1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 958 false, Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 /// getCopyFromRegs - If there was virtual register allocated for the value V 968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 970 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 971 SDValue Result; 972 973 if (It != FuncInfo.ValueMap.end()) { 974 unsigned InReg = It->second; 975 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 976 DAG.getDataLayout(), InReg, Ty); 977 SDValue Chain = DAG.getEntryNode(); 978 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 979 resolveDanglingDebugInfo(V, Result); 980 } 981 982 return Result; 983 } 984 985 /// getValue - Return an SDValue for the given Value. 986 SDValue SelectionDAGBuilder::getValue(const Value *V) { 987 // If we already have an SDValue for this value, use it. It's important 988 // to do this first, so that we don't create a CopyFromReg if we already 989 // have a regular SDValue. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // If there's a virtual register allocated and initialized for this 994 // value, use it. 995 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 996 if (copyFromReg.getNode()) { 997 return copyFromReg; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 // Return true if SDValue exists for the given Value 1008 bool SelectionDAGBuilder::findValue(const Value *V) const { 1009 return (NodeMap.find(V) != NodeMap.end()) || 1010 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1011 } 1012 1013 /// getNonRegisterValue - Return an SDValue for the given Value, but 1014 /// don't look in FuncInfo.ValueMap for a virtual register. 1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) { 1019 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1020 // Remove the debug location from the node as the node is about to be used 1021 // in a location which may differ from the original debug location. This 1022 // is relevant to Constant and ConstantFP nodes because they can appear 1023 // as constant expressions inside PHI nodes. 1024 N->setDebugLoc(DebugLoc()); 1025 } 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1037 /// Create an SDValue for the given value. 1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1040 1041 if (const Constant *C = dyn_cast<Constant>(V)) { 1042 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1043 1044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1045 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1046 1047 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1048 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1049 1050 if (isa<ConstantPointerNull>(C)) { 1051 unsigned AS = V->getType()->getPointerAddressSpace(); 1052 return DAG.getConstant(0, getCurSDLoc(), 1053 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1054 } 1055 1056 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1057 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1058 1059 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1060 return DAG.getUNDEF(VT); 1061 1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1063 visit(CE->getOpcode(), *CE); 1064 SDValue N1 = NodeMap[V]; 1065 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1066 return N1; 1067 } 1068 1069 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1070 SmallVector<SDValue, 4> Constants; 1071 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1072 OI != OE; ++OI) { 1073 SDNode *Val = getValue(*OI).getNode(); 1074 // If the operand is an empty aggregate, there are no values. 1075 if (!Val) continue; 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Constants.push_back(SDValue(Val, i)); 1080 } 1081 1082 return DAG.getMergeValues(Constants, getCurSDLoc()); 1083 } 1084 1085 if (const ConstantDataSequential *CDS = 1086 dyn_cast<ConstantDataSequential>(C)) { 1087 SmallVector<SDValue, 4> Ops; 1088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1089 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1090 // Add each leaf value from the operand to the Constants list 1091 // to form a flattened list of all the values. 1092 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1093 Ops.push_back(SDValue(Val, i)); 1094 } 1095 1096 if (isa<ArrayType>(CDS->getType())) 1097 return DAG.getMergeValues(Ops, getCurSDLoc()); 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1099 VT, Ops); 1100 } 1101 1102 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1103 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1104 "Unknown struct or array constant!"); 1105 1106 SmallVector<EVT, 4> ValueVTs; 1107 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1108 unsigned NumElts = ValueVTs.size(); 1109 if (NumElts == 0) 1110 return SDValue(); // empty struct 1111 SmallVector<SDValue, 4> Constants(NumElts); 1112 for (unsigned i = 0; i != NumElts; ++i) { 1113 EVT EltVT = ValueVTs[i]; 1114 if (isa<UndefValue>(C)) 1115 Constants[i] = DAG.getUNDEF(EltVT); 1116 else if (EltVT.isFloatingPoint()) 1117 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1118 else 1119 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1120 } 1121 1122 return DAG.getMergeValues(Constants, getCurSDLoc()); 1123 } 1124 1125 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1126 return DAG.getBlockAddress(BA, VT); 1127 1128 VectorType *VecTy = cast<VectorType>(V->getType()); 1129 unsigned NumElements = VecTy->getNumElements(); 1130 1131 // Now that we know the number and type of the elements, get that number of 1132 // elements into the Ops array based on what kind of constant it is. 1133 SmallVector<SDValue, 16> Ops; 1134 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1135 for (unsigned i = 0; i != NumElements; ++i) 1136 Ops.push_back(getValue(CV->getOperand(i))); 1137 } else { 1138 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1139 EVT EltVT = 1140 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1141 1142 SDValue Op; 1143 if (EltVT.isFloatingPoint()) 1144 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 Ops.assign(NumElements, Op); 1148 } 1149 1150 // Create a BUILD_VECTOR node. 1151 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1152 } 1153 1154 // If this is a static alloca, generate it as the frameindex instead of 1155 // computation. 1156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 DenseMap<const AllocaInst*, int>::iterator SI = 1158 FuncInfo.StaticAllocaMap.find(AI); 1159 if (SI != FuncInfo.StaticAllocaMap.end()) 1160 return DAG.getFrameIndex(SI->second, 1161 TLI.getPointerTy(DAG.getDataLayout())); 1162 } 1163 1164 // If this is an instruction which fast-isel has deferred, select it now. 1165 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1166 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1167 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1168 Inst->getType()); 1169 SDValue Chain = DAG.getEntryNode(); 1170 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1171 } 1172 1173 llvm_unreachable("Can't get register for value!"); 1174 } 1175 1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1177 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1178 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1179 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1180 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1181 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1182 if (IsMSVCCXX || IsCoreCLR) 1183 CatchPadMBB->setIsEHFuncletEntry(); 1184 1185 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1189 // Update machine-CFG edge. 1190 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1191 FuncInfo.MBB->addSuccessor(TargetMBB); 1192 1193 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1194 bool IsSEH = isAsynchronousEHPersonality(Pers); 1195 if (IsSEH) { 1196 // If this is not a fall-through branch or optimizations are switched off, 1197 // emit the branch. 1198 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1199 TM.getOptLevel() == CodeGenOpt::None) 1200 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1201 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1202 return; 1203 } 1204 1205 // Figure out the funclet membership for the catchret's successor. 1206 // This will be used by the FuncletLayout pass to determine how to order the 1207 // BB's. 1208 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1209 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1210 assert(SuccessorColor && "No parent funclet for catchret!"); 1211 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1212 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1213 1214 // Create the terminator node. 1215 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1216 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1217 DAG.getBasicBlock(SuccessorColorMBB)); 1218 DAG.setRoot(Ret); 1219 } 1220 1221 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1222 // Don't emit any special code for the cleanuppad instruction. It just marks 1223 // the start of a funclet. 1224 FuncInfo.MBB->setIsEHFuncletEntry(); 1225 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1226 } 1227 1228 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1229 /// many places it could ultimately go. In the IR, we have a single unwind 1230 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1231 /// This function skips over imaginary basic blocks that hold catchswitch 1232 /// instructions, and finds all the "real" machine 1233 /// basic block destinations. As those destinations may not be successors of 1234 /// EHPadBB, here we also calculate the edge probability to those destinations. 1235 /// The passed-in Prob is the edge probability to EHPadBB. 1236 static void findUnwindDestinations( 1237 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1238 BranchProbability Prob, 1239 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1240 &UnwindDests) { 1241 EHPersonality Personality = 1242 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1243 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1244 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1245 1246 while (EHPadBB) { 1247 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1248 BasicBlock *NewEHPadBB = nullptr; 1249 if (isa<LandingPadInst>(Pad)) { 1250 // Stop on landingpads. They are not funclets. 1251 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1252 break; 1253 } else if (isa<CleanupPadInst>(Pad)) { 1254 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1255 // personalities. 1256 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1257 UnwindDests.back().first->setIsEHFuncletEntry(); 1258 break; 1259 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1260 // Add the catchpad handlers to the possible destinations. 1261 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1262 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1263 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1264 if (IsMSVCCXX || IsCoreCLR) 1265 UnwindDests.back().first->setIsEHFuncletEntry(); 1266 } 1267 NewEHPadBB = CatchSwitch->getUnwindDest(); 1268 } else { 1269 continue; 1270 } 1271 1272 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1273 if (BPI && NewEHPadBB) 1274 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1275 EHPadBB = NewEHPadBB; 1276 } 1277 } 1278 1279 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1280 // Update successor info. 1281 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1282 auto UnwindDest = I.getUnwindDest(); 1283 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1284 BranchProbability UnwindDestProb = 1285 (BPI && UnwindDest) 1286 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1287 : BranchProbability::getZero(); 1288 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1289 for (auto &UnwindDest : UnwindDests) { 1290 UnwindDest.first->setIsEHPad(); 1291 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1292 } 1293 FuncInfo.MBB->normalizeSuccProbs(); 1294 1295 // Create the terminator node. 1296 SDValue Ret = 1297 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1298 DAG.setRoot(Ret); 1299 } 1300 1301 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1302 report_fatal_error("visitCatchSwitch not yet implemented!"); 1303 } 1304 1305 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1307 auto &DL = DAG.getDataLayout(); 1308 SDValue Chain = getControlRoot(); 1309 SmallVector<ISD::OutputArg, 8> Outs; 1310 SmallVector<SDValue, 8> OutVals; 1311 1312 if (!FuncInfo.CanLowerReturn) { 1313 unsigned DemoteReg = FuncInfo.DemoteRegister; 1314 const Function *F = I.getParent()->getParent(); 1315 1316 // Emit a store of the return value through the virtual register. 1317 // Leave Outs empty so that LowerReturn won't try to load return 1318 // registers the usual way. 1319 SmallVector<EVT, 1> PtrValueVTs; 1320 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1321 PtrValueVTs); 1322 1323 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1324 DemoteReg, PtrValueVTs[0]); 1325 SDValue RetOp = getValue(I.getOperand(0)); 1326 1327 SmallVector<EVT, 4> ValueVTs; 1328 SmallVector<uint64_t, 4> Offsets; 1329 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1330 unsigned NumValues = ValueVTs.size(); 1331 1332 SmallVector<SDValue, 4> Chains(NumValues); 1333 for (unsigned i = 0; i != NumValues; ++i) { 1334 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1335 RetPtr.getValueType(), RetPtr, 1336 DAG.getIntPtrConstant(Offsets[i], 1337 getCurSDLoc())); 1338 Chains[i] = 1339 DAG.getStore(Chain, getCurSDLoc(), 1340 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1341 // FIXME: better loc info would be nice. 1342 Add, MachinePointerInfo(), false, false, 0); 1343 } 1344 1345 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1346 MVT::Other, Chains); 1347 } else if (I.getNumOperands() != 0) { 1348 SmallVector<EVT, 4> ValueVTs; 1349 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1350 unsigned NumValues = ValueVTs.size(); 1351 if (NumValues) { 1352 SDValue RetOp = getValue(I.getOperand(0)); 1353 1354 const Function *F = I.getParent()->getParent(); 1355 1356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1357 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1358 Attribute::SExt)) 1359 ExtendKind = ISD::SIGN_EXTEND; 1360 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1361 Attribute::ZExt)) 1362 ExtendKind = ISD::ZERO_EXTEND; 1363 1364 LLVMContext &Context = F->getContext(); 1365 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1366 Attribute::InReg); 1367 1368 for (unsigned j = 0; j != NumValues; ++j) { 1369 EVT VT = ValueVTs[j]; 1370 1371 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1372 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1373 1374 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1375 MVT PartVT = TLI.getRegisterType(Context, VT); 1376 SmallVector<SDValue, 4> Parts(NumParts); 1377 getCopyToParts(DAG, getCurSDLoc(), 1378 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1379 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1380 1381 // 'inreg' on function refers to return value 1382 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1383 if (RetInReg) 1384 Flags.setInReg(); 1385 1386 // Propagate extension type if any 1387 if (ExtendKind == ISD::SIGN_EXTEND) 1388 Flags.setSExt(); 1389 else if (ExtendKind == ISD::ZERO_EXTEND) 1390 Flags.setZExt(); 1391 1392 for (unsigned i = 0; i < NumParts; ++i) { 1393 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1394 VT, /*isfixed=*/true, 0, 0)); 1395 OutVals.push_back(Parts[i]); 1396 } 1397 } 1398 } 1399 } 1400 1401 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1402 CallingConv::ID CallConv = 1403 DAG.getMachineFunction().getFunction()->getCallingConv(); 1404 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1405 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1406 1407 // Verify that the target's LowerReturn behaved as expected. 1408 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1409 "LowerReturn didn't return a valid chain!"); 1410 1411 // Update the DAG with the new chain value resulting from return lowering. 1412 DAG.setRoot(Chain); 1413 } 1414 1415 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1416 /// created for it, emit nodes to copy the value into the virtual 1417 /// registers. 1418 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1419 // Skip empty types 1420 if (V->getType()->isEmptyTy()) 1421 return; 1422 1423 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1424 if (VMI != FuncInfo.ValueMap.end()) { 1425 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1426 CopyValueToVirtualRegister(V, VMI->second); 1427 } 1428 } 1429 1430 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1431 /// the current basic block, add it to ValueMap now so that we'll get a 1432 /// CopyTo/FromReg. 1433 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1434 // No need to export constants. 1435 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1436 1437 // Already exported? 1438 if (FuncInfo.isExportedInst(V)) return; 1439 1440 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1441 CopyValueToVirtualRegister(V, Reg); 1442 } 1443 1444 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1445 const BasicBlock *FromBB) { 1446 // The operands of the setcc have to be in this block. We don't know 1447 // how to export them from some other block. 1448 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1449 // Can export from current BB. 1450 if (VI->getParent() == FromBB) 1451 return true; 1452 1453 // Is already exported, noop. 1454 return FuncInfo.isExportedInst(V); 1455 } 1456 1457 // If this is an argument, we can export it if the BB is the entry block or 1458 // if it is already exported. 1459 if (isa<Argument>(V)) { 1460 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1461 return true; 1462 1463 // Otherwise, can only export this if it is already exported. 1464 return FuncInfo.isExportedInst(V); 1465 } 1466 1467 // Otherwise, constants can always be exported. 1468 return true; 1469 } 1470 1471 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1472 BranchProbability 1473 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1474 const MachineBasicBlock *Dst) const { 1475 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1476 const BasicBlock *SrcBB = Src->getBasicBlock(); 1477 const BasicBlock *DstBB = Dst->getBasicBlock(); 1478 if (!BPI) { 1479 // If BPI is not available, set the default probability as 1 / N, where N is 1480 // the number of successors. 1481 auto SuccSize = std::max<uint32_t>( 1482 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1483 return BranchProbability(1, SuccSize); 1484 } 1485 return BPI->getEdgeProbability(SrcBB, DstBB); 1486 } 1487 1488 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1489 MachineBasicBlock *Dst, 1490 BranchProbability Prob) { 1491 if (!FuncInfo.BPI) 1492 Src->addSuccessorWithoutProb(Dst); 1493 else { 1494 if (Prob.isUnknown()) 1495 Prob = getEdgeProbability(Src, Dst); 1496 Src->addSuccessor(Dst, Prob); 1497 } 1498 } 1499 1500 static bool InBlock(const Value *V, const BasicBlock *BB) { 1501 if (const Instruction *I = dyn_cast<Instruction>(V)) 1502 return I->getParent() == BB; 1503 return true; 1504 } 1505 1506 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1507 /// This function emits a branch and is used at the leaves of an OR or an 1508 /// AND operator tree. 1509 /// 1510 void 1511 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1512 MachineBasicBlock *TBB, 1513 MachineBasicBlock *FBB, 1514 MachineBasicBlock *CurBB, 1515 MachineBasicBlock *SwitchBB, 1516 BranchProbability TProb, 1517 BranchProbability FProb) { 1518 const BasicBlock *BB = CurBB->getBasicBlock(); 1519 1520 // If the leaf of the tree is a comparison, merge the condition into 1521 // the caseblock. 1522 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1523 // The operands of the cmp have to be in this block. We don't know 1524 // how to export them from some other block. If this is the first block 1525 // of the sequence, no exporting is needed. 1526 if (CurBB == SwitchBB || 1527 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1528 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1529 ISD::CondCode Condition; 1530 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1531 Condition = getICmpCondCode(IC->getPredicate()); 1532 } else { 1533 const FCmpInst *FC = cast<FCmpInst>(Cond); 1534 Condition = getFCmpCondCode(FC->getPredicate()); 1535 if (TM.Options.NoNaNsFPMath) 1536 Condition = getFCmpCodeWithoutNaN(Condition); 1537 } 1538 1539 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1540 TBB, FBB, CurBB, TProb, FProb); 1541 SwitchCases.push_back(CB); 1542 return; 1543 } 1544 } 1545 1546 // Create a CaseBlock record representing this branch. 1547 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1548 nullptr, TBB, FBB, CurBB, TProb, FProb); 1549 SwitchCases.push_back(CB); 1550 } 1551 1552 /// FindMergedConditions - If Cond is an expression like 1553 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1554 MachineBasicBlock *TBB, 1555 MachineBasicBlock *FBB, 1556 MachineBasicBlock *CurBB, 1557 MachineBasicBlock *SwitchBB, 1558 Instruction::BinaryOps Opc, 1559 BranchProbability TProb, 1560 BranchProbability FProb) { 1561 // If this node is not part of the or/and tree, emit it as a branch. 1562 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1563 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1564 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1565 BOp->getParent() != CurBB->getBasicBlock() || 1566 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1567 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1568 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1569 TProb, FProb); 1570 return; 1571 } 1572 1573 // Create TmpBB after CurBB. 1574 MachineFunction::iterator BBI(CurBB); 1575 MachineFunction &MF = DAG.getMachineFunction(); 1576 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1577 CurBB->getParent()->insert(++BBI, TmpBB); 1578 1579 if (Opc == Instruction::Or) { 1580 // Codegen X | Y as: 1581 // BB1: 1582 // jmp_if_X TBB 1583 // jmp TmpBB 1584 // TmpBB: 1585 // jmp_if_Y TBB 1586 // jmp FBB 1587 // 1588 1589 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1590 // The requirement is that 1591 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1592 // = TrueProb for original BB. 1593 // Assuming the original probabilities are A and B, one choice is to set 1594 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1595 // A/(1+B) and 2B/(1+B). This choice assumes that 1596 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1597 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1598 // TmpBB, but the math is more complicated. 1599 1600 auto NewTrueProb = TProb / 2; 1601 auto NewFalseProb = TProb / 2 + FProb; 1602 // Emit the LHS condition. 1603 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1604 NewTrueProb, NewFalseProb); 1605 1606 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1607 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1608 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1609 // Emit the RHS condition into TmpBB. 1610 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1611 Probs[0], Probs[1]); 1612 } else { 1613 assert(Opc == Instruction::And && "Unknown merge op!"); 1614 // Codegen X & Y as: 1615 // BB1: 1616 // jmp_if_X TmpBB 1617 // jmp FBB 1618 // TmpBB: 1619 // jmp_if_Y TBB 1620 // jmp FBB 1621 // 1622 // This requires creation of TmpBB after CurBB. 1623 1624 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1625 // The requirement is that 1626 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1627 // = FalseProb for original BB. 1628 // Assuming the original probabilities are A and B, one choice is to set 1629 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1630 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1631 // TrueProb for BB1 * FalseProb for TmpBB. 1632 1633 auto NewTrueProb = TProb + FProb / 2; 1634 auto NewFalseProb = FProb / 2; 1635 // Emit the LHS condition. 1636 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1637 NewTrueProb, NewFalseProb); 1638 1639 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1640 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1641 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1642 // Emit the RHS condition into TmpBB. 1643 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1644 Probs[0], Probs[1]); 1645 } 1646 } 1647 1648 /// If the set of cases should be emitted as a series of branches, return true. 1649 /// If we should emit this as a bunch of and/or'd together conditions, return 1650 /// false. 1651 bool 1652 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1653 if (Cases.size() != 2) return true; 1654 1655 // If this is two comparisons of the same values or'd or and'd together, they 1656 // will get folded into a single comparison, so don't emit two blocks. 1657 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1658 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1659 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1660 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1661 return false; 1662 } 1663 1664 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1665 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1666 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1667 Cases[0].CC == Cases[1].CC && 1668 isa<Constant>(Cases[0].CmpRHS) && 1669 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1670 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1671 return false; 1672 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1673 return false; 1674 } 1675 1676 return true; 1677 } 1678 1679 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1680 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1681 1682 // Update machine-CFG edges. 1683 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1684 1685 if (I.isUnconditional()) { 1686 // Update machine-CFG edges. 1687 BrMBB->addSuccessor(Succ0MBB); 1688 1689 // If this is not a fall-through branch or optimizations are switched off, 1690 // emit the branch. 1691 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1692 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1693 MVT::Other, getControlRoot(), 1694 DAG.getBasicBlock(Succ0MBB))); 1695 1696 return; 1697 } 1698 1699 // If this condition is one of the special cases we handle, do special stuff 1700 // now. 1701 const Value *CondVal = I.getCondition(); 1702 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1703 1704 // If this is a series of conditions that are or'd or and'd together, emit 1705 // this as a sequence of branches instead of setcc's with and/or operations. 1706 // As long as jumps are not expensive, this should improve performance. 1707 // For example, instead of something like: 1708 // cmp A, B 1709 // C = seteq 1710 // cmp D, E 1711 // F = setle 1712 // or C, F 1713 // jnz foo 1714 // Emit: 1715 // cmp A, B 1716 // je foo 1717 // cmp D, E 1718 // jle foo 1719 // 1720 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1721 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1722 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1723 !I.getMetadata(LLVMContext::MD_unpredictable) && 1724 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1725 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1726 Opcode, 1727 getEdgeProbability(BrMBB, Succ0MBB), 1728 getEdgeProbability(BrMBB, Succ1MBB)); 1729 // If the compares in later blocks need to use values not currently 1730 // exported from this block, export them now. This block should always 1731 // be the first entry. 1732 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1733 1734 // Allow some cases to be rejected. 1735 if (ShouldEmitAsBranches(SwitchCases)) { 1736 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1737 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1738 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1739 } 1740 1741 // Emit the branch for this block. 1742 visitSwitchCase(SwitchCases[0], BrMBB); 1743 SwitchCases.erase(SwitchCases.begin()); 1744 return; 1745 } 1746 1747 // Okay, we decided not to do this, remove any inserted MBB's and clear 1748 // SwitchCases. 1749 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1750 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1751 1752 SwitchCases.clear(); 1753 } 1754 } 1755 1756 // Create a CaseBlock record representing this branch. 1757 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1758 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1759 1760 // Use visitSwitchCase to actually insert the fast branch sequence for this 1761 // cond branch. 1762 visitSwitchCase(CB, BrMBB); 1763 } 1764 1765 /// visitSwitchCase - Emits the necessary code to represent a single node in 1766 /// the binary search tree resulting from lowering a switch instruction. 1767 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1768 MachineBasicBlock *SwitchBB) { 1769 SDValue Cond; 1770 SDValue CondLHS = getValue(CB.CmpLHS); 1771 SDLoc dl = getCurSDLoc(); 1772 1773 // Build the setcc now. 1774 if (!CB.CmpMHS) { 1775 // Fold "(X == true)" to X and "(X == false)" to !X to 1776 // handle common cases produced by branch lowering. 1777 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1778 CB.CC == ISD::SETEQ) 1779 Cond = CondLHS; 1780 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1781 CB.CC == ISD::SETEQ) { 1782 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1783 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1784 } else 1785 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1786 } else { 1787 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1788 1789 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1790 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1791 1792 SDValue CmpOp = getValue(CB.CmpMHS); 1793 EVT VT = CmpOp.getValueType(); 1794 1795 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1796 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1797 ISD::SETLE); 1798 } else { 1799 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1800 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1801 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1802 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1803 } 1804 } 1805 1806 // Update successor info 1807 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1808 // TrueBB and FalseBB are always different unless the incoming IR is 1809 // degenerate. This only happens when running llc on weird IR. 1810 if (CB.TrueBB != CB.FalseBB) 1811 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1812 SwitchBB->normalizeSuccProbs(); 1813 1814 // If the lhs block is the next block, invert the condition so that we can 1815 // fall through to the lhs instead of the rhs block. 1816 if (CB.TrueBB == NextBlock(SwitchBB)) { 1817 std::swap(CB.TrueBB, CB.FalseBB); 1818 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1819 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1820 } 1821 1822 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1823 MVT::Other, getControlRoot(), Cond, 1824 DAG.getBasicBlock(CB.TrueBB)); 1825 1826 // Insert the false branch. Do this even if it's a fall through branch, 1827 // this makes it easier to do DAG optimizations which require inverting 1828 // the branch condition. 1829 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1830 DAG.getBasicBlock(CB.FalseBB)); 1831 1832 DAG.setRoot(BrCond); 1833 } 1834 1835 /// visitJumpTable - Emit JumpTable node in the current MBB 1836 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1837 // Emit the code for the jump table 1838 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1839 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1840 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1841 JT.Reg, PTy); 1842 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1843 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1844 MVT::Other, Index.getValue(1), 1845 Table, Index); 1846 DAG.setRoot(BrJumpTable); 1847 } 1848 1849 /// visitJumpTableHeader - This function emits necessary code to produce index 1850 /// in the JumpTable from switch case. 1851 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1852 JumpTableHeader &JTH, 1853 MachineBasicBlock *SwitchBB) { 1854 SDLoc dl = getCurSDLoc(); 1855 1856 // Subtract the lowest switch case value from the value being switched on and 1857 // conditional branch to default mbb if the result is greater than the 1858 // difference between smallest and largest cases. 1859 SDValue SwitchOp = getValue(JTH.SValue); 1860 EVT VT = SwitchOp.getValueType(); 1861 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1862 DAG.getConstant(JTH.First, dl, VT)); 1863 1864 // The SDNode we just created, which holds the value being switched on minus 1865 // the smallest case value, needs to be copied to a virtual register so it 1866 // can be used as an index into the jump table in a subsequent basic block. 1867 // This value may be smaller or larger than the target's pointer type, and 1868 // therefore require extension or truncating. 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1871 1872 unsigned JumpTableReg = 1873 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1874 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1875 JumpTableReg, SwitchOp); 1876 JT.Reg = JumpTableReg; 1877 1878 // Emit the range check for the jump table, and branch to the default block 1879 // for the switch statement if the value being switched on exceeds the largest 1880 // case in the switch. 1881 SDValue CMP = DAG.getSetCC( 1882 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1883 Sub.getValueType()), 1884 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1885 1886 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1887 MVT::Other, CopyTo, CMP, 1888 DAG.getBasicBlock(JT.Default)); 1889 1890 // Avoid emitting unnecessary branches to the next block. 1891 if (JT.MBB != NextBlock(SwitchBB)) 1892 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1893 DAG.getBasicBlock(JT.MBB)); 1894 1895 DAG.setRoot(BrCond); 1896 } 1897 1898 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1899 /// tail spliced into a stack protector check success bb. 1900 /// 1901 /// For a high level explanation of how this fits into the stack protector 1902 /// generation see the comment on the declaration of class 1903 /// StackProtectorDescriptor. 1904 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1905 MachineBasicBlock *ParentBB) { 1906 1907 // First create the loads to the guard/stack slot for the comparison. 1908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1909 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1910 1911 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1912 int FI = MFI->getStackProtectorIndex(); 1913 1914 const Value *IRGuard = SPD.getGuard(); 1915 SDValue GuardPtr = getValue(IRGuard); 1916 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1917 1918 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1919 1920 SDValue Guard; 1921 SDLoc dl = getCurSDLoc(); 1922 1923 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1924 // guard value from the virtual register holding the value. Otherwise, emit a 1925 // volatile load to retrieve the stack guard value. 1926 unsigned GuardReg = SPD.getGuardReg(); 1927 1928 if (GuardReg && TLI.useLoadStackGuardNode()) 1929 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1930 PtrTy); 1931 else 1932 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1933 GuardPtr, MachinePointerInfo(IRGuard, 0), 1934 true, false, false, Align); 1935 1936 SDValue StackSlot = DAG.getLoad( 1937 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1938 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1939 false, false, Align); 1940 1941 // Perform the comparison via a subtract/getsetcc. 1942 EVT VT = Guard.getValueType(); 1943 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1944 1945 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1946 *DAG.getContext(), 1947 Sub.getValueType()), 1948 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1949 1950 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1951 // branch to failure MBB. 1952 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1953 MVT::Other, StackSlot.getOperand(0), 1954 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1955 // Otherwise branch to success MBB. 1956 SDValue Br = DAG.getNode(ISD::BR, dl, 1957 MVT::Other, BrCond, 1958 DAG.getBasicBlock(SPD.getSuccessMBB())); 1959 1960 DAG.setRoot(Br); 1961 } 1962 1963 /// Codegen the failure basic block for a stack protector check. 1964 /// 1965 /// A failure stack protector machine basic block consists simply of a call to 1966 /// __stack_chk_fail(). 1967 /// 1968 /// For a high level explanation of how this fits into the stack protector 1969 /// generation see the comment on the declaration of class 1970 /// StackProtectorDescriptor. 1971 void 1972 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1974 SDValue Chain = 1975 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1976 None, false, getCurSDLoc(), false, false).second; 1977 DAG.setRoot(Chain); 1978 } 1979 1980 /// visitBitTestHeader - This function emits necessary code to produce value 1981 /// suitable for "bit tests" 1982 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1983 MachineBasicBlock *SwitchBB) { 1984 SDLoc dl = getCurSDLoc(); 1985 1986 // Subtract the minimum value 1987 SDValue SwitchOp = getValue(B.SValue); 1988 EVT VT = SwitchOp.getValueType(); 1989 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1990 DAG.getConstant(B.First, dl, VT)); 1991 1992 // Check range 1993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1994 SDValue RangeCmp = DAG.getSetCC( 1995 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1996 Sub.getValueType()), 1997 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1998 1999 // Determine the type of the test operands. 2000 bool UsePtrType = false; 2001 if (!TLI.isTypeLegal(VT)) 2002 UsePtrType = true; 2003 else { 2004 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2005 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2006 // Switch table case range are encoded into series of masks. 2007 // Just use pointer type, it's guaranteed to fit. 2008 UsePtrType = true; 2009 break; 2010 } 2011 } 2012 if (UsePtrType) { 2013 VT = TLI.getPointerTy(DAG.getDataLayout()); 2014 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2015 } 2016 2017 B.RegVT = VT.getSimpleVT(); 2018 B.Reg = FuncInfo.CreateReg(B.RegVT); 2019 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2020 2021 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2022 2023 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2024 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2025 SwitchBB->normalizeSuccProbs(); 2026 2027 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2028 MVT::Other, CopyTo, RangeCmp, 2029 DAG.getBasicBlock(B.Default)); 2030 2031 // Avoid emitting unnecessary branches to the next block. 2032 if (MBB != NextBlock(SwitchBB)) 2033 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2034 DAG.getBasicBlock(MBB)); 2035 2036 DAG.setRoot(BrRange); 2037 } 2038 2039 /// visitBitTestCase - this function produces one "bit test" 2040 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2041 MachineBasicBlock* NextMBB, 2042 BranchProbability BranchProbToNext, 2043 unsigned Reg, 2044 BitTestCase &B, 2045 MachineBasicBlock *SwitchBB) { 2046 SDLoc dl = getCurSDLoc(); 2047 MVT VT = BB.RegVT; 2048 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2049 SDValue Cmp; 2050 unsigned PopCount = countPopulation(B.Mask); 2051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2052 if (PopCount == 1) { 2053 // Testing for a single bit; just compare the shift count with what it 2054 // would need to be to shift a 1 bit in that position. 2055 Cmp = DAG.getSetCC( 2056 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2057 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2058 ISD::SETEQ); 2059 } else if (PopCount == BB.Range) { 2060 // There is only one zero bit in the range, test for it directly. 2061 Cmp = DAG.getSetCC( 2062 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2063 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2064 ISD::SETNE); 2065 } else { 2066 // Make desired shift 2067 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2068 DAG.getConstant(1, dl, VT), ShiftOp); 2069 2070 // Emit bit tests and jumps 2071 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2072 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2073 Cmp = DAG.getSetCC( 2074 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2075 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2076 } 2077 2078 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2079 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2080 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2081 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2082 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2083 // one as they are relative probabilities (and thus work more like weights), 2084 // and hence we need to normalize them to let the sum of them become one. 2085 SwitchBB->normalizeSuccProbs(); 2086 2087 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2088 MVT::Other, getControlRoot(), 2089 Cmp, DAG.getBasicBlock(B.TargetBB)); 2090 2091 // Avoid emitting unnecessary branches to the next block. 2092 if (NextMBB != NextBlock(SwitchBB)) 2093 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2094 DAG.getBasicBlock(NextMBB)); 2095 2096 DAG.setRoot(BrAnd); 2097 } 2098 2099 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2100 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2101 2102 // Retrieve successors. Look through artificial IR level blocks like 2103 // catchswitch for successors. 2104 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2105 const BasicBlock *EHPadBB = I.getSuccessor(1); 2106 2107 const Value *Callee(I.getCalledValue()); 2108 const Function *Fn = dyn_cast<Function>(Callee); 2109 if (isa<InlineAsm>(Callee)) 2110 visitInlineAsm(&I); 2111 else if (Fn && Fn->isIntrinsic()) { 2112 switch (Fn->getIntrinsicID()) { 2113 default: 2114 llvm_unreachable("Cannot invoke this intrinsic"); 2115 case Intrinsic::donothing: 2116 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2117 break; 2118 case Intrinsic::experimental_patchpoint_void: 2119 case Intrinsic::experimental_patchpoint_i64: 2120 visitPatchpoint(&I, EHPadBB); 2121 break; 2122 case Intrinsic::experimental_gc_statepoint: 2123 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2124 break; 2125 } 2126 } else 2127 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2128 2129 // If the value of the invoke is used outside of its defining block, make it 2130 // available as a virtual register. 2131 // We already took care of the exported value for the statepoint instruction 2132 // during call to the LowerStatepoint. 2133 if (!isStatepoint(I)) { 2134 CopyToExportRegsIfNeeded(&I); 2135 } 2136 2137 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2138 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2139 BranchProbability EHPadBBProb = 2140 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2141 : BranchProbability::getZero(); 2142 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2143 2144 // Update successor info. 2145 addSuccessorWithProb(InvokeMBB, Return); 2146 for (auto &UnwindDest : UnwindDests) { 2147 UnwindDest.first->setIsEHPad(); 2148 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2149 } 2150 InvokeMBB->normalizeSuccProbs(); 2151 2152 // Drop into normal successor. 2153 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2154 MVT::Other, getControlRoot(), 2155 DAG.getBasicBlock(Return))); 2156 } 2157 2158 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2159 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2160 } 2161 2162 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2163 assert(FuncInfo.MBB->isEHPad() && 2164 "Call to landingpad not in landing pad!"); 2165 2166 MachineBasicBlock *MBB = FuncInfo.MBB; 2167 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2168 AddLandingPadInfo(LP, MMI, MBB); 2169 2170 // If there aren't registers to copy the values into (e.g., during SjLj 2171 // exceptions), then don't bother to create these DAG nodes. 2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2173 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2174 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2175 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2176 return; 2177 2178 // If landingpad's return type is token type, we don't create DAG nodes 2179 // for its exception pointer and selector value. The extraction of exception 2180 // pointer or selector value from token type landingpads is not currently 2181 // supported. 2182 if (LP.getType()->isTokenTy()) 2183 return; 2184 2185 SmallVector<EVT, 2> ValueVTs; 2186 SDLoc dl = getCurSDLoc(); 2187 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2188 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2189 2190 // Get the two live-in registers as SDValues. The physregs have already been 2191 // copied into virtual registers. 2192 SDValue Ops[2]; 2193 if (FuncInfo.ExceptionPointerVirtReg) { 2194 Ops[0] = DAG.getZExtOrTrunc( 2195 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2196 FuncInfo.ExceptionPointerVirtReg, 2197 TLI.getPointerTy(DAG.getDataLayout())), 2198 dl, ValueVTs[0]); 2199 } else { 2200 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2201 } 2202 Ops[1] = DAG.getZExtOrTrunc( 2203 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2204 FuncInfo.ExceptionSelectorVirtReg, 2205 TLI.getPointerTy(DAG.getDataLayout())), 2206 dl, ValueVTs[1]); 2207 2208 // Merge into one. 2209 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2210 DAG.getVTList(ValueVTs), Ops); 2211 setValue(&LP, Res); 2212 } 2213 2214 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2215 #ifndef NDEBUG 2216 for (const CaseCluster &CC : Clusters) 2217 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2218 #endif 2219 2220 std::sort(Clusters.begin(), Clusters.end(), 2221 [](const CaseCluster &a, const CaseCluster &b) { 2222 return a.Low->getValue().slt(b.Low->getValue()); 2223 }); 2224 2225 // Merge adjacent clusters with the same destination. 2226 const unsigned N = Clusters.size(); 2227 unsigned DstIndex = 0; 2228 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2229 CaseCluster &CC = Clusters[SrcIndex]; 2230 const ConstantInt *CaseVal = CC.Low; 2231 MachineBasicBlock *Succ = CC.MBB; 2232 2233 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2234 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2235 // If this case has the same successor and is a neighbour, merge it into 2236 // the previous cluster. 2237 Clusters[DstIndex - 1].High = CaseVal; 2238 Clusters[DstIndex - 1].Prob += CC.Prob; 2239 } else { 2240 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2241 sizeof(Clusters[SrcIndex])); 2242 } 2243 } 2244 Clusters.resize(DstIndex); 2245 } 2246 2247 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2248 MachineBasicBlock *Last) { 2249 // Update JTCases. 2250 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2251 if (JTCases[i].first.HeaderBB == First) 2252 JTCases[i].first.HeaderBB = Last; 2253 2254 // Update BitTestCases. 2255 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2256 if (BitTestCases[i].Parent == First) 2257 BitTestCases[i].Parent = Last; 2258 } 2259 2260 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2261 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2262 2263 // Update machine-CFG edges with unique successors. 2264 SmallSet<BasicBlock*, 32> Done; 2265 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2266 BasicBlock *BB = I.getSuccessor(i); 2267 bool Inserted = Done.insert(BB).second; 2268 if (!Inserted) 2269 continue; 2270 2271 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2272 addSuccessorWithProb(IndirectBrMBB, Succ); 2273 } 2274 IndirectBrMBB->normalizeSuccProbs(); 2275 2276 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2277 MVT::Other, getControlRoot(), 2278 getValue(I.getAddress()))); 2279 } 2280 2281 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2282 if (DAG.getTarget().Options.TrapUnreachable) 2283 DAG.setRoot( 2284 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2285 } 2286 2287 void SelectionDAGBuilder::visitFSub(const User &I) { 2288 // -0.0 - X --> fneg 2289 Type *Ty = I.getType(); 2290 if (isa<Constant>(I.getOperand(0)) && 2291 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2292 SDValue Op2 = getValue(I.getOperand(1)); 2293 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2294 Op2.getValueType(), Op2)); 2295 return; 2296 } 2297 2298 visitBinary(I, ISD::FSUB); 2299 } 2300 2301 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2302 SDValue Op1 = getValue(I.getOperand(0)); 2303 SDValue Op2 = getValue(I.getOperand(1)); 2304 2305 bool nuw = false; 2306 bool nsw = false; 2307 bool exact = false; 2308 FastMathFlags FMF; 2309 2310 if (const OverflowingBinaryOperator *OFBinOp = 2311 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2312 nuw = OFBinOp->hasNoUnsignedWrap(); 2313 nsw = OFBinOp->hasNoSignedWrap(); 2314 } 2315 if (const PossiblyExactOperator *ExactOp = 2316 dyn_cast<const PossiblyExactOperator>(&I)) 2317 exact = ExactOp->isExact(); 2318 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2319 FMF = FPOp->getFastMathFlags(); 2320 2321 SDNodeFlags Flags; 2322 Flags.setExact(exact); 2323 Flags.setNoSignedWrap(nsw); 2324 Flags.setNoUnsignedWrap(nuw); 2325 if (EnableFMFInDAG) { 2326 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2327 Flags.setNoInfs(FMF.noInfs()); 2328 Flags.setNoNaNs(FMF.noNaNs()); 2329 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2330 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2331 } 2332 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2333 Op1, Op2, &Flags); 2334 setValue(&I, BinNodeValue); 2335 } 2336 2337 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2338 SDValue Op1 = getValue(I.getOperand(0)); 2339 SDValue Op2 = getValue(I.getOperand(1)); 2340 2341 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2342 Op2.getValueType(), DAG.getDataLayout()); 2343 2344 // Coerce the shift amount to the right type if we can. 2345 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2346 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2347 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2348 SDLoc DL = getCurSDLoc(); 2349 2350 // If the operand is smaller than the shift count type, promote it. 2351 if (ShiftSize > Op2Size) 2352 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2353 2354 // If the operand is larger than the shift count type but the shift 2355 // count type has enough bits to represent any shift value, truncate 2356 // it now. This is a common case and it exposes the truncate to 2357 // optimization early. 2358 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2359 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2360 // Otherwise we'll need to temporarily settle for some other convenient 2361 // type. Type legalization will make adjustments once the shiftee is split. 2362 else 2363 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2364 } 2365 2366 bool nuw = false; 2367 bool nsw = false; 2368 bool exact = false; 2369 2370 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2371 2372 if (const OverflowingBinaryOperator *OFBinOp = 2373 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2374 nuw = OFBinOp->hasNoUnsignedWrap(); 2375 nsw = OFBinOp->hasNoSignedWrap(); 2376 } 2377 if (const PossiblyExactOperator *ExactOp = 2378 dyn_cast<const PossiblyExactOperator>(&I)) 2379 exact = ExactOp->isExact(); 2380 } 2381 SDNodeFlags Flags; 2382 Flags.setExact(exact); 2383 Flags.setNoSignedWrap(nsw); 2384 Flags.setNoUnsignedWrap(nuw); 2385 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2386 &Flags); 2387 setValue(&I, Res); 2388 } 2389 2390 void SelectionDAGBuilder::visitSDiv(const User &I) { 2391 SDValue Op1 = getValue(I.getOperand(0)); 2392 SDValue Op2 = getValue(I.getOperand(1)); 2393 2394 SDNodeFlags Flags; 2395 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2396 cast<PossiblyExactOperator>(&I)->isExact()); 2397 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2398 Op2, &Flags)); 2399 } 2400 2401 void SelectionDAGBuilder::visitICmp(const User &I) { 2402 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2403 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2404 predicate = IC->getPredicate(); 2405 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2406 predicate = ICmpInst::Predicate(IC->getPredicate()); 2407 SDValue Op1 = getValue(I.getOperand(0)); 2408 SDValue Op2 = getValue(I.getOperand(1)); 2409 ISD::CondCode Opcode = getICmpCondCode(predicate); 2410 2411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2412 I.getType()); 2413 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2414 } 2415 2416 void SelectionDAGBuilder::visitFCmp(const User &I) { 2417 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2418 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2419 predicate = FC->getPredicate(); 2420 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2421 predicate = FCmpInst::Predicate(FC->getPredicate()); 2422 SDValue Op1 = getValue(I.getOperand(0)); 2423 SDValue Op2 = getValue(I.getOperand(1)); 2424 ISD::CondCode Condition = getFCmpCondCode(predicate); 2425 2426 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2427 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2428 // further optimization, but currently FMF is only applicable to binary nodes. 2429 if (TM.Options.NoNaNsFPMath) 2430 Condition = getFCmpCodeWithoutNaN(Condition); 2431 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2432 I.getType()); 2433 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2434 } 2435 2436 void SelectionDAGBuilder::visitSelect(const User &I) { 2437 SmallVector<EVT, 4> ValueVTs; 2438 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2439 ValueVTs); 2440 unsigned NumValues = ValueVTs.size(); 2441 if (NumValues == 0) return; 2442 2443 SmallVector<SDValue, 4> Values(NumValues); 2444 SDValue Cond = getValue(I.getOperand(0)); 2445 SDValue LHSVal = getValue(I.getOperand(1)); 2446 SDValue RHSVal = getValue(I.getOperand(2)); 2447 auto BaseOps = {Cond}; 2448 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2449 ISD::VSELECT : ISD::SELECT; 2450 2451 // Min/max matching is only viable if all output VTs are the same. 2452 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2453 EVT VT = ValueVTs[0]; 2454 LLVMContext &Ctx = *DAG.getContext(); 2455 auto &TLI = DAG.getTargetLoweringInfo(); 2456 2457 // We care about the legality of the operation after it has been type 2458 // legalized. 2459 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2460 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2461 VT = TLI.getTypeToTransformTo(Ctx, VT); 2462 2463 // If the vselect is legal, assume we want to leave this as a vector setcc + 2464 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2465 // min/max is legal on the scalar type. 2466 bool UseScalarMinMax = VT.isVector() && 2467 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2468 2469 Value *LHS, *RHS; 2470 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2471 ISD::NodeType Opc = ISD::DELETED_NODE; 2472 switch (SPR.Flavor) { 2473 case SPF_UMAX: Opc = ISD::UMAX; break; 2474 case SPF_UMIN: Opc = ISD::UMIN; break; 2475 case SPF_SMAX: Opc = ISD::SMAX; break; 2476 case SPF_SMIN: Opc = ISD::SMIN; break; 2477 case SPF_FMINNUM: 2478 switch (SPR.NaNBehavior) { 2479 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2480 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2481 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2482 case SPNB_RETURNS_ANY: { 2483 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2484 Opc = ISD::FMINNUM; 2485 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2486 Opc = ISD::FMINNAN; 2487 else if (UseScalarMinMax) 2488 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2489 ISD::FMINNUM : ISD::FMINNAN; 2490 break; 2491 } 2492 } 2493 break; 2494 case SPF_FMAXNUM: 2495 switch (SPR.NaNBehavior) { 2496 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2497 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2498 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2499 case SPNB_RETURNS_ANY: 2500 2501 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2502 Opc = ISD::FMAXNUM; 2503 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2504 Opc = ISD::FMAXNAN; 2505 else if (UseScalarMinMax) 2506 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2507 ISD::FMAXNUM : ISD::FMAXNAN; 2508 break; 2509 } 2510 break; 2511 default: break; 2512 } 2513 2514 if (Opc != ISD::DELETED_NODE && 2515 (TLI.isOperationLegalOrCustom(Opc, VT) || 2516 (UseScalarMinMax && 2517 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2518 // If the underlying comparison instruction is used by any other 2519 // instruction, the consumed instructions won't be destroyed, so it is 2520 // not profitable to convert to a min/max. 2521 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2522 OpCode = Opc; 2523 LHSVal = getValue(LHS); 2524 RHSVal = getValue(RHS); 2525 BaseOps = {}; 2526 } 2527 } 2528 2529 for (unsigned i = 0; i != NumValues; ++i) { 2530 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2531 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2532 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2533 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2534 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2535 Ops); 2536 } 2537 2538 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2539 DAG.getVTList(ValueVTs), Values)); 2540 } 2541 2542 void SelectionDAGBuilder::visitTrunc(const User &I) { 2543 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2544 SDValue N = getValue(I.getOperand(0)); 2545 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2546 I.getType()); 2547 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2548 } 2549 2550 void SelectionDAGBuilder::visitZExt(const User &I) { 2551 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2552 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2553 SDValue N = getValue(I.getOperand(0)); 2554 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2555 I.getType()); 2556 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2557 } 2558 2559 void SelectionDAGBuilder::visitSExt(const User &I) { 2560 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2561 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2562 SDValue N = getValue(I.getOperand(0)); 2563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2564 I.getType()); 2565 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2566 } 2567 2568 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2569 // FPTrunc is never a no-op cast, no need to check 2570 SDValue N = getValue(I.getOperand(0)); 2571 SDLoc dl = getCurSDLoc(); 2572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2573 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2574 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2575 DAG.getTargetConstant( 2576 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2577 } 2578 2579 void SelectionDAGBuilder::visitFPExt(const User &I) { 2580 // FPExt is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2583 I.getType()); 2584 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2588 // FPToUI is never a no-op cast, no need to check 2589 SDValue N = getValue(I.getOperand(0)); 2590 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2591 I.getType()); 2592 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2593 } 2594 2595 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2596 // FPToSI is never a no-op cast, no need to check 2597 SDValue N = getValue(I.getOperand(0)); 2598 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2599 I.getType()); 2600 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2601 } 2602 2603 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2604 // UIToFP is never a no-op cast, no need to check 2605 SDValue N = getValue(I.getOperand(0)); 2606 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2607 I.getType()); 2608 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2609 } 2610 2611 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2612 // SIToFP is never a no-op cast, no need to check 2613 SDValue N = getValue(I.getOperand(0)); 2614 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2615 I.getType()); 2616 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2617 } 2618 2619 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2620 // What to do depends on the size of the integer and the size of the pointer. 2621 // We can either truncate, zero extend, or no-op, accordingly. 2622 SDValue N = getValue(I.getOperand(0)); 2623 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2624 I.getType()); 2625 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2626 } 2627 2628 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2629 // What to do depends on the size of the integer and the size of the pointer. 2630 // We can either truncate, zero extend, or no-op, accordingly. 2631 SDValue N = getValue(I.getOperand(0)); 2632 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2633 I.getType()); 2634 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2635 } 2636 2637 void SelectionDAGBuilder::visitBitCast(const User &I) { 2638 SDValue N = getValue(I.getOperand(0)); 2639 SDLoc dl = getCurSDLoc(); 2640 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2641 I.getType()); 2642 2643 // BitCast assures us that source and destination are the same size so this is 2644 // either a BITCAST or a no-op. 2645 if (DestVT != N.getValueType()) 2646 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2647 DestVT, N)); // convert types. 2648 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2649 // might fold any kind of constant expression to an integer constant and that 2650 // is not what we are looking for. Only regcognize a bitcast of a genuine 2651 // constant integer as an opaque constant. 2652 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2653 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2654 /*isOpaque*/true)); 2655 else 2656 setValue(&I, N); // noop cast. 2657 } 2658 2659 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2661 const Value *SV = I.getOperand(0); 2662 SDValue N = getValue(SV); 2663 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2664 2665 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2666 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2667 2668 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2669 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2670 2671 setValue(&I, N); 2672 } 2673 2674 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 SDValue InVec = getValue(I.getOperand(0)); 2677 SDValue InVal = getValue(I.getOperand(1)); 2678 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2679 TLI.getVectorIdxTy(DAG.getDataLayout())); 2680 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2681 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2682 InVec, InVal, InIdx)); 2683 } 2684 2685 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 SDValue InVec = getValue(I.getOperand(0)); 2688 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2689 TLI.getVectorIdxTy(DAG.getDataLayout())); 2690 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2691 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2692 InVec, InIdx)); 2693 } 2694 2695 // Utility for visitShuffleVector - Return true if every element in Mask, 2696 // beginning from position Pos and ending in Pos+Size, falls within the 2697 // specified sequential range [L, L+Pos). or is undef. 2698 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2699 unsigned Pos, unsigned Size, int Low) { 2700 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2701 if (Mask[i] >= 0 && Mask[i] != Low) 2702 return false; 2703 return true; 2704 } 2705 2706 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2707 SDValue Src1 = getValue(I.getOperand(0)); 2708 SDValue Src2 = getValue(I.getOperand(1)); 2709 2710 SmallVector<int, 8> Mask; 2711 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2712 unsigned MaskNumElts = Mask.size(); 2713 2714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2715 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2716 EVT SrcVT = Src1.getValueType(); 2717 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2718 2719 if (SrcNumElts == MaskNumElts) { 2720 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2721 &Mask[0])); 2722 return; 2723 } 2724 2725 // Normalize the shuffle vector since mask and vector length don't match. 2726 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2727 // Mask is longer than the source vectors and is a multiple of the source 2728 // vectors. We can use concatenate vector to make the mask and vectors 2729 // lengths match. 2730 if (SrcNumElts*2 == MaskNumElts) { 2731 // First check for Src1 in low and Src2 in high 2732 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2733 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2734 // The shuffle is concatenating two vectors together. 2735 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2736 VT, Src1, Src2)); 2737 return; 2738 } 2739 // Then check for Src2 in low and Src1 in high 2740 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2741 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2742 // The shuffle is concatenating two vectors together. 2743 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2744 VT, Src2, Src1)); 2745 return; 2746 } 2747 } 2748 2749 // Pad both vectors with undefs to make them the same length as the mask. 2750 unsigned NumConcat = MaskNumElts / SrcNumElts; 2751 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2752 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2753 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2754 2755 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2756 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2757 MOps1[0] = Src1; 2758 MOps2[0] = Src2; 2759 2760 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2761 getCurSDLoc(), VT, MOps1); 2762 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2763 getCurSDLoc(), VT, MOps2); 2764 2765 // Readjust mask for new input vector length. 2766 SmallVector<int, 8> MappedOps; 2767 for (unsigned i = 0; i != MaskNumElts; ++i) { 2768 int Idx = Mask[i]; 2769 if (Idx >= (int)SrcNumElts) 2770 Idx -= SrcNumElts - MaskNumElts; 2771 MappedOps.push_back(Idx); 2772 } 2773 2774 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2775 &MappedOps[0])); 2776 return; 2777 } 2778 2779 if (SrcNumElts > MaskNumElts) { 2780 // Analyze the access pattern of the vector to see if we can extract 2781 // two subvectors and do the shuffle. The analysis is done by calculating 2782 // the range of elements the mask access on both vectors. 2783 int MinRange[2] = { static_cast<int>(SrcNumElts), 2784 static_cast<int>(SrcNumElts)}; 2785 int MaxRange[2] = {-1, -1}; 2786 2787 for (unsigned i = 0; i != MaskNumElts; ++i) { 2788 int Idx = Mask[i]; 2789 unsigned Input = 0; 2790 if (Idx < 0) 2791 continue; 2792 2793 if (Idx >= (int)SrcNumElts) { 2794 Input = 1; 2795 Idx -= SrcNumElts; 2796 } 2797 if (Idx > MaxRange[Input]) 2798 MaxRange[Input] = Idx; 2799 if (Idx < MinRange[Input]) 2800 MinRange[Input] = Idx; 2801 } 2802 2803 // Check if the access is smaller than the vector size and can we find 2804 // a reasonable extract index. 2805 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2806 // Extract. 2807 int StartIdx[2]; // StartIdx to extract from 2808 for (unsigned Input = 0; Input < 2; ++Input) { 2809 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2810 RangeUse[Input] = 0; // Unused 2811 StartIdx[Input] = 0; 2812 continue; 2813 } 2814 2815 // Find a good start index that is a multiple of the mask length. Then 2816 // see if the rest of the elements are in range. 2817 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2818 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2819 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2820 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2821 } 2822 2823 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2824 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2825 return; 2826 } 2827 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2828 // Extract appropriate subvector and generate a vector shuffle 2829 for (unsigned Input = 0; Input < 2; ++Input) { 2830 SDValue &Src = Input == 0 ? Src1 : Src2; 2831 if (RangeUse[Input] == 0) 2832 Src = DAG.getUNDEF(VT); 2833 else { 2834 SDLoc dl = getCurSDLoc(); 2835 Src = DAG.getNode( 2836 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2837 DAG.getConstant(StartIdx[Input], dl, 2838 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2839 } 2840 } 2841 2842 // Calculate new mask. 2843 SmallVector<int, 8> MappedOps; 2844 for (unsigned i = 0; i != MaskNumElts; ++i) { 2845 int Idx = Mask[i]; 2846 if (Idx >= 0) { 2847 if (Idx < (int)SrcNumElts) 2848 Idx -= StartIdx[0]; 2849 else 2850 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2851 } 2852 MappedOps.push_back(Idx); 2853 } 2854 2855 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2856 &MappedOps[0])); 2857 return; 2858 } 2859 } 2860 2861 // We can't use either concat vectors or extract subvectors so fall back to 2862 // replacing the shuffle with extract and build vector. 2863 // to insert and build vector. 2864 EVT EltVT = VT.getVectorElementType(); 2865 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2866 SDLoc dl = getCurSDLoc(); 2867 SmallVector<SDValue,8> Ops; 2868 for (unsigned i = 0; i != MaskNumElts; ++i) { 2869 int Idx = Mask[i]; 2870 SDValue Res; 2871 2872 if (Idx < 0) { 2873 Res = DAG.getUNDEF(EltVT); 2874 } else { 2875 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2876 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2877 2878 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2879 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2880 } 2881 2882 Ops.push_back(Res); 2883 } 2884 2885 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2886 } 2887 2888 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2889 const Value *Op0 = I.getOperand(0); 2890 const Value *Op1 = I.getOperand(1); 2891 Type *AggTy = I.getType(); 2892 Type *ValTy = Op1->getType(); 2893 bool IntoUndef = isa<UndefValue>(Op0); 2894 bool FromUndef = isa<UndefValue>(Op1); 2895 2896 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2897 2898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2899 SmallVector<EVT, 4> AggValueVTs; 2900 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2901 SmallVector<EVT, 4> ValValueVTs; 2902 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2903 2904 unsigned NumAggValues = AggValueVTs.size(); 2905 unsigned NumValValues = ValValueVTs.size(); 2906 SmallVector<SDValue, 4> Values(NumAggValues); 2907 2908 // Ignore an insertvalue that produces an empty object 2909 if (!NumAggValues) { 2910 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2911 return; 2912 } 2913 2914 SDValue Agg = getValue(Op0); 2915 unsigned i = 0; 2916 // Copy the beginning value(s) from the original aggregate. 2917 for (; i != LinearIndex; ++i) 2918 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2919 SDValue(Agg.getNode(), Agg.getResNo() + i); 2920 // Copy values from the inserted value(s). 2921 if (NumValValues) { 2922 SDValue Val = getValue(Op1); 2923 for (; i != LinearIndex + NumValValues; ++i) 2924 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2925 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2926 } 2927 // Copy remaining value(s) from the original aggregate. 2928 for (; i != NumAggValues; ++i) 2929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2930 SDValue(Agg.getNode(), Agg.getResNo() + i); 2931 2932 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2933 DAG.getVTList(AggValueVTs), Values)); 2934 } 2935 2936 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2937 const Value *Op0 = I.getOperand(0); 2938 Type *AggTy = Op0->getType(); 2939 Type *ValTy = I.getType(); 2940 bool OutOfUndef = isa<UndefValue>(Op0); 2941 2942 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2943 2944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2945 SmallVector<EVT, 4> ValValueVTs; 2946 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2947 2948 unsigned NumValValues = ValValueVTs.size(); 2949 2950 // Ignore a extractvalue that produces an empty object 2951 if (!NumValValues) { 2952 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2953 return; 2954 } 2955 2956 SmallVector<SDValue, 4> Values(NumValValues); 2957 2958 SDValue Agg = getValue(Op0); 2959 // Copy out the selected value(s). 2960 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2961 Values[i - LinearIndex] = 2962 OutOfUndef ? 2963 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2964 SDValue(Agg.getNode(), Agg.getResNo() + i); 2965 2966 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2967 DAG.getVTList(ValValueVTs), Values)); 2968 } 2969 2970 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2971 Value *Op0 = I.getOperand(0); 2972 // Note that the pointer operand may be a vector of pointers. Take the scalar 2973 // element which holds a pointer. 2974 Type *Ty = Op0->getType()->getScalarType(); 2975 unsigned AS = Ty->getPointerAddressSpace(); 2976 SDValue N = getValue(Op0); 2977 SDLoc dl = getCurSDLoc(); 2978 2979 // Normalize Vector GEP - all scalar operands should be converted to the 2980 // splat vector. 2981 unsigned VectorWidth = I.getType()->isVectorTy() ? 2982 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2983 2984 if (VectorWidth && !N.getValueType().isVector()) { 2985 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2986 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2987 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2988 } 2989 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2990 OI != E; ++OI) { 2991 const Value *Idx = *OI; 2992 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2993 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2994 if (Field) { 2995 // N = N + Offset 2996 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2997 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2998 DAG.getConstant(Offset, dl, N.getValueType())); 2999 } 3000 3001 Ty = StTy->getElementType(Field); 3002 } else { 3003 Ty = cast<SequentialType>(Ty)->getElementType(); 3004 MVT PtrTy = 3005 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3006 unsigned PtrSize = PtrTy.getSizeInBits(); 3007 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3008 3009 // If this is a scalar constant or a splat vector of constants, 3010 // handle it quickly. 3011 const auto *CI = dyn_cast<ConstantInt>(Idx); 3012 if (!CI && isa<ConstantDataVector>(Idx) && 3013 cast<ConstantDataVector>(Idx)->getSplatValue()) 3014 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3015 3016 if (CI) { 3017 if (CI->isZero()) 3018 continue; 3019 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3020 SDValue OffsVal = VectorWidth ? 3021 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3022 DAG.getConstant(Offs, dl, PtrTy); 3023 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3024 continue; 3025 } 3026 3027 // N = N + Idx * ElementSize; 3028 SDValue IdxN = getValue(Idx); 3029 3030 if (!IdxN.getValueType().isVector() && VectorWidth) { 3031 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3032 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3033 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3034 } 3035 // If the index is smaller or larger than intptr_t, truncate or extend 3036 // it. 3037 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3038 3039 // If this is a multiply by a power of two, turn it into a shl 3040 // immediately. This is a very common case. 3041 if (ElementSize != 1) { 3042 if (ElementSize.isPowerOf2()) { 3043 unsigned Amt = ElementSize.logBase2(); 3044 IdxN = DAG.getNode(ISD::SHL, dl, 3045 N.getValueType(), IdxN, 3046 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3047 } else { 3048 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3049 IdxN = DAG.getNode(ISD::MUL, dl, 3050 N.getValueType(), IdxN, Scale); 3051 } 3052 } 3053 3054 N = DAG.getNode(ISD::ADD, dl, 3055 N.getValueType(), N, IdxN); 3056 } 3057 } 3058 3059 setValue(&I, N); 3060 } 3061 3062 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3063 // If this is a fixed sized alloca in the entry block of the function, 3064 // allocate it statically on the stack. 3065 if (FuncInfo.StaticAllocaMap.count(&I)) 3066 return; // getValue will auto-populate this. 3067 3068 SDLoc dl = getCurSDLoc(); 3069 Type *Ty = I.getAllocatedType(); 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 auto &DL = DAG.getDataLayout(); 3072 uint64_t TySize = DL.getTypeAllocSize(Ty); 3073 unsigned Align = 3074 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3075 3076 SDValue AllocSize = getValue(I.getArraySize()); 3077 3078 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3079 if (AllocSize.getValueType() != IntPtr) 3080 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3081 3082 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3083 AllocSize, 3084 DAG.getConstant(TySize, dl, IntPtr)); 3085 3086 // Handle alignment. If the requested alignment is less than or equal to 3087 // the stack alignment, ignore it. If the size is greater than or equal to 3088 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3089 unsigned StackAlign = 3090 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3091 if (Align <= StackAlign) 3092 Align = 0; 3093 3094 // Round the size of the allocation up to the stack alignment size 3095 // by add SA-1 to the size. 3096 AllocSize = DAG.getNode(ISD::ADD, dl, 3097 AllocSize.getValueType(), AllocSize, 3098 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3099 3100 // Mask out the low bits for alignment purposes. 3101 AllocSize = DAG.getNode(ISD::AND, dl, 3102 AllocSize.getValueType(), AllocSize, 3103 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3104 dl)); 3105 3106 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3107 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3108 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3109 setValue(&I, DSA); 3110 DAG.setRoot(DSA.getValue(1)); 3111 3112 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3113 } 3114 3115 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3116 if (I.isAtomic()) 3117 return visitAtomicLoad(I); 3118 3119 const Value *SV = I.getOperand(0); 3120 SDValue Ptr = getValue(SV); 3121 3122 Type *Ty = I.getType(); 3123 3124 bool isVolatile = I.isVolatile(); 3125 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3126 3127 // The IR notion of invariant_load only guarantees that all *non-faulting* 3128 // invariant loads result in the same value. The MI notion of invariant load 3129 // guarantees that the load can be legally moved to any location within its 3130 // containing function. The MI notion of invariant_load is stronger than the 3131 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3132 // with a guarantee that the location being loaded from is dereferenceable 3133 // throughout the function's lifetime. 3134 3135 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3136 isDereferenceablePointer(SV, DAG.getDataLayout()); 3137 unsigned Alignment = I.getAlignment(); 3138 3139 AAMDNodes AAInfo; 3140 I.getAAMetadata(AAInfo); 3141 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3142 3143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3144 SmallVector<EVT, 4> ValueVTs; 3145 SmallVector<uint64_t, 4> Offsets; 3146 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3147 unsigned NumValues = ValueVTs.size(); 3148 if (NumValues == 0) 3149 return; 3150 3151 SDValue Root; 3152 bool ConstantMemory = false; 3153 if (isVolatile || NumValues > MaxParallelChains) 3154 // Serialize volatile loads with other side effects. 3155 Root = getRoot(); 3156 else if (AA->pointsToConstantMemory(MemoryLocation( 3157 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3158 // Do not serialize (non-volatile) loads of constant memory with anything. 3159 Root = DAG.getEntryNode(); 3160 ConstantMemory = true; 3161 } else { 3162 // Do not serialize non-volatile loads against each other. 3163 Root = DAG.getRoot(); 3164 } 3165 3166 SDLoc dl = getCurSDLoc(); 3167 3168 if (isVolatile) 3169 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3170 3171 SmallVector<SDValue, 4> Values(NumValues); 3172 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3173 EVT PtrVT = Ptr.getValueType(); 3174 unsigned ChainI = 0; 3175 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3176 // Serializing loads here may result in excessive register pressure, and 3177 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3178 // could recover a bit by hoisting nodes upward in the chain by recognizing 3179 // they are side-effect free or do not alias. The optimizer should really 3180 // avoid this case by converting large object/array copies to llvm.memcpy 3181 // (MaxParallelChains should always remain as failsafe). 3182 if (ChainI == MaxParallelChains) { 3183 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3184 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3185 makeArrayRef(Chains.data(), ChainI)); 3186 Root = Chain; 3187 ChainI = 0; 3188 } 3189 SDValue A = DAG.getNode(ISD::ADD, dl, 3190 PtrVT, Ptr, 3191 DAG.getConstant(Offsets[i], dl, PtrVT)); 3192 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3193 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3194 isNonTemporal, isInvariant, Alignment, AAInfo, 3195 Ranges); 3196 3197 Values[i] = L; 3198 Chains[ChainI] = L.getValue(1); 3199 } 3200 3201 if (!ConstantMemory) { 3202 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3203 makeArrayRef(Chains.data(), ChainI)); 3204 if (isVolatile) 3205 DAG.setRoot(Chain); 3206 else 3207 PendingLoads.push_back(Chain); 3208 } 3209 3210 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3211 DAG.getVTList(ValueVTs), Values)); 3212 } 3213 3214 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3215 if (I.isAtomic()) 3216 return visitAtomicStore(I); 3217 3218 const Value *SrcV = I.getOperand(0); 3219 const Value *PtrV = I.getOperand(1); 3220 3221 SmallVector<EVT, 4> ValueVTs; 3222 SmallVector<uint64_t, 4> Offsets; 3223 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3224 SrcV->getType(), ValueVTs, &Offsets); 3225 unsigned NumValues = ValueVTs.size(); 3226 if (NumValues == 0) 3227 return; 3228 3229 // Get the lowered operands. Note that we do this after 3230 // checking if NumResults is zero, because with zero results 3231 // the operands won't have values in the map. 3232 SDValue Src = getValue(SrcV); 3233 SDValue Ptr = getValue(PtrV); 3234 3235 SDValue Root = getRoot(); 3236 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3237 EVT PtrVT = Ptr.getValueType(); 3238 bool isVolatile = I.isVolatile(); 3239 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3240 unsigned Alignment = I.getAlignment(); 3241 SDLoc dl = getCurSDLoc(); 3242 3243 AAMDNodes AAInfo; 3244 I.getAAMetadata(AAInfo); 3245 3246 unsigned ChainI = 0; 3247 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3248 // See visitLoad comments. 3249 if (ChainI == MaxParallelChains) { 3250 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3251 makeArrayRef(Chains.data(), ChainI)); 3252 Root = Chain; 3253 ChainI = 0; 3254 } 3255 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3256 DAG.getConstant(Offsets[i], dl, PtrVT)); 3257 SDValue St = DAG.getStore(Root, dl, 3258 SDValue(Src.getNode(), Src.getResNo() + i), 3259 Add, MachinePointerInfo(PtrV, Offsets[i]), 3260 isVolatile, isNonTemporal, Alignment, AAInfo); 3261 Chains[ChainI] = St; 3262 } 3263 3264 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3265 makeArrayRef(Chains.data(), ChainI)); 3266 DAG.setRoot(StoreNode); 3267 } 3268 3269 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3270 SDLoc sdl = getCurSDLoc(); 3271 3272 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3273 Value *PtrOperand = I.getArgOperand(1); 3274 SDValue Ptr = getValue(PtrOperand); 3275 SDValue Src0 = getValue(I.getArgOperand(0)); 3276 SDValue Mask = getValue(I.getArgOperand(3)); 3277 EVT VT = Src0.getValueType(); 3278 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3279 if (!Alignment) 3280 Alignment = DAG.getEVTAlignment(VT); 3281 3282 AAMDNodes AAInfo; 3283 I.getAAMetadata(AAInfo); 3284 3285 MachineMemOperand *MMO = 3286 DAG.getMachineFunction(). 3287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3288 MachineMemOperand::MOStore, VT.getStoreSize(), 3289 Alignment, AAInfo); 3290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3291 MMO, false); 3292 DAG.setRoot(StoreNode); 3293 setValue(&I, StoreNode); 3294 } 3295 3296 // Get a uniform base for the Gather/Scatter intrinsic. 3297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3298 // We try to represent it as a base pointer + vector of indices. 3299 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3300 // The first operand of the GEP may be a single pointer or a vector of pointers 3301 // Example: 3302 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3303 // or 3304 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3306 // 3307 // When the first GEP operand is a single pointer - it is the uniform base we 3308 // are looking for. If first operand of the GEP is a splat vector - we 3309 // extract the spalt value and use it as a uniform base. 3310 // In all other cases the function returns 'false'. 3311 // 3312 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3313 SelectionDAGBuilder* SDB) { 3314 3315 SelectionDAG& DAG = SDB->DAG; 3316 LLVMContext &Context = *DAG.getContext(); 3317 3318 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3319 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3320 if (!GEP || GEP->getNumOperands() > 2) 3321 return false; 3322 3323 const Value *GEPPtr = GEP->getPointerOperand(); 3324 if (!GEPPtr->getType()->isVectorTy()) 3325 Ptr = GEPPtr; 3326 else if (!(Ptr = getSplatValue(GEPPtr))) 3327 return false; 3328 3329 Value *IndexVal = GEP->getOperand(1); 3330 3331 // The operands of the GEP may be defined in another basic block. 3332 // In this case we'll not find nodes for the operands. 3333 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3334 return false; 3335 3336 Base = SDB->getValue(Ptr); 3337 Index = SDB->getValue(IndexVal); 3338 3339 // Suppress sign extension. 3340 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3341 if (SDB->findValue(Sext->getOperand(0))) { 3342 IndexVal = Sext->getOperand(0); 3343 Index = SDB->getValue(IndexVal); 3344 } 3345 } 3346 if (!Index.getValueType().isVector()) { 3347 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3348 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3349 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3350 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3351 } 3352 return true; 3353 } 3354 3355 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3356 SDLoc sdl = getCurSDLoc(); 3357 3358 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3359 const Value *Ptr = I.getArgOperand(1); 3360 SDValue Src0 = getValue(I.getArgOperand(0)); 3361 SDValue Mask = getValue(I.getArgOperand(3)); 3362 EVT VT = Src0.getValueType(); 3363 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3364 if (!Alignment) 3365 Alignment = DAG.getEVTAlignment(VT); 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 3368 AAMDNodes AAInfo; 3369 I.getAAMetadata(AAInfo); 3370 3371 SDValue Base; 3372 SDValue Index; 3373 const Value *BasePtr = Ptr; 3374 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3375 3376 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3377 MachineMemOperand *MMO = DAG.getMachineFunction(). 3378 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3379 MachineMemOperand::MOStore, VT.getStoreSize(), 3380 Alignment, AAInfo); 3381 if (!UniformBase) { 3382 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3383 Index = getValue(Ptr); 3384 } 3385 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3386 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3387 Ops, MMO); 3388 DAG.setRoot(Scatter); 3389 setValue(&I, Scatter); 3390 } 3391 3392 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3393 SDLoc sdl = getCurSDLoc(); 3394 3395 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3396 Value *PtrOperand = I.getArgOperand(0); 3397 SDValue Ptr = getValue(PtrOperand); 3398 SDValue Src0 = getValue(I.getArgOperand(3)); 3399 SDValue Mask = getValue(I.getArgOperand(2)); 3400 3401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3402 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3403 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3404 if (!Alignment) 3405 Alignment = DAG.getEVTAlignment(VT); 3406 3407 AAMDNodes AAInfo; 3408 I.getAAMetadata(AAInfo); 3409 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3410 3411 SDValue InChain = DAG.getRoot(); 3412 if (AA->pointsToConstantMemory(MemoryLocation( 3413 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3414 AAInfo))) { 3415 // Do not serialize (non-volatile) loads of constant memory with anything. 3416 InChain = DAG.getEntryNode(); 3417 } 3418 3419 MachineMemOperand *MMO = 3420 DAG.getMachineFunction(). 3421 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3422 MachineMemOperand::MOLoad, VT.getStoreSize(), 3423 Alignment, AAInfo, Ranges); 3424 3425 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3426 ISD::NON_EXTLOAD); 3427 SDValue OutChain = Load.getValue(1); 3428 DAG.setRoot(OutChain); 3429 setValue(&I, Load); 3430 } 3431 3432 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3433 SDLoc sdl = getCurSDLoc(); 3434 3435 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3436 const Value *Ptr = I.getArgOperand(0); 3437 SDValue Src0 = getValue(I.getArgOperand(3)); 3438 SDValue Mask = getValue(I.getArgOperand(2)); 3439 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3442 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3443 if (!Alignment) 3444 Alignment = DAG.getEVTAlignment(VT); 3445 3446 AAMDNodes AAInfo; 3447 I.getAAMetadata(AAInfo); 3448 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3449 3450 SDValue Root = DAG.getRoot(); 3451 SDValue Base; 3452 SDValue Index; 3453 const Value *BasePtr = Ptr; 3454 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3455 bool ConstantMemory = false; 3456 if (UniformBase && 3457 AA->pointsToConstantMemory(MemoryLocation( 3458 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3459 AAInfo))) { 3460 // Do not serialize (non-volatile) loads of constant memory with anything. 3461 Root = DAG.getEntryNode(); 3462 ConstantMemory = true; 3463 } 3464 3465 MachineMemOperand *MMO = 3466 DAG.getMachineFunction(). 3467 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3468 MachineMemOperand::MOLoad, VT.getStoreSize(), 3469 Alignment, AAInfo, Ranges); 3470 3471 if (!UniformBase) { 3472 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3473 Index = getValue(Ptr); 3474 } 3475 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3476 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3477 Ops, MMO); 3478 3479 SDValue OutChain = Gather.getValue(1); 3480 if (!ConstantMemory) 3481 PendingLoads.push_back(OutChain); 3482 setValue(&I, Gather); 3483 } 3484 3485 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3486 SDLoc dl = getCurSDLoc(); 3487 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3488 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3489 SynchronizationScope Scope = I.getSynchScope(); 3490 3491 SDValue InChain = getRoot(); 3492 3493 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3494 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3495 SDValue L = DAG.getAtomicCmpSwap( 3496 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3497 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3498 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3499 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3500 3501 SDValue OutChain = L.getValue(2); 3502 3503 setValue(&I, L); 3504 DAG.setRoot(OutChain); 3505 } 3506 3507 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3508 SDLoc dl = getCurSDLoc(); 3509 ISD::NodeType NT; 3510 switch (I.getOperation()) { 3511 default: llvm_unreachable("Unknown atomicrmw operation"); 3512 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3513 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3514 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3515 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3516 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3517 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3518 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3519 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3520 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3521 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3522 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3523 } 3524 AtomicOrdering Order = I.getOrdering(); 3525 SynchronizationScope Scope = I.getSynchScope(); 3526 3527 SDValue InChain = getRoot(); 3528 3529 SDValue L = 3530 DAG.getAtomic(NT, dl, 3531 getValue(I.getValOperand()).getSimpleValueType(), 3532 InChain, 3533 getValue(I.getPointerOperand()), 3534 getValue(I.getValOperand()), 3535 I.getPointerOperand(), 3536 /* Alignment=*/ 0, Order, Scope); 3537 3538 SDValue OutChain = L.getValue(1); 3539 3540 setValue(&I, L); 3541 DAG.setRoot(OutChain); 3542 } 3543 3544 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3545 SDLoc dl = getCurSDLoc(); 3546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3547 SDValue Ops[3]; 3548 Ops[0] = getRoot(); 3549 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3550 TLI.getPointerTy(DAG.getDataLayout())); 3551 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3552 TLI.getPointerTy(DAG.getDataLayout())); 3553 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3554 } 3555 3556 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3557 SDLoc dl = getCurSDLoc(); 3558 AtomicOrdering Order = I.getOrdering(); 3559 SynchronizationScope Scope = I.getSynchScope(); 3560 3561 SDValue InChain = getRoot(); 3562 3563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3564 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3565 3566 if (I.getAlignment() < VT.getSizeInBits() / 8) 3567 report_fatal_error("Cannot generate unaligned atomic load"); 3568 3569 MachineMemOperand *MMO = 3570 DAG.getMachineFunction(). 3571 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3572 MachineMemOperand::MOVolatile | 3573 MachineMemOperand::MOLoad, 3574 VT.getStoreSize(), 3575 I.getAlignment() ? I.getAlignment() : 3576 DAG.getEVTAlignment(VT)); 3577 3578 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3579 SDValue L = 3580 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3581 getValue(I.getPointerOperand()), MMO, 3582 Order, Scope); 3583 3584 SDValue OutChain = L.getValue(1); 3585 3586 setValue(&I, L); 3587 DAG.setRoot(OutChain); 3588 } 3589 3590 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3591 SDLoc dl = getCurSDLoc(); 3592 3593 AtomicOrdering Order = I.getOrdering(); 3594 SynchronizationScope Scope = I.getSynchScope(); 3595 3596 SDValue InChain = getRoot(); 3597 3598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3599 EVT VT = 3600 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3601 3602 if (I.getAlignment() < VT.getSizeInBits() / 8) 3603 report_fatal_error("Cannot generate unaligned atomic store"); 3604 3605 SDValue OutChain = 3606 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3607 InChain, 3608 getValue(I.getPointerOperand()), 3609 getValue(I.getValueOperand()), 3610 I.getPointerOperand(), I.getAlignment(), 3611 Order, Scope); 3612 3613 DAG.setRoot(OutChain); 3614 } 3615 3616 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3617 /// node. 3618 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3619 unsigned Intrinsic) { 3620 bool HasChain = !I.doesNotAccessMemory(); 3621 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3622 3623 // Build the operand list. 3624 SmallVector<SDValue, 8> Ops; 3625 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3626 if (OnlyLoad) { 3627 // We don't need to serialize loads against other loads. 3628 Ops.push_back(DAG.getRoot()); 3629 } else { 3630 Ops.push_back(getRoot()); 3631 } 3632 } 3633 3634 // Info is set by getTgtMemInstrinsic 3635 TargetLowering::IntrinsicInfo Info; 3636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3637 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3638 3639 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3640 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3641 Info.opc == ISD::INTRINSIC_W_CHAIN) 3642 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3643 TLI.getPointerTy(DAG.getDataLayout()))); 3644 3645 // Add all operands of the call to the operand list. 3646 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3647 SDValue Op = getValue(I.getArgOperand(i)); 3648 Ops.push_back(Op); 3649 } 3650 3651 SmallVector<EVT, 4> ValueVTs; 3652 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3653 3654 if (HasChain) 3655 ValueVTs.push_back(MVT::Other); 3656 3657 SDVTList VTs = DAG.getVTList(ValueVTs); 3658 3659 // Create the node. 3660 SDValue Result; 3661 if (IsTgtIntrinsic) { 3662 // This is target intrinsic that touches memory 3663 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3664 VTs, Ops, Info.memVT, 3665 MachinePointerInfo(Info.ptrVal, Info.offset), 3666 Info.align, Info.vol, 3667 Info.readMem, Info.writeMem, Info.size); 3668 } else if (!HasChain) { 3669 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3670 } else if (!I.getType()->isVoidTy()) { 3671 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3672 } else { 3673 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3674 } 3675 3676 if (HasChain) { 3677 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3678 if (OnlyLoad) 3679 PendingLoads.push_back(Chain); 3680 else 3681 DAG.setRoot(Chain); 3682 } 3683 3684 if (!I.getType()->isVoidTy()) { 3685 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3686 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3687 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3688 } 3689 3690 setValue(&I, Result); 3691 } 3692 } 3693 3694 /// GetSignificand - Get the significand and build it into a floating-point 3695 /// number with exponent of 1: 3696 /// 3697 /// Op = (Op & 0x007fffff) | 0x3f800000; 3698 /// 3699 /// where Op is the hexadecimal representation of floating point value. 3700 static SDValue 3701 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3702 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3703 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3704 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3705 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3706 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3707 } 3708 3709 /// GetExponent - Get the exponent: 3710 /// 3711 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3712 /// 3713 /// where Op is the hexadecimal representation of floating point value. 3714 static SDValue 3715 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3716 SDLoc dl) { 3717 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3718 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3719 SDValue t1 = DAG.getNode( 3720 ISD::SRL, dl, MVT::i32, t0, 3721 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3722 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3723 DAG.getConstant(127, dl, MVT::i32)); 3724 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3725 } 3726 3727 /// getF32Constant - Get 32-bit floating point constant. 3728 static SDValue 3729 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3730 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3731 MVT::f32); 3732 } 3733 3734 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3735 SelectionDAG &DAG) { 3736 // TODO: What fast-math-flags should be set on the floating-point nodes? 3737 3738 // IntegerPartOfX = ((int32_t)(t0); 3739 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3740 3741 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3742 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3743 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3744 3745 // IntegerPartOfX <<= 23; 3746 IntegerPartOfX = DAG.getNode( 3747 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3748 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3749 DAG.getDataLayout()))); 3750 3751 SDValue TwoToFractionalPartOfX; 3752 if (LimitFloatPrecision <= 6) { 3753 // For floating-point precision of 6: 3754 // 3755 // TwoToFractionalPartOfX = 3756 // 0.997535578f + 3757 // (0.735607626f + 0.252464424f * x) * x; 3758 // 3759 // error 0.0144103317, which is 6 bits 3760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3761 getF32Constant(DAG, 0x3e814304, dl)); 3762 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3763 getF32Constant(DAG, 0x3f3c50c8, dl)); 3764 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3765 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3766 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3767 } else if (LimitFloatPrecision <= 12) { 3768 // For floating-point precision of 12: 3769 // 3770 // TwoToFractionalPartOfX = 3771 // 0.999892986f + 3772 // (0.696457318f + 3773 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3774 // 3775 // error 0.000107046256, which is 13 to 14 bits 3776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3777 getF32Constant(DAG, 0x3da235e3, dl)); 3778 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3779 getF32Constant(DAG, 0x3e65b8f3, dl)); 3780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3781 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3782 getF32Constant(DAG, 0x3f324b07, dl)); 3783 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3784 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3785 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3786 } else { // LimitFloatPrecision <= 18 3787 // For floating-point precision of 18: 3788 // 3789 // TwoToFractionalPartOfX = 3790 // 0.999999982f + 3791 // (0.693148872f + 3792 // (0.240227044f + 3793 // (0.554906021e-1f + 3794 // (0.961591928e-2f + 3795 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3796 // error 2.47208000*10^(-7), which is better than 18 bits 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3798 getF32Constant(DAG, 0x3924b03e, dl)); 3799 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3800 getF32Constant(DAG, 0x3ab24b87, dl)); 3801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3802 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3803 getF32Constant(DAG, 0x3c1d8c17, dl)); 3804 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3805 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3806 getF32Constant(DAG, 0x3d634a1d, dl)); 3807 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3808 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3809 getF32Constant(DAG, 0x3e75fe14, dl)); 3810 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3811 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3812 getF32Constant(DAG, 0x3f317234, dl)); 3813 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3814 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3815 getF32Constant(DAG, 0x3f800000, dl)); 3816 } 3817 3818 // Add the exponent into the result in integer domain. 3819 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3820 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3821 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3822 } 3823 3824 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3825 /// limited-precision mode. 3826 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3827 const TargetLowering &TLI) { 3828 if (Op.getValueType() == MVT::f32 && 3829 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3830 3831 // Put the exponent in the right bit position for later addition to the 3832 // final result: 3833 // 3834 // #define LOG2OFe 1.4426950f 3835 // t0 = Op * LOG2OFe 3836 3837 // TODO: What fast-math-flags should be set here? 3838 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3839 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3840 return getLimitedPrecisionExp2(t0, dl, DAG); 3841 } 3842 3843 // No special expansion. 3844 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3845 } 3846 3847 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3848 /// limited-precision mode. 3849 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3850 const TargetLowering &TLI) { 3851 3852 // TODO: What fast-math-flags should be set on the floating-point nodes? 3853 3854 if (Op.getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3856 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3857 3858 // Scale the exponent by log(2) [0.69314718f]. 3859 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3860 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3861 getF32Constant(DAG, 0x3f317218, dl)); 3862 3863 // Get the significand and build it into a floating-point number with 3864 // exponent of 1. 3865 SDValue X = GetSignificand(DAG, Op1, dl); 3866 3867 SDValue LogOfMantissa; 3868 if (LimitFloatPrecision <= 6) { 3869 // For floating-point precision of 6: 3870 // 3871 // LogofMantissa = 3872 // -1.1609546f + 3873 // (1.4034025f - 0.23903021f * x) * x; 3874 // 3875 // error 0.0034276066, which is better than 8 bits 3876 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3877 getF32Constant(DAG, 0xbe74c456, dl)); 3878 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3879 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3880 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3881 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3882 getF32Constant(DAG, 0x3f949a29, dl)); 3883 } else if (LimitFloatPrecision <= 12) { 3884 // For floating-point precision of 12: 3885 // 3886 // LogOfMantissa = 3887 // -1.7417939f + 3888 // (2.8212026f + 3889 // (-1.4699568f + 3890 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3891 // 3892 // error 0.000061011436, which is 14 bits 3893 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3894 getF32Constant(DAG, 0xbd67b6d6, dl)); 3895 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3896 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3897 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3898 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3899 getF32Constant(DAG, 0x3fbc278b, dl)); 3900 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3901 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3902 getF32Constant(DAG, 0x40348e95, dl)); 3903 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3904 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3905 getF32Constant(DAG, 0x3fdef31a, dl)); 3906 } else { // LimitFloatPrecision <= 18 3907 // For floating-point precision of 18: 3908 // 3909 // LogOfMantissa = 3910 // -2.1072184f + 3911 // (4.2372794f + 3912 // (-3.7029485f + 3913 // (2.2781945f + 3914 // (-0.87823314f + 3915 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3916 // 3917 // error 0.0000023660568, which is better than 18 bits 3918 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3919 getF32Constant(DAG, 0xbc91e5ac, dl)); 3920 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3921 getF32Constant(DAG, 0x3e4350aa, dl)); 3922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3923 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3924 getF32Constant(DAG, 0x3f60d3e3, dl)); 3925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3926 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3927 getF32Constant(DAG, 0x4011cdf0, dl)); 3928 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3929 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3930 getF32Constant(DAG, 0x406cfd1c, dl)); 3931 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3932 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3933 getF32Constant(DAG, 0x408797cb, dl)); 3934 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3935 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3936 getF32Constant(DAG, 0x4006dcab, dl)); 3937 } 3938 3939 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3940 } 3941 3942 // No special expansion. 3943 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3944 } 3945 3946 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3947 /// limited-precision mode. 3948 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3949 const TargetLowering &TLI) { 3950 3951 // TODO: What fast-math-flags should be set on the floating-point nodes? 3952 3953 if (Op.getValueType() == MVT::f32 && 3954 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3955 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3956 3957 // Get the exponent. 3958 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3959 3960 // Get the significand and build it into a floating-point number with 3961 // exponent of 1. 3962 SDValue X = GetSignificand(DAG, Op1, dl); 3963 3964 // Different possible minimax approximations of significand in 3965 // floating-point for various degrees of accuracy over [1,2]. 3966 SDValue Log2ofMantissa; 3967 if (LimitFloatPrecision <= 6) { 3968 // For floating-point precision of 6: 3969 // 3970 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3971 // 3972 // error 0.0049451742, which is more than 7 bits 3973 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0xbeb08fe0, dl)); 3975 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3976 getF32Constant(DAG, 0x40019463, dl)); 3977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3978 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3979 getF32Constant(DAG, 0x3fd6633d, dl)); 3980 } else if (LimitFloatPrecision <= 12) { 3981 // For floating-point precision of 12: 3982 // 3983 // Log2ofMantissa = 3984 // -2.51285454f + 3985 // (4.07009056f + 3986 // (-2.12067489f + 3987 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3988 // 3989 // error 0.0000876136000, which is better than 13 bits 3990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3991 getF32Constant(DAG, 0xbda7262e, dl)); 3992 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3993 getF32Constant(DAG, 0x3f25280b, dl)); 3994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3995 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3996 getF32Constant(DAG, 0x4007b923, dl)); 3997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3998 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3999 getF32Constant(DAG, 0x40823e2f, dl)); 4000 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4001 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4002 getF32Constant(DAG, 0x4020d29c, dl)); 4003 } else { // LimitFloatPrecision <= 18 4004 // For floating-point precision of 18: 4005 // 4006 // Log2ofMantissa = 4007 // -3.0400495f + 4008 // (6.1129976f + 4009 // (-5.3420409f + 4010 // (3.2865683f + 4011 // (-1.2669343f + 4012 // (0.27515199f - 4013 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4014 // 4015 // error 0.0000018516, which is better than 18 bits 4016 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4017 getF32Constant(DAG, 0xbcd2769e, dl)); 4018 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4019 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4021 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3fa22ae7, dl)); 4023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4024 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4025 getF32Constant(DAG, 0x40525723, dl)); 4026 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4027 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4028 getF32Constant(DAG, 0x40aaf200, dl)); 4029 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4030 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4031 getF32Constant(DAG, 0x40c39dad, dl)); 4032 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4033 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4034 getF32Constant(DAG, 0x4042902c, dl)); 4035 } 4036 4037 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4038 } 4039 4040 // No special expansion. 4041 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4042 } 4043 4044 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4045 /// limited-precision mode. 4046 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4047 const TargetLowering &TLI) { 4048 4049 // TODO: What fast-math-flags should be set on the floating-point nodes? 4050 4051 if (Op.getValueType() == MVT::f32 && 4052 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4053 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4054 4055 // Scale the exponent by log10(2) [0.30102999f]. 4056 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4057 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4058 getF32Constant(DAG, 0x3e9a209a, dl)); 4059 4060 // Get the significand and build it into a floating-point number with 4061 // exponent of 1. 4062 SDValue X = GetSignificand(DAG, Op1, dl); 4063 4064 SDValue Log10ofMantissa; 4065 if (LimitFloatPrecision <= 6) { 4066 // For floating-point precision of 6: 4067 // 4068 // Log10ofMantissa = 4069 // -0.50419619f + 4070 // (0.60948995f - 0.10380950f * x) * x; 4071 // 4072 // error 0.0014886165, which is 6 bits 4073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4074 getF32Constant(DAG, 0xbdd49a13, dl)); 4075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4076 getF32Constant(DAG, 0x3f1c0789, dl)); 4077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4078 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4079 getF32Constant(DAG, 0x3f011300, dl)); 4080 } else if (LimitFloatPrecision <= 12) { 4081 // For floating-point precision of 12: 4082 // 4083 // Log10ofMantissa = 4084 // -0.64831180f + 4085 // (0.91751397f + 4086 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4087 // 4088 // error 0.00019228036, which is better than 12 bits 4089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4090 getF32Constant(DAG, 0x3d431f31, dl)); 4091 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4092 getF32Constant(DAG, 0x3ea21fb2, dl)); 4093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4094 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4095 getF32Constant(DAG, 0x3f6ae232, dl)); 4096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4097 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4098 getF32Constant(DAG, 0x3f25f7c3, dl)); 4099 } else { // LimitFloatPrecision <= 18 4100 // For floating-point precision of 18: 4101 // 4102 // Log10ofMantissa = 4103 // -0.84299375f + 4104 // (1.5327582f + 4105 // (-1.0688956f + 4106 // (0.49102474f + 4107 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4108 // 4109 // error 0.0000037995730, which is better than 18 bits 4110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0x3c5d51ce, dl)); 4112 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4113 getF32Constant(DAG, 0x3e00685a, dl)); 4114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4115 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x3efb6798, dl)); 4117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4118 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4119 getF32Constant(DAG, 0x3f88d192, dl)); 4120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4121 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4122 getF32Constant(DAG, 0x3fc4316c, dl)); 4123 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4124 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4125 getF32Constant(DAG, 0x3f57ce70, dl)); 4126 } 4127 4128 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4129 } 4130 4131 // No special expansion. 4132 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4133 } 4134 4135 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4136 /// limited-precision mode. 4137 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4138 const TargetLowering &TLI) { 4139 if (Op.getValueType() == MVT::f32 && 4140 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4141 return getLimitedPrecisionExp2(Op, dl, DAG); 4142 4143 // No special expansion. 4144 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4145 } 4146 4147 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4148 /// limited-precision mode with x == 10.0f. 4149 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4150 SelectionDAG &DAG, const TargetLowering &TLI) { 4151 bool IsExp10 = false; 4152 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4153 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4154 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4155 APFloat Ten(10.0f); 4156 IsExp10 = LHSC->isExactlyValue(Ten); 4157 } 4158 } 4159 4160 // TODO: What fast-math-flags should be set on the FMUL node? 4161 if (IsExp10) { 4162 // Put the exponent in the right bit position for later addition to the 4163 // final result: 4164 // 4165 // #define LOG2OF10 3.3219281f 4166 // t0 = Op * LOG2OF10; 4167 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4168 getF32Constant(DAG, 0x40549a78, dl)); 4169 return getLimitedPrecisionExp2(t0, dl, DAG); 4170 } 4171 4172 // No special expansion. 4173 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4174 } 4175 4176 4177 /// ExpandPowI - Expand a llvm.powi intrinsic. 4178 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4179 SelectionDAG &DAG) { 4180 // If RHS is a constant, we can expand this out to a multiplication tree, 4181 // otherwise we end up lowering to a call to __powidf2 (for example). When 4182 // optimizing for size, we only want to do this if the expansion would produce 4183 // a small number of multiplies, otherwise we do the full expansion. 4184 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4185 // Get the exponent as a positive value. 4186 unsigned Val = RHSC->getSExtValue(); 4187 if ((int)Val < 0) Val = -Val; 4188 4189 // powi(x, 0) -> 1.0 4190 if (Val == 0) 4191 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4192 4193 const Function *F = DAG.getMachineFunction().getFunction(); 4194 if (!F->optForSize() || 4195 // If optimizing for size, don't insert too many multiplies. 4196 // This inserts up to 5 multiplies. 4197 countPopulation(Val) + Log2_32(Val) < 7) { 4198 // We use the simple binary decomposition method to generate the multiply 4199 // sequence. There are more optimal ways to do this (for example, 4200 // powi(x,15) generates one more multiply than it should), but this has 4201 // the benefit of being both really simple and much better than a libcall. 4202 SDValue Res; // Logically starts equal to 1.0 4203 SDValue CurSquare = LHS; 4204 // TODO: Intrinsics should have fast-math-flags that propagate to these 4205 // nodes. 4206 while (Val) { 4207 if (Val & 1) { 4208 if (Res.getNode()) 4209 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4210 else 4211 Res = CurSquare; // 1.0*CurSquare. 4212 } 4213 4214 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4215 CurSquare, CurSquare); 4216 Val >>= 1; 4217 } 4218 4219 // If the original was negative, invert the result, producing 1/(x*x*x). 4220 if (RHSC->getSExtValue() < 0) 4221 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4222 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4223 return Res; 4224 } 4225 } 4226 4227 // Otherwise, expand to a libcall. 4228 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4229 } 4230 4231 // getUnderlyingArgReg - Find underlying register used for a truncated or 4232 // bitcasted argument. 4233 static unsigned getUnderlyingArgReg(const SDValue &N) { 4234 switch (N.getOpcode()) { 4235 case ISD::CopyFromReg: 4236 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4237 case ISD::BITCAST: 4238 case ISD::AssertZext: 4239 case ISD::AssertSext: 4240 case ISD::TRUNCATE: 4241 return getUnderlyingArgReg(N.getOperand(0)); 4242 default: 4243 return 0; 4244 } 4245 } 4246 4247 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4248 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4249 /// At the end of instruction selection, they will be inserted to the entry BB. 4250 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4251 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4252 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4253 const Argument *Arg = dyn_cast<Argument>(V); 4254 if (!Arg) 4255 return false; 4256 4257 MachineFunction &MF = DAG.getMachineFunction(); 4258 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4259 4260 // Ignore inlined function arguments here. 4261 // 4262 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4263 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4264 return false; 4265 4266 Optional<MachineOperand> Op; 4267 // Some arguments' frame index is recorded during argument lowering. 4268 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4269 Op = MachineOperand::CreateFI(FI); 4270 4271 if (!Op && N.getNode()) { 4272 unsigned Reg = getUnderlyingArgReg(N); 4273 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4274 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4275 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4276 if (PR) 4277 Reg = PR; 4278 } 4279 if (Reg) 4280 Op = MachineOperand::CreateReg(Reg, false); 4281 } 4282 4283 if (!Op) { 4284 // Check if ValueMap has reg number. 4285 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4286 if (VMI != FuncInfo.ValueMap.end()) 4287 Op = MachineOperand::CreateReg(VMI->second, false); 4288 } 4289 4290 if (!Op && N.getNode()) 4291 // Check if frame index is available. 4292 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4293 if (FrameIndexSDNode *FINode = 4294 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4295 Op = MachineOperand::CreateFI(FINode->getIndex()); 4296 4297 if (!Op) 4298 return false; 4299 4300 assert(Variable->isValidLocationForIntrinsic(DL) && 4301 "Expected inlined-at fields to agree"); 4302 if (Op->isReg()) 4303 FuncInfo.ArgDbgValues.push_back( 4304 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4305 Op->getReg(), Offset, Variable, Expr)); 4306 else 4307 FuncInfo.ArgDbgValues.push_back( 4308 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4309 .addOperand(*Op) 4310 .addImm(Offset) 4311 .addMetadata(Variable) 4312 .addMetadata(Expr)); 4313 4314 return true; 4315 } 4316 4317 // VisualStudio defines setjmp as _setjmp 4318 #if defined(_MSC_VER) && defined(setjmp) && \ 4319 !defined(setjmp_undefined_for_msvc) 4320 # pragma push_macro("setjmp") 4321 # undef setjmp 4322 # define setjmp_undefined_for_msvc 4323 #endif 4324 4325 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4326 /// we want to emit this as a call to a named external function, return the name 4327 /// otherwise lower it and return null. 4328 const char * 4329 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4331 SDLoc sdl = getCurSDLoc(); 4332 DebugLoc dl = getCurDebugLoc(); 4333 SDValue Res; 4334 4335 switch (Intrinsic) { 4336 default: 4337 // By default, turn this into a target intrinsic node. 4338 visitTargetIntrinsic(I, Intrinsic); 4339 return nullptr; 4340 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4341 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4342 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4343 case Intrinsic::returnaddress: 4344 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4345 TLI.getPointerTy(DAG.getDataLayout()), 4346 getValue(I.getArgOperand(0)))); 4347 return nullptr; 4348 case Intrinsic::frameaddress: 4349 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4350 TLI.getPointerTy(DAG.getDataLayout()), 4351 getValue(I.getArgOperand(0)))); 4352 return nullptr; 4353 case Intrinsic::read_register: { 4354 Value *Reg = I.getArgOperand(0); 4355 SDValue Chain = getRoot(); 4356 SDValue RegName = 4357 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4359 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4360 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4361 setValue(&I, Res); 4362 DAG.setRoot(Res.getValue(1)); 4363 return nullptr; 4364 } 4365 case Intrinsic::write_register: { 4366 Value *Reg = I.getArgOperand(0); 4367 Value *RegValue = I.getArgOperand(1); 4368 SDValue Chain = getRoot(); 4369 SDValue RegName = 4370 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4371 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4372 RegName, getValue(RegValue))); 4373 return nullptr; 4374 } 4375 case Intrinsic::setjmp: 4376 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4377 case Intrinsic::longjmp: 4378 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4379 case Intrinsic::memcpy: { 4380 SDValue Op1 = getValue(I.getArgOperand(0)); 4381 SDValue Op2 = getValue(I.getArgOperand(1)); 4382 SDValue Op3 = getValue(I.getArgOperand(2)); 4383 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4384 if (!Align) 4385 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4386 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4387 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4388 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4389 false, isTC, 4390 MachinePointerInfo(I.getArgOperand(0)), 4391 MachinePointerInfo(I.getArgOperand(1))); 4392 updateDAGForMaybeTailCall(MC); 4393 return nullptr; 4394 } 4395 case Intrinsic::memset: { 4396 SDValue Op1 = getValue(I.getArgOperand(0)); 4397 SDValue Op2 = getValue(I.getArgOperand(1)); 4398 SDValue Op3 = getValue(I.getArgOperand(2)); 4399 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4400 if (!Align) 4401 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4402 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4403 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4404 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4405 isTC, MachinePointerInfo(I.getArgOperand(0))); 4406 updateDAGForMaybeTailCall(MS); 4407 return nullptr; 4408 } 4409 case Intrinsic::memmove: { 4410 SDValue Op1 = getValue(I.getArgOperand(0)); 4411 SDValue Op2 = getValue(I.getArgOperand(1)); 4412 SDValue Op3 = getValue(I.getArgOperand(2)); 4413 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4414 if (!Align) 4415 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4416 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4417 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4418 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4419 isTC, MachinePointerInfo(I.getArgOperand(0)), 4420 MachinePointerInfo(I.getArgOperand(1))); 4421 updateDAGForMaybeTailCall(MM); 4422 return nullptr; 4423 } 4424 case Intrinsic::dbg_declare: { 4425 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4426 DILocalVariable *Variable = DI.getVariable(); 4427 DIExpression *Expression = DI.getExpression(); 4428 const Value *Address = DI.getAddress(); 4429 assert(Variable && "Missing variable"); 4430 if (!Address) { 4431 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4432 return nullptr; 4433 } 4434 4435 // Check if address has undef value. 4436 if (isa<UndefValue>(Address) || 4437 (Address->use_empty() && !isa<Argument>(Address))) { 4438 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4439 return nullptr; 4440 } 4441 4442 SDValue &N = NodeMap[Address]; 4443 if (!N.getNode() && isa<Argument>(Address)) 4444 // Check unused arguments map. 4445 N = UnusedArgNodeMap[Address]; 4446 SDDbgValue *SDV; 4447 if (N.getNode()) { 4448 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4449 Address = BCI->getOperand(0); 4450 // Parameters are handled specially. 4451 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4452 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4453 if (isParameter && FINode) { 4454 // Byval parameter. We have a frame index at this point. 4455 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4456 FINode->getIndex(), 0, dl, SDNodeOrder); 4457 } else if (isa<Argument>(Address)) { 4458 // Address is an argument, so try to emit its dbg value using 4459 // virtual register info from the FuncInfo.ValueMap. 4460 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4461 N); 4462 return nullptr; 4463 } else { 4464 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4465 true, 0, dl, SDNodeOrder); 4466 } 4467 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4468 } else { 4469 // If Address is an argument then try to emit its dbg value using 4470 // virtual register info from the FuncInfo.ValueMap. 4471 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4472 N)) { 4473 // If variable is pinned by a alloca in dominating bb then 4474 // use StaticAllocaMap. 4475 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4476 if (AI->getParent() != DI.getParent()) { 4477 DenseMap<const AllocaInst*, int>::iterator SI = 4478 FuncInfo.StaticAllocaMap.find(AI); 4479 if (SI != FuncInfo.StaticAllocaMap.end()) { 4480 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4481 0, dl, SDNodeOrder); 4482 DAG.AddDbgValue(SDV, nullptr, false); 4483 return nullptr; 4484 } 4485 } 4486 } 4487 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4488 } 4489 } 4490 return nullptr; 4491 } 4492 case Intrinsic::dbg_value: { 4493 const DbgValueInst &DI = cast<DbgValueInst>(I); 4494 assert(DI.getVariable() && "Missing variable"); 4495 4496 DILocalVariable *Variable = DI.getVariable(); 4497 DIExpression *Expression = DI.getExpression(); 4498 uint64_t Offset = DI.getOffset(); 4499 const Value *V = DI.getValue(); 4500 if (!V) 4501 return nullptr; 4502 4503 SDDbgValue *SDV; 4504 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4505 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4506 SDNodeOrder); 4507 DAG.AddDbgValue(SDV, nullptr, false); 4508 } else { 4509 // Do not use getValue() in here; we don't want to generate code at 4510 // this point if it hasn't been done yet. 4511 SDValue N = NodeMap[V]; 4512 if (!N.getNode() && isa<Argument>(V)) 4513 // Check unused arguments map. 4514 N = UnusedArgNodeMap[V]; 4515 if (N.getNode()) { 4516 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4517 false, N)) { 4518 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4519 false, Offset, dl, SDNodeOrder); 4520 DAG.AddDbgValue(SDV, N.getNode(), false); 4521 } 4522 } else if (!V->use_empty() ) { 4523 // Do not call getValue(V) yet, as we don't want to generate code. 4524 // Remember it for later. 4525 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4526 DanglingDebugInfoMap[V] = DDI; 4527 } else { 4528 // We may expand this to cover more cases. One case where we have no 4529 // data available is an unreferenced parameter. 4530 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4531 } 4532 } 4533 4534 // Build a debug info table entry. 4535 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4536 V = BCI->getOperand(0); 4537 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4538 // Don't handle byval struct arguments or VLAs, for example. 4539 if (!AI) { 4540 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4541 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4542 return nullptr; 4543 } 4544 DenseMap<const AllocaInst*, int>::iterator SI = 4545 FuncInfo.StaticAllocaMap.find(AI); 4546 if (SI == FuncInfo.StaticAllocaMap.end()) 4547 return nullptr; // VLAs. 4548 return nullptr; 4549 } 4550 4551 case Intrinsic::eh_typeid_for: { 4552 // Find the type id for the given typeinfo. 4553 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4554 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4555 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4556 setValue(&I, Res); 4557 return nullptr; 4558 } 4559 4560 case Intrinsic::eh_return_i32: 4561 case Intrinsic::eh_return_i64: 4562 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4563 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4564 MVT::Other, 4565 getControlRoot(), 4566 getValue(I.getArgOperand(0)), 4567 getValue(I.getArgOperand(1)))); 4568 return nullptr; 4569 case Intrinsic::eh_unwind_init: 4570 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4571 return nullptr; 4572 case Intrinsic::eh_dwarf_cfa: { 4573 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4574 TLI.getPointerTy(DAG.getDataLayout())); 4575 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4576 CfaArg.getValueType(), 4577 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4578 CfaArg.getValueType()), 4579 CfaArg); 4580 SDValue FA = DAG.getNode( 4581 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4582 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4583 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4584 FA, Offset)); 4585 return nullptr; 4586 } 4587 case Intrinsic::eh_sjlj_callsite: { 4588 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4589 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4590 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4591 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4592 4593 MMI.setCurrentCallSite(CI->getZExtValue()); 4594 return nullptr; 4595 } 4596 case Intrinsic::eh_sjlj_functioncontext: { 4597 // Get and store the index of the function context. 4598 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4599 AllocaInst *FnCtx = 4600 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4601 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4602 MFI->setFunctionContextIndex(FI); 4603 return nullptr; 4604 } 4605 case Intrinsic::eh_sjlj_setjmp: { 4606 SDValue Ops[2]; 4607 Ops[0] = getRoot(); 4608 Ops[1] = getValue(I.getArgOperand(0)); 4609 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4610 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4611 setValue(&I, Op.getValue(0)); 4612 DAG.setRoot(Op.getValue(1)); 4613 return nullptr; 4614 } 4615 case Intrinsic::eh_sjlj_longjmp: { 4616 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4617 getRoot(), getValue(I.getArgOperand(0)))); 4618 return nullptr; 4619 } 4620 case Intrinsic::eh_sjlj_setup_dispatch: { 4621 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4622 getRoot())); 4623 return nullptr; 4624 } 4625 4626 case Intrinsic::masked_gather: 4627 visitMaskedGather(I); 4628 return nullptr; 4629 case Intrinsic::masked_load: 4630 visitMaskedLoad(I); 4631 return nullptr; 4632 case Intrinsic::masked_scatter: 4633 visitMaskedScatter(I); 4634 return nullptr; 4635 case Intrinsic::masked_store: 4636 visitMaskedStore(I); 4637 return nullptr; 4638 case Intrinsic::x86_mmx_pslli_w: 4639 case Intrinsic::x86_mmx_pslli_d: 4640 case Intrinsic::x86_mmx_pslli_q: 4641 case Intrinsic::x86_mmx_psrli_w: 4642 case Intrinsic::x86_mmx_psrli_d: 4643 case Intrinsic::x86_mmx_psrli_q: 4644 case Intrinsic::x86_mmx_psrai_w: 4645 case Intrinsic::x86_mmx_psrai_d: { 4646 SDValue ShAmt = getValue(I.getArgOperand(1)); 4647 if (isa<ConstantSDNode>(ShAmt)) { 4648 visitTargetIntrinsic(I, Intrinsic); 4649 return nullptr; 4650 } 4651 unsigned NewIntrinsic = 0; 4652 EVT ShAmtVT = MVT::v2i32; 4653 switch (Intrinsic) { 4654 case Intrinsic::x86_mmx_pslli_w: 4655 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4656 break; 4657 case Intrinsic::x86_mmx_pslli_d: 4658 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4659 break; 4660 case Intrinsic::x86_mmx_pslli_q: 4661 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4662 break; 4663 case Intrinsic::x86_mmx_psrli_w: 4664 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4665 break; 4666 case Intrinsic::x86_mmx_psrli_d: 4667 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4668 break; 4669 case Intrinsic::x86_mmx_psrli_q: 4670 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4671 break; 4672 case Intrinsic::x86_mmx_psrai_w: 4673 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4674 break; 4675 case Intrinsic::x86_mmx_psrai_d: 4676 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4677 break; 4678 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4679 } 4680 4681 // The vector shift intrinsics with scalars uses 32b shift amounts but 4682 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4683 // to be zero. 4684 // We must do this early because v2i32 is not a legal type. 4685 SDValue ShOps[2]; 4686 ShOps[0] = ShAmt; 4687 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4688 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4689 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4690 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4691 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4692 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4693 getValue(I.getArgOperand(0)), ShAmt); 4694 setValue(&I, Res); 4695 return nullptr; 4696 } 4697 case Intrinsic::convertff: 4698 case Intrinsic::convertfsi: 4699 case Intrinsic::convertfui: 4700 case Intrinsic::convertsif: 4701 case Intrinsic::convertuif: 4702 case Intrinsic::convertss: 4703 case Intrinsic::convertsu: 4704 case Intrinsic::convertus: 4705 case Intrinsic::convertuu: { 4706 ISD::CvtCode Code = ISD::CVT_INVALID; 4707 switch (Intrinsic) { 4708 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4709 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4710 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4711 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4712 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4713 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4714 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4715 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4716 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4717 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4718 } 4719 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4720 const Value *Op1 = I.getArgOperand(0); 4721 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4722 DAG.getValueType(DestVT), 4723 DAG.getValueType(getValue(Op1).getValueType()), 4724 getValue(I.getArgOperand(1)), 4725 getValue(I.getArgOperand(2)), 4726 Code); 4727 setValue(&I, Res); 4728 return nullptr; 4729 } 4730 case Intrinsic::powi: 4731 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4732 getValue(I.getArgOperand(1)), DAG)); 4733 return nullptr; 4734 case Intrinsic::log: 4735 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4736 return nullptr; 4737 case Intrinsic::log2: 4738 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4739 return nullptr; 4740 case Intrinsic::log10: 4741 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4742 return nullptr; 4743 case Intrinsic::exp: 4744 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4745 return nullptr; 4746 case Intrinsic::exp2: 4747 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4748 return nullptr; 4749 case Intrinsic::pow: 4750 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4751 getValue(I.getArgOperand(1)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::sqrt: 4754 case Intrinsic::fabs: 4755 case Intrinsic::sin: 4756 case Intrinsic::cos: 4757 case Intrinsic::floor: 4758 case Intrinsic::ceil: 4759 case Intrinsic::trunc: 4760 case Intrinsic::rint: 4761 case Intrinsic::nearbyint: 4762 case Intrinsic::round: { 4763 unsigned Opcode; 4764 switch (Intrinsic) { 4765 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4766 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4767 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4768 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4769 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4770 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4771 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4772 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4773 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4774 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4775 case Intrinsic::round: Opcode = ISD::FROUND; break; 4776 } 4777 4778 setValue(&I, DAG.getNode(Opcode, sdl, 4779 getValue(I.getArgOperand(0)).getValueType(), 4780 getValue(I.getArgOperand(0)))); 4781 return nullptr; 4782 } 4783 case Intrinsic::minnum: 4784 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4785 getValue(I.getArgOperand(0)).getValueType(), 4786 getValue(I.getArgOperand(0)), 4787 getValue(I.getArgOperand(1)))); 4788 return nullptr; 4789 case Intrinsic::maxnum: 4790 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4791 getValue(I.getArgOperand(0)).getValueType(), 4792 getValue(I.getArgOperand(0)), 4793 getValue(I.getArgOperand(1)))); 4794 return nullptr; 4795 case Intrinsic::copysign: 4796 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4797 getValue(I.getArgOperand(0)).getValueType(), 4798 getValue(I.getArgOperand(0)), 4799 getValue(I.getArgOperand(1)))); 4800 return nullptr; 4801 case Intrinsic::fma: 4802 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4803 getValue(I.getArgOperand(0)).getValueType(), 4804 getValue(I.getArgOperand(0)), 4805 getValue(I.getArgOperand(1)), 4806 getValue(I.getArgOperand(2)))); 4807 return nullptr; 4808 case Intrinsic::fmuladd: { 4809 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4810 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4811 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4812 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)), 4816 getValue(I.getArgOperand(2)))); 4817 } else { 4818 // TODO: Intrinsic calls should have fast-math-flags. 4819 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4820 getValue(I.getArgOperand(0)).getValueType(), 4821 getValue(I.getArgOperand(0)), 4822 getValue(I.getArgOperand(1))); 4823 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 Mul, 4826 getValue(I.getArgOperand(2))); 4827 setValue(&I, Add); 4828 } 4829 return nullptr; 4830 } 4831 case Intrinsic::convert_to_fp16: 4832 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4833 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4834 getValue(I.getArgOperand(0)), 4835 DAG.getTargetConstant(0, sdl, 4836 MVT::i32)))); 4837 return nullptr; 4838 case Intrinsic::convert_from_fp16: 4839 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4840 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4841 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4842 getValue(I.getArgOperand(0))))); 4843 return nullptr; 4844 case Intrinsic::pcmarker: { 4845 SDValue Tmp = getValue(I.getArgOperand(0)); 4846 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4847 return nullptr; 4848 } 4849 case Intrinsic::readcyclecounter: { 4850 SDValue Op = getRoot(); 4851 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4852 DAG.getVTList(MVT::i64, MVT::Other), Op); 4853 setValue(&I, Res); 4854 DAG.setRoot(Res.getValue(1)); 4855 return nullptr; 4856 } 4857 case Intrinsic::bitreverse: 4858 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4859 getValue(I.getArgOperand(0)).getValueType(), 4860 getValue(I.getArgOperand(0)))); 4861 return nullptr; 4862 case Intrinsic::bswap: 4863 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4864 getValue(I.getArgOperand(0)).getValueType(), 4865 getValue(I.getArgOperand(0)))); 4866 return nullptr; 4867 case Intrinsic::cttz: { 4868 SDValue Arg = getValue(I.getArgOperand(0)); 4869 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4870 EVT Ty = Arg.getValueType(); 4871 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4872 sdl, Ty, Arg)); 4873 return nullptr; 4874 } 4875 case Intrinsic::ctlz: { 4876 SDValue Arg = getValue(I.getArgOperand(0)); 4877 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4878 EVT Ty = Arg.getValueType(); 4879 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4880 sdl, Ty, Arg)); 4881 return nullptr; 4882 } 4883 case Intrinsic::ctpop: { 4884 SDValue Arg = getValue(I.getArgOperand(0)); 4885 EVT Ty = Arg.getValueType(); 4886 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4887 return nullptr; 4888 } 4889 case Intrinsic::stacksave: { 4890 SDValue Op = getRoot(); 4891 Res = DAG.getNode( 4892 ISD::STACKSAVE, sdl, 4893 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4894 setValue(&I, Res); 4895 DAG.setRoot(Res.getValue(1)); 4896 return nullptr; 4897 } 4898 case Intrinsic::stackrestore: { 4899 Res = getValue(I.getArgOperand(0)); 4900 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4901 return nullptr; 4902 } 4903 case Intrinsic::get_dynamic_area_offset: { 4904 SDValue Op = getRoot(); 4905 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4906 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4907 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4908 // target. 4909 if (PtrTy != ResTy) 4910 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4911 " intrinsic!"); 4912 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4913 Op); 4914 DAG.setRoot(Op); 4915 setValue(&I, Res); 4916 return nullptr; 4917 } 4918 case Intrinsic::stackprotector: { 4919 // Emit code into the DAG to store the stack guard onto the stack. 4920 MachineFunction &MF = DAG.getMachineFunction(); 4921 MachineFrameInfo *MFI = MF.getFrameInfo(); 4922 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4923 SDValue Src, Chain = getRoot(); 4924 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4925 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4926 4927 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4928 // global variable __stack_chk_guard. 4929 if (!GV) 4930 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4931 if (BC->getOpcode() == Instruction::BitCast) 4932 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4933 4934 if (GV && TLI.useLoadStackGuardNode()) { 4935 // Emit a LOAD_STACK_GUARD node. 4936 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4937 sdl, PtrTy, Chain); 4938 MachinePointerInfo MPInfo(GV); 4939 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4940 unsigned Flags = MachineMemOperand::MOLoad | 4941 MachineMemOperand::MOInvariant; 4942 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4943 PtrTy.getSizeInBits() / 8, 4944 DAG.getEVTAlignment(PtrTy)); 4945 Node->setMemRefs(MemRefs, MemRefs + 1); 4946 4947 // Copy the guard value to a virtual register so that it can be 4948 // retrieved in the epilogue. 4949 Src = SDValue(Node, 0); 4950 const TargetRegisterClass *RC = 4951 TLI.getRegClassFor(Src.getSimpleValueType()); 4952 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4953 4954 SPDescriptor.setGuardReg(Reg); 4955 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4956 } else { 4957 Src = getValue(I.getArgOperand(0)); // The guard's value. 4958 } 4959 4960 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4961 4962 int FI = FuncInfo.StaticAllocaMap[Slot]; 4963 MFI->setStackProtectorIndex(FI); 4964 4965 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4966 4967 // Store the stack protector onto the stack. 4968 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4969 DAG.getMachineFunction(), FI), 4970 true, false, 0); 4971 setValue(&I, Res); 4972 DAG.setRoot(Res); 4973 return nullptr; 4974 } 4975 case Intrinsic::objectsize: { 4976 // If we don't know by now, we're never going to know. 4977 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4978 4979 assert(CI && "Non-constant type in __builtin_object_size?"); 4980 4981 SDValue Arg = getValue(I.getCalledValue()); 4982 EVT Ty = Arg.getValueType(); 4983 4984 if (CI->isZero()) 4985 Res = DAG.getConstant(-1ULL, sdl, Ty); 4986 else 4987 Res = DAG.getConstant(0, sdl, Ty); 4988 4989 setValue(&I, Res); 4990 return nullptr; 4991 } 4992 case Intrinsic::annotation: 4993 case Intrinsic::ptr_annotation: 4994 // Drop the intrinsic, but forward the value 4995 setValue(&I, getValue(I.getOperand(0))); 4996 return nullptr; 4997 case Intrinsic::assume: 4998 case Intrinsic::var_annotation: 4999 // Discard annotate attributes and assumptions 5000 return nullptr; 5001 5002 case Intrinsic::init_trampoline: { 5003 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5004 5005 SDValue Ops[6]; 5006 Ops[0] = getRoot(); 5007 Ops[1] = getValue(I.getArgOperand(0)); 5008 Ops[2] = getValue(I.getArgOperand(1)); 5009 Ops[3] = getValue(I.getArgOperand(2)); 5010 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5011 Ops[5] = DAG.getSrcValue(F); 5012 5013 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5014 5015 DAG.setRoot(Res); 5016 return nullptr; 5017 } 5018 case Intrinsic::adjust_trampoline: { 5019 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5020 TLI.getPointerTy(DAG.getDataLayout()), 5021 getValue(I.getArgOperand(0)))); 5022 return nullptr; 5023 } 5024 case Intrinsic::gcroot: 5025 if (GFI) { 5026 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5027 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5028 5029 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5030 GFI->addStackRoot(FI->getIndex(), TypeMap); 5031 } 5032 return nullptr; 5033 case Intrinsic::gcread: 5034 case Intrinsic::gcwrite: 5035 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5036 case Intrinsic::flt_rounds: 5037 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5038 return nullptr; 5039 5040 case Intrinsic::expect: { 5041 // Just replace __builtin_expect(exp, c) with EXP. 5042 setValue(&I, getValue(I.getArgOperand(0))); 5043 return nullptr; 5044 } 5045 5046 case Intrinsic::debugtrap: 5047 case Intrinsic::trap: { 5048 StringRef TrapFuncName = 5049 I.getAttributes() 5050 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5051 .getValueAsString(); 5052 if (TrapFuncName.empty()) { 5053 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5054 ISD::TRAP : ISD::DEBUGTRAP; 5055 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5056 return nullptr; 5057 } 5058 TargetLowering::ArgListTy Args; 5059 5060 TargetLowering::CallLoweringInfo CLI(DAG); 5061 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5062 CallingConv::C, I.getType(), 5063 DAG.getExternalSymbol(TrapFuncName.data(), 5064 TLI.getPointerTy(DAG.getDataLayout())), 5065 std::move(Args), 0); 5066 5067 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5068 DAG.setRoot(Result.second); 5069 return nullptr; 5070 } 5071 5072 case Intrinsic::uadd_with_overflow: 5073 case Intrinsic::sadd_with_overflow: 5074 case Intrinsic::usub_with_overflow: 5075 case Intrinsic::ssub_with_overflow: 5076 case Intrinsic::umul_with_overflow: 5077 case Intrinsic::smul_with_overflow: { 5078 ISD::NodeType Op; 5079 switch (Intrinsic) { 5080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5081 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5082 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5083 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5084 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5085 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5086 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5087 } 5088 SDValue Op1 = getValue(I.getArgOperand(0)); 5089 SDValue Op2 = getValue(I.getArgOperand(1)); 5090 5091 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5092 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5093 return nullptr; 5094 } 5095 case Intrinsic::prefetch: { 5096 SDValue Ops[5]; 5097 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5098 Ops[0] = getRoot(); 5099 Ops[1] = getValue(I.getArgOperand(0)); 5100 Ops[2] = getValue(I.getArgOperand(1)); 5101 Ops[3] = getValue(I.getArgOperand(2)); 5102 Ops[4] = getValue(I.getArgOperand(3)); 5103 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5104 DAG.getVTList(MVT::Other), Ops, 5105 EVT::getIntegerVT(*Context, 8), 5106 MachinePointerInfo(I.getArgOperand(0)), 5107 0, /* align */ 5108 false, /* volatile */ 5109 rw==0, /* read */ 5110 rw==1)); /* write */ 5111 return nullptr; 5112 } 5113 case Intrinsic::lifetime_start: 5114 case Intrinsic::lifetime_end: { 5115 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5116 // Stack coloring is not enabled in O0, discard region information. 5117 if (TM.getOptLevel() == CodeGenOpt::None) 5118 return nullptr; 5119 5120 SmallVector<Value *, 4> Allocas; 5121 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5122 5123 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5124 E = Allocas.end(); Object != E; ++Object) { 5125 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5126 5127 // Could not find an Alloca. 5128 if (!LifetimeObject) 5129 continue; 5130 5131 // First check that the Alloca is static, otherwise it won't have a 5132 // valid frame index. 5133 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5134 if (SI == FuncInfo.StaticAllocaMap.end()) 5135 return nullptr; 5136 5137 int FI = SI->second; 5138 5139 SDValue Ops[2]; 5140 Ops[0] = getRoot(); 5141 Ops[1] = 5142 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5143 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5144 5145 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5146 DAG.setRoot(Res); 5147 } 5148 return nullptr; 5149 } 5150 case Intrinsic::invariant_start: 5151 // Discard region information. 5152 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5153 return nullptr; 5154 case Intrinsic::invariant_end: 5155 // Discard region information. 5156 return nullptr; 5157 case Intrinsic::stackprotectorcheck: { 5158 // Do not actually emit anything for this basic block. Instead we initialize 5159 // the stack protector descriptor and export the guard variable so we can 5160 // access it in FinishBasicBlock. 5161 const BasicBlock *BB = I.getParent(); 5162 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5163 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5164 5165 // Flush our exports since we are going to process a terminator. 5166 (void)getControlRoot(); 5167 return nullptr; 5168 } 5169 case Intrinsic::clear_cache: 5170 return TLI.getClearCacheBuiltinName(); 5171 case Intrinsic::donothing: 5172 // ignore 5173 return nullptr; 5174 case Intrinsic::experimental_stackmap: { 5175 visitStackmap(I); 5176 return nullptr; 5177 } 5178 case Intrinsic::experimental_patchpoint_void: 5179 case Intrinsic::experimental_patchpoint_i64: { 5180 visitPatchpoint(&I); 5181 return nullptr; 5182 } 5183 case Intrinsic::experimental_gc_statepoint: { 5184 visitStatepoint(I); 5185 return nullptr; 5186 } 5187 case Intrinsic::experimental_gc_result: { 5188 visitGCResult(I); 5189 return nullptr; 5190 } 5191 case Intrinsic::experimental_gc_relocate: { 5192 visitGCRelocate(I); 5193 return nullptr; 5194 } 5195 case Intrinsic::instrprof_increment: 5196 llvm_unreachable("instrprof failed to lower an increment"); 5197 case Intrinsic::instrprof_value_profile: 5198 llvm_unreachable("instrprof failed to lower a value profiling call"); 5199 case Intrinsic::localescape: { 5200 MachineFunction &MF = DAG.getMachineFunction(); 5201 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5202 5203 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5204 // is the same on all targets. 5205 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5206 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5207 if (isa<ConstantPointerNull>(Arg)) 5208 continue; // Skip null pointers. They represent a hole in index space. 5209 AllocaInst *Slot = cast<AllocaInst>(Arg); 5210 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5211 "can only escape static allocas"); 5212 int FI = FuncInfo.StaticAllocaMap[Slot]; 5213 MCSymbol *FrameAllocSym = 5214 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5215 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5217 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5218 .addSym(FrameAllocSym) 5219 .addFrameIndex(FI); 5220 } 5221 5222 return nullptr; 5223 } 5224 5225 case Intrinsic::localrecover: { 5226 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5227 MachineFunction &MF = DAG.getMachineFunction(); 5228 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5229 5230 // Get the symbol that defines the frame offset. 5231 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5232 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5233 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5234 MCSymbol *FrameAllocSym = 5235 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5236 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5237 5238 // Create a MCSymbol for the label to avoid any target lowering 5239 // that would make this PC relative. 5240 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5241 SDValue OffsetVal = 5242 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5243 5244 // Add the offset to the FP. 5245 Value *FP = I.getArgOperand(1); 5246 SDValue FPVal = getValue(FP); 5247 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5248 setValue(&I, Add); 5249 5250 return nullptr; 5251 } 5252 5253 case Intrinsic::eh_exceptionpointer: 5254 case Intrinsic::eh_exceptioncode: { 5255 // Get the exception pointer vreg, copy from it, and resize it to fit. 5256 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5257 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5258 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5259 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5260 SDValue N = 5261 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5262 if (Intrinsic == Intrinsic::eh_exceptioncode) 5263 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5264 setValue(&I, N); 5265 return nullptr; 5266 } 5267 } 5268 } 5269 5270 std::pair<SDValue, SDValue> 5271 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5272 const BasicBlock *EHPadBB) { 5273 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5274 MCSymbol *BeginLabel = nullptr; 5275 5276 if (EHPadBB) { 5277 // Insert a label before the invoke call to mark the try range. This can be 5278 // used to detect deletion of the invoke via the MachineModuleInfo. 5279 BeginLabel = MMI.getContext().createTempSymbol(); 5280 5281 // For SjLj, keep track of which landing pads go with which invokes 5282 // so as to maintain the ordering of pads in the LSDA. 5283 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5284 if (CallSiteIndex) { 5285 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5286 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5287 5288 // Now that the call site is handled, stop tracking it. 5289 MMI.setCurrentCallSite(0); 5290 } 5291 5292 // Both PendingLoads and PendingExports must be flushed here; 5293 // this call might not return. 5294 (void)getRoot(); 5295 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5296 5297 CLI.setChain(getRoot()); 5298 } 5299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5300 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5301 5302 assert((CLI.IsTailCall || Result.second.getNode()) && 5303 "Non-null chain expected with non-tail call!"); 5304 assert((Result.second.getNode() || !Result.first.getNode()) && 5305 "Null value expected with tail call!"); 5306 5307 if (!Result.second.getNode()) { 5308 // As a special case, a null chain means that a tail call has been emitted 5309 // and the DAG root is already updated. 5310 HasTailCall = true; 5311 5312 // Since there's no actual continuation from this block, nothing can be 5313 // relying on us setting vregs for them. 5314 PendingExports.clear(); 5315 } else { 5316 DAG.setRoot(Result.second); 5317 } 5318 5319 if (EHPadBB) { 5320 // Insert a label at the end of the invoke call to mark the try range. This 5321 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5322 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5323 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5324 5325 // Inform MachineModuleInfo of range. 5326 if (MMI.hasEHFunclets()) { 5327 assert(CLI.CS); 5328 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5329 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5330 BeginLabel, EndLabel); 5331 } else { 5332 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5333 } 5334 } 5335 5336 return Result; 5337 } 5338 5339 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5340 bool isTailCall, 5341 const BasicBlock *EHPadBB) { 5342 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5343 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5344 Type *RetTy = FTy->getReturnType(); 5345 5346 TargetLowering::ArgListTy Args; 5347 TargetLowering::ArgListEntry Entry; 5348 Args.reserve(CS.arg_size()); 5349 5350 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5351 i != e; ++i) { 5352 const Value *V = *i; 5353 5354 // Skip empty types 5355 if (V->getType()->isEmptyTy()) 5356 continue; 5357 5358 SDValue ArgNode = getValue(V); 5359 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5360 5361 // Skip the first return-type Attribute to get to params. 5362 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5363 Args.push_back(Entry); 5364 5365 // If we have an explicit sret argument that is an Instruction, (i.e., it 5366 // might point to function-local memory), we can't meaningfully tail-call. 5367 if (Entry.isSRet && isa<Instruction>(V)) 5368 isTailCall = false; 5369 } 5370 5371 // Check if target-independent constraints permit a tail call here. 5372 // Target-dependent constraints are checked within TLI->LowerCallTo. 5373 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5374 isTailCall = false; 5375 5376 TargetLowering::CallLoweringInfo CLI(DAG); 5377 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5378 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5379 .setTailCall(isTailCall); 5380 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5381 5382 if (Result.first.getNode()) 5383 setValue(CS.getInstruction(), Result.first); 5384 } 5385 5386 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5387 /// value is equal or not-equal to zero. 5388 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5389 for (const User *U : V->users()) { 5390 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5391 if (IC->isEquality()) 5392 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5393 if (C->isNullValue()) 5394 continue; 5395 // Unknown instruction. 5396 return false; 5397 } 5398 return true; 5399 } 5400 5401 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5402 Type *LoadTy, 5403 SelectionDAGBuilder &Builder) { 5404 5405 // Check to see if this load can be trivially constant folded, e.g. if the 5406 // input is from a string literal. 5407 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5408 // Cast pointer to the type we really want to load. 5409 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5410 PointerType::getUnqual(LoadTy)); 5411 5412 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5413 const_cast<Constant *>(LoadInput), *Builder.DL)) 5414 return Builder.getValue(LoadCst); 5415 } 5416 5417 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5418 // still constant memory, the input chain can be the entry node. 5419 SDValue Root; 5420 bool ConstantMemory = false; 5421 5422 // Do not serialize (non-volatile) loads of constant memory with anything. 5423 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5424 Root = Builder.DAG.getEntryNode(); 5425 ConstantMemory = true; 5426 } else { 5427 // Do not serialize non-volatile loads against each other. 5428 Root = Builder.DAG.getRoot(); 5429 } 5430 5431 SDValue Ptr = Builder.getValue(PtrVal); 5432 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5433 Ptr, MachinePointerInfo(PtrVal), 5434 false /*volatile*/, 5435 false /*nontemporal*/, 5436 false /*isinvariant*/, 1 /* align=1 */); 5437 5438 if (!ConstantMemory) 5439 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5440 return LoadVal; 5441 } 5442 5443 /// processIntegerCallValue - Record the value for an instruction that 5444 /// produces an integer result, converting the type where necessary. 5445 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5446 SDValue Value, 5447 bool IsSigned) { 5448 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5449 I.getType(), true); 5450 if (IsSigned) 5451 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5452 else 5453 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5454 setValue(&I, Value); 5455 } 5456 5457 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5458 /// If so, return true and lower it, otherwise return false and it will be 5459 /// lowered like a normal call. 5460 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5461 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5462 if (I.getNumArgOperands() != 3) 5463 return false; 5464 5465 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5466 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5467 !I.getArgOperand(2)->getType()->isIntegerTy() || 5468 !I.getType()->isIntegerTy()) 5469 return false; 5470 5471 const Value *Size = I.getArgOperand(2); 5472 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5473 if (CSize && CSize->getZExtValue() == 0) { 5474 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5475 I.getType(), true); 5476 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5477 return true; 5478 } 5479 5480 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5481 std::pair<SDValue, SDValue> Res = 5482 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5483 getValue(LHS), getValue(RHS), getValue(Size), 5484 MachinePointerInfo(LHS), 5485 MachinePointerInfo(RHS)); 5486 if (Res.first.getNode()) { 5487 processIntegerCallValue(I, Res.first, true); 5488 PendingLoads.push_back(Res.second); 5489 return true; 5490 } 5491 5492 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5493 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5494 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5495 bool ActuallyDoIt = true; 5496 MVT LoadVT; 5497 Type *LoadTy; 5498 switch (CSize->getZExtValue()) { 5499 default: 5500 LoadVT = MVT::Other; 5501 LoadTy = nullptr; 5502 ActuallyDoIt = false; 5503 break; 5504 case 2: 5505 LoadVT = MVT::i16; 5506 LoadTy = Type::getInt16Ty(CSize->getContext()); 5507 break; 5508 case 4: 5509 LoadVT = MVT::i32; 5510 LoadTy = Type::getInt32Ty(CSize->getContext()); 5511 break; 5512 case 8: 5513 LoadVT = MVT::i64; 5514 LoadTy = Type::getInt64Ty(CSize->getContext()); 5515 break; 5516 /* 5517 case 16: 5518 LoadVT = MVT::v4i32; 5519 LoadTy = Type::getInt32Ty(CSize->getContext()); 5520 LoadTy = VectorType::get(LoadTy, 4); 5521 break; 5522 */ 5523 } 5524 5525 // This turns into unaligned loads. We only do this if the target natively 5526 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5527 // we'll only produce a small number of byte loads. 5528 5529 // Require that we can find a legal MVT, and only do this if the target 5530 // supports unaligned loads of that type. Expanding into byte loads would 5531 // bloat the code. 5532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5533 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5534 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5535 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5536 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5537 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5538 // TODO: Check alignment of src and dest ptrs. 5539 if (!TLI.isTypeLegal(LoadVT) || 5540 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5541 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5542 ActuallyDoIt = false; 5543 } 5544 5545 if (ActuallyDoIt) { 5546 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5547 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5548 5549 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5550 ISD::SETNE); 5551 processIntegerCallValue(I, Res, false); 5552 return true; 5553 } 5554 } 5555 5556 5557 return false; 5558 } 5559 5560 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5561 /// form. If so, return true and lower it, otherwise return false and it 5562 /// will be lowered like a normal call. 5563 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5564 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5565 if (I.getNumArgOperands() != 3) 5566 return false; 5567 5568 const Value *Src = I.getArgOperand(0); 5569 const Value *Char = I.getArgOperand(1); 5570 const Value *Length = I.getArgOperand(2); 5571 if (!Src->getType()->isPointerTy() || 5572 !Char->getType()->isIntegerTy() || 5573 !Length->getType()->isIntegerTy() || 5574 !I.getType()->isPointerTy()) 5575 return false; 5576 5577 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5578 std::pair<SDValue, SDValue> Res = 5579 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5580 getValue(Src), getValue(Char), getValue(Length), 5581 MachinePointerInfo(Src)); 5582 if (Res.first.getNode()) { 5583 setValue(&I, Res.first); 5584 PendingLoads.push_back(Res.second); 5585 return true; 5586 } 5587 5588 return false; 5589 } 5590 5591 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5592 /// optimized form. If so, return true and lower it, otherwise return false 5593 /// and it will be lowered like a normal call. 5594 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5595 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5596 if (I.getNumArgOperands() != 2) 5597 return false; 5598 5599 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5600 if (!Arg0->getType()->isPointerTy() || 5601 !Arg1->getType()->isPointerTy() || 5602 !I.getType()->isPointerTy()) 5603 return false; 5604 5605 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5606 std::pair<SDValue, SDValue> Res = 5607 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5608 getValue(Arg0), getValue(Arg1), 5609 MachinePointerInfo(Arg0), 5610 MachinePointerInfo(Arg1), isStpcpy); 5611 if (Res.first.getNode()) { 5612 setValue(&I, Res.first); 5613 DAG.setRoot(Res.second); 5614 return true; 5615 } 5616 5617 return false; 5618 } 5619 5620 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5621 /// If so, return true and lower it, otherwise return false and it will be 5622 /// lowered like a normal call. 5623 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5624 // Verify that the prototype makes sense. int strcmp(void*,void*) 5625 if (I.getNumArgOperands() != 2) 5626 return false; 5627 5628 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5629 if (!Arg0->getType()->isPointerTy() || 5630 !Arg1->getType()->isPointerTy() || 5631 !I.getType()->isIntegerTy()) 5632 return false; 5633 5634 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5635 std::pair<SDValue, SDValue> Res = 5636 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5637 getValue(Arg0), getValue(Arg1), 5638 MachinePointerInfo(Arg0), 5639 MachinePointerInfo(Arg1)); 5640 if (Res.first.getNode()) { 5641 processIntegerCallValue(I, Res.first, true); 5642 PendingLoads.push_back(Res.second); 5643 return true; 5644 } 5645 5646 return false; 5647 } 5648 5649 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5650 /// form. If so, return true and lower it, otherwise return false and it 5651 /// will be lowered like a normal call. 5652 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5653 // Verify that the prototype makes sense. size_t strlen(char *) 5654 if (I.getNumArgOperands() != 1) 5655 return false; 5656 5657 const Value *Arg0 = I.getArgOperand(0); 5658 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5659 return false; 5660 5661 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5662 std::pair<SDValue, SDValue> Res = 5663 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5664 getValue(Arg0), MachinePointerInfo(Arg0)); 5665 if (Res.first.getNode()) { 5666 processIntegerCallValue(I, Res.first, false); 5667 PendingLoads.push_back(Res.second); 5668 return true; 5669 } 5670 5671 return false; 5672 } 5673 5674 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5675 /// form. If so, return true and lower it, otherwise return false and it 5676 /// will be lowered like a normal call. 5677 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5678 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5679 if (I.getNumArgOperands() != 2) 5680 return false; 5681 5682 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5683 if (!Arg0->getType()->isPointerTy() || 5684 !Arg1->getType()->isIntegerTy() || 5685 !I.getType()->isIntegerTy()) 5686 return false; 5687 5688 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5689 std::pair<SDValue, SDValue> Res = 5690 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5691 getValue(Arg0), getValue(Arg1), 5692 MachinePointerInfo(Arg0)); 5693 if (Res.first.getNode()) { 5694 processIntegerCallValue(I, Res.first, false); 5695 PendingLoads.push_back(Res.second); 5696 return true; 5697 } 5698 5699 return false; 5700 } 5701 5702 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5703 /// operation (as expected), translate it to an SDNode with the specified opcode 5704 /// and return true. 5705 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5706 unsigned Opcode) { 5707 // Sanity check that it really is a unary floating-point call. 5708 if (I.getNumArgOperands() != 1 || 5709 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5710 I.getType() != I.getArgOperand(0)->getType() || 5711 !I.onlyReadsMemory()) 5712 return false; 5713 5714 SDValue Tmp = getValue(I.getArgOperand(0)); 5715 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5716 return true; 5717 } 5718 5719 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5720 /// operation (as expected), translate it to an SDNode with the specified opcode 5721 /// and return true. 5722 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5723 unsigned Opcode) { 5724 // Sanity check that it really is a binary floating-point call. 5725 if (I.getNumArgOperands() != 2 || 5726 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5727 I.getType() != I.getArgOperand(0)->getType() || 5728 I.getType() != I.getArgOperand(1)->getType() || 5729 !I.onlyReadsMemory()) 5730 return false; 5731 5732 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5733 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5734 EVT VT = Tmp0.getValueType(); 5735 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5736 return true; 5737 } 5738 5739 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5740 // Handle inline assembly differently. 5741 if (isa<InlineAsm>(I.getCalledValue())) { 5742 visitInlineAsm(&I); 5743 return; 5744 } 5745 5746 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5747 ComputeUsesVAFloatArgument(I, &MMI); 5748 5749 const char *RenameFn = nullptr; 5750 if (Function *F = I.getCalledFunction()) { 5751 if (F->isDeclaration()) { 5752 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5753 if (unsigned IID = II->getIntrinsicID(F)) { 5754 RenameFn = visitIntrinsicCall(I, IID); 5755 if (!RenameFn) 5756 return; 5757 } 5758 } 5759 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5760 RenameFn = visitIntrinsicCall(I, IID); 5761 if (!RenameFn) 5762 return; 5763 } 5764 } 5765 5766 // Check for well-known libc/libm calls. If the function is internal, it 5767 // can't be a library call. 5768 LibFunc::Func Func; 5769 if (!F->hasLocalLinkage() && F->hasName() && 5770 LibInfo->getLibFunc(F->getName(), Func) && 5771 LibInfo->hasOptimizedCodeGen(Func)) { 5772 switch (Func) { 5773 default: break; 5774 case LibFunc::copysign: 5775 case LibFunc::copysignf: 5776 case LibFunc::copysignl: 5777 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5778 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5779 I.getType() == I.getArgOperand(0)->getType() && 5780 I.getType() == I.getArgOperand(1)->getType() && 5781 I.onlyReadsMemory()) { 5782 SDValue LHS = getValue(I.getArgOperand(0)); 5783 SDValue RHS = getValue(I.getArgOperand(1)); 5784 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5785 LHS.getValueType(), LHS, RHS)); 5786 return; 5787 } 5788 break; 5789 case LibFunc::fabs: 5790 case LibFunc::fabsf: 5791 case LibFunc::fabsl: 5792 if (visitUnaryFloatCall(I, ISD::FABS)) 5793 return; 5794 break; 5795 case LibFunc::fmin: 5796 case LibFunc::fminf: 5797 case LibFunc::fminl: 5798 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5799 return; 5800 break; 5801 case LibFunc::fmax: 5802 case LibFunc::fmaxf: 5803 case LibFunc::fmaxl: 5804 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5805 return; 5806 break; 5807 case LibFunc::sin: 5808 case LibFunc::sinf: 5809 case LibFunc::sinl: 5810 if (visitUnaryFloatCall(I, ISD::FSIN)) 5811 return; 5812 break; 5813 case LibFunc::cos: 5814 case LibFunc::cosf: 5815 case LibFunc::cosl: 5816 if (visitUnaryFloatCall(I, ISD::FCOS)) 5817 return; 5818 break; 5819 case LibFunc::sqrt: 5820 case LibFunc::sqrtf: 5821 case LibFunc::sqrtl: 5822 case LibFunc::sqrt_finite: 5823 case LibFunc::sqrtf_finite: 5824 case LibFunc::sqrtl_finite: 5825 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5826 return; 5827 break; 5828 case LibFunc::floor: 5829 case LibFunc::floorf: 5830 case LibFunc::floorl: 5831 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5832 return; 5833 break; 5834 case LibFunc::nearbyint: 5835 case LibFunc::nearbyintf: 5836 case LibFunc::nearbyintl: 5837 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5838 return; 5839 break; 5840 case LibFunc::ceil: 5841 case LibFunc::ceilf: 5842 case LibFunc::ceill: 5843 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5844 return; 5845 break; 5846 case LibFunc::rint: 5847 case LibFunc::rintf: 5848 case LibFunc::rintl: 5849 if (visitUnaryFloatCall(I, ISD::FRINT)) 5850 return; 5851 break; 5852 case LibFunc::round: 5853 case LibFunc::roundf: 5854 case LibFunc::roundl: 5855 if (visitUnaryFloatCall(I, ISD::FROUND)) 5856 return; 5857 break; 5858 case LibFunc::trunc: 5859 case LibFunc::truncf: 5860 case LibFunc::truncl: 5861 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5862 return; 5863 break; 5864 case LibFunc::log2: 5865 case LibFunc::log2f: 5866 case LibFunc::log2l: 5867 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5868 return; 5869 break; 5870 case LibFunc::exp2: 5871 case LibFunc::exp2f: 5872 case LibFunc::exp2l: 5873 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5874 return; 5875 break; 5876 case LibFunc::memcmp: 5877 if (visitMemCmpCall(I)) 5878 return; 5879 break; 5880 case LibFunc::memchr: 5881 if (visitMemChrCall(I)) 5882 return; 5883 break; 5884 case LibFunc::strcpy: 5885 if (visitStrCpyCall(I, false)) 5886 return; 5887 break; 5888 case LibFunc::stpcpy: 5889 if (visitStrCpyCall(I, true)) 5890 return; 5891 break; 5892 case LibFunc::strcmp: 5893 if (visitStrCmpCall(I)) 5894 return; 5895 break; 5896 case LibFunc::strlen: 5897 if (visitStrLenCall(I)) 5898 return; 5899 break; 5900 case LibFunc::strnlen: 5901 if (visitStrNLenCall(I)) 5902 return; 5903 break; 5904 } 5905 } 5906 } 5907 5908 SDValue Callee; 5909 if (!RenameFn) 5910 Callee = getValue(I.getCalledValue()); 5911 else 5912 Callee = DAG.getExternalSymbol( 5913 RenameFn, 5914 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5915 5916 // Check if we can potentially perform a tail call. More detailed checking is 5917 // be done within LowerCallTo, after more information about the call is known. 5918 LowerCallTo(&I, Callee, I.isTailCall()); 5919 } 5920 5921 namespace { 5922 5923 /// AsmOperandInfo - This contains information for each constraint that we are 5924 /// lowering. 5925 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5926 public: 5927 /// CallOperand - If this is the result output operand or a clobber 5928 /// this is null, otherwise it is the incoming operand to the CallInst. 5929 /// This gets modified as the asm is processed. 5930 SDValue CallOperand; 5931 5932 /// AssignedRegs - If this is a register or register class operand, this 5933 /// contains the set of register corresponding to the operand. 5934 RegsForValue AssignedRegs; 5935 5936 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5937 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5938 } 5939 5940 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5941 /// corresponds to. If there is no Value* for this operand, it returns 5942 /// MVT::Other. 5943 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5944 const DataLayout &DL) const { 5945 if (!CallOperandVal) return MVT::Other; 5946 5947 if (isa<BasicBlock>(CallOperandVal)) 5948 return TLI.getPointerTy(DL); 5949 5950 llvm::Type *OpTy = CallOperandVal->getType(); 5951 5952 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5953 // If this is an indirect operand, the operand is a pointer to the 5954 // accessed type. 5955 if (isIndirect) { 5956 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5957 if (!PtrTy) 5958 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5959 OpTy = PtrTy->getElementType(); 5960 } 5961 5962 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5963 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5964 if (STy->getNumElements() == 1) 5965 OpTy = STy->getElementType(0); 5966 5967 // If OpTy is not a single value, it may be a struct/union that we 5968 // can tile with integers. 5969 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5970 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5971 switch (BitSize) { 5972 default: break; 5973 case 1: 5974 case 8: 5975 case 16: 5976 case 32: 5977 case 64: 5978 case 128: 5979 OpTy = IntegerType::get(Context, BitSize); 5980 break; 5981 } 5982 } 5983 5984 return TLI.getValueType(DL, OpTy, true); 5985 } 5986 }; 5987 5988 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5989 5990 } // end anonymous namespace 5991 5992 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5993 /// specified operand. We prefer to assign virtual registers, to allow the 5994 /// register allocator to handle the assignment process. However, if the asm 5995 /// uses features that we can't model on machineinstrs, we have SDISel do the 5996 /// allocation. This produces generally horrible, but correct, code. 5997 /// 5998 /// OpInfo describes the operand. 5999 /// 6000 static void GetRegistersForValue(SelectionDAG &DAG, 6001 const TargetLowering &TLI, 6002 SDLoc DL, 6003 SDISelAsmOperandInfo &OpInfo) { 6004 LLVMContext &Context = *DAG.getContext(); 6005 6006 MachineFunction &MF = DAG.getMachineFunction(); 6007 SmallVector<unsigned, 4> Regs; 6008 6009 // If this is a constraint for a single physreg, or a constraint for a 6010 // register class, find it. 6011 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6012 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6013 OpInfo.ConstraintCode, 6014 OpInfo.ConstraintVT); 6015 6016 unsigned NumRegs = 1; 6017 if (OpInfo.ConstraintVT != MVT::Other) { 6018 // If this is a FP input in an integer register (or visa versa) insert a bit 6019 // cast of the input value. More generally, handle any case where the input 6020 // value disagrees with the register class we plan to stick this in. 6021 if (OpInfo.Type == InlineAsm::isInput && 6022 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6023 // Try to convert to the first EVT that the reg class contains. If the 6024 // types are identical size, use a bitcast to convert (e.g. two differing 6025 // vector types). 6026 MVT RegVT = *PhysReg.second->vt_begin(); 6027 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6028 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6029 RegVT, OpInfo.CallOperand); 6030 OpInfo.ConstraintVT = RegVT; 6031 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6032 // If the input is a FP value and we want it in FP registers, do a 6033 // bitcast to the corresponding integer type. This turns an f64 value 6034 // into i64, which can be passed with two i32 values on a 32-bit 6035 // machine. 6036 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6037 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6038 RegVT, OpInfo.CallOperand); 6039 OpInfo.ConstraintVT = RegVT; 6040 } 6041 } 6042 6043 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6044 } 6045 6046 MVT RegVT; 6047 EVT ValueVT = OpInfo.ConstraintVT; 6048 6049 // If this is a constraint for a specific physical register, like {r17}, 6050 // assign it now. 6051 if (unsigned AssignedReg = PhysReg.first) { 6052 const TargetRegisterClass *RC = PhysReg.second; 6053 if (OpInfo.ConstraintVT == MVT::Other) 6054 ValueVT = *RC->vt_begin(); 6055 6056 // Get the actual register value type. This is important, because the user 6057 // may have asked for (e.g.) the AX register in i32 type. We need to 6058 // remember that AX is actually i16 to get the right extension. 6059 RegVT = *RC->vt_begin(); 6060 6061 // This is a explicit reference to a physical register. 6062 Regs.push_back(AssignedReg); 6063 6064 // If this is an expanded reference, add the rest of the regs to Regs. 6065 if (NumRegs != 1) { 6066 TargetRegisterClass::iterator I = RC->begin(); 6067 for (; *I != AssignedReg; ++I) 6068 assert(I != RC->end() && "Didn't find reg!"); 6069 6070 // Already added the first reg. 6071 --NumRegs; ++I; 6072 for (; NumRegs; --NumRegs, ++I) { 6073 assert(I != RC->end() && "Ran out of registers to allocate!"); 6074 Regs.push_back(*I); 6075 } 6076 } 6077 6078 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6079 return; 6080 } 6081 6082 // Otherwise, if this was a reference to an LLVM register class, create vregs 6083 // for this reference. 6084 if (const TargetRegisterClass *RC = PhysReg.second) { 6085 RegVT = *RC->vt_begin(); 6086 if (OpInfo.ConstraintVT == MVT::Other) 6087 ValueVT = RegVT; 6088 6089 // Create the appropriate number of virtual registers. 6090 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6091 for (; NumRegs; --NumRegs) 6092 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6093 6094 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6095 return; 6096 } 6097 6098 // Otherwise, we couldn't allocate enough registers for this. 6099 } 6100 6101 /// visitInlineAsm - Handle a call to an InlineAsm object. 6102 /// 6103 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6104 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6105 6106 /// ConstraintOperands - Information about all of the constraints. 6107 SDISelAsmOperandInfoVector ConstraintOperands; 6108 6109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6110 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6111 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6112 6113 bool hasMemory = false; 6114 6115 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6116 unsigned ResNo = 0; // ResNo - The result number of the next output. 6117 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6118 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6119 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6120 6121 MVT OpVT = MVT::Other; 6122 6123 // Compute the value type for each operand. 6124 switch (OpInfo.Type) { 6125 case InlineAsm::isOutput: 6126 // Indirect outputs just consume an argument. 6127 if (OpInfo.isIndirect) { 6128 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6129 break; 6130 } 6131 6132 // The return value of the call is this value. As such, there is no 6133 // corresponding argument. 6134 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6135 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6136 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6137 STy->getElementType(ResNo)); 6138 } else { 6139 assert(ResNo == 0 && "Asm only has one result!"); 6140 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6141 } 6142 ++ResNo; 6143 break; 6144 case InlineAsm::isInput: 6145 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6146 break; 6147 case InlineAsm::isClobber: 6148 // Nothing to do. 6149 break; 6150 } 6151 6152 // If this is an input or an indirect output, process the call argument. 6153 // BasicBlocks are labels, currently appearing only in asm's. 6154 if (OpInfo.CallOperandVal) { 6155 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6156 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6157 } else { 6158 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6159 } 6160 6161 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6162 DAG.getDataLayout()).getSimpleVT(); 6163 } 6164 6165 OpInfo.ConstraintVT = OpVT; 6166 6167 // Indirect operand accesses access memory. 6168 if (OpInfo.isIndirect) 6169 hasMemory = true; 6170 else { 6171 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6172 TargetLowering::ConstraintType 6173 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6174 if (CType == TargetLowering::C_Memory) { 6175 hasMemory = true; 6176 break; 6177 } 6178 } 6179 } 6180 } 6181 6182 SDValue Chain, Flag; 6183 6184 // We won't need to flush pending loads if this asm doesn't touch 6185 // memory and is nonvolatile. 6186 if (hasMemory || IA->hasSideEffects()) 6187 Chain = getRoot(); 6188 else 6189 Chain = DAG.getRoot(); 6190 6191 // Second pass over the constraints: compute which constraint option to use 6192 // and assign registers to constraints that want a specific physreg. 6193 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6194 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6195 6196 // If this is an output operand with a matching input operand, look up the 6197 // matching input. If their types mismatch, e.g. one is an integer, the 6198 // other is floating point, or their sizes are different, flag it as an 6199 // error. 6200 if (OpInfo.hasMatchingInput()) { 6201 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6202 6203 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6204 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6205 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6206 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6207 OpInfo.ConstraintVT); 6208 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6209 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6210 Input.ConstraintVT); 6211 if ((OpInfo.ConstraintVT.isInteger() != 6212 Input.ConstraintVT.isInteger()) || 6213 (MatchRC.second != InputRC.second)) { 6214 report_fatal_error("Unsupported asm: input constraint" 6215 " with a matching output constraint of" 6216 " incompatible type!"); 6217 } 6218 Input.ConstraintVT = OpInfo.ConstraintVT; 6219 } 6220 } 6221 6222 // Compute the constraint code and ConstraintType to use. 6223 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6224 6225 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6226 OpInfo.Type == InlineAsm::isClobber) 6227 continue; 6228 6229 // If this is a memory input, and if the operand is not indirect, do what we 6230 // need to to provide an address for the memory input. 6231 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6232 !OpInfo.isIndirect) { 6233 assert((OpInfo.isMultipleAlternative || 6234 (OpInfo.Type == InlineAsm::isInput)) && 6235 "Can only indirectify direct input operands!"); 6236 6237 // Memory operands really want the address of the value. If we don't have 6238 // an indirect input, put it in the constpool if we can, otherwise spill 6239 // it to a stack slot. 6240 // TODO: This isn't quite right. We need to handle these according to 6241 // the addressing mode that the constraint wants. Also, this may take 6242 // an additional register for the computation and we don't want that 6243 // either. 6244 6245 // If the operand is a float, integer, or vector constant, spill to a 6246 // constant pool entry to get its address. 6247 const Value *OpVal = OpInfo.CallOperandVal; 6248 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6249 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6250 OpInfo.CallOperand = DAG.getConstantPool( 6251 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6252 } else { 6253 // Otherwise, create a stack slot and emit a store to it before the 6254 // asm. 6255 Type *Ty = OpVal->getType(); 6256 auto &DL = DAG.getDataLayout(); 6257 uint64_t TySize = DL.getTypeAllocSize(Ty); 6258 unsigned Align = DL.getPrefTypeAlignment(Ty); 6259 MachineFunction &MF = DAG.getMachineFunction(); 6260 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6261 SDValue StackSlot = 6262 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6263 Chain = DAG.getStore( 6264 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6265 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6266 false, false, 0); 6267 OpInfo.CallOperand = StackSlot; 6268 } 6269 6270 // There is no longer a Value* corresponding to this operand. 6271 OpInfo.CallOperandVal = nullptr; 6272 6273 // It is now an indirect operand. 6274 OpInfo.isIndirect = true; 6275 } 6276 6277 // If this constraint is for a specific register, allocate it before 6278 // anything else. 6279 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6280 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6281 } 6282 6283 // Second pass - Loop over all of the operands, assigning virtual or physregs 6284 // to register class operands. 6285 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6286 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6287 6288 // C_Register operands have already been allocated, Other/Memory don't need 6289 // to be. 6290 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6291 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6292 } 6293 6294 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6295 std::vector<SDValue> AsmNodeOperands; 6296 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6297 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6298 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6299 6300 // If we have a !srcloc metadata node associated with it, we want to attach 6301 // this to the ultimately generated inline asm machineinstr. To do this, we 6302 // pass in the third operand as this (potentially null) inline asm MDNode. 6303 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6304 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6305 6306 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6307 // bits as operand 3. 6308 unsigned ExtraInfo = 0; 6309 if (IA->hasSideEffects()) 6310 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6311 if (IA->isAlignStack()) 6312 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6313 // Set the asm dialect. 6314 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6315 6316 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6317 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6318 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6319 6320 // Compute the constraint code and ConstraintType to use. 6321 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6322 6323 // Ideally, we would only check against memory constraints. However, the 6324 // meaning of an other constraint can be target-specific and we can't easily 6325 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6326 // for other constriants as well. 6327 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6328 OpInfo.ConstraintType == TargetLowering::C_Other) { 6329 if (OpInfo.Type == InlineAsm::isInput) 6330 ExtraInfo |= InlineAsm::Extra_MayLoad; 6331 else if (OpInfo.Type == InlineAsm::isOutput) 6332 ExtraInfo |= InlineAsm::Extra_MayStore; 6333 else if (OpInfo.Type == InlineAsm::isClobber) 6334 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6335 } 6336 } 6337 6338 AsmNodeOperands.push_back(DAG.getTargetConstant( 6339 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6340 6341 // Loop over all of the inputs, copying the operand values into the 6342 // appropriate registers and processing the output regs. 6343 RegsForValue RetValRegs; 6344 6345 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6346 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6347 6348 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6349 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6350 6351 switch (OpInfo.Type) { 6352 case InlineAsm::isOutput: { 6353 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6354 OpInfo.ConstraintType != TargetLowering::C_Register) { 6355 // Memory output, or 'other' output (e.g. 'X' constraint). 6356 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6357 6358 unsigned ConstraintID = 6359 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6360 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6361 "Failed to convert memory constraint code to constraint id."); 6362 6363 // Add information to the INLINEASM node to know about this output. 6364 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6365 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6366 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6367 MVT::i32)); 6368 AsmNodeOperands.push_back(OpInfo.CallOperand); 6369 break; 6370 } 6371 6372 // Otherwise, this is a register or register class output. 6373 6374 // Copy the output from the appropriate register. Find a register that 6375 // we can use. 6376 if (OpInfo.AssignedRegs.Regs.empty()) { 6377 LLVMContext &Ctx = *DAG.getContext(); 6378 Ctx.emitError(CS.getInstruction(), 6379 "couldn't allocate output register for constraint '" + 6380 Twine(OpInfo.ConstraintCode) + "'"); 6381 return; 6382 } 6383 6384 // If this is an indirect operand, store through the pointer after the 6385 // asm. 6386 if (OpInfo.isIndirect) { 6387 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6388 OpInfo.CallOperandVal)); 6389 } else { 6390 // This is the result value of the call. 6391 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6392 // Concatenate this output onto the outputs list. 6393 RetValRegs.append(OpInfo.AssignedRegs); 6394 } 6395 6396 // Add information to the INLINEASM node to know that this register is 6397 // set. 6398 OpInfo.AssignedRegs 6399 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6400 ? InlineAsm::Kind_RegDefEarlyClobber 6401 : InlineAsm::Kind_RegDef, 6402 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6403 break; 6404 } 6405 case InlineAsm::isInput: { 6406 SDValue InOperandVal = OpInfo.CallOperand; 6407 6408 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6409 // If this is required to match an output register we have already set, 6410 // just use its register. 6411 unsigned OperandNo = OpInfo.getMatchedOperand(); 6412 6413 // Scan until we find the definition we already emitted of this operand. 6414 // When we find it, create a RegsForValue operand. 6415 unsigned CurOp = InlineAsm::Op_FirstOperand; 6416 for (; OperandNo; --OperandNo) { 6417 // Advance to the next operand. 6418 unsigned OpFlag = 6419 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6420 assert((InlineAsm::isRegDefKind(OpFlag) || 6421 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6422 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6423 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6424 } 6425 6426 unsigned OpFlag = 6427 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6428 if (InlineAsm::isRegDefKind(OpFlag) || 6429 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6430 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6431 if (OpInfo.isIndirect) { 6432 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6433 LLVMContext &Ctx = *DAG.getContext(); 6434 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6435 " don't know how to handle tied " 6436 "indirect register inputs"); 6437 return; 6438 } 6439 6440 RegsForValue MatchedRegs; 6441 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6442 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6443 MatchedRegs.RegVTs.push_back(RegVT); 6444 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6445 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6446 i != e; ++i) { 6447 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6448 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6449 else { 6450 LLVMContext &Ctx = *DAG.getContext(); 6451 Ctx.emitError(CS.getInstruction(), 6452 "inline asm error: This value" 6453 " type register class is not natively supported!"); 6454 return; 6455 } 6456 } 6457 SDLoc dl = getCurSDLoc(); 6458 // Use the produced MatchedRegs object to 6459 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6460 Chain, &Flag, CS.getInstruction()); 6461 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6462 true, OpInfo.getMatchedOperand(), dl, 6463 DAG, AsmNodeOperands); 6464 break; 6465 } 6466 6467 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6468 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6469 "Unexpected number of operands"); 6470 // Add information to the INLINEASM node to know about this input. 6471 // See InlineAsm.h isUseOperandTiedToDef. 6472 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6473 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6474 OpInfo.getMatchedOperand()); 6475 AsmNodeOperands.push_back(DAG.getTargetConstant( 6476 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6477 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6478 break; 6479 } 6480 6481 // Treat indirect 'X' constraint as memory. 6482 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6483 OpInfo.isIndirect) 6484 OpInfo.ConstraintType = TargetLowering::C_Memory; 6485 6486 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6487 std::vector<SDValue> Ops; 6488 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6489 Ops, DAG); 6490 if (Ops.empty()) { 6491 LLVMContext &Ctx = *DAG.getContext(); 6492 Ctx.emitError(CS.getInstruction(), 6493 "invalid operand for inline asm constraint '" + 6494 Twine(OpInfo.ConstraintCode) + "'"); 6495 return; 6496 } 6497 6498 // Add information to the INLINEASM node to know about this input. 6499 unsigned ResOpType = 6500 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6501 AsmNodeOperands.push_back(DAG.getTargetConstant( 6502 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6503 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6504 break; 6505 } 6506 6507 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6508 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6509 assert(InOperandVal.getValueType() == 6510 TLI.getPointerTy(DAG.getDataLayout()) && 6511 "Memory operands expect pointer values"); 6512 6513 unsigned ConstraintID = 6514 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6515 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6516 "Failed to convert memory constraint code to constraint id."); 6517 6518 // Add information to the INLINEASM node to know about this input. 6519 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6520 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6521 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6522 getCurSDLoc(), 6523 MVT::i32)); 6524 AsmNodeOperands.push_back(InOperandVal); 6525 break; 6526 } 6527 6528 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6529 OpInfo.ConstraintType == TargetLowering::C_Register) && 6530 "Unknown constraint type!"); 6531 6532 // TODO: Support this. 6533 if (OpInfo.isIndirect) { 6534 LLVMContext &Ctx = *DAG.getContext(); 6535 Ctx.emitError(CS.getInstruction(), 6536 "Don't know how to handle indirect register inputs yet " 6537 "for constraint '" + 6538 Twine(OpInfo.ConstraintCode) + "'"); 6539 return; 6540 } 6541 6542 // Copy the input into the appropriate registers. 6543 if (OpInfo.AssignedRegs.Regs.empty()) { 6544 LLVMContext &Ctx = *DAG.getContext(); 6545 Ctx.emitError(CS.getInstruction(), 6546 "couldn't allocate input reg for constraint '" + 6547 Twine(OpInfo.ConstraintCode) + "'"); 6548 return; 6549 } 6550 6551 SDLoc dl = getCurSDLoc(); 6552 6553 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6554 Chain, &Flag, CS.getInstruction()); 6555 6556 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6557 dl, DAG, AsmNodeOperands); 6558 break; 6559 } 6560 case InlineAsm::isClobber: { 6561 // Add the clobbered value to the operand list, so that the register 6562 // allocator is aware that the physreg got clobbered. 6563 if (!OpInfo.AssignedRegs.Regs.empty()) 6564 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6565 false, 0, getCurSDLoc(), DAG, 6566 AsmNodeOperands); 6567 break; 6568 } 6569 } 6570 } 6571 6572 // Finish up input operands. Set the input chain and add the flag last. 6573 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6574 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6575 6576 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6577 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6578 Flag = Chain.getValue(1); 6579 6580 // If this asm returns a register value, copy the result from that register 6581 // and set it as the value of the call. 6582 if (!RetValRegs.Regs.empty()) { 6583 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6584 Chain, &Flag, CS.getInstruction()); 6585 6586 // FIXME: Why don't we do this for inline asms with MRVs? 6587 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6588 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6589 6590 // If any of the results of the inline asm is a vector, it may have the 6591 // wrong width/num elts. This can happen for register classes that can 6592 // contain multiple different value types. The preg or vreg allocated may 6593 // not have the same VT as was expected. Convert it to the right type 6594 // with bit_convert. 6595 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6596 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6597 ResultType, Val); 6598 6599 } else if (ResultType != Val.getValueType() && 6600 ResultType.isInteger() && Val.getValueType().isInteger()) { 6601 // If a result value was tied to an input value, the computed result may 6602 // have a wider width than the expected result. Extract the relevant 6603 // portion. 6604 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6605 } 6606 6607 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6608 } 6609 6610 setValue(CS.getInstruction(), Val); 6611 // Don't need to use this as a chain in this case. 6612 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6613 return; 6614 } 6615 6616 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6617 6618 // Process indirect outputs, first output all of the flagged copies out of 6619 // physregs. 6620 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6621 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6622 const Value *Ptr = IndirectStoresToEmit[i].second; 6623 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6624 Chain, &Flag, IA); 6625 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6626 } 6627 6628 // Emit the non-flagged stores from the physregs. 6629 SmallVector<SDValue, 8> OutChains; 6630 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6631 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6632 StoresToEmit[i].first, 6633 getValue(StoresToEmit[i].second), 6634 MachinePointerInfo(StoresToEmit[i].second), 6635 false, false, 0); 6636 OutChains.push_back(Val); 6637 } 6638 6639 if (!OutChains.empty()) 6640 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6641 6642 DAG.setRoot(Chain); 6643 } 6644 6645 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6646 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6647 MVT::Other, getRoot(), 6648 getValue(I.getArgOperand(0)), 6649 DAG.getSrcValue(I.getArgOperand(0)))); 6650 } 6651 6652 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6654 const DataLayout &DL = DAG.getDataLayout(); 6655 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6656 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6657 DAG.getSrcValue(I.getOperand(0)), 6658 DL.getABITypeAlignment(I.getType())); 6659 setValue(&I, V); 6660 DAG.setRoot(V.getValue(1)); 6661 } 6662 6663 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6664 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6665 MVT::Other, getRoot(), 6666 getValue(I.getArgOperand(0)), 6667 DAG.getSrcValue(I.getArgOperand(0)))); 6668 } 6669 6670 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6671 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6672 MVT::Other, getRoot(), 6673 getValue(I.getArgOperand(0)), 6674 getValue(I.getArgOperand(1)), 6675 DAG.getSrcValue(I.getArgOperand(0)), 6676 DAG.getSrcValue(I.getArgOperand(1)))); 6677 } 6678 6679 /// \brief Lower an argument list according to the target calling convention. 6680 /// 6681 /// \return A tuple of <return-value, token-chain> 6682 /// 6683 /// This is a helper for lowering intrinsics that follow a target calling 6684 /// convention or require stack pointer adjustment. Only a subset of the 6685 /// intrinsic's operands need to participate in the calling convention. 6686 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6687 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6688 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6689 TargetLowering::ArgListTy Args; 6690 Args.reserve(NumArgs); 6691 6692 // Populate the argument list. 6693 // Attributes for args start at offset 1, after the return attribute. 6694 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6695 ArgI != ArgE; ++ArgI) { 6696 const Value *V = CS->getOperand(ArgI); 6697 6698 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6699 6700 TargetLowering::ArgListEntry Entry; 6701 Entry.Node = getValue(V); 6702 Entry.Ty = V->getType(); 6703 Entry.setAttributes(&CS, AttrI); 6704 Args.push_back(Entry); 6705 } 6706 6707 TargetLowering::CallLoweringInfo CLI(DAG); 6708 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6709 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6710 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6711 6712 return lowerInvokable(CLI, EHPadBB); 6713 } 6714 6715 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6716 /// or patchpoint target node's operand list. 6717 /// 6718 /// Constants are converted to TargetConstants purely as an optimization to 6719 /// avoid constant materialization and register allocation. 6720 /// 6721 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6722 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6723 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6724 /// address materialization and register allocation, but may also be required 6725 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6726 /// alloca in the entry block, then the runtime may assume that the alloca's 6727 /// StackMap location can be read immediately after compilation and that the 6728 /// location is valid at any point during execution (this is similar to the 6729 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6730 /// only available in a register, then the runtime would need to trap when 6731 /// execution reaches the StackMap in order to read the alloca's location. 6732 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6733 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6734 SelectionDAGBuilder &Builder) { 6735 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6736 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6737 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6738 Ops.push_back( 6739 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6740 Ops.push_back( 6741 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6742 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6743 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6744 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6745 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6746 } else 6747 Ops.push_back(OpVal); 6748 } 6749 } 6750 6751 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6752 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6753 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6754 // [live variables...]) 6755 6756 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6757 6758 SDValue Chain, InFlag, Callee, NullPtr; 6759 SmallVector<SDValue, 32> Ops; 6760 6761 SDLoc DL = getCurSDLoc(); 6762 Callee = getValue(CI.getCalledValue()); 6763 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6764 6765 // The stackmap intrinsic only records the live variables (the arguemnts 6766 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6767 // intrinsic, this won't be lowered to a function call. This means we don't 6768 // have to worry about calling conventions and target specific lowering code. 6769 // Instead we perform the call lowering right here. 6770 // 6771 // chain, flag = CALLSEQ_START(chain, 0) 6772 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6773 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6774 // 6775 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6776 InFlag = Chain.getValue(1); 6777 6778 // Add the <id> and <numBytes> constants. 6779 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6780 Ops.push_back(DAG.getTargetConstant( 6781 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6782 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6783 Ops.push_back(DAG.getTargetConstant( 6784 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6785 MVT::i32)); 6786 6787 // Push live variables for the stack map. 6788 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6789 6790 // We are not pushing any register mask info here on the operands list, 6791 // because the stackmap doesn't clobber anything. 6792 6793 // Push the chain and the glue flag. 6794 Ops.push_back(Chain); 6795 Ops.push_back(InFlag); 6796 6797 // Create the STACKMAP node. 6798 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6799 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6800 Chain = SDValue(SM, 0); 6801 InFlag = Chain.getValue(1); 6802 6803 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6804 6805 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6806 6807 // Set the root to the target-lowered call chain. 6808 DAG.setRoot(Chain); 6809 6810 // Inform the Frame Information that we have a stackmap in this function. 6811 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6812 } 6813 6814 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6815 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6816 const BasicBlock *EHPadBB) { 6817 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6818 // i32 <numBytes>, 6819 // i8* <target>, 6820 // i32 <numArgs>, 6821 // [Args...], 6822 // [live variables...]) 6823 6824 CallingConv::ID CC = CS.getCallingConv(); 6825 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6826 bool HasDef = !CS->getType()->isVoidTy(); 6827 SDLoc dl = getCurSDLoc(); 6828 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6829 6830 // Handle immediate and symbolic callees. 6831 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6832 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6833 /*isTarget=*/true); 6834 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6835 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6836 SDLoc(SymbolicCallee), 6837 SymbolicCallee->getValueType(0)); 6838 6839 // Get the real number of arguments participating in the call <numArgs> 6840 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6841 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6842 6843 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6844 // Intrinsics include all meta-operands up to but not including CC. 6845 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6846 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6847 "Not enough arguments provided to the patchpoint intrinsic"); 6848 6849 // For AnyRegCC the arguments are lowered later on manually. 6850 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6851 Type *ReturnTy = 6852 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6853 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6854 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6855 6856 SDNode *CallEnd = Result.second.getNode(); 6857 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6858 CallEnd = CallEnd->getOperand(0).getNode(); 6859 6860 /// Get a call instruction from the call sequence chain. 6861 /// Tail calls are not allowed. 6862 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6863 "Expected a callseq node."); 6864 SDNode *Call = CallEnd->getOperand(0).getNode(); 6865 bool HasGlue = Call->getGluedNode(); 6866 6867 // Replace the target specific call node with the patchable intrinsic. 6868 SmallVector<SDValue, 8> Ops; 6869 6870 // Add the <id> and <numBytes> constants. 6871 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6872 Ops.push_back(DAG.getTargetConstant( 6873 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6874 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6875 Ops.push_back(DAG.getTargetConstant( 6876 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6877 MVT::i32)); 6878 6879 // Add the callee. 6880 Ops.push_back(Callee); 6881 6882 // Adjust <numArgs> to account for any arguments that have been passed on the 6883 // stack instead. 6884 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6885 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6886 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6887 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6888 6889 // Add the calling convention 6890 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6891 6892 // Add the arguments we omitted previously. The register allocator should 6893 // place these in any free register. 6894 if (IsAnyRegCC) 6895 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6896 Ops.push_back(getValue(CS.getArgument(i))); 6897 6898 // Push the arguments from the call instruction up to the register mask. 6899 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6900 Ops.append(Call->op_begin() + 2, e); 6901 6902 // Push live variables for the stack map. 6903 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6904 6905 // Push the register mask info. 6906 if (HasGlue) 6907 Ops.push_back(*(Call->op_end()-2)); 6908 else 6909 Ops.push_back(*(Call->op_end()-1)); 6910 6911 // Push the chain (this is originally the first operand of the call, but 6912 // becomes now the last or second to last operand). 6913 Ops.push_back(*(Call->op_begin())); 6914 6915 // Push the glue flag (last operand). 6916 if (HasGlue) 6917 Ops.push_back(*(Call->op_end()-1)); 6918 6919 SDVTList NodeTys; 6920 if (IsAnyRegCC && HasDef) { 6921 // Create the return types based on the intrinsic definition 6922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6923 SmallVector<EVT, 3> ValueVTs; 6924 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6925 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6926 6927 // There is always a chain and a glue type at the end 6928 ValueVTs.push_back(MVT::Other); 6929 ValueVTs.push_back(MVT::Glue); 6930 NodeTys = DAG.getVTList(ValueVTs); 6931 } else 6932 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6933 6934 // Replace the target specific call node with a PATCHPOINT node. 6935 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6936 dl, NodeTys, Ops); 6937 6938 // Update the NodeMap. 6939 if (HasDef) { 6940 if (IsAnyRegCC) 6941 setValue(CS.getInstruction(), SDValue(MN, 0)); 6942 else 6943 setValue(CS.getInstruction(), Result.first); 6944 } 6945 6946 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6947 // call sequence. Furthermore the location of the chain and glue can change 6948 // when the AnyReg calling convention is used and the intrinsic returns a 6949 // value. 6950 if (IsAnyRegCC && HasDef) { 6951 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6952 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6953 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6954 } else 6955 DAG.ReplaceAllUsesWith(Call, MN); 6956 DAG.DeleteNode(Call); 6957 6958 // Inform the Frame Information that we have a patchpoint in this function. 6959 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6960 } 6961 6962 /// Returns an AttributeSet representing the attributes applied to the return 6963 /// value of the given call. 6964 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6965 SmallVector<Attribute::AttrKind, 2> Attrs; 6966 if (CLI.RetSExt) 6967 Attrs.push_back(Attribute::SExt); 6968 if (CLI.RetZExt) 6969 Attrs.push_back(Attribute::ZExt); 6970 if (CLI.IsInReg) 6971 Attrs.push_back(Attribute::InReg); 6972 6973 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6974 Attrs); 6975 } 6976 6977 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6978 /// implementation, which just calls LowerCall. 6979 /// FIXME: When all targets are 6980 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6981 std::pair<SDValue, SDValue> 6982 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6983 // Handle the incoming return values from the call. 6984 CLI.Ins.clear(); 6985 Type *OrigRetTy = CLI.RetTy; 6986 SmallVector<EVT, 4> RetTys; 6987 SmallVector<uint64_t, 4> Offsets; 6988 auto &DL = CLI.DAG.getDataLayout(); 6989 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6990 6991 SmallVector<ISD::OutputArg, 4> Outs; 6992 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6993 6994 bool CanLowerReturn = 6995 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6996 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6997 6998 SDValue DemoteStackSlot; 6999 int DemoteStackIdx = -100; 7000 if (!CanLowerReturn) { 7001 // FIXME: equivalent assert? 7002 // assert(!CS.hasInAllocaArgument() && 7003 // "sret demotion is incompatible with inalloca"); 7004 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7005 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7006 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7007 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7008 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7009 7010 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7011 ArgListEntry Entry; 7012 Entry.Node = DemoteStackSlot; 7013 Entry.Ty = StackSlotPtrType; 7014 Entry.isSExt = false; 7015 Entry.isZExt = false; 7016 Entry.isInReg = false; 7017 Entry.isSRet = true; 7018 Entry.isNest = false; 7019 Entry.isByVal = false; 7020 Entry.isReturned = false; 7021 Entry.Alignment = Align; 7022 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7023 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7024 7025 // sret demotion isn't compatible with tail-calls, since the sret argument 7026 // points into the callers stack frame. 7027 CLI.IsTailCall = false; 7028 } else { 7029 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7030 EVT VT = RetTys[I]; 7031 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7032 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7033 for (unsigned i = 0; i != NumRegs; ++i) { 7034 ISD::InputArg MyFlags; 7035 MyFlags.VT = RegisterVT; 7036 MyFlags.ArgVT = VT; 7037 MyFlags.Used = CLI.IsReturnValueUsed; 7038 if (CLI.RetSExt) 7039 MyFlags.Flags.setSExt(); 7040 if (CLI.RetZExt) 7041 MyFlags.Flags.setZExt(); 7042 if (CLI.IsInReg) 7043 MyFlags.Flags.setInReg(); 7044 CLI.Ins.push_back(MyFlags); 7045 } 7046 } 7047 } 7048 7049 // Handle all of the outgoing arguments. 7050 CLI.Outs.clear(); 7051 CLI.OutVals.clear(); 7052 ArgListTy &Args = CLI.getArgs(); 7053 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7054 SmallVector<EVT, 4> ValueVTs; 7055 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7056 Type *FinalType = Args[i].Ty; 7057 if (Args[i].isByVal) 7058 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7059 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7060 FinalType, CLI.CallConv, CLI.IsVarArg); 7061 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7062 ++Value) { 7063 EVT VT = ValueVTs[Value]; 7064 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7065 SDValue Op = SDValue(Args[i].Node.getNode(), 7066 Args[i].Node.getResNo() + Value); 7067 ISD::ArgFlagsTy Flags; 7068 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7069 7070 if (Args[i].isZExt) 7071 Flags.setZExt(); 7072 if (Args[i].isSExt) 7073 Flags.setSExt(); 7074 if (Args[i].isInReg) 7075 Flags.setInReg(); 7076 if (Args[i].isSRet) 7077 Flags.setSRet(); 7078 if (Args[i].isByVal) 7079 Flags.setByVal(); 7080 if (Args[i].isInAlloca) { 7081 Flags.setInAlloca(); 7082 // Set the byval flag for CCAssignFn callbacks that don't know about 7083 // inalloca. This way we can know how many bytes we should've allocated 7084 // and how many bytes a callee cleanup function will pop. If we port 7085 // inalloca to more targets, we'll have to add custom inalloca handling 7086 // in the various CC lowering callbacks. 7087 Flags.setByVal(); 7088 } 7089 if (Args[i].isByVal || Args[i].isInAlloca) { 7090 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7091 Type *ElementTy = Ty->getElementType(); 7092 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7093 // For ByVal, alignment should come from FE. BE will guess if this 7094 // info is not there but there are cases it cannot get right. 7095 unsigned FrameAlign; 7096 if (Args[i].Alignment) 7097 FrameAlign = Args[i].Alignment; 7098 else 7099 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7100 Flags.setByValAlign(FrameAlign); 7101 } 7102 if (Args[i].isNest) 7103 Flags.setNest(); 7104 if (NeedsRegBlock) 7105 Flags.setInConsecutiveRegs(); 7106 Flags.setOrigAlign(OriginalAlignment); 7107 7108 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7109 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7110 SmallVector<SDValue, 4> Parts(NumParts); 7111 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7112 7113 if (Args[i].isSExt) 7114 ExtendKind = ISD::SIGN_EXTEND; 7115 else if (Args[i].isZExt) 7116 ExtendKind = ISD::ZERO_EXTEND; 7117 7118 // Conservatively only handle 'returned' on non-vectors for now 7119 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7120 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7121 "unexpected use of 'returned'"); 7122 // Before passing 'returned' to the target lowering code, ensure that 7123 // either the register MVT and the actual EVT are the same size or that 7124 // the return value and argument are extended in the same way; in these 7125 // cases it's safe to pass the argument register value unchanged as the 7126 // return register value (although it's at the target's option whether 7127 // to do so) 7128 // TODO: allow code generation to take advantage of partially preserved 7129 // registers rather than clobbering the entire register when the 7130 // parameter extension method is not compatible with the return 7131 // extension method 7132 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7133 (ExtendKind != ISD::ANY_EXTEND && 7134 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7135 Flags.setReturned(); 7136 } 7137 7138 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7139 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7140 7141 for (unsigned j = 0; j != NumParts; ++j) { 7142 // if it isn't first piece, alignment must be 1 7143 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7144 i < CLI.NumFixedArgs, 7145 i, j*Parts[j].getValueType().getStoreSize()); 7146 if (NumParts > 1 && j == 0) 7147 MyFlags.Flags.setSplit(); 7148 else if (j != 0) 7149 MyFlags.Flags.setOrigAlign(1); 7150 7151 CLI.Outs.push_back(MyFlags); 7152 CLI.OutVals.push_back(Parts[j]); 7153 } 7154 7155 if (NeedsRegBlock && Value == NumValues - 1) 7156 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7157 } 7158 } 7159 7160 SmallVector<SDValue, 4> InVals; 7161 CLI.Chain = LowerCall(CLI, InVals); 7162 7163 // Verify that the target's LowerCall behaved as expected. 7164 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7165 "LowerCall didn't return a valid chain!"); 7166 assert((!CLI.IsTailCall || InVals.empty()) && 7167 "LowerCall emitted a return value for a tail call!"); 7168 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7169 "LowerCall didn't emit the correct number of values!"); 7170 7171 // For a tail call, the return value is merely live-out and there aren't 7172 // any nodes in the DAG representing it. Return a special value to 7173 // indicate that a tail call has been emitted and no more Instructions 7174 // should be processed in the current block. 7175 if (CLI.IsTailCall) { 7176 CLI.DAG.setRoot(CLI.Chain); 7177 return std::make_pair(SDValue(), SDValue()); 7178 } 7179 7180 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7181 assert(InVals[i].getNode() && 7182 "LowerCall emitted a null value!"); 7183 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7184 "LowerCall emitted a value with the wrong type!"); 7185 }); 7186 7187 SmallVector<SDValue, 4> ReturnValues; 7188 if (!CanLowerReturn) { 7189 // The instruction result is the result of loading from the 7190 // hidden sret parameter. 7191 SmallVector<EVT, 1> PVTs; 7192 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7193 7194 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7195 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7196 EVT PtrVT = PVTs[0]; 7197 7198 unsigned NumValues = RetTys.size(); 7199 ReturnValues.resize(NumValues); 7200 SmallVector<SDValue, 4> Chains(NumValues); 7201 7202 for (unsigned i = 0; i < NumValues; ++i) { 7203 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7204 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7205 PtrVT)); 7206 SDValue L = CLI.DAG.getLoad( 7207 RetTys[i], CLI.DL, CLI.Chain, Add, 7208 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7209 DemoteStackIdx, Offsets[i]), 7210 false, false, false, 1); 7211 ReturnValues[i] = L; 7212 Chains[i] = L.getValue(1); 7213 } 7214 7215 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7216 } else { 7217 // Collect the legal value parts into potentially illegal values 7218 // that correspond to the original function's return values. 7219 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7220 if (CLI.RetSExt) 7221 AssertOp = ISD::AssertSext; 7222 else if (CLI.RetZExt) 7223 AssertOp = ISD::AssertZext; 7224 unsigned CurReg = 0; 7225 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7226 EVT VT = RetTys[I]; 7227 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7228 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7229 7230 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7231 NumRegs, RegisterVT, VT, nullptr, 7232 AssertOp)); 7233 CurReg += NumRegs; 7234 } 7235 7236 // For a function returning void, there is no return value. We can't create 7237 // such a node, so we just return a null return value in that case. In 7238 // that case, nothing will actually look at the value. 7239 if (ReturnValues.empty()) 7240 return std::make_pair(SDValue(), CLI.Chain); 7241 } 7242 7243 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7244 CLI.DAG.getVTList(RetTys), ReturnValues); 7245 return std::make_pair(Res, CLI.Chain); 7246 } 7247 7248 void TargetLowering::LowerOperationWrapper(SDNode *N, 7249 SmallVectorImpl<SDValue> &Results, 7250 SelectionDAG &DAG) const { 7251 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7252 if (Res.getNode()) 7253 Results.push_back(Res); 7254 } 7255 7256 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7257 llvm_unreachable("LowerOperation not implemented for this target!"); 7258 } 7259 7260 void 7261 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7262 SDValue Op = getNonRegisterValue(V); 7263 assert((Op.getOpcode() != ISD::CopyFromReg || 7264 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7265 "Copy from a reg to the same reg!"); 7266 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7267 7268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7269 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7270 V->getType()); 7271 SDValue Chain = DAG.getEntryNode(); 7272 7273 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7274 FuncInfo.PreferredExtendType.end()) 7275 ? ISD::ANY_EXTEND 7276 : FuncInfo.PreferredExtendType[V]; 7277 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7278 PendingExports.push_back(Chain); 7279 } 7280 7281 #include "llvm/CodeGen/SelectionDAGISel.h" 7282 7283 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7284 /// entry block, return true. This includes arguments used by switches, since 7285 /// the switch may expand into multiple basic blocks. 7286 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7287 // With FastISel active, we may be splitting blocks, so force creation 7288 // of virtual registers for all non-dead arguments. 7289 if (FastISel) 7290 return A->use_empty(); 7291 7292 const BasicBlock &Entry = A->getParent()->front(); 7293 for (const User *U : A->users()) 7294 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7295 return false; // Use not in entry block. 7296 7297 return true; 7298 } 7299 7300 void SelectionDAGISel::LowerArguments(const Function &F) { 7301 SelectionDAG &DAG = SDB->DAG; 7302 SDLoc dl = SDB->getCurSDLoc(); 7303 const DataLayout &DL = DAG.getDataLayout(); 7304 SmallVector<ISD::InputArg, 16> Ins; 7305 7306 if (!FuncInfo->CanLowerReturn) { 7307 // Put in an sret pointer parameter before all the other parameters. 7308 SmallVector<EVT, 1> ValueVTs; 7309 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7310 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7311 7312 // NOTE: Assuming that a pointer will never break down to more than one VT 7313 // or one register. 7314 ISD::ArgFlagsTy Flags; 7315 Flags.setSRet(); 7316 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7317 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7318 ISD::InputArg::NoArgIndex, 0); 7319 Ins.push_back(RetArg); 7320 } 7321 7322 // Set up the incoming argument description vector. 7323 unsigned Idx = 1; 7324 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7325 I != E; ++I, ++Idx) { 7326 SmallVector<EVT, 4> ValueVTs; 7327 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7328 bool isArgValueUsed = !I->use_empty(); 7329 unsigned PartBase = 0; 7330 Type *FinalType = I->getType(); 7331 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7332 FinalType = cast<PointerType>(FinalType)->getElementType(); 7333 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7334 FinalType, F.getCallingConv(), F.isVarArg()); 7335 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7336 Value != NumValues; ++Value) { 7337 EVT VT = ValueVTs[Value]; 7338 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7339 ISD::ArgFlagsTy Flags; 7340 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7341 7342 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7343 Flags.setZExt(); 7344 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7345 Flags.setSExt(); 7346 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7347 Flags.setInReg(); 7348 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7349 Flags.setSRet(); 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7351 Flags.setByVal(); 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7353 Flags.setInAlloca(); 7354 // Set the byval flag for CCAssignFn callbacks that don't know about 7355 // inalloca. This way we can know how many bytes we should've allocated 7356 // and how many bytes a callee cleanup function will pop. If we port 7357 // inalloca to more targets, we'll have to add custom inalloca handling 7358 // in the various CC lowering callbacks. 7359 Flags.setByVal(); 7360 } 7361 if (F.getCallingConv() == CallingConv::X86_INTR) { 7362 // IA Interrupt passes frame (1st parameter) by value in the stack. 7363 if (Idx == 1) 7364 Flags.setByVal(); 7365 } 7366 if (Flags.isByVal() || Flags.isInAlloca()) { 7367 PointerType *Ty = cast<PointerType>(I->getType()); 7368 Type *ElementTy = Ty->getElementType(); 7369 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7370 // For ByVal, alignment should be passed from FE. BE will guess if 7371 // this info is not there but there are cases it cannot get right. 7372 unsigned FrameAlign; 7373 if (F.getParamAlignment(Idx)) 7374 FrameAlign = F.getParamAlignment(Idx); 7375 else 7376 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7377 Flags.setByValAlign(FrameAlign); 7378 } 7379 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7380 Flags.setNest(); 7381 if (NeedsRegBlock) 7382 Flags.setInConsecutiveRegs(); 7383 Flags.setOrigAlign(OriginalAlignment); 7384 7385 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7386 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7387 for (unsigned i = 0; i != NumRegs; ++i) { 7388 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7389 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7390 if (NumRegs > 1 && i == 0) 7391 MyFlags.Flags.setSplit(); 7392 // if it isn't first piece, alignment must be 1 7393 else if (i > 0) 7394 MyFlags.Flags.setOrigAlign(1); 7395 Ins.push_back(MyFlags); 7396 } 7397 if (NeedsRegBlock && Value == NumValues - 1) 7398 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7399 PartBase += VT.getStoreSize(); 7400 } 7401 } 7402 7403 // Call the target to set up the argument values. 7404 SmallVector<SDValue, 8> InVals; 7405 SDValue NewRoot = TLI->LowerFormalArguments( 7406 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7407 7408 // Verify that the target's LowerFormalArguments behaved as expected. 7409 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7410 "LowerFormalArguments didn't return a valid chain!"); 7411 assert(InVals.size() == Ins.size() && 7412 "LowerFormalArguments didn't emit the correct number of values!"); 7413 DEBUG({ 7414 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7415 assert(InVals[i].getNode() && 7416 "LowerFormalArguments emitted a null value!"); 7417 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7418 "LowerFormalArguments emitted a value with the wrong type!"); 7419 } 7420 }); 7421 7422 // Update the DAG with the new chain value resulting from argument lowering. 7423 DAG.setRoot(NewRoot); 7424 7425 // Set up the argument values. 7426 unsigned i = 0; 7427 Idx = 1; 7428 if (!FuncInfo->CanLowerReturn) { 7429 // Create a virtual register for the sret pointer, and put in a copy 7430 // from the sret argument into it. 7431 SmallVector<EVT, 1> ValueVTs; 7432 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7433 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7434 MVT VT = ValueVTs[0].getSimpleVT(); 7435 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7436 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7437 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7438 RegVT, VT, nullptr, AssertOp); 7439 7440 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7441 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7442 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7443 FuncInfo->DemoteRegister = SRetReg; 7444 NewRoot = 7445 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7446 DAG.setRoot(NewRoot); 7447 7448 // i indexes lowered arguments. Bump it past the hidden sret argument. 7449 // Idx indexes LLVM arguments. Don't touch it. 7450 ++i; 7451 } 7452 7453 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7454 ++I, ++Idx) { 7455 SmallVector<SDValue, 4> ArgValues; 7456 SmallVector<EVT, 4> ValueVTs; 7457 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7458 unsigned NumValues = ValueVTs.size(); 7459 7460 // If this argument is unused then remember its value. It is used to generate 7461 // debugging information. 7462 if (I->use_empty() && NumValues) { 7463 SDB->setUnusedArgValue(&*I, InVals[i]); 7464 7465 // Also remember any frame index for use in FastISel. 7466 if (FrameIndexSDNode *FI = 7467 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7468 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7469 } 7470 7471 for (unsigned Val = 0; Val != NumValues; ++Val) { 7472 EVT VT = ValueVTs[Val]; 7473 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7474 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7475 7476 if (!I->use_empty()) { 7477 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7478 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7479 AssertOp = ISD::AssertSext; 7480 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7481 AssertOp = ISD::AssertZext; 7482 7483 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7484 NumParts, PartVT, VT, 7485 nullptr, AssertOp)); 7486 } 7487 7488 i += NumParts; 7489 } 7490 7491 // We don't need to do anything else for unused arguments. 7492 if (ArgValues.empty()) 7493 continue; 7494 7495 // Note down frame index. 7496 if (FrameIndexSDNode *FI = 7497 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7498 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7499 7500 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7501 SDB->getCurSDLoc()); 7502 7503 SDB->setValue(&*I, Res); 7504 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7505 if (LoadSDNode *LNode = 7506 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7507 if (FrameIndexSDNode *FI = 7508 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7509 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7510 } 7511 7512 // If this argument is live outside of the entry block, insert a copy from 7513 // wherever we got it to the vreg that other BB's will reference it as. 7514 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7515 // If we can, though, try to skip creating an unnecessary vreg. 7516 // FIXME: This isn't very clean... it would be nice to make this more 7517 // general. It's also subtly incompatible with the hacks FastISel 7518 // uses with vregs. 7519 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7520 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7521 FuncInfo->ValueMap[&*I] = Reg; 7522 continue; 7523 } 7524 } 7525 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7526 FuncInfo->InitializeRegForValue(&*I); 7527 SDB->CopyToExportRegsIfNeeded(&*I); 7528 } 7529 } 7530 7531 assert(i == InVals.size() && "Argument register count mismatch!"); 7532 7533 // Finally, if the target has anything special to do, allow it to do so. 7534 EmitFunctionEntryCode(); 7535 } 7536 7537 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7538 /// ensure constants are generated when needed. Remember the virtual registers 7539 /// that need to be added to the Machine PHI nodes as input. We cannot just 7540 /// directly add them, because expansion might result in multiple MBB's for one 7541 /// BB. As such, the start of the BB might correspond to a different MBB than 7542 /// the end. 7543 /// 7544 void 7545 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7546 const TerminatorInst *TI = LLVMBB->getTerminator(); 7547 7548 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7549 7550 // Check PHI nodes in successors that expect a value to be available from this 7551 // block. 7552 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7553 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7554 if (!isa<PHINode>(SuccBB->begin())) continue; 7555 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7556 7557 // If this terminator has multiple identical successors (common for 7558 // switches), only handle each succ once. 7559 if (!SuccsHandled.insert(SuccMBB).second) 7560 continue; 7561 7562 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7563 7564 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7565 // nodes and Machine PHI nodes, but the incoming operands have not been 7566 // emitted yet. 7567 for (BasicBlock::const_iterator I = SuccBB->begin(); 7568 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7569 // Ignore dead phi's. 7570 if (PN->use_empty()) continue; 7571 7572 // Skip empty types 7573 if (PN->getType()->isEmptyTy()) 7574 continue; 7575 7576 unsigned Reg; 7577 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7578 7579 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7580 unsigned &RegOut = ConstantsOut[C]; 7581 if (RegOut == 0) { 7582 RegOut = FuncInfo.CreateRegs(C->getType()); 7583 CopyValueToVirtualRegister(C, RegOut); 7584 } 7585 Reg = RegOut; 7586 } else { 7587 DenseMap<const Value *, unsigned>::iterator I = 7588 FuncInfo.ValueMap.find(PHIOp); 7589 if (I != FuncInfo.ValueMap.end()) 7590 Reg = I->second; 7591 else { 7592 assert(isa<AllocaInst>(PHIOp) && 7593 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7594 "Didn't codegen value into a register!??"); 7595 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7596 CopyValueToVirtualRegister(PHIOp, Reg); 7597 } 7598 } 7599 7600 // Remember that this register needs to added to the machine PHI node as 7601 // the input for this MBB. 7602 SmallVector<EVT, 4> ValueVTs; 7603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7604 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7605 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7606 EVT VT = ValueVTs[vti]; 7607 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7608 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7609 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7610 Reg += NumRegisters; 7611 } 7612 } 7613 } 7614 7615 ConstantsOut.clear(); 7616 } 7617 7618 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7619 /// is 0. 7620 MachineBasicBlock * 7621 SelectionDAGBuilder::StackProtectorDescriptor:: 7622 AddSuccessorMBB(const BasicBlock *BB, 7623 MachineBasicBlock *ParentMBB, 7624 bool IsLikely, 7625 MachineBasicBlock *SuccMBB) { 7626 // If SuccBB has not been created yet, create it. 7627 if (!SuccMBB) { 7628 MachineFunction *MF = ParentMBB->getParent(); 7629 MachineFunction::iterator BBI(ParentMBB); 7630 SuccMBB = MF->CreateMachineBasicBlock(BB); 7631 MF->insert(++BBI, SuccMBB); 7632 } 7633 // Add it as a successor of ParentMBB. 7634 ParentMBB->addSuccessor( 7635 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7636 return SuccMBB; 7637 } 7638 7639 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7640 MachineFunction::iterator I(MBB); 7641 if (++I == FuncInfo.MF->end()) 7642 return nullptr; 7643 return &*I; 7644 } 7645 7646 /// During lowering new call nodes can be created (such as memset, etc.). 7647 /// Those will become new roots of the current DAG, but complications arise 7648 /// when they are tail calls. In such cases, the call lowering will update 7649 /// the root, but the builder still needs to know that a tail call has been 7650 /// lowered in order to avoid generating an additional return. 7651 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7652 // If the node is null, we do have a tail call. 7653 if (MaybeTC.getNode() != nullptr) 7654 DAG.setRoot(MaybeTC); 7655 else 7656 HasTailCall = true; 7657 } 7658 7659 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7660 unsigned *TotalCases, unsigned First, 7661 unsigned Last) { 7662 assert(Last >= First); 7663 assert(TotalCases[Last] >= TotalCases[First]); 7664 7665 APInt LowCase = Clusters[First].Low->getValue(); 7666 APInt HighCase = Clusters[Last].High->getValue(); 7667 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7668 7669 // FIXME: A range of consecutive cases has 100% density, but only requires one 7670 // comparison to lower. We should discriminate against such consecutive ranges 7671 // in jump tables. 7672 7673 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7674 uint64_t Range = Diff + 1; 7675 7676 uint64_t NumCases = 7677 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7678 7679 assert(NumCases < UINT64_MAX / 100); 7680 assert(Range >= NumCases); 7681 7682 return NumCases * 100 >= Range * MinJumpTableDensity; 7683 } 7684 7685 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7686 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7687 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7688 } 7689 7690 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7691 unsigned First, unsigned Last, 7692 const SwitchInst *SI, 7693 MachineBasicBlock *DefaultMBB, 7694 CaseCluster &JTCluster) { 7695 assert(First <= Last); 7696 7697 auto Prob = BranchProbability::getZero(); 7698 unsigned NumCmps = 0; 7699 std::vector<MachineBasicBlock*> Table; 7700 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7701 7702 // Initialize probabilities in JTProbs. 7703 for (unsigned I = First; I <= Last; ++I) 7704 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7705 7706 for (unsigned I = First; I <= Last; ++I) { 7707 assert(Clusters[I].Kind == CC_Range); 7708 Prob += Clusters[I].Prob; 7709 APInt Low = Clusters[I].Low->getValue(); 7710 APInt High = Clusters[I].High->getValue(); 7711 NumCmps += (Low == High) ? 1 : 2; 7712 if (I != First) { 7713 // Fill the gap between this and the previous cluster. 7714 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7715 assert(PreviousHigh.slt(Low)); 7716 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7717 for (uint64_t J = 0; J < Gap; J++) 7718 Table.push_back(DefaultMBB); 7719 } 7720 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7721 for (uint64_t J = 0; J < ClusterSize; ++J) 7722 Table.push_back(Clusters[I].MBB); 7723 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7724 } 7725 7726 unsigned NumDests = JTProbs.size(); 7727 if (isSuitableForBitTests(NumDests, NumCmps, 7728 Clusters[First].Low->getValue(), 7729 Clusters[Last].High->getValue())) { 7730 // Clusters[First..Last] should be lowered as bit tests instead. 7731 return false; 7732 } 7733 7734 // Create the MBB that will load from and jump through the table. 7735 // Note: We create it here, but it's not inserted into the function yet. 7736 MachineFunction *CurMF = FuncInfo.MF; 7737 MachineBasicBlock *JumpTableMBB = 7738 CurMF->CreateMachineBasicBlock(SI->getParent()); 7739 7740 // Add successors. Note: use table order for determinism. 7741 SmallPtrSet<MachineBasicBlock *, 8> Done; 7742 for (MachineBasicBlock *Succ : Table) { 7743 if (Done.count(Succ)) 7744 continue; 7745 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7746 Done.insert(Succ); 7747 } 7748 JumpTableMBB->normalizeSuccProbs(); 7749 7750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7751 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7752 ->createJumpTableIndex(Table); 7753 7754 // Set up the jump table info. 7755 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7756 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7757 Clusters[Last].High->getValue(), SI->getCondition(), 7758 nullptr, false); 7759 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7760 7761 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7762 JTCases.size() - 1, Prob); 7763 return true; 7764 } 7765 7766 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7767 const SwitchInst *SI, 7768 MachineBasicBlock *DefaultMBB) { 7769 #ifndef NDEBUG 7770 // Clusters must be non-empty, sorted, and only contain Range clusters. 7771 assert(!Clusters.empty()); 7772 for (CaseCluster &C : Clusters) 7773 assert(C.Kind == CC_Range); 7774 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7775 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7776 #endif 7777 7778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7779 if (!areJTsAllowed(TLI)) 7780 return; 7781 7782 const int64_t N = Clusters.size(); 7783 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7784 7785 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7786 SmallVector<unsigned, 8> TotalCases(N); 7787 7788 for (unsigned i = 0; i < N; ++i) { 7789 APInt Hi = Clusters[i].High->getValue(); 7790 APInt Lo = Clusters[i].Low->getValue(); 7791 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7792 if (i != 0) 7793 TotalCases[i] += TotalCases[i - 1]; 7794 } 7795 7796 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7797 // Cheap case: the whole range might be suitable for jump table. 7798 CaseCluster JTCluster; 7799 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7800 Clusters[0] = JTCluster; 7801 Clusters.resize(1); 7802 return; 7803 } 7804 } 7805 7806 // The algorithm below is not suitable for -O0. 7807 if (TM.getOptLevel() == CodeGenOpt::None) 7808 return; 7809 7810 // Split Clusters into minimum number of dense partitions. The algorithm uses 7811 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7812 // for the Case Statement'" (1994), but builds the MinPartitions array in 7813 // reverse order to make it easier to reconstruct the partitions in ascending 7814 // order. In the choice between two optimal partitionings, it picks the one 7815 // which yields more jump tables. 7816 7817 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7818 SmallVector<unsigned, 8> MinPartitions(N); 7819 // LastElement[i] is the last element of the partition starting at i. 7820 SmallVector<unsigned, 8> LastElement(N); 7821 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7822 SmallVector<unsigned, 8> NumTables(N); 7823 7824 // Base case: There is only one way to partition Clusters[N-1]. 7825 MinPartitions[N - 1] = 1; 7826 LastElement[N - 1] = N - 1; 7827 assert(MinJumpTableSize > 1); 7828 NumTables[N - 1] = 0; 7829 7830 // Note: loop indexes are signed to avoid underflow. 7831 for (int64_t i = N - 2; i >= 0; i--) { 7832 // Find optimal partitioning of Clusters[i..N-1]. 7833 // Baseline: Put Clusters[i] into a partition on its own. 7834 MinPartitions[i] = MinPartitions[i + 1] + 1; 7835 LastElement[i] = i; 7836 NumTables[i] = NumTables[i + 1]; 7837 7838 // Search for a solution that results in fewer partitions. 7839 for (int64_t j = N - 1; j > i; j--) { 7840 // Try building a partition from Clusters[i..j]. 7841 if (isDense(Clusters, &TotalCases[0], i, j)) { 7842 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7843 bool IsTable = j - i + 1 >= MinJumpTableSize; 7844 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7845 7846 // If this j leads to fewer partitions, or same number of partitions 7847 // with more lookup tables, it is a better partitioning. 7848 if (NumPartitions < MinPartitions[i] || 7849 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7850 MinPartitions[i] = NumPartitions; 7851 LastElement[i] = j; 7852 NumTables[i] = Tables; 7853 } 7854 } 7855 } 7856 } 7857 7858 // Iterate over the partitions, replacing some with jump tables in-place. 7859 unsigned DstIndex = 0; 7860 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7861 Last = LastElement[First]; 7862 assert(Last >= First); 7863 assert(DstIndex <= First); 7864 unsigned NumClusters = Last - First + 1; 7865 7866 CaseCluster JTCluster; 7867 if (NumClusters >= MinJumpTableSize && 7868 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7869 Clusters[DstIndex++] = JTCluster; 7870 } else { 7871 for (unsigned I = First; I <= Last; ++I) 7872 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7873 } 7874 } 7875 Clusters.resize(DstIndex); 7876 } 7877 7878 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7879 // FIXME: Using the pointer type doesn't seem ideal. 7880 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7881 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7882 return Range <= BW; 7883 } 7884 7885 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7886 unsigned NumCmps, 7887 const APInt &Low, 7888 const APInt &High) { 7889 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7890 // range of cases both require only one branch to lower. Just looking at the 7891 // number of clusters and destinations should be enough to decide whether to 7892 // build bit tests. 7893 7894 // To lower a range with bit tests, the range must fit the bitwidth of a 7895 // machine word. 7896 if (!rangeFitsInWord(Low, High)) 7897 return false; 7898 7899 // Decide whether it's profitable to lower this range with bit tests. Each 7900 // destination requires a bit test and branch, and there is an overall range 7901 // check branch. For a small number of clusters, separate comparisons might be 7902 // cheaper, and for many destinations, splitting the range might be better. 7903 return (NumDests == 1 && NumCmps >= 3) || 7904 (NumDests == 2 && NumCmps >= 5) || 7905 (NumDests == 3 && NumCmps >= 6); 7906 } 7907 7908 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7909 unsigned First, unsigned Last, 7910 const SwitchInst *SI, 7911 CaseCluster &BTCluster) { 7912 assert(First <= Last); 7913 if (First == Last) 7914 return false; 7915 7916 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7917 unsigned NumCmps = 0; 7918 for (int64_t I = First; I <= Last; ++I) { 7919 assert(Clusters[I].Kind == CC_Range); 7920 Dests.set(Clusters[I].MBB->getNumber()); 7921 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7922 } 7923 unsigned NumDests = Dests.count(); 7924 7925 APInt Low = Clusters[First].Low->getValue(); 7926 APInt High = Clusters[Last].High->getValue(); 7927 assert(Low.slt(High)); 7928 7929 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7930 return false; 7931 7932 APInt LowBound; 7933 APInt CmpRange; 7934 7935 const int BitWidth = DAG.getTargetLoweringInfo() 7936 .getPointerTy(DAG.getDataLayout()) 7937 .getSizeInBits(); 7938 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7939 7940 // Check if the clusters cover a contiguous range such that no value in the 7941 // range will jump to the default statement. 7942 bool ContiguousRange = true; 7943 for (int64_t I = First + 1; I <= Last; ++I) { 7944 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7945 ContiguousRange = false; 7946 break; 7947 } 7948 } 7949 7950 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7951 // Optimize the case where all the case values fit in a word without having 7952 // to subtract minValue. In this case, we can optimize away the subtraction. 7953 LowBound = APInt::getNullValue(Low.getBitWidth()); 7954 CmpRange = High; 7955 ContiguousRange = false; 7956 } else { 7957 LowBound = Low; 7958 CmpRange = High - Low; 7959 } 7960 7961 CaseBitsVector CBV; 7962 auto TotalProb = BranchProbability::getZero(); 7963 for (unsigned i = First; i <= Last; ++i) { 7964 // Find the CaseBits for this destination. 7965 unsigned j; 7966 for (j = 0; j < CBV.size(); ++j) 7967 if (CBV[j].BB == Clusters[i].MBB) 7968 break; 7969 if (j == CBV.size()) 7970 CBV.push_back( 7971 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7972 CaseBits *CB = &CBV[j]; 7973 7974 // Update Mask, Bits and ExtraProb. 7975 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7976 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7977 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7978 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7979 CB->Bits += Hi - Lo + 1; 7980 CB->ExtraProb += Clusters[i].Prob; 7981 TotalProb += Clusters[i].Prob; 7982 } 7983 7984 BitTestInfo BTI; 7985 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7986 // Sort by probability first, number of bits second. 7987 if (a.ExtraProb != b.ExtraProb) 7988 return a.ExtraProb > b.ExtraProb; 7989 return a.Bits > b.Bits; 7990 }); 7991 7992 for (auto &CB : CBV) { 7993 MachineBasicBlock *BitTestBB = 7994 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7995 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 7996 } 7997 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7998 SI->getCondition(), -1U, MVT::Other, false, 7999 ContiguousRange, nullptr, nullptr, std::move(BTI), 8000 TotalProb); 8001 8002 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8003 BitTestCases.size() - 1, TotalProb); 8004 return true; 8005 } 8006 8007 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8008 const SwitchInst *SI) { 8009 // Partition Clusters into as few subsets as possible, where each subset has a 8010 // range that fits in a machine word and has <= 3 unique destinations. 8011 8012 #ifndef NDEBUG 8013 // Clusters must be sorted and contain Range or JumpTable clusters. 8014 assert(!Clusters.empty()); 8015 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8016 for (const CaseCluster &C : Clusters) 8017 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8018 for (unsigned i = 1; i < Clusters.size(); ++i) 8019 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8020 #endif 8021 8022 // The algorithm below is not suitable for -O0. 8023 if (TM.getOptLevel() == CodeGenOpt::None) 8024 return; 8025 8026 // If target does not have legal shift left, do not emit bit tests at all. 8027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8028 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8029 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8030 return; 8031 8032 int BitWidth = PTy.getSizeInBits(); 8033 const int64_t N = Clusters.size(); 8034 8035 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8036 SmallVector<unsigned, 8> MinPartitions(N); 8037 // LastElement[i] is the last element of the partition starting at i. 8038 SmallVector<unsigned, 8> LastElement(N); 8039 8040 // FIXME: This might not be the best algorithm for finding bit test clusters. 8041 8042 // Base case: There is only one way to partition Clusters[N-1]. 8043 MinPartitions[N - 1] = 1; 8044 LastElement[N - 1] = N - 1; 8045 8046 // Note: loop indexes are signed to avoid underflow. 8047 for (int64_t i = N - 2; i >= 0; --i) { 8048 // Find optimal partitioning of Clusters[i..N-1]. 8049 // Baseline: Put Clusters[i] into a partition on its own. 8050 MinPartitions[i] = MinPartitions[i + 1] + 1; 8051 LastElement[i] = i; 8052 8053 // Search for a solution that results in fewer partitions. 8054 // Note: the search is limited by BitWidth, reducing time complexity. 8055 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8056 // Try building a partition from Clusters[i..j]. 8057 8058 // Check the range. 8059 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8060 Clusters[j].High->getValue())) 8061 continue; 8062 8063 // Check nbr of destinations and cluster types. 8064 // FIXME: This works, but doesn't seem very efficient. 8065 bool RangesOnly = true; 8066 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8067 for (int64_t k = i; k <= j; k++) { 8068 if (Clusters[k].Kind != CC_Range) { 8069 RangesOnly = false; 8070 break; 8071 } 8072 Dests.set(Clusters[k].MBB->getNumber()); 8073 } 8074 if (!RangesOnly || Dests.count() > 3) 8075 break; 8076 8077 // Check if it's a better partition. 8078 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8079 if (NumPartitions < MinPartitions[i]) { 8080 // Found a better partition. 8081 MinPartitions[i] = NumPartitions; 8082 LastElement[i] = j; 8083 } 8084 } 8085 } 8086 8087 // Iterate over the partitions, replacing with bit-test clusters in-place. 8088 unsigned DstIndex = 0; 8089 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8090 Last = LastElement[First]; 8091 assert(First <= Last); 8092 assert(DstIndex <= First); 8093 8094 CaseCluster BitTestCluster; 8095 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8096 Clusters[DstIndex++] = BitTestCluster; 8097 } else { 8098 size_t NumClusters = Last - First + 1; 8099 std::memmove(&Clusters[DstIndex], &Clusters[First], 8100 sizeof(Clusters[0]) * NumClusters); 8101 DstIndex += NumClusters; 8102 } 8103 } 8104 Clusters.resize(DstIndex); 8105 } 8106 8107 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8108 MachineBasicBlock *SwitchMBB, 8109 MachineBasicBlock *DefaultMBB) { 8110 MachineFunction *CurMF = FuncInfo.MF; 8111 MachineBasicBlock *NextMBB = nullptr; 8112 MachineFunction::iterator BBI(W.MBB); 8113 if (++BBI != FuncInfo.MF->end()) 8114 NextMBB = &*BBI; 8115 8116 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8117 8118 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8119 8120 if (Size == 2 && W.MBB == SwitchMBB) { 8121 // If any two of the cases has the same destination, and if one value 8122 // is the same as the other, but has one bit unset that the other has set, 8123 // use bit manipulation to do two compares at once. For example: 8124 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8125 // TODO: This could be extended to merge any 2 cases in switches with 3 8126 // cases. 8127 // TODO: Handle cases where W.CaseBB != SwitchBB. 8128 CaseCluster &Small = *W.FirstCluster; 8129 CaseCluster &Big = *W.LastCluster; 8130 8131 if (Small.Low == Small.High && Big.Low == Big.High && 8132 Small.MBB == Big.MBB) { 8133 const APInt &SmallValue = Small.Low->getValue(); 8134 const APInt &BigValue = Big.Low->getValue(); 8135 8136 // Check that there is only one bit different. 8137 APInt CommonBit = BigValue ^ SmallValue; 8138 if (CommonBit.isPowerOf2()) { 8139 SDValue CondLHS = getValue(Cond); 8140 EVT VT = CondLHS.getValueType(); 8141 SDLoc DL = getCurSDLoc(); 8142 8143 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8144 DAG.getConstant(CommonBit, DL, VT)); 8145 SDValue Cond = DAG.getSetCC( 8146 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8147 ISD::SETEQ); 8148 8149 // Update successor info. 8150 // Both Small and Big will jump to Small.BB, so we sum up the 8151 // probabilities. 8152 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8153 if (BPI) 8154 addSuccessorWithProb( 8155 SwitchMBB, DefaultMBB, 8156 // The default destination is the first successor in IR. 8157 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8158 else 8159 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8160 8161 // Insert the true branch. 8162 SDValue BrCond = 8163 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8164 DAG.getBasicBlock(Small.MBB)); 8165 // Insert the false branch. 8166 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8167 DAG.getBasicBlock(DefaultMBB)); 8168 8169 DAG.setRoot(BrCond); 8170 return; 8171 } 8172 } 8173 } 8174 8175 if (TM.getOptLevel() != CodeGenOpt::None) { 8176 // Order cases by probability so the most likely case will be checked first. 8177 std::sort(W.FirstCluster, W.LastCluster + 1, 8178 [](const CaseCluster &a, const CaseCluster &b) { 8179 return a.Prob > b.Prob; 8180 }); 8181 8182 // Rearrange the case blocks so that the last one falls through if possible 8183 // without without changing the order of probabilities. 8184 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8185 --I; 8186 if (I->Prob > W.LastCluster->Prob) 8187 break; 8188 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8189 std::swap(*I, *W.LastCluster); 8190 break; 8191 } 8192 } 8193 } 8194 8195 // Compute total probability. 8196 BranchProbability DefaultProb = W.DefaultProb; 8197 BranchProbability UnhandledProbs = DefaultProb; 8198 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8199 UnhandledProbs += I->Prob; 8200 8201 MachineBasicBlock *CurMBB = W.MBB; 8202 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8203 MachineBasicBlock *Fallthrough; 8204 if (I == W.LastCluster) { 8205 // For the last cluster, fall through to the default destination. 8206 Fallthrough = DefaultMBB; 8207 } else { 8208 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8209 CurMF->insert(BBI, Fallthrough); 8210 // Put Cond in a virtual register to make it available from the new blocks. 8211 ExportFromCurrentBlock(Cond); 8212 } 8213 UnhandledProbs -= I->Prob; 8214 8215 switch (I->Kind) { 8216 case CC_JumpTable: { 8217 // FIXME: Optimize away range check based on pivot comparisons. 8218 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8219 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8220 8221 // The jump block hasn't been inserted yet; insert it here. 8222 MachineBasicBlock *JumpMBB = JT->MBB; 8223 CurMF->insert(BBI, JumpMBB); 8224 8225 auto JumpProb = I->Prob; 8226 auto FallthroughProb = UnhandledProbs; 8227 8228 // If the default statement is a target of the jump table, we evenly 8229 // distribute the default probability to successors of CurMBB. Also 8230 // update the probability on the edge from JumpMBB to Fallthrough. 8231 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8232 SE = JumpMBB->succ_end(); 8233 SI != SE; ++SI) { 8234 if (*SI == DefaultMBB) { 8235 JumpProb += DefaultProb / 2; 8236 FallthroughProb -= DefaultProb / 2; 8237 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8238 JumpMBB->normalizeSuccProbs(); 8239 break; 8240 } 8241 } 8242 8243 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8244 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8245 CurMBB->normalizeSuccProbs(); 8246 8247 // The jump table header will be inserted in our current block, do the 8248 // range check, and fall through to our fallthrough block. 8249 JTH->HeaderBB = CurMBB; 8250 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8251 8252 // If we're in the right place, emit the jump table header right now. 8253 if (CurMBB == SwitchMBB) { 8254 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8255 JTH->Emitted = true; 8256 } 8257 break; 8258 } 8259 case CC_BitTests: { 8260 // FIXME: Optimize away range check based on pivot comparisons. 8261 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8262 8263 // The bit test blocks haven't been inserted yet; insert them here. 8264 for (BitTestCase &BTC : BTB->Cases) 8265 CurMF->insert(BBI, BTC.ThisBB); 8266 8267 // Fill in fields of the BitTestBlock. 8268 BTB->Parent = CurMBB; 8269 BTB->Default = Fallthrough; 8270 8271 BTB->DefaultProb = UnhandledProbs; 8272 // If the cases in bit test don't form a contiguous range, we evenly 8273 // distribute the probability on the edge to Fallthrough to two 8274 // successors of CurMBB. 8275 if (!BTB->ContiguousRange) { 8276 BTB->Prob += DefaultProb / 2; 8277 BTB->DefaultProb -= DefaultProb / 2; 8278 } 8279 8280 // If we're in the right place, emit the bit test header right now. 8281 if (CurMBB == SwitchMBB) { 8282 visitBitTestHeader(*BTB, SwitchMBB); 8283 BTB->Emitted = true; 8284 } 8285 break; 8286 } 8287 case CC_Range: { 8288 const Value *RHS, *LHS, *MHS; 8289 ISD::CondCode CC; 8290 if (I->Low == I->High) { 8291 // Check Cond == I->Low. 8292 CC = ISD::SETEQ; 8293 LHS = Cond; 8294 RHS=I->Low; 8295 MHS = nullptr; 8296 } else { 8297 // Check I->Low <= Cond <= I->High. 8298 CC = ISD::SETLE; 8299 LHS = I->Low; 8300 MHS = Cond; 8301 RHS = I->High; 8302 } 8303 8304 // The false probability is the sum of all unhandled cases. 8305 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8306 UnhandledProbs); 8307 8308 if (CurMBB == SwitchMBB) 8309 visitSwitchCase(CB, SwitchMBB); 8310 else 8311 SwitchCases.push_back(CB); 8312 8313 break; 8314 } 8315 } 8316 CurMBB = Fallthrough; 8317 } 8318 } 8319 8320 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8321 CaseClusterIt First, 8322 CaseClusterIt Last) { 8323 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8324 if (X.Prob != CC.Prob) 8325 return X.Prob > CC.Prob; 8326 8327 // Ties are broken by comparing the case value. 8328 return X.Low->getValue().slt(CC.Low->getValue()); 8329 }); 8330 } 8331 8332 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8333 const SwitchWorkListItem &W, 8334 Value *Cond, 8335 MachineBasicBlock *SwitchMBB) { 8336 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8337 "Clusters not sorted?"); 8338 8339 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8340 8341 // Balance the tree based on branch probabilities to create a near-optimal (in 8342 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8343 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8344 CaseClusterIt LastLeft = W.FirstCluster; 8345 CaseClusterIt FirstRight = W.LastCluster; 8346 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8347 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8348 8349 // Move LastLeft and FirstRight towards each other from opposite directions to 8350 // find a partitioning of the clusters which balances the probability on both 8351 // sides. If LeftProb and RightProb are equal, alternate which side is 8352 // taken to ensure 0-probability nodes are distributed evenly. 8353 unsigned I = 0; 8354 while (LastLeft + 1 < FirstRight) { 8355 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8356 LeftProb += (++LastLeft)->Prob; 8357 else 8358 RightProb += (--FirstRight)->Prob; 8359 I++; 8360 } 8361 8362 for (;;) { 8363 // Our binary search tree differs from a typical BST in that ours can have up 8364 // to three values in each leaf. The pivot selection above doesn't take that 8365 // into account, which means the tree might require more nodes and be less 8366 // efficient. We compensate for this here. 8367 8368 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8369 unsigned NumRight = W.LastCluster - FirstRight + 1; 8370 8371 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8372 // If one side has less than 3 clusters, and the other has more than 3, 8373 // consider taking a cluster from the other side. 8374 8375 if (NumLeft < NumRight) { 8376 // Consider moving the first cluster on the right to the left side. 8377 CaseCluster &CC = *FirstRight; 8378 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8379 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8380 if (LeftSideRank <= RightSideRank) { 8381 // Moving the cluster to the left does not demote it. 8382 ++LastLeft; 8383 ++FirstRight; 8384 continue; 8385 } 8386 } else { 8387 assert(NumRight < NumLeft); 8388 // Consider moving the last element on the left to the right side. 8389 CaseCluster &CC = *LastLeft; 8390 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8391 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8392 if (RightSideRank <= LeftSideRank) { 8393 // Moving the cluster to the right does not demot it. 8394 --LastLeft; 8395 --FirstRight; 8396 continue; 8397 } 8398 } 8399 } 8400 break; 8401 } 8402 8403 assert(LastLeft + 1 == FirstRight); 8404 assert(LastLeft >= W.FirstCluster); 8405 assert(FirstRight <= W.LastCluster); 8406 8407 // Use the first element on the right as pivot since we will make less-than 8408 // comparisons against it. 8409 CaseClusterIt PivotCluster = FirstRight; 8410 assert(PivotCluster > W.FirstCluster); 8411 assert(PivotCluster <= W.LastCluster); 8412 8413 CaseClusterIt FirstLeft = W.FirstCluster; 8414 CaseClusterIt LastRight = W.LastCluster; 8415 8416 const ConstantInt *Pivot = PivotCluster->Low; 8417 8418 // New blocks will be inserted immediately after the current one. 8419 MachineFunction::iterator BBI(W.MBB); 8420 ++BBI; 8421 8422 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8423 // we can branch to its destination directly if it's squeezed exactly in 8424 // between the known lower bound and Pivot - 1. 8425 MachineBasicBlock *LeftMBB; 8426 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8427 FirstLeft->Low == W.GE && 8428 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8429 LeftMBB = FirstLeft->MBB; 8430 } else { 8431 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8432 FuncInfo.MF->insert(BBI, LeftMBB); 8433 WorkList.push_back( 8434 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8435 // Put Cond in a virtual register to make it available from the new blocks. 8436 ExportFromCurrentBlock(Cond); 8437 } 8438 8439 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8440 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8441 // directly if RHS.High equals the current upper bound. 8442 MachineBasicBlock *RightMBB; 8443 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8444 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8445 RightMBB = FirstRight->MBB; 8446 } else { 8447 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8448 FuncInfo.MF->insert(BBI, RightMBB); 8449 WorkList.push_back( 8450 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8451 // Put Cond in a virtual register to make it available from the new blocks. 8452 ExportFromCurrentBlock(Cond); 8453 } 8454 8455 // Create the CaseBlock record that will be used to lower the branch. 8456 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8457 LeftProb, RightProb); 8458 8459 if (W.MBB == SwitchMBB) 8460 visitSwitchCase(CB, SwitchMBB); 8461 else 8462 SwitchCases.push_back(CB); 8463 } 8464 8465 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8466 // Extract cases from the switch. 8467 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8468 CaseClusterVector Clusters; 8469 Clusters.reserve(SI.getNumCases()); 8470 for (auto I : SI.cases()) { 8471 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8472 const ConstantInt *CaseVal = I.getCaseValue(); 8473 BranchProbability Prob = 8474 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8475 : BranchProbability(1, SI.getNumCases() + 1); 8476 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8477 } 8478 8479 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8480 8481 // Cluster adjacent cases with the same destination. We do this at all 8482 // optimization levels because it's cheap to do and will make codegen faster 8483 // if there are many clusters. 8484 sortAndRangeify(Clusters); 8485 8486 if (TM.getOptLevel() != CodeGenOpt::None) { 8487 // Replace an unreachable default with the most popular destination. 8488 // FIXME: Exploit unreachable default more aggressively. 8489 bool UnreachableDefault = 8490 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8491 if (UnreachableDefault && !Clusters.empty()) { 8492 DenseMap<const BasicBlock *, unsigned> Popularity; 8493 unsigned MaxPop = 0; 8494 const BasicBlock *MaxBB = nullptr; 8495 for (auto I : SI.cases()) { 8496 const BasicBlock *BB = I.getCaseSuccessor(); 8497 if (++Popularity[BB] > MaxPop) { 8498 MaxPop = Popularity[BB]; 8499 MaxBB = BB; 8500 } 8501 } 8502 // Set new default. 8503 assert(MaxPop > 0 && MaxBB); 8504 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8505 8506 // Remove cases that were pointing to the destination that is now the 8507 // default. 8508 CaseClusterVector New; 8509 New.reserve(Clusters.size()); 8510 for (CaseCluster &CC : Clusters) { 8511 if (CC.MBB != DefaultMBB) 8512 New.push_back(CC); 8513 } 8514 Clusters = std::move(New); 8515 } 8516 } 8517 8518 // If there is only the default destination, jump there directly. 8519 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8520 if (Clusters.empty()) { 8521 SwitchMBB->addSuccessor(DefaultMBB); 8522 if (DefaultMBB != NextBlock(SwitchMBB)) { 8523 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8524 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8525 } 8526 return; 8527 } 8528 8529 findJumpTables(Clusters, &SI, DefaultMBB); 8530 findBitTestClusters(Clusters, &SI); 8531 8532 DEBUG({ 8533 dbgs() << "Case clusters: "; 8534 for (const CaseCluster &C : Clusters) { 8535 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8536 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8537 8538 C.Low->getValue().print(dbgs(), true); 8539 if (C.Low != C.High) { 8540 dbgs() << '-'; 8541 C.High->getValue().print(dbgs(), true); 8542 } 8543 dbgs() << ' '; 8544 } 8545 dbgs() << '\n'; 8546 }); 8547 8548 assert(!Clusters.empty()); 8549 SwitchWorkList WorkList; 8550 CaseClusterIt First = Clusters.begin(); 8551 CaseClusterIt Last = Clusters.end() - 1; 8552 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8553 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8554 8555 while (!WorkList.empty()) { 8556 SwitchWorkListItem W = WorkList.back(); 8557 WorkList.pop_back(); 8558 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8559 8560 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8561 // For optimized builds, lower large range as a balanced binary tree. 8562 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8563 continue; 8564 } 8565 8566 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8567 } 8568 } 8569