xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 4db93c9700189fba5dae3411e308167bac4ec042)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 using namespace llvm;
61 
62 /// LimitFloatPrecision - Generate low-precision inline sequences for
63 /// some float libcalls (6, 8 or 12 bits).
64 static unsigned LimitFloatPrecision;
65 
66 static cl::opt<unsigned, true>
67 LimitFPPrecision("limit-float-precision",
68                  cl::desc("Generate low-precision inline sequences "
69                           "for some float libcalls"),
70                  cl::location(LimitFloatPrecision),
71                  cl::init(0));
72 
73 /// getCopyFromParts - Create a value that contains the specified legal parts
74 /// combined into the value they represent.  If the parts combine to a type
75 /// larger then ValueVT then AssertOp can be used to specify whether the extra
76 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77 /// (ISD::AssertSext).
78 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                 const SDValue *Parts,
80                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82   assert(NumParts > 0 && "No parts to assemble!");
83   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84   SDValue Val = Parts[0];
85 
86   if (NumParts > 1) {
87     // Assemble the value from multiple parts.
88     if (!ValueVT.isVector() && ValueVT.isInteger()) {
89       unsigned PartBits = PartVT.getSizeInBits();
90       unsigned ValueBits = ValueVT.getSizeInBits();
91 
92       // Assemble the power of 2 part.
93       unsigned RoundParts = NumParts & (NumParts - 1) ?
94         1 << Log2_32(NumParts) : NumParts;
95       unsigned RoundBits = PartBits * RoundParts;
96       EVT RoundVT = RoundBits == ValueBits ?
97         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98       SDValue Lo, Hi;
99 
100       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101 
102       if (RoundParts > 2) {
103         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                               PartVT, HalfVT);
105         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                               RoundParts / 2, PartVT, HalfVT);
107       } else {
108         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110       }
111 
112       if (TLI.isBigEndian())
113         std::swap(Lo, Hi);
114 
115       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116 
117       if (RoundParts < NumParts) {
118         // Assemble the trailing non-power-of-2 part.
119         unsigned OddParts = NumParts - RoundParts;
120         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121         Hi = getCopyFromParts(DAG, dl,
122                               Parts + RoundParts, OddParts, PartVT, OddVT);
123 
124         // Combine the round and odd parts.
125         Lo = Val;
126         if (TLI.isBigEndian())
127           std::swap(Lo, Hi);
128         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                          TLI.getPointerTy()));
133         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135       }
136     } else if (ValueVT.isVector()) {
137       // Handle a multi-element vector.
138       EVT IntermediateVT, RegisterVT;
139       unsigned NumIntermediates;
140       unsigned NumRegs =
141         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                    NumIntermediates, RegisterVT);
143       assert(NumRegs == NumParts
144              && "Part count doesn't match vector breakdown!");
145       NumParts = NumRegs; // Silence a compiler warning.
146       assert(RegisterVT == PartVT
147              && "Part type doesn't match vector breakdown!");
148       assert(RegisterVT == Parts[0].getValueType() &&
149              "Part type doesn't match part!");
150 
151       // Assemble the parts into intermediate operands.
152       SmallVector<SDValue, 8> Ops(NumIntermediates);
153       if (NumIntermediates == NumParts) {
154         // If the register was not expanded, truncate or copy the value,
155         // as appropriate.
156         for (unsigned i = 0; i != NumParts; ++i)
157           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                     PartVT, IntermediateVT);
159       } else if (NumParts > 0) {
160         // If the intermediate type was expanded, build the intermediate
161         // operands from the parts.
162         assert(NumParts % NumIntermediates == 0 &&
163                "Must expand into a divisible number of parts!");
164         unsigned Factor = NumParts / NumIntermediates;
165         for (unsigned i = 0; i != NumIntermediates; ++i)
166           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                     PartVT, IntermediateVT);
168       }
169 
170       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171       // intermediate operands.
172       Val = DAG.getNode(IntermediateVT.isVector() ?
173                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                         ValueVT, &Ops[0], NumIntermediates);
175     } else if (PartVT.isFloatingPoint()) {
176       // FP split into multiple FP parts (for ppcf128)
177       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178              "Unexpected split");
179       SDValue Lo, Hi;
180       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182       if (TLI.isBigEndian())
183         std::swap(Lo, Hi);
184       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185     } else {
186       // FP split into integer parts (soft fp)
187       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188              !PartVT.isVector() && "Unexpected split");
189       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191     }
192   }
193 
194   // There is now one part, held in Val.  Correct it to match ValueVT.
195   PartVT = Val.getValueType();
196 
197   if (PartVT == ValueVT)
198     return Val;
199 
200   if (PartVT.isVector()) {
201     assert(ValueVT.isVector() && "Unknown vector conversion!");
202     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203   }
204 
205   if (ValueVT.isVector()) {
206     assert(ValueVT.getVectorElementType() == PartVT &&
207            ValueVT.getVectorNumElements() == 1 &&
208            "Only trivial scalar-to-vector conversions should get here!");
209     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210   }
211 
212   if (PartVT.isInteger() &&
213       ValueVT.isInteger()) {
214     if (ValueVT.bitsLT(PartVT)) {
215       // For a truncate, see if we have any information to
216       // indicate whether the truncated bits will always be
217       // zero or sign-extension.
218       if (AssertOp != ISD::DELETED_NODE)
219         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                           DAG.getValueType(ValueVT));
221       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222     } else {
223       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224     }
225   }
226 
227   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228     if (ValueVT.bitsLT(Val.getValueType())) {
229       // FP_ROUND's are always exact here.
230       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                          DAG.getIntPtrConstant(1));
232     }
233 
234     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235   }
236 
237   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239 
240   llvm_unreachable("Unknown mismatch!");
241   return SDValue();
242 }
243 
244 /// getCopyToParts - Create a series of nodes that contain the specified value
245 /// split into legal parts.  If the parts contain more bits than Val, then, for
246 /// integers, ExtendKind can be used to specify how to generate the extra bits.
247 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                            SDValue Val, SDValue *Parts, unsigned NumParts,
249                            EVT PartVT,
250                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252   EVT PtrVT = TLI.getPointerTy();
253   EVT ValueVT = Val.getValueType();
254   unsigned PartBits = PartVT.getSizeInBits();
255   unsigned OrigNumParts = NumParts;
256   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257 
258   if (!NumParts)
259     return;
260 
261   if (!ValueVT.isVector()) {
262     if (PartVT == ValueVT) {
263       assert(NumParts == 1 && "No-op copy with multiple parts!");
264       Parts[0] = Val;
265       return;
266     }
267 
268     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269       // If the parts cover more bits than the value has, promote the value.
270       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271         assert(NumParts == 1 && "Do not know what to promote to!");
272         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276       } else {
277         llvm_unreachable("Unknown mismatch!");
278       }
279     } else if (PartBits == ValueVT.getSizeInBits()) {
280       // Different types of the same size.
281       assert(NumParts == 1 && PartVT != ValueVT);
282       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284       // If the parts cover less bits than value has, truncate the value.
285       if (PartVT.isInteger() && ValueVT.isInteger()) {
286         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288       } else {
289         llvm_unreachable("Unknown mismatch!");
290       }
291     }
292 
293     // The value may have changed - recompute ValueVT.
294     ValueVT = Val.getValueType();
295     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296            "Failed to tile the value with PartVT!");
297 
298     if (NumParts == 1) {
299       assert(PartVT == ValueVT && "Type conversion failed!");
300       Parts[0] = Val;
301       return;
302     }
303 
304     // Expand the value into multiple parts.
305     if (NumParts & (NumParts - 1)) {
306       // The number of parts is not a power of 2.  Split off and copy the tail.
307       assert(PartVT.isInteger() && ValueVT.isInteger() &&
308              "Do not know what to expand to!");
309       unsigned RoundParts = 1 << Log2_32(NumParts);
310       unsigned RoundBits = RoundParts * PartBits;
311       unsigned OddParts = NumParts - RoundParts;
312       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                    DAG.getConstant(RoundBits,
314                                                    TLI.getPointerTy()));
315       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                      OddParts, PartVT);
317 
318       if (TLI.isBigEndian())
319         // The odd parts were reversed by getCopyToParts - unreverse them.
320         std::reverse(Parts + RoundParts, Parts + NumParts);
321 
322       NumParts = RoundParts;
323       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325     }
326 
327     // The number of parts is a power of 2.  Repeatedly bisect the value using
328     // EXTRACT_ELEMENT.
329     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                            EVT::getIntegerVT(*DAG.getContext(),
331                                              ValueVT.getSizeInBits()),
332                            Val);
333 
334     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335       for (unsigned i = 0; i < NumParts; i += StepSize) {
336         unsigned ThisBits = StepSize * PartBits / 2;
337         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338         SDValue &Part0 = Parts[i];
339         SDValue &Part1 = Parts[i+StepSize/2];
340 
341         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                             ThisVT, Part0,
343                             DAG.getConstant(1, PtrVT));
344         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                             ThisVT, Part0,
346                             DAG.getConstant(0, PtrVT));
347 
348         if (ThisBits == PartBits && ThisVT != PartVT) {
349           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                 PartVT, Part0);
351           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                 PartVT, Part1);
353         }
354       }
355     }
356 
357     if (TLI.isBigEndian())
358       std::reverse(Parts, Parts + OrigNumParts);
359 
360     return;
361   }
362 
363   // Vector ValueVT.
364   if (NumParts == 1) {
365     if (PartVT != ValueVT) {
366       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368       } else {
369         assert(ValueVT.getVectorElementType() == PartVT &&
370                ValueVT.getVectorNumElements() == 1 &&
371                "Only trivial vector-to-scalar conversions should get here!");
372         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                           PartVT, Val,
374                           DAG.getConstant(0, PtrVT));
375       }
376     }
377 
378     Parts[0] = Val;
379     return;
380   }
381 
382   // Handle a multi-element vector.
383   EVT IntermediateVT, RegisterVT;
384   unsigned NumIntermediates;
385   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                               IntermediateVT, NumIntermediates, RegisterVT);
387   unsigned NumElements = ValueVT.getVectorNumElements();
388 
389   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390   NumParts = NumRegs; // Silence a compiler warning.
391   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392 
393   // Split the vector into intermediate operands.
394   SmallVector<SDValue, 8> Ops(NumIntermediates);
395   for (unsigned i = 0; i != NumIntermediates; ++i) {
396     if (IntermediateVT.isVector())
397       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                            IntermediateVT, Val,
399                            DAG.getConstant(i * (NumElements / NumIntermediates),
400                                            PtrVT));
401     else
402       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                            IntermediateVT, Val,
404                            DAG.getConstant(i, PtrVT));
405   }
406 
407   // Split the intermediate operands into legal parts.
408   if (NumParts == NumIntermediates) {
409     // If the register was not expanded, promote or copy the value,
410     // as appropriate.
411     for (unsigned i = 0; i != NumParts; ++i)
412       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413   } else if (NumParts > 0) {
414     // If the intermediate type was expanded, split each the value into
415     // legal parts.
416     assert(NumParts % NumIntermediates == 0 &&
417            "Must expand into a divisible number of parts!");
418     unsigned Factor = NumParts / NumIntermediates;
419     for (unsigned i = 0; i != NumIntermediates; ++i)
420       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421   }
422 }
423 
424 namespace {
425   /// RegsForValue - This struct represents the registers (physical or virtual)
426   /// that a particular set of values is assigned, and the type information
427   /// about the value. The most common situation is to represent one value at a
428   /// time, but struct or array values are handled element-wise as multiple
429   /// values.  The splitting of aggregates is performed recursively, so that we
430   /// never have aggregate-typed registers. The values at this point do not
431   /// necessarily have legal types, so each value may require one or more
432   /// registers of some legal type.
433   ///
434   struct RegsForValue {
435     /// ValueVTs - The value types of the values, which may not be legal, and
436     /// may need be promoted or synthesized from one or more registers.
437     ///
438     SmallVector<EVT, 4> ValueVTs;
439 
440     /// RegVTs - The value types of the registers. This is the same size as
441     /// ValueVTs and it records, for each value, what the type of the assigned
442     /// register or registers are. (Individual values are never synthesized
443     /// from more than one type of register.)
444     ///
445     /// With virtual registers, the contents of RegVTs is redundant with TLI's
446     /// getRegisterType member function, however when with physical registers
447     /// it is necessary to have a separate record of the types.
448     ///
449     SmallVector<EVT, 4> RegVTs;
450 
451     /// Regs - This list holds the registers assigned to the values.
452     /// Each legal or promoted value requires one register, and each
453     /// expanded value requires multiple registers.
454     ///
455     SmallVector<unsigned, 4> Regs;
456 
457     RegsForValue() {}
458 
459     RegsForValue(const SmallVector<unsigned, 4> &regs,
460                  EVT regvt, EVT valuevt)
461       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462 
463     RegsForValue(const SmallVector<unsigned, 4> &regs,
464                  const SmallVector<EVT, 4> &regvts,
465                  const SmallVector<EVT, 4> &valuevts)
466       : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467 
468     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                  unsigned Reg, const Type *Ty) {
470       ComputeValueVTs(tli, Ty, ValueVTs);
471 
472       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473         EVT ValueVT = ValueVTs[Value];
474         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476         for (unsigned i = 0; i != NumRegs; ++i)
477           Regs.push_back(Reg + i);
478         RegVTs.push_back(RegisterVT);
479         Reg += NumRegs;
480       }
481     }
482 
483     /// areValueTypesLegal - Return true if types of all the values are legal.
484     bool areValueTypesLegal(const TargetLowering &TLI) {
485       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486         EVT RegisterVT = RegVTs[Value];
487         if (!TLI.isTypeLegal(RegisterVT))
488           return false;
489       }
490       return true;
491     }
492 
493     /// append - Add the specified values to this one.
494     void append(const RegsForValue &RHS) {
495       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498     }
499 
500     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501     /// this value and returns the result as a ValueVTs value.  This uses
502     /// Chain/Flag as the input and updates them for the output Chain/Flag.
503     /// If the Flag pointer is NULL, no flag is used.
504     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                             DebugLoc dl,
506                             SDValue &Chain, SDValue *Flag) const;
507 
508     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509     /// specified value into the registers specified by this object.  This uses
510     /// Chain/Flag as the input and updates them for the output Chain/Flag.
511     /// If the Flag pointer is NULL, no flag is used.
512     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                        SDValue &Chain, SDValue *Flag) const;
514 
515     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516     /// operand list.  This adds the code marker, matching input operand index
517     /// (if applicable), and includes the number of values added into it.
518     void AddInlineAsmOperands(unsigned Kind,
519                               bool HasMatching, unsigned MatchingIdx,
520                               SelectionDAG &DAG,
521                               std::vector<SDValue> &Ops) const;
522   };
523 }
524 
525 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526 /// this value and returns the result as a ValueVT value.  This uses
527 /// Chain/Flag as the input and updates them for the output Chain/Flag.
528 /// If the Flag pointer is NULL, no flag is used.
529 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                       FunctionLoweringInfo &FuncInfo,
531                                       DebugLoc dl,
532                                       SDValue &Chain, SDValue *Flag) const {
533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534 
535   // Assemble the legal parts into the final values.
536   SmallVector<SDValue, 4> Values(ValueVTs.size());
537   SmallVector<SDValue, 8> Parts;
538   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539     // Copy the legal parts from the registers.
540     EVT ValueVT = ValueVTs[Value];
541     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542     EVT RegisterVT = RegVTs[Value];
543 
544     Parts.resize(NumRegs);
545     for (unsigned i = 0; i != NumRegs; ++i) {
546       SDValue P;
547       if (Flag == 0) {
548         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549       } else {
550         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551         *Flag = P.getValue(2);
552       }
553 
554       Chain = P.getValue(1);
555 
556       // If the source register was virtual and if we know something about it,
557       // add an assert node.
558       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559           RegisterVT.isInteger() && !RegisterVT.isVector()) {
560         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561         if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562           const FunctionLoweringInfo::LiveOutInfo &LOI =
563             FuncInfo.LiveOutRegInfo[SlotNo];
564 
565           unsigned RegSize = RegisterVT.getSizeInBits();
566           unsigned NumSignBits = LOI.NumSignBits;
567           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568 
569           // FIXME: We capture more information than the dag can represent.  For
570           // now, just use the tightest assertzext/assertsext possible.
571           bool isSExt = true;
572           EVT FromVT(MVT::Other);
573           if (NumSignBits == RegSize)
574             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575           else if (NumZeroBits >= RegSize-1)
576             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577           else if (NumSignBits > RegSize-8)
578             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579           else if (NumZeroBits >= RegSize-8)
580             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581           else if (NumSignBits > RegSize-16)
582             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583           else if (NumZeroBits >= RegSize-16)
584             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585           else if (NumSignBits > RegSize-32)
586             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587           else if (NumZeroBits >= RegSize-32)
588             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589 
590           if (FromVT != MVT::Other)
591             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                             RegisterVT, P, DAG.getValueType(FromVT));
593         }
594       }
595 
596       Parts[i] = P;
597     }
598 
599     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                      NumRegs, RegisterVT, ValueVT);
601     Part += NumRegs;
602     Parts.clear();
603   }
604 
605   return DAG.getNode(ISD::MERGE_VALUES, dl,
606                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                      &Values[0], ValueVTs.size());
608 }
609 
610 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611 /// specified value into the registers specified by this object.  This uses
612 /// Chain/Flag as the input and updates them for the output Chain/Flag.
613 /// If the Flag pointer is NULL, no flag is used.
614 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                  SDValue &Chain, SDValue *Flag) const {
616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617 
618   // Get the list of the values's legal parts.
619   unsigned NumRegs = Regs.size();
620   SmallVector<SDValue, 8> Parts(NumRegs);
621   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622     EVT ValueVT = ValueVTs[Value];
623     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624     EVT RegisterVT = RegVTs[Value];
625 
626     getCopyToParts(DAG, dl,
627                    Val.getValue(Val.getResNo() + Value),
628                    &Parts[Part], NumParts, RegisterVT);
629     Part += NumParts;
630   }
631 
632   // Copy the parts into the registers.
633   SmallVector<SDValue, 8> Chains(NumRegs);
634   for (unsigned i = 0; i != NumRegs; ++i) {
635     SDValue Part;
636     if (Flag == 0) {
637       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638     } else {
639       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640       *Flag = Part.getValue(1);
641     }
642 
643     Chains[i] = Part.getValue(0);
644   }
645 
646   if (NumRegs == 1 || Flag)
647     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648     // flagged to it. That is the CopyToReg nodes and the user are considered
649     // a single scheduling unit. If we create a TokenFactor and return it as
650     // chain, then the TokenFactor is both a predecessor (operand) of the
651     // user as well as a successor (the TF operands are flagged to the user).
652     // c1, f1 = CopyToReg
653     // c2, f2 = CopyToReg
654     // c3     = TokenFactor c1, c2
655     // ...
656     //        = op c3, ..., f2
657     Chain = Chains[NumRegs-1];
658   else
659     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660 }
661 
662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663 /// operand list.  This adds the code marker and includes the number of
664 /// values added into it.
665 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                         unsigned MatchingIdx,
667                                         SelectionDAG &DAG,
668                                         std::vector<SDValue> &Ops) const {
669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670 
671   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672   if (HasMatching)
673     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675   Ops.push_back(Res);
676 
677   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679     EVT RegisterVT = RegVTs[Value];
680     for (unsigned i = 0; i != NumRegs; ++i) {
681       assert(Reg < Regs.size() && "Mismatch in # registers expected");
682       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683     }
684   }
685 }
686 
687 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688   AA = &aa;
689   GFI = gfi;
690   TD = DAG.getTarget().getTargetData();
691 }
692 
693 /// clear - Clear out the current SelectionDAG and the associated
694 /// state and prepare this SelectionDAGBuilder object to be used
695 /// for a new block. This doesn't clear out information about
696 /// additional blocks that are needed to complete switch lowering
697 /// or PHI node updating; that information is cleared out as it is
698 /// consumed.
699 void SelectionDAGBuilder::clear() {
700   NodeMap.clear();
701   PendingLoads.clear();
702   PendingExports.clear();
703   CurDebugLoc = DebugLoc();
704   HasTailCall = false;
705 }
706 
707 /// getRoot - Return the current virtual root of the Selection DAG,
708 /// flushing any PendingLoad items. This must be done before emitting
709 /// a store or any other node that may need to be ordered after any
710 /// prior load instructions.
711 ///
712 SDValue SelectionDAGBuilder::getRoot() {
713   if (PendingLoads.empty())
714     return DAG.getRoot();
715 
716   if (PendingLoads.size() == 1) {
717     SDValue Root = PendingLoads[0];
718     DAG.setRoot(Root);
719     PendingLoads.clear();
720     return Root;
721   }
722 
723   // Otherwise, we have to make a token factor node.
724   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
725                                &PendingLoads[0], PendingLoads.size());
726   PendingLoads.clear();
727   DAG.setRoot(Root);
728   return Root;
729 }
730 
731 /// getControlRoot - Similar to getRoot, but instead of flushing all the
732 /// PendingLoad items, flush all the PendingExports items. It is necessary
733 /// to do this before emitting a terminator instruction.
734 ///
735 SDValue SelectionDAGBuilder::getControlRoot() {
736   SDValue Root = DAG.getRoot();
737 
738   if (PendingExports.empty())
739     return Root;
740 
741   // Turn all of the CopyToReg chains into one factored node.
742   if (Root.getOpcode() != ISD::EntryToken) {
743     unsigned i = 0, e = PendingExports.size();
744     for (; i != e; ++i) {
745       assert(PendingExports[i].getNode()->getNumOperands() > 1);
746       if (PendingExports[i].getNode()->getOperand(0) == Root)
747         break;  // Don't add the root if we already indirectly depend on it.
748     }
749 
750     if (i == e)
751       PendingExports.push_back(Root);
752   }
753 
754   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
755                      &PendingExports[0],
756                      PendingExports.size());
757   PendingExports.clear();
758   DAG.setRoot(Root);
759   return Root;
760 }
761 
762 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
763   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
764   DAG.AssignOrdering(Node, SDNodeOrder);
765 
766   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
767     AssignOrderingToNode(Node->getOperand(I).getNode());
768 }
769 
770 void SelectionDAGBuilder::visit(const Instruction &I) {
771   // Set up outgoing PHI node register values before emitting the terminator.
772   if (isa<TerminatorInst>(&I))
773     HandlePHINodesInSuccessorBlocks(I.getParent());
774 
775   CurDebugLoc = I.getDebugLoc();
776 
777   visit(I.getOpcode(), I);
778 
779   if (!isa<TerminatorInst>(&I) && !HasTailCall)
780     CopyToExportRegsIfNeeded(&I);
781 
782   CurDebugLoc = DebugLoc();
783 }
784 
785 void SelectionDAGBuilder::visitPHI(const PHINode &) {
786   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
787 }
788 
789 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
790   // Note: this doesn't use InstVisitor, because it has to work with
791   // ConstantExpr's in addition to instructions.
792   switch (Opcode) {
793   default: llvm_unreachable("Unknown instruction type encountered!");
794     // Build the switch statement using the Instruction.def file.
795 #define HANDLE_INST(NUM, OPCODE, CLASS) \
796     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
797 #include "llvm/Instruction.def"
798   }
799 
800   // Assign the ordering to the freshly created DAG nodes.
801   if (NodeMap.count(&I)) {
802     ++SDNodeOrder;
803     AssignOrderingToNode(getValue(&I).getNode());
804   }
805 }
806 
807 SDValue SelectionDAGBuilder::getValue(const Value *V) {
808   SDValue &N = NodeMap[V];
809   if (N.getNode()) return N;
810 
811   if (const Constant *C = dyn_cast<Constant>(V)) {
812     EVT VT = TLI.getValueType(V->getType(), true);
813 
814     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
815       return N = DAG.getConstant(*CI, VT);
816 
817     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
818       return N = DAG.getGlobalAddress(GV, VT);
819 
820     if (isa<ConstantPointerNull>(C))
821       return N = DAG.getConstant(0, TLI.getPointerTy());
822 
823     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
824       return N = DAG.getConstantFP(*CFP, VT);
825 
826     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
827       return N = DAG.getUNDEF(VT);
828 
829     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
830       visit(CE->getOpcode(), *CE);
831       SDValue N1 = NodeMap[V];
832       assert(N1.getNode() && "visit didn't populate the NodeMap!");
833       return N1;
834     }
835 
836     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
837       SmallVector<SDValue, 4> Constants;
838       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
839            OI != OE; ++OI) {
840         SDNode *Val = getValue(*OI).getNode();
841         // If the operand is an empty aggregate, there are no values.
842         if (!Val) continue;
843         // Add each leaf value from the operand to the Constants list
844         // to form a flattened list of all the values.
845         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
846           Constants.push_back(SDValue(Val, i));
847       }
848 
849       return DAG.getMergeValues(&Constants[0], Constants.size(),
850                                 getCurDebugLoc());
851     }
852 
853     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
854       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
855              "Unknown struct or array constant!");
856 
857       SmallVector<EVT, 4> ValueVTs;
858       ComputeValueVTs(TLI, C->getType(), ValueVTs);
859       unsigned NumElts = ValueVTs.size();
860       if (NumElts == 0)
861         return SDValue(); // empty struct
862       SmallVector<SDValue, 4> Constants(NumElts);
863       for (unsigned i = 0; i != NumElts; ++i) {
864         EVT EltVT = ValueVTs[i];
865         if (isa<UndefValue>(C))
866           Constants[i] = DAG.getUNDEF(EltVT);
867         else if (EltVT.isFloatingPoint())
868           Constants[i] = DAG.getConstantFP(0, EltVT);
869         else
870           Constants[i] = DAG.getConstant(0, EltVT);
871       }
872 
873       return DAG.getMergeValues(&Constants[0], NumElts,
874                                 getCurDebugLoc());
875     }
876 
877     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
878       return DAG.getBlockAddress(BA, VT);
879 
880     const VectorType *VecTy = cast<VectorType>(V->getType());
881     unsigned NumElements = VecTy->getNumElements();
882 
883     // Now that we know the number and type of the elements, get that number of
884     // elements into the Ops array based on what kind of constant it is.
885     SmallVector<SDValue, 16> Ops;
886     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
887       for (unsigned i = 0; i != NumElements; ++i)
888         Ops.push_back(getValue(CP->getOperand(i)));
889     } else {
890       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
891       EVT EltVT = TLI.getValueType(VecTy->getElementType());
892 
893       SDValue Op;
894       if (EltVT.isFloatingPoint())
895         Op = DAG.getConstantFP(0, EltVT);
896       else
897         Op = DAG.getConstant(0, EltVT);
898       Ops.assign(NumElements, Op);
899     }
900 
901     // Create a BUILD_VECTOR node.
902     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
903                                     VT, &Ops[0], Ops.size());
904   }
905 
906   // If this is a static alloca, generate it as the frameindex instead of
907   // computation.
908   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
909     DenseMap<const AllocaInst*, int>::iterator SI =
910       FuncInfo.StaticAllocaMap.find(AI);
911     if (SI != FuncInfo.StaticAllocaMap.end())
912       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
913   }
914 
915   unsigned InReg = FuncInfo.ValueMap[V];
916   assert(InReg && "Value not in map!");
917 
918   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
919   SDValue Chain = DAG.getEntryNode();
920   return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
921 }
922 
923 /// Get the EVTs and ArgFlags collections that represent the legalized return
924 /// type of the given function.  This does not require a DAG or a return value,
925 /// and is suitable for use before any DAGs for the function are constructed.
926 static void getReturnInfo(const Type* ReturnType,
927                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
928                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
929                    const TargetLowering &TLI,
930                    SmallVectorImpl<uint64_t> *Offsets = 0) {
931   SmallVector<EVT, 4> ValueVTs;
932   ComputeValueVTs(TLI, ReturnType, ValueVTs);
933   unsigned NumValues = ValueVTs.size();
934   if (NumValues == 0) return;
935   unsigned Offset = 0;
936 
937   for (unsigned j = 0, f = NumValues; j != f; ++j) {
938     EVT VT = ValueVTs[j];
939     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
940 
941     if (attr & Attribute::SExt)
942       ExtendKind = ISD::SIGN_EXTEND;
943     else if (attr & Attribute::ZExt)
944       ExtendKind = ISD::ZERO_EXTEND;
945 
946     // FIXME: C calling convention requires the return type to be promoted to
947     // at least 32-bit. But this is not necessary for non-C calling
948     // conventions. The frontend should mark functions whose return values
949     // require promoting with signext or zeroext attributes.
950     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
951       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
952       if (VT.bitsLT(MinVT))
953         VT = MinVT;
954     }
955 
956     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
957     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
958     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
959                         PartVT.getTypeForEVT(ReturnType->getContext()));
960 
961     // 'inreg' on function refers to return value
962     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
963     if (attr & Attribute::InReg)
964       Flags.setInReg();
965 
966     // Propagate extension type if any
967     if (attr & Attribute::SExt)
968       Flags.setSExt();
969     else if (attr & Attribute::ZExt)
970       Flags.setZExt();
971 
972     for (unsigned i = 0; i < NumParts; ++i) {
973       OutVTs.push_back(PartVT);
974       OutFlags.push_back(Flags);
975       if (Offsets)
976       {
977         Offsets->push_back(Offset);
978         Offset += PartSize;
979       }
980     }
981   }
982 }
983 
984 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
985   SDValue Chain = getControlRoot();
986   SmallVector<ISD::OutputArg, 8> Outs;
987 
988   if (!FuncInfo.CanLowerReturn) {
989     unsigned DemoteReg = FuncInfo.DemoteRegister;
990     const Function *F = I.getParent()->getParent();
991 
992     // Emit a store of the return value through the virtual register.
993     // Leave Outs empty so that LowerReturn won't try to load return
994     // registers the usual way.
995     SmallVector<EVT, 1> PtrValueVTs;
996     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
997                     PtrValueVTs);
998 
999     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1000     SDValue RetOp = getValue(I.getOperand(0));
1001 
1002     SmallVector<EVT, 4> ValueVTs;
1003     SmallVector<uint64_t, 4> Offsets;
1004     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1005     unsigned NumValues = ValueVTs.size();
1006 
1007     SmallVector<SDValue, 4> Chains(NumValues);
1008     EVT PtrVT = PtrValueVTs[0];
1009     for (unsigned i = 0; i != NumValues; ++i) {
1010       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1011                                 DAG.getConstant(Offsets[i], PtrVT));
1012       Chains[i] =
1013         DAG.getStore(Chain, getCurDebugLoc(),
1014                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1015                      Add, NULL, Offsets[i], false, false, 0);
1016     }
1017 
1018     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1019                         MVT::Other, &Chains[0], NumValues);
1020   } else if (I.getNumOperands() != 0) {
1021     SmallVector<EVT, 4> ValueVTs;
1022     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1023     unsigned NumValues = ValueVTs.size();
1024     if (NumValues) {
1025       SDValue RetOp = getValue(I.getOperand(0));
1026       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1027         EVT VT = ValueVTs[j];
1028 
1029         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1030 
1031         const Function *F = I.getParent()->getParent();
1032         if (F->paramHasAttr(0, Attribute::SExt))
1033           ExtendKind = ISD::SIGN_EXTEND;
1034         else if (F->paramHasAttr(0, Attribute::ZExt))
1035           ExtendKind = ISD::ZERO_EXTEND;
1036 
1037         // FIXME: C calling convention requires the return type to be promoted
1038         // to at least 32-bit. But this is not necessary for non-C calling
1039         // conventions. The frontend should mark functions whose return values
1040         // require promoting with signext or zeroext attributes.
1041         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1042           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1043           if (VT.bitsLT(MinVT))
1044             VT = MinVT;
1045         }
1046 
1047         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1048         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1049         SmallVector<SDValue, 4> Parts(NumParts);
1050         getCopyToParts(DAG, getCurDebugLoc(),
1051                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1052                        &Parts[0], NumParts, PartVT, ExtendKind);
1053 
1054         // 'inreg' on function refers to return value
1055         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1056         if (F->paramHasAttr(0, Attribute::InReg))
1057           Flags.setInReg();
1058 
1059         // Propagate extension type if any
1060         if (F->paramHasAttr(0, Attribute::SExt))
1061           Flags.setSExt();
1062         else if (F->paramHasAttr(0, Attribute::ZExt))
1063           Flags.setZExt();
1064 
1065         for (unsigned i = 0; i < NumParts; ++i)
1066           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1067       }
1068     }
1069   }
1070 
1071   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1072   CallingConv::ID CallConv =
1073     DAG.getMachineFunction().getFunction()->getCallingConv();
1074   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1075                           Outs, getCurDebugLoc(), DAG);
1076 
1077   // Verify that the target's LowerReturn behaved as expected.
1078   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1079          "LowerReturn didn't return a valid chain!");
1080 
1081   // Update the DAG with the new chain value resulting from return lowering.
1082   DAG.setRoot(Chain);
1083 }
1084 
1085 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1086 /// created for it, emit nodes to copy the value into the virtual
1087 /// registers.
1088 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1089   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1090   if (VMI != FuncInfo.ValueMap.end()) {
1091     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1092     CopyValueToVirtualRegister(V, VMI->second);
1093   }
1094 }
1095 
1096 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1097 /// the current basic block, add it to ValueMap now so that we'll get a
1098 /// CopyTo/FromReg.
1099 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1100   // No need to export constants.
1101   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1102 
1103   // Already exported?
1104   if (FuncInfo.isExportedInst(V)) return;
1105 
1106   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1107   CopyValueToVirtualRegister(V, Reg);
1108 }
1109 
1110 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1111                                                      const BasicBlock *FromBB) {
1112   // The operands of the setcc have to be in this block.  We don't know
1113   // how to export them from some other block.
1114   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1115     // Can export from current BB.
1116     if (VI->getParent() == FromBB)
1117       return true;
1118 
1119     // Is already exported, noop.
1120     return FuncInfo.isExportedInst(V);
1121   }
1122 
1123   // If this is an argument, we can export it if the BB is the entry block or
1124   // if it is already exported.
1125   if (isa<Argument>(V)) {
1126     if (FromBB == &FromBB->getParent()->getEntryBlock())
1127       return true;
1128 
1129     // Otherwise, can only export this if it is already exported.
1130     return FuncInfo.isExportedInst(V);
1131   }
1132 
1133   // Otherwise, constants can always be exported.
1134   return true;
1135 }
1136 
1137 static bool InBlock(const Value *V, const BasicBlock *BB) {
1138   if (const Instruction *I = dyn_cast<Instruction>(V))
1139     return I->getParent() == BB;
1140   return true;
1141 }
1142 
1143 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1144 /// This function emits a branch and is used at the leaves of an OR or an
1145 /// AND operator tree.
1146 ///
1147 void
1148 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1149                                                   MachineBasicBlock *TBB,
1150                                                   MachineBasicBlock *FBB,
1151                                                   MachineBasicBlock *CurBB,
1152                                                   MachineBasicBlock *SwitchBB) {
1153   const BasicBlock *BB = CurBB->getBasicBlock();
1154 
1155   // If the leaf of the tree is a comparison, merge the condition into
1156   // the caseblock.
1157   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1158     // The operands of the cmp have to be in this block.  We don't know
1159     // how to export them from some other block.  If this is the first block
1160     // of the sequence, no exporting is needed.
1161     if (CurBB == SwitchBB ||
1162         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1163          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1164       ISD::CondCode Condition;
1165       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1166         Condition = getICmpCondCode(IC->getPredicate());
1167       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1168         Condition = getFCmpCondCode(FC->getPredicate());
1169       } else {
1170         Condition = ISD::SETEQ; // silence warning.
1171         llvm_unreachable("Unknown compare instruction");
1172       }
1173 
1174       CaseBlock CB(Condition, BOp->getOperand(0),
1175                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1176       SwitchCases.push_back(CB);
1177       return;
1178     }
1179   }
1180 
1181   // Create a CaseBlock record representing this branch.
1182   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1183                NULL, TBB, FBB, CurBB);
1184   SwitchCases.push_back(CB);
1185 }
1186 
1187 /// FindMergedConditions - If Cond is an expression like
1188 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1189                                                MachineBasicBlock *TBB,
1190                                                MachineBasicBlock *FBB,
1191                                                MachineBasicBlock *CurBB,
1192                                                MachineBasicBlock *SwitchBB,
1193                                                unsigned Opc) {
1194   // If this node is not part of the or/and tree, emit it as a branch.
1195   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1196   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1197       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1198       BOp->getParent() != CurBB->getBasicBlock() ||
1199       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1200       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1201     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1202     return;
1203   }
1204 
1205   //  Create TmpBB after CurBB.
1206   MachineFunction::iterator BBI = CurBB;
1207   MachineFunction &MF = DAG.getMachineFunction();
1208   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1209   CurBB->getParent()->insert(++BBI, TmpBB);
1210 
1211   if (Opc == Instruction::Or) {
1212     // Codegen X | Y as:
1213     //   jmp_if_X TBB
1214     //   jmp TmpBB
1215     // TmpBB:
1216     //   jmp_if_Y TBB
1217     //   jmp FBB
1218     //
1219 
1220     // Emit the LHS condition.
1221     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1222 
1223     // Emit the RHS condition into TmpBB.
1224     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1225   } else {
1226     assert(Opc == Instruction::And && "Unknown merge op!");
1227     // Codegen X & Y as:
1228     //   jmp_if_X TmpBB
1229     //   jmp FBB
1230     // TmpBB:
1231     //   jmp_if_Y TBB
1232     //   jmp FBB
1233     //
1234     //  This requires creation of TmpBB after CurBB.
1235 
1236     // Emit the LHS condition.
1237     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1238 
1239     // Emit the RHS condition into TmpBB.
1240     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1241   }
1242 }
1243 
1244 /// If the set of cases should be emitted as a series of branches, return true.
1245 /// If we should emit this as a bunch of and/or'd together conditions, return
1246 /// false.
1247 bool
1248 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1249   if (Cases.size() != 2) return true;
1250 
1251   // If this is two comparisons of the same values or'd or and'd together, they
1252   // will get folded into a single comparison, so don't emit two blocks.
1253   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1254        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1255       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1256        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1257     return false;
1258   }
1259 
1260   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1261   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1262   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1263       Cases[0].CC == Cases[1].CC &&
1264       isa<Constant>(Cases[0].CmpRHS) &&
1265       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1266     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1267       return false;
1268     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1269       return false;
1270   }
1271 
1272   return true;
1273 }
1274 
1275 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1276   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1277 
1278   // Update machine-CFG edges.
1279   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1280 
1281   // Figure out which block is immediately after the current one.
1282   MachineBasicBlock *NextBlock = 0;
1283   MachineFunction::iterator BBI = BrMBB;
1284   if (++BBI != FuncInfo.MF->end())
1285     NextBlock = BBI;
1286 
1287   if (I.isUnconditional()) {
1288     // Update machine-CFG edges.
1289     BrMBB->addSuccessor(Succ0MBB);
1290 
1291     // If this is not a fall-through branch, emit the branch.
1292     if (Succ0MBB != NextBlock)
1293       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1294                               MVT::Other, getControlRoot(),
1295                               DAG.getBasicBlock(Succ0MBB)));
1296 
1297     return;
1298   }
1299 
1300   // If this condition is one of the special cases we handle, do special stuff
1301   // now.
1302   const Value *CondVal = I.getCondition();
1303   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1304 
1305   // If this is a series of conditions that are or'd or and'd together, emit
1306   // this as a sequence of branches instead of setcc's with and/or operations.
1307   // For example, instead of something like:
1308   //     cmp A, B
1309   //     C = seteq
1310   //     cmp D, E
1311   //     F = setle
1312   //     or C, F
1313   //     jnz foo
1314   // Emit:
1315   //     cmp A, B
1316   //     je foo
1317   //     cmp D, E
1318   //     jle foo
1319   //
1320   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1321     if (BOp->hasOneUse() &&
1322         (BOp->getOpcode() == Instruction::And ||
1323          BOp->getOpcode() == Instruction::Or)) {
1324       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1325                            BOp->getOpcode());
1326       // If the compares in later blocks need to use values not currently
1327       // exported from this block, export them now.  This block should always
1328       // be the first entry.
1329       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1330 
1331       // Allow some cases to be rejected.
1332       if (ShouldEmitAsBranches(SwitchCases)) {
1333         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1334           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1335           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1336         }
1337 
1338         // Emit the branch for this block.
1339         visitSwitchCase(SwitchCases[0], BrMBB);
1340         SwitchCases.erase(SwitchCases.begin());
1341         return;
1342       }
1343 
1344       // Okay, we decided not to do this, remove any inserted MBB's and clear
1345       // SwitchCases.
1346       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1347         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1348 
1349       SwitchCases.clear();
1350     }
1351   }
1352 
1353   // Create a CaseBlock record representing this branch.
1354   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1355                NULL, Succ0MBB, Succ1MBB, BrMBB);
1356 
1357   // Use visitSwitchCase to actually insert the fast branch sequence for this
1358   // cond branch.
1359   visitSwitchCase(CB, BrMBB);
1360 }
1361 
1362 /// visitSwitchCase - Emits the necessary code to represent a single node in
1363 /// the binary search tree resulting from lowering a switch instruction.
1364 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1365                                           MachineBasicBlock *SwitchBB) {
1366   SDValue Cond;
1367   SDValue CondLHS = getValue(CB.CmpLHS);
1368   DebugLoc dl = getCurDebugLoc();
1369 
1370   // Build the setcc now.
1371   if (CB.CmpMHS == NULL) {
1372     // Fold "(X == true)" to X and "(X == false)" to !X to
1373     // handle common cases produced by branch lowering.
1374     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1375         CB.CC == ISD::SETEQ)
1376       Cond = CondLHS;
1377     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1378              CB.CC == ISD::SETEQ) {
1379       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1380       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1381     } else
1382       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1383   } else {
1384     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1385 
1386     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1387     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1388 
1389     SDValue CmpOp = getValue(CB.CmpMHS);
1390     EVT VT = CmpOp.getValueType();
1391 
1392     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1393       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1394                           ISD::SETLE);
1395     } else {
1396       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1397                                 VT, CmpOp, DAG.getConstant(Low, VT));
1398       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1399                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1400     }
1401   }
1402 
1403   // Update successor info
1404   SwitchBB->addSuccessor(CB.TrueBB);
1405   SwitchBB->addSuccessor(CB.FalseBB);
1406 
1407   // Set NextBlock to be the MBB immediately after the current one, if any.
1408   // This is used to avoid emitting unnecessary branches to the next block.
1409   MachineBasicBlock *NextBlock = 0;
1410   MachineFunction::iterator BBI = SwitchBB;
1411   if (++BBI != FuncInfo.MF->end())
1412     NextBlock = BBI;
1413 
1414   // If the lhs block is the next block, invert the condition so that we can
1415   // fall through to the lhs instead of the rhs block.
1416   if (CB.TrueBB == NextBlock) {
1417     std::swap(CB.TrueBB, CB.FalseBB);
1418     SDValue True = DAG.getConstant(1, Cond.getValueType());
1419     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1420   }
1421 
1422   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1423                                MVT::Other, getControlRoot(), Cond,
1424                                DAG.getBasicBlock(CB.TrueBB));
1425 
1426   // If the branch was constant folded, fix up the CFG.
1427   if (BrCond.getOpcode() == ISD::BR) {
1428     SwitchBB->removeSuccessor(CB.FalseBB);
1429   } else {
1430     // Otherwise, go ahead and insert the false branch.
1431     if (BrCond == getControlRoot())
1432       SwitchBB->removeSuccessor(CB.TrueBB);
1433 
1434     if (CB.FalseBB != NextBlock)
1435       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1436                            DAG.getBasicBlock(CB.FalseBB));
1437   }
1438 
1439   DAG.setRoot(BrCond);
1440 }
1441 
1442 /// visitJumpTable - Emit JumpTable node in the current MBB
1443 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1444   // Emit the code for the jump table
1445   assert(JT.Reg != -1U && "Should lower JT Header first!");
1446   EVT PTy = TLI.getPointerTy();
1447   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1448                                      JT.Reg, PTy);
1449   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1450   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1451                                     MVT::Other, Index.getValue(1),
1452                                     Table, Index);
1453   DAG.setRoot(BrJumpTable);
1454 }
1455 
1456 /// visitJumpTableHeader - This function emits necessary code to produce index
1457 /// in the JumpTable from switch case.
1458 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1459                                                JumpTableHeader &JTH,
1460                                                MachineBasicBlock *SwitchBB) {
1461   // Subtract the lowest switch case value from the value being switched on and
1462   // conditional branch to default mbb if the result is greater than the
1463   // difference between smallest and largest cases.
1464   SDValue SwitchOp = getValue(JTH.SValue);
1465   EVT VT = SwitchOp.getValueType();
1466   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1467                             DAG.getConstant(JTH.First, VT));
1468 
1469   // The SDNode we just created, which holds the value being switched on minus
1470   // the smallest case value, needs to be copied to a virtual register so it
1471   // can be used as an index into the jump table in a subsequent basic block.
1472   // This value may be smaller or larger than the target's pointer type, and
1473   // therefore require extension or truncating.
1474   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1475 
1476   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1477   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1478                                     JumpTableReg, SwitchOp);
1479   JT.Reg = JumpTableReg;
1480 
1481   // Emit the range check for the jump table, and branch to the default block
1482   // for the switch statement if the value being switched on exceeds the largest
1483   // case in the switch.
1484   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1485                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1486                              DAG.getConstant(JTH.Last-JTH.First,VT),
1487                              ISD::SETUGT);
1488 
1489   // Set NextBlock to be the MBB immediately after the current one, if any.
1490   // This is used to avoid emitting unnecessary branches to the next block.
1491   MachineBasicBlock *NextBlock = 0;
1492   MachineFunction::iterator BBI = SwitchBB;
1493 
1494   if (++BBI != FuncInfo.MF->end())
1495     NextBlock = BBI;
1496 
1497   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1498                                MVT::Other, CopyTo, CMP,
1499                                DAG.getBasicBlock(JT.Default));
1500 
1501   if (JT.MBB != NextBlock)
1502     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1503                          DAG.getBasicBlock(JT.MBB));
1504 
1505   DAG.setRoot(BrCond);
1506 }
1507 
1508 /// visitBitTestHeader - This function emits necessary code to produce value
1509 /// suitable for "bit tests"
1510 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1511                                              MachineBasicBlock *SwitchBB) {
1512   // Subtract the minimum value
1513   SDValue SwitchOp = getValue(B.SValue);
1514   EVT VT = SwitchOp.getValueType();
1515   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1516                             DAG.getConstant(B.First, VT));
1517 
1518   // Check range
1519   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1520                                   TLI.getSetCCResultType(Sub.getValueType()),
1521                                   Sub, DAG.getConstant(B.Range, VT),
1522                                   ISD::SETUGT);
1523 
1524   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1525                                        TLI.getPointerTy());
1526 
1527   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1528   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1529                                     B.Reg, ShiftOp);
1530 
1531   // Set NextBlock to be the MBB immediately after the current one, if any.
1532   // This is used to avoid emitting unnecessary branches to the next block.
1533   MachineBasicBlock *NextBlock = 0;
1534   MachineFunction::iterator BBI = SwitchBB;
1535   if (++BBI != FuncInfo.MF->end())
1536     NextBlock = BBI;
1537 
1538   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1539 
1540   SwitchBB->addSuccessor(B.Default);
1541   SwitchBB->addSuccessor(MBB);
1542 
1543   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1544                                 MVT::Other, CopyTo, RangeCmp,
1545                                 DAG.getBasicBlock(B.Default));
1546 
1547   if (MBB != NextBlock)
1548     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1549                           DAG.getBasicBlock(MBB));
1550 
1551   DAG.setRoot(BrRange);
1552 }
1553 
1554 /// visitBitTestCase - this function produces one "bit test"
1555 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1556                                            unsigned Reg,
1557                                            BitTestCase &B,
1558                                            MachineBasicBlock *SwitchBB) {
1559   // Make desired shift
1560   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1561                                        TLI.getPointerTy());
1562   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1563                                   TLI.getPointerTy(),
1564                                   DAG.getConstant(1, TLI.getPointerTy()),
1565                                   ShiftOp);
1566 
1567   // Emit bit tests and jumps
1568   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1569                               TLI.getPointerTy(), SwitchVal,
1570                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1571   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1572                                 TLI.getSetCCResultType(AndOp.getValueType()),
1573                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1574                                 ISD::SETNE);
1575 
1576   SwitchBB->addSuccessor(B.TargetBB);
1577   SwitchBB->addSuccessor(NextMBB);
1578 
1579   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1580                               MVT::Other, getControlRoot(),
1581                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1582 
1583   // Set NextBlock to be the MBB immediately after the current one, if any.
1584   // This is used to avoid emitting unnecessary branches to the next block.
1585   MachineBasicBlock *NextBlock = 0;
1586   MachineFunction::iterator BBI = SwitchBB;
1587   if (++BBI != FuncInfo.MF->end())
1588     NextBlock = BBI;
1589 
1590   if (NextMBB != NextBlock)
1591     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1592                         DAG.getBasicBlock(NextMBB));
1593 
1594   DAG.setRoot(BrAnd);
1595 }
1596 
1597 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1598   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1599 
1600   // Retrieve successors.
1601   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1602   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1603 
1604   const Value *Callee(I.getCalledValue());
1605   if (isa<InlineAsm>(Callee))
1606     visitInlineAsm(&I);
1607   else
1608     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1609 
1610   // If the value of the invoke is used outside of its defining block, make it
1611   // available as a virtual register.
1612   CopyToExportRegsIfNeeded(&I);
1613 
1614   // Update successor info
1615   InvokeMBB->addSuccessor(Return);
1616   InvokeMBB->addSuccessor(LandingPad);
1617 
1618   // Drop into normal successor.
1619   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1620                           MVT::Other, getControlRoot(),
1621                           DAG.getBasicBlock(Return)));
1622 }
1623 
1624 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1625 }
1626 
1627 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1628 /// small case ranges).
1629 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1630                                                  CaseRecVector& WorkList,
1631                                                  const Value* SV,
1632                                                  MachineBasicBlock *Default,
1633                                                  MachineBasicBlock *SwitchBB) {
1634   Case& BackCase  = *(CR.Range.second-1);
1635 
1636   // Size is the number of Cases represented by this range.
1637   size_t Size = CR.Range.second - CR.Range.first;
1638   if (Size > 3)
1639     return false;
1640 
1641   // Get the MachineFunction which holds the current MBB.  This is used when
1642   // inserting any additional MBBs necessary to represent the switch.
1643   MachineFunction *CurMF = FuncInfo.MF;
1644 
1645   // Figure out which block is immediately after the current one.
1646   MachineBasicBlock *NextBlock = 0;
1647   MachineFunction::iterator BBI = CR.CaseBB;
1648 
1649   if (++BBI != FuncInfo.MF->end())
1650     NextBlock = BBI;
1651 
1652   // TODO: If any two of the cases has the same destination, and if one value
1653   // is the same as the other, but has one bit unset that the other has set,
1654   // use bit manipulation to do two compares at once.  For example:
1655   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1656 
1657   // Rearrange the case blocks so that the last one falls through if possible.
1658   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1659     // The last case block won't fall through into 'NextBlock' if we emit the
1660     // branches in this order.  See if rearranging a case value would help.
1661     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1662       if (I->BB == NextBlock) {
1663         std::swap(*I, BackCase);
1664         break;
1665       }
1666     }
1667   }
1668 
1669   // Create a CaseBlock record representing a conditional branch to
1670   // the Case's target mbb if the value being switched on SV is equal
1671   // to C.
1672   MachineBasicBlock *CurBlock = CR.CaseBB;
1673   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1674     MachineBasicBlock *FallThrough;
1675     if (I != E-1) {
1676       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1677       CurMF->insert(BBI, FallThrough);
1678 
1679       // Put SV in a virtual register to make it available from the new blocks.
1680       ExportFromCurrentBlock(SV);
1681     } else {
1682       // If the last case doesn't match, go to the default block.
1683       FallThrough = Default;
1684     }
1685 
1686     const Value *RHS, *LHS, *MHS;
1687     ISD::CondCode CC;
1688     if (I->High == I->Low) {
1689       // This is just small small case range :) containing exactly 1 case
1690       CC = ISD::SETEQ;
1691       LHS = SV; RHS = I->High; MHS = NULL;
1692     } else {
1693       CC = ISD::SETLE;
1694       LHS = I->Low; MHS = SV; RHS = I->High;
1695     }
1696     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1697 
1698     // If emitting the first comparison, just call visitSwitchCase to emit the
1699     // code into the current block.  Otherwise, push the CaseBlock onto the
1700     // vector to be later processed by SDISel, and insert the node's MBB
1701     // before the next MBB.
1702     if (CurBlock == SwitchBB)
1703       visitSwitchCase(CB, SwitchBB);
1704     else
1705       SwitchCases.push_back(CB);
1706 
1707     CurBlock = FallThrough;
1708   }
1709 
1710   return true;
1711 }
1712 
1713 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1714   return !DisableJumpTables &&
1715           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1716            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1717 }
1718 
1719 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1720   APInt LastExt(Last), FirstExt(First);
1721   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1722   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1723   return (LastExt - FirstExt + 1ULL);
1724 }
1725 
1726 /// handleJTSwitchCase - Emit jumptable for current switch case range
1727 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1728                                              CaseRecVector& WorkList,
1729                                              const Value* SV,
1730                                              MachineBasicBlock* Default,
1731                                              MachineBasicBlock *SwitchBB) {
1732   Case& FrontCase = *CR.Range.first;
1733   Case& BackCase  = *(CR.Range.second-1);
1734 
1735   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1736   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1737 
1738   APInt TSize(First.getBitWidth(), 0);
1739   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1740        I!=E; ++I)
1741     TSize += I->size();
1742 
1743   if (!areJTsAllowed(TLI) || TSize.ult(4))
1744     return false;
1745 
1746   APInt Range = ComputeRange(First, Last);
1747   double Density = TSize.roundToDouble() / Range.roundToDouble();
1748   if (Density < 0.4)
1749     return false;
1750 
1751   DEBUG(dbgs() << "Lowering jump table\n"
1752                << "First entry: " << First << ". Last entry: " << Last << '\n'
1753                << "Range: " << Range
1754                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1755 
1756   // Get the MachineFunction which holds the current MBB.  This is used when
1757   // inserting any additional MBBs necessary to represent the switch.
1758   MachineFunction *CurMF = FuncInfo.MF;
1759 
1760   // Figure out which block is immediately after the current one.
1761   MachineFunction::iterator BBI = CR.CaseBB;
1762   ++BBI;
1763 
1764   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1765 
1766   // Create a new basic block to hold the code for loading the address
1767   // of the jump table, and jumping to it.  Update successor information;
1768   // we will either branch to the default case for the switch, or the jump
1769   // table.
1770   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1771   CurMF->insert(BBI, JumpTableBB);
1772   CR.CaseBB->addSuccessor(Default);
1773   CR.CaseBB->addSuccessor(JumpTableBB);
1774 
1775   // Build a vector of destination BBs, corresponding to each target
1776   // of the jump table. If the value of the jump table slot corresponds to
1777   // a case statement, push the case's BB onto the vector, otherwise, push
1778   // the default BB.
1779   std::vector<MachineBasicBlock*> DestBBs;
1780   APInt TEI = First;
1781   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1782     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1783     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1784 
1785     if (Low.sle(TEI) && TEI.sle(High)) {
1786       DestBBs.push_back(I->BB);
1787       if (TEI==High)
1788         ++I;
1789     } else {
1790       DestBBs.push_back(Default);
1791     }
1792   }
1793 
1794   // Update successor info. Add one edge to each unique successor.
1795   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1796   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1797          E = DestBBs.end(); I != E; ++I) {
1798     if (!SuccsHandled[(*I)->getNumber()]) {
1799       SuccsHandled[(*I)->getNumber()] = true;
1800       JumpTableBB->addSuccessor(*I);
1801     }
1802   }
1803 
1804   // Create a jump table index for this jump table.
1805   unsigned JTEncoding = TLI.getJumpTableEncoding();
1806   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1807                        ->createJumpTableIndex(DestBBs);
1808 
1809   // Set the jump table information so that we can codegen it as a second
1810   // MachineBasicBlock
1811   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1812   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1813   if (CR.CaseBB == SwitchBB)
1814     visitJumpTableHeader(JT, JTH, SwitchBB);
1815 
1816   JTCases.push_back(JumpTableBlock(JTH, JT));
1817 
1818   return true;
1819 }
1820 
1821 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1822 /// 2 subtrees.
1823 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1824                                                   CaseRecVector& WorkList,
1825                                                   const Value* SV,
1826                                                   MachineBasicBlock *Default,
1827                                                   MachineBasicBlock *SwitchBB) {
1828   // Get the MachineFunction which holds the current MBB.  This is used when
1829   // inserting any additional MBBs necessary to represent the switch.
1830   MachineFunction *CurMF = FuncInfo.MF;
1831 
1832   // Figure out which block is immediately after the current one.
1833   MachineFunction::iterator BBI = CR.CaseBB;
1834   ++BBI;
1835 
1836   Case& FrontCase = *CR.Range.first;
1837   Case& BackCase  = *(CR.Range.second-1);
1838   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1839 
1840   // Size is the number of Cases represented by this range.
1841   unsigned Size = CR.Range.second - CR.Range.first;
1842 
1843   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1844   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1845   double FMetric = 0;
1846   CaseItr Pivot = CR.Range.first + Size/2;
1847 
1848   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1849   // (heuristically) allow us to emit JumpTable's later.
1850   APInt TSize(First.getBitWidth(), 0);
1851   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1852        I!=E; ++I)
1853     TSize += I->size();
1854 
1855   APInt LSize = FrontCase.size();
1856   APInt RSize = TSize-LSize;
1857   DEBUG(dbgs() << "Selecting best pivot: \n"
1858                << "First: " << First << ", Last: " << Last <<'\n'
1859                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1860   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1861        J!=E; ++I, ++J) {
1862     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1863     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1864     APInt Range = ComputeRange(LEnd, RBegin);
1865     assert((Range - 2ULL).isNonNegative() &&
1866            "Invalid case distance");
1867     double LDensity = (double)LSize.roundToDouble() /
1868                            (LEnd - First + 1ULL).roundToDouble();
1869     double RDensity = (double)RSize.roundToDouble() /
1870                            (Last - RBegin + 1ULL).roundToDouble();
1871     double Metric = Range.logBase2()*(LDensity+RDensity);
1872     // Should always split in some non-trivial place
1873     DEBUG(dbgs() <<"=>Step\n"
1874                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1875                  << "LDensity: " << LDensity
1876                  << ", RDensity: " << RDensity << '\n'
1877                  << "Metric: " << Metric << '\n');
1878     if (FMetric < Metric) {
1879       Pivot = J;
1880       FMetric = Metric;
1881       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1882     }
1883 
1884     LSize += J->size();
1885     RSize -= J->size();
1886   }
1887   if (areJTsAllowed(TLI)) {
1888     // If our case is dense we *really* should handle it earlier!
1889     assert((FMetric > 0) && "Should handle dense range earlier!");
1890   } else {
1891     Pivot = CR.Range.first + Size/2;
1892   }
1893 
1894   CaseRange LHSR(CR.Range.first, Pivot);
1895   CaseRange RHSR(Pivot, CR.Range.second);
1896   Constant *C = Pivot->Low;
1897   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1898 
1899   // We know that we branch to the LHS if the Value being switched on is
1900   // less than the Pivot value, C.  We use this to optimize our binary
1901   // tree a bit, by recognizing that if SV is greater than or equal to the
1902   // LHS's Case Value, and that Case Value is exactly one less than the
1903   // Pivot's Value, then we can branch directly to the LHS's Target,
1904   // rather than creating a leaf node for it.
1905   if ((LHSR.second - LHSR.first) == 1 &&
1906       LHSR.first->High == CR.GE &&
1907       cast<ConstantInt>(C)->getValue() ==
1908       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1909     TrueBB = LHSR.first->BB;
1910   } else {
1911     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1912     CurMF->insert(BBI, TrueBB);
1913     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1914 
1915     // Put SV in a virtual register to make it available from the new blocks.
1916     ExportFromCurrentBlock(SV);
1917   }
1918 
1919   // Similar to the optimization above, if the Value being switched on is
1920   // known to be less than the Constant CR.LT, and the current Case Value
1921   // is CR.LT - 1, then we can branch directly to the target block for
1922   // the current Case Value, rather than emitting a RHS leaf node for it.
1923   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1924       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1925       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1926     FalseBB = RHSR.first->BB;
1927   } else {
1928     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1929     CurMF->insert(BBI, FalseBB);
1930     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1931 
1932     // Put SV in a virtual register to make it available from the new blocks.
1933     ExportFromCurrentBlock(SV);
1934   }
1935 
1936   // Create a CaseBlock record representing a conditional branch to
1937   // the LHS node if the value being switched on SV is less than C.
1938   // Otherwise, branch to LHS.
1939   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1940 
1941   if (CR.CaseBB == SwitchBB)
1942     visitSwitchCase(CB, SwitchBB);
1943   else
1944     SwitchCases.push_back(CB);
1945 
1946   return true;
1947 }
1948 
1949 /// handleBitTestsSwitchCase - if current case range has few destination and
1950 /// range span less, than machine word bitwidth, encode case range into series
1951 /// of masks and emit bit tests with these masks.
1952 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1953                                                    CaseRecVector& WorkList,
1954                                                    const Value* SV,
1955                                                    MachineBasicBlock* Default,
1956                                                    MachineBasicBlock *SwitchBB){
1957   EVT PTy = TLI.getPointerTy();
1958   unsigned IntPtrBits = PTy.getSizeInBits();
1959 
1960   Case& FrontCase = *CR.Range.first;
1961   Case& BackCase  = *(CR.Range.second-1);
1962 
1963   // Get the MachineFunction which holds the current MBB.  This is used when
1964   // inserting any additional MBBs necessary to represent the switch.
1965   MachineFunction *CurMF = FuncInfo.MF;
1966 
1967   // If target does not have legal shift left, do not emit bit tests at all.
1968   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1969     return false;
1970 
1971   size_t numCmps = 0;
1972   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1973        I!=E; ++I) {
1974     // Single case counts one, case range - two.
1975     numCmps += (I->Low == I->High ? 1 : 2);
1976   }
1977 
1978   // Count unique destinations
1979   SmallSet<MachineBasicBlock*, 4> Dests;
1980   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1981     Dests.insert(I->BB);
1982     if (Dests.size() > 3)
1983       // Don't bother the code below, if there are too much unique destinations
1984       return false;
1985   }
1986   DEBUG(dbgs() << "Total number of unique destinations: "
1987         << Dests.size() << '\n'
1988         << "Total number of comparisons: " << numCmps << '\n');
1989 
1990   // Compute span of values.
1991   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1992   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1993   APInt cmpRange = maxValue - minValue;
1994 
1995   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1996                << "Low bound: " << minValue << '\n'
1997                << "High bound: " << maxValue << '\n');
1998 
1999   if (cmpRange.uge(IntPtrBits) ||
2000       (!(Dests.size() == 1 && numCmps >= 3) &&
2001        !(Dests.size() == 2 && numCmps >= 5) &&
2002        !(Dests.size() >= 3 && numCmps >= 6)))
2003     return false;
2004 
2005   DEBUG(dbgs() << "Emitting bit tests\n");
2006   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2007 
2008   // Optimize the case where all the case values fit in a
2009   // word without having to subtract minValue. In this case,
2010   // we can optimize away the subtraction.
2011   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2012     cmpRange = maxValue;
2013   } else {
2014     lowBound = minValue;
2015   }
2016 
2017   CaseBitsVector CasesBits;
2018   unsigned i, count = 0;
2019 
2020   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2021     MachineBasicBlock* Dest = I->BB;
2022     for (i = 0; i < count; ++i)
2023       if (Dest == CasesBits[i].BB)
2024         break;
2025 
2026     if (i == count) {
2027       assert((count < 3) && "Too much destinations to test!");
2028       CasesBits.push_back(CaseBits(0, Dest, 0));
2029       count++;
2030     }
2031 
2032     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2033     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2034 
2035     uint64_t lo = (lowValue - lowBound).getZExtValue();
2036     uint64_t hi = (highValue - lowBound).getZExtValue();
2037 
2038     for (uint64_t j = lo; j <= hi; j++) {
2039       CasesBits[i].Mask |=  1ULL << j;
2040       CasesBits[i].Bits++;
2041     }
2042 
2043   }
2044   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2045 
2046   BitTestInfo BTC;
2047 
2048   // Figure out which block is immediately after the current one.
2049   MachineFunction::iterator BBI = CR.CaseBB;
2050   ++BBI;
2051 
2052   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2053 
2054   DEBUG(dbgs() << "Cases:\n");
2055   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2056     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2057                  << ", Bits: " << CasesBits[i].Bits
2058                  << ", BB: " << CasesBits[i].BB << '\n');
2059 
2060     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2061     CurMF->insert(BBI, CaseBB);
2062     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2063                               CaseBB,
2064                               CasesBits[i].BB));
2065 
2066     // Put SV in a virtual register to make it available from the new blocks.
2067     ExportFromCurrentBlock(SV);
2068   }
2069 
2070   BitTestBlock BTB(lowBound, cmpRange, SV,
2071                    -1U, (CR.CaseBB == SwitchBB),
2072                    CR.CaseBB, Default, BTC);
2073 
2074   if (CR.CaseBB == SwitchBB)
2075     visitBitTestHeader(BTB, SwitchBB);
2076 
2077   BitTestCases.push_back(BTB);
2078 
2079   return true;
2080 }
2081 
2082 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2083 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2084                                        const SwitchInst& SI) {
2085   size_t numCmps = 0;
2086 
2087   // Start with "simple" cases
2088   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2089     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2090     Cases.push_back(Case(SI.getSuccessorValue(i),
2091                          SI.getSuccessorValue(i),
2092                          SMBB));
2093   }
2094   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2095 
2096   // Merge case into clusters
2097   if (Cases.size() >= 2)
2098     // Must recompute end() each iteration because it may be
2099     // invalidated by erase if we hold on to it
2100     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2101       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2102       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2103       MachineBasicBlock* nextBB = J->BB;
2104       MachineBasicBlock* currentBB = I->BB;
2105 
2106       // If the two neighboring cases go to the same destination, merge them
2107       // into a single case.
2108       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2109         I->High = J->High;
2110         J = Cases.erase(J);
2111       } else {
2112         I = J++;
2113       }
2114     }
2115 
2116   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2117     if (I->Low != I->High)
2118       // A range counts double, since it requires two compares.
2119       ++numCmps;
2120   }
2121 
2122   return numCmps;
2123 }
2124 
2125 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2126   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2127 
2128   // Figure out which block is immediately after the current one.
2129   MachineBasicBlock *NextBlock = 0;
2130   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2131 
2132   // If there is only the default destination, branch to it if it is not the
2133   // next basic block.  Otherwise, just fall through.
2134   if (SI.getNumOperands() == 2) {
2135     // Update machine-CFG edges.
2136 
2137     // If this is not a fall-through branch, emit the branch.
2138     SwitchMBB->addSuccessor(Default);
2139     if (Default != NextBlock)
2140       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2141                               MVT::Other, getControlRoot(),
2142                               DAG.getBasicBlock(Default)));
2143 
2144     return;
2145   }
2146 
2147   // If there are any non-default case statements, create a vector of Cases
2148   // representing each one, and sort the vector so that we can efficiently
2149   // create a binary search tree from them.
2150   CaseVector Cases;
2151   size_t numCmps = Clusterify(Cases, SI);
2152   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2153                << ". Total compares: " << numCmps << '\n');
2154   numCmps = 0;
2155 
2156   // Get the Value to be switched on and default basic blocks, which will be
2157   // inserted into CaseBlock records, representing basic blocks in the binary
2158   // search tree.
2159   const Value *SV = SI.getOperand(0);
2160 
2161   // Push the initial CaseRec onto the worklist
2162   CaseRecVector WorkList;
2163   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2164                              CaseRange(Cases.begin(),Cases.end())));
2165 
2166   while (!WorkList.empty()) {
2167     // Grab a record representing a case range to process off the worklist
2168     CaseRec CR = WorkList.back();
2169     WorkList.pop_back();
2170 
2171     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2172       continue;
2173 
2174     // If the range has few cases (two or less) emit a series of specific
2175     // tests.
2176     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2177       continue;
2178 
2179     // If the switch has more than 5 blocks, and at least 40% dense, and the
2180     // target supports indirect branches, then emit a jump table rather than
2181     // lowering the switch to a binary tree of conditional branches.
2182     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2183       continue;
2184 
2185     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2186     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2187     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2188   }
2189 }
2190 
2191 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2192   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2193 
2194   // Update machine-CFG edges with unique successors.
2195   SmallVector<BasicBlock*, 32> succs;
2196   succs.reserve(I.getNumSuccessors());
2197   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2198     succs.push_back(I.getSuccessor(i));
2199   array_pod_sort(succs.begin(), succs.end());
2200   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2201   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2202     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2203 
2204   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2205                           MVT::Other, getControlRoot(),
2206                           getValue(I.getAddress())));
2207 }
2208 
2209 void SelectionDAGBuilder::visitFSub(const User &I) {
2210   // -0.0 - X --> fneg
2211   const Type *Ty = I.getType();
2212   if (Ty->isVectorTy()) {
2213     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2214       const VectorType *DestTy = cast<VectorType>(I.getType());
2215       const Type *ElTy = DestTy->getElementType();
2216       unsigned VL = DestTy->getNumElements();
2217       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2218       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2219       if (CV == CNZ) {
2220         SDValue Op2 = getValue(I.getOperand(1));
2221         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2222                                  Op2.getValueType(), Op2));
2223         return;
2224       }
2225     }
2226   }
2227 
2228   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2229     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2230       SDValue Op2 = getValue(I.getOperand(1));
2231       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2232                                Op2.getValueType(), Op2));
2233       return;
2234     }
2235 
2236   visitBinary(I, ISD::FSUB);
2237 }
2238 
2239 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2240   SDValue Op1 = getValue(I.getOperand(0));
2241   SDValue Op2 = getValue(I.getOperand(1));
2242   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2243                            Op1.getValueType(), Op1, Op2));
2244 }
2245 
2246 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2247   SDValue Op1 = getValue(I.getOperand(0));
2248   SDValue Op2 = getValue(I.getOperand(1));
2249   if (!I.getType()->isVectorTy() &&
2250       Op2.getValueType() != TLI.getShiftAmountTy()) {
2251     // If the operand is smaller than the shift count type, promote it.
2252     EVT PTy = TLI.getPointerTy();
2253     EVT STy = TLI.getShiftAmountTy();
2254     if (STy.bitsGT(Op2.getValueType()))
2255       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2256                         TLI.getShiftAmountTy(), Op2);
2257     // If the operand is larger than the shift count type but the shift
2258     // count type has enough bits to represent any shift value, truncate
2259     // it now. This is a common case and it exposes the truncate to
2260     // optimization early.
2261     else if (STy.getSizeInBits() >=
2262              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2263       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2264                         TLI.getShiftAmountTy(), Op2);
2265     // Otherwise we'll need to temporarily settle for some other
2266     // convenient type; type legalization will make adjustments as
2267     // needed.
2268     else if (PTy.bitsLT(Op2.getValueType()))
2269       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2270                         TLI.getPointerTy(), Op2);
2271     else if (PTy.bitsGT(Op2.getValueType()))
2272       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2273                         TLI.getPointerTy(), Op2);
2274   }
2275 
2276   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2277                            Op1.getValueType(), Op1, Op2));
2278 }
2279 
2280 void SelectionDAGBuilder::visitICmp(const User &I) {
2281   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2282   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2283     predicate = IC->getPredicate();
2284   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2285     predicate = ICmpInst::Predicate(IC->getPredicate());
2286   SDValue Op1 = getValue(I.getOperand(0));
2287   SDValue Op2 = getValue(I.getOperand(1));
2288   ISD::CondCode Opcode = getICmpCondCode(predicate);
2289 
2290   EVT DestVT = TLI.getValueType(I.getType());
2291   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2292 }
2293 
2294 void SelectionDAGBuilder::visitFCmp(const User &I) {
2295   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2296   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2297     predicate = FC->getPredicate();
2298   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2299     predicate = FCmpInst::Predicate(FC->getPredicate());
2300   SDValue Op1 = getValue(I.getOperand(0));
2301   SDValue Op2 = getValue(I.getOperand(1));
2302   ISD::CondCode Condition = getFCmpCondCode(predicate);
2303   EVT DestVT = TLI.getValueType(I.getType());
2304   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2305 }
2306 
2307 void SelectionDAGBuilder::visitSelect(const User &I) {
2308   SmallVector<EVT, 4> ValueVTs;
2309   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2310   unsigned NumValues = ValueVTs.size();
2311   if (NumValues == 0) return;
2312 
2313   SmallVector<SDValue, 4> Values(NumValues);
2314   SDValue Cond     = getValue(I.getOperand(0));
2315   SDValue TrueVal  = getValue(I.getOperand(1));
2316   SDValue FalseVal = getValue(I.getOperand(2));
2317 
2318   for (unsigned i = 0; i != NumValues; ++i)
2319     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2320                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2321                             Cond,
2322                             SDValue(TrueVal.getNode(),
2323                                     TrueVal.getResNo() + i),
2324                             SDValue(FalseVal.getNode(),
2325                                     FalseVal.getResNo() + i));
2326 
2327   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2328                            DAG.getVTList(&ValueVTs[0], NumValues),
2329                            &Values[0], NumValues));
2330 }
2331 
2332 void SelectionDAGBuilder::visitTrunc(const User &I) {
2333   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2334   SDValue N = getValue(I.getOperand(0));
2335   EVT DestVT = TLI.getValueType(I.getType());
2336   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2337 }
2338 
2339 void SelectionDAGBuilder::visitZExt(const User &I) {
2340   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2341   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2342   SDValue N = getValue(I.getOperand(0));
2343   EVT DestVT = TLI.getValueType(I.getType());
2344   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2345 }
2346 
2347 void SelectionDAGBuilder::visitSExt(const User &I) {
2348   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2349   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2350   SDValue N = getValue(I.getOperand(0));
2351   EVT DestVT = TLI.getValueType(I.getType());
2352   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2353 }
2354 
2355 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2356   // FPTrunc is never a no-op cast, no need to check
2357   SDValue N = getValue(I.getOperand(0));
2358   EVT DestVT = TLI.getValueType(I.getType());
2359   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2360                            DestVT, N, DAG.getIntPtrConstant(0)));
2361 }
2362 
2363 void SelectionDAGBuilder::visitFPExt(const User &I){
2364   // FPTrunc is never a no-op cast, no need to check
2365   SDValue N = getValue(I.getOperand(0));
2366   EVT DestVT = TLI.getValueType(I.getType());
2367   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2368 }
2369 
2370 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2371   // FPToUI is never a no-op cast, no need to check
2372   SDValue N = getValue(I.getOperand(0));
2373   EVT DestVT = TLI.getValueType(I.getType());
2374   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2375 }
2376 
2377 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2378   // FPToSI is never a no-op cast, no need to check
2379   SDValue N = getValue(I.getOperand(0));
2380   EVT DestVT = TLI.getValueType(I.getType());
2381   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2382 }
2383 
2384 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2385   // UIToFP is never a no-op cast, no need to check
2386   SDValue N = getValue(I.getOperand(0));
2387   EVT DestVT = TLI.getValueType(I.getType());
2388   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2389 }
2390 
2391 void SelectionDAGBuilder::visitSIToFP(const User &I){
2392   // SIToFP is never a no-op cast, no need to check
2393   SDValue N = getValue(I.getOperand(0));
2394   EVT DestVT = TLI.getValueType(I.getType());
2395   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2396 }
2397 
2398 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2399   // What to do depends on the size of the integer and the size of the pointer.
2400   // We can either truncate, zero extend, or no-op, accordingly.
2401   SDValue N = getValue(I.getOperand(0));
2402   EVT SrcVT = N.getValueType();
2403   EVT DestVT = TLI.getValueType(I.getType());
2404   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2405 }
2406 
2407 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2408   // What to do depends on the size of the integer and the size of the pointer.
2409   // We can either truncate, zero extend, or no-op, accordingly.
2410   SDValue N = getValue(I.getOperand(0));
2411   EVT SrcVT = N.getValueType();
2412   EVT DestVT = TLI.getValueType(I.getType());
2413   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2414 }
2415 
2416 void SelectionDAGBuilder::visitBitCast(const User &I) {
2417   SDValue N = getValue(I.getOperand(0));
2418   EVT DestVT = TLI.getValueType(I.getType());
2419 
2420   // BitCast assures us that source and destination are the same size so this is
2421   // either a BIT_CONVERT or a no-op.
2422   if (DestVT != N.getValueType())
2423     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2424                              DestVT, N)); // convert types.
2425   else
2426     setValue(&I, N);            // noop cast.
2427 }
2428 
2429 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2430   SDValue InVec = getValue(I.getOperand(0));
2431   SDValue InVal = getValue(I.getOperand(1));
2432   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2433                               TLI.getPointerTy(),
2434                               getValue(I.getOperand(2)));
2435   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2436                            TLI.getValueType(I.getType()),
2437                            InVec, InVal, InIdx));
2438 }
2439 
2440 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2441   SDValue InVec = getValue(I.getOperand(0));
2442   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2443                               TLI.getPointerTy(),
2444                               getValue(I.getOperand(1)));
2445   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2446                            TLI.getValueType(I.getType()), InVec, InIdx));
2447 }
2448 
2449 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2450 // from SIndx and increasing to the element length (undefs are allowed).
2451 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2452   unsigned MaskNumElts = Mask.size();
2453   for (unsigned i = 0; i != MaskNumElts; ++i)
2454     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2455       return false;
2456   return true;
2457 }
2458 
2459 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2460   SmallVector<int, 8> Mask;
2461   SDValue Src1 = getValue(I.getOperand(0));
2462   SDValue Src2 = getValue(I.getOperand(1));
2463 
2464   // Convert the ConstantVector mask operand into an array of ints, with -1
2465   // representing undef values.
2466   SmallVector<Constant*, 8> MaskElts;
2467   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2468   unsigned MaskNumElts = MaskElts.size();
2469   for (unsigned i = 0; i != MaskNumElts; ++i) {
2470     if (isa<UndefValue>(MaskElts[i]))
2471       Mask.push_back(-1);
2472     else
2473       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2474   }
2475 
2476   EVT VT = TLI.getValueType(I.getType());
2477   EVT SrcVT = Src1.getValueType();
2478   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2479 
2480   if (SrcNumElts == MaskNumElts) {
2481     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2482                                       &Mask[0]));
2483     return;
2484   }
2485 
2486   // Normalize the shuffle vector since mask and vector length don't match.
2487   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2488     // Mask is longer than the source vectors and is a multiple of the source
2489     // vectors.  We can use concatenate vector to make the mask and vectors
2490     // lengths match.
2491     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2492       // The shuffle is concatenating two vectors together.
2493       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2494                                VT, Src1, Src2));
2495       return;
2496     }
2497 
2498     // Pad both vectors with undefs to make them the same length as the mask.
2499     unsigned NumConcat = MaskNumElts / SrcNumElts;
2500     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2501     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2502     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2503 
2504     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2505     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2506     MOps1[0] = Src1;
2507     MOps2[0] = Src2;
2508 
2509     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2510                                                   getCurDebugLoc(), VT,
2511                                                   &MOps1[0], NumConcat);
2512     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2513                                                   getCurDebugLoc(), VT,
2514                                                   &MOps2[0], NumConcat);
2515 
2516     // Readjust mask for new input vector length.
2517     SmallVector<int, 8> MappedOps;
2518     for (unsigned i = 0; i != MaskNumElts; ++i) {
2519       int Idx = Mask[i];
2520       if (Idx < (int)SrcNumElts)
2521         MappedOps.push_back(Idx);
2522       else
2523         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2524     }
2525 
2526     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2527                                       &MappedOps[0]));
2528     return;
2529   }
2530 
2531   if (SrcNumElts > MaskNumElts) {
2532     // Analyze the access pattern of the vector to see if we can extract
2533     // two subvectors and do the shuffle. The analysis is done by calculating
2534     // the range of elements the mask access on both vectors.
2535     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2536     int MaxRange[2] = {-1, -1};
2537 
2538     for (unsigned i = 0; i != MaskNumElts; ++i) {
2539       int Idx = Mask[i];
2540       int Input = 0;
2541       if (Idx < 0)
2542         continue;
2543 
2544       if (Idx >= (int)SrcNumElts) {
2545         Input = 1;
2546         Idx -= SrcNumElts;
2547       }
2548       if (Idx > MaxRange[Input])
2549         MaxRange[Input] = Idx;
2550       if (Idx < MinRange[Input])
2551         MinRange[Input] = Idx;
2552     }
2553 
2554     // Check if the access is smaller than the vector size and can we find
2555     // a reasonable extract index.
2556     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2557                                  // Extract.
2558     int StartIdx[2];  // StartIdx to extract from
2559     for (int Input=0; Input < 2; ++Input) {
2560       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2561         RangeUse[Input] = 0; // Unused
2562         StartIdx[Input] = 0;
2563       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2564         // Fits within range but we should see if we can find a good
2565         // start index that is a multiple of the mask length.
2566         if (MaxRange[Input] < (int)MaskNumElts) {
2567           RangeUse[Input] = 1; // Extract from beginning of the vector
2568           StartIdx[Input] = 0;
2569         } else {
2570           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2571           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2572               StartIdx[Input] + MaskNumElts < SrcNumElts)
2573             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2574         }
2575       }
2576     }
2577 
2578     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2579       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2580       return;
2581     }
2582     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2583       // Extract appropriate subvector and generate a vector shuffle
2584       for (int Input=0; Input < 2; ++Input) {
2585         SDValue &Src = Input == 0 ? Src1 : Src2;
2586         if (RangeUse[Input] == 0)
2587           Src = DAG.getUNDEF(VT);
2588         else
2589           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2590                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2591       }
2592 
2593       // Calculate new mask.
2594       SmallVector<int, 8> MappedOps;
2595       for (unsigned i = 0; i != MaskNumElts; ++i) {
2596         int Idx = Mask[i];
2597         if (Idx < 0)
2598           MappedOps.push_back(Idx);
2599         else if (Idx < (int)SrcNumElts)
2600           MappedOps.push_back(Idx - StartIdx[0]);
2601         else
2602           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2603       }
2604 
2605       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2606                                         &MappedOps[0]));
2607       return;
2608     }
2609   }
2610 
2611   // We can't use either concat vectors or extract subvectors so fall back to
2612   // replacing the shuffle with extract and build vector.
2613   // to insert and build vector.
2614   EVT EltVT = VT.getVectorElementType();
2615   EVT PtrVT = TLI.getPointerTy();
2616   SmallVector<SDValue,8> Ops;
2617   for (unsigned i = 0; i != MaskNumElts; ++i) {
2618     if (Mask[i] < 0) {
2619       Ops.push_back(DAG.getUNDEF(EltVT));
2620     } else {
2621       int Idx = Mask[i];
2622       SDValue Res;
2623 
2624       if (Idx < (int)SrcNumElts)
2625         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2626                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2627       else
2628         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2629                           EltVT, Src2,
2630                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2631 
2632       Ops.push_back(Res);
2633     }
2634   }
2635 
2636   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2637                            VT, &Ops[0], Ops.size()));
2638 }
2639 
2640 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2641   const Value *Op0 = I.getOperand(0);
2642   const Value *Op1 = I.getOperand(1);
2643   const Type *AggTy = I.getType();
2644   const Type *ValTy = Op1->getType();
2645   bool IntoUndef = isa<UndefValue>(Op0);
2646   bool FromUndef = isa<UndefValue>(Op1);
2647 
2648   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2649                                             I.idx_begin(), I.idx_end());
2650 
2651   SmallVector<EVT, 4> AggValueVTs;
2652   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2653   SmallVector<EVT, 4> ValValueVTs;
2654   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2655 
2656   unsigned NumAggValues = AggValueVTs.size();
2657   unsigned NumValValues = ValValueVTs.size();
2658   SmallVector<SDValue, 4> Values(NumAggValues);
2659 
2660   SDValue Agg = getValue(Op0);
2661   SDValue Val = getValue(Op1);
2662   unsigned i = 0;
2663   // Copy the beginning value(s) from the original aggregate.
2664   for (; i != LinearIndex; ++i)
2665     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2666                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2667   // Copy values from the inserted value(s).
2668   for (; i != LinearIndex + NumValValues; ++i)
2669     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2670                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2671   // Copy remaining value(s) from the original aggregate.
2672   for (; i != NumAggValues; ++i)
2673     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2674                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2675 
2676   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2677                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2678                            &Values[0], NumAggValues));
2679 }
2680 
2681 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2682   const Value *Op0 = I.getOperand(0);
2683   const Type *AggTy = Op0->getType();
2684   const Type *ValTy = I.getType();
2685   bool OutOfUndef = isa<UndefValue>(Op0);
2686 
2687   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2688                                             I.idx_begin(), I.idx_end());
2689 
2690   SmallVector<EVT, 4> ValValueVTs;
2691   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2692 
2693   unsigned NumValValues = ValValueVTs.size();
2694   SmallVector<SDValue, 4> Values(NumValValues);
2695 
2696   SDValue Agg = getValue(Op0);
2697   // Copy out the selected value(s).
2698   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2699     Values[i - LinearIndex] =
2700       OutOfUndef ?
2701         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2702         SDValue(Agg.getNode(), Agg.getResNo() + i);
2703 
2704   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2705                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2706                            &Values[0], NumValValues));
2707 }
2708 
2709 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2710   SDValue N = getValue(I.getOperand(0));
2711   const Type *Ty = I.getOperand(0)->getType();
2712 
2713   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2714        OI != E; ++OI) {
2715     const Value *Idx = *OI;
2716     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2717       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2718       if (Field) {
2719         // N = N + Offset
2720         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2721         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2722                         DAG.getIntPtrConstant(Offset));
2723       }
2724 
2725       Ty = StTy->getElementType(Field);
2726     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2727       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2728 
2729       // Offset canonically 0 for unions, but type changes
2730       Ty = UnTy->getElementType(Field);
2731     } else {
2732       Ty = cast<SequentialType>(Ty)->getElementType();
2733 
2734       // If this is a constant subscript, handle it quickly.
2735       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2736         if (CI->getZExtValue() == 0) continue;
2737         uint64_t Offs =
2738             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2739         SDValue OffsVal;
2740         EVT PTy = TLI.getPointerTy();
2741         unsigned PtrBits = PTy.getSizeInBits();
2742         if (PtrBits < 64)
2743           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2744                                 TLI.getPointerTy(),
2745                                 DAG.getConstant(Offs, MVT::i64));
2746         else
2747           OffsVal = DAG.getIntPtrConstant(Offs);
2748 
2749         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2750                         OffsVal);
2751         continue;
2752       }
2753 
2754       // N = N + Idx * ElementSize;
2755       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2756                                 TD->getTypeAllocSize(Ty));
2757       SDValue IdxN = getValue(Idx);
2758 
2759       // If the index is smaller or larger than intptr_t, truncate or extend
2760       // it.
2761       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2762 
2763       // If this is a multiply by a power of two, turn it into a shl
2764       // immediately.  This is a very common case.
2765       if (ElementSize != 1) {
2766         if (ElementSize.isPowerOf2()) {
2767           unsigned Amt = ElementSize.logBase2();
2768           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2769                              N.getValueType(), IdxN,
2770                              DAG.getConstant(Amt, TLI.getPointerTy()));
2771         } else {
2772           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2773           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2774                              N.getValueType(), IdxN, Scale);
2775         }
2776       }
2777 
2778       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2779                       N.getValueType(), N, IdxN);
2780     }
2781   }
2782 
2783   setValue(&I, N);
2784 }
2785 
2786 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2787   // If this is a fixed sized alloca in the entry block of the function,
2788   // allocate it statically on the stack.
2789   if (FuncInfo.StaticAllocaMap.count(&I))
2790     return;   // getValue will auto-populate this.
2791 
2792   const Type *Ty = I.getAllocatedType();
2793   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2794   unsigned Align =
2795     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2796              I.getAlignment());
2797 
2798   SDValue AllocSize = getValue(I.getArraySize());
2799 
2800   EVT IntPtr = TLI.getPointerTy();
2801   if (AllocSize.getValueType() != IntPtr)
2802     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2803 
2804   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2805                           AllocSize,
2806                           DAG.getConstant(TySize, IntPtr));
2807 
2808   // Handle alignment.  If the requested alignment is less than or equal to
2809   // the stack alignment, ignore it.  If the size is greater than or equal to
2810   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2811   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2812   if (Align <= StackAlign)
2813     Align = 0;
2814 
2815   // Round the size of the allocation up to the stack alignment size
2816   // by add SA-1 to the size.
2817   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2818                           AllocSize.getValueType(), AllocSize,
2819                           DAG.getIntPtrConstant(StackAlign-1));
2820 
2821   // Mask out the low bits for alignment purposes.
2822   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2823                           AllocSize.getValueType(), AllocSize,
2824                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2825 
2826   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2827   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2828   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2829                             VTs, Ops, 3);
2830   setValue(&I, DSA);
2831   DAG.setRoot(DSA.getValue(1));
2832 
2833   // Inform the Frame Information that we have just allocated a variable-sized
2834   // object.
2835   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2836 }
2837 
2838 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2839   const Value *SV = I.getOperand(0);
2840   SDValue Ptr = getValue(SV);
2841 
2842   const Type *Ty = I.getType();
2843 
2844   bool isVolatile = I.isVolatile();
2845   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2846   unsigned Alignment = I.getAlignment();
2847 
2848   SmallVector<EVT, 4> ValueVTs;
2849   SmallVector<uint64_t, 4> Offsets;
2850   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2851   unsigned NumValues = ValueVTs.size();
2852   if (NumValues == 0)
2853     return;
2854 
2855   SDValue Root;
2856   bool ConstantMemory = false;
2857   if (I.isVolatile())
2858     // Serialize volatile loads with other side effects.
2859     Root = getRoot();
2860   else if (AA->pointsToConstantMemory(SV)) {
2861     // Do not serialize (non-volatile) loads of constant memory with anything.
2862     Root = DAG.getEntryNode();
2863     ConstantMemory = true;
2864   } else {
2865     // Do not serialize non-volatile loads against each other.
2866     Root = DAG.getRoot();
2867   }
2868 
2869   SmallVector<SDValue, 4> Values(NumValues);
2870   SmallVector<SDValue, 4> Chains(NumValues);
2871   EVT PtrVT = Ptr.getValueType();
2872   for (unsigned i = 0; i != NumValues; ++i) {
2873     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2874                             PtrVT, Ptr,
2875                             DAG.getConstant(Offsets[i], PtrVT));
2876     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2877                             A, SV, Offsets[i], isVolatile,
2878                             isNonTemporal, Alignment);
2879 
2880     Values[i] = L;
2881     Chains[i] = L.getValue(1);
2882   }
2883 
2884   if (!ConstantMemory) {
2885     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2886                                 MVT::Other, &Chains[0], NumValues);
2887     if (isVolatile)
2888       DAG.setRoot(Chain);
2889     else
2890       PendingLoads.push_back(Chain);
2891   }
2892 
2893   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2894                            DAG.getVTList(&ValueVTs[0], NumValues),
2895                            &Values[0], NumValues));
2896 }
2897 
2898 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2899   const Value *SrcV = I.getOperand(0);
2900   const Value *PtrV = I.getOperand(1);
2901 
2902   SmallVector<EVT, 4> ValueVTs;
2903   SmallVector<uint64_t, 4> Offsets;
2904   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2905   unsigned NumValues = ValueVTs.size();
2906   if (NumValues == 0)
2907     return;
2908 
2909   // Get the lowered operands. Note that we do this after
2910   // checking if NumResults is zero, because with zero results
2911   // the operands won't have values in the map.
2912   SDValue Src = getValue(SrcV);
2913   SDValue Ptr = getValue(PtrV);
2914 
2915   SDValue Root = getRoot();
2916   SmallVector<SDValue, 4> Chains(NumValues);
2917   EVT PtrVT = Ptr.getValueType();
2918   bool isVolatile = I.isVolatile();
2919   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2920   unsigned Alignment = I.getAlignment();
2921 
2922   for (unsigned i = 0; i != NumValues; ++i) {
2923     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2924                               DAG.getConstant(Offsets[i], PtrVT));
2925     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2926                              SDValue(Src.getNode(), Src.getResNo() + i),
2927                              Add, PtrV, Offsets[i], isVolatile,
2928                              isNonTemporal, Alignment);
2929   }
2930 
2931   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2932                           MVT::Other, &Chains[0], NumValues));
2933 }
2934 
2935 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2936 /// node.
2937 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2938                                                unsigned Intrinsic) {
2939   bool HasChain = !I.doesNotAccessMemory();
2940   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2941 
2942   // Build the operand list.
2943   SmallVector<SDValue, 8> Ops;
2944   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2945     if (OnlyLoad) {
2946       // We don't need to serialize loads against other loads.
2947       Ops.push_back(DAG.getRoot());
2948     } else {
2949       Ops.push_back(getRoot());
2950     }
2951   }
2952 
2953   // Info is set by getTgtMemInstrinsic
2954   TargetLowering::IntrinsicInfo Info;
2955   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2956 
2957   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2958   if (!IsTgtIntrinsic)
2959     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2960 
2961   // Add all operands of the call to the operand list.
2962   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2963     SDValue Op = getValue(I.getOperand(i));
2964     assert(TLI.isTypeLegal(Op.getValueType()) &&
2965            "Intrinsic uses a non-legal type?");
2966     Ops.push_back(Op);
2967   }
2968 
2969   SmallVector<EVT, 4> ValueVTs;
2970   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2971 #ifndef NDEBUG
2972   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2973     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2974            "Intrinsic uses a non-legal type?");
2975   }
2976 #endif // NDEBUG
2977 
2978   if (HasChain)
2979     ValueVTs.push_back(MVT::Other);
2980 
2981   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2982 
2983   // Create the node.
2984   SDValue Result;
2985   if (IsTgtIntrinsic) {
2986     // This is target intrinsic that touches memory
2987     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2988                                      VTs, &Ops[0], Ops.size(),
2989                                      Info.memVT, Info.ptrVal, Info.offset,
2990                                      Info.align, Info.vol,
2991                                      Info.readMem, Info.writeMem);
2992   } else if (!HasChain) {
2993     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2994                          VTs, &Ops[0], Ops.size());
2995   } else if (!I.getType()->isVoidTy()) {
2996     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2997                          VTs, &Ops[0], Ops.size());
2998   } else {
2999     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3000                          VTs, &Ops[0], Ops.size());
3001   }
3002 
3003   if (HasChain) {
3004     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3005     if (OnlyLoad)
3006       PendingLoads.push_back(Chain);
3007     else
3008       DAG.setRoot(Chain);
3009   }
3010 
3011   if (!I.getType()->isVoidTy()) {
3012     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3013       EVT VT = TLI.getValueType(PTy);
3014       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3015     }
3016 
3017     setValue(&I, Result);
3018   }
3019 }
3020 
3021 /// GetSignificand - Get the significand and build it into a floating-point
3022 /// number with exponent of 1:
3023 ///
3024 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3025 ///
3026 /// where Op is the hexidecimal representation of floating point value.
3027 static SDValue
3028 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3029   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3030                            DAG.getConstant(0x007fffff, MVT::i32));
3031   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3032                            DAG.getConstant(0x3f800000, MVT::i32));
3033   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3034 }
3035 
3036 /// GetExponent - Get the exponent:
3037 ///
3038 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3039 ///
3040 /// where Op is the hexidecimal representation of floating point value.
3041 static SDValue
3042 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3043             DebugLoc dl) {
3044   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3045                            DAG.getConstant(0x7f800000, MVT::i32));
3046   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3047                            DAG.getConstant(23, TLI.getPointerTy()));
3048   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3049                            DAG.getConstant(127, MVT::i32));
3050   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3051 }
3052 
3053 /// getF32Constant - Get 32-bit floating point constant.
3054 static SDValue
3055 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3056   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3057 }
3058 
3059 /// Inlined utility function to implement binary input atomic intrinsics for
3060 /// visitIntrinsicCall: I is a call instruction
3061 ///                     Op is the associated NodeType for I
3062 const char *
3063 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3064                                            ISD::NodeType Op) {
3065   SDValue Root = getRoot();
3066   SDValue L =
3067     DAG.getAtomic(Op, getCurDebugLoc(),
3068                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3069                   Root,
3070                   getValue(I.getOperand(1)),
3071                   getValue(I.getOperand(2)),
3072                   I.getOperand(1));
3073   setValue(&I, L);
3074   DAG.setRoot(L.getValue(1));
3075   return 0;
3076 }
3077 
3078 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3079 const char *
3080 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3081   SDValue Op1 = getValue(I.getOperand(1));
3082   SDValue Op2 = getValue(I.getOperand(2));
3083 
3084   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3085   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3086   return 0;
3087 }
3088 
3089 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3090 /// limited-precision mode.
3091 void
3092 SelectionDAGBuilder::visitExp(const CallInst &I) {
3093   SDValue result;
3094   DebugLoc dl = getCurDebugLoc();
3095 
3096   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3097       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3098     SDValue Op = getValue(I.getOperand(1));
3099 
3100     // Put the exponent in the right bit position for later addition to the
3101     // final result:
3102     //
3103     //   #define LOG2OFe 1.4426950f
3104     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3105     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3106                              getF32Constant(DAG, 0x3fb8aa3b));
3107     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3108 
3109     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3110     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3111     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3112 
3113     //   IntegerPartOfX <<= 23;
3114     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3115                                  DAG.getConstant(23, TLI.getPointerTy()));
3116 
3117     if (LimitFloatPrecision <= 6) {
3118       // For floating-point precision of 6:
3119       //
3120       //   TwoToFractionalPartOfX =
3121       //     0.997535578f +
3122       //       (0.735607626f + 0.252464424f * x) * x;
3123       //
3124       // error 0.0144103317, which is 6 bits
3125       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3126                                getF32Constant(DAG, 0x3e814304));
3127       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3128                                getF32Constant(DAG, 0x3f3c50c8));
3129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3130       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3131                                getF32Constant(DAG, 0x3f7f5e7e));
3132       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3133 
3134       // Add the exponent into the result in integer domain.
3135       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3136                                TwoToFracPartOfX, IntegerPartOfX);
3137 
3138       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3139     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3140       // For floating-point precision of 12:
3141       //
3142       //   TwoToFractionalPartOfX =
3143       //     0.999892986f +
3144       //       (0.696457318f +
3145       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3146       //
3147       // 0.000107046256 error, which is 13 to 14 bits
3148       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3149                                getF32Constant(DAG, 0x3da235e3));
3150       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3151                                getF32Constant(DAG, 0x3e65b8f3));
3152       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3153       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3154                                getF32Constant(DAG, 0x3f324b07));
3155       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3156       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3157                                getF32Constant(DAG, 0x3f7ff8fd));
3158       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3159 
3160       // Add the exponent into the result in integer domain.
3161       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3162                                TwoToFracPartOfX, IntegerPartOfX);
3163 
3164       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3165     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3166       // For floating-point precision of 18:
3167       //
3168       //   TwoToFractionalPartOfX =
3169       //     0.999999982f +
3170       //       (0.693148872f +
3171       //         (0.240227044f +
3172       //           (0.554906021e-1f +
3173       //             (0.961591928e-2f +
3174       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3175       //
3176       // error 2.47208000*10^(-7), which is better than 18 bits
3177       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3178                                getF32Constant(DAG, 0x3924b03e));
3179       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3180                                getF32Constant(DAG, 0x3ab24b87));
3181       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3182       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3183                                getF32Constant(DAG, 0x3c1d8c17));
3184       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3185       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3186                                getF32Constant(DAG, 0x3d634a1d));
3187       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3188       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3189                                getF32Constant(DAG, 0x3e75fe14));
3190       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3191       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3192                                 getF32Constant(DAG, 0x3f317234));
3193       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3194       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3195                                 getF32Constant(DAG, 0x3f800000));
3196       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3197                                              MVT::i32, t13);
3198 
3199       // Add the exponent into the result in integer domain.
3200       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3201                                 TwoToFracPartOfX, IntegerPartOfX);
3202 
3203       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3204     }
3205   } else {
3206     // No special expansion.
3207     result = DAG.getNode(ISD::FEXP, dl,
3208                          getValue(I.getOperand(1)).getValueType(),
3209                          getValue(I.getOperand(1)));
3210   }
3211 
3212   setValue(&I, result);
3213 }
3214 
3215 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3216 /// limited-precision mode.
3217 void
3218 SelectionDAGBuilder::visitLog(const CallInst &I) {
3219   SDValue result;
3220   DebugLoc dl = getCurDebugLoc();
3221 
3222   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3223       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3224     SDValue Op = getValue(I.getOperand(1));
3225     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3226 
3227     // Scale the exponent by log(2) [0.69314718f].
3228     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3229     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3230                                         getF32Constant(DAG, 0x3f317218));
3231 
3232     // Get the significand and build it into a floating-point number with
3233     // exponent of 1.
3234     SDValue X = GetSignificand(DAG, Op1, dl);
3235 
3236     if (LimitFloatPrecision <= 6) {
3237       // For floating-point precision of 6:
3238       //
3239       //   LogofMantissa =
3240       //     -1.1609546f +
3241       //       (1.4034025f - 0.23903021f * x) * x;
3242       //
3243       // error 0.0034276066, which is better than 8 bits
3244       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3245                                getF32Constant(DAG, 0xbe74c456));
3246       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3247                                getF32Constant(DAG, 0x3fb3a2b1));
3248       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3249       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3250                                           getF32Constant(DAG, 0x3f949a29));
3251 
3252       result = DAG.getNode(ISD::FADD, dl,
3253                            MVT::f32, LogOfExponent, LogOfMantissa);
3254     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3255       // For floating-point precision of 12:
3256       //
3257       //   LogOfMantissa =
3258       //     -1.7417939f +
3259       //       (2.8212026f +
3260       //         (-1.4699568f +
3261       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3262       //
3263       // error 0.000061011436, which is 14 bits
3264       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3265                                getF32Constant(DAG, 0xbd67b6d6));
3266       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3267                                getF32Constant(DAG, 0x3ee4f4b8));
3268       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3269       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3270                                getF32Constant(DAG, 0x3fbc278b));
3271       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3272       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3273                                getF32Constant(DAG, 0x40348e95));
3274       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3275       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3276                                           getF32Constant(DAG, 0x3fdef31a));
3277 
3278       result = DAG.getNode(ISD::FADD, dl,
3279                            MVT::f32, LogOfExponent, LogOfMantissa);
3280     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3281       // For floating-point precision of 18:
3282       //
3283       //   LogOfMantissa =
3284       //     -2.1072184f +
3285       //       (4.2372794f +
3286       //         (-3.7029485f +
3287       //           (2.2781945f +
3288       //             (-0.87823314f +
3289       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3290       //
3291       // error 0.0000023660568, which is better than 18 bits
3292       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3293                                getF32Constant(DAG, 0xbc91e5ac));
3294       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3295                                getF32Constant(DAG, 0x3e4350aa));
3296       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3297       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3298                                getF32Constant(DAG, 0x3f60d3e3));
3299       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3300       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3301                                getF32Constant(DAG, 0x4011cdf0));
3302       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3303       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3304                                getF32Constant(DAG, 0x406cfd1c));
3305       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3306       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3307                                getF32Constant(DAG, 0x408797cb));
3308       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3309       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3310                                           getF32Constant(DAG, 0x4006dcab));
3311 
3312       result = DAG.getNode(ISD::FADD, dl,
3313                            MVT::f32, LogOfExponent, LogOfMantissa);
3314     }
3315   } else {
3316     // No special expansion.
3317     result = DAG.getNode(ISD::FLOG, dl,
3318                          getValue(I.getOperand(1)).getValueType(),
3319                          getValue(I.getOperand(1)));
3320   }
3321 
3322   setValue(&I, result);
3323 }
3324 
3325 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3326 /// limited-precision mode.
3327 void
3328 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3329   SDValue result;
3330   DebugLoc dl = getCurDebugLoc();
3331 
3332   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3333       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3334     SDValue Op = getValue(I.getOperand(1));
3335     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3336 
3337     // Get the exponent.
3338     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3339 
3340     // Get the significand and build it into a floating-point number with
3341     // exponent of 1.
3342     SDValue X = GetSignificand(DAG, Op1, dl);
3343 
3344     // Different possible minimax approximations of significand in
3345     // floating-point for various degrees of accuracy over [1,2].
3346     if (LimitFloatPrecision <= 6) {
3347       // For floating-point precision of 6:
3348       //
3349       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3350       //
3351       // error 0.0049451742, which is more than 7 bits
3352       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3353                                getF32Constant(DAG, 0xbeb08fe0));
3354       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3355                                getF32Constant(DAG, 0x40019463));
3356       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3357       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3358                                            getF32Constant(DAG, 0x3fd6633d));
3359 
3360       result = DAG.getNode(ISD::FADD, dl,
3361                            MVT::f32, LogOfExponent, Log2ofMantissa);
3362     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3363       // For floating-point precision of 12:
3364       //
3365       //   Log2ofMantissa =
3366       //     -2.51285454f +
3367       //       (4.07009056f +
3368       //         (-2.12067489f +
3369       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3370       //
3371       // error 0.0000876136000, which is better than 13 bits
3372       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3373                                getF32Constant(DAG, 0xbda7262e));
3374       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3375                                getF32Constant(DAG, 0x3f25280b));
3376       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3377       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3378                                getF32Constant(DAG, 0x4007b923));
3379       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3380       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3381                                getF32Constant(DAG, 0x40823e2f));
3382       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3383       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3384                                            getF32Constant(DAG, 0x4020d29c));
3385 
3386       result = DAG.getNode(ISD::FADD, dl,
3387                            MVT::f32, LogOfExponent, Log2ofMantissa);
3388     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3389       // For floating-point precision of 18:
3390       //
3391       //   Log2ofMantissa =
3392       //     -3.0400495f +
3393       //       (6.1129976f +
3394       //         (-5.3420409f +
3395       //           (3.2865683f +
3396       //             (-1.2669343f +
3397       //               (0.27515199f -
3398       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3399       //
3400       // error 0.0000018516, which is better than 18 bits
3401       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3402                                getF32Constant(DAG, 0xbcd2769e));
3403       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3404                                getF32Constant(DAG, 0x3e8ce0b9));
3405       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3406       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3407                                getF32Constant(DAG, 0x3fa22ae7));
3408       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3409       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3410                                getF32Constant(DAG, 0x40525723));
3411       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3412       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3413                                getF32Constant(DAG, 0x40aaf200));
3414       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3415       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3416                                getF32Constant(DAG, 0x40c39dad));
3417       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3418       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3419                                            getF32Constant(DAG, 0x4042902c));
3420 
3421       result = DAG.getNode(ISD::FADD, dl,
3422                            MVT::f32, LogOfExponent, Log2ofMantissa);
3423     }
3424   } else {
3425     // No special expansion.
3426     result = DAG.getNode(ISD::FLOG2, dl,
3427                          getValue(I.getOperand(1)).getValueType(),
3428                          getValue(I.getOperand(1)));
3429   }
3430 
3431   setValue(&I, result);
3432 }
3433 
3434 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3435 /// limited-precision mode.
3436 void
3437 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3438   SDValue result;
3439   DebugLoc dl = getCurDebugLoc();
3440 
3441   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3442       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3443     SDValue Op = getValue(I.getOperand(1));
3444     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3445 
3446     // Scale the exponent by log10(2) [0.30102999f].
3447     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3448     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3449                                         getF32Constant(DAG, 0x3e9a209a));
3450 
3451     // Get the significand and build it into a floating-point number with
3452     // exponent of 1.
3453     SDValue X = GetSignificand(DAG, Op1, dl);
3454 
3455     if (LimitFloatPrecision <= 6) {
3456       // For floating-point precision of 6:
3457       //
3458       //   Log10ofMantissa =
3459       //     -0.50419619f +
3460       //       (0.60948995f - 0.10380950f * x) * x;
3461       //
3462       // error 0.0014886165, which is 6 bits
3463       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3464                                getF32Constant(DAG, 0xbdd49a13));
3465       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3466                                getF32Constant(DAG, 0x3f1c0789));
3467       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3468       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3469                                             getF32Constant(DAG, 0x3f011300));
3470 
3471       result = DAG.getNode(ISD::FADD, dl,
3472                            MVT::f32, LogOfExponent, Log10ofMantissa);
3473     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3474       // For floating-point precision of 12:
3475       //
3476       //   Log10ofMantissa =
3477       //     -0.64831180f +
3478       //       (0.91751397f +
3479       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3480       //
3481       // error 0.00019228036, which is better than 12 bits
3482       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3483                                getF32Constant(DAG, 0x3d431f31));
3484       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3485                                getF32Constant(DAG, 0x3ea21fb2));
3486       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3487       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3488                                getF32Constant(DAG, 0x3f6ae232));
3489       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3490       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3491                                             getF32Constant(DAG, 0x3f25f7c3));
3492 
3493       result = DAG.getNode(ISD::FADD, dl,
3494                            MVT::f32, LogOfExponent, Log10ofMantissa);
3495     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3496       // For floating-point precision of 18:
3497       //
3498       //   Log10ofMantissa =
3499       //     -0.84299375f +
3500       //       (1.5327582f +
3501       //         (-1.0688956f +
3502       //           (0.49102474f +
3503       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3504       //
3505       // error 0.0000037995730, which is better than 18 bits
3506       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3507                                getF32Constant(DAG, 0x3c5d51ce));
3508       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3509                                getF32Constant(DAG, 0x3e00685a));
3510       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3511       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3512                                getF32Constant(DAG, 0x3efb6798));
3513       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3514       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3515                                getF32Constant(DAG, 0x3f88d192));
3516       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3517       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3518                                getF32Constant(DAG, 0x3fc4316c));
3519       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3520       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3521                                             getF32Constant(DAG, 0x3f57ce70));
3522 
3523       result = DAG.getNode(ISD::FADD, dl,
3524                            MVT::f32, LogOfExponent, Log10ofMantissa);
3525     }
3526   } else {
3527     // No special expansion.
3528     result = DAG.getNode(ISD::FLOG10, dl,
3529                          getValue(I.getOperand(1)).getValueType(),
3530                          getValue(I.getOperand(1)));
3531   }
3532 
3533   setValue(&I, result);
3534 }
3535 
3536 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3537 /// limited-precision mode.
3538 void
3539 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3540   SDValue result;
3541   DebugLoc dl = getCurDebugLoc();
3542 
3543   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3544       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3545     SDValue Op = getValue(I.getOperand(1));
3546 
3547     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3548 
3549     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3550     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3551     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3552 
3553     //   IntegerPartOfX <<= 23;
3554     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3555                                  DAG.getConstant(23, TLI.getPointerTy()));
3556 
3557     if (LimitFloatPrecision <= 6) {
3558       // For floating-point precision of 6:
3559       //
3560       //   TwoToFractionalPartOfX =
3561       //     0.997535578f +
3562       //       (0.735607626f + 0.252464424f * x) * x;
3563       //
3564       // error 0.0144103317, which is 6 bits
3565       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                                getF32Constant(DAG, 0x3e814304));
3567       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                                getF32Constant(DAG, 0x3f3c50c8));
3569       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                                getF32Constant(DAG, 0x3f7f5e7e));
3572       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3573       SDValue TwoToFractionalPartOfX =
3574         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3575 
3576       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3577                            MVT::f32, TwoToFractionalPartOfX);
3578     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3579       // For floating-point precision of 12:
3580       //
3581       //   TwoToFractionalPartOfX =
3582       //     0.999892986f +
3583       //       (0.696457318f +
3584       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3585       //
3586       // error 0.000107046256, which is 13 to 14 bits
3587       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3588                                getF32Constant(DAG, 0x3da235e3));
3589       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3590                                getF32Constant(DAG, 0x3e65b8f3));
3591       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3592       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3593                                getF32Constant(DAG, 0x3f324b07));
3594       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3595       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3596                                getF32Constant(DAG, 0x3f7ff8fd));
3597       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3598       SDValue TwoToFractionalPartOfX =
3599         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3600 
3601       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3602                            MVT::f32, TwoToFractionalPartOfX);
3603     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3604       // For floating-point precision of 18:
3605       //
3606       //   TwoToFractionalPartOfX =
3607       //     0.999999982f +
3608       //       (0.693148872f +
3609       //         (0.240227044f +
3610       //           (0.554906021e-1f +
3611       //             (0.961591928e-2f +
3612       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3613       // error 2.47208000*10^(-7), which is better than 18 bits
3614       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3615                                getF32Constant(DAG, 0x3924b03e));
3616       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3617                                getF32Constant(DAG, 0x3ab24b87));
3618       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3619       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3620                                getF32Constant(DAG, 0x3c1d8c17));
3621       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3622       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3623                                getF32Constant(DAG, 0x3d634a1d));
3624       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3625       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3626                                getF32Constant(DAG, 0x3e75fe14));
3627       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3628       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3629                                 getF32Constant(DAG, 0x3f317234));
3630       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3631       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3632                                 getF32Constant(DAG, 0x3f800000));
3633       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3634       SDValue TwoToFractionalPartOfX =
3635         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3636 
3637       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3638                            MVT::f32, TwoToFractionalPartOfX);
3639     }
3640   } else {
3641     // No special expansion.
3642     result = DAG.getNode(ISD::FEXP2, dl,
3643                          getValue(I.getOperand(1)).getValueType(),
3644                          getValue(I.getOperand(1)));
3645   }
3646 
3647   setValue(&I, result);
3648 }
3649 
3650 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3651 /// limited-precision mode with x == 10.0f.
3652 void
3653 SelectionDAGBuilder::visitPow(const CallInst &I) {
3654   SDValue result;
3655   const Value *Val = I.getOperand(1);
3656   DebugLoc dl = getCurDebugLoc();
3657   bool IsExp10 = false;
3658 
3659   if (getValue(Val).getValueType() == MVT::f32 &&
3660       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3661       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3662     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3663       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3664         APFloat Ten(10.0f);
3665         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3666       }
3667     }
3668   }
3669 
3670   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3671     SDValue Op = getValue(I.getOperand(2));
3672 
3673     // Put the exponent in the right bit position for later addition to the
3674     // final result:
3675     //
3676     //   #define LOG2OF10 3.3219281f
3677     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3678     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3679                              getF32Constant(DAG, 0x40549a78));
3680     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3681 
3682     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3683     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3684     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3685 
3686     //   IntegerPartOfX <<= 23;
3687     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3688                                  DAG.getConstant(23, TLI.getPointerTy()));
3689 
3690     if (LimitFloatPrecision <= 6) {
3691       // For floating-point precision of 6:
3692       //
3693       //   twoToFractionalPartOfX =
3694       //     0.997535578f +
3695       //       (0.735607626f + 0.252464424f * x) * x;
3696       //
3697       // error 0.0144103317, which is 6 bits
3698       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                                getF32Constant(DAG, 0x3e814304));
3700       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3701                                getF32Constant(DAG, 0x3f3c50c8));
3702       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3703       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3704                                getF32Constant(DAG, 0x3f7f5e7e));
3705       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3706       SDValue TwoToFractionalPartOfX =
3707         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3708 
3709       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3710                            MVT::f32, TwoToFractionalPartOfX);
3711     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3712       // For floating-point precision of 12:
3713       //
3714       //   TwoToFractionalPartOfX =
3715       //     0.999892986f +
3716       //       (0.696457318f +
3717       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3718       //
3719       // error 0.000107046256, which is 13 to 14 bits
3720       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3721                                getF32Constant(DAG, 0x3da235e3));
3722       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3723                                getF32Constant(DAG, 0x3e65b8f3));
3724       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3725       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3726                                getF32Constant(DAG, 0x3f324b07));
3727       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3728       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3729                                getF32Constant(DAG, 0x3f7ff8fd));
3730       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3731       SDValue TwoToFractionalPartOfX =
3732         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3733 
3734       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3735                            MVT::f32, TwoToFractionalPartOfX);
3736     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3737       // For floating-point precision of 18:
3738       //
3739       //   TwoToFractionalPartOfX =
3740       //     0.999999982f +
3741       //       (0.693148872f +
3742       //         (0.240227044f +
3743       //           (0.554906021e-1f +
3744       //             (0.961591928e-2f +
3745       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3746       // error 2.47208000*10^(-7), which is better than 18 bits
3747       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3748                                getF32Constant(DAG, 0x3924b03e));
3749       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3750                                getF32Constant(DAG, 0x3ab24b87));
3751       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3752       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3753                                getF32Constant(DAG, 0x3c1d8c17));
3754       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3755       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3756                                getF32Constant(DAG, 0x3d634a1d));
3757       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3758       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3759                                getF32Constant(DAG, 0x3e75fe14));
3760       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3761       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3762                                 getF32Constant(DAG, 0x3f317234));
3763       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3764       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3765                                 getF32Constant(DAG, 0x3f800000));
3766       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3767       SDValue TwoToFractionalPartOfX =
3768         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3769 
3770       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3771                            MVT::f32, TwoToFractionalPartOfX);
3772     }
3773   } else {
3774     // No special expansion.
3775     result = DAG.getNode(ISD::FPOW, dl,
3776                          getValue(I.getOperand(1)).getValueType(),
3777                          getValue(I.getOperand(1)),
3778                          getValue(I.getOperand(2)));
3779   }
3780 
3781   setValue(&I, result);
3782 }
3783 
3784 
3785 /// ExpandPowI - Expand a llvm.powi intrinsic.
3786 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3787                           SelectionDAG &DAG) {
3788   // If RHS is a constant, we can expand this out to a multiplication tree,
3789   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3790   // optimizing for size, we only want to do this if the expansion would produce
3791   // a small number of multiplies, otherwise we do the full expansion.
3792   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3793     // Get the exponent as a positive value.
3794     unsigned Val = RHSC->getSExtValue();
3795     if ((int)Val < 0) Val = -Val;
3796 
3797     // powi(x, 0) -> 1.0
3798     if (Val == 0)
3799       return DAG.getConstantFP(1.0, LHS.getValueType());
3800 
3801     const Function *F = DAG.getMachineFunction().getFunction();
3802     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3803         // If optimizing for size, don't insert too many multiplies.  This
3804         // inserts up to 5 multiplies.
3805         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3806       // We use the simple binary decomposition method to generate the multiply
3807       // sequence.  There are more optimal ways to do this (for example,
3808       // powi(x,15) generates one more multiply than it should), but this has
3809       // the benefit of being both really simple and much better than a libcall.
3810       SDValue Res;  // Logically starts equal to 1.0
3811       SDValue CurSquare = LHS;
3812       while (Val) {
3813         if (Val & 1) {
3814           if (Res.getNode())
3815             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3816           else
3817             Res = CurSquare;  // 1.0*CurSquare.
3818         }
3819 
3820         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3821                                 CurSquare, CurSquare);
3822         Val >>= 1;
3823       }
3824 
3825       // If the original was negative, invert the result, producing 1/(x*x*x).
3826       if (RHSC->getSExtValue() < 0)
3827         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3828                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3829       return Res;
3830     }
3831   }
3832 
3833   // Otherwise, expand to a libcall.
3834   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3835 }
3836 
3837 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3838 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3839 /// At the end of instruction selection, they will be inserted to the entry BB.
3840 bool
3841 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3842                                               const Value *V, MDNode *Variable,
3843                                               uint64_t Offset,
3844                                               const SDValue &N) {
3845   if (!isa<Argument>(V))
3846     return false;
3847 
3848   MachineFunction &MF = DAG.getMachineFunction();
3849   // Ignore inlined function arguments here.
3850   DIVariable DV(Variable);
3851   if (DV.isInlinedFnArgument(MF.getFunction()))
3852     return false;
3853 
3854   MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3855   if (MBB != &MF.front())
3856     return false;
3857 
3858   unsigned Reg = 0;
3859   if (N.getOpcode() == ISD::CopyFromReg) {
3860     Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3861     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3862       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3863       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3864       if (PR)
3865         Reg = PR;
3866     }
3867   }
3868 
3869   if (!Reg) {
3870     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3871     if (VMI == FuncInfo.ValueMap.end())
3872       return false;
3873     Reg = VMI->second;
3874   }
3875 
3876   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3877   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3878                                     TII->get(TargetOpcode::DBG_VALUE))
3879     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3880   FuncInfo.ArgDbgValues.push_back(&*MIB);
3881   return true;
3882 }
3883 
3884 // VisualStudio defines setjmp as _setjmp
3885 #if defined(_MSC_VER) && defined(setjmp)
3886 #define setjmp_undefined_for_visual_studio
3887 #undef setjmp
3888 #endif
3889 
3890 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3891 /// we want to emit this as a call to a named external function, return the name
3892 /// otherwise lower it and return null.
3893 const char *
3894 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3895   DebugLoc dl = getCurDebugLoc();
3896   SDValue Res;
3897 
3898   switch (Intrinsic) {
3899   default:
3900     // By default, turn this into a target intrinsic node.
3901     visitTargetIntrinsic(I, Intrinsic);
3902     return 0;
3903   case Intrinsic::vastart:  visitVAStart(I); return 0;
3904   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3905   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3906   case Intrinsic::returnaddress:
3907     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3908                              getValue(I.getOperand(1))));
3909     return 0;
3910   case Intrinsic::frameaddress:
3911     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3912                              getValue(I.getOperand(1))));
3913     return 0;
3914   case Intrinsic::setjmp:
3915     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3916   case Intrinsic::longjmp:
3917     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3918   case Intrinsic::memcpy: {
3919     // Assert for address < 256 since we support only user defined address
3920     // spaces.
3921     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3922            < 256 &&
3923            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3924            < 256 &&
3925            "Unknown address space");
3926     SDValue Op1 = getValue(I.getOperand(1));
3927     SDValue Op2 = getValue(I.getOperand(2));
3928     SDValue Op3 = getValue(I.getOperand(3));
3929     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3930     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3931     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3932                               I.getOperand(1), 0, I.getOperand(2), 0));
3933     return 0;
3934   }
3935   case Intrinsic::memset: {
3936     // Assert for address < 256 since we support only user defined address
3937     // spaces.
3938     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3939            < 256 &&
3940            "Unknown address space");
3941     SDValue Op1 = getValue(I.getOperand(1));
3942     SDValue Op2 = getValue(I.getOperand(2));
3943     SDValue Op3 = getValue(I.getOperand(3));
3944     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3945     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3946     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3947                               I.getOperand(1), 0));
3948     return 0;
3949   }
3950   case Intrinsic::memmove: {
3951     // Assert for address < 256 since we support only user defined address
3952     // spaces.
3953     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3954            < 256 &&
3955            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3956            < 256 &&
3957            "Unknown address space");
3958     SDValue Op1 = getValue(I.getOperand(1));
3959     SDValue Op2 = getValue(I.getOperand(2));
3960     SDValue Op3 = getValue(I.getOperand(3));
3961     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3962     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3963 
3964     // If the source and destination are known to not be aliases, we can
3965     // lower memmove as memcpy.
3966     uint64_t Size = -1ULL;
3967     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3968       Size = C->getZExtValue();
3969     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3970         AliasAnalysis::NoAlias) {
3971       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3972                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
3973       return 0;
3974     }
3975 
3976     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3977                                I.getOperand(1), 0, I.getOperand(2), 0));
3978     return 0;
3979   }
3980   case Intrinsic::dbg_declare: {
3981     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3982     if (!DIVariable(DI.getVariable()).Verify())
3983       return 0;
3984 
3985     MDNode *Variable = DI.getVariable();
3986     // Parameters are handled specially.
3987     bool isParameter =
3988       DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3989     const Value *Address = DI.getAddress();
3990     if (!Address)
3991       return 0;
3992     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3993       Address = BCI->getOperand(0);
3994     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3995     if (AI) {
3996       // Don't handle byval arguments or VLAs, for example.
3997       // Non-byval arguments are handled here (they refer to the stack temporary
3998       // alloca at this point).
3999       DenseMap<const AllocaInst*, int>::iterator SI =
4000         FuncInfo.StaticAllocaMap.find(AI);
4001       if (SI == FuncInfo.StaticAllocaMap.end())
4002         return 0; // VLAs.
4003       int FI = SI->second;
4004 
4005       MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4006       if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4007         MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4008     }
4009 
4010     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4011     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4012     // absolute, but not relative, values are different depending on whether
4013     // debug info exists.
4014     ++SDNodeOrder;
4015     SDValue &N = NodeMap[Address];
4016     SDDbgValue *SDV;
4017     if (N.getNode()) {
4018       if (isParameter && !AI) {
4019         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4020         if (FINode)
4021           // Byval parameter.  We have a frame index at this point.
4022           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4023                                 0, dl, SDNodeOrder);
4024         else
4025           // Can't do anything with other non-AI cases yet.  This might be a
4026           // parameter of a callee function that got inlined, for example.
4027           return 0;
4028       } else if (AI)
4029         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4030                               0, dl, SDNodeOrder);
4031       else
4032         // Can't do anything with other non-AI cases yet.
4033         return 0;
4034       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4035     } else {
4036       // This isn't useful, but it shows what we're missing.
4037       SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4038                             0, dl, SDNodeOrder);
4039       DAG.AddDbgValue(SDV, 0, isParameter);
4040     }
4041     return 0;
4042   }
4043   case Intrinsic::dbg_value: {
4044     const DbgValueInst &DI = cast<DbgValueInst>(I);
4045     if (!DIVariable(DI.getVariable()).Verify())
4046       return 0;
4047 
4048     MDNode *Variable = DI.getVariable();
4049     uint64_t Offset = DI.getOffset();
4050     const Value *V = DI.getValue();
4051     if (!V)
4052       return 0;
4053 
4054     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4055     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4056     // absolute, but not relative, values are different depending on whether
4057     // debug info exists.
4058     ++SDNodeOrder;
4059     SDDbgValue *SDV;
4060     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4061       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4062       DAG.AddDbgValue(SDV, 0, false);
4063     } else {
4064       bool createUndef = false;
4065       // FIXME : Why not use getValue() directly ?
4066       SDValue &N = NodeMap[V];
4067       if (N.getNode()) {
4068         if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4069           SDV = DAG.getDbgValue(Variable, N.getNode(),
4070                                 N.getResNo(), Offset, dl, SDNodeOrder);
4071           DAG.AddDbgValue(SDV, N.getNode(), false);
4072         }
4073       } else if (isa<PHINode>(V) && !V->use_empty()) {
4074         SDValue N = getValue(V);
4075         if (N.getNode()) {
4076           if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4077             SDV = DAG.getDbgValue(Variable, N.getNode(),
4078                                   N.getResNo(), Offset, dl, SDNodeOrder);
4079             DAG.AddDbgValue(SDV, N.getNode(), false);
4080           }
4081         } else
4082           createUndef = true;
4083       } else
4084         createUndef = true;
4085       if (createUndef) {
4086         // We may expand this to cover more cases.  One case where we have no
4087         // data available is an unreferenced parameter; we need this fallback.
4088         SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4089                               Offset, dl, SDNodeOrder);
4090         DAG.AddDbgValue(SDV, 0, false);
4091       }
4092     }
4093 
4094     // Build a debug info table entry.
4095     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4096       V = BCI->getOperand(0);
4097     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4098     // Don't handle byval struct arguments or VLAs, for example.
4099     if (!AI)
4100       return 0;
4101     DenseMap<const AllocaInst*, int>::iterator SI =
4102       FuncInfo.StaticAllocaMap.find(AI);
4103     if (SI == FuncInfo.StaticAllocaMap.end())
4104       return 0; // VLAs.
4105     int FI = SI->second;
4106 
4107     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4108     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4109       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4110     return 0;
4111   }
4112   case Intrinsic::eh_exception: {
4113     // Insert the EXCEPTIONADDR instruction.
4114     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4115            "Call to eh.exception not in landing pad!");
4116     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4117     SDValue Ops[1];
4118     Ops[0] = DAG.getRoot();
4119     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4120     setValue(&I, Op);
4121     DAG.setRoot(Op.getValue(1));
4122     return 0;
4123   }
4124 
4125   case Intrinsic::eh_selector: {
4126     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4127     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4128     if (CallMBB->isLandingPad())
4129       AddCatchInfo(I, &MMI, CallMBB);
4130     else {
4131 #ifndef NDEBUG
4132       FuncInfo.CatchInfoLost.insert(&I);
4133 #endif
4134       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4135       unsigned Reg = TLI.getExceptionSelectorRegister();
4136       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4137     }
4138 
4139     // Insert the EHSELECTION instruction.
4140     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4141     SDValue Ops[2];
4142     Ops[0] = getValue(I.getOperand(1));
4143     Ops[1] = getRoot();
4144     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4145     DAG.setRoot(Op.getValue(1));
4146     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4147     return 0;
4148   }
4149 
4150   case Intrinsic::eh_typeid_for: {
4151     // Find the type id for the given typeinfo.
4152     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4153     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4154     Res = DAG.getConstant(TypeID, MVT::i32);
4155     setValue(&I, Res);
4156     return 0;
4157   }
4158 
4159   case Intrinsic::eh_return_i32:
4160   case Intrinsic::eh_return_i64:
4161     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4162     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4163                             MVT::Other,
4164                             getControlRoot(),
4165                             getValue(I.getOperand(1)),
4166                             getValue(I.getOperand(2))));
4167     return 0;
4168   case Intrinsic::eh_unwind_init:
4169     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4170     return 0;
4171   case Intrinsic::eh_dwarf_cfa: {
4172     EVT VT = getValue(I.getOperand(1)).getValueType();
4173     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4174                                         TLI.getPointerTy());
4175     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4176                                  TLI.getPointerTy(),
4177                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4178                                              TLI.getPointerTy()),
4179                                  CfaArg);
4180     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4181                              TLI.getPointerTy(),
4182                              DAG.getConstant(0, TLI.getPointerTy()));
4183     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4184                              FA, Offset));
4185     return 0;
4186   }
4187   case Intrinsic::eh_sjlj_callsite: {
4188     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4189     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4190     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4191     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4192 
4193     MMI.setCurrentCallSite(CI->getZExtValue());
4194     return 0;
4195   }
4196   case Intrinsic::eh_sjlj_setjmp: {
4197     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4198                              getValue(I.getOperand(1))));
4199     return 0;
4200   }
4201   case Intrinsic::eh_sjlj_longjmp: {
4202     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4203                             getRoot(),
4204                             getValue(I.getOperand(1))));
4205     return 0;
4206   }
4207 
4208   case Intrinsic::convertff:
4209   case Intrinsic::convertfsi:
4210   case Intrinsic::convertfui:
4211   case Intrinsic::convertsif:
4212   case Intrinsic::convertuif:
4213   case Intrinsic::convertss:
4214   case Intrinsic::convertsu:
4215   case Intrinsic::convertus:
4216   case Intrinsic::convertuu: {
4217     ISD::CvtCode Code = ISD::CVT_INVALID;
4218     switch (Intrinsic) {
4219     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4220     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4221     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4222     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4223     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4224     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4225     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4226     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4227     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4228     }
4229     EVT DestVT = TLI.getValueType(I.getType());
4230     const Value *Op1 = I.getOperand(1);
4231     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4232                                DAG.getValueType(DestVT),
4233                                DAG.getValueType(getValue(Op1).getValueType()),
4234                                getValue(I.getOperand(2)),
4235                                getValue(I.getOperand(3)),
4236                                Code);
4237     setValue(&I, Res);
4238     return 0;
4239   }
4240   case Intrinsic::sqrt:
4241     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4242                              getValue(I.getOperand(1)).getValueType(),
4243                              getValue(I.getOperand(1))));
4244     return 0;
4245   case Intrinsic::powi:
4246     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4247                             getValue(I.getOperand(2)), DAG));
4248     return 0;
4249   case Intrinsic::sin:
4250     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4251                              getValue(I.getOperand(1)).getValueType(),
4252                              getValue(I.getOperand(1))));
4253     return 0;
4254   case Intrinsic::cos:
4255     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4256                              getValue(I.getOperand(1)).getValueType(),
4257                              getValue(I.getOperand(1))));
4258     return 0;
4259   case Intrinsic::log:
4260     visitLog(I);
4261     return 0;
4262   case Intrinsic::log2:
4263     visitLog2(I);
4264     return 0;
4265   case Intrinsic::log10:
4266     visitLog10(I);
4267     return 0;
4268   case Intrinsic::exp:
4269     visitExp(I);
4270     return 0;
4271   case Intrinsic::exp2:
4272     visitExp2(I);
4273     return 0;
4274   case Intrinsic::pow:
4275     visitPow(I);
4276     return 0;
4277   case Intrinsic::convert_to_fp16:
4278     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4279                              MVT::i16, getValue(I.getOperand(1))));
4280     return 0;
4281   case Intrinsic::convert_from_fp16:
4282     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4283                              MVT::f32, getValue(I.getOperand(1))));
4284     return 0;
4285   case Intrinsic::pcmarker: {
4286     SDValue Tmp = getValue(I.getOperand(1));
4287     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4288     return 0;
4289   }
4290   case Intrinsic::readcyclecounter: {
4291     SDValue Op = getRoot();
4292     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4293                       DAG.getVTList(MVT::i64, MVT::Other),
4294                       &Op, 1);
4295     setValue(&I, Res);
4296     DAG.setRoot(Res.getValue(1));
4297     return 0;
4298   }
4299   case Intrinsic::bswap:
4300     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4301                              getValue(I.getOperand(1)).getValueType(),
4302                              getValue(I.getOperand(1))));
4303     return 0;
4304   case Intrinsic::cttz: {
4305     SDValue Arg = getValue(I.getOperand(1));
4306     EVT Ty = Arg.getValueType();
4307     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4308     return 0;
4309   }
4310   case Intrinsic::ctlz: {
4311     SDValue Arg = getValue(I.getOperand(1));
4312     EVT Ty = Arg.getValueType();
4313     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4314     return 0;
4315   }
4316   case Intrinsic::ctpop: {
4317     SDValue Arg = getValue(I.getOperand(1));
4318     EVT Ty = Arg.getValueType();
4319     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4320     return 0;
4321   }
4322   case Intrinsic::stacksave: {
4323     SDValue Op = getRoot();
4324     Res = DAG.getNode(ISD::STACKSAVE, dl,
4325                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4326     setValue(&I, Res);
4327     DAG.setRoot(Res.getValue(1));
4328     return 0;
4329   }
4330   case Intrinsic::stackrestore: {
4331     Res = getValue(I.getOperand(1));
4332     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4333     return 0;
4334   }
4335   case Intrinsic::stackprotector: {
4336     // Emit code into the DAG to store the stack guard onto the stack.
4337     MachineFunction &MF = DAG.getMachineFunction();
4338     MachineFrameInfo *MFI = MF.getFrameInfo();
4339     EVT PtrTy = TLI.getPointerTy();
4340 
4341     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4342     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4343 
4344     int FI = FuncInfo.StaticAllocaMap[Slot];
4345     MFI->setStackProtectorIndex(FI);
4346 
4347     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4348 
4349     // Store the stack protector onto the stack.
4350     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4351                        PseudoSourceValue::getFixedStack(FI),
4352                        0, true, false, 0);
4353     setValue(&I, Res);
4354     DAG.setRoot(Res);
4355     return 0;
4356   }
4357   case Intrinsic::objectsize: {
4358     // If we don't know by now, we're never going to know.
4359     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4360 
4361     assert(CI && "Non-constant type in __builtin_object_size?");
4362 
4363     SDValue Arg = getValue(I.getOperand(0));
4364     EVT Ty = Arg.getValueType();
4365 
4366     if (CI->getZExtValue() == 0)
4367       Res = DAG.getConstant(-1ULL, Ty);
4368     else
4369       Res = DAG.getConstant(0, Ty);
4370 
4371     setValue(&I, Res);
4372     return 0;
4373   }
4374   case Intrinsic::var_annotation:
4375     // Discard annotate attributes
4376     return 0;
4377 
4378   case Intrinsic::init_trampoline: {
4379     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4380 
4381     SDValue Ops[6];
4382     Ops[0] = getRoot();
4383     Ops[1] = getValue(I.getOperand(1));
4384     Ops[2] = getValue(I.getOperand(2));
4385     Ops[3] = getValue(I.getOperand(3));
4386     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4387     Ops[5] = DAG.getSrcValue(F);
4388 
4389     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4390                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4391                       Ops, 6);
4392 
4393     setValue(&I, Res);
4394     DAG.setRoot(Res.getValue(1));
4395     return 0;
4396   }
4397   case Intrinsic::gcroot:
4398     if (GFI) {
4399       const Value *Alloca = I.getOperand(1);
4400       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4401 
4402       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4403       GFI->addStackRoot(FI->getIndex(), TypeMap);
4404     }
4405     return 0;
4406   case Intrinsic::gcread:
4407   case Intrinsic::gcwrite:
4408     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4409     return 0;
4410   case Intrinsic::flt_rounds:
4411     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4412     return 0;
4413   case Intrinsic::trap:
4414     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4415     return 0;
4416   case Intrinsic::uadd_with_overflow:
4417     return implVisitAluOverflow(I, ISD::UADDO);
4418   case Intrinsic::sadd_with_overflow:
4419     return implVisitAluOverflow(I, ISD::SADDO);
4420   case Intrinsic::usub_with_overflow:
4421     return implVisitAluOverflow(I, ISD::USUBO);
4422   case Intrinsic::ssub_with_overflow:
4423     return implVisitAluOverflow(I, ISD::SSUBO);
4424   case Intrinsic::umul_with_overflow:
4425     return implVisitAluOverflow(I, ISD::UMULO);
4426   case Intrinsic::smul_with_overflow:
4427     return implVisitAluOverflow(I, ISD::SMULO);
4428 
4429   case Intrinsic::prefetch: {
4430     SDValue Ops[4];
4431     Ops[0] = getRoot();
4432     Ops[1] = getValue(I.getOperand(1));
4433     Ops[2] = getValue(I.getOperand(2));
4434     Ops[3] = getValue(I.getOperand(3));
4435     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4436     return 0;
4437   }
4438 
4439   case Intrinsic::memory_barrier: {
4440     SDValue Ops[6];
4441     Ops[0] = getRoot();
4442     for (int x = 1; x < 6; ++x)
4443       Ops[x] = getValue(I.getOperand(x));
4444 
4445     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4446     return 0;
4447   }
4448   case Intrinsic::atomic_cmp_swap: {
4449     SDValue Root = getRoot();
4450     SDValue L =
4451       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4452                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4453                     Root,
4454                     getValue(I.getOperand(1)),
4455                     getValue(I.getOperand(2)),
4456                     getValue(I.getOperand(3)),
4457                     I.getOperand(1));
4458     setValue(&I, L);
4459     DAG.setRoot(L.getValue(1));
4460     return 0;
4461   }
4462   case Intrinsic::atomic_load_add:
4463     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4464   case Intrinsic::atomic_load_sub:
4465     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4466   case Intrinsic::atomic_load_or:
4467     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4468   case Intrinsic::atomic_load_xor:
4469     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4470   case Intrinsic::atomic_load_and:
4471     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4472   case Intrinsic::atomic_load_nand:
4473     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4474   case Intrinsic::atomic_load_max:
4475     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4476   case Intrinsic::atomic_load_min:
4477     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4478   case Intrinsic::atomic_load_umin:
4479     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4480   case Intrinsic::atomic_load_umax:
4481     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4482   case Intrinsic::atomic_swap:
4483     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4484 
4485   case Intrinsic::invariant_start:
4486   case Intrinsic::lifetime_start:
4487     // Discard region information.
4488     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4489     return 0;
4490   case Intrinsic::invariant_end:
4491   case Intrinsic::lifetime_end:
4492     // Discard region information.
4493     return 0;
4494   }
4495 }
4496 
4497 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4498                                       bool isTailCall,
4499                                       MachineBasicBlock *LandingPad) {
4500   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4501   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4502   const Type *RetTy = FTy->getReturnType();
4503   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4504   MCSymbol *BeginLabel = 0;
4505 
4506   TargetLowering::ArgListTy Args;
4507   TargetLowering::ArgListEntry Entry;
4508   Args.reserve(CS.arg_size());
4509 
4510   // Check whether the function can return without sret-demotion.
4511   SmallVector<EVT, 4> OutVTs;
4512   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4513   SmallVector<uint64_t, 4> Offsets;
4514   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4515                 OutVTs, OutsFlags, TLI, &Offsets);
4516 
4517   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4518                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4519 
4520   SDValue DemoteStackSlot;
4521 
4522   if (!CanLowerReturn) {
4523     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4524                       FTy->getReturnType());
4525     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4526                       FTy->getReturnType());
4527     MachineFunction &MF = DAG.getMachineFunction();
4528     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4529     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4530 
4531     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4532     Entry.Node = DemoteStackSlot;
4533     Entry.Ty = StackSlotPtrType;
4534     Entry.isSExt = false;
4535     Entry.isZExt = false;
4536     Entry.isInReg = false;
4537     Entry.isSRet = true;
4538     Entry.isNest = false;
4539     Entry.isByVal = false;
4540     Entry.Alignment = Align;
4541     Args.push_back(Entry);
4542     RetTy = Type::getVoidTy(FTy->getContext());
4543   }
4544 
4545   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4546        i != e; ++i) {
4547     SDValue ArgNode = getValue(*i);
4548     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4549 
4550     unsigned attrInd = i - CS.arg_begin() + 1;
4551     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4552     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4553     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4554     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4555     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4556     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4557     Entry.Alignment = CS.getParamAlignment(attrInd);
4558     Args.push_back(Entry);
4559   }
4560 
4561   if (LandingPad) {
4562     // Insert a label before the invoke call to mark the try range.  This can be
4563     // used to detect deletion of the invoke via the MachineModuleInfo.
4564     BeginLabel = MMI.getContext().CreateTempSymbol();
4565 
4566     // For SjLj, keep track of which landing pads go with which invokes
4567     // so as to maintain the ordering of pads in the LSDA.
4568     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4569     if (CallSiteIndex) {
4570       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4571       // Now that the call site is handled, stop tracking it.
4572       MMI.setCurrentCallSite(0);
4573     }
4574 
4575     // Both PendingLoads and PendingExports must be flushed here;
4576     // this call might not return.
4577     (void)getRoot();
4578     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4579   }
4580 
4581   // Check if target-independent constraints permit a tail call here.
4582   // Target-dependent constraints are checked within TLI.LowerCallTo.
4583   if (isTailCall &&
4584       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4585     isTailCall = false;
4586 
4587   std::pair<SDValue,SDValue> Result =
4588     TLI.LowerCallTo(getRoot(), RetTy,
4589                     CS.paramHasAttr(0, Attribute::SExt),
4590                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4591                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4592                     CS.getCallingConv(),
4593                     isTailCall,
4594                     !CS.getInstruction()->use_empty(),
4595                     Callee, Args, DAG, getCurDebugLoc());
4596   assert((isTailCall || Result.second.getNode()) &&
4597          "Non-null chain expected with non-tail call!");
4598   assert((Result.second.getNode() || !Result.first.getNode()) &&
4599          "Null value expected with tail call!");
4600   if (Result.first.getNode()) {
4601     setValue(CS.getInstruction(), Result.first);
4602   } else if (!CanLowerReturn && Result.second.getNode()) {
4603     // The instruction result is the result of loading from the
4604     // hidden sret parameter.
4605     SmallVector<EVT, 1> PVTs;
4606     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4607 
4608     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4609     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4610     EVT PtrVT = PVTs[0];
4611     unsigned NumValues = OutVTs.size();
4612     SmallVector<SDValue, 4> Values(NumValues);
4613     SmallVector<SDValue, 4> Chains(NumValues);
4614 
4615     for (unsigned i = 0; i < NumValues; ++i) {
4616       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4617                                 DemoteStackSlot,
4618                                 DAG.getConstant(Offsets[i], PtrVT));
4619       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4620                               Add, NULL, Offsets[i], false, false, 1);
4621       Values[i] = L;
4622       Chains[i] = L.getValue(1);
4623     }
4624 
4625     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4626                                 MVT::Other, &Chains[0], NumValues);
4627     PendingLoads.push_back(Chain);
4628 
4629     // Collect the legal value parts into potentially illegal values
4630     // that correspond to the original function's return values.
4631     SmallVector<EVT, 4> RetTys;
4632     RetTy = FTy->getReturnType();
4633     ComputeValueVTs(TLI, RetTy, RetTys);
4634     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4635     SmallVector<SDValue, 4> ReturnValues;
4636     unsigned CurReg = 0;
4637     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4638       EVT VT = RetTys[I];
4639       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4640       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4641 
4642       SDValue ReturnValue =
4643         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4644                          RegisterVT, VT, AssertOp);
4645       ReturnValues.push_back(ReturnValue);
4646       CurReg += NumRegs;
4647     }
4648 
4649     setValue(CS.getInstruction(),
4650              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4651                          DAG.getVTList(&RetTys[0], RetTys.size()),
4652                          &ReturnValues[0], ReturnValues.size()));
4653 
4654   }
4655 
4656   // As a special case, a null chain means that a tail call has been emitted and
4657   // the DAG root is already updated.
4658   if (Result.second.getNode())
4659     DAG.setRoot(Result.second);
4660   else
4661     HasTailCall = true;
4662 
4663   if (LandingPad) {
4664     // Insert a label at the end of the invoke call to mark the try range.  This
4665     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4666     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4667     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4668 
4669     // Inform MachineModuleInfo of range.
4670     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4671   }
4672 }
4673 
4674 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4675 /// value is equal or not-equal to zero.
4676 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4677   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4678        UI != E; ++UI) {
4679     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4680       if (IC->isEquality())
4681         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4682           if (C->isNullValue())
4683             continue;
4684     // Unknown instruction.
4685     return false;
4686   }
4687   return true;
4688 }
4689 
4690 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4691                              const Type *LoadTy,
4692                              SelectionDAGBuilder &Builder) {
4693 
4694   // Check to see if this load can be trivially constant folded, e.g. if the
4695   // input is from a string literal.
4696   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4697     // Cast pointer to the type we really want to load.
4698     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4699                                          PointerType::getUnqual(LoadTy));
4700 
4701     if (const Constant *LoadCst =
4702           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4703                                        Builder.TD))
4704       return Builder.getValue(LoadCst);
4705   }
4706 
4707   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4708   // still constant memory, the input chain can be the entry node.
4709   SDValue Root;
4710   bool ConstantMemory = false;
4711 
4712   // Do not serialize (non-volatile) loads of constant memory with anything.
4713   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4714     Root = Builder.DAG.getEntryNode();
4715     ConstantMemory = true;
4716   } else {
4717     // Do not serialize non-volatile loads against each other.
4718     Root = Builder.DAG.getRoot();
4719   }
4720 
4721   SDValue Ptr = Builder.getValue(PtrVal);
4722   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4723                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4724                                         false /*volatile*/,
4725                                         false /*nontemporal*/, 1 /* align=1 */);
4726 
4727   if (!ConstantMemory)
4728     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4729   return LoadVal;
4730 }
4731 
4732 
4733 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4734 /// If so, return true and lower it, otherwise return false and it will be
4735 /// lowered like a normal call.
4736 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4737   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4738   if (I.getNumOperands() != 4)
4739     return false;
4740 
4741   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4742   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4743       !I.getOperand(3)->getType()->isIntegerTy() ||
4744       !I.getType()->isIntegerTy())
4745     return false;
4746 
4747   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4748 
4749   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4750   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4751   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4752     bool ActuallyDoIt = true;
4753     MVT LoadVT;
4754     const Type *LoadTy;
4755     switch (Size->getZExtValue()) {
4756     default:
4757       LoadVT = MVT::Other;
4758       LoadTy = 0;
4759       ActuallyDoIt = false;
4760       break;
4761     case 2:
4762       LoadVT = MVT::i16;
4763       LoadTy = Type::getInt16Ty(Size->getContext());
4764       break;
4765     case 4:
4766       LoadVT = MVT::i32;
4767       LoadTy = Type::getInt32Ty(Size->getContext());
4768       break;
4769     case 8:
4770       LoadVT = MVT::i64;
4771       LoadTy = Type::getInt64Ty(Size->getContext());
4772       break;
4773         /*
4774     case 16:
4775       LoadVT = MVT::v4i32;
4776       LoadTy = Type::getInt32Ty(Size->getContext());
4777       LoadTy = VectorType::get(LoadTy, 4);
4778       break;
4779          */
4780     }
4781 
4782     // This turns into unaligned loads.  We only do this if the target natively
4783     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4784     // we'll only produce a small number of byte loads.
4785 
4786     // Require that we can find a legal MVT, and only do this if the target
4787     // supports unaligned loads of that type.  Expanding into byte loads would
4788     // bloat the code.
4789     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4790       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4791       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4792       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4793         ActuallyDoIt = false;
4794     }
4795 
4796     if (ActuallyDoIt) {
4797       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4798       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4799 
4800       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4801                                  ISD::SETNE);
4802       EVT CallVT = TLI.getValueType(I.getType(), true);
4803       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4804       return true;
4805     }
4806   }
4807 
4808 
4809   return false;
4810 }
4811 
4812 
4813 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4814   const char *RenameFn = 0;
4815   if (Function *F = I.getCalledFunction()) {
4816     if (F->isDeclaration()) {
4817       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4818       if (II) {
4819         if (unsigned IID = II->getIntrinsicID(F)) {
4820           RenameFn = visitIntrinsicCall(I, IID);
4821           if (!RenameFn)
4822             return;
4823         }
4824       }
4825       if (unsigned IID = F->getIntrinsicID()) {
4826         RenameFn = visitIntrinsicCall(I, IID);
4827         if (!RenameFn)
4828           return;
4829       }
4830     }
4831 
4832     // Check for well-known libc/libm calls.  If the function is internal, it
4833     // can't be a library call.
4834     if (!F->hasLocalLinkage() && F->hasName()) {
4835       StringRef Name = F->getName();
4836       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4837         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4838             I.getOperand(1)->getType()->isFloatingPointTy() &&
4839             I.getType() == I.getOperand(1)->getType() &&
4840             I.getType() == I.getOperand(2)->getType()) {
4841           SDValue LHS = getValue(I.getOperand(1));
4842           SDValue RHS = getValue(I.getOperand(2));
4843           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4844                                    LHS.getValueType(), LHS, RHS));
4845           return;
4846         }
4847       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4848         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4849             I.getOperand(1)->getType()->isFloatingPointTy() &&
4850             I.getType() == I.getOperand(1)->getType()) {
4851           SDValue Tmp = getValue(I.getOperand(1));
4852           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4853                                    Tmp.getValueType(), Tmp));
4854           return;
4855         }
4856       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4857         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4858             I.getOperand(1)->getType()->isFloatingPointTy() &&
4859             I.getType() == I.getOperand(1)->getType() &&
4860             I.onlyReadsMemory()) {
4861           SDValue Tmp = getValue(I.getOperand(1));
4862           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4863                                    Tmp.getValueType(), Tmp));
4864           return;
4865         }
4866       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4867         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4868             I.getOperand(1)->getType()->isFloatingPointTy() &&
4869             I.getType() == I.getOperand(1)->getType() &&
4870             I.onlyReadsMemory()) {
4871           SDValue Tmp = getValue(I.getOperand(1));
4872           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4873                                    Tmp.getValueType(), Tmp));
4874           return;
4875         }
4876       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4877         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4878             I.getOperand(1)->getType()->isFloatingPointTy() &&
4879             I.getType() == I.getOperand(1)->getType() &&
4880             I.onlyReadsMemory()) {
4881           SDValue Tmp = getValue(I.getOperand(1));
4882           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4883                                    Tmp.getValueType(), Tmp));
4884           return;
4885         }
4886       } else if (Name == "memcmp") {
4887         if (visitMemCmpCall(I))
4888           return;
4889       }
4890     }
4891   } else if (isa<InlineAsm>(I.getOperand(0))) {
4892     visitInlineAsm(&I);
4893     return;
4894   }
4895 
4896   SDValue Callee;
4897   if (!RenameFn)
4898     Callee = getValue(I.getOperand(0));
4899   else
4900     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4901 
4902   // Check if we can potentially perform a tail call. More detailed checking is
4903   // be done within LowerCallTo, after more information about the call is known.
4904   LowerCallTo(&I, Callee, I.isTailCall());
4905 }
4906 
4907 namespace llvm {
4908 
4909 /// AsmOperandInfo - This contains information for each constraint that we are
4910 /// lowering.
4911 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4912     public TargetLowering::AsmOperandInfo {
4913 public:
4914   /// CallOperand - If this is the result output operand or a clobber
4915   /// this is null, otherwise it is the incoming operand to the CallInst.
4916   /// This gets modified as the asm is processed.
4917   SDValue CallOperand;
4918 
4919   /// AssignedRegs - If this is a register or register class operand, this
4920   /// contains the set of register corresponding to the operand.
4921   RegsForValue AssignedRegs;
4922 
4923   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4924     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4925   }
4926 
4927   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4928   /// busy in OutputRegs/InputRegs.
4929   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4930                          std::set<unsigned> &OutputRegs,
4931                          std::set<unsigned> &InputRegs,
4932                          const TargetRegisterInfo &TRI) const {
4933     if (isOutReg) {
4934       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4935         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4936     }
4937     if (isInReg) {
4938       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4939         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4940     }
4941   }
4942 
4943   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4944   /// corresponds to.  If there is no Value* for this operand, it returns
4945   /// MVT::Other.
4946   EVT getCallOperandValEVT(LLVMContext &Context,
4947                            const TargetLowering &TLI,
4948                            const TargetData *TD) const {
4949     if (CallOperandVal == 0) return MVT::Other;
4950 
4951     if (isa<BasicBlock>(CallOperandVal))
4952       return TLI.getPointerTy();
4953 
4954     const llvm::Type *OpTy = CallOperandVal->getType();
4955 
4956     // If this is an indirect operand, the operand is a pointer to the
4957     // accessed type.
4958     if (isIndirect) {
4959       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4960       if (!PtrTy)
4961         report_fatal_error("Indirect operand for inline asm not a pointer!");
4962       OpTy = PtrTy->getElementType();
4963     }
4964 
4965     // If OpTy is not a single value, it may be a struct/union that we
4966     // can tile with integers.
4967     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4968       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4969       switch (BitSize) {
4970       default: break;
4971       case 1:
4972       case 8:
4973       case 16:
4974       case 32:
4975       case 64:
4976       case 128:
4977         OpTy = IntegerType::get(Context, BitSize);
4978         break;
4979       }
4980     }
4981 
4982     return TLI.getValueType(OpTy, true);
4983   }
4984 
4985 private:
4986   /// MarkRegAndAliases - Mark the specified register and all aliases in the
4987   /// specified set.
4988   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4989                                 const TargetRegisterInfo &TRI) {
4990     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4991     Regs.insert(Reg);
4992     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4993       for (; *Aliases; ++Aliases)
4994         Regs.insert(*Aliases);
4995   }
4996 };
4997 
4998 } // end llvm namespace.
4999 
5000 /// isAllocatableRegister - If the specified register is safe to allocate,
5001 /// i.e. it isn't a stack pointer or some other special register, return the
5002 /// register class for the register.  Otherwise, return null.
5003 static const TargetRegisterClass *
5004 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5005                       const TargetLowering &TLI,
5006                       const TargetRegisterInfo *TRI) {
5007   EVT FoundVT = MVT::Other;
5008   const TargetRegisterClass *FoundRC = 0;
5009   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5010        E = TRI->regclass_end(); RCI != E; ++RCI) {
5011     EVT ThisVT = MVT::Other;
5012 
5013     const TargetRegisterClass *RC = *RCI;
5014     // If none of the value types for this register class are valid, we
5015     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5016     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5017          I != E; ++I) {
5018       if (TLI.isTypeLegal(*I)) {
5019         // If we have already found this register in a different register class,
5020         // choose the one with the largest VT specified.  For example, on
5021         // PowerPC, we favor f64 register classes over f32.
5022         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5023           ThisVT = *I;
5024           break;
5025         }
5026       }
5027     }
5028 
5029     if (ThisVT == MVT::Other) continue;
5030 
5031     // NOTE: This isn't ideal.  In particular, this might allocate the
5032     // frame pointer in functions that need it (due to them not being taken
5033     // out of allocation, because a variable sized allocation hasn't been seen
5034     // yet).  This is a slight code pessimization, but should still work.
5035     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5036          E = RC->allocation_order_end(MF); I != E; ++I)
5037       if (*I == Reg) {
5038         // We found a matching register class.  Keep looking at others in case
5039         // we find one with larger registers that this physreg is also in.
5040         FoundRC = RC;
5041         FoundVT = ThisVT;
5042         break;
5043       }
5044   }
5045   return FoundRC;
5046 }
5047 
5048 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5049 /// specified operand.  We prefer to assign virtual registers, to allow the
5050 /// register allocator to handle the assignment process.  However, if the asm
5051 /// uses features that we can't model on machineinstrs, we have SDISel do the
5052 /// allocation.  This produces generally horrible, but correct, code.
5053 ///
5054 ///   OpInfo describes the operand.
5055 ///   Input and OutputRegs are the set of already allocated physical registers.
5056 ///
5057 void SelectionDAGBuilder::
5058 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5059                      std::set<unsigned> &OutputRegs,
5060                      std::set<unsigned> &InputRegs) {
5061   LLVMContext &Context = FuncInfo.Fn->getContext();
5062 
5063   // Compute whether this value requires an input register, an output register,
5064   // or both.
5065   bool isOutReg = false;
5066   bool isInReg = false;
5067   switch (OpInfo.Type) {
5068   case InlineAsm::isOutput:
5069     isOutReg = true;
5070 
5071     // If there is an input constraint that matches this, we need to reserve
5072     // the input register so no other inputs allocate to it.
5073     isInReg = OpInfo.hasMatchingInput();
5074     break;
5075   case InlineAsm::isInput:
5076     isInReg = true;
5077     isOutReg = false;
5078     break;
5079   case InlineAsm::isClobber:
5080     isOutReg = true;
5081     isInReg = true;
5082     break;
5083   }
5084 
5085 
5086   MachineFunction &MF = DAG.getMachineFunction();
5087   SmallVector<unsigned, 4> Regs;
5088 
5089   // If this is a constraint for a single physreg, or a constraint for a
5090   // register class, find it.
5091   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5092     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5093                                      OpInfo.ConstraintVT);
5094 
5095   unsigned NumRegs = 1;
5096   if (OpInfo.ConstraintVT != MVT::Other) {
5097     // If this is a FP input in an integer register (or visa versa) insert a bit
5098     // cast of the input value.  More generally, handle any case where the input
5099     // value disagrees with the register class we plan to stick this in.
5100     if (OpInfo.Type == InlineAsm::isInput &&
5101         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5102       // Try to convert to the first EVT that the reg class contains.  If the
5103       // types are identical size, use a bitcast to convert (e.g. two differing
5104       // vector types).
5105       EVT RegVT = *PhysReg.second->vt_begin();
5106       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5107         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5108                                          RegVT, OpInfo.CallOperand);
5109         OpInfo.ConstraintVT = RegVT;
5110       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5111         // If the input is a FP value and we want it in FP registers, do a
5112         // bitcast to the corresponding integer type.  This turns an f64 value
5113         // into i64, which can be passed with two i32 values on a 32-bit
5114         // machine.
5115         RegVT = EVT::getIntegerVT(Context,
5116                                   OpInfo.ConstraintVT.getSizeInBits());
5117         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5118                                          RegVT, OpInfo.CallOperand);
5119         OpInfo.ConstraintVT = RegVT;
5120       }
5121     }
5122 
5123     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5124   }
5125 
5126   EVT RegVT;
5127   EVT ValueVT = OpInfo.ConstraintVT;
5128 
5129   // If this is a constraint for a specific physical register, like {r17},
5130   // assign it now.
5131   if (unsigned AssignedReg = PhysReg.first) {
5132     const TargetRegisterClass *RC = PhysReg.second;
5133     if (OpInfo.ConstraintVT == MVT::Other)
5134       ValueVT = *RC->vt_begin();
5135 
5136     // Get the actual register value type.  This is important, because the user
5137     // may have asked for (e.g.) the AX register in i32 type.  We need to
5138     // remember that AX is actually i16 to get the right extension.
5139     RegVT = *RC->vt_begin();
5140 
5141     // This is a explicit reference to a physical register.
5142     Regs.push_back(AssignedReg);
5143 
5144     // If this is an expanded reference, add the rest of the regs to Regs.
5145     if (NumRegs != 1) {
5146       TargetRegisterClass::iterator I = RC->begin();
5147       for (; *I != AssignedReg; ++I)
5148         assert(I != RC->end() && "Didn't find reg!");
5149 
5150       // Already added the first reg.
5151       --NumRegs; ++I;
5152       for (; NumRegs; --NumRegs, ++I) {
5153         assert(I != RC->end() && "Ran out of registers to allocate!");
5154         Regs.push_back(*I);
5155       }
5156     }
5157 
5158     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5159     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5160     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5161     return;
5162   }
5163 
5164   // Otherwise, if this was a reference to an LLVM register class, create vregs
5165   // for this reference.
5166   if (const TargetRegisterClass *RC = PhysReg.second) {
5167     RegVT = *RC->vt_begin();
5168     if (OpInfo.ConstraintVT == MVT::Other)
5169       ValueVT = RegVT;
5170 
5171     // Create the appropriate number of virtual registers.
5172     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5173     for (; NumRegs; --NumRegs)
5174       Regs.push_back(RegInfo.createVirtualRegister(RC));
5175 
5176     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5177     return;
5178   }
5179 
5180   // This is a reference to a register class that doesn't directly correspond
5181   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5182   // registers from the class.
5183   std::vector<unsigned> RegClassRegs
5184     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5185                                             OpInfo.ConstraintVT);
5186 
5187   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5188   unsigned NumAllocated = 0;
5189   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5190     unsigned Reg = RegClassRegs[i];
5191     // See if this register is available.
5192     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5193         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5194       // Make sure we find consecutive registers.
5195       NumAllocated = 0;
5196       continue;
5197     }
5198 
5199     // Check to see if this register is allocatable (i.e. don't give out the
5200     // stack pointer).
5201     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5202     if (!RC) {        // Couldn't allocate this register.
5203       // Reset NumAllocated to make sure we return consecutive registers.
5204       NumAllocated = 0;
5205       continue;
5206     }
5207 
5208     // Okay, this register is good, we can use it.
5209     ++NumAllocated;
5210 
5211     // If we allocated enough consecutive registers, succeed.
5212     if (NumAllocated == NumRegs) {
5213       unsigned RegStart = (i-NumAllocated)+1;
5214       unsigned RegEnd   = i+1;
5215       // Mark all of the allocated registers used.
5216       for (unsigned i = RegStart; i != RegEnd; ++i)
5217         Regs.push_back(RegClassRegs[i]);
5218 
5219       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5220                                          OpInfo.ConstraintVT);
5221       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5222       return;
5223     }
5224   }
5225 
5226   // Otherwise, we couldn't allocate enough registers for this.
5227 }
5228 
5229 /// visitInlineAsm - Handle a call to an InlineAsm object.
5230 ///
5231 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5232   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5233 
5234   /// ConstraintOperands - Information about all of the constraints.
5235   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5236 
5237   std::set<unsigned> OutputRegs, InputRegs;
5238 
5239   // Do a prepass over the constraints, canonicalizing them, and building up the
5240   // ConstraintOperands list.
5241   std::vector<InlineAsm::ConstraintInfo>
5242     ConstraintInfos = IA->ParseConstraints();
5243 
5244   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5245 
5246   SDValue Chain, Flag;
5247 
5248   // We won't need to flush pending loads if this asm doesn't touch
5249   // memory and is nonvolatile.
5250   if (hasMemory || IA->hasSideEffects())
5251     Chain = getRoot();
5252   else
5253     Chain = DAG.getRoot();
5254 
5255   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5256   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5257   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5258     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5259     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5260 
5261     EVT OpVT = MVT::Other;
5262 
5263     // Compute the value type for each operand.
5264     switch (OpInfo.Type) {
5265     case InlineAsm::isOutput:
5266       // Indirect outputs just consume an argument.
5267       if (OpInfo.isIndirect) {
5268         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5269         break;
5270       }
5271 
5272       // The return value of the call is this value.  As such, there is no
5273       // corresponding argument.
5274       assert(!CS.getType()->isVoidTy() &&
5275              "Bad inline asm!");
5276       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5277         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5278       } else {
5279         assert(ResNo == 0 && "Asm only has one result!");
5280         OpVT = TLI.getValueType(CS.getType());
5281       }
5282       ++ResNo;
5283       break;
5284     case InlineAsm::isInput:
5285       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5286       break;
5287     case InlineAsm::isClobber:
5288       // Nothing to do.
5289       break;
5290     }
5291 
5292     // If this is an input or an indirect output, process the call argument.
5293     // BasicBlocks are labels, currently appearing only in asm's.
5294     if (OpInfo.CallOperandVal) {
5295       // Strip bitcasts, if any.  This mostly comes up for functions.
5296       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5297 
5298       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5299         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5300       } else {
5301         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5302       }
5303 
5304       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5305     }
5306 
5307     OpInfo.ConstraintVT = OpVT;
5308   }
5309 
5310   // Second pass over the constraints: compute which constraint option to use
5311   // and assign registers to constraints that want a specific physreg.
5312   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5313     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5314 
5315     // If this is an output operand with a matching input operand, look up the
5316     // matching input. If their types mismatch, e.g. one is an integer, the
5317     // other is floating point, or their sizes are different, flag it as an
5318     // error.
5319     if (OpInfo.hasMatchingInput()) {
5320       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5321 
5322       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5323         if ((OpInfo.ConstraintVT.isInteger() !=
5324              Input.ConstraintVT.isInteger()) ||
5325             (OpInfo.ConstraintVT.getSizeInBits() !=
5326              Input.ConstraintVT.getSizeInBits())) {
5327           report_fatal_error("Unsupported asm: input constraint"
5328                              " with a matching output constraint of"
5329                              " incompatible type!");
5330         }
5331         Input.ConstraintVT = OpInfo.ConstraintVT;
5332       }
5333     }
5334 
5335     // Compute the constraint code and ConstraintType to use.
5336     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5337 
5338     // If this is a memory input, and if the operand is not indirect, do what we
5339     // need to to provide an address for the memory input.
5340     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5341         !OpInfo.isIndirect) {
5342       assert(OpInfo.Type == InlineAsm::isInput &&
5343              "Can only indirectify direct input operands!");
5344 
5345       // Memory operands really want the address of the value.  If we don't have
5346       // an indirect input, put it in the constpool if we can, otherwise spill
5347       // it to a stack slot.
5348 
5349       // If the operand is a float, integer, or vector constant, spill to a
5350       // constant pool entry to get its address.
5351       const Value *OpVal = OpInfo.CallOperandVal;
5352       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5353           isa<ConstantVector>(OpVal)) {
5354         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5355                                                  TLI.getPointerTy());
5356       } else {
5357         // Otherwise, create a stack slot and emit a store to it before the
5358         // asm.
5359         const Type *Ty = OpVal->getType();
5360         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5361         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5362         MachineFunction &MF = DAG.getMachineFunction();
5363         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5364         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5365         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5366                              OpInfo.CallOperand, StackSlot, NULL, 0,
5367                              false, false, 0);
5368         OpInfo.CallOperand = StackSlot;
5369       }
5370 
5371       // There is no longer a Value* corresponding to this operand.
5372       OpInfo.CallOperandVal = 0;
5373 
5374       // It is now an indirect operand.
5375       OpInfo.isIndirect = true;
5376     }
5377 
5378     // If this constraint is for a specific register, allocate it before
5379     // anything else.
5380     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5381       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5382   }
5383 
5384   ConstraintInfos.clear();
5385 
5386   // Second pass - Loop over all of the operands, assigning virtual or physregs
5387   // to register class operands.
5388   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5389     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5390 
5391     // C_Register operands have already been allocated, Other/Memory don't need
5392     // to be.
5393     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5394       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5395   }
5396 
5397   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5398   std::vector<SDValue> AsmNodeOperands;
5399   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5400   AsmNodeOperands.push_back(
5401           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5402                                       TLI.getPointerTy()));
5403 
5404   // If we have a !srcloc metadata node associated with it, we want to attach
5405   // this to the ultimately generated inline asm machineinstr.  To do this, we
5406   // pass in the third operand as this (potentially null) inline asm MDNode.
5407   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5408   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5409 
5410   // Loop over all of the inputs, copying the operand values into the
5411   // appropriate registers and processing the output regs.
5412   RegsForValue RetValRegs;
5413 
5414   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5415   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5416 
5417   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5418     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5419 
5420     switch (OpInfo.Type) {
5421     case InlineAsm::isOutput: {
5422       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5423           OpInfo.ConstraintType != TargetLowering::C_Register) {
5424         // Memory output, or 'other' output (e.g. 'X' constraint).
5425         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5426 
5427         // Add information to the INLINEASM node to know about this output.
5428         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5429         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5430                                                         TLI.getPointerTy()));
5431         AsmNodeOperands.push_back(OpInfo.CallOperand);
5432         break;
5433       }
5434 
5435       // Otherwise, this is a register or register class output.
5436 
5437       // Copy the output from the appropriate register.  Find a register that
5438       // we can use.
5439       if (OpInfo.AssignedRegs.Regs.empty())
5440         report_fatal_error("Couldn't allocate output reg for constraint '" +
5441                            Twine(OpInfo.ConstraintCode) + "'!");
5442 
5443       // If this is an indirect operand, store through the pointer after the
5444       // asm.
5445       if (OpInfo.isIndirect) {
5446         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5447                                                       OpInfo.CallOperandVal));
5448       } else {
5449         // This is the result value of the call.
5450         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5451         // Concatenate this output onto the outputs list.
5452         RetValRegs.append(OpInfo.AssignedRegs);
5453       }
5454 
5455       // Add information to the INLINEASM node to know that this register is
5456       // set.
5457       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5458                                            InlineAsm::Kind_RegDefEarlyClobber :
5459                                                InlineAsm::Kind_RegDef,
5460                                                false,
5461                                                0,
5462                                                DAG,
5463                                                AsmNodeOperands);
5464       break;
5465     }
5466     case InlineAsm::isInput: {
5467       SDValue InOperandVal = OpInfo.CallOperand;
5468 
5469       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5470         // If this is required to match an output register we have already set,
5471         // just use its register.
5472         unsigned OperandNo = OpInfo.getMatchedOperand();
5473 
5474         // Scan until we find the definition we already emitted of this operand.
5475         // When we find it, create a RegsForValue operand.
5476         unsigned CurOp = InlineAsm::Op_FirstOperand;
5477         for (; OperandNo; --OperandNo) {
5478           // Advance to the next operand.
5479           unsigned OpFlag =
5480             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5481           assert((InlineAsm::isRegDefKind(OpFlag) ||
5482                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5483                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5484           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5485         }
5486 
5487         unsigned OpFlag =
5488           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5489         if (InlineAsm::isRegDefKind(OpFlag) ||
5490             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5491           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5492           if (OpInfo.isIndirect) {
5493             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5494             LLVMContext &Ctx = *DAG.getContext();
5495             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5496                           " don't know how to handle tied "
5497                           "indirect register inputs");
5498           }
5499 
5500           RegsForValue MatchedRegs;
5501           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5502           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5503           MatchedRegs.RegVTs.push_back(RegVT);
5504           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5505           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5506                i != e; ++i)
5507             MatchedRegs.Regs.push_back
5508               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5509 
5510           // Use the produced MatchedRegs object to
5511           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5512                                     Chain, &Flag);
5513           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5514                                            true, OpInfo.getMatchedOperand(),
5515                                            DAG, AsmNodeOperands);
5516           break;
5517         }
5518 
5519         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5520         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5521                "Unexpected number of operands");
5522         // Add information to the INLINEASM node to know about this input.
5523         // See InlineAsm.h isUseOperandTiedToDef.
5524         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5525                                                     OpInfo.getMatchedOperand());
5526         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5527                                                         TLI.getPointerTy()));
5528         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5529         break;
5530       }
5531 
5532       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5533         assert(!OpInfo.isIndirect &&
5534                "Don't know how to handle indirect other inputs yet!");
5535 
5536         std::vector<SDValue> Ops;
5537         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5538                                          hasMemory, Ops, DAG);
5539         if (Ops.empty())
5540           report_fatal_error("Invalid operand for inline asm constraint '" +
5541                              Twine(OpInfo.ConstraintCode) + "'!");
5542 
5543         // Add information to the INLINEASM node to know about this input.
5544         unsigned ResOpType =
5545           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5546         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5547                                                         TLI.getPointerTy()));
5548         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5549         break;
5550       }
5551 
5552       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5553         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5554         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5555                "Memory operands expect pointer values");
5556 
5557         // Add information to the INLINEASM node to know about this input.
5558         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5559         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5560                                                         TLI.getPointerTy()));
5561         AsmNodeOperands.push_back(InOperandVal);
5562         break;
5563       }
5564 
5565       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5566               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5567              "Unknown constraint type!");
5568       assert(!OpInfo.isIndirect &&
5569              "Don't know how to handle indirect register inputs yet!");
5570 
5571       // Copy the input into the appropriate registers.
5572       if (OpInfo.AssignedRegs.Regs.empty() ||
5573           !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5574         report_fatal_error("Couldn't allocate input reg for constraint '" +
5575                            Twine(OpInfo.ConstraintCode) + "'!");
5576 
5577       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5578                                         Chain, &Flag);
5579 
5580       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5581                                                DAG, AsmNodeOperands);
5582       break;
5583     }
5584     case InlineAsm::isClobber: {
5585       // Add the clobbered value to the operand list, so that the register
5586       // allocator is aware that the physreg got clobbered.
5587       if (!OpInfo.AssignedRegs.Regs.empty())
5588         OpInfo.AssignedRegs.AddInlineAsmOperands(
5589                                             InlineAsm::Kind_RegDefEarlyClobber,
5590                                                  false, 0, DAG,
5591                                                  AsmNodeOperands);
5592       break;
5593     }
5594     }
5595   }
5596 
5597   // Finish up input operands.  Set the input chain and add the flag last.
5598   AsmNodeOperands[0] = Chain;
5599   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5600 
5601   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5602                       DAG.getVTList(MVT::Other, MVT::Flag),
5603                       &AsmNodeOperands[0], AsmNodeOperands.size());
5604   Flag = Chain.getValue(1);
5605 
5606   // If this asm returns a register value, copy the result from that register
5607   // and set it as the value of the call.
5608   if (!RetValRegs.Regs.empty()) {
5609     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5610                                              Chain, &Flag);
5611 
5612     // FIXME: Why don't we do this for inline asms with MRVs?
5613     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5614       EVT ResultType = TLI.getValueType(CS.getType());
5615 
5616       // If any of the results of the inline asm is a vector, it may have the
5617       // wrong width/num elts.  This can happen for register classes that can
5618       // contain multiple different value types.  The preg or vreg allocated may
5619       // not have the same VT as was expected.  Convert it to the right type
5620       // with bit_convert.
5621       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5622         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5623                           ResultType, Val);
5624 
5625       } else if (ResultType != Val.getValueType() &&
5626                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5627         // If a result value was tied to an input value, the computed result may
5628         // have a wider width than the expected result.  Extract the relevant
5629         // portion.
5630         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5631       }
5632 
5633       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5634     }
5635 
5636     setValue(CS.getInstruction(), Val);
5637     // Don't need to use this as a chain in this case.
5638     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5639       return;
5640   }
5641 
5642   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5643 
5644   // Process indirect outputs, first output all of the flagged copies out of
5645   // physregs.
5646   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5647     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5648     const Value *Ptr = IndirectStoresToEmit[i].second;
5649     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5650                                              Chain, &Flag);
5651     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5652   }
5653 
5654   // Emit the non-flagged stores from the physregs.
5655   SmallVector<SDValue, 8> OutChains;
5656   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5657     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5658                                StoresToEmit[i].first,
5659                                getValue(StoresToEmit[i].second),
5660                                StoresToEmit[i].second, 0,
5661                                false, false, 0);
5662     OutChains.push_back(Val);
5663   }
5664 
5665   if (!OutChains.empty())
5666     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5667                         &OutChains[0], OutChains.size());
5668 
5669   DAG.setRoot(Chain);
5670 }
5671 
5672 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5673   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5674                           MVT::Other, getRoot(),
5675                           getValue(I.getOperand(1)),
5676                           DAG.getSrcValue(I.getOperand(1))));
5677 }
5678 
5679 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5680   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5681                            getRoot(), getValue(I.getOperand(0)),
5682                            DAG.getSrcValue(I.getOperand(0)));
5683   setValue(&I, V);
5684   DAG.setRoot(V.getValue(1));
5685 }
5686 
5687 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5688   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5689                           MVT::Other, getRoot(),
5690                           getValue(I.getOperand(1)),
5691                           DAG.getSrcValue(I.getOperand(1))));
5692 }
5693 
5694 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5695   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5696                           MVT::Other, getRoot(),
5697                           getValue(I.getOperand(1)),
5698                           getValue(I.getOperand(2)),
5699                           DAG.getSrcValue(I.getOperand(1)),
5700                           DAG.getSrcValue(I.getOperand(2))));
5701 }
5702 
5703 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5704 /// implementation, which just calls LowerCall.
5705 /// FIXME: When all targets are
5706 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5707 std::pair<SDValue, SDValue>
5708 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5709                             bool RetSExt, bool RetZExt, bool isVarArg,
5710                             bool isInreg, unsigned NumFixedArgs,
5711                             CallingConv::ID CallConv, bool isTailCall,
5712                             bool isReturnValueUsed,
5713                             SDValue Callee,
5714                             ArgListTy &Args, SelectionDAG &DAG,
5715                             DebugLoc dl) const {
5716   // Handle all of the outgoing arguments.
5717   SmallVector<ISD::OutputArg, 32> Outs;
5718   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5719     SmallVector<EVT, 4> ValueVTs;
5720     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5721     for (unsigned Value = 0, NumValues = ValueVTs.size();
5722          Value != NumValues; ++Value) {
5723       EVT VT = ValueVTs[Value];
5724       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5725       SDValue Op = SDValue(Args[i].Node.getNode(),
5726                            Args[i].Node.getResNo() + Value);
5727       ISD::ArgFlagsTy Flags;
5728       unsigned OriginalAlignment =
5729         getTargetData()->getABITypeAlignment(ArgTy);
5730 
5731       if (Args[i].isZExt)
5732         Flags.setZExt();
5733       if (Args[i].isSExt)
5734         Flags.setSExt();
5735       if (Args[i].isInReg)
5736         Flags.setInReg();
5737       if (Args[i].isSRet)
5738         Flags.setSRet();
5739       if (Args[i].isByVal) {
5740         Flags.setByVal();
5741         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5742         const Type *ElementTy = Ty->getElementType();
5743         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5744         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5745         // For ByVal, alignment should come from FE.  BE will guess if this
5746         // info is not there but there are cases it cannot get right.
5747         if (Args[i].Alignment)
5748           FrameAlign = Args[i].Alignment;
5749         Flags.setByValAlign(FrameAlign);
5750         Flags.setByValSize(FrameSize);
5751       }
5752       if (Args[i].isNest)
5753         Flags.setNest();
5754       Flags.setOrigAlign(OriginalAlignment);
5755 
5756       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5757       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5758       SmallVector<SDValue, 4> Parts(NumParts);
5759       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5760 
5761       if (Args[i].isSExt)
5762         ExtendKind = ISD::SIGN_EXTEND;
5763       else if (Args[i].isZExt)
5764         ExtendKind = ISD::ZERO_EXTEND;
5765 
5766       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5767                      PartVT, ExtendKind);
5768 
5769       for (unsigned j = 0; j != NumParts; ++j) {
5770         // if it isn't first piece, alignment must be 1
5771         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5772         if (NumParts > 1 && j == 0)
5773           MyFlags.Flags.setSplit();
5774         else if (j != 0)
5775           MyFlags.Flags.setOrigAlign(1);
5776 
5777         Outs.push_back(MyFlags);
5778       }
5779     }
5780   }
5781 
5782   // Handle the incoming return values from the call.
5783   SmallVector<ISD::InputArg, 32> Ins;
5784   SmallVector<EVT, 4> RetTys;
5785   ComputeValueVTs(*this, RetTy, RetTys);
5786   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5787     EVT VT = RetTys[I];
5788     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5789     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5790     for (unsigned i = 0; i != NumRegs; ++i) {
5791       ISD::InputArg MyFlags;
5792       MyFlags.VT = RegisterVT;
5793       MyFlags.Used = isReturnValueUsed;
5794       if (RetSExt)
5795         MyFlags.Flags.setSExt();
5796       if (RetZExt)
5797         MyFlags.Flags.setZExt();
5798       if (isInreg)
5799         MyFlags.Flags.setInReg();
5800       Ins.push_back(MyFlags);
5801     }
5802   }
5803 
5804   SmallVector<SDValue, 4> InVals;
5805   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5806                     Outs, Ins, dl, DAG, InVals);
5807 
5808   // Verify that the target's LowerCall behaved as expected.
5809   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5810          "LowerCall didn't return a valid chain!");
5811   assert((!isTailCall || InVals.empty()) &&
5812          "LowerCall emitted a return value for a tail call!");
5813   assert((isTailCall || InVals.size() == Ins.size()) &&
5814          "LowerCall didn't emit the correct number of values!");
5815 
5816   // For a tail call, the return value is merely live-out and there aren't
5817   // any nodes in the DAG representing it. Return a special value to
5818   // indicate that a tail call has been emitted and no more Instructions
5819   // should be processed in the current block.
5820   if (isTailCall) {
5821     DAG.setRoot(Chain);
5822     return std::make_pair(SDValue(), SDValue());
5823   }
5824 
5825   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5826           assert(InVals[i].getNode() &&
5827                  "LowerCall emitted a null value!");
5828           assert(Ins[i].VT == InVals[i].getValueType() &&
5829                  "LowerCall emitted a value with the wrong type!");
5830         });
5831 
5832   // Collect the legal value parts into potentially illegal values
5833   // that correspond to the original function's return values.
5834   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5835   if (RetSExt)
5836     AssertOp = ISD::AssertSext;
5837   else if (RetZExt)
5838     AssertOp = ISD::AssertZext;
5839   SmallVector<SDValue, 4> ReturnValues;
5840   unsigned CurReg = 0;
5841   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5842     EVT VT = RetTys[I];
5843     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5844     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5845 
5846     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5847                                             NumRegs, RegisterVT, VT,
5848                                             AssertOp));
5849     CurReg += NumRegs;
5850   }
5851 
5852   // For a function returning void, there is no return value. We can't create
5853   // such a node, so we just return a null return value in that case. In
5854   // that case, nothing will actualy look at the value.
5855   if (ReturnValues.empty())
5856     return std::make_pair(SDValue(), Chain);
5857 
5858   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5859                             DAG.getVTList(&RetTys[0], RetTys.size()),
5860                             &ReturnValues[0], ReturnValues.size());
5861   return std::make_pair(Res, Chain);
5862 }
5863 
5864 void TargetLowering::LowerOperationWrapper(SDNode *N,
5865                                            SmallVectorImpl<SDValue> &Results,
5866                                            SelectionDAG &DAG) const {
5867   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5868   if (Res.getNode())
5869     Results.push_back(Res);
5870 }
5871 
5872 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5873   llvm_unreachable("LowerOperation not implemented for this target!");
5874   return SDValue();
5875 }
5876 
5877 void
5878 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5879   SDValue Op = getValue(V);
5880   assert((Op.getOpcode() != ISD::CopyFromReg ||
5881           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5882          "Copy from a reg to the same reg!");
5883   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5884 
5885   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5886   SDValue Chain = DAG.getEntryNode();
5887   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5888   PendingExports.push_back(Chain);
5889 }
5890 
5891 #include "llvm/CodeGen/SelectionDAGISel.h"
5892 
5893 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5894   // If this is the entry block, emit arguments.
5895   const Function &F = *LLVMBB->getParent();
5896   SelectionDAG &DAG = SDB->DAG;
5897   SDValue OldRoot = DAG.getRoot();
5898   DebugLoc dl = SDB->getCurDebugLoc();
5899   const TargetData *TD = TLI.getTargetData();
5900   SmallVector<ISD::InputArg, 16> Ins;
5901 
5902   // Check whether the function can return without sret-demotion.
5903   SmallVector<EVT, 4> OutVTs;
5904   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5905   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5906                 OutVTs, OutsFlags, TLI);
5907 
5908   FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5909                                                 F.isVarArg(),
5910                                                 OutVTs, OutsFlags, DAG);
5911   if (!FuncInfo->CanLowerReturn) {
5912     // Put in an sret pointer parameter before all the other parameters.
5913     SmallVector<EVT, 1> ValueVTs;
5914     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5915 
5916     // NOTE: Assuming that a pointer will never break down to more than one VT
5917     // or one register.
5918     ISD::ArgFlagsTy Flags;
5919     Flags.setSRet();
5920     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5921     ISD::InputArg RetArg(Flags, RegisterVT, true);
5922     Ins.push_back(RetArg);
5923   }
5924 
5925   // Set up the incoming argument description vector.
5926   unsigned Idx = 1;
5927   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5928        I != E; ++I, ++Idx) {
5929     SmallVector<EVT, 4> ValueVTs;
5930     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5931     bool isArgValueUsed = !I->use_empty();
5932     for (unsigned Value = 0, NumValues = ValueVTs.size();
5933          Value != NumValues; ++Value) {
5934       EVT VT = ValueVTs[Value];
5935       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5936       ISD::ArgFlagsTy Flags;
5937       unsigned OriginalAlignment =
5938         TD->getABITypeAlignment(ArgTy);
5939 
5940       if (F.paramHasAttr(Idx, Attribute::ZExt))
5941         Flags.setZExt();
5942       if (F.paramHasAttr(Idx, Attribute::SExt))
5943         Flags.setSExt();
5944       if (F.paramHasAttr(Idx, Attribute::InReg))
5945         Flags.setInReg();
5946       if (F.paramHasAttr(Idx, Attribute::StructRet))
5947         Flags.setSRet();
5948       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5949         Flags.setByVal();
5950         const PointerType *Ty = cast<PointerType>(I->getType());
5951         const Type *ElementTy = Ty->getElementType();
5952         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5953         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5954         // For ByVal, alignment should be passed from FE.  BE will guess if
5955         // this info is not there but there are cases it cannot get right.
5956         if (F.getParamAlignment(Idx))
5957           FrameAlign = F.getParamAlignment(Idx);
5958         Flags.setByValAlign(FrameAlign);
5959         Flags.setByValSize(FrameSize);
5960       }
5961       if (F.paramHasAttr(Idx, Attribute::Nest))
5962         Flags.setNest();
5963       Flags.setOrigAlign(OriginalAlignment);
5964 
5965       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5966       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5967       for (unsigned i = 0; i != NumRegs; ++i) {
5968         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5969         if (NumRegs > 1 && i == 0)
5970           MyFlags.Flags.setSplit();
5971         // if it isn't first piece, alignment must be 1
5972         else if (i > 0)
5973           MyFlags.Flags.setOrigAlign(1);
5974         Ins.push_back(MyFlags);
5975       }
5976     }
5977   }
5978 
5979   // Call the target to set up the argument values.
5980   SmallVector<SDValue, 8> InVals;
5981   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5982                                              F.isVarArg(), Ins,
5983                                              dl, DAG, InVals);
5984 
5985   // Verify that the target's LowerFormalArguments behaved as expected.
5986   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5987          "LowerFormalArguments didn't return a valid chain!");
5988   assert(InVals.size() == Ins.size() &&
5989          "LowerFormalArguments didn't emit the correct number of values!");
5990   DEBUG({
5991       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5992         assert(InVals[i].getNode() &&
5993                "LowerFormalArguments emitted a null value!");
5994         assert(Ins[i].VT == InVals[i].getValueType() &&
5995                "LowerFormalArguments emitted a value with the wrong type!");
5996       }
5997     });
5998 
5999   // Update the DAG with the new chain value resulting from argument lowering.
6000   DAG.setRoot(NewRoot);
6001 
6002   // Set up the argument values.
6003   unsigned i = 0;
6004   Idx = 1;
6005   if (!FuncInfo->CanLowerReturn) {
6006     // Create a virtual register for the sret pointer, and put in a copy
6007     // from the sret argument into it.
6008     SmallVector<EVT, 1> ValueVTs;
6009     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6010     EVT VT = ValueVTs[0];
6011     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6012     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6013     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6014                                         RegVT, VT, AssertOp);
6015 
6016     MachineFunction& MF = SDB->DAG.getMachineFunction();
6017     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6018     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6019     FuncInfo->DemoteRegister = SRetReg;
6020     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6021                                     SRetReg, ArgValue);
6022     DAG.setRoot(NewRoot);
6023 
6024     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6025     // Idx indexes LLVM arguments.  Don't touch it.
6026     ++i;
6027   }
6028 
6029   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6030       ++I, ++Idx) {
6031     SmallVector<SDValue, 4> ArgValues;
6032     SmallVector<EVT, 4> ValueVTs;
6033     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6034     unsigned NumValues = ValueVTs.size();
6035     for (unsigned Value = 0; Value != NumValues; ++Value) {
6036       EVT VT = ValueVTs[Value];
6037       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6038       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6039 
6040       if (!I->use_empty()) {
6041         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6042         if (F.paramHasAttr(Idx, Attribute::SExt))
6043           AssertOp = ISD::AssertSext;
6044         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6045           AssertOp = ISD::AssertZext;
6046 
6047         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6048                                              NumParts, PartVT, VT,
6049                                              AssertOp));
6050       }
6051 
6052       i += NumParts;
6053     }
6054 
6055     if (!I->use_empty()) {
6056       SDValue Res;
6057       if (!ArgValues.empty())
6058         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6059                                  SDB->getCurDebugLoc());
6060       SDB->setValue(I, Res);
6061 
6062       // If this argument is live outside of the entry block, insert a copy from
6063       // whereever we got it to the vreg that other BB's will reference it as.
6064       SDB->CopyToExportRegsIfNeeded(I);
6065     }
6066   }
6067 
6068   assert(i == InVals.size() && "Argument register count mismatch!");
6069 
6070   // Finally, if the target has anything special to do, allow it to do so.
6071   // FIXME: this should insert code into the DAG!
6072   EmitFunctionEntryCode();
6073 }
6074 
6075 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6076 /// ensure constants are generated when needed.  Remember the virtual registers
6077 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6078 /// directly add them, because expansion might result in multiple MBB's for one
6079 /// BB.  As such, the start of the BB might correspond to a different MBB than
6080 /// the end.
6081 ///
6082 void
6083 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6084   const TerminatorInst *TI = LLVMBB->getTerminator();
6085 
6086   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6087 
6088   // Check successor nodes' PHI nodes that expect a constant to be available
6089   // from this block.
6090   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6091     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6092     if (!isa<PHINode>(SuccBB->begin())) continue;
6093     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6094 
6095     // If this terminator has multiple identical successors (common for
6096     // switches), only handle each succ once.
6097     if (!SuccsHandled.insert(SuccMBB)) continue;
6098 
6099     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6100 
6101     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6102     // nodes and Machine PHI nodes, but the incoming operands have not been
6103     // emitted yet.
6104     for (BasicBlock::const_iterator I = SuccBB->begin();
6105          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6106       // Ignore dead phi's.
6107       if (PN->use_empty()) continue;
6108 
6109       unsigned Reg;
6110       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6111 
6112       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6113         unsigned &RegOut = ConstantsOut[C];
6114         if (RegOut == 0) {
6115           RegOut = FuncInfo.CreateRegForValue(C);
6116           CopyValueToVirtualRegister(C, RegOut);
6117         }
6118         Reg = RegOut;
6119       } else {
6120         Reg = FuncInfo.ValueMap[PHIOp];
6121         if (Reg == 0) {
6122           assert(isa<AllocaInst>(PHIOp) &&
6123                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6124                  "Didn't codegen value into a register!??");
6125           Reg = FuncInfo.CreateRegForValue(PHIOp);
6126           CopyValueToVirtualRegister(PHIOp, Reg);
6127         }
6128       }
6129 
6130       // Remember that this register needs to added to the machine PHI node as
6131       // the input for this MBB.
6132       SmallVector<EVT, 4> ValueVTs;
6133       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6134       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6135         EVT VT = ValueVTs[vti];
6136         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6137         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6138           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6139         Reg += NumRegisters;
6140       }
6141     }
6142   }
6143   ConstantsOut.clear();
6144 }
6145