getValueType();
11021         SDLoc DL = getCurSDLoc();
11022 
11023         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11024                                  DAG.getConstant(CommonBit, DL, VT));
11025         SDValue Cond = DAG.getSetCC(
11026             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11027             ISD::SETEQ);
11028 
11029         // Update successor info.
11030         // Both Small and Big will jump to Small.BB, so we sum up the
11031         // probabilities.
11032         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11033         if (BPI)
11034           addSuccessorWithProb(
11035               SwitchMBB, DefaultMBB,
11036               // The default destination is the first successor in IR.
11037               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11038         else
11039           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11040 
11041         // Insert the true branch.
11042         SDValue BrCond =
11043             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11044                         DAG.getBasicBlock(Small.MBB));
11045         // Insert the false branch.
11046         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11047                              DAG.getBasicBlock(DefaultMBB));
11048 
11049         DAG.setRoot(BrCond);
11050         return;
11051       }
11052     }
11053   }
11054 
11055   if (TM.getOptLevel() != CodeGenOpt::None) {
11056     // Here, we order cases by probability so the most likely case will be
11057     // checked first. However, two clusters can have the same probability in
11058     // which case their relative ordering is non-deterministic. So we use Low
11059     // as a tie-breaker as clusters are guaranteed to never overlap.
11060     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11061                [](const CaseCluster &a, const CaseCluster &b) {
11062       return a.Prob != b.Prob ?
11063              a.Prob > b.Prob :
11064              a.Low->getValue().slt(b.Low->getValue());
11065     });
11066 
11067     // Rearrange the case blocks so that the last one falls through if possible
11068     // without changing the order of probabilities.
11069     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11070       --I;
11071       if (I->Prob > W.LastCluster->Prob)
11072         break;
11073       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11074         std::swap(*I, *W.LastCluster);
11075         break;
11076       }
11077     }
11078   }
11079 
11080   // Compute total probability.
11081   BranchProbability DefaultProb = W.DefaultProb;
11082   BranchProbability UnhandledProbs = DefaultProb;
11083   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11084     UnhandledProbs += I->Prob;
11085 
11086   MachineBasicBlock *CurMBB = W.MBB;
11087   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11088     bool FallthroughUnreachable = false;
11089     MachineBasicBlock *Fallthrough;
11090     if (I == W.LastCluster) {
11091       // For the last cluster, fall through to the default destination.
11092       Fallthrough = DefaultMBB;
11093       FallthroughUnreachable = isa<UnreachableInst>(
11094           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11095     } else {
11096       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11097       CurMF->insert(BBI, Fallthrough);
11098       // Put Cond in a virtual register to make it available from the new blocks.
11099       ExportFromCurrentBlock(Cond);
11100     }
11101     UnhandledProbs -= I->Prob;
11102 
11103     switch (I->Kind) {
11104       case CC_JumpTable: {
11105         // FIXME: Optimize away range check based on pivot comparisons.
11106         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11107         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11108 
11109         // The jump block hasn't been inserted yet; insert it here.
11110         MachineBasicBlock *JumpMBB = JT->MBB;
11111         CurMF->insert(BBI, JumpMBB);
11112 
11113         auto JumpProb = I->Prob;
11114         auto FallthroughProb = UnhandledProbs;
11115 
11116         // If the default statement is a target of the jump table, we evenly
11117         // distribute the default probability to successors of CurMBB. Also
11118         // update the probability on the edge from JumpMBB to Fallthrough.
11119         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11120                                               SE = JumpMBB->succ_end();
11121              SI != SE; ++SI) {
11122           if (*SI == DefaultMBB) {
11123             JumpProb += DefaultProb / 2;
11124             FallthroughProb -= DefaultProb / 2;
11125             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11126             JumpMBB->normalizeSuccProbs();
11127             break;
11128           }
11129         }
11130 
11131         if (FallthroughUnreachable)
11132           JTH->FallthroughUnreachable = true;
11133 
11134         if (!JTH->FallthroughUnreachable)
11135           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11136         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11137         CurMBB->normalizeSuccProbs();
11138 
11139         // The jump table header will be inserted in our current block, do the
11140         // range check, and fall through to our fallthrough block.
11141         JTH->HeaderBB = CurMBB;
11142         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11143 
11144         // If we're in the right place, emit the jump table header right now.
11145         if (CurMBB == SwitchMBB) {
11146           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11147           JTH->Emitted = true;
11148         }
11149         break;
11150       }
11151       case CC_BitTests: {
11152         // FIXME: Optimize away range check based on pivot comparisons.
11153         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11154 
11155         // The bit test blocks haven't been inserted yet; insert them here.
11156         for (BitTestCase &BTC : BTB->Cases)
11157           CurMF->insert(BBI, BTC.ThisBB);
11158 
11159         // Fill in fields of the BitTestBlock.
11160         BTB->Parent = CurMBB;
11161         BTB->Default = Fallthrough;
11162 
11163         BTB->DefaultProb = UnhandledProbs;
11164         // If the cases in bit test don't form a contiguous range, we evenly
11165         // distribute the probability on the edge to Fallthrough to two
11166         // successors of CurMBB.
11167         if (!BTB->ContiguousRange) {
11168           BTB->Prob += DefaultProb / 2;
11169           BTB->DefaultProb -= DefaultProb / 2;
11170         }
11171 
11172         if (FallthroughUnreachable)
11173           BTB->FallthroughUnreachable = true;
11174 
11175         // If we're in the right place, emit the bit test header right now.
11176         if (CurMBB == SwitchMBB) {
11177           visitBitTestHeader(*BTB, SwitchMBB);
11178           BTB->Emitted = true;
11179         }
11180         break;
11181       }
11182       case CC_Range: {
11183         const Value *RHS, *LHS, *MHS;
11184         ISD::CondCode CC;
11185         if (I->Low == I->High) {
11186           // Check Cond == I->Low.
11187           CC = ISD::SETEQ;
11188           LHS = Cond;
11189           RHS=I->Low;
11190           MHS = nullptr;
11191         } else {
11192           // Check I->Low <= Cond <= I->High.
11193           CC = ISD::SETLE;
11194           LHS = I->Low;
11195           MHS = Cond;
11196           RHS = I->High;
11197         }
11198 
11199         // If Fallthrough is unreachable, fold away the comparison.
11200         if (FallthroughUnreachable)
11201           CC = ISD::SETTRUE;
11202 
11203         // The false probability is the sum of all unhandled cases.
11204         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11205                      getCurSDLoc(), I->Prob, UnhandledProbs);
11206 
11207         if (CurMBB == SwitchMBB)
11208           visitSwitchCase(CB, SwitchMBB);
11209         else
11210           SL->SwitchCases.push_back(CB);
11211 
11212         break;
11213       }
11214     }
11215     CurMBB = Fallthrough;
11216   }
11217 }
11218 
11219 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11220                                               CaseClusterIt First,
11221                                               CaseClusterIt Last) {
11222   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11223     if (X.Prob != CC.Prob)
11224       return X.Prob > CC.Prob;
11225 
11226     // Ties are broken by comparing the case value.
11227     return X.Low->getValue().slt(CC.Low->getValue());
11228   });
11229 }
11230 
11231 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11232                                         const SwitchWorkListItem &W,
11233                                         Value *Cond,
11234                                         MachineBasicBlock *SwitchMBB) {
11235   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11236          "Clusters not sorted?");
11237 
11238   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11239 
11240   // Balance the tree based on branch probabilities to create a near-optimal (in
11241   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11242   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11243   CaseClusterIt LastLeft = W.FirstCluster;
11244   CaseClusterIt FirstRight = W.LastCluster;
11245   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11246   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11247 
11248   // Move LastLeft and FirstRight towards each other from opposite directions to
11249   // find a partitioning of the clusters which balances the probability on both
11250   // sides. If LeftProb and RightProb are equal, alternate which side is
11251   // taken to ensure 0-probability nodes are distributed evenly.
11252   unsigned I = 0;
11253   while (LastLeft + 1 < FirstRight) {
11254     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11255       LeftProb += (++LastLeft)->Prob;
11256     else
11257       RightProb += (--FirstRight)->Prob;
11258     I++;
11259   }
11260 
11261   while (true) {
11262     // Our binary search tree differs from a typical BST in that ours can have up
11263     // to three values in each leaf. The pivot selection above doesn't take that
11264     // into account, which means the tree might require more nodes and be less
11265     // efficient. We compensate for this here.
11266 
11267     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11268     unsigned NumRight = W.LastCluster - FirstRight + 1;
11269 
11270     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11271       // If one side has less than 3 clusters, and the other has more than 3,
11272       // consider taking a cluster from the other side.
11273 
11274       if (NumLeft < NumRight) {
11275         // Consider moving the first cluster on the right to the left side.
11276         CaseCluster &CC = *FirstRight;
11277         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11278         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11279         if (LeftSideRank <= RightSideRank) {
11280           // Moving the cluster to the left does not demote it.
11281           ++LastLeft;
11282           ++FirstRight;
11283           continue;
11284         }
11285       } else {
11286         assert(NumRight < NumLeft);
11287         // Consider moving the last element on the left to the right side.
11288         CaseCluster &CC = *LastLeft;
11289         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11290         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11291         if (RightSideRank <= LeftSideRank) {
11292           // Moving the cluster to the right does not demot it.
11293           --LastLeft;
11294           --FirstRight;
11295           continue;
11296         }
11297       }
11298     }
11299     break;
11300   }
11301 
11302   assert(LastLeft + 1 == FirstRight);
11303   assert(LastLeft >= W.FirstCluster);
11304   assert(FirstRight <= W.LastCluster);
11305 
11306   // Use the first element on the right as pivot since we will make less-than
11307   // comparisons against it.
11308   CaseClusterIt PivotCluster = FirstRight;
11309   assert(PivotCluster > W.FirstCluster);
11310   assert(PivotCluster <= W.LastCluster);
11311 
11312   CaseClusterIt FirstLeft = W.FirstCluster;
11313   CaseClusterIt LastRight = W.LastCluster;
11314 
11315   const ConstantInt *Pivot = PivotCluster->Low;
11316 
11317   // New blocks will be inserted immediately after the current one.
11318   MachineFunction::iterator BBI(W.MBB);
11319   ++BBI;
11320 
11321   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11322   // we can branch to its destination directly if it's squeezed exactly in
11323   // between the known lower bound and Pivot - 1.
11324   MachineBasicBlock *LeftMBB;
11325   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11326       FirstLeft->Low == W.GE &&
11327       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11328     LeftMBB = FirstLeft->MBB;
11329   } else {
11330     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11331     FuncInfo.MF->insert(BBI, LeftMBB);
11332     WorkList.push_back(
11333         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11334     // Put Cond in a virtual register to make it available from the new blocks.
11335     ExportFromCurrentBlock(Cond);
11336   }
11337 
11338   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11339   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11340   // directly if RHS.High equals the current upper bound.
11341   MachineBasicBlock *RightMBB;
11342   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11343       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11344     RightMBB = FirstRight->MBB;
11345   } else {
11346     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11347     FuncInfo.MF->insert(BBI, RightMBB);
11348     WorkList.push_back(
11349         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11350     // Put Cond in a virtual register to make it available from the new blocks.
11351     ExportFromCurrentBlock(Cond);
11352   }
11353 
11354   // Create the CaseBlock record that will be used to lower the branch.
11355   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11356                getCurSDLoc(), LeftProb, RightProb);
11357 
11358   if (W.MBB == SwitchMBB)
11359     visitSwitchCase(CB, SwitchMBB);
11360   else
11361     SL->SwitchCases.push_back(CB);
11362 }
11363 
11364 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11365 // from the swith statement.
11366 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11367                                             BranchProbability PeeledCaseProb) {
11368   if (PeeledCaseProb == BranchProbability::getOne())
11369     return BranchProbability::getZero();
11370   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11371 
11372   uint32_t Numerator = CaseProb.getNumerator();
11373   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11374   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11375 }
11376 
11377 // Try to peel the top probability case if it exceeds the threshold.
11378 // Return current MachineBasicBlock for the switch statement if the peeling
11379 // does not occur.
11380 // If the peeling is performed, return the newly created MachineBasicBlock
11381 // for the peeled switch statement. Also update Clusters to remove the peeled
11382 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11383 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11384     const SwitchInst &SI, CaseClusterVector &Clusters,
11385     BranchProbability &PeeledCaseProb) {
11386   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11387   // Don't perform if there is only one cluster or optimizing for size.
11388   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11389       TM.getOptLevel() == CodeGenOpt::None ||
11390       SwitchMBB->getParent()->getFunction().hasMinSize())
11391     return SwitchMBB;
11392 
11393   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11394   unsigned PeeledCaseIndex = 0;
11395   bool SwitchPeeled = false;
11396   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11397     CaseCluster &CC = Clusters[Index];
11398     if (CC.Prob < TopCaseProb)
11399       continue;
11400     TopCaseProb = CC.Prob;
11401     PeeledCaseIndex = Index;
11402     SwitchPeeled = true;
11403   }
11404   if (!SwitchPeeled)
11405     return SwitchMBB;
11406 
11407   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11408                     << TopCaseProb << "\n");
11409 
11410   // Record the MBB for the peeled switch statement.
11411   MachineFunction::iterator BBI(SwitchMBB);
11412   ++BBI;
11413   MachineBasicBlock *PeeledSwitchMBB =
11414       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11415   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11416 
11417   ExportFromCurrentBlock(SI.getCondition());
11418   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11419   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11420                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11421   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11422 
11423   Clusters.erase(PeeledCaseIt);
11424   for (CaseCluster &CC : Clusters) {
11425     LLVM_DEBUG(
11426         dbgs() << "Scale the probablity for one cluster, before scaling: "
11427                << CC.Prob << "\n");
11428     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11429     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11430   }
11431   PeeledCaseProb = TopCaseProb;
11432   return PeeledSwitchMBB;
11433 }
11434 
11435 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11436   // Extract cases from the switch.
11437   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11438   CaseClusterVector Clusters;
11439   Clusters.reserve(SI.getNumCases());
11440   for (auto I : SI.cases()) {
11441     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11442     const ConstantInt *CaseVal = I.getCaseValue();
11443     BranchProbability Prob =
11444         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11445             : BranchProbability(1, SI.getNumCases() + 1);
11446     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11447   }
11448 
11449   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11450 
11451   // Cluster adjacent cases with the same destination. We do this at all
11452   // optimization levels because it's cheap to do and will make codegen faster
11453   // if there are many clusters.
11454   sortAndRangeify(Clusters);
11455 
11456   // The branch probablity of the peeled case.
11457   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11458   MachineBasicBlock *PeeledSwitchMBB =
11459       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11460 
11461   // If there is only the default destination, jump there directly.
11462   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11463   if (Clusters.empty()) {
11464     assert(PeeledSwitchMBB == SwitchMBB);
11465     SwitchMBB->addSuccessor(DefaultMBB);
11466     if (DefaultMBB != NextBlock(SwitchMBB)) {
11467       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11468                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11469     }
11470     return;
11471   }
11472 
11473   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11474   SL->findBitTestClusters(Clusters, &SI);
11475 
11476   LLVM_DEBUG({
11477     dbgs() << "Case clusters: ";
11478     for (const CaseCluster &C : Clusters) {
11479       if (C.Kind == CC_JumpTable)
11480         dbgs() << "JT:";
11481       if (C.Kind == CC_BitTests)
11482         dbgs() << "BT:";
11483 
11484       C.Low->getValue().print(dbgs(), true);
11485       if (C.Low != C.High) {
11486         dbgs() << '-';
11487         C.High->getValue().print(dbgs(), true);
11488       }
11489       dbgs() << ' ';
11490     }
11491     dbgs() << '\n';
11492   });
11493 
11494   assert(!Clusters.empty());
11495   SwitchWorkList WorkList;
11496   CaseClusterIt First = Clusters.begin();
11497   CaseClusterIt Last = Clusters.end() - 1;
11498   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11499   // Scale the branchprobability for DefaultMBB if the peel occurs and
11500   // DefaultMBB is not replaced.
11501   if (PeeledCaseProb != BranchProbability::getZero() &&
11502       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11503     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11504   WorkList.push_back(
11505       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11506 
11507   while (!WorkList.empty()) {
11508     SwitchWorkListItem W = WorkList.pop_back_val();
11509     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11510 
11511     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11512         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11513       // For optimized builds, lower large range as a balanced binary tree.
11514       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11515       continue;
11516     }
11517 
11518     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11519   }
11520 }
11521 
11522 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11524   auto DL = getCurSDLoc();
11525   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11526   setValue(&I, DAG.getStepVector(DL, ResultVT));
11527 }
11528 
11529 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11531   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11532 
11533   SDLoc DL = getCurSDLoc();
11534   SDValue V = getValue(I.getOperand(0));
11535   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11536 
11537   if (VT.isScalableVector()) {
11538     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11539     return;
11540   }
11541 
11542   // Use VECTOR_SHUFFLE for the fixed-length vector
11543   // to maintain existing behavior.
11544   SmallVector<int, 8> Mask;
11545   unsigned NumElts = VT.getVectorMinNumElements();
11546   for (unsigned i = 0; i != NumElts; ++i)
11547     Mask.push_back(NumElts - 1 - i);
11548 
11549   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11550 }
11551 
11552 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11553   SmallVector<EVT, 4> ValueVTs;
11554   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11555                   ValueVTs);
11556   unsigned NumValues = ValueVTs.size();
11557   if (NumValues == 0) return;
11558 
11559   SmallVector<SDValue, 4> Values(NumValues);
11560   SDValue Op = getValue(I.getOperand(0));
11561 
11562   for (unsigned i = 0; i != NumValues; ++i)
11563     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11564                             SDValue(Op.getNode(), Op.getResNo() + i));
11565 
11566   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11567                            DAG.getVTList(ValueVTs), Values));
11568 }
11569 
11570 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11572   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11573 
11574   SDLoc DL = getCurSDLoc();
11575   SDValue V1 = getValue(I.getOperand(0));
11576   SDValue V2 = getValue(I.getOperand(1));
11577   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11578 
11579   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11580   if (VT.isScalableVector()) {
11581     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11582     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11583                              DAG.getConstant(Imm, DL, IdxVT)));
11584     return;
11585   }
11586 
11587   unsigned NumElts = VT.getVectorNumElements();
11588 
11589   uint64_t Idx = (NumElts + Imm) % NumElts;
11590 
11591   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11592   SmallVector<int, 8> Mask;
11593   for (unsigned i = 0; i < NumElts; ++i)
11594     Mask.push_back(Idx + i);
11595   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11596 }
11597