1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<unsigned, true> 139 LimitFPPrecision("limit-float-precision", 140 cl::desc("Generate low-precision inline sequences " 141 "for some float libcalls"), 142 cl::location(LimitFloatPrecision), cl::Hidden, 143 cl::init(0)); 144 145 static cl::opt<unsigned> SwitchPeelThreshold( 146 "switch-peel-threshold", cl::Hidden, cl::init(66), 147 cl::desc("Set the case probability threshold for peeling the case from a " 148 "switch statement. A value greater than 100 will void this " 149 "optimization")); 150 151 // Limit the width of DAG chains. This is important in general to prevent 152 // DAG-based analysis from blowing up. For example, alias analysis and 153 // load clustering may not complete in reasonable time. It is difficult to 154 // recognize and avoid this situation within each individual analysis, and 155 // future analyses are likely to have the same behavior. Limiting DAG width is 156 // the safe approach and will be especially important with global DAGs. 157 // 158 // MaxParallelChains default is arbitrarily high to avoid affecting 159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 160 // sequence over this should have been converted to llvm.memcpy by the 161 // frontend. It is easy to induce this behavior with .ll code such as: 162 // %buffer = alloca [4096 x i8] 163 // %data = load [4096 x i8]* %argPtr 164 // store [4096 x i8] %data, [4096 x i8]* %buffer 165 static const unsigned MaxParallelChains = 64; 166 167 // Return the calling convention if the Value passed requires ABI mangling as it 168 // is a parameter to a function or a return value from a function which is not 169 // an intrinsic. 170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 171 if (auto *R = dyn_cast<ReturnInst>(V)) 172 return R->getParent()->getParent()->getCallingConv(); 173 174 if (auto *CI = dyn_cast<CallInst>(V)) { 175 const bool IsInlineAsm = CI->isInlineAsm(); 176 const bool IsIndirectFunctionCall = 177 !IsInlineAsm && !CI->getCalledFunction(); 178 179 // It is possible that the call instruction is an inline asm statement or an 180 // indirect function call in which case the return value of 181 // getCalledFunction() would be nullptr. 182 const bool IsInstrinsicCall = 183 !IsInlineAsm && !IsIndirectFunctionCall && 184 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 185 186 if (!IsInlineAsm && !IsInstrinsicCall) 187 return CI->getCallingConv(); 188 } 189 190 return None; 191 } 192 193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 194 const SDValue *Parts, unsigned NumParts, 195 MVT PartVT, EVT ValueVT, const Value *V, 196 Optional<CallingConv::ID> CC); 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger than ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 204 const SDValue *Parts, unsigned NumParts, 205 MVT PartVT, EVT ValueVT, const Value *V, 206 Optional<CallingConv::ID> CC = None, 207 Optional<ISD::NodeType> AssertOp = None) { 208 if (ValueVT.isVector()) 209 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 210 CC); 211 212 assert(NumParts > 0 && "No parts to assemble!"); 213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 214 SDValue Val = Parts[0]; 215 216 if (NumParts > 1) { 217 // Assemble the value from multiple parts. 218 if (ValueVT.isInteger()) { 219 unsigned PartBits = PartVT.getSizeInBits(); 220 unsigned ValueBits = ValueVT.getSizeInBits(); 221 222 // Assemble the power of 2 part. 223 unsigned RoundParts = 224 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 225 unsigned RoundBits = PartBits * RoundParts; 226 EVT RoundVT = RoundBits == ValueBits ? 227 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 228 SDValue Lo, Hi; 229 230 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 231 232 if (RoundParts > 2) { 233 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 234 PartVT, HalfVT, V); 235 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 236 RoundParts / 2, PartVT, HalfVT, V); 237 } else { 238 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 240 } 241 242 if (DAG.getDataLayout().isBigEndian()) 243 std::swap(Lo, Hi); 244 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 246 247 if (RoundParts < NumParts) { 248 // Assemble the trailing non-power-of-2 part. 249 unsigned OddParts = NumParts - RoundParts; 250 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 251 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 252 OddVT, V, CC); 253 254 // Combine the round and odd parts. 255 Lo = Val; 256 if (DAG.getDataLayout().isBigEndian()) 257 std::swap(Lo, Hi); 258 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 259 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 260 Hi = 261 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 262 DAG.getConstant(Lo.getValueSizeInBits(), DL, 263 TLI.getPointerTy(DAG.getDataLayout()))); 264 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 265 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 266 } 267 } else if (PartVT.isFloatingPoint()) { 268 // FP split into multiple FP parts (for ppcf128) 269 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 270 "Unexpected split"); 271 SDValue Lo, Hi; 272 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 273 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 274 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 275 std::swap(Lo, Hi); 276 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 277 } else { 278 // FP split into integer parts (soft fp) 279 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 280 !PartVT.isVector() && "Unexpected split"); 281 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 282 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 283 } 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 // PartEVT is the type of the register class that holds the value. 288 // ValueVT is the type of the inline asm operation. 289 EVT PartEVT = Val.getValueType(); 290 291 if (PartEVT == ValueVT) 292 return Val; 293 294 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 295 ValueVT.bitsLT(PartEVT)) { 296 // For an FP value in an integer part, we need to truncate to the right 297 // width first. 298 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 299 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 300 } 301 302 // Handle types that have the same size. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle types with different sizes. 307 if (PartEVT.isInteger() && ValueVT.isInteger()) { 308 if (ValueVT.bitsLT(PartEVT)) { 309 // For a truncate, see if we have any information to 310 // indicate whether the truncated bits will always be 311 // zero or sign-extension. 312 if (AssertOp.hasValue()) 313 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 314 DAG.getValueType(ValueVT)); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 318 } 319 320 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 321 // FP_ROUND's are always exact here. 322 if (ValueVT.bitsLT(Val.getValueType())) 323 return DAG.getNode( 324 ISD::FP_ROUND, DL, ValueVT, Val, 325 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 326 327 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 328 } 329 330 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 331 // then truncating. 332 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 333 ValueVT.bitsLT(PartEVT)) { 334 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 335 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 336 } 337 338 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 339 } 340 341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 342 const Twine &ErrMsg) { 343 const Instruction *I = dyn_cast_or_null<Instruction>(V); 344 if (!V) 345 return Ctx.emitError(ErrMsg); 346 347 const char *AsmError = ", possible invalid constraint for vector type"; 348 if (const CallInst *CI = dyn_cast<CallInst>(I)) 349 if (CI->isInlineAsm()) 350 return Ctx.emitError(I, ErrMsg + AsmError); 351 352 return Ctx.emitError(I, ErrMsg); 353 } 354 355 /// getCopyFromPartsVector - Create a value that contains the specified legal 356 /// parts combined into the value they represent. If the parts combine to a 357 /// type larger than ValueVT then AssertOp can be used to specify whether the 358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 359 /// ValueVT (ISD::AssertSext). 360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 361 const SDValue *Parts, unsigned NumParts, 362 MVT PartVT, EVT ValueVT, const Value *V, 363 Optional<CallingConv::ID> CallConv) { 364 assert(ValueVT.isVector() && "Not a vector value"); 365 assert(NumParts > 0 && "No parts to assemble!"); 366 const bool IsABIRegCopy = CallConv.hasValue(); 367 368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 369 SDValue Val = Parts[0]; 370 371 // Handle a multi-element vector. 372 if (NumParts > 1) { 373 EVT IntermediateVT; 374 MVT RegisterVT; 375 unsigned NumIntermediates; 376 unsigned NumRegs; 377 378 if (IsABIRegCopy) { 379 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 380 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 381 NumIntermediates, RegisterVT); 382 } else { 383 NumRegs = 384 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 385 NumIntermediates, RegisterVT); 386 } 387 388 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 389 NumParts = NumRegs; // Silence a compiler warning. 390 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 391 assert(RegisterVT.getSizeInBits() == 392 Parts[0].getSimpleValueType().getSizeInBits() && 393 "Part type sizes don't match!"); 394 395 // Assemble the parts into intermediate operands. 396 SmallVector<SDValue, 8> Ops(NumIntermediates); 397 if (NumIntermediates == NumParts) { 398 // If the register was not expanded, truncate or copy the value, 399 // as appropriate. 400 for (unsigned i = 0; i != NumParts; ++i) 401 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 402 PartVT, IntermediateVT, V); 403 } else if (NumParts > 0) { 404 // If the intermediate type was expanded, build the intermediate 405 // operands from the parts. 406 assert(NumParts % NumIntermediates == 0 && 407 "Must expand into a divisible number of parts!"); 408 unsigned Factor = NumParts / NumIntermediates; 409 for (unsigned i = 0; i != NumIntermediates; ++i) 410 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 411 PartVT, IntermediateVT, V); 412 } 413 414 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 415 // intermediate operands. 416 EVT BuiltVectorTy = 417 IntermediateVT.isVector() 418 ? EVT::getVectorVT( 419 *DAG.getContext(), IntermediateVT.getScalarType(), 420 IntermediateVT.getVectorElementCount() * NumParts) 421 : EVT::getVectorVT(*DAG.getContext(), 422 IntermediateVT.getScalarType(), 423 NumIntermediates); 424 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 425 : ISD::BUILD_VECTOR, 426 DL, BuiltVectorTy, Ops); 427 } 428 429 // There is now one part, held in Val. Correct it to match ValueVT. 430 EVT PartEVT = Val.getValueType(); 431 432 if (PartEVT == ValueVT) 433 return Val; 434 435 if (PartEVT.isVector()) { 436 // If the element type of the source/dest vectors are the same, but the 437 // parts vector has more elements than the value vector, then we have a 438 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 439 // elements we want. 440 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 441 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 442 "Cannot narrow, it would be a lossy transformation"); 443 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 444 DAG.getVectorIdxConstant(0, DL)); 445 } 446 447 // Vector/Vector bitcast. 448 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 449 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 450 451 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 452 "Cannot handle this kind of promotion"); 453 // Promoted vector extract 454 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 455 456 } 457 458 // Trivial bitcast if the types are the same size and the destination 459 // vector type is legal. 460 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 461 TLI.isTypeLegal(ValueVT)) 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 464 if (ValueVT.getVectorNumElements() != 1) { 465 // Certain ABIs require that vectors are passed as integers. For vectors 466 // are the same size, this is an obvious bitcast. 467 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 468 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 469 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 470 // Bitcast Val back the original type and extract the corresponding 471 // vector we want. 472 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 473 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 474 ValueVT.getVectorElementType(), Elts); 475 Val = DAG.getBitcast(WiderVecType, Val); 476 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getVectorIdxConstant(0, DL)); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 488 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 489 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 490 else 491 Val = ValueVT.isFloatingPoint() 492 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 493 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 494 } 495 496 return DAG.getBuildVector(ValueVT, DL, Val); 497 } 498 499 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 500 SDValue Val, SDValue *Parts, unsigned NumParts, 501 MVT PartVT, const Value *V, 502 Optional<CallingConv::ID> CallConv); 503 504 /// getCopyToParts - Create a series of nodes that contain the specified value 505 /// split into legal parts. If the parts contain more bits than Val, then, for 506 /// integers, ExtendKind can be used to specify how to generate the extra bits. 507 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 508 SDValue *Parts, unsigned NumParts, MVT PartVT, 509 const Value *V, 510 Optional<CallingConv::ID> CallConv = None, 511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 unsigned OrigNumParts = NumParts; 521 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 522 "Copying to an illegal type!"); 523 524 if (NumParts == 0) 525 return; 526 527 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 528 EVT PartEVT = PartVT; 529 if (PartEVT == ValueVT) { 530 assert(NumParts == 1 && "No-op copy with multiple parts!"); 531 Parts[0] = Val; 532 return; 533 } 534 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = 1 << Log2_32(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, 640 SDValue Val, const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 unsigned PartNumElts = PartVT.getVectorNumElements(); 646 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 647 if (PartNumElts > ValueNumElts && 648 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 649 EVT ElementVT = PartVT.getVectorElementType(); 650 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 651 // undef elements. 652 SmallVector<SDValue, 16> Ops; 653 DAG.ExtractVectorElements(Val, Ops); 654 SDValue EltUndef = DAG.getUNDEF(ElementVT); 655 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 656 Ops.push_back(EltUndef); 657 658 // FIXME: Use CONCAT for 2x -> 4x. 659 return DAG.getBuildVector(PartVT, DL, Ops); 660 } 661 662 return SDValue(); 663 } 664 665 /// getCopyToPartsVector - Create a series of nodes that contain the specified 666 /// value split into legal parts. 667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 668 SDValue Val, SDValue *Parts, unsigned NumParts, 669 MVT PartVT, const Value *V, 670 Optional<CallingConv::ID> CallConv) { 671 EVT ValueVT = Val.getValueType(); 672 assert(ValueVT.isVector() && "Not a vector"); 673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 674 const bool IsABIRegCopy = CallConv.hasValue(); 675 676 if (NumParts == 1) { 677 EVT PartEVT = PartVT; 678 if (PartEVT == ValueVT) { 679 // Nothing to do. 680 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 681 // Bitconvert vector->vector case. 682 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 683 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 684 Val = Widened; 685 } else if (PartVT.isVector() && 686 PartEVT.getVectorElementType().bitsGE( 687 ValueVT.getVectorElementType()) && 688 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 689 690 // Promoted vector extract 691 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 692 } else { 693 if (ValueVT.getVectorNumElements() == 1) { 694 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 695 DAG.getVectorIdxConstant(0, DL)); 696 } else { 697 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 698 "lossy conversion of vector to scalar type"); 699 EVT IntermediateType = 700 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 701 Val = DAG.getBitcast(IntermediateType, Val); 702 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 703 } 704 } 705 706 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 707 Parts[0] = Val; 708 return; 709 } 710 711 // Handle a multi-element vector. 712 EVT IntermediateVT; 713 MVT RegisterVT; 714 unsigned NumIntermediates; 715 unsigned NumRegs; 716 if (IsABIRegCopy) { 717 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 718 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } else { 721 NumRegs = 722 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } 725 726 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 727 NumParts = NumRegs; // Silence a compiler warning. 728 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 729 730 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 731 IntermediateVT.getVectorNumElements() : 1; 732 733 // Convert the vector to the appropriate type if necessary. 734 auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts, 735 ValueVT.isScalableVector()); 736 EVT BuiltVectorTy = EVT::getVectorVT( 737 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 738 if (ValueVT != BuiltVectorTy) { 739 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 740 Val = Widened; 741 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } 744 745 // Split the vector into intermediate operands. 746 SmallVector<SDValue, 8> Ops(NumIntermediates); 747 for (unsigned i = 0; i != NumIntermediates; ++i) { 748 if (IntermediateVT.isVector()) { 749 Ops[i] = 750 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 751 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 752 } else { 753 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i, DL)); 755 } 756 } 757 758 // Split the intermediate operands into legal parts. 759 if (NumParts == NumIntermediates) { 760 // If the register was not expanded, promote or copy the value, 761 // as appropriate. 762 for (unsigned i = 0; i != NumParts; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 764 } else if (NumParts > 0) { 765 // If the intermediate type was expanded, split each the value into 766 // legal parts. 767 assert(NumIntermediates != 0 && "division by zero"); 768 assert(NumParts % NumIntermediates == 0 && 769 "Must expand into a divisible number of parts!"); 770 unsigned Factor = NumParts / NumIntermediates; 771 for (unsigned i = 0; i != NumIntermediates; ++i) 772 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 773 CallConv); 774 } 775 } 776 777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 778 EVT valuevt, Optional<CallingConv::ID> CC) 779 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 780 RegCount(1, regs.size()), CallConv(CC) {} 781 782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 783 const DataLayout &DL, unsigned Reg, Type *Ty, 784 Optional<CallingConv::ID> CC) { 785 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 786 787 CallConv = CC; 788 789 for (EVT ValueVT : ValueVTs) { 790 unsigned NumRegs = 791 isABIMangled() 792 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 793 : TLI.getNumRegisters(Context, ValueVT); 794 MVT RegisterVT = 795 isABIMangled() 796 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 797 : TLI.getRegisterType(Context, ValueVT); 798 for (unsigned i = 0; i != NumRegs; ++i) 799 Regs.push_back(Reg + i); 800 RegVTs.push_back(RegisterVT); 801 RegCount.push_back(NumRegs); 802 Reg += NumRegs; 803 } 804 } 805 806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 807 FunctionLoweringInfo &FuncInfo, 808 const SDLoc &dl, SDValue &Chain, 809 SDValue *Flag, const Value *V) const { 810 // A Value with type {} or [0 x %t] needs no registers. 811 if (ValueVTs.empty()) 812 return SDValue(); 813 814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 815 816 // Assemble the legal parts into the final values. 817 SmallVector<SDValue, 4> Values(ValueVTs.size()); 818 SmallVector<SDValue, 8> Parts; 819 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 820 // Copy the legal parts from the registers. 821 EVT ValueVT = ValueVTs[Value]; 822 unsigned NumRegs = RegCount[Value]; 823 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 824 *DAG.getContext(), 825 CallConv.getValue(), RegVTs[Value]) 826 : RegVTs[Value]; 827 828 Parts.resize(NumRegs); 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 SDValue P; 831 if (!Flag) { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 833 } else { 834 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 835 *Flag = P.getValue(2); 836 } 837 838 Chain = P.getValue(1); 839 Parts[i] = P; 840 841 // If the source register was virtual and if we know something about it, 842 // add an assert node. 843 if (!Register::isVirtualRegister(Regs[Part + i]) || 844 !RegisterVT.isInteger()) 845 continue; 846 847 const FunctionLoweringInfo::LiveOutInfo *LOI = 848 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 849 if (!LOI) 850 continue; 851 852 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 853 unsigned NumSignBits = LOI->NumSignBits; 854 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 855 856 if (NumZeroBits == RegSize) { 857 // The current value is a zero. 858 // Explicitly express that as it would be easier for 859 // optimizations to kick in. 860 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 861 continue; 862 } 863 864 // FIXME: We capture more information than the dag can represent. For 865 // now, just use the tightest assertzext/assertsext possible. 866 bool isSExt; 867 EVT FromVT(MVT::Other); 868 if (NumZeroBits) { 869 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 870 isSExt = false; 871 } else if (NumSignBits > 1) { 872 FromVT = 873 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 874 isSExt = true; 875 } else { 876 continue; 877 } 878 // Add an assertion node. 879 assert(FromVT != MVT::Other); 880 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 881 RegisterVT, P, DAG.getValueType(FromVT)); 882 } 883 884 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 885 RegisterVT, ValueVT, V, CallConv); 886 Part += NumRegs; 887 Parts.clear(); 888 } 889 890 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 891 } 892 893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 894 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 895 const Value *V, 896 ISD::NodeType PreferredExtendType) const { 897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 898 ISD::NodeType ExtendKind = PreferredExtendType; 899 900 // Get the list of the values's legal parts. 901 unsigned NumRegs = Regs.size(); 902 SmallVector<SDValue, 8> Parts(NumRegs); 903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 904 unsigned NumParts = RegCount[Value]; 905 906 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 907 *DAG.getContext(), 908 CallConv.getValue(), RegVTs[Value]) 909 : RegVTs[Value]; 910 911 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 912 ExtendKind = ISD::ZERO_EXTEND; 913 914 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 915 NumParts, RegisterVT, V, CallConv, ExtendKind); 916 Part += NumParts; 917 } 918 919 // Copy the parts into the registers. 920 SmallVector<SDValue, 8> Chains(NumRegs); 921 for (unsigned i = 0; i != NumRegs; ++i) { 922 SDValue Part; 923 if (!Flag) { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 925 } else { 926 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 927 *Flag = Part.getValue(1); 928 } 929 930 Chains[i] = Part.getValue(0); 931 } 932 933 if (NumRegs == 1 || Flag) 934 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 935 // flagged to it. That is the CopyToReg nodes and the user are considered 936 // a single scheduling unit. If we create a TokenFactor and return it as 937 // chain, then the TokenFactor is both a predecessor (operand) of the 938 // user as well as a successor (the TF operands are flagged to the user). 939 // c1, f1 = CopyToReg 940 // c2, f2 = CopyToReg 941 // c3 = TokenFactor c1, c2 942 // ... 943 // = op c3, ..., f2 944 Chain = Chains[NumRegs-1]; 945 else 946 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 947 } 948 949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 950 unsigned MatchingIdx, const SDLoc &dl, 951 SelectionDAG &DAG, 952 std::vector<SDValue> &Ops) const { 953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 954 955 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 956 if (HasMatching) 957 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 958 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 959 // Put the register class of the virtual registers in the flag word. That 960 // way, later passes can recompute register class constraints for inline 961 // assembly as well as normal instructions. 962 // Don't do this for tied operands that can use the regclass information 963 // from the def. 964 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 965 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 966 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 967 } 968 969 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 970 Ops.push_back(Res); 971 972 if (Code == InlineAsm::Kind_Clobber) { 973 // Clobbers should always have a 1:1 mapping with registers, and may 974 // reference registers that have illegal (e.g. vector) types. Hence, we 975 // shouldn't try to apply any sort of splitting logic to them. 976 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 977 "No 1:1 mapping from clobbers to regs?"); 978 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 979 (void)SP; 980 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 981 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 982 assert( 983 (Regs[I] != SP || 984 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 985 "If we clobbered the stack pointer, MFI should know about it."); 986 } 987 return; 988 } 989 990 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 991 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 992 MVT RegisterVT = RegVTs[Value]; 993 for (unsigned i = 0; i != NumRegs; ++i) { 994 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 995 unsigned TheReg = Regs[Reg++]; 996 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 997 } 998 } 999 } 1000 1001 SmallVector<std::pair<unsigned, unsigned>, 4> 1002 RegsForValue::getRegsAndSizes() const { 1003 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1004 unsigned I = 0; 1005 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1006 unsigned RegCount = std::get<0>(CountAndVT); 1007 MVT RegisterVT = std::get<1>(CountAndVT); 1008 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1009 for (unsigned E = I + RegCount; I != E; ++I) 1010 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1011 } 1012 return OutVec; 1013 } 1014 1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1016 const TargetLibraryInfo *li) { 1017 AA = aa; 1018 GFI = gfi; 1019 LibInfo = li; 1020 DL = &DAG.getDataLayout(); 1021 Context = DAG.getContext(); 1022 LPadToCallSiteMap.clear(); 1023 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1024 } 1025 1026 void SelectionDAGBuilder::clear() { 1027 NodeMap.clear(); 1028 UnusedArgNodeMap.clear(); 1029 PendingLoads.clear(); 1030 PendingExports.clear(); 1031 PendingConstrainedFP.clear(); 1032 PendingConstrainedFPStrict.clear(); 1033 CurInst = nullptr; 1034 HasTailCall = false; 1035 SDNodeOrder = LowestSDNodeOrder; 1036 StatepointLowering.clear(); 1037 } 1038 1039 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1040 DanglingDebugInfoMap.clear(); 1041 } 1042 1043 // Update DAG root to include dependencies on Pending chains. 1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1045 SDValue Root = DAG.getRoot(); 1046 1047 if (Pending.empty()) 1048 return Root; 1049 1050 // Add current root to PendingChains, unless we already indirectly 1051 // depend on it. 1052 if (Root.getOpcode() != ISD::EntryToken) { 1053 unsigned i = 0, e = Pending.size(); 1054 for (; i != e; ++i) { 1055 assert(Pending[i].getNode()->getNumOperands() > 1); 1056 if (Pending[i].getNode()->getOperand(0) == Root) 1057 break; // Don't add the root if we already indirectly depend on it. 1058 } 1059 1060 if (i == e) 1061 Pending.push_back(Root); 1062 } 1063 1064 if (Pending.size() == 1) 1065 Root = Pending[0]; 1066 else 1067 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1068 1069 DAG.setRoot(Root); 1070 Pending.clear(); 1071 return Root; 1072 } 1073 1074 SDValue SelectionDAGBuilder::getMemoryRoot() { 1075 return updateRoot(PendingLoads); 1076 } 1077 1078 SDValue SelectionDAGBuilder::getRoot() { 1079 // Chain up all pending constrained intrinsics together with all 1080 // pending loads, by simply appending them to PendingLoads and 1081 // then calling getMemoryRoot(). 1082 PendingLoads.reserve(PendingLoads.size() + 1083 PendingConstrainedFP.size() + 1084 PendingConstrainedFPStrict.size()); 1085 PendingLoads.append(PendingConstrainedFP.begin(), 1086 PendingConstrainedFP.end()); 1087 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1088 PendingConstrainedFPStrict.end()); 1089 PendingConstrainedFP.clear(); 1090 PendingConstrainedFPStrict.clear(); 1091 return getMemoryRoot(); 1092 } 1093 1094 SDValue SelectionDAGBuilder::getControlRoot() { 1095 // We need to emit pending fpexcept.strict constrained intrinsics, 1096 // so append them to the PendingExports list. 1097 PendingExports.append(PendingConstrainedFPStrict.begin(), 1098 PendingConstrainedFPStrict.end()); 1099 PendingConstrainedFPStrict.clear(); 1100 return updateRoot(PendingExports); 1101 } 1102 1103 void SelectionDAGBuilder::visit(const Instruction &I) { 1104 // Set up outgoing PHI node register values before emitting the terminator. 1105 if (I.isTerminator()) { 1106 HandlePHINodesInSuccessorBlocks(I.getParent()); 1107 } 1108 1109 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1110 if (!isa<DbgInfoIntrinsic>(I)) 1111 ++SDNodeOrder; 1112 1113 CurInst = &I; 1114 1115 visit(I.getOpcode(), I); 1116 1117 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1118 // ConstrainedFPIntrinsics handle their own FMF. 1119 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1120 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1121 // maps to this instruction. 1122 // TODO: We could handle all flags (nsw, etc) here. 1123 // TODO: If an IR instruction maps to >1 node, only the final node will have 1124 // flags set. 1125 if (SDNode *Node = getNodeForIRValue(&I)) { 1126 SDNodeFlags IncomingFlags; 1127 IncomingFlags.copyFMF(*FPMO); 1128 if (!Node->getFlags().isDefined()) 1129 Node->setFlags(IncomingFlags); 1130 else 1131 Node->intersectFlagsWith(IncomingFlags); 1132 } 1133 } 1134 } 1135 1136 if (!I.isTerminator() && !HasTailCall && 1137 !isStatepoint(&I)) // statepoints handle their exports internally 1138 CopyToExportRegsIfNeeded(&I); 1139 1140 CurInst = nullptr; 1141 } 1142 1143 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1144 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1145 } 1146 1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1148 // Note: this doesn't use InstVisitor, because it has to work with 1149 // ConstantExpr's in addition to instructions. 1150 switch (Opcode) { 1151 default: llvm_unreachable("Unknown instruction type encountered!"); 1152 // Build the switch statement using the Instruction.def file. 1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1154 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1155 #include "llvm/IR/Instruction.def" 1156 } 1157 } 1158 1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1160 const DIExpression *Expr) { 1161 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1162 const DbgValueInst *DI = DDI.getDI(); 1163 DIVariable *DanglingVariable = DI->getVariable(); 1164 DIExpression *DanglingExpr = DI->getExpression(); 1165 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1166 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1167 return true; 1168 } 1169 return false; 1170 }; 1171 1172 for (auto &DDIMI : DanglingDebugInfoMap) { 1173 DanglingDebugInfoVector &DDIV = DDIMI.second; 1174 1175 // If debug info is to be dropped, run it through final checks to see 1176 // whether it can be salvaged. 1177 for (auto &DDI : DDIV) 1178 if (isMatchingDbgValue(DDI)) 1179 salvageUnresolvedDbgValue(DDI); 1180 1181 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1182 } 1183 } 1184 1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1186 // generate the debug data structures now that we've seen its definition. 1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1188 SDValue Val) { 1189 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1190 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1191 return; 1192 1193 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1194 for (auto &DDI : DDIV) { 1195 const DbgValueInst *DI = DDI.getDI(); 1196 assert(DI && "Ill-formed DanglingDebugInfo"); 1197 DebugLoc dl = DDI.getdl(); 1198 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1199 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1200 DILocalVariable *Variable = DI->getVariable(); 1201 DIExpression *Expr = DI->getExpression(); 1202 assert(Variable->isValidLocationForIntrinsic(dl) && 1203 "Expected inlined-at fields to agree"); 1204 SDDbgValue *SDV; 1205 if (Val.getNode()) { 1206 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1207 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1208 // we couldn't resolve it directly when examining the DbgValue intrinsic 1209 // in the first place we should not be more successful here). Unless we 1210 // have some test case that prove this to be correct we should avoid 1211 // calling EmitFuncArgumentDbgValue here. 1212 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1213 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1214 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1215 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1216 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1217 // inserted after the definition of Val when emitting the instructions 1218 // after ISel. An alternative could be to teach 1219 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1220 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1221 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1222 << ValSDNodeOrder << "\n"); 1223 SDV = getDbgValue(Val, Variable, Expr, dl, 1224 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1225 DAG.AddDbgValue(SDV, Val.getNode(), false); 1226 } else 1227 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1228 << "in EmitFuncArgumentDbgValue\n"); 1229 } else { 1230 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1231 auto Undef = 1232 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1233 auto SDV = 1234 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1235 DAG.AddDbgValue(SDV, nullptr, false); 1236 } 1237 } 1238 DDIV.clear(); 1239 } 1240 1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1242 Value *V = DDI.getDI()->getValue(); 1243 DILocalVariable *Var = DDI.getDI()->getVariable(); 1244 DIExpression *Expr = DDI.getDI()->getExpression(); 1245 DebugLoc DL = DDI.getdl(); 1246 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1247 unsigned SDOrder = DDI.getSDNodeOrder(); 1248 1249 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1250 // that DW_OP_stack_value is desired. 1251 assert(isa<DbgValueInst>(DDI.getDI())); 1252 bool StackValue = true; 1253 1254 // Can this Value can be encoded without any further work? 1255 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1256 return; 1257 1258 // Attempt to salvage back through as many instructions as possible. Bail if 1259 // a non-instruction is seen, such as a constant expression or global 1260 // variable. FIXME: Further work could recover those too. 1261 while (isa<Instruction>(V)) { 1262 Instruction &VAsInst = *cast<Instruction>(V); 1263 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1264 1265 // If we cannot salvage any further, and haven't yet found a suitable debug 1266 // expression, bail out. 1267 if (!NewExpr) 1268 break; 1269 1270 // New value and expr now represent this debuginfo. 1271 V = VAsInst.getOperand(0); 1272 Expr = NewExpr; 1273 1274 // Some kind of simplification occurred: check whether the operand of the 1275 // salvaged debug expression can be encoded in this DAG. 1276 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1277 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1278 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1279 return; 1280 } 1281 } 1282 1283 // This was the final opportunity to salvage this debug information, and it 1284 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1285 // any earlier variable location. 1286 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1287 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1288 DAG.AddDbgValue(SDV, nullptr, false); 1289 1290 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1291 << "\n"); 1292 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1293 << "\n"); 1294 } 1295 1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1297 DIExpression *Expr, DebugLoc dl, 1298 DebugLoc InstDL, unsigned Order) { 1299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1300 SDDbgValue *SDV; 1301 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1302 isa<ConstantPointerNull>(V)) { 1303 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, nullptr, false); 1305 return true; 1306 } 1307 1308 // If the Value is a frame index, we can create a FrameIndex debug value 1309 // without relying on the DAG at all. 1310 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1311 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1312 if (SI != FuncInfo.StaticAllocaMap.end()) { 1313 auto SDV = 1314 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1315 /*IsIndirect*/ false, dl, SDNodeOrder); 1316 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1317 // is still available even if the SDNode gets optimized out. 1318 DAG.AddDbgValue(SDV, nullptr, false); 1319 return true; 1320 } 1321 } 1322 1323 // Do not use getValue() in here; we don't want to generate code at 1324 // this point if it hasn't been done yet. 1325 SDValue N = NodeMap[V]; 1326 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1327 N = UnusedArgNodeMap[V]; 1328 if (N.getNode()) { 1329 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1330 return true; 1331 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1332 DAG.AddDbgValue(SDV, N.getNode(), false); 1333 return true; 1334 } 1335 1336 // Special rules apply for the first dbg.values of parameter variables in a 1337 // function. Identify them by the fact they reference Argument Values, that 1338 // they're parameters, and they are parameters of the current function. We 1339 // need to let them dangle until they get an SDNode. 1340 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1341 !InstDL.getInlinedAt(); 1342 if (!IsParamOfFunc) { 1343 // The value is not used in this block yet (or it would have an SDNode). 1344 // We still want the value to appear for the user if possible -- if it has 1345 // an associated VReg, we can refer to that instead. 1346 auto VMI = FuncInfo.ValueMap.find(V); 1347 if (VMI != FuncInfo.ValueMap.end()) { 1348 unsigned Reg = VMI->second; 1349 // If this is a PHI node, it may be split up into several MI PHI nodes 1350 // (in FunctionLoweringInfo::set). 1351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1352 V->getType(), None); 1353 if (RFV.occupiesMultipleRegs()) { 1354 unsigned Offset = 0; 1355 unsigned BitsToDescribe = 0; 1356 if (auto VarSize = Var->getSizeInBits()) 1357 BitsToDescribe = *VarSize; 1358 if (auto Fragment = Expr->getFragmentInfo()) 1359 BitsToDescribe = Fragment->SizeInBits; 1360 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1361 unsigned RegisterSize = RegAndSize.second; 1362 // Bail out if all bits are described already. 1363 if (Offset >= BitsToDescribe) 1364 break; 1365 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1366 ? BitsToDescribe - Offset 1367 : RegisterSize; 1368 auto FragmentExpr = DIExpression::createFragmentExpression( 1369 Expr, Offset, FragmentSize); 1370 if (!FragmentExpr) 1371 continue; 1372 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1373 false, dl, SDNodeOrder); 1374 DAG.AddDbgValue(SDV, nullptr, false); 1375 Offset += RegisterSize; 1376 } 1377 } else { 1378 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1379 DAG.AddDbgValue(SDV, nullptr, false); 1380 } 1381 return true; 1382 } 1383 } 1384 1385 return false; 1386 } 1387 1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1389 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1390 for (auto &Pair : DanglingDebugInfoMap) 1391 for (auto &DDI : Pair.second) 1392 salvageUnresolvedDbgValue(DDI); 1393 clearDanglingDebugInfo(); 1394 } 1395 1396 /// getCopyFromRegs - If there was virtual register allocated for the value V 1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1399 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1400 SDValue Result; 1401 1402 if (It != FuncInfo.ValueMap.end()) { 1403 Register InReg = It->second; 1404 1405 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1406 DAG.getDataLayout(), InReg, Ty, 1407 None); // This is not an ABI copy. 1408 SDValue Chain = DAG.getEntryNode(); 1409 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1410 V); 1411 resolveDanglingDebugInfo(V, Result); 1412 } 1413 1414 return Result; 1415 } 1416 1417 /// getValue - Return an SDValue for the given Value. 1418 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. It's important 1420 // to do this first, so that we don't create a CopyFromReg if we already 1421 // have a regular SDValue. 1422 SDValue &N = NodeMap[V]; 1423 if (N.getNode()) return N; 1424 1425 // If there's a virtual register allocated and initialized for this 1426 // value, use it. 1427 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1428 return copyFromReg; 1429 1430 // Otherwise create a new SDValue and remember it. 1431 SDValue Val = getValueImpl(V); 1432 NodeMap[V] = Val; 1433 resolveDanglingDebugInfo(V, Val); 1434 return Val; 1435 } 1436 1437 /// getNonRegisterValue - Return an SDValue for the given Value, but 1438 /// don't look in FuncInfo.ValueMap for a virtual register. 1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1440 // If we already have an SDValue for this value, use it. 1441 SDValue &N = NodeMap[V]; 1442 if (N.getNode()) { 1443 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1444 // Remove the debug location from the node as the node is about to be used 1445 // in a location which may differ from the original debug location. This 1446 // is relevant to Constant and ConstantFP nodes because they can appear 1447 // as constant expressions inside PHI nodes. 1448 N->setDebugLoc(DebugLoc()); 1449 } 1450 return N; 1451 } 1452 1453 // Otherwise create a new SDValue and remember it. 1454 SDValue Val = getValueImpl(V); 1455 NodeMap[V] = Val; 1456 resolveDanglingDebugInfo(V, Val); 1457 return Val; 1458 } 1459 1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1461 /// Create an SDValue for the given value. 1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1464 1465 if (const Constant *C = dyn_cast<Constant>(V)) { 1466 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1467 1468 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1469 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1470 1471 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1472 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1473 1474 if (isa<ConstantPointerNull>(C)) { 1475 unsigned AS = V->getType()->getPointerAddressSpace(); 1476 return DAG.getConstant(0, getCurSDLoc(), 1477 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1478 } 1479 1480 if (match(C, m_VScale(DAG.getDataLayout()))) 1481 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1482 1483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1484 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1485 1486 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1487 return DAG.getUNDEF(VT); 1488 1489 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1490 visit(CE->getOpcode(), *CE); 1491 SDValue N1 = NodeMap[V]; 1492 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1493 return N1; 1494 } 1495 1496 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1497 SmallVector<SDValue, 4> Constants; 1498 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1499 OI != OE; ++OI) { 1500 SDNode *Val = getValue(*OI).getNode(); 1501 // If the operand is an empty aggregate, there are no values. 1502 if (!Val) continue; 1503 // Add each leaf value from the operand to the Constants list 1504 // to form a flattened list of all the values. 1505 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1506 Constants.push_back(SDValue(Val, i)); 1507 } 1508 1509 return DAG.getMergeValues(Constants, getCurSDLoc()); 1510 } 1511 1512 if (const ConstantDataSequential *CDS = 1513 dyn_cast<ConstantDataSequential>(C)) { 1514 SmallVector<SDValue, 4> Ops; 1515 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1516 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1517 // Add each leaf value from the operand to the Constants list 1518 // to form a flattened list of all the values. 1519 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1520 Ops.push_back(SDValue(Val, i)); 1521 } 1522 1523 if (isa<ArrayType>(CDS->getType())) 1524 return DAG.getMergeValues(Ops, getCurSDLoc()); 1525 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1526 } 1527 1528 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1529 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1530 "Unknown struct or array constant!"); 1531 1532 SmallVector<EVT, 4> ValueVTs; 1533 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1534 unsigned NumElts = ValueVTs.size(); 1535 if (NumElts == 0) 1536 return SDValue(); // empty struct 1537 SmallVector<SDValue, 4> Constants(NumElts); 1538 for (unsigned i = 0; i != NumElts; ++i) { 1539 EVT EltVT = ValueVTs[i]; 1540 if (isa<UndefValue>(C)) 1541 Constants[i] = DAG.getUNDEF(EltVT); 1542 else if (EltVT.isFloatingPoint()) 1543 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1544 else 1545 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1546 } 1547 1548 return DAG.getMergeValues(Constants, getCurSDLoc()); 1549 } 1550 1551 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1552 return DAG.getBlockAddress(BA, VT); 1553 1554 VectorType *VecTy = cast<VectorType>(V->getType()); 1555 1556 // Now that we know the number and type of the elements, get that number of 1557 // elements into the Ops array based on what kind of constant it is. 1558 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1559 SmallVector<SDValue, 16> Ops; 1560 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1561 for (unsigned i = 0; i != NumElements; ++i) 1562 Ops.push_back(getValue(CV->getOperand(i))); 1563 1564 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1565 } else if (isa<ConstantAggregateZero>(C)) { 1566 EVT EltVT = 1567 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1568 1569 SDValue Op; 1570 if (EltVT.isFloatingPoint()) 1571 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1572 else 1573 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1574 1575 if (isa<ScalableVectorType>(VecTy)) 1576 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1577 else { 1578 SmallVector<SDValue, 16> Ops; 1579 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1580 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1581 } 1582 } 1583 llvm_unreachable("Unknown vector constant"); 1584 } 1585 1586 // If this is a static alloca, generate it as the frameindex instead of 1587 // computation. 1588 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1589 DenseMap<const AllocaInst*, int>::iterator SI = 1590 FuncInfo.StaticAllocaMap.find(AI); 1591 if (SI != FuncInfo.StaticAllocaMap.end()) 1592 return DAG.getFrameIndex(SI->second, 1593 TLI.getFrameIndexTy(DAG.getDataLayout())); 1594 } 1595 1596 // If this is an instruction which fast-isel has deferred, select it now. 1597 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1598 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1599 1600 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1601 Inst->getType(), getABIRegCopyCC(V)); 1602 SDValue Chain = DAG.getEntryNode(); 1603 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1604 } 1605 1606 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1607 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1608 } 1609 llvm_unreachable("Can't get register for value!"); 1610 } 1611 1612 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1613 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1614 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1615 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1616 bool IsSEH = isAsynchronousEHPersonality(Pers); 1617 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1618 if (!IsSEH) 1619 CatchPadMBB->setIsEHScopeEntry(); 1620 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1621 if (IsMSVCCXX || IsCoreCLR) 1622 CatchPadMBB->setIsEHFuncletEntry(); 1623 } 1624 1625 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1626 // Update machine-CFG edge. 1627 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1628 FuncInfo.MBB->addSuccessor(TargetMBB); 1629 1630 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1631 bool IsSEH = isAsynchronousEHPersonality(Pers); 1632 if (IsSEH) { 1633 // If this is not a fall-through branch or optimizations are switched off, 1634 // emit the branch. 1635 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1636 TM.getOptLevel() == CodeGenOpt::None) 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1638 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1639 return; 1640 } 1641 1642 // Figure out the funclet membership for the catchret's successor. 1643 // This will be used by the FuncletLayout pass to determine how to order the 1644 // BB's. 1645 // A 'catchret' returns to the outer scope's color. 1646 Value *ParentPad = I.getCatchSwitchParentPad(); 1647 const BasicBlock *SuccessorColor; 1648 if (isa<ConstantTokenNone>(ParentPad)) 1649 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1650 else 1651 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1652 assert(SuccessorColor && "No parent funclet for catchret!"); 1653 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1654 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1655 1656 // Create the terminator node. 1657 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1658 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1659 DAG.getBasicBlock(SuccessorColorMBB)); 1660 DAG.setRoot(Ret); 1661 } 1662 1663 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1664 // Don't emit any special code for the cleanuppad instruction. It just marks 1665 // the start of an EH scope/funclet. 1666 FuncInfo.MBB->setIsEHScopeEntry(); 1667 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1668 if (Pers != EHPersonality::Wasm_CXX) { 1669 FuncInfo.MBB->setIsEHFuncletEntry(); 1670 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1671 } 1672 } 1673 1674 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1675 // the control flow always stops at the single catch pad, as it does for a 1676 // cleanup pad. In case the exception caught is not of the types the catch pad 1677 // catches, it will be rethrown by a rethrow. 1678 static void findWasmUnwindDestinations( 1679 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1680 BranchProbability Prob, 1681 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1682 &UnwindDests) { 1683 while (EHPadBB) { 1684 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1685 if (isa<CleanupPadInst>(Pad)) { 1686 // Stop on cleanup pads. 1687 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1688 UnwindDests.back().first->setIsEHScopeEntry(); 1689 break; 1690 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1691 // Add the catchpad handlers to the possible destinations. We don't 1692 // continue to the unwind destination of the catchswitch for wasm. 1693 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1694 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1695 UnwindDests.back().first->setIsEHScopeEntry(); 1696 } 1697 break; 1698 } else { 1699 continue; 1700 } 1701 } 1702 } 1703 1704 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1705 /// many places it could ultimately go. In the IR, we have a single unwind 1706 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1707 /// This function skips over imaginary basic blocks that hold catchswitch 1708 /// instructions, and finds all the "real" machine 1709 /// basic block destinations. As those destinations may not be successors of 1710 /// EHPadBB, here we also calculate the edge probability to those destinations. 1711 /// The passed-in Prob is the edge probability to EHPadBB. 1712 static void findUnwindDestinations( 1713 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1714 BranchProbability Prob, 1715 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1716 &UnwindDests) { 1717 EHPersonality Personality = 1718 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1719 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1720 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1721 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1722 bool IsSEH = isAsynchronousEHPersonality(Personality); 1723 1724 if (IsWasmCXX) { 1725 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1726 assert(UnwindDests.size() <= 1 && 1727 "There should be at most one unwind destination for wasm"); 1728 return; 1729 } 1730 1731 while (EHPadBB) { 1732 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1733 BasicBlock *NewEHPadBB = nullptr; 1734 if (isa<LandingPadInst>(Pad)) { 1735 // Stop on landingpads. They are not funclets. 1736 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1737 break; 1738 } else if (isa<CleanupPadInst>(Pad)) { 1739 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1740 // personalities. 1741 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1742 UnwindDests.back().first->setIsEHScopeEntry(); 1743 UnwindDests.back().first->setIsEHFuncletEntry(); 1744 break; 1745 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1746 // Add the catchpad handlers to the possible destinations. 1747 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1748 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1749 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1750 if (IsMSVCCXX || IsCoreCLR) 1751 UnwindDests.back().first->setIsEHFuncletEntry(); 1752 if (!IsSEH) 1753 UnwindDests.back().first->setIsEHScopeEntry(); 1754 } 1755 NewEHPadBB = CatchSwitch->getUnwindDest(); 1756 } else { 1757 continue; 1758 } 1759 1760 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1761 if (BPI && NewEHPadBB) 1762 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1763 EHPadBB = NewEHPadBB; 1764 } 1765 } 1766 1767 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1768 // Update successor info. 1769 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1770 auto UnwindDest = I.getUnwindDest(); 1771 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1772 BranchProbability UnwindDestProb = 1773 (BPI && UnwindDest) 1774 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1775 : BranchProbability::getZero(); 1776 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1777 for (auto &UnwindDest : UnwindDests) { 1778 UnwindDest.first->setIsEHPad(); 1779 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1780 } 1781 FuncInfo.MBB->normalizeSuccProbs(); 1782 1783 // Create the terminator node. 1784 SDValue Ret = 1785 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1786 DAG.setRoot(Ret); 1787 } 1788 1789 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1790 report_fatal_error("visitCatchSwitch not yet implemented!"); 1791 } 1792 1793 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 auto &DL = DAG.getDataLayout(); 1796 SDValue Chain = getControlRoot(); 1797 SmallVector<ISD::OutputArg, 8> Outs; 1798 SmallVector<SDValue, 8> OutVals; 1799 1800 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1801 // lower 1802 // 1803 // %val = call <ty> @llvm.experimental.deoptimize() 1804 // ret <ty> %val 1805 // 1806 // differently. 1807 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1808 LowerDeoptimizingReturn(); 1809 return; 1810 } 1811 1812 if (!FuncInfo.CanLowerReturn) { 1813 unsigned DemoteReg = FuncInfo.DemoteRegister; 1814 const Function *F = I.getParent()->getParent(); 1815 1816 // Emit a store of the return value through the virtual register. 1817 // Leave Outs empty so that LowerReturn won't try to load return 1818 // registers the usual way. 1819 SmallVector<EVT, 1> PtrValueVTs; 1820 ComputeValueVTs(TLI, DL, 1821 F->getReturnType()->getPointerTo( 1822 DAG.getDataLayout().getAllocaAddrSpace()), 1823 PtrValueVTs); 1824 1825 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1826 DemoteReg, PtrValueVTs[0]); 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 SmallVector<EVT, 4> ValueVTs, MemVTs; 1830 SmallVector<uint64_t, 4> Offsets; 1831 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1832 &Offsets); 1833 unsigned NumValues = ValueVTs.size(); 1834 1835 SmallVector<SDValue, 4> Chains(NumValues); 1836 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore( 1846 Chain, getCurSDLoc(), Val, 1847 // FIXME: better loc info would be nice. 1848 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1849 commonAlignment(BaseAlign, Offsets[i])); 1850 } 1851 1852 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1853 MVT::Other, Chains); 1854 } else if (I.getNumOperands() != 0) { 1855 SmallVector<EVT, 4> ValueVTs; 1856 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1857 unsigned NumValues = ValueVTs.size(); 1858 if (NumValues) { 1859 SDValue RetOp = getValue(I.getOperand(0)); 1860 1861 const Function *F = I.getParent()->getParent(); 1862 1863 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1864 I.getOperand(0)->getType(), F->getCallingConv(), 1865 /*IsVarArg*/ false); 1866 1867 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1868 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1869 Attribute::SExt)) 1870 ExtendKind = ISD::SIGN_EXTEND; 1871 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1872 Attribute::ZExt)) 1873 ExtendKind = ISD::ZERO_EXTEND; 1874 1875 LLVMContext &Context = F->getContext(); 1876 bool RetInReg = F->getAttributes().hasAttribute( 1877 AttributeList::ReturnIndex, Attribute::InReg); 1878 1879 for (unsigned j = 0; j != NumValues; ++j) { 1880 EVT VT = ValueVTs[j]; 1881 1882 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1883 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1884 1885 CallingConv::ID CC = F->getCallingConv(); 1886 1887 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1888 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1889 SmallVector<SDValue, 4> Parts(NumParts); 1890 getCopyToParts(DAG, getCurSDLoc(), 1891 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1892 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1893 1894 // 'inreg' on function refers to return value 1895 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1896 if (RetInReg) 1897 Flags.setInReg(); 1898 1899 if (I.getOperand(0)->getType()->isPointerTy()) { 1900 Flags.setPointer(); 1901 Flags.setPointerAddrSpace( 1902 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1903 } 1904 1905 if (NeedsRegBlock) { 1906 Flags.setInConsecutiveRegs(); 1907 if (j == NumValues - 1) 1908 Flags.setInConsecutiveRegsLast(); 1909 } 1910 1911 // Propagate extension type if any 1912 if (ExtendKind == ISD::SIGN_EXTEND) 1913 Flags.setSExt(); 1914 else if (ExtendKind == ISD::ZERO_EXTEND) 1915 Flags.setZExt(); 1916 1917 for (unsigned i = 0; i < NumParts; ++i) { 1918 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1919 VT, /*isfixed=*/true, 0, 0)); 1920 OutVals.push_back(Parts[i]); 1921 } 1922 } 1923 } 1924 } 1925 1926 // Push in swifterror virtual register as the last element of Outs. This makes 1927 // sure swifterror virtual register will be returned in the swifterror 1928 // physical register. 1929 const Function *F = I.getParent()->getParent(); 1930 if (TLI.supportSwiftError() && 1931 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1932 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1933 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1934 Flags.setSwiftError(); 1935 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1936 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1937 true /*isfixed*/, 1 /*origidx*/, 1938 0 /*partOffs*/)); 1939 // Create SDNode for the swifterror virtual register. 1940 OutVals.push_back( 1941 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1942 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1943 EVT(TLI.getPointerTy(DL)))); 1944 } 1945 1946 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1947 CallingConv::ID CallConv = 1948 DAG.getMachineFunction().getFunction().getCallingConv(); 1949 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1950 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1951 1952 // Verify that the target's LowerReturn behaved as expected. 1953 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1954 "LowerReturn didn't return a valid chain!"); 1955 1956 // Update the DAG with the new chain value resulting from return lowering. 1957 DAG.setRoot(Chain); 1958 } 1959 1960 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1961 /// created for it, emit nodes to copy the value into the virtual 1962 /// registers. 1963 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1964 // Skip empty types 1965 if (V->getType()->isEmptyTy()) 1966 return; 1967 1968 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1969 if (VMI != FuncInfo.ValueMap.end()) { 1970 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1971 CopyValueToVirtualRegister(V, VMI->second); 1972 } 1973 } 1974 1975 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1976 /// the current basic block, add it to ValueMap now so that we'll get a 1977 /// CopyTo/FromReg. 1978 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1979 // No need to export constants. 1980 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1981 1982 // Already exported? 1983 if (FuncInfo.isExportedInst(V)) return; 1984 1985 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1986 CopyValueToVirtualRegister(V, Reg); 1987 } 1988 1989 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1990 const BasicBlock *FromBB) { 1991 // The operands of the setcc have to be in this block. We don't know 1992 // how to export them from some other block. 1993 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1994 // Can export from current BB. 1995 if (VI->getParent() == FromBB) 1996 return true; 1997 1998 // Is already exported, noop. 1999 return FuncInfo.isExportedInst(V); 2000 } 2001 2002 // If this is an argument, we can export it if the BB is the entry block or 2003 // if it is already exported. 2004 if (isa<Argument>(V)) { 2005 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2006 return true; 2007 2008 // Otherwise, can only export this if it is already exported. 2009 return FuncInfo.isExportedInst(V); 2010 } 2011 2012 // Otherwise, constants can always be exported. 2013 return true; 2014 } 2015 2016 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2017 BranchProbability 2018 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2019 const MachineBasicBlock *Dst) const { 2020 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2021 const BasicBlock *SrcBB = Src->getBasicBlock(); 2022 const BasicBlock *DstBB = Dst->getBasicBlock(); 2023 if (!BPI) { 2024 // If BPI is not available, set the default probability as 1 / N, where N is 2025 // the number of successors. 2026 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2027 return BranchProbability(1, SuccSize); 2028 } 2029 return BPI->getEdgeProbability(SrcBB, DstBB); 2030 } 2031 2032 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2033 MachineBasicBlock *Dst, 2034 BranchProbability Prob) { 2035 if (!FuncInfo.BPI) 2036 Src->addSuccessorWithoutProb(Dst); 2037 else { 2038 if (Prob.isUnknown()) 2039 Prob = getEdgeProbability(Src, Dst); 2040 Src->addSuccessor(Dst, Prob); 2041 } 2042 } 2043 2044 static bool InBlock(const Value *V, const BasicBlock *BB) { 2045 if (const Instruction *I = dyn_cast<Instruction>(V)) 2046 return I->getParent() == BB; 2047 return true; 2048 } 2049 2050 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2051 /// This function emits a branch and is used at the leaves of an OR or an 2052 /// AND operator tree. 2053 void 2054 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2055 MachineBasicBlock *TBB, 2056 MachineBasicBlock *FBB, 2057 MachineBasicBlock *CurBB, 2058 MachineBasicBlock *SwitchBB, 2059 BranchProbability TProb, 2060 BranchProbability FProb, 2061 bool InvertCond) { 2062 const BasicBlock *BB = CurBB->getBasicBlock(); 2063 2064 // If the leaf of the tree is a comparison, merge the condition into 2065 // the caseblock. 2066 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2067 // The operands of the cmp have to be in this block. We don't know 2068 // how to export them from some other block. If this is the first block 2069 // of the sequence, no exporting is needed. 2070 if (CurBB == SwitchBB || 2071 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2072 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2073 ISD::CondCode Condition; 2074 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2075 ICmpInst::Predicate Pred = 2076 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2077 Condition = getICmpCondCode(Pred); 2078 } else { 2079 const FCmpInst *FC = cast<FCmpInst>(Cond); 2080 FCmpInst::Predicate Pred = 2081 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2082 Condition = getFCmpCondCode(Pred); 2083 if (TM.Options.NoNaNsFPMath) 2084 Condition = getFCmpCodeWithoutNaN(Condition); 2085 } 2086 2087 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2088 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2089 SL->SwitchCases.push_back(CB); 2090 return; 2091 } 2092 } 2093 2094 // Create a CaseBlock record representing this branch. 2095 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2096 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2097 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2098 SL->SwitchCases.push_back(CB); 2099 } 2100 2101 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2102 MachineBasicBlock *TBB, 2103 MachineBasicBlock *FBB, 2104 MachineBasicBlock *CurBB, 2105 MachineBasicBlock *SwitchBB, 2106 Instruction::BinaryOps Opc, 2107 BranchProbability TProb, 2108 BranchProbability FProb, 2109 bool InvertCond) { 2110 // Skip over not part of the tree and remember to invert op and operands at 2111 // next level. 2112 Value *NotCond; 2113 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2114 InBlock(NotCond, CurBB->getBasicBlock())) { 2115 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2116 !InvertCond); 2117 return; 2118 } 2119 2120 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2121 // Compute the effective opcode for Cond, taking into account whether it needs 2122 // to be inverted, e.g. 2123 // and (not (or A, B)), C 2124 // gets lowered as 2125 // and (and (not A, not B), C) 2126 unsigned BOpc = 0; 2127 if (BOp) { 2128 BOpc = BOp->getOpcode(); 2129 if (InvertCond) { 2130 if (BOpc == Instruction::And) 2131 BOpc = Instruction::Or; 2132 else if (BOpc == Instruction::Or) 2133 BOpc = Instruction::And; 2134 } 2135 } 2136 2137 // If this node is not part of the or/and tree, emit it as a branch. 2138 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2139 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2140 BOp->getParent() != CurBB->getBasicBlock() || 2141 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2142 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2143 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2144 TProb, FProb, InvertCond); 2145 return; 2146 } 2147 2148 // Create TmpBB after CurBB. 2149 MachineFunction::iterator BBI(CurBB); 2150 MachineFunction &MF = DAG.getMachineFunction(); 2151 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2152 CurBB->getParent()->insert(++BBI, TmpBB); 2153 2154 if (Opc == Instruction::Or) { 2155 // Codegen X | Y as: 2156 // BB1: 2157 // jmp_if_X TBB 2158 // jmp TmpBB 2159 // TmpBB: 2160 // jmp_if_Y TBB 2161 // jmp FBB 2162 // 2163 2164 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2165 // The requirement is that 2166 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2167 // = TrueProb for original BB. 2168 // Assuming the original probabilities are A and B, one choice is to set 2169 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2170 // A/(1+B) and 2B/(1+B). This choice assumes that 2171 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2172 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2173 // TmpBB, but the math is more complicated. 2174 2175 auto NewTrueProb = TProb / 2; 2176 auto NewFalseProb = TProb / 2 + FProb; 2177 // Emit the LHS condition. 2178 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2179 NewTrueProb, NewFalseProb, InvertCond); 2180 2181 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2182 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2183 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2184 // Emit the RHS condition into TmpBB. 2185 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2186 Probs[0], Probs[1], InvertCond); 2187 } else { 2188 assert(Opc == Instruction::And && "Unknown merge op!"); 2189 // Codegen X & Y as: 2190 // BB1: 2191 // jmp_if_X TmpBB 2192 // jmp FBB 2193 // TmpBB: 2194 // jmp_if_Y TBB 2195 // jmp FBB 2196 // 2197 // This requires creation of TmpBB after CurBB. 2198 2199 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2200 // The requirement is that 2201 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2202 // = FalseProb for original BB. 2203 // Assuming the original probabilities are A and B, one choice is to set 2204 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2205 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2206 // TrueProb for BB1 * FalseProb for TmpBB. 2207 2208 auto NewTrueProb = TProb + FProb / 2; 2209 auto NewFalseProb = FProb / 2; 2210 // Emit the LHS condition. 2211 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2212 NewTrueProb, NewFalseProb, InvertCond); 2213 2214 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2215 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2216 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2217 // Emit the RHS condition into TmpBB. 2218 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2219 Probs[0], Probs[1], InvertCond); 2220 } 2221 } 2222 2223 /// If the set of cases should be emitted as a series of branches, return true. 2224 /// If we should emit this as a bunch of and/or'd together conditions, return 2225 /// false. 2226 bool 2227 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2228 if (Cases.size() != 2) return true; 2229 2230 // If this is two comparisons of the same values or'd or and'd together, they 2231 // will get folded into a single comparison, so don't emit two blocks. 2232 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2233 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2234 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2235 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2236 return false; 2237 } 2238 2239 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2240 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2241 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2242 Cases[0].CC == Cases[1].CC && 2243 isa<Constant>(Cases[0].CmpRHS) && 2244 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2245 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2246 return false; 2247 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2248 return false; 2249 } 2250 2251 return true; 2252 } 2253 2254 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2255 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2256 2257 // Update machine-CFG edges. 2258 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2259 2260 if (I.isUnconditional()) { 2261 // Update machine-CFG edges. 2262 BrMBB->addSuccessor(Succ0MBB); 2263 2264 // If this is not a fall-through branch or optimizations are switched off, 2265 // emit the branch. 2266 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2267 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2268 MVT::Other, getControlRoot(), 2269 DAG.getBasicBlock(Succ0MBB))); 2270 2271 return; 2272 } 2273 2274 // If this condition is one of the special cases we handle, do special stuff 2275 // now. 2276 const Value *CondVal = I.getCondition(); 2277 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2278 2279 // If this is a series of conditions that are or'd or and'd together, emit 2280 // this as a sequence of branches instead of setcc's with and/or operations. 2281 // As long as jumps are not expensive, this should improve performance. 2282 // For example, instead of something like: 2283 // cmp A, B 2284 // C = seteq 2285 // cmp D, E 2286 // F = setle 2287 // or C, F 2288 // jnz foo 2289 // Emit: 2290 // cmp A, B 2291 // je foo 2292 // cmp D, E 2293 // jle foo 2294 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2295 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2296 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2297 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2298 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2299 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2300 Opcode, 2301 getEdgeProbability(BrMBB, Succ0MBB), 2302 getEdgeProbability(BrMBB, Succ1MBB), 2303 /*InvertCond=*/false); 2304 // If the compares in later blocks need to use values not currently 2305 // exported from this block, export them now. This block should always 2306 // be the first entry. 2307 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2308 2309 // Allow some cases to be rejected. 2310 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2311 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2312 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2313 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2314 } 2315 2316 // Emit the branch for this block. 2317 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2318 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2319 return; 2320 } 2321 2322 // Okay, we decided not to do this, remove any inserted MBB's and clear 2323 // SwitchCases. 2324 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2325 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2326 2327 SL->SwitchCases.clear(); 2328 } 2329 } 2330 2331 // Create a CaseBlock record representing this branch. 2332 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2333 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2334 2335 // Use visitSwitchCase to actually insert the fast branch sequence for this 2336 // cond branch. 2337 visitSwitchCase(CB, BrMBB); 2338 } 2339 2340 /// visitSwitchCase - Emits the necessary code to represent a single node in 2341 /// the binary search tree resulting from lowering a switch instruction. 2342 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2343 MachineBasicBlock *SwitchBB) { 2344 SDValue Cond; 2345 SDValue CondLHS = getValue(CB.CmpLHS); 2346 SDLoc dl = CB.DL; 2347 2348 if (CB.CC == ISD::SETTRUE) { 2349 // Branch or fall through to TrueBB. 2350 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2351 SwitchBB->normalizeSuccProbs(); 2352 if (CB.TrueBB != NextBlock(SwitchBB)) { 2353 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2354 DAG.getBasicBlock(CB.TrueBB))); 2355 } 2356 return; 2357 } 2358 2359 auto &TLI = DAG.getTargetLoweringInfo(); 2360 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2361 2362 // Build the setcc now. 2363 if (!CB.CmpMHS) { 2364 // Fold "(X == true)" to X and "(X == false)" to !X to 2365 // handle common cases produced by branch lowering. 2366 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2367 CB.CC == ISD::SETEQ) 2368 Cond = CondLHS; 2369 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2370 CB.CC == ISD::SETEQ) { 2371 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2372 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2373 } else { 2374 SDValue CondRHS = getValue(CB.CmpRHS); 2375 2376 // If a pointer's DAG type is larger than its memory type then the DAG 2377 // values are zero-extended. This breaks signed comparisons so truncate 2378 // back to the underlying type before doing the compare. 2379 if (CondLHS.getValueType() != MemVT) { 2380 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2381 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2382 } 2383 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2384 } 2385 } else { 2386 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2387 2388 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2389 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2390 2391 SDValue CmpOp = getValue(CB.CmpMHS); 2392 EVT VT = CmpOp.getValueType(); 2393 2394 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2395 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2396 ISD::SETLE); 2397 } else { 2398 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2399 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2400 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2401 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2402 } 2403 } 2404 2405 // Update successor info 2406 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2407 // TrueBB and FalseBB are always different unless the incoming IR is 2408 // degenerate. This only happens when running llc on weird IR. 2409 if (CB.TrueBB != CB.FalseBB) 2410 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2411 SwitchBB->normalizeSuccProbs(); 2412 2413 // If the lhs block is the next block, invert the condition so that we can 2414 // fall through to the lhs instead of the rhs block. 2415 if (CB.TrueBB == NextBlock(SwitchBB)) { 2416 std::swap(CB.TrueBB, CB.FalseBB); 2417 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2418 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2419 } 2420 2421 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2422 MVT::Other, getControlRoot(), Cond, 2423 DAG.getBasicBlock(CB.TrueBB)); 2424 2425 // Insert the false branch. Do this even if it's a fall through branch, 2426 // this makes it easier to do DAG optimizations which require inverting 2427 // the branch condition. 2428 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2429 DAG.getBasicBlock(CB.FalseBB)); 2430 2431 DAG.setRoot(BrCond); 2432 } 2433 2434 /// visitJumpTable - Emit JumpTable node in the current MBB 2435 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2436 // Emit the code for the jump table 2437 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2438 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2439 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2440 JT.Reg, PTy); 2441 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2442 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2443 MVT::Other, Index.getValue(1), 2444 Table, Index); 2445 DAG.setRoot(BrJumpTable); 2446 } 2447 2448 /// visitJumpTableHeader - This function emits necessary code to produce index 2449 /// in the JumpTable from switch case. 2450 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2451 JumpTableHeader &JTH, 2452 MachineBasicBlock *SwitchBB) { 2453 SDLoc dl = getCurSDLoc(); 2454 2455 // Subtract the lowest switch case value from the value being switched on. 2456 SDValue SwitchOp = getValue(JTH.SValue); 2457 EVT VT = SwitchOp.getValueType(); 2458 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2459 DAG.getConstant(JTH.First, dl, VT)); 2460 2461 // The SDNode we just created, which holds the value being switched on minus 2462 // the smallest case value, needs to be copied to a virtual register so it 2463 // can be used as an index into the jump table in a subsequent basic block. 2464 // This value may be smaller or larger than the target's pointer type, and 2465 // therefore require extension or truncating. 2466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2467 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2468 2469 unsigned JumpTableReg = 2470 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2471 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2472 JumpTableReg, SwitchOp); 2473 JT.Reg = JumpTableReg; 2474 2475 if (!JTH.OmitRangeCheck) { 2476 // Emit the range check for the jump table, and branch to the default block 2477 // for the switch statement if the value being switched on exceeds the 2478 // largest case in the switch. 2479 SDValue CMP = DAG.getSetCC( 2480 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2481 Sub.getValueType()), 2482 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2483 2484 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2485 MVT::Other, CopyTo, CMP, 2486 DAG.getBasicBlock(JT.Default)); 2487 2488 // Avoid emitting unnecessary branches to the next block. 2489 if (JT.MBB != NextBlock(SwitchBB)) 2490 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2491 DAG.getBasicBlock(JT.MBB)); 2492 2493 DAG.setRoot(BrCond); 2494 } else { 2495 // Avoid emitting unnecessary branches to the next block. 2496 if (JT.MBB != NextBlock(SwitchBB)) 2497 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2498 DAG.getBasicBlock(JT.MBB))); 2499 else 2500 DAG.setRoot(CopyTo); 2501 } 2502 } 2503 2504 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2505 /// variable if there exists one. 2506 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2507 SDValue &Chain) { 2508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2509 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2510 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2511 MachineFunction &MF = DAG.getMachineFunction(); 2512 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2513 MachineSDNode *Node = 2514 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2515 if (Global) { 2516 MachinePointerInfo MPInfo(Global); 2517 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2518 MachineMemOperand::MODereferenceable; 2519 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2520 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2521 DAG.setNodeMemRefs(Node, {MemRef}); 2522 } 2523 if (PtrTy != PtrMemTy) 2524 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2525 return SDValue(Node, 0); 2526 } 2527 2528 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2529 /// tail spliced into a stack protector check success bb. 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2535 MachineBasicBlock *ParentBB) { 2536 2537 // First create the loads to the guard/stack slot for the comparison. 2538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2539 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2540 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2541 2542 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2543 int FI = MFI.getStackProtectorIndex(); 2544 2545 SDValue Guard; 2546 SDLoc dl = getCurSDLoc(); 2547 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2548 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2549 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2550 2551 // Generate code to load the content of the guard slot. 2552 SDValue GuardVal = DAG.getLoad( 2553 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2554 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2555 MachineMemOperand::MOVolatile); 2556 2557 if (TLI.useStackGuardXorFP()) 2558 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2559 2560 // Retrieve guard check function, nullptr if instrumentation is inlined. 2561 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2562 // The target provides a guard check function to validate the guard value. 2563 // Generate a call to that function with the content of the guard slot as 2564 // argument. 2565 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2566 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2567 2568 TargetLowering::ArgListTy Args; 2569 TargetLowering::ArgListEntry Entry; 2570 Entry.Node = GuardVal; 2571 Entry.Ty = FnTy->getParamType(0); 2572 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2573 Entry.IsInReg = true; 2574 Args.push_back(Entry); 2575 2576 TargetLowering::CallLoweringInfo CLI(DAG); 2577 CLI.setDebugLoc(getCurSDLoc()) 2578 .setChain(DAG.getEntryNode()) 2579 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2580 getValue(GuardCheckFn), std::move(Args)); 2581 2582 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2583 DAG.setRoot(Result.second); 2584 return; 2585 } 2586 2587 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2588 // Otherwise, emit a volatile load to retrieve the stack guard value. 2589 SDValue Chain = DAG.getEntryNode(); 2590 if (TLI.useLoadStackGuardNode()) { 2591 Guard = getLoadStackGuard(DAG, dl, Chain); 2592 } else { 2593 const Value *IRGuard = TLI.getSDagStackGuard(M); 2594 SDValue GuardPtr = getValue(IRGuard); 2595 2596 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2597 MachinePointerInfo(IRGuard, 0), Align, 2598 MachineMemOperand::MOVolatile); 2599 } 2600 2601 // Perform the comparison via a getsetcc. 2602 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2603 *DAG.getContext(), 2604 Guard.getValueType()), 2605 Guard, GuardVal, ISD::SETNE); 2606 2607 // If the guard/stackslot do not equal, branch to failure MBB. 2608 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2609 MVT::Other, GuardVal.getOperand(0), 2610 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2611 // Otherwise branch to success MBB. 2612 SDValue Br = DAG.getNode(ISD::BR, dl, 2613 MVT::Other, BrCond, 2614 DAG.getBasicBlock(SPD.getSuccessMBB())); 2615 2616 DAG.setRoot(Br); 2617 } 2618 2619 /// Codegen the failure basic block for a stack protector check. 2620 /// 2621 /// A failure stack protector machine basic block consists simply of a call to 2622 /// __stack_chk_fail(). 2623 /// 2624 /// For a high level explanation of how this fits into the stack protector 2625 /// generation see the comment on the declaration of class 2626 /// StackProtectorDescriptor. 2627 void 2628 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 TargetLowering::MakeLibCallOptions CallOptions; 2631 CallOptions.setDiscardResult(true); 2632 SDValue Chain = 2633 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2634 None, CallOptions, getCurSDLoc()).second; 2635 // On PS4, the "return address" must still be within the calling function, 2636 // even if it's at the very end, so emit an explicit TRAP here. 2637 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2638 if (TM.getTargetTriple().isPS4CPU()) 2639 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2640 2641 DAG.setRoot(Chain); 2642 } 2643 2644 /// visitBitTestHeader - This function emits necessary code to produce value 2645 /// suitable for "bit tests" 2646 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2647 MachineBasicBlock *SwitchBB) { 2648 SDLoc dl = getCurSDLoc(); 2649 2650 // Subtract the minimum value. 2651 SDValue SwitchOp = getValue(B.SValue); 2652 EVT VT = SwitchOp.getValueType(); 2653 SDValue RangeSub = 2654 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2655 2656 // Determine the type of the test operands. 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 bool UsePtrType = false; 2659 if (!TLI.isTypeLegal(VT)) { 2660 UsePtrType = true; 2661 } else { 2662 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2663 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2664 // Switch table case range are encoded into series of masks. 2665 // Just use pointer type, it's guaranteed to fit. 2666 UsePtrType = true; 2667 break; 2668 } 2669 } 2670 SDValue Sub = RangeSub; 2671 if (UsePtrType) { 2672 VT = TLI.getPointerTy(DAG.getDataLayout()); 2673 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2674 } 2675 2676 B.RegVT = VT.getSimpleVT(); 2677 B.Reg = FuncInfo.CreateReg(B.RegVT); 2678 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2679 2680 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2681 2682 if (!B.OmitRangeCheck) 2683 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2684 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2685 SwitchBB->normalizeSuccProbs(); 2686 2687 SDValue Root = CopyTo; 2688 if (!B.OmitRangeCheck) { 2689 // Conditional branch to the default block. 2690 SDValue RangeCmp = DAG.getSetCC(dl, 2691 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2692 RangeSub.getValueType()), 2693 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2694 ISD::SETUGT); 2695 2696 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2697 DAG.getBasicBlock(B.Default)); 2698 } 2699 2700 // Avoid emitting unnecessary branches to the next block. 2701 if (MBB != NextBlock(SwitchBB)) 2702 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2703 2704 DAG.setRoot(Root); 2705 } 2706 2707 /// visitBitTestCase - this function produces one "bit test" 2708 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2709 MachineBasicBlock* NextMBB, 2710 BranchProbability BranchProbToNext, 2711 unsigned Reg, 2712 BitTestCase &B, 2713 MachineBasicBlock *SwitchBB) { 2714 SDLoc dl = getCurSDLoc(); 2715 MVT VT = BB.RegVT; 2716 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2717 SDValue Cmp; 2718 unsigned PopCount = countPopulation(B.Mask); 2719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2720 if (PopCount == 1) { 2721 // Testing for a single bit; just compare the shift count with what it 2722 // would need to be to shift a 1 bit in that position. 2723 Cmp = DAG.getSetCC( 2724 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2725 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2726 ISD::SETEQ); 2727 } else if (PopCount == BB.Range) { 2728 // There is only one zero bit in the range, test for it directly. 2729 Cmp = DAG.getSetCC( 2730 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2731 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2732 ISD::SETNE); 2733 } else { 2734 // Make desired shift 2735 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2736 DAG.getConstant(1, dl, VT), ShiftOp); 2737 2738 // Emit bit tests and jumps 2739 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2740 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2741 Cmp = DAG.getSetCC( 2742 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2743 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2744 } 2745 2746 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2747 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2748 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2749 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2750 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2751 // one as they are relative probabilities (and thus work more like weights), 2752 // and hence we need to normalize them to let the sum of them become one. 2753 SwitchBB->normalizeSuccProbs(); 2754 2755 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2756 MVT::Other, getControlRoot(), 2757 Cmp, DAG.getBasicBlock(B.TargetBB)); 2758 2759 // Avoid emitting unnecessary branches to the next block. 2760 if (NextMBB != NextBlock(SwitchBB)) 2761 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2762 DAG.getBasicBlock(NextMBB)); 2763 2764 DAG.setRoot(BrAnd); 2765 } 2766 2767 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2768 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2769 2770 // Retrieve successors. Look through artificial IR level blocks like 2771 // catchswitch for successors. 2772 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2773 const BasicBlock *EHPadBB = I.getSuccessor(1); 2774 2775 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2776 // have to do anything here to lower funclet bundles. 2777 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2778 LLVMContext::OB_funclet, 2779 LLVMContext::OB_cfguardtarget}) && 2780 "Cannot lower invokes with arbitrary operand bundles yet!"); 2781 2782 const Value *Callee(I.getCalledOperand()); 2783 const Function *Fn = dyn_cast<Function>(Callee); 2784 if (isa<InlineAsm>(Callee)) 2785 visitInlineAsm(I); 2786 else if (Fn && Fn->isIntrinsic()) { 2787 switch (Fn->getIntrinsicID()) { 2788 default: 2789 llvm_unreachable("Cannot invoke this intrinsic"); 2790 case Intrinsic::donothing: 2791 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2792 break; 2793 case Intrinsic::experimental_patchpoint_void: 2794 case Intrinsic::experimental_patchpoint_i64: 2795 visitPatchpoint(I, EHPadBB); 2796 break; 2797 case Intrinsic::experimental_gc_statepoint: 2798 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2799 break; 2800 case Intrinsic::wasm_rethrow_in_catch: { 2801 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2802 // special because it can be invoked, so we manually lower it to a DAG 2803 // node here. 2804 SmallVector<SDValue, 8> Ops; 2805 Ops.push_back(getRoot()); // inchain 2806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2807 Ops.push_back( 2808 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2809 TLI.getPointerTy(DAG.getDataLayout()))); 2810 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2811 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2812 break; 2813 } 2814 } 2815 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2816 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2817 // Eventually we will support lowering the @llvm.experimental.deoptimize 2818 // intrinsic, and right now there are no plans to support other intrinsics 2819 // with deopt state. 2820 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2821 } else { 2822 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2823 } 2824 2825 // If the value of the invoke is used outside of its defining block, make it 2826 // available as a virtual register. 2827 // We already took care of the exported value for the statepoint instruction 2828 // during call to the LowerStatepoint. 2829 if (!isStatepoint(I)) { 2830 CopyToExportRegsIfNeeded(&I); 2831 } 2832 2833 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2834 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2835 BranchProbability EHPadBBProb = 2836 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2837 : BranchProbability::getZero(); 2838 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2839 2840 // Update successor info. 2841 addSuccessorWithProb(InvokeMBB, Return); 2842 for (auto &UnwindDest : UnwindDests) { 2843 UnwindDest.first->setIsEHPad(); 2844 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2845 } 2846 InvokeMBB->normalizeSuccProbs(); 2847 2848 // Drop into normal successor. 2849 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2850 DAG.getBasicBlock(Return))); 2851 } 2852 2853 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2854 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2855 2856 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2857 // have to do anything here to lower funclet bundles. 2858 assert(!I.hasOperandBundlesOtherThan( 2859 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2860 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2861 2862 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2863 visitInlineAsm(I); 2864 CopyToExportRegsIfNeeded(&I); 2865 2866 // Retrieve successors. 2867 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2868 Return->setInlineAsmBrDefaultTarget(); 2869 2870 // Update successor info. 2871 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2872 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2873 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2874 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2875 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2876 } 2877 CallBrMBB->normalizeSuccProbs(); 2878 2879 // Drop into default successor. 2880 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2881 MVT::Other, getControlRoot(), 2882 DAG.getBasicBlock(Return))); 2883 } 2884 2885 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2886 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2887 } 2888 2889 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2890 assert(FuncInfo.MBB->isEHPad() && 2891 "Call to landingpad not in landing pad!"); 2892 2893 // If there aren't registers to copy the values into (e.g., during SjLj 2894 // exceptions), then don't bother to create these DAG nodes. 2895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2896 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2897 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2898 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2899 return; 2900 2901 // If landingpad's return type is token type, we don't create DAG nodes 2902 // for its exception pointer and selector value. The extraction of exception 2903 // pointer or selector value from token type landingpads is not currently 2904 // supported. 2905 if (LP.getType()->isTokenTy()) 2906 return; 2907 2908 SmallVector<EVT, 2> ValueVTs; 2909 SDLoc dl = getCurSDLoc(); 2910 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2911 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2912 2913 // Get the two live-in registers as SDValues. The physregs have already been 2914 // copied into virtual registers. 2915 SDValue Ops[2]; 2916 if (FuncInfo.ExceptionPointerVirtReg) { 2917 Ops[0] = DAG.getZExtOrTrunc( 2918 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2919 FuncInfo.ExceptionPointerVirtReg, 2920 TLI.getPointerTy(DAG.getDataLayout())), 2921 dl, ValueVTs[0]); 2922 } else { 2923 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2924 } 2925 Ops[1] = DAG.getZExtOrTrunc( 2926 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2927 FuncInfo.ExceptionSelectorVirtReg, 2928 TLI.getPointerTy(DAG.getDataLayout())), 2929 dl, ValueVTs[1]); 2930 2931 // Merge into one. 2932 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2933 DAG.getVTList(ValueVTs), Ops); 2934 setValue(&LP, Res); 2935 } 2936 2937 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2938 MachineBasicBlock *Last) { 2939 // Update JTCases. 2940 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2941 if (SL->JTCases[i].first.HeaderBB == First) 2942 SL->JTCases[i].first.HeaderBB = Last; 2943 2944 // Update BitTestCases. 2945 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2946 if (SL->BitTestCases[i].Parent == First) 2947 SL->BitTestCases[i].Parent = Last; 2948 2949 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2950 // successors of the fallthrough block. Here, we add PHI operands for the 2951 // successors of the INLINEASM_BR block itself. 2952 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2953 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2954 if (First->isSuccessor(pair.first->getParent())) 2955 MachineInstrBuilder(*First->getParent(), pair.first) 2956 .addReg(pair.second) 2957 .addMBB(First); 2958 } 2959 2960 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2961 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2962 2963 // Update machine-CFG edges with unique successors. 2964 SmallSet<BasicBlock*, 32> Done; 2965 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2966 BasicBlock *BB = I.getSuccessor(i); 2967 bool Inserted = Done.insert(BB).second; 2968 if (!Inserted) 2969 continue; 2970 2971 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2972 addSuccessorWithProb(IndirectBrMBB, Succ); 2973 } 2974 IndirectBrMBB->normalizeSuccProbs(); 2975 2976 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2977 MVT::Other, getControlRoot(), 2978 getValue(I.getAddress()))); 2979 } 2980 2981 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2982 if (!DAG.getTarget().Options.TrapUnreachable) 2983 return; 2984 2985 // We may be able to ignore unreachable behind a noreturn call. 2986 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2987 const BasicBlock &BB = *I.getParent(); 2988 if (&I != &BB.front()) { 2989 BasicBlock::const_iterator PredI = 2990 std::prev(BasicBlock::const_iterator(&I)); 2991 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2992 if (Call->doesNotReturn()) 2993 return; 2994 } 2995 } 2996 } 2997 2998 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2999 } 3000 3001 void SelectionDAGBuilder::visitFSub(const User &I) { 3002 // -0.0 - X --> fneg 3003 Type *Ty = I.getType(); 3004 if (isa<Constant>(I.getOperand(0)) && 3005 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3006 SDValue Op2 = getValue(I.getOperand(1)); 3007 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3008 Op2.getValueType(), Op2)); 3009 return; 3010 } 3011 3012 visitBinary(I, ISD::FSUB); 3013 } 3014 3015 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3016 SDNodeFlags Flags; 3017 3018 SDValue Op = getValue(I.getOperand(0)); 3019 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3020 Op, Flags); 3021 setValue(&I, UnNodeValue); 3022 } 3023 3024 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3025 SDNodeFlags Flags; 3026 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3027 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3028 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3029 } 3030 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3031 Flags.setExact(ExactOp->isExact()); 3032 } 3033 3034 SDValue Op1 = getValue(I.getOperand(0)); 3035 SDValue Op2 = getValue(I.getOperand(1)); 3036 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3037 Op1, Op2, Flags); 3038 setValue(&I, BinNodeValue); 3039 } 3040 3041 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3042 SDValue Op1 = getValue(I.getOperand(0)); 3043 SDValue Op2 = getValue(I.getOperand(1)); 3044 3045 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3046 Op1.getValueType(), DAG.getDataLayout()); 3047 3048 // Coerce the shift amount to the right type if we can. 3049 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3050 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3051 unsigned Op2Size = Op2.getValueSizeInBits(); 3052 SDLoc DL = getCurSDLoc(); 3053 3054 // If the operand is smaller than the shift count type, promote it. 3055 if (ShiftSize > Op2Size) 3056 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3057 3058 // If the operand is larger than the shift count type but the shift 3059 // count type has enough bits to represent any shift value, truncate 3060 // it now. This is a common case and it exposes the truncate to 3061 // optimization early. 3062 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3063 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3064 // Otherwise we'll need to temporarily settle for some other convenient 3065 // type. Type legalization will make adjustments once the shiftee is split. 3066 else 3067 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3068 } 3069 3070 bool nuw = false; 3071 bool nsw = false; 3072 bool exact = false; 3073 3074 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3075 3076 if (const OverflowingBinaryOperator *OFBinOp = 3077 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3078 nuw = OFBinOp->hasNoUnsignedWrap(); 3079 nsw = OFBinOp->hasNoSignedWrap(); 3080 } 3081 if (const PossiblyExactOperator *ExactOp = 3082 dyn_cast<const PossiblyExactOperator>(&I)) 3083 exact = ExactOp->isExact(); 3084 } 3085 SDNodeFlags Flags; 3086 Flags.setExact(exact); 3087 Flags.setNoSignedWrap(nsw); 3088 Flags.setNoUnsignedWrap(nuw); 3089 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3090 Flags); 3091 setValue(&I, Res); 3092 } 3093 3094 void SelectionDAGBuilder::visitSDiv(const User &I) { 3095 SDValue Op1 = getValue(I.getOperand(0)); 3096 SDValue Op2 = getValue(I.getOperand(1)); 3097 3098 SDNodeFlags Flags; 3099 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3100 cast<PossiblyExactOperator>(&I)->isExact()); 3101 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3102 Op2, Flags)); 3103 } 3104 3105 void SelectionDAGBuilder::visitICmp(const User &I) { 3106 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3107 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3108 predicate = IC->getPredicate(); 3109 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3110 predicate = ICmpInst::Predicate(IC->getPredicate()); 3111 SDValue Op1 = getValue(I.getOperand(0)); 3112 SDValue Op2 = getValue(I.getOperand(1)); 3113 ISD::CondCode Opcode = getICmpCondCode(predicate); 3114 3115 auto &TLI = DAG.getTargetLoweringInfo(); 3116 EVT MemVT = 3117 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3118 3119 // If a pointer's DAG type is larger than its memory type then the DAG values 3120 // are zero-extended. This breaks signed comparisons so truncate back to the 3121 // underlying type before doing the compare. 3122 if (Op1.getValueType() != MemVT) { 3123 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3124 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3125 } 3126 3127 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3128 I.getType()); 3129 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3130 } 3131 3132 void SelectionDAGBuilder::visitFCmp(const User &I) { 3133 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3134 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3135 predicate = FC->getPredicate(); 3136 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3137 predicate = FCmpInst::Predicate(FC->getPredicate()); 3138 SDValue Op1 = getValue(I.getOperand(0)); 3139 SDValue Op2 = getValue(I.getOperand(1)); 3140 3141 ISD::CondCode Condition = getFCmpCondCode(predicate); 3142 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3143 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3144 Condition = getFCmpCodeWithoutNaN(Condition); 3145 3146 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3147 I.getType()); 3148 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3149 } 3150 3151 // Check if the condition of the select has one use or two users that are both 3152 // selects with the same condition. 3153 static bool hasOnlySelectUsers(const Value *Cond) { 3154 return llvm::all_of(Cond->users(), [](const Value *V) { 3155 return isa<SelectInst>(V); 3156 }); 3157 } 3158 3159 void SelectionDAGBuilder::visitSelect(const User &I) { 3160 SmallVector<EVT, 4> ValueVTs; 3161 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3162 ValueVTs); 3163 unsigned NumValues = ValueVTs.size(); 3164 if (NumValues == 0) return; 3165 3166 SmallVector<SDValue, 4> Values(NumValues); 3167 SDValue Cond = getValue(I.getOperand(0)); 3168 SDValue LHSVal = getValue(I.getOperand(1)); 3169 SDValue RHSVal = getValue(I.getOperand(2)); 3170 SmallVector<SDValue, 1> BaseOps(1, Cond); 3171 ISD::NodeType OpCode = 3172 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3173 3174 bool IsUnaryAbs = false; 3175 3176 // Min/max matching is only viable if all output VTs are the same. 3177 if (is_splat(ValueVTs)) { 3178 EVT VT = ValueVTs[0]; 3179 LLVMContext &Ctx = *DAG.getContext(); 3180 auto &TLI = DAG.getTargetLoweringInfo(); 3181 3182 // We care about the legality of the operation after it has been type 3183 // legalized. 3184 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3185 VT = TLI.getTypeToTransformTo(Ctx, VT); 3186 3187 // If the vselect is legal, assume we want to leave this as a vector setcc + 3188 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3189 // min/max is legal on the scalar type. 3190 bool UseScalarMinMax = VT.isVector() && 3191 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3192 3193 Value *LHS, *RHS; 3194 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3195 ISD::NodeType Opc = ISD::DELETED_NODE; 3196 switch (SPR.Flavor) { 3197 case SPF_UMAX: Opc = ISD::UMAX; break; 3198 case SPF_UMIN: Opc = ISD::UMIN; break; 3199 case SPF_SMAX: Opc = ISD::SMAX; break; 3200 case SPF_SMIN: Opc = ISD::SMIN; break; 3201 case SPF_FMINNUM: 3202 switch (SPR.NaNBehavior) { 3203 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3204 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3205 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3206 case SPNB_RETURNS_ANY: { 3207 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3208 Opc = ISD::FMINNUM; 3209 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3210 Opc = ISD::FMINIMUM; 3211 else if (UseScalarMinMax) 3212 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3213 ISD::FMINNUM : ISD::FMINIMUM; 3214 break; 3215 } 3216 } 3217 break; 3218 case SPF_FMAXNUM: 3219 switch (SPR.NaNBehavior) { 3220 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3221 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3222 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3223 case SPNB_RETURNS_ANY: 3224 3225 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3226 Opc = ISD::FMAXNUM; 3227 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3228 Opc = ISD::FMAXIMUM; 3229 else if (UseScalarMinMax) 3230 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3231 ISD::FMAXNUM : ISD::FMAXIMUM; 3232 break; 3233 } 3234 break; 3235 case SPF_ABS: 3236 IsUnaryAbs = true; 3237 Opc = ISD::ABS; 3238 break; 3239 case SPF_NABS: 3240 // TODO: we need to produce sub(0, abs(X)). 3241 default: break; 3242 } 3243 3244 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3245 (TLI.isOperationLegalOrCustom(Opc, VT) || 3246 (UseScalarMinMax && 3247 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3248 // If the underlying comparison instruction is used by any other 3249 // instruction, the consumed instructions won't be destroyed, so it is 3250 // not profitable to convert to a min/max. 3251 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3252 OpCode = Opc; 3253 LHSVal = getValue(LHS); 3254 RHSVal = getValue(RHS); 3255 BaseOps.clear(); 3256 } 3257 3258 if (IsUnaryAbs) { 3259 OpCode = Opc; 3260 LHSVal = getValue(LHS); 3261 BaseOps.clear(); 3262 } 3263 } 3264 3265 if (IsUnaryAbs) { 3266 for (unsigned i = 0; i != NumValues; ++i) { 3267 Values[i] = 3268 DAG.getNode(OpCode, getCurSDLoc(), 3269 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3270 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3271 } 3272 } else { 3273 for (unsigned i = 0; i != NumValues; ++i) { 3274 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3275 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3276 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3277 Values[i] = DAG.getNode( 3278 OpCode, getCurSDLoc(), 3279 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3280 } 3281 } 3282 3283 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3284 DAG.getVTList(ValueVTs), Values)); 3285 } 3286 3287 void SelectionDAGBuilder::visitTrunc(const User &I) { 3288 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3289 SDValue N = getValue(I.getOperand(0)); 3290 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3291 I.getType()); 3292 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3293 } 3294 3295 void SelectionDAGBuilder::visitZExt(const User &I) { 3296 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3297 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3298 SDValue N = getValue(I.getOperand(0)); 3299 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3300 I.getType()); 3301 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3302 } 3303 3304 void SelectionDAGBuilder::visitSExt(const User &I) { 3305 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3306 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3307 SDValue N = getValue(I.getOperand(0)); 3308 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3309 I.getType()); 3310 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3311 } 3312 3313 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3314 // FPTrunc is never a no-op cast, no need to check 3315 SDValue N = getValue(I.getOperand(0)); 3316 SDLoc dl = getCurSDLoc(); 3317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3318 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3319 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3320 DAG.getTargetConstant( 3321 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3322 } 3323 3324 void SelectionDAGBuilder::visitFPExt(const User &I) { 3325 // FPExt is never a no-op cast, no need to check 3326 SDValue N = getValue(I.getOperand(0)); 3327 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3328 I.getType()); 3329 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3330 } 3331 3332 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3333 // FPToUI is never a no-op cast, no need to check 3334 SDValue N = getValue(I.getOperand(0)); 3335 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3336 I.getType()); 3337 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3338 } 3339 3340 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3341 // FPToSI is never a no-op cast, no need to check 3342 SDValue N = getValue(I.getOperand(0)); 3343 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3344 I.getType()); 3345 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3346 } 3347 3348 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3349 // UIToFP is never a no-op cast, no need to check 3350 SDValue N = getValue(I.getOperand(0)); 3351 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3352 I.getType()); 3353 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3354 } 3355 3356 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3357 // SIToFP is never a no-op cast, no need to check 3358 SDValue N = getValue(I.getOperand(0)); 3359 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3360 I.getType()); 3361 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3362 } 3363 3364 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3365 // What to do depends on the size of the integer and the size of the pointer. 3366 // We can either truncate, zero extend, or no-op, accordingly. 3367 SDValue N = getValue(I.getOperand(0)); 3368 auto &TLI = DAG.getTargetLoweringInfo(); 3369 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3370 I.getType()); 3371 EVT PtrMemVT = 3372 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3373 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3374 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3375 setValue(&I, N); 3376 } 3377 3378 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3379 // What to do depends on the size of the integer and the size of the pointer. 3380 // We can either truncate, zero extend, or no-op, accordingly. 3381 SDValue N = getValue(I.getOperand(0)); 3382 auto &TLI = DAG.getTargetLoweringInfo(); 3383 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3384 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3385 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3386 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3387 setValue(&I, N); 3388 } 3389 3390 void SelectionDAGBuilder::visitBitCast(const User &I) { 3391 SDValue N = getValue(I.getOperand(0)); 3392 SDLoc dl = getCurSDLoc(); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 3396 // BitCast assures us that source and destination are the same size so this is 3397 // either a BITCAST or a no-op. 3398 if (DestVT != N.getValueType()) 3399 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3400 DestVT, N)); // convert types. 3401 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3402 // might fold any kind of constant expression to an integer constant and that 3403 // is not what we are looking for. Only recognize a bitcast of a genuine 3404 // constant integer as an opaque constant. 3405 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3406 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3407 /*isOpaque*/true)); 3408 else 3409 setValue(&I, N); // noop cast. 3410 } 3411 3412 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3414 const Value *SV = I.getOperand(0); 3415 SDValue N = getValue(SV); 3416 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3417 3418 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3419 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3420 3421 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3422 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3423 3424 setValue(&I, N); 3425 } 3426 3427 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SDValue InVec = getValue(I.getOperand(0)); 3430 SDValue InVal = getValue(I.getOperand(1)); 3431 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3432 TLI.getVectorIdxTy(DAG.getDataLayout())); 3433 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3434 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3435 InVec, InVal, InIdx)); 3436 } 3437 3438 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3440 SDValue InVec = getValue(I.getOperand(0)); 3441 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3442 TLI.getVectorIdxTy(DAG.getDataLayout())); 3443 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3444 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3445 InVec, InIdx)); 3446 } 3447 3448 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3449 SDValue Src1 = getValue(I.getOperand(0)); 3450 SDValue Src2 = getValue(I.getOperand(1)); 3451 ArrayRef<int> Mask; 3452 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3453 Mask = SVI->getShuffleMask(); 3454 else 3455 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3456 SDLoc DL = getCurSDLoc(); 3457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3458 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3459 EVT SrcVT = Src1.getValueType(); 3460 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3461 3462 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3463 VT.isScalableVector()) { 3464 // Canonical splat form of first element of first input vector. 3465 SDValue FirstElt = 3466 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3467 DAG.getVectorIdxConstant(0, DL)); 3468 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3469 return; 3470 } 3471 3472 // For now, we only handle splats for scalable vectors. 3473 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3474 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3475 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3476 3477 unsigned MaskNumElts = Mask.size(); 3478 3479 if (SrcNumElts == MaskNumElts) { 3480 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3481 return; 3482 } 3483 3484 // Normalize the shuffle vector since mask and vector length don't match. 3485 if (SrcNumElts < MaskNumElts) { 3486 // Mask is longer than the source vectors. We can use concatenate vector to 3487 // make the mask and vectors lengths match. 3488 3489 if (MaskNumElts % SrcNumElts == 0) { 3490 // Mask length is a multiple of the source vector length. 3491 // Check if the shuffle is some kind of concatenation of the input 3492 // vectors. 3493 unsigned NumConcat = MaskNumElts / SrcNumElts; 3494 bool IsConcat = true; 3495 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3496 for (unsigned i = 0; i != MaskNumElts; ++i) { 3497 int Idx = Mask[i]; 3498 if (Idx < 0) 3499 continue; 3500 // Ensure the indices in each SrcVT sized piece are sequential and that 3501 // the same source is used for the whole piece. 3502 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3503 (ConcatSrcs[i / SrcNumElts] >= 0 && 3504 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3505 IsConcat = false; 3506 break; 3507 } 3508 // Remember which source this index came from. 3509 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3510 } 3511 3512 // The shuffle is concatenating multiple vectors together. Just emit 3513 // a CONCAT_VECTORS operation. 3514 if (IsConcat) { 3515 SmallVector<SDValue, 8> ConcatOps; 3516 for (auto Src : ConcatSrcs) { 3517 if (Src < 0) 3518 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3519 else if (Src == 0) 3520 ConcatOps.push_back(Src1); 3521 else 3522 ConcatOps.push_back(Src2); 3523 } 3524 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3525 return; 3526 } 3527 } 3528 3529 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3530 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3531 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3532 PaddedMaskNumElts); 3533 3534 // Pad both vectors with undefs to make them the same length as the mask. 3535 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3536 3537 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3538 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3539 MOps1[0] = Src1; 3540 MOps2[0] = Src2; 3541 3542 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3543 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3544 3545 // Readjust mask for new input vector length. 3546 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3547 for (unsigned i = 0; i != MaskNumElts; ++i) { 3548 int Idx = Mask[i]; 3549 if (Idx >= (int)SrcNumElts) 3550 Idx -= SrcNumElts - PaddedMaskNumElts; 3551 MappedOps[i] = Idx; 3552 } 3553 3554 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3555 3556 // If the concatenated vector was padded, extract a subvector with the 3557 // correct number of elements. 3558 if (MaskNumElts != PaddedMaskNumElts) 3559 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3560 DAG.getVectorIdxConstant(0, DL)); 3561 3562 setValue(&I, Result); 3563 return; 3564 } 3565 3566 if (SrcNumElts > MaskNumElts) { 3567 // Analyze the access pattern of the vector to see if we can extract 3568 // two subvectors and do the shuffle. 3569 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3570 bool CanExtract = true; 3571 for (int Idx : Mask) { 3572 unsigned Input = 0; 3573 if (Idx < 0) 3574 continue; 3575 3576 if (Idx >= (int)SrcNumElts) { 3577 Input = 1; 3578 Idx -= SrcNumElts; 3579 } 3580 3581 // If all the indices come from the same MaskNumElts sized portion of 3582 // the sources we can use extract. Also make sure the extract wouldn't 3583 // extract past the end of the source. 3584 int NewStartIdx = alignDown(Idx, MaskNumElts); 3585 if (NewStartIdx + MaskNumElts > SrcNumElts || 3586 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3587 CanExtract = false; 3588 // Make sure we always update StartIdx as we use it to track if all 3589 // elements are undef. 3590 StartIdx[Input] = NewStartIdx; 3591 } 3592 3593 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3594 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3595 return; 3596 } 3597 if (CanExtract) { 3598 // Extract appropriate subvector and generate a vector shuffle 3599 for (unsigned Input = 0; Input < 2; ++Input) { 3600 SDValue &Src = Input == 0 ? Src1 : Src2; 3601 if (StartIdx[Input] < 0) 3602 Src = DAG.getUNDEF(VT); 3603 else { 3604 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3605 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3606 } 3607 } 3608 3609 // Calculate new mask. 3610 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3611 for (int &Idx : MappedOps) { 3612 if (Idx >= (int)SrcNumElts) 3613 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3614 else if (Idx >= 0) 3615 Idx -= StartIdx[0]; 3616 } 3617 3618 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3619 return; 3620 } 3621 } 3622 3623 // We can't use either concat vectors or extract subvectors so fall back to 3624 // replacing the shuffle with extract and build vector. 3625 // to insert and build vector. 3626 EVT EltVT = VT.getVectorElementType(); 3627 SmallVector<SDValue,8> Ops; 3628 for (int Idx : Mask) { 3629 SDValue Res; 3630 3631 if (Idx < 0) { 3632 Res = DAG.getUNDEF(EltVT); 3633 } else { 3634 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3635 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3636 3637 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3638 DAG.getVectorIdxConstant(Idx, DL)); 3639 } 3640 3641 Ops.push_back(Res); 3642 } 3643 3644 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3645 } 3646 3647 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3648 ArrayRef<unsigned> Indices; 3649 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3650 Indices = IV->getIndices(); 3651 else 3652 Indices = cast<ConstantExpr>(&I)->getIndices(); 3653 3654 const Value *Op0 = I.getOperand(0); 3655 const Value *Op1 = I.getOperand(1); 3656 Type *AggTy = I.getType(); 3657 Type *ValTy = Op1->getType(); 3658 bool IntoUndef = isa<UndefValue>(Op0); 3659 bool FromUndef = isa<UndefValue>(Op1); 3660 3661 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3662 3663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3664 SmallVector<EVT, 4> AggValueVTs; 3665 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3666 SmallVector<EVT, 4> ValValueVTs; 3667 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3668 3669 unsigned NumAggValues = AggValueVTs.size(); 3670 unsigned NumValValues = ValValueVTs.size(); 3671 SmallVector<SDValue, 4> Values(NumAggValues); 3672 3673 // Ignore an insertvalue that produces an empty object 3674 if (!NumAggValues) { 3675 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3676 return; 3677 } 3678 3679 SDValue Agg = getValue(Op0); 3680 unsigned i = 0; 3681 // Copy the beginning value(s) from the original aggregate. 3682 for (; i != LinearIndex; ++i) 3683 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3684 SDValue(Agg.getNode(), Agg.getResNo() + i); 3685 // Copy values from the inserted value(s). 3686 if (NumValValues) { 3687 SDValue Val = getValue(Op1); 3688 for (; i != LinearIndex + NumValValues; ++i) 3689 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3690 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3691 } 3692 // Copy remaining value(s) from the original aggregate. 3693 for (; i != NumAggValues; ++i) 3694 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3695 SDValue(Agg.getNode(), Agg.getResNo() + i); 3696 3697 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3698 DAG.getVTList(AggValueVTs), Values)); 3699 } 3700 3701 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3702 ArrayRef<unsigned> Indices; 3703 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3704 Indices = EV->getIndices(); 3705 else 3706 Indices = cast<ConstantExpr>(&I)->getIndices(); 3707 3708 const Value *Op0 = I.getOperand(0); 3709 Type *AggTy = Op0->getType(); 3710 Type *ValTy = I.getType(); 3711 bool OutOfUndef = isa<UndefValue>(Op0); 3712 3713 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3714 3715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3716 SmallVector<EVT, 4> ValValueVTs; 3717 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3718 3719 unsigned NumValValues = ValValueVTs.size(); 3720 3721 // Ignore a extractvalue that produces an empty object 3722 if (!NumValValues) { 3723 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3724 return; 3725 } 3726 3727 SmallVector<SDValue, 4> Values(NumValValues); 3728 3729 SDValue Agg = getValue(Op0); 3730 // Copy out the selected value(s). 3731 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3732 Values[i - LinearIndex] = 3733 OutOfUndef ? 3734 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3735 SDValue(Agg.getNode(), Agg.getResNo() + i); 3736 3737 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3738 DAG.getVTList(ValValueVTs), Values)); 3739 } 3740 3741 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3742 Value *Op0 = I.getOperand(0); 3743 // Note that the pointer operand may be a vector of pointers. Take the scalar 3744 // element which holds a pointer. 3745 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3746 SDValue N = getValue(Op0); 3747 SDLoc dl = getCurSDLoc(); 3748 auto &TLI = DAG.getTargetLoweringInfo(); 3749 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3750 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3751 3752 // Normalize Vector GEP - all scalar operands should be converted to the 3753 // splat vector. 3754 bool IsVectorGEP = I.getType()->isVectorTy(); 3755 ElementCount VectorElementCount = 3756 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3757 : ElementCount(0, false); 3758 3759 if (IsVectorGEP && !N.getValueType().isVector()) { 3760 LLVMContext &Context = *DAG.getContext(); 3761 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3762 if (VectorElementCount.Scalable) 3763 N = DAG.getSplatVector(VT, dl, N); 3764 else 3765 N = DAG.getSplatBuildVector(VT, dl, N); 3766 } 3767 3768 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3769 GTI != E; ++GTI) { 3770 const Value *Idx = GTI.getOperand(); 3771 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3772 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3773 if (Field) { 3774 // N = N + Offset 3775 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3776 3777 // In an inbounds GEP with an offset that is nonnegative even when 3778 // interpreted as signed, assume there is no unsigned overflow. 3779 SDNodeFlags Flags; 3780 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3781 Flags.setNoUnsignedWrap(true); 3782 3783 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3784 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3785 } 3786 } else { 3787 // IdxSize is the width of the arithmetic according to IR semantics. 3788 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3789 // (and fix up the result later). 3790 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3791 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3792 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3793 // We intentionally mask away the high bits here; ElementSize may not 3794 // fit in IdxTy. 3795 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3796 bool ElementScalable = ElementSize.isScalable(); 3797 3798 // If this is a scalar constant or a splat vector of constants, 3799 // handle it quickly. 3800 const auto *C = dyn_cast<Constant>(Idx); 3801 if (C && isa<VectorType>(C->getType())) 3802 C = C->getSplatValue(); 3803 3804 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3805 if (CI && CI->isZero()) 3806 continue; 3807 if (CI && !ElementScalable) { 3808 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3809 LLVMContext &Context = *DAG.getContext(); 3810 SDValue OffsVal; 3811 if (IsVectorGEP) 3812 OffsVal = DAG.getConstant( 3813 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3814 else 3815 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3816 3817 // In an inbounds GEP with an offset that is nonnegative even when 3818 // interpreted as signed, assume there is no unsigned overflow. 3819 SDNodeFlags Flags; 3820 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3821 Flags.setNoUnsignedWrap(true); 3822 3823 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3824 3825 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3826 continue; 3827 } 3828 3829 // N = N + Idx * ElementMul; 3830 SDValue IdxN = getValue(Idx); 3831 3832 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3833 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3834 VectorElementCount); 3835 if (VectorElementCount.Scalable) 3836 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3837 else 3838 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3839 } 3840 3841 // If the index is smaller or larger than intptr_t, truncate or extend 3842 // it. 3843 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3844 3845 if (ElementScalable) { 3846 EVT VScaleTy = N.getValueType().getScalarType(); 3847 SDValue VScale = DAG.getNode( 3848 ISD::VSCALE, dl, VScaleTy, 3849 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3850 if (IsVectorGEP) 3851 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3852 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3853 } else { 3854 // If this is a multiply by a power of two, turn it into a shl 3855 // immediately. This is a very common case. 3856 if (ElementMul != 1) { 3857 if (ElementMul.isPowerOf2()) { 3858 unsigned Amt = ElementMul.logBase2(); 3859 IdxN = DAG.getNode(ISD::SHL, dl, 3860 N.getValueType(), IdxN, 3861 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3862 } else { 3863 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3864 IdxN.getValueType()); 3865 IdxN = DAG.getNode(ISD::MUL, dl, 3866 N.getValueType(), IdxN, Scale); 3867 } 3868 } 3869 } 3870 3871 N = DAG.getNode(ISD::ADD, dl, 3872 N.getValueType(), N, IdxN); 3873 } 3874 } 3875 3876 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3877 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3878 3879 setValue(&I, N); 3880 } 3881 3882 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3883 // If this is a fixed sized alloca in the entry block of the function, 3884 // allocate it statically on the stack. 3885 if (FuncInfo.StaticAllocaMap.count(&I)) 3886 return; // getValue will auto-populate this. 3887 3888 SDLoc dl = getCurSDLoc(); 3889 Type *Ty = I.getAllocatedType(); 3890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3891 auto &DL = DAG.getDataLayout(); 3892 uint64_t TySize = DL.getTypeAllocSize(Ty); 3893 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3894 3895 SDValue AllocSize = getValue(I.getArraySize()); 3896 3897 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3898 if (AllocSize.getValueType() != IntPtr) 3899 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3900 3901 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3902 AllocSize, 3903 DAG.getConstant(TySize, dl, IntPtr)); 3904 3905 // Handle alignment. If the requested alignment is less than or equal to 3906 // the stack alignment, ignore it. If the size is greater than or equal to 3907 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3908 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3909 if (*Alignment <= StackAlign) 3910 Alignment = None; 3911 3912 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3913 // Round the size of the allocation up to the stack alignment size 3914 // by add SA-1 to the size. This doesn't overflow because we're computing 3915 // an address inside an alloca. 3916 SDNodeFlags Flags; 3917 Flags.setNoUnsignedWrap(true); 3918 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3919 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3920 3921 // Mask out the low bits for alignment purposes. 3922 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3923 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3924 3925 SDValue Ops[] = { 3926 getRoot(), AllocSize, 3927 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3928 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3929 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3930 setValue(&I, DSA); 3931 DAG.setRoot(DSA.getValue(1)); 3932 3933 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3934 } 3935 3936 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3937 if (I.isAtomic()) 3938 return visitAtomicLoad(I); 3939 3940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3941 const Value *SV = I.getOperand(0); 3942 if (TLI.supportSwiftError()) { 3943 // Swifterror values can come from either a function parameter with 3944 // swifterror attribute or an alloca with swifterror attribute. 3945 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3946 if (Arg->hasSwiftErrorAttr()) 3947 return visitLoadFromSwiftError(I); 3948 } 3949 3950 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3951 if (Alloca->isSwiftError()) 3952 return visitLoadFromSwiftError(I); 3953 } 3954 } 3955 3956 SDValue Ptr = getValue(SV); 3957 3958 Type *Ty = I.getType(); 3959 Align Alignment = I.getAlign(); 3960 3961 AAMDNodes AAInfo; 3962 I.getAAMetadata(AAInfo); 3963 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3964 3965 SmallVector<EVT, 4> ValueVTs, MemVTs; 3966 SmallVector<uint64_t, 4> Offsets; 3967 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3968 unsigned NumValues = ValueVTs.size(); 3969 if (NumValues == 0) 3970 return; 3971 3972 bool isVolatile = I.isVolatile(); 3973 3974 SDValue Root; 3975 bool ConstantMemory = false; 3976 if (isVolatile) 3977 // Serialize volatile loads with other side effects. 3978 Root = getRoot(); 3979 else if (NumValues > MaxParallelChains) 3980 Root = getMemoryRoot(); 3981 else if (AA && 3982 AA->pointsToConstantMemory(MemoryLocation( 3983 SV, 3984 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3985 AAInfo))) { 3986 // Do not serialize (non-volatile) loads of constant memory with anything. 3987 Root = DAG.getEntryNode(); 3988 ConstantMemory = true; 3989 } else { 3990 // Do not serialize non-volatile loads against each other. 3991 Root = DAG.getRoot(); 3992 } 3993 3994 SDLoc dl = getCurSDLoc(); 3995 3996 if (isVolatile) 3997 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3998 3999 // An aggregate load cannot wrap around the address space, so offsets to its 4000 // parts don't wrap either. 4001 SDNodeFlags Flags; 4002 Flags.setNoUnsignedWrap(true); 4003 4004 SmallVector<SDValue, 4> Values(NumValues); 4005 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4006 EVT PtrVT = Ptr.getValueType(); 4007 4008 MachineMemOperand::Flags MMOFlags 4009 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4010 4011 unsigned ChainI = 0; 4012 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4013 // Serializing loads here may result in excessive register pressure, and 4014 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4015 // could recover a bit by hoisting nodes upward in the chain by recognizing 4016 // they are side-effect free or do not alias. The optimizer should really 4017 // avoid this case by converting large object/array copies to llvm.memcpy 4018 // (MaxParallelChains should always remain as failsafe). 4019 if (ChainI == MaxParallelChains) { 4020 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4021 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4022 makeArrayRef(Chains.data(), ChainI)); 4023 Root = Chain; 4024 ChainI = 0; 4025 } 4026 SDValue A = DAG.getNode(ISD::ADD, dl, 4027 PtrVT, Ptr, 4028 DAG.getConstant(Offsets[i], dl, PtrVT), 4029 Flags); 4030 4031 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4032 MachinePointerInfo(SV, Offsets[i]), Alignment, 4033 MMOFlags, AAInfo, Ranges); 4034 Chains[ChainI] = L.getValue(1); 4035 4036 if (MemVTs[i] != ValueVTs[i]) 4037 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4038 4039 Values[i] = L; 4040 } 4041 4042 if (!ConstantMemory) { 4043 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4044 makeArrayRef(Chains.data(), ChainI)); 4045 if (isVolatile) 4046 DAG.setRoot(Chain); 4047 else 4048 PendingLoads.push_back(Chain); 4049 } 4050 4051 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4052 DAG.getVTList(ValueVTs), Values)); 4053 } 4054 4055 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4056 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4057 "call visitStoreToSwiftError when backend supports swifterror"); 4058 4059 SmallVector<EVT, 4> ValueVTs; 4060 SmallVector<uint64_t, 4> Offsets; 4061 const Value *SrcV = I.getOperand(0); 4062 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4063 SrcV->getType(), ValueVTs, &Offsets); 4064 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4065 "expect a single EVT for swifterror"); 4066 4067 SDValue Src = getValue(SrcV); 4068 // Create a virtual register, then update the virtual register. 4069 Register VReg = 4070 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4071 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4072 // Chain can be getRoot or getControlRoot. 4073 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4074 SDValue(Src.getNode(), Src.getResNo())); 4075 DAG.setRoot(CopyNode); 4076 } 4077 4078 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4079 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4080 "call visitLoadFromSwiftError when backend supports swifterror"); 4081 4082 assert(!I.isVolatile() && 4083 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4084 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4085 "Support volatile, non temporal, invariant for load_from_swift_error"); 4086 4087 const Value *SV = I.getOperand(0); 4088 Type *Ty = I.getType(); 4089 AAMDNodes AAInfo; 4090 I.getAAMetadata(AAInfo); 4091 assert( 4092 (!AA || 4093 !AA->pointsToConstantMemory(MemoryLocation( 4094 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4095 AAInfo))) && 4096 "load_from_swift_error should not be constant memory"); 4097 4098 SmallVector<EVT, 4> ValueVTs; 4099 SmallVector<uint64_t, 4> Offsets; 4100 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4101 ValueVTs, &Offsets); 4102 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4103 "expect a single EVT for swifterror"); 4104 4105 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4106 SDValue L = DAG.getCopyFromReg( 4107 getRoot(), getCurSDLoc(), 4108 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4109 4110 setValue(&I, L); 4111 } 4112 4113 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4114 if (I.isAtomic()) 4115 return visitAtomicStore(I); 4116 4117 const Value *SrcV = I.getOperand(0); 4118 const Value *PtrV = I.getOperand(1); 4119 4120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4121 if (TLI.supportSwiftError()) { 4122 // Swifterror values can come from either a function parameter with 4123 // swifterror attribute or an alloca with swifterror attribute. 4124 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4125 if (Arg->hasSwiftErrorAttr()) 4126 return visitStoreToSwiftError(I); 4127 } 4128 4129 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4130 if (Alloca->isSwiftError()) 4131 return visitStoreToSwiftError(I); 4132 } 4133 } 4134 4135 SmallVector<EVT, 4> ValueVTs, MemVTs; 4136 SmallVector<uint64_t, 4> Offsets; 4137 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4138 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4139 unsigned NumValues = ValueVTs.size(); 4140 if (NumValues == 0) 4141 return; 4142 4143 // Get the lowered operands. Note that we do this after 4144 // checking if NumResults is zero, because with zero results 4145 // the operands won't have values in the map. 4146 SDValue Src = getValue(SrcV); 4147 SDValue Ptr = getValue(PtrV); 4148 4149 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4150 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4151 SDLoc dl = getCurSDLoc(); 4152 Align Alignment = I.getAlign(); 4153 AAMDNodes AAInfo; 4154 I.getAAMetadata(AAInfo); 4155 4156 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4157 4158 // An aggregate load cannot wrap around the address space, so offsets to its 4159 // parts don't wrap either. 4160 SDNodeFlags Flags; 4161 Flags.setNoUnsignedWrap(true); 4162 4163 unsigned ChainI = 0; 4164 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4165 // See visitLoad comments. 4166 if (ChainI == MaxParallelChains) { 4167 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4168 makeArrayRef(Chains.data(), ChainI)); 4169 Root = Chain; 4170 ChainI = 0; 4171 } 4172 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4173 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4174 if (MemVTs[i] != ValueVTs[i]) 4175 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4176 SDValue St = 4177 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4178 Alignment, MMOFlags, AAInfo); 4179 Chains[ChainI] = St; 4180 } 4181 4182 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4183 makeArrayRef(Chains.data(), ChainI)); 4184 DAG.setRoot(StoreNode); 4185 } 4186 4187 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4188 bool IsCompressing) { 4189 SDLoc sdl = getCurSDLoc(); 4190 4191 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4192 MaybeAlign &Alignment) { 4193 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4194 Src0 = I.getArgOperand(0); 4195 Ptr = I.getArgOperand(1); 4196 Alignment = 4197 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4198 Mask = I.getArgOperand(3); 4199 }; 4200 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4201 MaybeAlign &Alignment) { 4202 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4203 Src0 = I.getArgOperand(0); 4204 Ptr = I.getArgOperand(1); 4205 Mask = I.getArgOperand(2); 4206 Alignment = None; 4207 }; 4208 4209 Value *PtrOperand, *MaskOperand, *Src0Operand; 4210 MaybeAlign Alignment; 4211 if (IsCompressing) 4212 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4213 else 4214 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4215 4216 SDValue Ptr = getValue(PtrOperand); 4217 SDValue Src0 = getValue(Src0Operand); 4218 SDValue Mask = getValue(MaskOperand); 4219 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4220 4221 EVT VT = Src0.getValueType(); 4222 if (!Alignment) 4223 Alignment = DAG.getEVTAlign(VT); 4224 4225 AAMDNodes AAInfo; 4226 I.getAAMetadata(AAInfo); 4227 4228 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4229 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4230 // TODO: Make MachineMemOperands aware of scalable 4231 // vectors. 4232 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4233 SDValue StoreNode = 4234 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4235 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4236 DAG.setRoot(StoreNode); 4237 setValue(&I, StoreNode); 4238 } 4239 4240 // Get a uniform base for the Gather/Scatter intrinsic. 4241 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4242 // We try to represent it as a base pointer + vector of indices. 4243 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4244 // The first operand of the GEP may be a single pointer or a vector of pointers 4245 // Example: 4246 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4247 // or 4248 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4249 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4250 // 4251 // When the first GEP operand is a single pointer - it is the uniform base we 4252 // are looking for. If first operand of the GEP is a splat vector - we 4253 // extract the splat value and use it as a uniform base. 4254 // In all other cases the function returns 'false'. 4255 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4256 ISD::MemIndexType &IndexType, SDValue &Scale, 4257 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4258 SelectionDAG& DAG = SDB->DAG; 4259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4260 const DataLayout &DL = DAG.getDataLayout(); 4261 4262 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4263 4264 // Handle splat constant pointer. 4265 if (auto *C = dyn_cast<Constant>(Ptr)) { 4266 C = C->getSplatValue(); 4267 if (!C) 4268 return false; 4269 4270 Base = SDB->getValue(C); 4271 4272 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4273 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4274 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4275 IndexType = ISD::SIGNED_SCALED; 4276 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4277 return true; 4278 } 4279 4280 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4281 if (!GEP || GEP->getParent() != CurBB) 4282 return false; 4283 4284 if (GEP->getNumOperands() != 2) 4285 return false; 4286 4287 const Value *BasePtr = GEP->getPointerOperand(); 4288 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4289 4290 // Make sure the base is scalar and the index is a vector. 4291 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4292 return false; 4293 4294 Base = SDB->getValue(BasePtr); 4295 Index = SDB->getValue(IndexVal); 4296 IndexType = ISD::SIGNED_SCALED; 4297 Scale = DAG.getTargetConstant( 4298 DL.getTypeAllocSize(GEP->getResultElementType()), 4299 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4300 return true; 4301 } 4302 4303 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4304 SDLoc sdl = getCurSDLoc(); 4305 4306 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4307 const Value *Ptr = I.getArgOperand(1); 4308 SDValue Src0 = getValue(I.getArgOperand(0)); 4309 SDValue Mask = getValue(I.getArgOperand(3)); 4310 EVT VT = Src0.getValueType(); 4311 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4312 if (!Alignment) 4313 Alignment = DAG.getEVTAlign(VT); 4314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4315 4316 AAMDNodes AAInfo; 4317 I.getAAMetadata(AAInfo); 4318 4319 SDValue Base; 4320 SDValue Index; 4321 ISD::MemIndexType IndexType; 4322 SDValue Scale; 4323 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4324 I.getParent()); 4325 4326 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4327 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4328 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4329 // TODO: Make MachineMemOperands aware of scalable 4330 // vectors. 4331 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4332 if (!UniformBase) { 4333 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4334 Index = getValue(Ptr); 4335 IndexType = ISD::SIGNED_SCALED; 4336 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4337 } 4338 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4339 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4340 Ops, MMO, IndexType); 4341 DAG.setRoot(Scatter); 4342 setValue(&I, Scatter); 4343 } 4344 4345 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4346 SDLoc sdl = getCurSDLoc(); 4347 4348 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4349 MaybeAlign &Alignment) { 4350 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4351 Ptr = I.getArgOperand(0); 4352 Alignment = 4353 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4354 Mask = I.getArgOperand(2); 4355 Src0 = I.getArgOperand(3); 4356 }; 4357 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4358 MaybeAlign &Alignment) { 4359 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4360 Ptr = I.getArgOperand(0); 4361 Alignment = None; 4362 Mask = I.getArgOperand(1); 4363 Src0 = I.getArgOperand(2); 4364 }; 4365 4366 Value *PtrOperand, *MaskOperand, *Src0Operand; 4367 MaybeAlign Alignment; 4368 if (IsExpanding) 4369 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4370 else 4371 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4372 4373 SDValue Ptr = getValue(PtrOperand); 4374 SDValue Src0 = getValue(Src0Operand); 4375 SDValue Mask = getValue(MaskOperand); 4376 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4377 4378 EVT VT = Src0.getValueType(); 4379 if (!Alignment) 4380 Alignment = DAG.getEVTAlign(VT); 4381 4382 AAMDNodes AAInfo; 4383 I.getAAMetadata(AAInfo); 4384 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4385 4386 // Do not serialize masked loads of constant memory with anything. 4387 MemoryLocation ML; 4388 if (VT.isScalableVector()) 4389 ML = MemoryLocation(PtrOperand); 4390 else 4391 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4392 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4393 AAInfo); 4394 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4395 4396 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4397 4398 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4399 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4400 // TODO: Make MachineMemOperands aware of scalable 4401 // vectors. 4402 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4403 4404 SDValue Load = 4405 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4406 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4407 if (AddToChain) 4408 PendingLoads.push_back(Load.getValue(1)); 4409 setValue(&I, Load); 4410 } 4411 4412 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4413 SDLoc sdl = getCurSDLoc(); 4414 4415 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4416 const Value *Ptr = I.getArgOperand(0); 4417 SDValue Src0 = getValue(I.getArgOperand(3)); 4418 SDValue Mask = getValue(I.getArgOperand(2)); 4419 4420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4421 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4422 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4423 if (!Alignment) 4424 Alignment = DAG.getEVTAlign(VT); 4425 4426 AAMDNodes AAInfo; 4427 I.getAAMetadata(AAInfo); 4428 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4429 4430 SDValue Root = DAG.getRoot(); 4431 SDValue Base; 4432 SDValue Index; 4433 ISD::MemIndexType IndexType; 4434 SDValue Scale; 4435 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4436 I.getParent()); 4437 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4438 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4439 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4440 // TODO: Make MachineMemOperands aware of scalable 4441 // vectors. 4442 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4443 4444 if (!UniformBase) { 4445 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4446 Index = getValue(Ptr); 4447 IndexType = ISD::SIGNED_SCALED; 4448 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4449 } 4450 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4451 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4452 Ops, MMO, IndexType); 4453 4454 PendingLoads.push_back(Gather.getValue(1)); 4455 setValue(&I, Gather); 4456 } 4457 4458 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4459 SDLoc dl = getCurSDLoc(); 4460 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4461 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4462 SyncScope::ID SSID = I.getSyncScopeID(); 4463 4464 SDValue InChain = getRoot(); 4465 4466 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4467 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4468 4469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4470 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4471 4472 MachineFunction &MF = DAG.getMachineFunction(); 4473 MachineMemOperand *MMO = MF.getMachineMemOperand( 4474 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4475 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4476 FailureOrdering); 4477 4478 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4479 dl, MemVT, VTs, InChain, 4480 getValue(I.getPointerOperand()), 4481 getValue(I.getCompareOperand()), 4482 getValue(I.getNewValOperand()), MMO); 4483 4484 SDValue OutChain = L.getValue(2); 4485 4486 setValue(&I, L); 4487 DAG.setRoot(OutChain); 4488 } 4489 4490 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4491 SDLoc dl = getCurSDLoc(); 4492 ISD::NodeType NT; 4493 switch (I.getOperation()) { 4494 default: llvm_unreachable("Unknown atomicrmw operation"); 4495 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4496 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4497 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4498 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4499 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4500 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4501 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4502 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4503 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4504 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4505 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4506 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4507 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4508 } 4509 AtomicOrdering Ordering = I.getOrdering(); 4510 SyncScope::ID SSID = I.getSyncScopeID(); 4511 4512 SDValue InChain = getRoot(); 4513 4514 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4516 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4517 4518 MachineFunction &MF = DAG.getMachineFunction(); 4519 MachineMemOperand *MMO = MF.getMachineMemOperand( 4520 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4521 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4522 4523 SDValue L = 4524 DAG.getAtomic(NT, dl, MemVT, InChain, 4525 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4526 MMO); 4527 4528 SDValue OutChain = L.getValue(1); 4529 4530 setValue(&I, L); 4531 DAG.setRoot(OutChain); 4532 } 4533 4534 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4535 SDLoc dl = getCurSDLoc(); 4536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4537 SDValue Ops[3]; 4538 Ops[0] = getRoot(); 4539 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4540 TLI.getFenceOperandTy(DAG.getDataLayout())); 4541 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4542 TLI.getFenceOperandTy(DAG.getDataLayout())); 4543 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4544 } 4545 4546 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4547 SDLoc dl = getCurSDLoc(); 4548 AtomicOrdering Order = I.getOrdering(); 4549 SyncScope::ID SSID = I.getSyncScopeID(); 4550 4551 SDValue InChain = getRoot(); 4552 4553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4554 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4555 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4556 4557 if (!TLI.supportsUnalignedAtomics() && 4558 I.getAlignment() < MemVT.getSizeInBits() / 8) 4559 report_fatal_error("Cannot generate unaligned atomic load"); 4560 4561 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4562 4563 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4564 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4565 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4566 4567 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4568 4569 SDValue Ptr = getValue(I.getPointerOperand()); 4570 4571 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4572 // TODO: Once this is better exercised by tests, it should be merged with 4573 // the normal path for loads to prevent future divergence. 4574 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4575 if (MemVT != VT) 4576 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4577 4578 setValue(&I, L); 4579 SDValue OutChain = L.getValue(1); 4580 if (!I.isUnordered()) 4581 DAG.setRoot(OutChain); 4582 else 4583 PendingLoads.push_back(OutChain); 4584 return; 4585 } 4586 4587 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4588 Ptr, MMO); 4589 4590 SDValue OutChain = L.getValue(1); 4591 if (MemVT != VT) 4592 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4593 4594 setValue(&I, L); 4595 DAG.setRoot(OutChain); 4596 } 4597 4598 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4599 SDLoc dl = getCurSDLoc(); 4600 4601 AtomicOrdering Ordering = I.getOrdering(); 4602 SyncScope::ID SSID = I.getSyncScopeID(); 4603 4604 SDValue InChain = getRoot(); 4605 4606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4607 EVT MemVT = 4608 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4609 4610 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4611 report_fatal_error("Cannot generate unaligned atomic store"); 4612 4613 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4614 4615 MachineFunction &MF = DAG.getMachineFunction(); 4616 MachineMemOperand *MMO = MF.getMachineMemOperand( 4617 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4618 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4619 4620 SDValue Val = getValue(I.getValueOperand()); 4621 if (Val.getValueType() != MemVT) 4622 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4623 SDValue Ptr = getValue(I.getPointerOperand()); 4624 4625 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4626 // TODO: Once this is better exercised by tests, it should be merged with 4627 // the normal path for stores to prevent future divergence. 4628 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4629 DAG.setRoot(S); 4630 return; 4631 } 4632 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4633 Ptr, Val, MMO); 4634 4635 4636 DAG.setRoot(OutChain); 4637 } 4638 4639 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4640 /// node. 4641 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4642 unsigned Intrinsic) { 4643 // Ignore the callsite's attributes. A specific call site may be marked with 4644 // readnone, but the lowering code will expect the chain based on the 4645 // definition. 4646 const Function *F = I.getCalledFunction(); 4647 bool HasChain = !F->doesNotAccessMemory(); 4648 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4649 4650 // Build the operand list. 4651 SmallVector<SDValue, 8> Ops; 4652 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4653 if (OnlyLoad) { 4654 // We don't need to serialize loads against other loads. 4655 Ops.push_back(DAG.getRoot()); 4656 } else { 4657 Ops.push_back(getRoot()); 4658 } 4659 } 4660 4661 // Info is set by getTgtMemInstrinsic 4662 TargetLowering::IntrinsicInfo Info; 4663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4664 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4665 DAG.getMachineFunction(), 4666 Intrinsic); 4667 4668 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4669 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4670 Info.opc == ISD::INTRINSIC_W_CHAIN) 4671 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4672 TLI.getPointerTy(DAG.getDataLayout()))); 4673 4674 // Add all operands of the call to the operand list. 4675 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4676 const Value *Arg = I.getArgOperand(i); 4677 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4678 Ops.push_back(getValue(Arg)); 4679 continue; 4680 } 4681 4682 // Use TargetConstant instead of a regular constant for immarg. 4683 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4684 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4685 assert(CI->getBitWidth() <= 64 && 4686 "large intrinsic immediates not handled"); 4687 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4688 } else { 4689 Ops.push_back( 4690 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4691 } 4692 } 4693 4694 SmallVector<EVT, 4> ValueVTs; 4695 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4696 4697 if (HasChain) 4698 ValueVTs.push_back(MVT::Other); 4699 4700 SDVTList VTs = DAG.getVTList(ValueVTs); 4701 4702 // Create the node. 4703 SDValue Result; 4704 if (IsTgtIntrinsic) { 4705 // This is target intrinsic that touches memory 4706 AAMDNodes AAInfo; 4707 I.getAAMetadata(AAInfo); 4708 Result = 4709 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4710 MachinePointerInfo(Info.ptrVal, Info.offset), 4711 Info.align, Info.flags, Info.size, AAInfo); 4712 } else if (!HasChain) { 4713 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4714 } else if (!I.getType()->isVoidTy()) { 4715 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4716 } else { 4717 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4718 } 4719 4720 if (HasChain) { 4721 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4722 if (OnlyLoad) 4723 PendingLoads.push_back(Chain); 4724 else 4725 DAG.setRoot(Chain); 4726 } 4727 4728 if (!I.getType()->isVoidTy()) { 4729 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4730 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4731 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4732 } else 4733 Result = lowerRangeToAssertZExt(DAG, I, Result); 4734 4735 setValue(&I, Result); 4736 } 4737 } 4738 4739 /// GetSignificand - Get the significand and build it into a floating-point 4740 /// number with exponent of 1: 4741 /// 4742 /// Op = (Op & 0x007fffff) | 0x3f800000; 4743 /// 4744 /// where Op is the hexadecimal representation of floating point value. 4745 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4746 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4747 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4748 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4749 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4750 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4751 } 4752 4753 /// GetExponent - Get the exponent: 4754 /// 4755 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4756 /// 4757 /// where Op is the hexadecimal representation of floating point value. 4758 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4759 const TargetLowering &TLI, const SDLoc &dl) { 4760 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4761 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4762 SDValue t1 = DAG.getNode( 4763 ISD::SRL, dl, MVT::i32, t0, 4764 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4765 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4766 DAG.getConstant(127, dl, MVT::i32)); 4767 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4768 } 4769 4770 /// getF32Constant - Get 32-bit floating point constant. 4771 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4772 const SDLoc &dl) { 4773 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4774 MVT::f32); 4775 } 4776 4777 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4778 SelectionDAG &DAG) { 4779 // TODO: What fast-math-flags should be set on the floating-point nodes? 4780 4781 // IntegerPartOfX = ((int32_t)(t0); 4782 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4783 4784 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4785 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4786 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4787 4788 // IntegerPartOfX <<= 23; 4789 IntegerPartOfX = DAG.getNode( 4790 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4791 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4792 DAG.getDataLayout()))); 4793 4794 SDValue TwoToFractionalPartOfX; 4795 if (LimitFloatPrecision <= 6) { 4796 // For floating-point precision of 6: 4797 // 4798 // TwoToFractionalPartOfX = 4799 // 0.997535578f + 4800 // (0.735607626f + 0.252464424f * x) * x; 4801 // 4802 // error 0.0144103317, which is 6 bits 4803 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4804 getF32Constant(DAG, 0x3e814304, dl)); 4805 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4806 getF32Constant(DAG, 0x3f3c50c8, dl)); 4807 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4808 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4809 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4810 } else if (LimitFloatPrecision <= 12) { 4811 // For floating-point precision of 12: 4812 // 4813 // TwoToFractionalPartOfX = 4814 // 0.999892986f + 4815 // (0.696457318f + 4816 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4817 // 4818 // error 0.000107046256, which is 13 to 14 bits 4819 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4820 getF32Constant(DAG, 0x3da235e3, dl)); 4821 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4822 getF32Constant(DAG, 0x3e65b8f3, dl)); 4823 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4824 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4825 getF32Constant(DAG, 0x3f324b07, dl)); 4826 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4827 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4828 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4829 } else { // LimitFloatPrecision <= 18 4830 // For floating-point precision of 18: 4831 // 4832 // TwoToFractionalPartOfX = 4833 // 0.999999982f + 4834 // (0.693148872f + 4835 // (0.240227044f + 4836 // (0.554906021e-1f + 4837 // (0.961591928e-2f + 4838 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4839 // error 2.47208000*10^(-7), which is better than 18 bits 4840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4841 getF32Constant(DAG, 0x3924b03e, dl)); 4842 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4843 getF32Constant(DAG, 0x3ab24b87, dl)); 4844 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4845 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4846 getF32Constant(DAG, 0x3c1d8c17, dl)); 4847 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4848 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4849 getF32Constant(DAG, 0x3d634a1d, dl)); 4850 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4851 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4852 getF32Constant(DAG, 0x3e75fe14, dl)); 4853 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4854 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4855 getF32Constant(DAG, 0x3f317234, dl)); 4856 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4857 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4858 getF32Constant(DAG, 0x3f800000, dl)); 4859 } 4860 4861 // Add the exponent into the result in integer domain. 4862 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4863 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4864 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4865 } 4866 4867 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4868 /// limited-precision mode. 4869 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4870 const TargetLowering &TLI) { 4871 if (Op.getValueType() == MVT::f32 && 4872 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4873 4874 // Put the exponent in the right bit position for later addition to the 4875 // final result: 4876 // 4877 // t0 = Op * log2(e) 4878 4879 // TODO: What fast-math-flags should be set here? 4880 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4881 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4882 return getLimitedPrecisionExp2(t0, dl, DAG); 4883 } 4884 4885 // No special expansion. 4886 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4887 } 4888 4889 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4890 /// limited-precision mode. 4891 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4892 const TargetLowering &TLI) { 4893 // TODO: What fast-math-flags should be set on the floating-point nodes? 4894 4895 if (Op.getValueType() == MVT::f32 && 4896 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4897 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4898 4899 // Scale the exponent by log(2). 4900 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4901 SDValue LogOfExponent = 4902 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4903 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4904 4905 // Get the significand and build it into a floating-point number with 4906 // exponent of 1. 4907 SDValue X = GetSignificand(DAG, Op1, dl); 4908 4909 SDValue LogOfMantissa; 4910 if (LimitFloatPrecision <= 6) { 4911 // For floating-point precision of 6: 4912 // 4913 // LogofMantissa = 4914 // -1.1609546f + 4915 // (1.4034025f - 0.23903021f * x) * x; 4916 // 4917 // error 0.0034276066, which is better than 8 bits 4918 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4919 getF32Constant(DAG, 0xbe74c456, dl)); 4920 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4921 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4923 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4924 getF32Constant(DAG, 0x3f949a29, dl)); 4925 } else if (LimitFloatPrecision <= 12) { 4926 // For floating-point precision of 12: 4927 // 4928 // LogOfMantissa = 4929 // -1.7417939f + 4930 // (2.8212026f + 4931 // (-1.4699568f + 4932 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4933 // 4934 // error 0.000061011436, which is 14 bits 4935 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4936 getF32Constant(DAG, 0xbd67b6d6, dl)); 4937 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4938 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4939 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4940 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4941 getF32Constant(DAG, 0x3fbc278b, dl)); 4942 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4943 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4944 getF32Constant(DAG, 0x40348e95, dl)); 4945 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4946 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4947 getF32Constant(DAG, 0x3fdef31a, dl)); 4948 } else { // LimitFloatPrecision <= 18 4949 // For floating-point precision of 18: 4950 // 4951 // LogOfMantissa = 4952 // -2.1072184f + 4953 // (4.2372794f + 4954 // (-3.7029485f + 4955 // (2.2781945f + 4956 // (-0.87823314f + 4957 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4958 // 4959 // error 0.0000023660568, which is better than 18 bits 4960 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4961 getF32Constant(DAG, 0xbc91e5ac, dl)); 4962 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4963 getF32Constant(DAG, 0x3e4350aa, dl)); 4964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4965 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4966 getF32Constant(DAG, 0x3f60d3e3, dl)); 4967 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4968 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4969 getF32Constant(DAG, 0x4011cdf0, dl)); 4970 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4971 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4972 getF32Constant(DAG, 0x406cfd1c, dl)); 4973 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4974 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4975 getF32Constant(DAG, 0x408797cb, dl)); 4976 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4977 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4978 getF32Constant(DAG, 0x4006dcab, dl)); 4979 } 4980 4981 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4982 } 4983 4984 // No special expansion. 4985 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4986 } 4987 4988 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4989 /// limited-precision mode. 4990 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4991 const TargetLowering &TLI) { 4992 // TODO: What fast-math-flags should be set on the floating-point nodes? 4993 4994 if (Op.getValueType() == MVT::f32 && 4995 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4996 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4997 4998 // Get the exponent. 4999 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5000 5001 // Get the significand and build it into a floating-point number with 5002 // exponent of 1. 5003 SDValue X = GetSignificand(DAG, Op1, dl); 5004 5005 // Different possible minimax approximations of significand in 5006 // floating-point for various degrees of accuracy over [1,2]. 5007 SDValue Log2ofMantissa; 5008 if (LimitFloatPrecision <= 6) { 5009 // For floating-point precision of 6: 5010 // 5011 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5012 // 5013 // error 0.0049451742, which is more than 7 bits 5014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5015 getF32Constant(DAG, 0xbeb08fe0, dl)); 5016 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5017 getF32Constant(DAG, 0x40019463, dl)); 5018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5019 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5020 getF32Constant(DAG, 0x3fd6633d, dl)); 5021 } else if (LimitFloatPrecision <= 12) { 5022 // For floating-point precision of 12: 5023 // 5024 // Log2ofMantissa = 5025 // -2.51285454f + 5026 // (4.07009056f + 5027 // (-2.12067489f + 5028 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5029 // 5030 // error 0.0000876136000, which is better than 13 bits 5031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5032 getF32Constant(DAG, 0xbda7262e, dl)); 5033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5034 getF32Constant(DAG, 0x3f25280b, dl)); 5035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5036 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5037 getF32Constant(DAG, 0x4007b923, dl)); 5038 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5039 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5040 getF32Constant(DAG, 0x40823e2f, dl)); 5041 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5042 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5043 getF32Constant(DAG, 0x4020d29c, dl)); 5044 } else { // LimitFloatPrecision <= 18 5045 // For floating-point precision of 18: 5046 // 5047 // Log2ofMantissa = 5048 // -3.0400495f + 5049 // (6.1129976f + 5050 // (-5.3420409f + 5051 // (3.2865683f + 5052 // (-1.2669343f + 5053 // (0.27515199f - 5054 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5055 // 5056 // error 0.0000018516, which is better than 18 bits 5057 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5058 getF32Constant(DAG, 0xbcd2769e, dl)); 5059 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5060 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5062 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5063 getF32Constant(DAG, 0x3fa22ae7, dl)); 5064 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5065 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5066 getF32Constant(DAG, 0x40525723, dl)); 5067 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5068 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5069 getF32Constant(DAG, 0x40aaf200, dl)); 5070 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5071 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5072 getF32Constant(DAG, 0x40c39dad, dl)); 5073 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5074 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5075 getF32Constant(DAG, 0x4042902c, dl)); 5076 } 5077 5078 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5079 } 5080 5081 // No special expansion. 5082 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5083 } 5084 5085 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5086 /// limited-precision mode. 5087 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5088 const TargetLowering &TLI) { 5089 // TODO: What fast-math-flags should be set on the floating-point nodes? 5090 5091 if (Op.getValueType() == MVT::f32 && 5092 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5093 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5094 5095 // Scale the exponent by log10(2) [0.30102999f]. 5096 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5097 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5098 getF32Constant(DAG, 0x3e9a209a, dl)); 5099 5100 // Get the significand and build it into a floating-point number with 5101 // exponent of 1. 5102 SDValue X = GetSignificand(DAG, Op1, dl); 5103 5104 SDValue Log10ofMantissa; 5105 if (LimitFloatPrecision <= 6) { 5106 // For floating-point precision of 6: 5107 // 5108 // Log10ofMantissa = 5109 // -0.50419619f + 5110 // (0.60948995f - 0.10380950f * x) * x; 5111 // 5112 // error 0.0014886165, which is 6 bits 5113 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5114 getF32Constant(DAG, 0xbdd49a13, dl)); 5115 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5116 getF32Constant(DAG, 0x3f1c0789, dl)); 5117 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5118 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5119 getF32Constant(DAG, 0x3f011300, dl)); 5120 } else if (LimitFloatPrecision <= 12) { 5121 // For floating-point precision of 12: 5122 // 5123 // Log10ofMantissa = 5124 // -0.64831180f + 5125 // (0.91751397f + 5126 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5127 // 5128 // error 0.00019228036, which is better than 12 bits 5129 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5130 getF32Constant(DAG, 0x3d431f31, dl)); 5131 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5132 getF32Constant(DAG, 0x3ea21fb2, dl)); 5133 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5134 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5135 getF32Constant(DAG, 0x3f6ae232, dl)); 5136 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5137 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5138 getF32Constant(DAG, 0x3f25f7c3, dl)); 5139 } else { // LimitFloatPrecision <= 18 5140 // For floating-point precision of 18: 5141 // 5142 // Log10ofMantissa = 5143 // -0.84299375f + 5144 // (1.5327582f + 5145 // (-1.0688956f + 5146 // (0.49102474f + 5147 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5148 // 5149 // error 0.0000037995730, which is better than 18 bits 5150 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5151 getF32Constant(DAG, 0x3c5d51ce, dl)); 5152 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5153 getF32Constant(DAG, 0x3e00685a, dl)); 5154 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5155 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5156 getF32Constant(DAG, 0x3efb6798, dl)); 5157 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5158 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5159 getF32Constant(DAG, 0x3f88d192, dl)); 5160 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5161 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5162 getF32Constant(DAG, 0x3fc4316c, dl)); 5163 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5164 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5165 getF32Constant(DAG, 0x3f57ce70, dl)); 5166 } 5167 5168 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5169 } 5170 5171 // No special expansion. 5172 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5173 } 5174 5175 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5176 /// limited-precision mode. 5177 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5178 const TargetLowering &TLI) { 5179 if (Op.getValueType() == MVT::f32 && 5180 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5181 return getLimitedPrecisionExp2(Op, dl, DAG); 5182 5183 // No special expansion. 5184 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5185 } 5186 5187 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5188 /// limited-precision mode with x == 10.0f. 5189 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5190 SelectionDAG &DAG, const TargetLowering &TLI) { 5191 bool IsExp10 = false; 5192 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5193 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5194 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5195 APFloat Ten(10.0f); 5196 IsExp10 = LHSC->isExactlyValue(Ten); 5197 } 5198 } 5199 5200 // TODO: What fast-math-flags should be set on the FMUL node? 5201 if (IsExp10) { 5202 // Put the exponent in the right bit position for later addition to the 5203 // final result: 5204 // 5205 // #define LOG2OF10 3.3219281f 5206 // t0 = Op * LOG2OF10; 5207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5208 getF32Constant(DAG, 0x40549a78, dl)); 5209 return getLimitedPrecisionExp2(t0, dl, DAG); 5210 } 5211 5212 // No special expansion. 5213 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5214 } 5215 5216 /// ExpandPowI - Expand a llvm.powi intrinsic. 5217 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5218 SelectionDAG &DAG) { 5219 // If RHS is a constant, we can expand this out to a multiplication tree, 5220 // otherwise we end up lowering to a call to __powidf2 (for example). When 5221 // optimizing for size, we only want to do this if the expansion would produce 5222 // a small number of multiplies, otherwise we do the full expansion. 5223 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5224 // Get the exponent as a positive value. 5225 unsigned Val = RHSC->getSExtValue(); 5226 if ((int)Val < 0) Val = -Val; 5227 5228 // powi(x, 0) -> 1.0 5229 if (Val == 0) 5230 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5231 5232 bool OptForSize = DAG.shouldOptForSize(); 5233 if (!OptForSize || 5234 // If optimizing for size, don't insert too many multiplies. 5235 // This inserts up to 5 multiplies. 5236 countPopulation(Val) + Log2_32(Val) < 7) { 5237 // We use the simple binary decomposition method to generate the multiply 5238 // sequence. There are more optimal ways to do this (for example, 5239 // powi(x,15) generates one more multiply than it should), but this has 5240 // the benefit of being both really simple and much better than a libcall. 5241 SDValue Res; // Logically starts equal to 1.0 5242 SDValue CurSquare = LHS; 5243 // TODO: Intrinsics should have fast-math-flags that propagate to these 5244 // nodes. 5245 while (Val) { 5246 if (Val & 1) { 5247 if (Res.getNode()) 5248 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5249 else 5250 Res = CurSquare; // 1.0*CurSquare. 5251 } 5252 5253 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5254 CurSquare, CurSquare); 5255 Val >>= 1; 5256 } 5257 5258 // If the original was negative, invert the result, producing 1/(x*x*x). 5259 if (RHSC->getSExtValue() < 0) 5260 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5261 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5262 return Res; 5263 } 5264 } 5265 5266 // Otherwise, expand to a libcall. 5267 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5268 } 5269 5270 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5271 SDValue LHS, SDValue RHS, SDValue Scale, 5272 SelectionDAG &DAG, const TargetLowering &TLI) { 5273 EVT VT = LHS.getValueType(); 5274 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5275 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5276 LLVMContext &Ctx = *DAG.getContext(); 5277 5278 // If the type is legal but the operation isn't, this node might survive all 5279 // the way to operation legalization. If we end up there and we do not have 5280 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5281 // node. 5282 5283 // Coax the legalizer into expanding the node during type legalization instead 5284 // by bumping the size by one bit. This will force it to Promote, enabling the 5285 // early expansion and avoiding the need to expand later. 5286 5287 // We don't have to do this if Scale is 0; that can always be expanded, unless 5288 // it's a saturating signed operation. Those can experience true integer 5289 // division overflow, a case which we must avoid. 5290 5291 // FIXME: We wouldn't have to do this (or any of the early 5292 // expansion/promotion) if it was possible to expand a libcall of an 5293 // illegal type during operation legalization. But it's not, so things 5294 // get a bit hacky. 5295 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5296 if ((ScaleInt > 0 || (Saturating && Signed)) && 5297 (TLI.isTypeLegal(VT) || 5298 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5299 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5300 Opcode, VT, ScaleInt); 5301 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5302 EVT PromVT; 5303 if (VT.isScalarInteger()) 5304 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5305 else if (VT.isVector()) { 5306 PromVT = VT.getVectorElementType(); 5307 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5308 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5309 } else 5310 llvm_unreachable("Wrong VT for DIVFIX?"); 5311 if (Signed) { 5312 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5313 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5314 } else { 5315 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5316 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5317 } 5318 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5319 // For saturating operations, we need to shift up the LHS to get the 5320 // proper saturation width, and then shift down again afterwards. 5321 if (Saturating) 5322 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5323 DAG.getConstant(1, DL, ShiftTy)); 5324 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5325 if (Saturating) 5326 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5327 DAG.getConstant(1, DL, ShiftTy)); 5328 return DAG.getZExtOrTrunc(Res, DL, VT); 5329 } 5330 } 5331 5332 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5333 } 5334 5335 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5336 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5337 static void 5338 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5339 const SDValue &N) { 5340 switch (N.getOpcode()) { 5341 case ISD::CopyFromReg: { 5342 SDValue Op = N.getOperand(1); 5343 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5344 Op.getValueType().getSizeInBits()); 5345 return; 5346 } 5347 case ISD::BITCAST: 5348 case ISD::AssertZext: 5349 case ISD::AssertSext: 5350 case ISD::TRUNCATE: 5351 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5352 return; 5353 case ISD::BUILD_PAIR: 5354 case ISD::BUILD_VECTOR: 5355 case ISD::CONCAT_VECTORS: 5356 for (SDValue Op : N->op_values()) 5357 getUnderlyingArgRegs(Regs, Op); 5358 return; 5359 default: 5360 return; 5361 } 5362 } 5363 5364 /// If the DbgValueInst is a dbg_value of a function argument, create the 5365 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5366 /// instruction selection, they will be inserted to the entry BB. 5367 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5368 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5369 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5370 const Argument *Arg = dyn_cast<Argument>(V); 5371 if (!Arg) 5372 return false; 5373 5374 if (!IsDbgDeclare) { 5375 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5376 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5377 // the entry block. 5378 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5379 if (!IsInEntryBlock) 5380 return false; 5381 5382 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5383 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5384 // variable that also is a param. 5385 // 5386 // Although, if we are at the top of the entry block already, we can still 5387 // emit using ArgDbgValue. This might catch some situations when the 5388 // dbg.value refers to an argument that isn't used in the entry block, so 5389 // any CopyToReg node would be optimized out and the only way to express 5390 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5391 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5392 // we should only emit as ArgDbgValue if the Variable is an argument to the 5393 // current function, and the dbg.value intrinsic is found in the entry 5394 // block. 5395 bool VariableIsFunctionInputArg = Variable->isParameter() && 5396 !DL->getInlinedAt(); 5397 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5398 if (!IsInPrologue && !VariableIsFunctionInputArg) 5399 return false; 5400 5401 // Here we assume that a function argument on IR level only can be used to 5402 // describe one input parameter on source level. If we for example have 5403 // source code like this 5404 // 5405 // struct A { long x, y; }; 5406 // void foo(struct A a, long b) { 5407 // ... 5408 // b = a.x; 5409 // ... 5410 // } 5411 // 5412 // and IR like this 5413 // 5414 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5415 // entry: 5416 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5417 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5418 // call void @llvm.dbg.value(metadata i32 %b, "b", 5419 // ... 5420 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5421 // ... 5422 // 5423 // then the last dbg.value is describing a parameter "b" using a value that 5424 // is an argument. But since we already has used %a1 to describe a parameter 5425 // we should not handle that last dbg.value here (that would result in an 5426 // incorrect hoisting of the DBG_VALUE to the function entry). 5427 // Notice that we allow one dbg.value per IR level argument, to accommodate 5428 // for the situation with fragments above. 5429 if (VariableIsFunctionInputArg) { 5430 unsigned ArgNo = Arg->getArgNo(); 5431 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5432 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5433 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5434 return false; 5435 FuncInfo.DescribedArgs.set(ArgNo); 5436 } 5437 } 5438 5439 MachineFunction &MF = DAG.getMachineFunction(); 5440 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5441 5442 bool IsIndirect = false; 5443 Optional<MachineOperand> Op; 5444 // Some arguments' frame index is recorded during argument lowering. 5445 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5446 if (FI != std::numeric_limits<int>::max()) 5447 Op = MachineOperand::CreateFI(FI); 5448 5449 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5450 if (!Op && N.getNode()) { 5451 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5452 Register Reg; 5453 if (ArgRegsAndSizes.size() == 1) 5454 Reg = ArgRegsAndSizes.front().first; 5455 5456 if (Reg && Reg.isVirtual()) { 5457 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5458 Register PR = RegInfo.getLiveInPhysReg(Reg); 5459 if (PR) 5460 Reg = PR; 5461 } 5462 if (Reg) { 5463 Op = MachineOperand::CreateReg(Reg, false); 5464 IsIndirect = IsDbgDeclare; 5465 } 5466 } 5467 5468 if (!Op && N.getNode()) { 5469 // Check if frame index is available. 5470 SDValue LCandidate = peekThroughBitcasts(N); 5471 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5472 if (FrameIndexSDNode *FINode = 5473 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5474 Op = MachineOperand::CreateFI(FINode->getIndex()); 5475 } 5476 5477 if (!Op) { 5478 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5479 auto splitMultiRegDbgValue 5480 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5481 unsigned Offset = 0; 5482 for (auto RegAndSize : SplitRegs) { 5483 // If the expression is already a fragment, the current register 5484 // offset+size might extend beyond the fragment. In this case, only 5485 // the register bits that are inside the fragment are relevant. 5486 int RegFragmentSizeInBits = RegAndSize.second; 5487 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5488 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5489 // The register is entirely outside the expression fragment, 5490 // so is irrelevant for debug info. 5491 if (Offset >= ExprFragmentSizeInBits) 5492 break; 5493 // The register is partially outside the expression fragment, only 5494 // the low bits within the fragment are relevant for debug info. 5495 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5496 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5497 } 5498 } 5499 5500 auto FragmentExpr = DIExpression::createFragmentExpression( 5501 Expr, Offset, RegFragmentSizeInBits); 5502 Offset += RegAndSize.second; 5503 // If a valid fragment expression cannot be created, the variable's 5504 // correct value cannot be determined and so it is set as Undef. 5505 if (!FragmentExpr) { 5506 SDDbgValue *SDV = DAG.getConstantDbgValue( 5507 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5508 DAG.AddDbgValue(SDV, nullptr, false); 5509 continue; 5510 } 5511 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5512 FuncInfo.ArgDbgValues.push_back( 5513 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5514 RegAndSize.first, Variable, *FragmentExpr)); 5515 } 5516 }; 5517 5518 // Check if ValueMap has reg number. 5519 DenseMap<const Value *, Register>::const_iterator 5520 VMI = FuncInfo.ValueMap.find(V); 5521 if (VMI != FuncInfo.ValueMap.end()) { 5522 const auto &TLI = DAG.getTargetLoweringInfo(); 5523 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5524 V->getType(), getABIRegCopyCC(V)); 5525 if (RFV.occupiesMultipleRegs()) { 5526 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5527 return true; 5528 } 5529 5530 Op = MachineOperand::CreateReg(VMI->second, false); 5531 IsIndirect = IsDbgDeclare; 5532 } else if (ArgRegsAndSizes.size() > 1) { 5533 // This was split due to the calling convention, and no virtual register 5534 // mapping exists for the value. 5535 splitMultiRegDbgValue(ArgRegsAndSizes); 5536 return true; 5537 } 5538 } 5539 5540 if (!Op) 5541 return false; 5542 5543 assert(Variable->isValidLocationForIntrinsic(DL) && 5544 "Expected inlined-at fields to agree"); 5545 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5546 FuncInfo.ArgDbgValues.push_back( 5547 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5548 *Op, Variable, Expr)); 5549 5550 return true; 5551 } 5552 5553 /// Return the appropriate SDDbgValue based on N. 5554 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5555 DILocalVariable *Variable, 5556 DIExpression *Expr, 5557 const DebugLoc &dl, 5558 unsigned DbgSDNodeOrder) { 5559 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5560 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5561 // stack slot locations. 5562 // 5563 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5564 // debug values here after optimization: 5565 // 5566 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5567 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5568 // 5569 // Both describe the direct values of their associated variables. 5570 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5571 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5572 } 5573 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5574 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5575 } 5576 5577 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5578 switch (Intrinsic) { 5579 case Intrinsic::smul_fix: 5580 return ISD::SMULFIX; 5581 case Intrinsic::umul_fix: 5582 return ISD::UMULFIX; 5583 case Intrinsic::smul_fix_sat: 5584 return ISD::SMULFIXSAT; 5585 case Intrinsic::umul_fix_sat: 5586 return ISD::UMULFIXSAT; 5587 case Intrinsic::sdiv_fix: 5588 return ISD::SDIVFIX; 5589 case Intrinsic::udiv_fix: 5590 return ISD::UDIVFIX; 5591 case Intrinsic::sdiv_fix_sat: 5592 return ISD::SDIVFIXSAT; 5593 case Intrinsic::udiv_fix_sat: 5594 return ISD::UDIVFIXSAT; 5595 default: 5596 llvm_unreachable("Unhandled fixed point intrinsic"); 5597 } 5598 } 5599 5600 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5601 const char *FunctionName) { 5602 assert(FunctionName && "FunctionName must not be nullptr"); 5603 SDValue Callee = DAG.getExternalSymbol( 5604 FunctionName, 5605 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5606 LowerCallTo(I, Callee, I.isTailCall()); 5607 } 5608 5609 /// Given a @llvm.call.preallocated.setup, return the corresponding 5610 /// preallocated call. 5611 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5612 assert(cast<CallBase>(PreallocatedSetup) 5613 ->getCalledFunction() 5614 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5615 "expected call_preallocated_setup Value"); 5616 for (auto *U : PreallocatedSetup->users()) { 5617 auto *UseCall = cast<CallBase>(U); 5618 const Function *Fn = UseCall->getCalledFunction(); 5619 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5620 return UseCall; 5621 } 5622 } 5623 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5624 } 5625 5626 /// Lower the call to the specified intrinsic function. 5627 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5628 unsigned Intrinsic) { 5629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5630 SDLoc sdl = getCurSDLoc(); 5631 DebugLoc dl = getCurDebugLoc(); 5632 SDValue Res; 5633 5634 switch (Intrinsic) { 5635 default: 5636 // By default, turn this into a target intrinsic node. 5637 visitTargetIntrinsic(I, Intrinsic); 5638 return; 5639 case Intrinsic::vscale: { 5640 match(&I, m_VScale(DAG.getDataLayout())); 5641 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5642 setValue(&I, 5643 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5644 return; 5645 } 5646 case Intrinsic::vastart: visitVAStart(I); return; 5647 case Intrinsic::vaend: visitVAEnd(I); return; 5648 case Intrinsic::vacopy: visitVACopy(I); return; 5649 case Intrinsic::returnaddress: 5650 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5651 TLI.getPointerTy(DAG.getDataLayout()), 5652 getValue(I.getArgOperand(0)))); 5653 return; 5654 case Intrinsic::addressofreturnaddress: 5655 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5656 TLI.getPointerTy(DAG.getDataLayout()))); 5657 return; 5658 case Intrinsic::sponentry: 5659 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5660 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5661 return; 5662 case Intrinsic::frameaddress: 5663 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5664 TLI.getFrameIndexTy(DAG.getDataLayout()), 5665 getValue(I.getArgOperand(0)))); 5666 return; 5667 case Intrinsic::read_register: { 5668 Value *Reg = I.getArgOperand(0); 5669 SDValue Chain = getRoot(); 5670 SDValue RegName = 5671 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5672 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5673 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5674 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5675 setValue(&I, Res); 5676 DAG.setRoot(Res.getValue(1)); 5677 return; 5678 } 5679 case Intrinsic::write_register: { 5680 Value *Reg = I.getArgOperand(0); 5681 Value *RegValue = I.getArgOperand(1); 5682 SDValue Chain = getRoot(); 5683 SDValue RegName = 5684 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5685 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5686 RegName, getValue(RegValue))); 5687 return; 5688 } 5689 case Intrinsic::memcpy: { 5690 const auto &MCI = cast<MemCpyInst>(I); 5691 SDValue Op1 = getValue(I.getArgOperand(0)); 5692 SDValue Op2 = getValue(I.getArgOperand(1)); 5693 SDValue Op3 = getValue(I.getArgOperand(2)); 5694 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5695 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5696 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5697 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5698 bool isVol = MCI.isVolatile(); 5699 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5700 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5701 // node. 5702 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5703 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5704 /* AlwaysInline */ false, isTC, 5705 MachinePointerInfo(I.getArgOperand(0)), 5706 MachinePointerInfo(I.getArgOperand(1))); 5707 updateDAGForMaybeTailCall(MC); 5708 return; 5709 } 5710 case Intrinsic::memcpy_inline: { 5711 const auto &MCI = cast<MemCpyInlineInst>(I); 5712 SDValue Dst = getValue(I.getArgOperand(0)); 5713 SDValue Src = getValue(I.getArgOperand(1)); 5714 SDValue Size = getValue(I.getArgOperand(2)); 5715 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5716 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5717 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5718 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5719 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5720 bool isVol = MCI.isVolatile(); 5721 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5722 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5723 // node. 5724 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5725 /* AlwaysInline */ true, isTC, 5726 MachinePointerInfo(I.getArgOperand(0)), 5727 MachinePointerInfo(I.getArgOperand(1))); 5728 updateDAGForMaybeTailCall(MC); 5729 return; 5730 } 5731 case Intrinsic::memset: { 5732 const auto &MSI = cast<MemSetInst>(I); 5733 SDValue Op1 = getValue(I.getArgOperand(0)); 5734 SDValue Op2 = getValue(I.getArgOperand(1)); 5735 SDValue Op3 = getValue(I.getArgOperand(2)); 5736 // @llvm.memset defines 0 and 1 to both mean no alignment. 5737 Align Alignment = MSI.getDestAlign().valueOrOne(); 5738 bool isVol = MSI.isVolatile(); 5739 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5740 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5741 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5742 MachinePointerInfo(I.getArgOperand(0))); 5743 updateDAGForMaybeTailCall(MS); 5744 return; 5745 } 5746 case Intrinsic::memmove: { 5747 const auto &MMI = cast<MemMoveInst>(I); 5748 SDValue Op1 = getValue(I.getArgOperand(0)); 5749 SDValue Op2 = getValue(I.getArgOperand(1)); 5750 SDValue Op3 = getValue(I.getArgOperand(2)); 5751 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5752 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5753 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5754 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5755 bool isVol = MMI.isVolatile(); 5756 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5757 // FIXME: Support passing different dest/src alignments to the memmove DAG 5758 // node. 5759 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5760 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5761 isTC, MachinePointerInfo(I.getArgOperand(0)), 5762 MachinePointerInfo(I.getArgOperand(1))); 5763 updateDAGForMaybeTailCall(MM); 5764 return; 5765 } 5766 case Intrinsic::memcpy_element_unordered_atomic: { 5767 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5768 SDValue Dst = getValue(MI.getRawDest()); 5769 SDValue Src = getValue(MI.getRawSource()); 5770 SDValue Length = getValue(MI.getLength()); 5771 5772 unsigned DstAlign = MI.getDestAlignment(); 5773 unsigned SrcAlign = MI.getSourceAlignment(); 5774 Type *LengthTy = MI.getLength()->getType(); 5775 unsigned ElemSz = MI.getElementSizeInBytes(); 5776 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5777 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5778 SrcAlign, Length, LengthTy, ElemSz, isTC, 5779 MachinePointerInfo(MI.getRawDest()), 5780 MachinePointerInfo(MI.getRawSource())); 5781 updateDAGForMaybeTailCall(MC); 5782 return; 5783 } 5784 case Intrinsic::memmove_element_unordered_atomic: { 5785 auto &MI = cast<AtomicMemMoveInst>(I); 5786 SDValue Dst = getValue(MI.getRawDest()); 5787 SDValue Src = getValue(MI.getRawSource()); 5788 SDValue Length = getValue(MI.getLength()); 5789 5790 unsigned DstAlign = MI.getDestAlignment(); 5791 unsigned SrcAlign = MI.getSourceAlignment(); 5792 Type *LengthTy = MI.getLength()->getType(); 5793 unsigned ElemSz = MI.getElementSizeInBytes(); 5794 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5795 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5796 SrcAlign, Length, LengthTy, ElemSz, isTC, 5797 MachinePointerInfo(MI.getRawDest()), 5798 MachinePointerInfo(MI.getRawSource())); 5799 updateDAGForMaybeTailCall(MC); 5800 return; 5801 } 5802 case Intrinsic::memset_element_unordered_atomic: { 5803 auto &MI = cast<AtomicMemSetInst>(I); 5804 SDValue Dst = getValue(MI.getRawDest()); 5805 SDValue Val = getValue(MI.getValue()); 5806 SDValue Length = getValue(MI.getLength()); 5807 5808 unsigned DstAlign = MI.getDestAlignment(); 5809 Type *LengthTy = MI.getLength()->getType(); 5810 unsigned ElemSz = MI.getElementSizeInBytes(); 5811 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5812 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5813 LengthTy, ElemSz, isTC, 5814 MachinePointerInfo(MI.getRawDest())); 5815 updateDAGForMaybeTailCall(MC); 5816 return; 5817 } 5818 case Intrinsic::call_preallocated_setup: { 5819 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5820 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5821 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5822 getRoot(), SrcValue); 5823 setValue(&I, Res); 5824 DAG.setRoot(Res); 5825 return; 5826 } 5827 case Intrinsic::call_preallocated_arg: { 5828 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5829 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5830 SDValue Ops[3]; 5831 Ops[0] = getRoot(); 5832 Ops[1] = SrcValue; 5833 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5834 MVT::i32); // arg index 5835 SDValue Res = DAG.getNode( 5836 ISD::PREALLOCATED_ARG, sdl, 5837 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5838 setValue(&I, Res); 5839 DAG.setRoot(Res.getValue(1)); 5840 return; 5841 } 5842 case Intrinsic::dbg_addr: 5843 case Intrinsic::dbg_declare: { 5844 const auto &DI = cast<DbgVariableIntrinsic>(I); 5845 DILocalVariable *Variable = DI.getVariable(); 5846 DIExpression *Expression = DI.getExpression(); 5847 dropDanglingDebugInfo(Variable, Expression); 5848 assert(Variable && "Missing variable"); 5849 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5850 << "\n"); 5851 // Check if address has undef value. 5852 const Value *Address = DI.getVariableLocation(); 5853 if (!Address || isa<UndefValue>(Address) || 5854 (Address->use_empty() && !isa<Argument>(Address))) { 5855 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5856 << " (bad/undef/unused-arg address)\n"); 5857 return; 5858 } 5859 5860 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5861 5862 // Check if this variable can be described by a frame index, typically 5863 // either as a static alloca or a byval parameter. 5864 int FI = std::numeric_limits<int>::max(); 5865 if (const auto *AI = 5866 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5867 if (AI->isStaticAlloca()) { 5868 auto I = FuncInfo.StaticAllocaMap.find(AI); 5869 if (I != FuncInfo.StaticAllocaMap.end()) 5870 FI = I->second; 5871 } 5872 } else if (const auto *Arg = dyn_cast<Argument>( 5873 Address->stripInBoundsConstantOffsets())) { 5874 FI = FuncInfo.getArgumentFrameIndex(Arg); 5875 } 5876 5877 // llvm.dbg.addr is control dependent and always generates indirect 5878 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5879 // the MachineFunction variable table. 5880 if (FI != std::numeric_limits<int>::max()) { 5881 if (Intrinsic == Intrinsic::dbg_addr) { 5882 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5883 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5884 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5885 } else { 5886 LLVM_DEBUG(dbgs() << "Skipping " << DI 5887 << " (variable info stashed in MF side table)\n"); 5888 } 5889 return; 5890 } 5891 5892 SDValue &N = NodeMap[Address]; 5893 if (!N.getNode() && isa<Argument>(Address)) 5894 // Check unused arguments map. 5895 N = UnusedArgNodeMap[Address]; 5896 SDDbgValue *SDV; 5897 if (N.getNode()) { 5898 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5899 Address = BCI->getOperand(0); 5900 // Parameters are handled specially. 5901 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5902 if (isParameter && FINode) { 5903 // Byval parameter. We have a frame index at this point. 5904 SDV = 5905 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5906 /*IsIndirect*/ true, dl, SDNodeOrder); 5907 } else if (isa<Argument>(Address)) { 5908 // Address is an argument, so try to emit its dbg value using 5909 // virtual register info from the FuncInfo.ValueMap. 5910 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5911 return; 5912 } else { 5913 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5914 true, dl, SDNodeOrder); 5915 } 5916 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5917 } else { 5918 // If Address is an argument then try to emit its dbg value using 5919 // virtual register info from the FuncInfo.ValueMap. 5920 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5921 N)) { 5922 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5923 << " (could not emit func-arg dbg_value)\n"); 5924 } 5925 } 5926 return; 5927 } 5928 case Intrinsic::dbg_label: { 5929 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5930 DILabel *Label = DI.getLabel(); 5931 assert(Label && "Missing label"); 5932 5933 SDDbgLabel *SDV; 5934 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5935 DAG.AddDbgLabel(SDV); 5936 return; 5937 } 5938 case Intrinsic::dbg_value: { 5939 const DbgValueInst &DI = cast<DbgValueInst>(I); 5940 assert(DI.getVariable() && "Missing variable"); 5941 5942 DILocalVariable *Variable = DI.getVariable(); 5943 DIExpression *Expression = DI.getExpression(); 5944 dropDanglingDebugInfo(Variable, Expression); 5945 const Value *V = DI.getValue(); 5946 if (!V) 5947 return; 5948 5949 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5950 SDNodeOrder)) 5951 return; 5952 5953 // TODO: Dangling debug info will eventually either be resolved or produce 5954 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5955 // between the original dbg.value location and its resolved DBG_VALUE, which 5956 // we should ideally fill with an extra Undef DBG_VALUE. 5957 5958 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5959 return; 5960 } 5961 5962 case Intrinsic::eh_typeid_for: { 5963 // Find the type id for the given typeinfo. 5964 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5965 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5966 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5967 setValue(&I, Res); 5968 return; 5969 } 5970 5971 case Intrinsic::eh_return_i32: 5972 case Intrinsic::eh_return_i64: 5973 DAG.getMachineFunction().setCallsEHReturn(true); 5974 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5975 MVT::Other, 5976 getControlRoot(), 5977 getValue(I.getArgOperand(0)), 5978 getValue(I.getArgOperand(1)))); 5979 return; 5980 case Intrinsic::eh_unwind_init: 5981 DAG.getMachineFunction().setCallsUnwindInit(true); 5982 return; 5983 case Intrinsic::eh_dwarf_cfa: 5984 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5985 TLI.getPointerTy(DAG.getDataLayout()), 5986 getValue(I.getArgOperand(0)))); 5987 return; 5988 case Intrinsic::eh_sjlj_callsite: { 5989 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5990 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5991 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5992 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5993 5994 MMI.setCurrentCallSite(CI->getZExtValue()); 5995 return; 5996 } 5997 case Intrinsic::eh_sjlj_functioncontext: { 5998 // Get and store the index of the function context. 5999 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6000 AllocaInst *FnCtx = 6001 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6002 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6003 MFI.setFunctionContextIndex(FI); 6004 return; 6005 } 6006 case Intrinsic::eh_sjlj_setjmp: { 6007 SDValue Ops[2]; 6008 Ops[0] = getRoot(); 6009 Ops[1] = getValue(I.getArgOperand(0)); 6010 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6011 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6012 setValue(&I, Op.getValue(0)); 6013 DAG.setRoot(Op.getValue(1)); 6014 return; 6015 } 6016 case Intrinsic::eh_sjlj_longjmp: 6017 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6018 getRoot(), getValue(I.getArgOperand(0)))); 6019 return; 6020 case Intrinsic::eh_sjlj_setup_dispatch: 6021 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6022 getRoot())); 6023 return; 6024 case Intrinsic::masked_gather: 6025 visitMaskedGather(I); 6026 return; 6027 case Intrinsic::masked_load: 6028 visitMaskedLoad(I); 6029 return; 6030 case Intrinsic::masked_scatter: 6031 visitMaskedScatter(I); 6032 return; 6033 case Intrinsic::masked_store: 6034 visitMaskedStore(I); 6035 return; 6036 case Intrinsic::masked_expandload: 6037 visitMaskedLoad(I, true /* IsExpanding */); 6038 return; 6039 case Intrinsic::masked_compressstore: 6040 visitMaskedStore(I, true /* IsCompressing */); 6041 return; 6042 case Intrinsic::powi: 6043 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6044 getValue(I.getArgOperand(1)), DAG)); 6045 return; 6046 case Intrinsic::log: 6047 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6048 return; 6049 case Intrinsic::log2: 6050 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6051 return; 6052 case Intrinsic::log10: 6053 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6054 return; 6055 case Intrinsic::exp: 6056 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6057 return; 6058 case Intrinsic::exp2: 6059 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6060 return; 6061 case Intrinsic::pow: 6062 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6063 getValue(I.getArgOperand(1)), DAG, TLI)); 6064 return; 6065 case Intrinsic::sqrt: 6066 case Intrinsic::fabs: 6067 case Intrinsic::sin: 6068 case Intrinsic::cos: 6069 case Intrinsic::floor: 6070 case Intrinsic::ceil: 6071 case Intrinsic::trunc: 6072 case Intrinsic::rint: 6073 case Intrinsic::nearbyint: 6074 case Intrinsic::round: 6075 case Intrinsic::roundeven: 6076 case Intrinsic::canonicalize: { 6077 unsigned Opcode; 6078 switch (Intrinsic) { 6079 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6080 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6081 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6082 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6083 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6084 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6085 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6086 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6087 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6088 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6089 case Intrinsic::round: Opcode = ISD::FROUND; break; 6090 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6091 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6092 } 6093 6094 setValue(&I, DAG.getNode(Opcode, sdl, 6095 getValue(I.getArgOperand(0)).getValueType(), 6096 getValue(I.getArgOperand(0)))); 6097 return; 6098 } 6099 case Intrinsic::lround: 6100 case Intrinsic::llround: 6101 case Intrinsic::lrint: 6102 case Intrinsic::llrint: { 6103 unsigned Opcode; 6104 switch (Intrinsic) { 6105 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6106 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6107 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6108 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6109 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6110 } 6111 6112 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6113 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6114 getValue(I.getArgOperand(0)))); 6115 return; 6116 } 6117 case Intrinsic::minnum: 6118 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6119 getValue(I.getArgOperand(0)).getValueType(), 6120 getValue(I.getArgOperand(0)), 6121 getValue(I.getArgOperand(1)))); 6122 return; 6123 case Intrinsic::maxnum: 6124 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6125 getValue(I.getArgOperand(0)).getValueType(), 6126 getValue(I.getArgOperand(0)), 6127 getValue(I.getArgOperand(1)))); 6128 return; 6129 case Intrinsic::minimum: 6130 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6131 getValue(I.getArgOperand(0)).getValueType(), 6132 getValue(I.getArgOperand(0)), 6133 getValue(I.getArgOperand(1)))); 6134 return; 6135 case Intrinsic::maximum: 6136 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)), 6139 getValue(I.getArgOperand(1)))); 6140 return; 6141 case Intrinsic::copysign: 6142 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6143 getValue(I.getArgOperand(0)).getValueType(), 6144 getValue(I.getArgOperand(0)), 6145 getValue(I.getArgOperand(1)))); 6146 return; 6147 case Intrinsic::fma: 6148 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6149 getValue(I.getArgOperand(0)).getValueType(), 6150 getValue(I.getArgOperand(0)), 6151 getValue(I.getArgOperand(1)), 6152 getValue(I.getArgOperand(2)))); 6153 return; 6154 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6155 case Intrinsic::INTRINSIC: 6156 #include "llvm/IR/ConstrainedOps.def" 6157 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6158 return; 6159 case Intrinsic::fmuladd: { 6160 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6161 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6162 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6163 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6164 getValue(I.getArgOperand(0)).getValueType(), 6165 getValue(I.getArgOperand(0)), 6166 getValue(I.getArgOperand(1)), 6167 getValue(I.getArgOperand(2)))); 6168 } else { 6169 // TODO: Intrinsic calls should have fast-math-flags. 6170 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6171 getValue(I.getArgOperand(0)).getValueType(), 6172 getValue(I.getArgOperand(0)), 6173 getValue(I.getArgOperand(1))); 6174 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 Mul, 6177 getValue(I.getArgOperand(2))); 6178 setValue(&I, Add); 6179 } 6180 return; 6181 } 6182 case Intrinsic::convert_to_fp16: 6183 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6184 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6185 getValue(I.getArgOperand(0)), 6186 DAG.getTargetConstant(0, sdl, 6187 MVT::i32)))); 6188 return; 6189 case Intrinsic::convert_from_fp16: 6190 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6191 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6192 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6193 getValue(I.getArgOperand(0))))); 6194 return; 6195 case Intrinsic::pcmarker: { 6196 SDValue Tmp = getValue(I.getArgOperand(0)); 6197 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6198 return; 6199 } 6200 case Intrinsic::readcyclecounter: { 6201 SDValue Op = getRoot(); 6202 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6203 DAG.getVTList(MVT::i64, MVT::Other), Op); 6204 setValue(&I, Res); 6205 DAG.setRoot(Res.getValue(1)); 6206 return; 6207 } 6208 case Intrinsic::bitreverse: 6209 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6210 getValue(I.getArgOperand(0)).getValueType(), 6211 getValue(I.getArgOperand(0)))); 6212 return; 6213 case Intrinsic::bswap: 6214 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6215 getValue(I.getArgOperand(0)).getValueType(), 6216 getValue(I.getArgOperand(0)))); 6217 return; 6218 case Intrinsic::cttz: { 6219 SDValue Arg = getValue(I.getArgOperand(0)); 6220 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6221 EVT Ty = Arg.getValueType(); 6222 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6223 sdl, Ty, Arg)); 6224 return; 6225 } 6226 case Intrinsic::ctlz: { 6227 SDValue Arg = getValue(I.getArgOperand(0)); 6228 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6229 EVT Ty = Arg.getValueType(); 6230 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6231 sdl, Ty, Arg)); 6232 return; 6233 } 6234 case Intrinsic::ctpop: { 6235 SDValue Arg = getValue(I.getArgOperand(0)); 6236 EVT Ty = Arg.getValueType(); 6237 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6238 return; 6239 } 6240 case Intrinsic::fshl: 6241 case Intrinsic::fshr: { 6242 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6243 SDValue X = getValue(I.getArgOperand(0)); 6244 SDValue Y = getValue(I.getArgOperand(1)); 6245 SDValue Z = getValue(I.getArgOperand(2)); 6246 EVT VT = X.getValueType(); 6247 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6248 SDValue Zero = DAG.getConstant(0, sdl, VT); 6249 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6250 6251 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6252 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6253 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6254 return; 6255 } 6256 6257 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6258 // avoid the select that is necessary in the general case to filter out 6259 // the 0-shift possibility that leads to UB. 6260 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6261 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6262 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6263 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6264 return; 6265 } 6266 6267 // Some targets only rotate one way. Try the opposite direction. 6268 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6269 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6270 // Negate the shift amount because it is safe to ignore the high bits. 6271 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6272 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6273 return; 6274 } 6275 6276 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6277 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6278 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6279 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6280 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6281 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6282 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6283 return; 6284 } 6285 6286 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6287 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6288 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6289 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6290 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6291 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6292 6293 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6294 // and that is undefined. We must compare and select to avoid UB. 6295 EVT CCVT = MVT::i1; 6296 if (VT.isVector()) 6297 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6298 6299 // For fshl, 0-shift returns the 1st arg (X). 6300 // For fshr, 0-shift returns the 2nd arg (Y). 6301 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6302 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6303 return; 6304 } 6305 case Intrinsic::sadd_sat: { 6306 SDValue Op1 = getValue(I.getArgOperand(0)); 6307 SDValue Op2 = getValue(I.getArgOperand(1)); 6308 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6309 return; 6310 } 6311 case Intrinsic::uadd_sat: { 6312 SDValue Op1 = getValue(I.getArgOperand(0)); 6313 SDValue Op2 = getValue(I.getArgOperand(1)); 6314 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6315 return; 6316 } 6317 case Intrinsic::ssub_sat: { 6318 SDValue Op1 = getValue(I.getArgOperand(0)); 6319 SDValue Op2 = getValue(I.getArgOperand(1)); 6320 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6321 return; 6322 } 6323 case Intrinsic::usub_sat: { 6324 SDValue Op1 = getValue(I.getArgOperand(0)); 6325 SDValue Op2 = getValue(I.getArgOperand(1)); 6326 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6327 return; 6328 } 6329 case Intrinsic::smul_fix: 6330 case Intrinsic::umul_fix: 6331 case Intrinsic::smul_fix_sat: 6332 case Intrinsic::umul_fix_sat: { 6333 SDValue Op1 = getValue(I.getArgOperand(0)); 6334 SDValue Op2 = getValue(I.getArgOperand(1)); 6335 SDValue Op3 = getValue(I.getArgOperand(2)); 6336 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6337 Op1.getValueType(), Op1, Op2, Op3)); 6338 return; 6339 } 6340 case Intrinsic::sdiv_fix: 6341 case Intrinsic::udiv_fix: 6342 case Intrinsic::sdiv_fix_sat: 6343 case Intrinsic::udiv_fix_sat: { 6344 SDValue Op1 = getValue(I.getArgOperand(0)); 6345 SDValue Op2 = getValue(I.getArgOperand(1)); 6346 SDValue Op3 = getValue(I.getArgOperand(2)); 6347 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6348 Op1, Op2, Op3, DAG, TLI)); 6349 return; 6350 } 6351 case Intrinsic::stacksave: { 6352 SDValue Op = getRoot(); 6353 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6354 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6355 setValue(&I, Res); 6356 DAG.setRoot(Res.getValue(1)); 6357 return; 6358 } 6359 case Intrinsic::stackrestore: 6360 Res = getValue(I.getArgOperand(0)); 6361 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6362 return; 6363 case Intrinsic::get_dynamic_area_offset: { 6364 SDValue Op = getRoot(); 6365 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6366 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6367 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6368 // target. 6369 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6370 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6371 " intrinsic!"); 6372 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6373 Op); 6374 DAG.setRoot(Op); 6375 setValue(&I, Res); 6376 return; 6377 } 6378 case Intrinsic::stackguard: { 6379 MachineFunction &MF = DAG.getMachineFunction(); 6380 const Module &M = *MF.getFunction().getParent(); 6381 SDValue Chain = getRoot(); 6382 if (TLI.useLoadStackGuardNode()) { 6383 Res = getLoadStackGuard(DAG, sdl, Chain); 6384 } else { 6385 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6386 const Value *Global = TLI.getSDagStackGuard(M); 6387 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6388 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6389 MachinePointerInfo(Global, 0), Align, 6390 MachineMemOperand::MOVolatile); 6391 } 6392 if (TLI.useStackGuardXorFP()) 6393 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6394 DAG.setRoot(Chain); 6395 setValue(&I, Res); 6396 return; 6397 } 6398 case Intrinsic::stackprotector: { 6399 // Emit code into the DAG to store the stack guard onto the stack. 6400 MachineFunction &MF = DAG.getMachineFunction(); 6401 MachineFrameInfo &MFI = MF.getFrameInfo(); 6402 SDValue Src, Chain = getRoot(); 6403 6404 if (TLI.useLoadStackGuardNode()) 6405 Src = getLoadStackGuard(DAG, sdl, Chain); 6406 else 6407 Src = getValue(I.getArgOperand(0)); // The guard's value. 6408 6409 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6410 6411 int FI = FuncInfo.StaticAllocaMap[Slot]; 6412 MFI.setStackProtectorIndex(FI); 6413 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6414 6415 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6416 6417 // Store the stack protector onto the stack. 6418 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6419 DAG.getMachineFunction(), FI), 6420 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6421 setValue(&I, Res); 6422 DAG.setRoot(Res); 6423 return; 6424 } 6425 case Intrinsic::objectsize: 6426 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6427 6428 case Intrinsic::is_constant: 6429 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6430 6431 case Intrinsic::annotation: 6432 case Intrinsic::ptr_annotation: 6433 case Intrinsic::launder_invariant_group: 6434 case Intrinsic::strip_invariant_group: 6435 // Drop the intrinsic, but forward the value 6436 setValue(&I, getValue(I.getOperand(0))); 6437 return; 6438 case Intrinsic::assume: 6439 case Intrinsic::var_annotation: 6440 case Intrinsic::sideeffect: 6441 // Discard annotate attributes, assumptions, and artificial side-effects. 6442 return; 6443 6444 case Intrinsic::codeview_annotation: { 6445 // Emit a label associated with this metadata. 6446 MachineFunction &MF = DAG.getMachineFunction(); 6447 MCSymbol *Label = 6448 MF.getMMI().getContext().createTempSymbol("annotation", true); 6449 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6450 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6451 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6452 DAG.setRoot(Res); 6453 return; 6454 } 6455 6456 case Intrinsic::init_trampoline: { 6457 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6458 6459 SDValue Ops[6]; 6460 Ops[0] = getRoot(); 6461 Ops[1] = getValue(I.getArgOperand(0)); 6462 Ops[2] = getValue(I.getArgOperand(1)); 6463 Ops[3] = getValue(I.getArgOperand(2)); 6464 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6465 Ops[5] = DAG.getSrcValue(F); 6466 6467 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6468 6469 DAG.setRoot(Res); 6470 return; 6471 } 6472 case Intrinsic::adjust_trampoline: 6473 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6474 TLI.getPointerTy(DAG.getDataLayout()), 6475 getValue(I.getArgOperand(0)))); 6476 return; 6477 case Intrinsic::gcroot: { 6478 assert(DAG.getMachineFunction().getFunction().hasGC() && 6479 "only valid in functions with gc specified, enforced by Verifier"); 6480 assert(GFI && "implied by previous"); 6481 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6482 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6483 6484 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6485 GFI->addStackRoot(FI->getIndex(), TypeMap); 6486 return; 6487 } 6488 case Intrinsic::gcread: 6489 case Intrinsic::gcwrite: 6490 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6491 case Intrinsic::flt_rounds: 6492 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6493 setValue(&I, Res); 6494 DAG.setRoot(Res.getValue(1)); 6495 return; 6496 6497 case Intrinsic::expect: 6498 // Just replace __builtin_expect(exp, c) with EXP. 6499 setValue(&I, getValue(I.getArgOperand(0))); 6500 return; 6501 6502 case Intrinsic::debugtrap: 6503 case Intrinsic::trap: { 6504 StringRef TrapFuncName = 6505 I.getAttributes() 6506 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6507 .getValueAsString(); 6508 if (TrapFuncName.empty()) { 6509 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6510 ISD::TRAP : ISD::DEBUGTRAP; 6511 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6512 return; 6513 } 6514 TargetLowering::ArgListTy Args; 6515 6516 TargetLowering::CallLoweringInfo CLI(DAG); 6517 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6518 CallingConv::C, I.getType(), 6519 DAG.getExternalSymbol(TrapFuncName.data(), 6520 TLI.getPointerTy(DAG.getDataLayout())), 6521 std::move(Args)); 6522 6523 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6524 DAG.setRoot(Result.second); 6525 return; 6526 } 6527 6528 case Intrinsic::uadd_with_overflow: 6529 case Intrinsic::sadd_with_overflow: 6530 case Intrinsic::usub_with_overflow: 6531 case Intrinsic::ssub_with_overflow: 6532 case Intrinsic::umul_with_overflow: 6533 case Intrinsic::smul_with_overflow: { 6534 ISD::NodeType Op; 6535 switch (Intrinsic) { 6536 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6537 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6538 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6539 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6540 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6541 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6542 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6543 } 6544 SDValue Op1 = getValue(I.getArgOperand(0)); 6545 SDValue Op2 = getValue(I.getArgOperand(1)); 6546 6547 EVT ResultVT = Op1.getValueType(); 6548 EVT OverflowVT = MVT::i1; 6549 if (ResultVT.isVector()) 6550 OverflowVT = EVT::getVectorVT( 6551 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6552 6553 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6554 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6555 return; 6556 } 6557 case Intrinsic::prefetch: { 6558 SDValue Ops[5]; 6559 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6560 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6561 Ops[0] = DAG.getRoot(); 6562 Ops[1] = getValue(I.getArgOperand(0)); 6563 Ops[2] = getValue(I.getArgOperand(1)); 6564 Ops[3] = getValue(I.getArgOperand(2)); 6565 Ops[4] = getValue(I.getArgOperand(3)); 6566 SDValue Result = DAG.getMemIntrinsicNode( 6567 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6568 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6569 /* align */ None, Flags); 6570 6571 // Chain the prefetch in parallell with any pending loads, to stay out of 6572 // the way of later optimizations. 6573 PendingLoads.push_back(Result); 6574 Result = getRoot(); 6575 DAG.setRoot(Result); 6576 return; 6577 } 6578 case Intrinsic::lifetime_start: 6579 case Intrinsic::lifetime_end: { 6580 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6581 // Stack coloring is not enabled in O0, discard region information. 6582 if (TM.getOptLevel() == CodeGenOpt::None) 6583 return; 6584 6585 const int64_t ObjectSize = 6586 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6587 Value *const ObjectPtr = I.getArgOperand(1); 6588 SmallVector<const Value *, 4> Allocas; 6589 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6590 6591 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6592 E = Allocas.end(); Object != E; ++Object) { 6593 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6594 6595 // Could not find an Alloca. 6596 if (!LifetimeObject) 6597 continue; 6598 6599 // First check that the Alloca is static, otherwise it won't have a 6600 // valid frame index. 6601 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6602 if (SI == FuncInfo.StaticAllocaMap.end()) 6603 return; 6604 6605 const int FrameIndex = SI->second; 6606 int64_t Offset; 6607 if (GetPointerBaseWithConstantOffset( 6608 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6609 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6610 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6611 Offset); 6612 DAG.setRoot(Res); 6613 } 6614 return; 6615 } 6616 case Intrinsic::invariant_start: 6617 // Discard region information. 6618 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6619 return; 6620 case Intrinsic::invariant_end: 6621 // Discard region information. 6622 return; 6623 case Intrinsic::clear_cache: 6624 /// FunctionName may be null. 6625 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6626 lowerCallToExternalSymbol(I, FunctionName); 6627 return; 6628 case Intrinsic::donothing: 6629 // ignore 6630 return; 6631 case Intrinsic::experimental_stackmap: 6632 visitStackmap(I); 6633 return; 6634 case Intrinsic::experimental_patchpoint_void: 6635 case Intrinsic::experimental_patchpoint_i64: 6636 visitPatchpoint(I); 6637 return; 6638 case Intrinsic::experimental_gc_statepoint: 6639 LowerStatepoint(ImmutableStatepoint(&I)); 6640 return; 6641 case Intrinsic::experimental_gc_result: 6642 visitGCResult(cast<GCResultInst>(I)); 6643 return; 6644 case Intrinsic::experimental_gc_relocate: 6645 visitGCRelocate(cast<GCRelocateInst>(I)); 6646 return; 6647 case Intrinsic::instrprof_increment: 6648 llvm_unreachable("instrprof failed to lower an increment"); 6649 case Intrinsic::instrprof_value_profile: 6650 llvm_unreachable("instrprof failed to lower a value profiling call"); 6651 case Intrinsic::localescape: { 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6654 6655 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6656 // is the same on all targets. 6657 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6658 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6659 if (isa<ConstantPointerNull>(Arg)) 6660 continue; // Skip null pointers. They represent a hole in index space. 6661 AllocaInst *Slot = cast<AllocaInst>(Arg); 6662 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6663 "can only escape static allocas"); 6664 int FI = FuncInfo.StaticAllocaMap[Slot]; 6665 MCSymbol *FrameAllocSym = 6666 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6667 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6669 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6670 .addSym(FrameAllocSym) 6671 .addFrameIndex(FI); 6672 } 6673 6674 return; 6675 } 6676 6677 case Intrinsic::localrecover: { 6678 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6679 MachineFunction &MF = DAG.getMachineFunction(); 6680 6681 // Get the symbol that defines the frame offset. 6682 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6683 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6684 unsigned IdxVal = 6685 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6686 MCSymbol *FrameAllocSym = 6687 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6688 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6689 6690 Value *FP = I.getArgOperand(1); 6691 SDValue FPVal = getValue(FP); 6692 EVT PtrVT = FPVal.getValueType(); 6693 6694 // Create a MCSymbol for the label to avoid any target lowering 6695 // that would make this PC relative. 6696 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6697 SDValue OffsetVal = 6698 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6699 6700 // Add the offset to the FP. 6701 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6702 setValue(&I, Add); 6703 6704 return; 6705 } 6706 6707 case Intrinsic::eh_exceptionpointer: 6708 case Intrinsic::eh_exceptioncode: { 6709 // Get the exception pointer vreg, copy from it, and resize it to fit. 6710 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6711 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6712 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6713 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6714 SDValue N = 6715 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6716 if (Intrinsic == Intrinsic::eh_exceptioncode) 6717 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6718 setValue(&I, N); 6719 return; 6720 } 6721 case Intrinsic::xray_customevent: { 6722 // Here we want to make sure that the intrinsic behaves as if it has a 6723 // specific calling convention, and only for x86_64. 6724 // FIXME: Support other platforms later. 6725 const auto &Triple = DAG.getTarget().getTargetTriple(); 6726 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6727 return; 6728 6729 SDLoc DL = getCurSDLoc(); 6730 SmallVector<SDValue, 8> Ops; 6731 6732 // We want to say that we always want the arguments in registers. 6733 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6734 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6735 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6736 SDValue Chain = getRoot(); 6737 Ops.push_back(LogEntryVal); 6738 Ops.push_back(StrSizeVal); 6739 Ops.push_back(Chain); 6740 6741 // We need to enforce the calling convention for the callsite, so that 6742 // argument ordering is enforced correctly, and that register allocation can 6743 // see that some registers may be assumed clobbered and have to preserve 6744 // them across calls to the intrinsic. 6745 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6746 DL, NodeTys, Ops); 6747 SDValue patchableNode = SDValue(MN, 0); 6748 DAG.setRoot(patchableNode); 6749 setValue(&I, patchableNode); 6750 return; 6751 } 6752 case Intrinsic::xray_typedevent: { 6753 // Here we want to make sure that the intrinsic behaves as if it has a 6754 // specific calling convention, and only for x86_64. 6755 // FIXME: Support other platforms later. 6756 const auto &Triple = DAG.getTarget().getTargetTriple(); 6757 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6758 return; 6759 6760 SDLoc DL = getCurSDLoc(); 6761 SmallVector<SDValue, 8> Ops; 6762 6763 // We want to say that we always want the arguments in registers. 6764 // It's unclear to me how manipulating the selection DAG here forces callers 6765 // to provide arguments in registers instead of on the stack. 6766 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6767 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6768 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6769 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6770 SDValue Chain = getRoot(); 6771 Ops.push_back(LogTypeId); 6772 Ops.push_back(LogEntryVal); 6773 Ops.push_back(StrSizeVal); 6774 Ops.push_back(Chain); 6775 6776 // We need to enforce the calling convention for the callsite, so that 6777 // argument ordering is enforced correctly, and that register allocation can 6778 // see that some registers may be assumed clobbered and have to preserve 6779 // them across calls to the intrinsic. 6780 MachineSDNode *MN = DAG.getMachineNode( 6781 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6782 SDValue patchableNode = SDValue(MN, 0); 6783 DAG.setRoot(patchableNode); 6784 setValue(&I, patchableNode); 6785 return; 6786 } 6787 case Intrinsic::experimental_deoptimize: 6788 LowerDeoptimizeCall(&I); 6789 return; 6790 6791 case Intrinsic::experimental_vector_reduce_v2_fadd: 6792 case Intrinsic::experimental_vector_reduce_v2_fmul: 6793 case Intrinsic::experimental_vector_reduce_add: 6794 case Intrinsic::experimental_vector_reduce_mul: 6795 case Intrinsic::experimental_vector_reduce_and: 6796 case Intrinsic::experimental_vector_reduce_or: 6797 case Intrinsic::experimental_vector_reduce_xor: 6798 case Intrinsic::experimental_vector_reduce_smax: 6799 case Intrinsic::experimental_vector_reduce_smin: 6800 case Intrinsic::experimental_vector_reduce_umax: 6801 case Intrinsic::experimental_vector_reduce_umin: 6802 case Intrinsic::experimental_vector_reduce_fmax: 6803 case Intrinsic::experimental_vector_reduce_fmin: 6804 visitVectorReduce(I, Intrinsic); 6805 return; 6806 6807 case Intrinsic::icall_branch_funnel: { 6808 SmallVector<SDValue, 16> Ops; 6809 Ops.push_back(getValue(I.getArgOperand(0))); 6810 6811 int64_t Offset; 6812 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6813 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6814 if (!Base) 6815 report_fatal_error( 6816 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6817 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6818 6819 struct BranchFunnelTarget { 6820 int64_t Offset; 6821 SDValue Target; 6822 }; 6823 SmallVector<BranchFunnelTarget, 8> Targets; 6824 6825 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6826 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6827 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6828 if (ElemBase != Base) 6829 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6830 "to the same GlobalValue"); 6831 6832 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6833 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6834 if (!GA) 6835 report_fatal_error( 6836 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6837 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6838 GA->getGlobal(), getCurSDLoc(), 6839 Val.getValueType(), GA->getOffset())}); 6840 } 6841 llvm::sort(Targets, 6842 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6843 return T1.Offset < T2.Offset; 6844 }); 6845 6846 for (auto &T : Targets) { 6847 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6848 Ops.push_back(T.Target); 6849 } 6850 6851 Ops.push_back(DAG.getRoot()); // Chain 6852 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6853 getCurSDLoc(), MVT::Other, Ops), 6854 0); 6855 DAG.setRoot(N); 6856 setValue(&I, N); 6857 HasTailCall = true; 6858 return; 6859 } 6860 6861 case Intrinsic::wasm_landingpad_index: 6862 // Information this intrinsic contained has been transferred to 6863 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6864 // delete it now. 6865 return; 6866 6867 case Intrinsic::aarch64_settag: 6868 case Intrinsic::aarch64_settag_zero: { 6869 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6870 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6871 SDValue Val = TSI.EmitTargetCodeForSetTag( 6872 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6873 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6874 ZeroMemory); 6875 DAG.setRoot(Val); 6876 setValue(&I, Val); 6877 return; 6878 } 6879 case Intrinsic::ptrmask: { 6880 SDValue Ptr = getValue(I.getOperand(0)); 6881 SDValue Const = getValue(I.getOperand(1)); 6882 6883 EVT PtrVT = Ptr.getValueType(); 6884 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6885 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6886 return; 6887 } 6888 } 6889 } 6890 6891 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6892 const ConstrainedFPIntrinsic &FPI) { 6893 SDLoc sdl = getCurSDLoc(); 6894 6895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6896 SmallVector<EVT, 4> ValueVTs; 6897 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6898 ValueVTs.push_back(MVT::Other); // Out chain 6899 6900 // We do not need to serialize constrained FP intrinsics against 6901 // each other or against (nonvolatile) loads, so they can be 6902 // chained like loads. 6903 SDValue Chain = DAG.getRoot(); 6904 SmallVector<SDValue, 4> Opers; 6905 Opers.push_back(Chain); 6906 if (FPI.isUnaryOp()) { 6907 Opers.push_back(getValue(FPI.getArgOperand(0))); 6908 } else if (FPI.isTernaryOp()) { 6909 Opers.push_back(getValue(FPI.getArgOperand(0))); 6910 Opers.push_back(getValue(FPI.getArgOperand(1))); 6911 Opers.push_back(getValue(FPI.getArgOperand(2))); 6912 } else { 6913 Opers.push_back(getValue(FPI.getArgOperand(0))); 6914 Opers.push_back(getValue(FPI.getArgOperand(1))); 6915 } 6916 6917 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6918 assert(Result.getNode()->getNumValues() == 2); 6919 6920 // Push node to the appropriate list so that future instructions can be 6921 // chained up correctly. 6922 SDValue OutChain = Result.getValue(1); 6923 switch (EB) { 6924 case fp::ExceptionBehavior::ebIgnore: 6925 // The only reason why ebIgnore nodes still need to be chained is that 6926 // they might depend on the current rounding mode, and therefore must 6927 // not be moved across instruction that may change that mode. 6928 LLVM_FALLTHROUGH; 6929 case fp::ExceptionBehavior::ebMayTrap: 6930 // These must not be moved across calls or instructions that may change 6931 // floating-point exception masks. 6932 PendingConstrainedFP.push_back(OutChain); 6933 break; 6934 case fp::ExceptionBehavior::ebStrict: 6935 // These must not be moved across calls or instructions that may change 6936 // floating-point exception masks or read floating-point exception flags. 6937 // In addition, they cannot be optimized out even if unused. 6938 PendingConstrainedFPStrict.push_back(OutChain); 6939 break; 6940 } 6941 }; 6942 6943 SDVTList VTs = DAG.getVTList(ValueVTs); 6944 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6945 6946 SDNodeFlags Flags; 6947 if (EB == fp::ExceptionBehavior::ebIgnore) 6948 Flags.setNoFPExcept(true); 6949 6950 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6951 Flags.copyFMF(*FPOp); 6952 6953 unsigned Opcode; 6954 switch (FPI.getIntrinsicID()) { 6955 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6956 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6957 case Intrinsic::INTRINSIC: \ 6958 Opcode = ISD::STRICT_##DAGN; \ 6959 break; 6960 #include "llvm/IR/ConstrainedOps.def" 6961 case Intrinsic::experimental_constrained_fmuladd: { 6962 Opcode = ISD::STRICT_FMA; 6963 // Break fmuladd into fmul and fadd. 6964 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6965 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6966 ValueVTs[0])) { 6967 Opers.pop_back(); 6968 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6969 pushOutChain(Mul, EB); 6970 Opcode = ISD::STRICT_FADD; 6971 Opers.clear(); 6972 Opers.push_back(Mul.getValue(1)); 6973 Opers.push_back(Mul.getValue(0)); 6974 Opers.push_back(getValue(FPI.getArgOperand(2))); 6975 } 6976 break; 6977 } 6978 } 6979 6980 // A few strict DAG nodes carry additional operands that are not 6981 // set up by the default code above. 6982 switch (Opcode) { 6983 default: break; 6984 case ISD::STRICT_FP_ROUND: 6985 Opers.push_back( 6986 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6987 break; 6988 case ISD::STRICT_FSETCC: 6989 case ISD::STRICT_FSETCCS: { 6990 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6991 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6992 break; 6993 } 6994 } 6995 6996 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6997 pushOutChain(Result, EB); 6998 6999 SDValue FPResult = Result.getValue(0); 7000 setValue(&FPI, FPResult); 7001 } 7002 7003 std::pair<SDValue, SDValue> 7004 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7005 const BasicBlock *EHPadBB) { 7006 MachineFunction &MF = DAG.getMachineFunction(); 7007 MachineModuleInfo &MMI = MF.getMMI(); 7008 MCSymbol *BeginLabel = nullptr; 7009 7010 if (EHPadBB) { 7011 // Insert a label before the invoke call to mark the try range. This can be 7012 // used to detect deletion of the invoke via the MachineModuleInfo. 7013 BeginLabel = MMI.getContext().createTempSymbol(); 7014 7015 // For SjLj, keep track of which landing pads go with which invokes 7016 // so as to maintain the ordering of pads in the LSDA. 7017 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7018 if (CallSiteIndex) { 7019 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7020 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7021 7022 // Now that the call site is handled, stop tracking it. 7023 MMI.setCurrentCallSite(0); 7024 } 7025 7026 // Both PendingLoads and PendingExports must be flushed here; 7027 // this call might not return. 7028 (void)getRoot(); 7029 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7030 7031 CLI.setChain(getRoot()); 7032 } 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7035 7036 assert((CLI.IsTailCall || Result.second.getNode()) && 7037 "Non-null chain expected with non-tail call!"); 7038 assert((Result.second.getNode() || !Result.first.getNode()) && 7039 "Null value expected with tail call!"); 7040 7041 if (!Result.second.getNode()) { 7042 // As a special case, a null chain means that a tail call has been emitted 7043 // and the DAG root is already updated. 7044 HasTailCall = true; 7045 7046 // Since there's no actual continuation from this block, nothing can be 7047 // relying on us setting vregs for them. 7048 PendingExports.clear(); 7049 } else { 7050 DAG.setRoot(Result.second); 7051 } 7052 7053 if (EHPadBB) { 7054 // Insert a label at the end of the invoke call to mark the try range. This 7055 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7056 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7057 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7058 7059 // Inform MachineModuleInfo of range. 7060 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7061 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7062 // actually use outlined funclets and their LSDA info style. 7063 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7064 assert(CLI.CB); 7065 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7066 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7067 } else if (!isScopedEHPersonality(Pers)) { 7068 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7069 } 7070 } 7071 7072 return Result; 7073 } 7074 7075 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7076 bool isTailCall, 7077 const BasicBlock *EHPadBB) { 7078 auto &DL = DAG.getDataLayout(); 7079 FunctionType *FTy = CB.getFunctionType(); 7080 Type *RetTy = CB.getType(); 7081 7082 TargetLowering::ArgListTy Args; 7083 Args.reserve(CB.arg_size()); 7084 7085 const Value *SwiftErrorVal = nullptr; 7086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7087 7088 if (isTailCall) { 7089 // Avoid emitting tail calls in functions with the disable-tail-calls 7090 // attribute. 7091 auto *Caller = CB.getParent()->getParent(); 7092 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7093 "true") 7094 isTailCall = false; 7095 7096 // We can't tail call inside a function with a swifterror argument. Lowering 7097 // does not support this yet. It would have to move into the swifterror 7098 // register before the call. 7099 if (TLI.supportSwiftError() && 7100 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7101 isTailCall = false; 7102 } 7103 7104 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7105 TargetLowering::ArgListEntry Entry; 7106 const Value *V = *I; 7107 7108 // Skip empty types 7109 if (V->getType()->isEmptyTy()) 7110 continue; 7111 7112 SDValue ArgNode = getValue(V); 7113 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7114 7115 Entry.setAttributes(&CB, I - CB.arg_begin()); 7116 7117 // Use swifterror virtual register as input to the call. 7118 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7119 SwiftErrorVal = V; 7120 // We find the virtual register for the actual swifterror argument. 7121 // Instead of using the Value, we use the virtual register instead. 7122 Entry.Node = 7123 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7124 EVT(TLI.getPointerTy(DL))); 7125 } 7126 7127 Args.push_back(Entry); 7128 7129 // If we have an explicit sret argument that is an Instruction, (i.e., it 7130 // might point to function-local memory), we can't meaningfully tail-call. 7131 if (Entry.IsSRet && isa<Instruction>(V)) 7132 isTailCall = false; 7133 } 7134 7135 // If call site has a cfguardtarget operand bundle, create and add an 7136 // additional ArgListEntry. 7137 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7138 TargetLowering::ArgListEntry Entry; 7139 Value *V = Bundle->Inputs[0]; 7140 SDValue ArgNode = getValue(V); 7141 Entry.Node = ArgNode; 7142 Entry.Ty = V->getType(); 7143 Entry.IsCFGuardTarget = true; 7144 Args.push_back(Entry); 7145 } 7146 7147 // Check if target-independent constraints permit a tail call here. 7148 // Target-dependent constraints are checked within TLI->LowerCallTo. 7149 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7150 isTailCall = false; 7151 7152 // Disable tail calls if there is an swifterror argument. Targets have not 7153 // been updated to support tail calls. 7154 if (TLI.supportSwiftError() && SwiftErrorVal) 7155 isTailCall = false; 7156 7157 TargetLowering::CallLoweringInfo CLI(DAG); 7158 CLI.setDebugLoc(getCurSDLoc()) 7159 .setChain(getRoot()) 7160 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7161 .setTailCall(isTailCall) 7162 .setConvergent(CB.isConvergent()) 7163 .setIsPreallocated( 7164 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7165 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7166 7167 if (Result.first.getNode()) { 7168 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7169 setValue(&CB, Result.first); 7170 } 7171 7172 // The last element of CLI.InVals has the SDValue for swifterror return. 7173 // Here we copy it to a virtual register and update SwiftErrorMap for 7174 // book-keeping. 7175 if (SwiftErrorVal && TLI.supportSwiftError()) { 7176 // Get the last element of InVals. 7177 SDValue Src = CLI.InVals.back(); 7178 Register VReg = 7179 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7180 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7181 DAG.setRoot(CopyNode); 7182 } 7183 } 7184 7185 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7186 SelectionDAGBuilder &Builder) { 7187 // Check to see if this load can be trivially constant folded, e.g. if the 7188 // input is from a string literal. 7189 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7190 // Cast pointer to the type we really want to load. 7191 Type *LoadTy = 7192 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7193 if (LoadVT.isVector()) 7194 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7195 7196 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7197 PointerType::getUnqual(LoadTy)); 7198 7199 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7200 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7201 return Builder.getValue(LoadCst); 7202 } 7203 7204 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7205 // still constant memory, the input chain can be the entry node. 7206 SDValue Root; 7207 bool ConstantMemory = false; 7208 7209 // Do not serialize (non-volatile) loads of constant memory with anything. 7210 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7211 Root = Builder.DAG.getEntryNode(); 7212 ConstantMemory = true; 7213 } else { 7214 // Do not serialize non-volatile loads against each other. 7215 Root = Builder.DAG.getRoot(); 7216 } 7217 7218 SDValue Ptr = Builder.getValue(PtrVal); 7219 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7220 Ptr, MachinePointerInfo(PtrVal), 7221 /* Alignment = */ 1); 7222 7223 if (!ConstantMemory) 7224 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7225 return LoadVal; 7226 } 7227 7228 /// Record the value for an instruction that produces an integer result, 7229 /// converting the type where necessary. 7230 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7231 SDValue Value, 7232 bool IsSigned) { 7233 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7234 I.getType(), true); 7235 if (IsSigned) 7236 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7237 else 7238 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7239 setValue(&I, Value); 7240 } 7241 7242 /// See if we can lower a memcmp call into an optimized form. If so, return 7243 /// true and lower it. Otherwise return false, and it will be lowered like a 7244 /// normal call. 7245 /// The caller already checked that \p I calls the appropriate LibFunc with a 7246 /// correct prototype. 7247 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7248 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7249 const Value *Size = I.getArgOperand(2); 7250 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7251 if (CSize && CSize->getZExtValue() == 0) { 7252 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7253 I.getType(), true); 7254 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7255 return true; 7256 } 7257 7258 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7259 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7260 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7261 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7262 if (Res.first.getNode()) { 7263 processIntegerCallValue(I, Res.first, true); 7264 PendingLoads.push_back(Res.second); 7265 return true; 7266 } 7267 7268 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7269 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7270 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7271 return false; 7272 7273 // If the target has a fast compare for the given size, it will return a 7274 // preferred load type for that size. Require that the load VT is legal and 7275 // that the target supports unaligned loads of that type. Otherwise, return 7276 // INVALID. 7277 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7279 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7280 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7281 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7282 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7283 // TODO: Check alignment of src and dest ptrs. 7284 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7285 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7286 if (!TLI.isTypeLegal(LVT) || 7287 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7288 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7289 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7290 } 7291 7292 return LVT; 7293 }; 7294 7295 // This turns into unaligned loads. We only do this if the target natively 7296 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7297 // we'll only produce a small number of byte loads. 7298 MVT LoadVT; 7299 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7300 switch (NumBitsToCompare) { 7301 default: 7302 return false; 7303 case 16: 7304 LoadVT = MVT::i16; 7305 break; 7306 case 32: 7307 LoadVT = MVT::i32; 7308 break; 7309 case 64: 7310 case 128: 7311 case 256: 7312 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7313 break; 7314 } 7315 7316 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7317 return false; 7318 7319 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7320 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7321 7322 // Bitcast to a wide integer type if the loads are vectors. 7323 if (LoadVT.isVector()) { 7324 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7325 LoadL = DAG.getBitcast(CmpVT, LoadL); 7326 LoadR = DAG.getBitcast(CmpVT, LoadR); 7327 } 7328 7329 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7330 processIntegerCallValue(I, Cmp, false); 7331 return true; 7332 } 7333 7334 /// See if we can lower a memchr call into an optimized form. If so, return 7335 /// true and lower it. Otherwise return false, and it will be lowered like a 7336 /// normal call. 7337 /// The caller already checked that \p I calls the appropriate LibFunc with a 7338 /// correct prototype. 7339 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7340 const Value *Src = I.getArgOperand(0); 7341 const Value *Char = I.getArgOperand(1); 7342 const Value *Length = I.getArgOperand(2); 7343 7344 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7345 std::pair<SDValue, SDValue> Res = 7346 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7347 getValue(Src), getValue(Char), getValue(Length), 7348 MachinePointerInfo(Src)); 7349 if (Res.first.getNode()) { 7350 setValue(&I, Res.first); 7351 PendingLoads.push_back(Res.second); 7352 return true; 7353 } 7354 7355 return false; 7356 } 7357 7358 /// See if we can lower a mempcpy call into an optimized form. If so, return 7359 /// true and lower it. Otherwise return false, and it will be lowered like a 7360 /// normal call. 7361 /// The caller already checked that \p I calls the appropriate LibFunc with a 7362 /// correct prototype. 7363 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7364 SDValue Dst = getValue(I.getArgOperand(0)); 7365 SDValue Src = getValue(I.getArgOperand(1)); 7366 SDValue Size = getValue(I.getArgOperand(2)); 7367 7368 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7369 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7370 // DAG::getMemcpy needs Alignment to be defined. 7371 Align Alignment = std::min(DstAlign, SrcAlign); 7372 7373 bool isVol = false; 7374 SDLoc sdl = getCurSDLoc(); 7375 7376 // In the mempcpy context we need to pass in a false value for isTailCall 7377 // because the return pointer needs to be adjusted by the size of 7378 // the copied memory. 7379 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7380 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7381 /*isTailCall=*/false, 7382 MachinePointerInfo(I.getArgOperand(0)), 7383 MachinePointerInfo(I.getArgOperand(1))); 7384 assert(MC.getNode() != nullptr && 7385 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7386 DAG.setRoot(MC); 7387 7388 // Check if Size needs to be truncated or extended. 7389 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7390 7391 // Adjust return pointer to point just past the last dst byte. 7392 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7393 Dst, Size); 7394 setValue(&I, DstPlusSize); 7395 return true; 7396 } 7397 7398 /// See if we can lower a strcpy call into an optimized form. If so, return 7399 /// true and lower it, otherwise return false and it will be lowered like a 7400 /// normal call. 7401 /// The caller already checked that \p I calls the appropriate LibFunc with a 7402 /// correct prototype. 7403 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7404 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7405 7406 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7407 std::pair<SDValue, SDValue> Res = 7408 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7409 getValue(Arg0), getValue(Arg1), 7410 MachinePointerInfo(Arg0), 7411 MachinePointerInfo(Arg1), isStpcpy); 7412 if (Res.first.getNode()) { 7413 setValue(&I, Res.first); 7414 DAG.setRoot(Res.second); 7415 return true; 7416 } 7417 7418 return false; 7419 } 7420 7421 /// See if we can lower a strcmp call into an optimized form. If so, return 7422 /// true and lower it, otherwise return false and it will be lowered like a 7423 /// normal call. 7424 /// The caller already checked that \p I calls the appropriate LibFunc with a 7425 /// correct prototype. 7426 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7427 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7428 7429 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7430 std::pair<SDValue, SDValue> Res = 7431 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7432 getValue(Arg0), getValue(Arg1), 7433 MachinePointerInfo(Arg0), 7434 MachinePointerInfo(Arg1)); 7435 if (Res.first.getNode()) { 7436 processIntegerCallValue(I, Res.first, true); 7437 PendingLoads.push_back(Res.second); 7438 return true; 7439 } 7440 7441 return false; 7442 } 7443 7444 /// See if we can lower a strlen call into an optimized form. If so, return 7445 /// true and lower it, otherwise return false and it will be lowered like a 7446 /// normal call. 7447 /// The caller already checked that \p I calls the appropriate LibFunc with a 7448 /// correct prototype. 7449 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7450 const Value *Arg0 = I.getArgOperand(0); 7451 7452 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7453 std::pair<SDValue, SDValue> Res = 7454 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7455 getValue(Arg0), MachinePointerInfo(Arg0)); 7456 if (Res.first.getNode()) { 7457 processIntegerCallValue(I, Res.first, false); 7458 PendingLoads.push_back(Res.second); 7459 return true; 7460 } 7461 7462 return false; 7463 } 7464 7465 /// See if we can lower a strnlen call into an optimized form. If so, return 7466 /// true and lower it, otherwise return false and it will be lowered like a 7467 /// normal call. 7468 /// The caller already checked that \p I calls the appropriate LibFunc with a 7469 /// correct prototype. 7470 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7471 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7472 7473 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7474 std::pair<SDValue, SDValue> Res = 7475 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7476 getValue(Arg0), getValue(Arg1), 7477 MachinePointerInfo(Arg0)); 7478 if (Res.first.getNode()) { 7479 processIntegerCallValue(I, Res.first, false); 7480 PendingLoads.push_back(Res.second); 7481 return true; 7482 } 7483 7484 return false; 7485 } 7486 7487 /// See if we can lower a unary floating-point operation into an SDNode with 7488 /// the specified Opcode. If so, return true and lower it, otherwise return 7489 /// false and it will be lowered like a normal call. 7490 /// The caller already checked that \p I calls the appropriate LibFunc with a 7491 /// correct prototype. 7492 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7493 unsigned Opcode) { 7494 // We already checked this call's prototype; verify it doesn't modify errno. 7495 if (!I.onlyReadsMemory()) 7496 return false; 7497 7498 SDValue Tmp = getValue(I.getArgOperand(0)); 7499 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7500 return true; 7501 } 7502 7503 /// See if we can lower a binary floating-point operation into an SDNode with 7504 /// the specified Opcode. If so, return true and lower it. Otherwise return 7505 /// false, and it will be lowered like a normal call. 7506 /// The caller already checked that \p I calls the appropriate LibFunc with a 7507 /// correct prototype. 7508 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7509 unsigned Opcode) { 7510 // We already checked this call's prototype; verify it doesn't modify errno. 7511 if (!I.onlyReadsMemory()) 7512 return false; 7513 7514 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7515 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7516 EVT VT = Tmp0.getValueType(); 7517 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7518 return true; 7519 } 7520 7521 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7522 // Handle inline assembly differently. 7523 if (I.isInlineAsm()) { 7524 visitInlineAsm(I); 7525 return; 7526 } 7527 7528 if (Function *F = I.getCalledFunction()) { 7529 if (F->isDeclaration()) { 7530 // Is this an LLVM intrinsic or a target-specific intrinsic? 7531 unsigned IID = F->getIntrinsicID(); 7532 if (!IID) 7533 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7534 IID = II->getIntrinsicID(F); 7535 7536 if (IID) { 7537 visitIntrinsicCall(I, IID); 7538 return; 7539 } 7540 } 7541 7542 // Check for well-known libc/libm calls. If the function is internal, it 7543 // can't be a library call. Don't do the check if marked as nobuiltin for 7544 // some reason or the call site requires strict floating point semantics. 7545 LibFunc Func; 7546 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7547 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7548 LibInfo->hasOptimizedCodeGen(Func)) { 7549 switch (Func) { 7550 default: break; 7551 case LibFunc_copysign: 7552 case LibFunc_copysignf: 7553 case LibFunc_copysignl: 7554 // We already checked this call's prototype; verify it doesn't modify 7555 // errno. 7556 if (I.onlyReadsMemory()) { 7557 SDValue LHS = getValue(I.getArgOperand(0)); 7558 SDValue RHS = getValue(I.getArgOperand(1)); 7559 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7560 LHS.getValueType(), LHS, RHS)); 7561 return; 7562 } 7563 break; 7564 case LibFunc_fabs: 7565 case LibFunc_fabsf: 7566 case LibFunc_fabsl: 7567 if (visitUnaryFloatCall(I, ISD::FABS)) 7568 return; 7569 break; 7570 case LibFunc_fmin: 7571 case LibFunc_fminf: 7572 case LibFunc_fminl: 7573 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7574 return; 7575 break; 7576 case LibFunc_fmax: 7577 case LibFunc_fmaxf: 7578 case LibFunc_fmaxl: 7579 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7580 return; 7581 break; 7582 case LibFunc_sin: 7583 case LibFunc_sinf: 7584 case LibFunc_sinl: 7585 if (visitUnaryFloatCall(I, ISD::FSIN)) 7586 return; 7587 break; 7588 case LibFunc_cos: 7589 case LibFunc_cosf: 7590 case LibFunc_cosl: 7591 if (visitUnaryFloatCall(I, ISD::FCOS)) 7592 return; 7593 break; 7594 case LibFunc_sqrt: 7595 case LibFunc_sqrtf: 7596 case LibFunc_sqrtl: 7597 case LibFunc_sqrt_finite: 7598 case LibFunc_sqrtf_finite: 7599 case LibFunc_sqrtl_finite: 7600 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7601 return; 7602 break; 7603 case LibFunc_floor: 7604 case LibFunc_floorf: 7605 case LibFunc_floorl: 7606 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7607 return; 7608 break; 7609 case LibFunc_nearbyint: 7610 case LibFunc_nearbyintf: 7611 case LibFunc_nearbyintl: 7612 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7613 return; 7614 break; 7615 case LibFunc_ceil: 7616 case LibFunc_ceilf: 7617 case LibFunc_ceill: 7618 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7619 return; 7620 break; 7621 case LibFunc_rint: 7622 case LibFunc_rintf: 7623 case LibFunc_rintl: 7624 if (visitUnaryFloatCall(I, ISD::FRINT)) 7625 return; 7626 break; 7627 case LibFunc_round: 7628 case LibFunc_roundf: 7629 case LibFunc_roundl: 7630 if (visitUnaryFloatCall(I, ISD::FROUND)) 7631 return; 7632 break; 7633 case LibFunc_trunc: 7634 case LibFunc_truncf: 7635 case LibFunc_truncl: 7636 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7637 return; 7638 break; 7639 case LibFunc_log2: 7640 case LibFunc_log2f: 7641 case LibFunc_log2l: 7642 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7643 return; 7644 break; 7645 case LibFunc_exp2: 7646 case LibFunc_exp2f: 7647 case LibFunc_exp2l: 7648 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7649 return; 7650 break; 7651 case LibFunc_memcmp: 7652 if (visitMemCmpCall(I)) 7653 return; 7654 break; 7655 case LibFunc_mempcpy: 7656 if (visitMemPCpyCall(I)) 7657 return; 7658 break; 7659 case LibFunc_memchr: 7660 if (visitMemChrCall(I)) 7661 return; 7662 break; 7663 case LibFunc_strcpy: 7664 if (visitStrCpyCall(I, false)) 7665 return; 7666 break; 7667 case LibFunc_stpcpy: 7668 if (visitStrCpyCall(I, true)) 7669 return; 7670 break; 7671 case LibFunc_strcmp: 7672 if (visitStrCmpCall(I)) 7673 return; 7674 break; 7675 case LibFunc_strlen: 7676 if (visitStrLenCall(I)) 7677 return; 7678 break; 7679 case LibFunc_strnlen: 7680 if (visitStrNLenCall(I)) 7681 return; 7682 break; 7683 } 7684 } 7685 } 7686 7687 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7688 // have to do anything here to lower funclet bundles. 7689 // CFGuardTarget bundles are lowered in LowerCallTo. 7690 assert(!I.hasOperandBundlesOtherThan( 7691 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7692 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7693 "Cannot lower calls with arbitrary operand bundles!"); 7694 7695 SDValue Callee = getValue(I.getCalledOperand()); 7696 7697 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7698 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7699 else 7700 // Check if we can potentially perform a tail call. More detailed checking 7701 // is be done within LowerCallTo, after more information about the call is 7702 // known. 7703 LowerCallTo(I, Callee, I.isTailCall()); 7704 } 7705 7706 namespace { 7707 7708 /// AsmOperandInfo - This contains information for each constraint that we are 7709 /// lowering. 7710 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7711 public: 7712 /// CallOperand - If this is the result output operand or a clobber 7713 /// this is null, otherwise it is the incoming operand to the CallInst. 7714 /// This gets modified as the asm is processed. 7715 SDValue CallOperand; 7716 7717 /// AssignedRegs - If this is a register or register class operand, this 7718 /// contains the set of register corresponding to the operand. 7719 RegsForValue AssignedRegs; 7720 7721 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7722 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7723 } 7724 7725 /// Whether or not this operand accesses memory 7726 bool hasMemory(const TargetLowering &TLI) const { 7727 // Indirect operand accesses access memory. 7728 if (isIndirect) 7729 return true; 7730 7731 for (const auto &Code : Codes) 7732 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7733 return true; 7734 7735 return false; 7736 } 7737 7738 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7739 /// corresponds to. If there is no Value* for this operand, it returns 7740 /// MVT::Other. 7741 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7742 const DataLayout &DL) const { 7743 if (!CallOperandVal) return MVT::Other; 7744 7745 if (isa<BasicBlock>(CallOperandVal)) 7746 return TLI.getProgramPointerTy(DL); 7747 7748 llvm::Type *OpTy = CallOperandVal->getType(); 7749 7750 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7751 // If this is an indirect operand, the operand is a pointer to the 7752 // accessed type. 7753 if (isIndirect) { 7754 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7755 if (!PtrTy) 7756 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7757 OpTy = PtrTy->getElementType(); 7758 } 7759 7760 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7761 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7762 if (STy->getNumElements() == 1) 7763 OpTy = STy->getElementType(0); 7764 7765 // If OpTy is not a single value, it may be a struct/union that we 7766 // can tile with integers. 7767 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7768 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7769 switch (BitSize) { 7770 default: break; 7771 case 1: 7772 case 8: 7773 case 16: 7774 case 32: 7775 case 64: 7776 case 128: 7777 OpTy = IntegerType::get(Context, BitSize); 7778 break; 7779 } 7780 } 7781 7782 return TLI.getValueType(DL, OpTy, true); 7783 } 7784 }; 7785 7786 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7787 7788 } // end anonymous namespace 7789 7790 /// Make sure that the output operand \p OpInfo and its corresponding input 7791 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7792 /// out). 7793 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7794 SDISelAsmOperandInfo &MatchingOpInfo, 7795 SelectionDAG &DAG) { 7796 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7797 return; 7798 7799 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7800 const auto &TLI = DAG.getTargetLoweringInfo(); 7801 7802 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7803 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7804 OpInfo.ConstraintVT); 7805 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7806 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7807 MatchingOpInfo.ConstraintVT); 7808 if ((OpInfo.ConstraintVT.isInteger() != 7809 MatchingOpInfo.ConstraintVT.isInteger()) || 7810 (MatchRC.second != InputRC.second)) { 7811 // FIXME: error out in a more elegant fashion 7812 report_fatal_error("Unsupported asm: input constraint" 7813 " with a matching output constraint of" 7814 " incompatible type!"); 7815 } 7816 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7817 } 7818 7819 /// Get a direct memory input to behave well as an indirect operand. 7820 /// This may introduce stores, hence the need for a \p Chain. 7821 /// \return The (possibly updated) chain. 7822 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7823 SDISelAsmOperandInfo &OpInfo, 7824 SelectionDAG &DAG) { 7825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7826 7827 // If we don't have an indirect input, put it in the constpool if we can, 7828 // otherwise spill it to a stack slot. 7829 // TODO: This isn't quite right. We need to handle these according to 7830 // the addressing mode that the constraint wants. Also, this may take 7831 // an additional register for the computation and we don't want that 7832 // either. 7833 7834 // If the operand is a float, integer, or vector constant, spill to a 7835 // constant pool entry to get its address. 7836 const Value *OpVal = OpInfo.CallOperandVal; 7837 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7838 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7839 OpInfo.CallOperand = DAG.getConstantPool( 7840 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7841 return Chain; 7842 } 7843 7844 // Otherwise, create a stack slot and emit a store to it before the asm. 7845 Type *Ty = OpVal->getType(); 7846 auto &DL = DAG.getDataLayout(); 7847 uint64_t TySize = DL.getTypeAllocSize(Ty); 7848 unsigned Align = DL.getPrefTypeAlignment(Ty); 7849 MachineFunction &MF = DAG.getMachineFunction(); 7850 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7851 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7852 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7853 MachinePointerInfo::getFixedStack(MF, SSFI), 7854 TLI.getMemValueType(DL, Ty)); 7855 OpInfo.CallOperand = StackSlot; 7856 7857 return Chain; 7858 } 7859 7860 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7861 /// specified operand. We prefer to assign virtual registers, to allow the 7862 /// register allocator to handle the assignment process. However, if the asm 7863 /// uses features that we can't model on machineinstrs, we have SDISel do the 7864 /// allocation. This produces generally horrible, but correct, code. 7865 /// 7866 /// OpInfo describes the operand 7867 /// RefOpInfo describes the matching operand if any, the operand otherwise 7868 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7869 SDISelAsmOperandInfo &OpInfo, 7870 SDISelAsmOperandInfo &RefOpInfo) { 7871 LLVMContext &Context = *DAG.getContext(); 7872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7873 7874 MachineFunction &MF = DAG.getMachineFunction(); 7875 SmallVector<unsigned, 4> Regs; 7876 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7877 7878 // No work to do for memory operations. 7879 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7880 return; 7881 7882 // If this is a constraint for a single physreg, or a constraint for a 7883 // register class, find it. 7884 unsigned AssignedReg; 7885 const TargetRegisterClass *RC; 7886 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7887 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7888 // RC is unset only on failure. Return immediately. 7889 if (!RC) 7890 return; 7891 7892 // Get the actual register value type. This is important, because the user 7893 // may have asked for (e.g.) the AX register in i32 type. We need to 7894 // remember that AX is actually i16 to get the right extension. 7895 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7896 7897 if (OpInfo.ConstraintVT != MVT::Other) { 7898 // If this is an FP operand in an integer register (or visa versa), or more 7899 // generally if the operand value disagrees with the register class we plan 7900 // to stick it in, fix the operand type. 7901 // 7902 // If this is an input value, the bitcast to the new type is done now. 7903 // Bitcast for output value is done at the end of visitInlineAsm(). 7904 if ((OpInfo.Type == InlineAsm::isOutput || 7905 OpInfo.Type == InlineAsm::isInput) && 7906 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7907 // Try to convert to the first EVT that the reg class contains. If the 7908 // types are identical size, use a bitcast to convert (e.g. two differing 7909 // vector types). Note: output bitcast is done at the end of 7910 // visitInlineAsm(). 7911 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7912 // Exclude indirect inputs while they are unsupported because the code 7913 // to perform the load is missing and thus OpInfo.CallOperand still 7914 // refers to the input address rather than the pointed-to value. 7915 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7916 OpInfo.CallOperand = 7917 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7918 OpInfo.ConstraintVT = RegVT; 7919 // If the operand is an FP value and we want it in integer registers, 7920 // use the corresponding integer type. This turns an f64 value into 7921 // i64, which can be passed with two i32 values on a 32-bit machine. 7922 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7923 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7924 if (OpInfo.Type == InlineAsm::isInput) 7925 OpInfo.CallOperand = 7926 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7927 OpInfo.ConstraintVT = VT; 7928 } 7929 } 7930 } 7931 7932 // No need to allocate a matching input constraint since the constraint it's 7933 // matching to has already been allocated. 7934 if (OpInfo.isMatchingInputConstraint()) 7935 return; 7936 7937 EVT ValueVT = OpInfo.ConstraintVT; 7938 if (OpInfo.ConstraintVT == MVT::Other) 7939 ValueVT = RegVT; 7940 7941 // Initialize NumRegs. 7942 unsigned NumRegs = 1; 7943 if (OpInfo.ConstraintVT != MVT::Other) 7944 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7945 7946 // If this is a constraint for a specific physical register, like {r17}, 7947 // assign it now. 7948 7949 // If this associated to a specific register, initialize iterator to correct 7950 // place. If virtual, make sure we have enough registers 7951 7952 // Initialize iterator if necessary 7953 TargetRegisterClass::iterator I = RC->begin(); 7954 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7955 7956 // Do not check for single registers. 7957 if (AssignedReg) { 7958 for (; *I != AssignedReg; ++I) 7959 assert(I != RC->end() && "AssignedReg should be member of RC"); 7960 } 7961 7962 for (; NumRegs; --NumRegs, ++I) { 7963 assert(I != RC->end() && "Ran out of registers to allocate!"); 7964 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7965 Regs.push_back(R); 7966 } 7967 7968 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7969 } 7970 7971 static unsigned 7972 findMatchingInlineAsmOperand(unsigned OperandNo, 7973 const std::vector<SDValue> &AsmNodeOperands) { 7974 // Scan until we find the definition we already emitted of this operand. 7975 unsigned CurOp = InlineAsm::Op_FirstOperand; 7976 for (; OperandNo; --OperandNo) { 7977 // Advance to the next operand. 7978 unsigned OpFlag = 7979 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7980 assert((InlineAsm::isRegDefKind(OpFlag) || 7981 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7982 InlineAsm::isMemKind(OpFlag)) && 7983 "Skipped past definitions?"); 7984 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7985 } 7986 return CurOp; 7987 } 7988 7989 namespace { 7990 7991 class ExtraFlags { 7992 unsigned Flags = 0; 7993 7994 public: 7995 explicit ExtraFlags(const CallBase &Call) { 7996 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 7997 if (IA->hasSideEffects()) 7998 Flags |= InlineAsm::Extra_HasSideEffects; 7999 if (IA->isAlignStack()) 8000 Flags |= InlineAsm::Extra_IsAlignStack; 8001 if (Call.isConvergent()) 8002 Flags |= InlineAsm::Extra_IsConvergent; 8003 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8004 } 8005 8006 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8007 // Ideally, we would only check against memory constraints. However, the 8008 // meaning of an Other constraint can be target-specific and we can't easily 8009 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8010 // for Other constraints as well. 8011 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8012 OpInfo.ConstraintType == TargetLowering::C_Other) { 8013 if (OpInfo.Type == InlineAsm::isInput) 8014 Flags |= InlineAsm::Extra_MayLoad; 8015 else if (OpInfo.Type == InlineAsm::isOutput) 8016 Flags |= InlineAsm::Extra_MayStore; 8017 else if (OpInfo.Type == InlineAsm::isClobber) 8018 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8019 } 8020 } 8021 8022 unsigned get() const { return Flags; } 8023 }; 8024 8025 } // end anonymous namespace 8026 8027 /// visitInlineAsm - Handle a call to an InlineAsm object. 8028 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8029 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8030 8031 /// ConstraintOperands - Information about all of the constraints. 8032 SDISelAsmOperandInfoVector ConstraintOperands; 8033 8034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8035 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8036 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8037 8038 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8039 // AsmDialect, MayLoad, MayStore). 8040 bool HasSideEffect = IA->hasSideEffects(); 8041 ExtraFlags ExtraInfo(Call); 8042 8043 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8044 unsigned ResNo = 0; // ResNo - The result number of the next output. 8045 unsigned NumMatchingOps = 0; 8046 for (auto &T : TargetConstraints) { 8047 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8048 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8049 8050 // Compute the value type for each operand. 8051 if (OpInfo.Type == InlineAsm::isInput || 8052 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8053 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8054 8055 // Process the call argument. BasicBlocks are labels, currently appearing 8056 // only in asm's. 8057 if (isa<CallBrInst>(Call) && 8058 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8059 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8060 NumMatchingOps) && 8061 (NumMatchingOps == 0 || 8062 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8063 NumMatchingOps))) { 8064 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8065 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8066 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8067 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8068 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8069 } else { 8070 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8071 } 8072 8073 OpInfo.ConstraintVT = 8074 OpInfo 8075 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8076 .getSimpleVT(); 8077 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8078 // The return value of the call is this value. As such, there is no 8079 // corresponding argument. 8080 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8081 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8082 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8083 DAG.getDataLayout(), STy->getElementType(ResNo)); 8084 } else { 8085 assert(ResNo == 0 && "Asm only has one result!"); 8086 OpInfo.ConstraintVT = 8087 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8088 } 8089 ++ResNo; 8090 } else { 8091 OpInfo.ConstraintVT = MVT::Other; 8092 } 8093 8094 if (OpInfo.hasMatchingInput()) 8095 ++NumMatchingOps; 8096 8097 if (!HasSideEffect) 8098 HasSideEffect = OpInfo.hasMemory(TLI); 8099 8100 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8101 // FIXME: Could we compute this on OpInfo rather than T? 8102 8103 // Compute the constraint code and ConstraintType to use. 8104 TLI.ComputeConstraintToUse(T, SDValue()); 8105 8106 if (T.ConstraintType == TargetLowering::C_Immediate && 8107 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8108 // We've delayed emitting a diagnostic like the "n" constraint because 8109 // inlining could cause an integer showing up. 8110 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8111 "' expects an integer constant " 8112 "expression"); 8113 8114 ExtraInfo.update(T); 8115 } 8116 8117 8118 // We won't need to flush pending loads if this asm doesn't touch 8119 // memory and is nonvolatile. 8120 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8121 8122 bool IsCallBr = isa<CallBrInst>(Call); 8123 if (IsCallBr) { 8124 // If this is a callbr we need to flush pending exports since inlineasm_br 8125 // is a terminator. We need to do this before nodes are glued to 8126 // the inlineasm_br node. 8127 Chain = getControlRoot(); 8128 } 8129 8130 // Second pass over the constraints: compute which constraint option to use. 8131 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8132 // If this is an output operand with a matching input operand, look up the 8133 // matching input. If their types mismatch, e.g. one is an integer, the 8134 // other is floating point, or their sizes are different, flag it as an 8135 // error. 8136 if (OpInfo.hasMatchingInput()) { 8137 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8138 patchMatchingInput(OpInfo, Input, DAG); 8139 } 8140 8141 // Compute the constraint code and ConstraintType to use. 8142 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8143 8144 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8145 OpInfo.Type == InlineAsm::isClobber) 8146 continue; 8147 8148 // If this is a memory input, and if the operand is not indirect, do what we 8149 // need to provide an address for the memory input. 8150 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8151 !OpInfo.isIndirect) { 8152 assert((OpInfo.isMultipleAlternative || 8153 (OpInfo.Type == InlineAsm::isInput)) && 8154 "Can only indirectify direct input operands!"); 8155 8156 // Memory operands really want the address of the value. 8157 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8158 8159 // There is no longer a Value* corresponding to this operand. 8160 OpInfo.CallOperandVal = nullptr; 8161 8162 // It is now an indirect operand. 8163 OpInfo.isIndirect = true; 8164 } 8165 8166 } 8167 8168 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8169 std::vector<SDValue> AsmNodeOperands; 8170 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8171 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8172 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8173 8174 // If we have a !srcloc metadata node associated with it, we want to attach 8175 // this to the ultimately generated inline asm machineinstr. To do this, we 8176 // pass in the third operand as this (potentially null) inline asm MDNode. 8177 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8178 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8179 8180 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8181 // bits as operand 3. 8182 AsmNodeOperands.push_back(DAG.getTargetConstant( 8183 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8184 8185 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8186 // this, assign virtual and physical registers for inputs and otput. 8187 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8188 // Assign Registers. 8189 SDISelAsmOperandInfo &RefOpInfo = 8190 OpInfo.isMatchingInputConstraint() 8191 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8192 : OpInfo; 8193 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8194 8195 auto DetectWriteToReservedRegister = [&]() { 8196 const MachineFunction &MF = DAG.getMachineFunction(); 8197 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8198 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8199 if (Register::isPhysicalRegister(Reg) && 8200 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8201 const char *RegName = TRI.getName(Reg); 8202 emitInlineAsmError(Call, "write to reserved register '" + 8203 Twine(RegName) + "'"); 8204 return true; 8205 } 8206 } 8207 return false; 8208 }; 8209 8210 switch (OpInfo.Type) { 8211 case InlineAsm::isOutput: 8212 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8213 unsigned ConstraintID = 8214 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8215 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8216 "Failed to convert memory constraint code to constraint id."); 8217 8218 // Add information to the INLINEASM node to know about this output. 8219 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8220 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8221 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8222 MVT::i32)); 8223 AsmNodeOperands.push_back(OpInfo.CallOperand); 8224 } else { 8225 // Otherwise, this outputs to a register (directly for C_Register / 8226 // C_RegisterClass, and a target-defined fashion for 8227 // C_Immediate/C_Other). Find a register that we can use. 8228 if (OpInfo.AssignedRegs.Regs.empty()) { 8229 emitInlineAsmError( 8230 Call, "couldn't allocate output register for constraint '" + 8231 Twine(OpInfo.ConstraintCode) + "'"); 8232 return; 8233 } 8234 8235 if (DetectWriteToReservedRegister()) 8236 return; 8237 8238 // Add information to the INLINEASM node to know that this register is 8239 // set. 8240 OpInfo.AssignedRegs.AddInlineAsmOperands( 8241 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8242 : InlineAsm::Kind_RegDef, 8243 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8244 } 8245 break; 8246 8247 case InlineAsm::isInput: { 8248 SDValue InOperandVal = OpInfo.CallOperand; 8249 8250 if (OpInfo.isMatchingInputConstraint()) { 8251 // If this is required to match an output register we have already set, 8252 // just use its register. 8253 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8254 AsmNodeOperands); 8255 unsigned OpFlag = 8256 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8257 if (InlineAsm::isRegDefKind(OpFlag) || 8258 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8259 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8260 if (OpInfo.isIndirect) { 8261 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8262 emitInlineAsmError(Call, "inline asm not supported yet: " 8263 "don't know how to handle tied " 8264 "indirect register inputs"); 8265 return; 8266 } 8267 8268 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8269 SmallVector<unsigned, 4> Regs; 8270 8271 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8272 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8273 MachineRegisterInfo &RegInfo = 8274 DAG.getMachineFunction().getRegInfo(); 8275 for (unsigned i = 0; i != NumRegs; ++i) 8276 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8277 } else { 8278 emitInlineAsmError(Call, 8279 "inline asm error: This value type register " 8280 "class is not natively supported!"); 8281 return; 8282 } 8283 8284 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8285 8286 SDLoc dl = getCurSDLoc(); 8287 // Use the produced MatchedRegs object to 8288 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8289 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8290 true, OpInfo.getMatchedOperand(), dl, 8291 DAG, AsmNodeOperands); 8292 break; 8293 } 8294 8295 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8296 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8297 "Unexpected number of operands"); 8298 // Add information to the INLINEASM node to know about this input. 8299 // See InlineAsm.h isUseOperandTiedToDef. 8300 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8301 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8302 OpInfo.getMatchedOperand()); 8303 AsmNodeOperands.push_back(DAG.getTargetConstant( 8304 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8305 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8306 break; 8307 } 8308 8309 // Treat indirect 'X' constraint as memory. 8310 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8311 OpInfo.isIndirect) 8312 OpInfo.ConstraintType = TargetLowering::C_Memory; 8313 8314 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8315 OpInfo.ConstraintType == TargetLowering::C_Other) { 8316 std::vector<SDValue> Ops; 8317 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8318 Ops, DAG); 8319 if (Ops.empty()) { 8320 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8321 if (isa<ConstantSDNode>(InOperandVal)) { 8322 emitInlineAsmError(Call, "value out of range for constraint '" + 8323 Twine(OpInfo.ConstraintCode) + "'"); 8324 return; 8325 } 8326 8327 emitInlineAsmError(Call, 8328 "invalid operand for inline asm constraint '" + 8329 Twine(OpInfo.ConstraintCode) + "'"); 8330 return; 8331 } 8332 8333 // Add information to the INLINEASM node to know about this input. 8334 unsigned ResOpType = 8335 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8336 AsmNodeOperands.push_back(DAG.getTargetConstant( 8337 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8338 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8339 break; 8340 } 8341 8342 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8343 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8344 assert(InOperandVal.getValueType() == 8345 TLI.getPointerTy(DAG.getDataLayout()) && 8346 "Memory operands expect pointer values"); 8347 8348 unsigned ConstraintID = 8349 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8350 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8351 "Failed to convert memory constraint code to constraint id."); 8352 8353 // Add information to the INLINEASM node to know about this input. 8354 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8355 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8356 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8357 getCurSDLoc(), 8358 MVT::i32)); 8359 AsmNodeOperands.push_back(InOperandVal); 8360 break; 8361 } 8362 8363 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8364 OpInfo.ConstraintType == TargetLowering::C_Register) && 8365 "Unknown constraint type!"); 8366 8367 // TODO: Support this. 8368 if (OpInfo.isIndirect) { 8369 emitInlineAsmError( 8370 Call, "Don't know how to handle indirect register inputs yet " 8371 "for constraint '" + 8372 Twine(OpInfo.ConstraintCode) + "'"); 8373 return; 8374 } 8375 8376 // Copy the input into the appropriate registers. 8377 if (OpInfo.AssignedRegs.Regs.empty()) { 8378 emitInlineAsmError(Call, 8379 "couldn't allocate input reg for constraint '" + 8380 Twine(OpInfo.ConstraintCode) + "'"); 8381 return; 8382 } 8383 8384 if (DetectWriteToReservedRegister()) 8385 return; 8386 8387 SDLoc dl = getCurSDLoc(); 8388 8389 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8390 &Call); 8391 8392 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8393 dl, DAG, AsmNodeOperands); 8394 break; 8395 } 8396 case InlineAsm::isClobber: 8397 // Add the clobbered value to the operand list, so that the register 8398 // allocator is aware that the physreg got clobbered. 8399 if (!OpInfo.AssignedRegs.Regs.empty()) 8400 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8401 false, 0, getCurSDLoc(), DAG, 8402 AsmNodeOperands); 8403 break; 8404 } 8405 } 8406 8407 // Finish up input operands. Set the input chain and add the flag last. 8408 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8409 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8410 8411 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8412 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8413 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8414 Flag = Chain.getValue(1); 8415 8416 // Do additional work to generate outputs. 8417 8418 SmallVector<EVT, 1> ResultVTs; 8419 SmallVector<SDValue, 1> ResultValues; 8420 SmallVector<SDValue, 8> OutChains; 8421 8422 llvm::Type *CallResultType = Call.getType(); 8423 ArrayRef<Type *> ResultTypes; 8424 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8425 ResultTypes = StructResult->elements(); 8426 else if (!CallResultType->isVoidTy()) 8427 ResultTypes = makeArrayRef(CallResultType); 8428 8429 auto CurResultType = ResultTypes.begin(); 8430 auto handleRegAssign = [&](SDValue V) { 8431 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8432 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8433 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8434 ++CurResultType; 8435 // If the type of the inline asm call site return value is different but has 8436 // same size as the type of the asm output bitcast it. One example of this 8437 // is for vectors with different width / number of elements. This can 8438 // happen for register classes that can contain multiple different value 8439 // types. The preg or vreg allocated may not have the same VT as was 8440 // expected. 8441 // 8442 // This can also happen for a return value that disagrees with the register 8443 // class it is put in, eg. a double in a general-purpose register on a 8444 // 32-bit machine. 8445 if (ResultVT != V.getValueType() && 8446 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8447 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8448 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8449 V.getValueType().isInteger()) { 8450 // If a result value was tied to an input value, the computed result 8451 // may have a wider width than the expected result. Extract the 8452 // relevant portion. 8453 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8454 } 8455 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8456 ResultVTs.push_back(ResultVT); 8457 ResultValues.push_back(V); 8458 }; 8459 8460 // Deal with output operands. 8461 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8462 if (OpInfo.Type == InlineAsm::isOutput) { 8463 SDValue Val; 8464 // Skip trivial output operands. 8465 if (OpInfo.AssignedRegs.Regs.empty()) 8466 continue; 8467 8468 switch (OpInfo.ConstraintType) { 8469 case TargetLowering::C_Register: 8470 case TargetLowering::C_RegisterClass: 8471 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8472 Chain, &Flag, &Call); 8473 break; 8474 case TargetLowering::C_Immediate: 8475 case TargetLowering::C_Other: 8476 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8477 OpInfo, DAG); 8478 break; 8479 case TargetLowering::C_Memory: 8480 break; // Already handled. 8481 case TargetLowering::C_Unknown: 8482 assert(false && "Unexpected unknown constraint"); 8483 } 8484 8485 // Indirect output manifest as stores. Record output chains. 8486 if (OpInfo.isIndirect) { 8487 const Value *Ptr = OpInfo.CallOperandVal; 8488 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8489 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8490 MachinePointerInfo(Ptr)); 8491 OutChains.push_back(Store); 8492 } else { 8493 // generate CopyFromRegs to associated registers. 8494 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8495 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8496 for (const SDValue &V : Val->op_values()) 8497 handleRegAssign(V); 8498 } else 8499 handleRegAssign(Val); 8500 } 8501 } 8502 } 8503 8504 // Set results. 8505 if (!ResultValues.empty()) { 8506 assert(CurResultType == ResultTypes.end() && 8507 "Mismatch in number of ResultTypes"); 8508 assert(ResultValues.size() == ResultTypes.size() && 8509 "Mismatch in number of output operands in asm result"); 8510 8511 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8512 DAG.getVTList(ResultVTs), ResultValues); 8513 setValue(&Call, V); 8514 } 8515 8516 // Collect store chains. 8517 if (!OutChains.empty()) 8518 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8519 8520 // Only Update Root if inline assembly has a memory effect. 8521 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8522 DAG.setRoot(Chain); 8523 } 8524 8525 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8526 const Twine &Message) { 8527 LLVMContext &Ctx = *DAG.getContext(); 8528 Ctx.emitError(&Call, Message); 8529 8530 // Make sure we leave the DAG in a valid state 8531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8532 SmallVector<EVT, 1> ValueVTs; 8533 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8534 8535 if (ValueVTs.empty()) 8536 return; 8537 8538 SmallVector<SDValue, 1> Ops; 8539 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8540 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8541 8542 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8543 } 8544 8545 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8546 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8547 MVT::Other, getRoot(), 8548 getValue(I.getArgOperand(0)), 8549 DAG.getSrcValue(I.getArgOperand(0)))); 8550 } 8551 8552 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8554 const DataLayout &DL = DAG.getDataLayout(); 8555 SDValue V = DAG.getVAArg( 8556 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8557 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8558 DL.getABITypeAlignment(I.getType())); 8559 DAG.setRoot(V.getValue(1)); 8560 8561 if (I.getType()->isPointerTy()) 8562 V = DAG.getPtrExtOrTrunc( 8563 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8564 setValue(&I, V); 8565 } 8566 8567 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8568 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8569 MVT::Other, getRoot(), 8570 getValue(I.getArgOperand(0)), 8571 DAG.getSrcValue(I.getArgOperand(0)))); 8572 } 8573 8574 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8575 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8576 MVT::Other, getRoot(), 8577 getValue(I.getArgOperand(0)), 8578 getValue(I.getArgOperand(1)), 8579 DAG.getSrcValue(I.getArgOperand(0)), 8580 DAG.getSrcValue(I.getArgOperand(1)))); 8581 } 8582 8583 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8584 const Instruction &I, 8585 SDValue Op) { 8586 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8587 if (!Range) 8588 return Op; 8589 8590 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8591 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8592 return Op; 8593 8594 APInt Lo = CR.getUnsignedMin(); 8595 if (!Lo.isMinValue()) 8596 return Op; 8597 8598 APInt Hi = CR.getUnsignedMax(); 8599 unsigned Bits = std::max(Hi.getActiveBits(), 8600 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8601 8602 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8603 8604 SDLoc SL = getCurSDLoc(); 8605 8606 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8607 DAG.getValueType(SmallVT)); 8608 unsigned NumVals = Op.getNode()->getNumValues(); 8609 if (NumVals == 1) 8610 return ZExt; 8611 8612 SmallVector<SDValue, 4> Ops; 8613 8614 Ops.push_back(ZExt); 8615 for (unsigned I = 1; I != NumVals; ++I) 8616 Ops.push_back(Op.getValue(I)); 8617 8618 return DAG.getMergeValues(Ops, SL); 8619 } 8620 8621 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8622 /// the call being lowered. 8623 /// 8624 /// This is a helper for lowering intrinsics that follow a target calling 8625 /// convention or require stack pointer adjustment. Only a subset of the 8626 /// intrinsic's operands need to participate in the calling convention. 8627 void SelectionDAGBuilder::populateCallLoweringInfo( 8628 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8629 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8630 bool IsPatchPoint) { 8631 TargetLowering::ArgListTy Args; 8632 Args.reserve(NumArgs); 8633 8634 // Populate the argument list. 8635 // Attributes for args start at offset 1, after the return attribute. 8636 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8637 ArgI != ArgE; ++ArgI) { 8638 const Value *V = Call->getOperand(ArgI); 8639 8640 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8641 8642 TargetLowering::ArgListEntry Entry; 8643 Entry.Node = getValue(V); 8644 Entry.Ty = V->getType(); 8645 Entry.setAttributes(Call, ArgI); 8646 Args.push_back(Entry); 8647 } 8648 8649 CLI.setDebugLoc(getCurSDLoc()) 8650 .setChain(getRoot()) 8651 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8652 .setDiscardResult(Call->use_empty()) 8653 .setIsPatchPoint(IsPatchPoint) 8654 .setIsPreallocated( 8655 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8656 } 8657 8658 /// Add a stack map intrinsic call's live variable operands to a stackmap 8659 /// or patchpoint target node's operand list. 8660 /// 8661 /// Constants are converted to TargetConstants purely as an optimization to 8662 /// avoid constant materialization and register allocation. 8663 /// 8664 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8665 /// generate addess computation nodes, and so FinalizeISel can convert the 8666 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8667 /// address materialization and register allocation, but may also be required 8668 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8669 /// alloca in the entry block, then the runtime may assume that the alloca's 8670 /// StackMap location can be read immediately after compilation and that the 8671 /// location is valid at any point during execution (this is similar to the 8672 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8673 /// only available in a register, then the runtime would need to trap when 8674 /// execution reaches the StackMap in order to read the alloca's location. 8675 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8676 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8677 SelectionDAGBuilder &Builder) { 8678 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8679 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8681 Ops.push_back( 8682 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8683 Ops.push_back( 8684 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8685 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8686 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8687 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8688 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8689 } else 8690 Ops.push_back(OpVal); 8691 } 8692 } 8693 8694 /// Lower llvm.experimental.stackmap directly to its target opcode. 8695 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8696 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8697 // [live variables...]) 8698 8699 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8700 8701 SDValue Chain, InFlag, Callee, NullPtr; 8702 SmallVector<SDValue, 32> Ops; 8703 8704 SDLoc DL = getCurSDLoc(); 8705 Callee = getValue(CI.getCalledOperand()); 8706 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8707 8708 // The stackmap intrinsic only records the live variables (the arguments 8709 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8710 // intrinsic, this won't be lowered to a function call. This means we don't 8711 // have to worry about calling conventions and target specific lowering code. 8712 // Instead we perform the call lowering right here. 8713 // 8714 // chain, flag = CALLSEQ_START(chain, 0, 0) 8715 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8716 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8717 // 8718 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8719 InFlag = Chain.getValue(1); 8720 8721 // Add the <id> and <numBytes> constants. 8722 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8723 Ops.push_back(DAG.getTargetConstant( 8724 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8725 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8726 Ops.push_back(DAG.getTargetConstant( 8727 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8728 MVT::i32)); 8729 8730 // Push live variables for the stack map. 8731 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8732 8733 // We are not pushing any register mask info here on the operands list, 8734 // because the stackmap doesn't clobber anything. 8735 8736 // Push the chain and the glue flag. 8737 Ops.push_back(Chain); 8738 Ops.push_back(InFlag); 8739 8740 // Create the STACKMAP node. 8741 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8742 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8743 Chain = SDValue(SM, 0); 8744 InFlag = Chain.getValue(1); 8745 8746 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8747 8748 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8749 8750 // Set the root to the target-lowered call chain. 8751 DAG.setRoot(Chain); 8752 8753 // Inform the Frame Information that we have a stackmap in this function. 8754 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8755 } 8756 8757 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8758 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8759 const BasicBlock *EHPadBB) { 8760 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8761 // i32 <numBytes>, 8762 // i8* <target>, 8763 // i32 <numArgs>, 8764 // [Args...], 8765 // [live variables...]) 8766 8767 CallingConv::ID CC = CB.getCallingConv(); 8768 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8769 bool HasDef = !CB.getType()->isVoidTy(); 8770 SDLoc dl = getCurSDLoc(); 8771 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8772 8773 // Handle immediate and symbolic callees. 8774 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8775 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8776 /*isTarget=*/true); 8777 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8778 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8779 SDLoc(SymbolicCallee), 8780 SymbolicCallee->getValueType(0)); 8781 8782 // Get the real number of arguments participating in the call <numArgs> 8783 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8784 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8785 8786 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8787 // Intrinsics include all meta-operands up to but not including CC. 8788 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8789 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8790 "Not enough arguments provided to the patchpoint intrinsic"); 8791 8792 // For AnyRegCC the arguments are lowered later on manually. 8793 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8794 Type *ReturnTy = 8795 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8796 8797 TargetLowering::CallLoweringInfo CLI(DAG); 8798 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8799 ReturnTy, true); 8800 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8801 8802 SDNode *CallEnd = Result.second.getNode(); 8803 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8804 CallEnd = CallEnd->getOperand(0).getNode(); 8805 8806 /// Get a call instruction from the call sequence chain. 8807 /// Tail calls are not allowed. 8808 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8809 "Expected a callseq node."); 8810 SDNode *Call = CallEnd->getOperand(0).getNode(); 8811 bool HasGlue = Call->getGluedNode(); 8812 8813 // Replace the target specific call node with the patchable intrinsic. 8814 SmallVector<SDValue, 8> Ops; 8815 8816 // Add the <id> and <numBytes> constants. 8817 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8818 Ops.push_back(DAG.getTargetConstant( 8819 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8820 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8821 Ops.push_back(DAG.getTargetConstant( 8822 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8823 MVT::i32)); 8824 8825 // Add the callee. 8826 Ops.push_back(Callee); 8827 8828 // Adjust <numArgs> to account for any arguments that have been passed on the 8829 // stack instead. 8830 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8831 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8832 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8833 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8834 8835 // Add the calling convention 8836 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8837 8838 // Add the arguments we omitted previously. The register allocator should 8839 // place these in any free register. 8840 if (IsAnyRegCC) 8841 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8842 Ops.push_back(getValue(CB.getArgOperand(i))); 8843 8844 // Push the arguments from the call instruction up to the register mask. 8845 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8846 Ops.append(Call->op_begin() + 2, e); 8847 8848 // Push live variables for the stack map. 8849 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8850 8851 // Push the register mask info. 8852 if (HasGlue) 8853 Ops.push_back(*(Call->op_end()-2)); 8854 else 8855 Ops.push_back(*(Call->op_end()-1)); 8856 8857 // Push the chain (this is originally the first operand of the call, but 8858 // becomes now the last or second to last operand). 8859 Ops.push_back(*(Call->op_begin())); 8860 8861 // Push the glue flag (last operand). 8862 if (HasGlue) 8863 Ops.push_back(*(Call->op_end()-1)); 8864 8865 SDVTList NodeTys; 8866 if (IsAnyRegCC && HasDef) { 8867 // Create the return types based on the intrinsic definition 8868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8869 SmallVector<EVT, 3> ValueVTs; 8870 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8871 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8872 8873 // There is always a chain and a glue type at the end 8874 ValueVTs.push_back(MVT::Other); 8875 ValueVTs.push_back(MVT::Glue); 8876 NodeTys = DAG.getVTList(ValueVTs); 8877 } else 8878 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8879 8880 // Replace the target specific call node with a PATCHPOINT node. 8881 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8882 dl, NodeTys, Ops); 8883 8884 // Update the NodeMap. 8885 if (HasDef) { 8886 if (IsAnyRegCC) 8887 setValue(&CB, SDValue(MN, 0)); 8888 else 8889 setValue(&CB, Result.first); 8890 } 8891 8892 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8893 // call sequence. Furthermore the location of the chain and glue can change 8894 // when the AnyReg calling convention is used and the intrinsic returns a 8895 // value. 8896 if (IsAnyRegCC && HasDef) { 8897 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8898 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8899 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8900 } else 8901 DAG.ReplaceAllUsesWith(Call, MN); 8902 DAG.DeleteNode(Call); 8903 8904 // Inform the Frame Information that we have a patchpoint in this function. 8905 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8906 } 8907 8908 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8909 unsigned Intrinsic) { 8910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8911 SDValue Op1 = getValue(I.getArgOperand(0)); 8912 SDValue Op2; 8913 if (I.getNumArgOperands() > 1) 8914 Op2 = getValue(I.getArgOperand(1)); 8915 SDLoc dl = getCurSDLoc(); 8916 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8917 SDValue Res; 8918 FastMathFlags FMF; 8919 if (isa<FPMathOperator>(I)) 8920 FMF = I.getFastMathFlags(); 8921 8922 switch (Intrinsic) { 8923 case Intrinsic::experimental_vector_reduce_v2_fadd: 8924 if (FMF.allowReassoc()) 8925 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8926 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8927 else 8928 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8929 break; 8930 case Intrinsic::experimental_vector_reduce_v2_fmul: 8931 if (FMF.allowReassoc()) 8932 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8933 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8934 else 8935 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8936 break; 8937 case Intrinsic::experimental_vector_reduce_add: 8938 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8939 break; 8940 case Intrinsic::experimental_vector_reduce_mul: 8941 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8942 break; 8943 case Intrinsic::experimental_vector_reduce_and: 8944 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8945 break; 8946 case Intrinsic::experimental_vector_reduce_or: 8947 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8948 break; 8949 case Intrinsic::experimental_vector_reduce_xor: 8950 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8951 break; 8952 case Intrinsic::experimental_vector_reduce_smax: 8953 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8954 break; 8955 case Intrinsic::experimental_vector_reduce_smin: 8956 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8957 break; 8958 case Intrinsic::experimental_vector_reduce_umax: 8959 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8960 break; 8961 case Intrinsic::experimental_vector_reduce_umin: 8962 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8963 break; 8964 case Intrinsic::experimental_vector_reduce_fmax: 8965 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8966 break; 8967 case Intrinsic::experimental_vector_reduce_fmin: 8968 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8969 break; 8970 default: 8971 llvm_unreachable("Unhandled vector reduce intrinsic"); 8972 } 8973 setValue(&I, Res); 8974 } 8975 8976 /// Returns an AttributeList representing the attributes applied to the return 8977 /// value of the given call. 8978 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8979 SmallVector<Attribute::AttrKind, 2> Attrs; 8980 if (CLI.RetSExt) 8981 Attrs.push_back(Attribute::SExt); 8982 if (CLI.RetZExt) 8983 Attrs.push_back(Attribute::ZExt); 8984 if (CLI.IsInReg) 8985 Attrs.push_back(Attribute::InReg); 8986 8987 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8988 Attrs); 8989 } 8990 8991 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8992 /// implementation, which just calls LowerCall. 8993 /// FIXME: When all targets are 8994 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8995 std::pair<SDValue, SDValue> 8996 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8997 // Handle the incoming return values from the call. 8998 CLI.Ins.clear(); 8999 Type *OrigRetTy = CLI.RetTy; 9000 SmallVector<EVT, 4> RetTys; 9001 SmallVector<uint64_t, 4> Offsets; 9002 auto &DL = CLI.DAG.getDataLayout(); 9003 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9004 9005 if (CLI.IsPostTypeLegalization) { 9006 // If we are lowering a libcall after legalization, split the return type. 9007 SmallVector<EVT, 4> OldRetTys; 9008 SmallVector<uint64_t, 4> OldOffsets; 9009 RetTys.swap(OldRetTys); 9010 Offsets.swap(OldOffsets); 9011 9012 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9013 EVT RetVT = OldRetTys[i]; 9014 uint64_t Offset = OldOffsets[i]; 9015 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9016 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9017 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9018 RetTys.append(NumRegs, RegisterVT); 9019 for (unsigned j = 0; j != NumRegs; ++j) 9020 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9021 } 9022 } 9023 9024 SmallVector<ISD::OutputArg, 4> Outs; 9025 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9026 9027 bool CanLowerReturn = 9028 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9029 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9030 9031 SDValue DemoteStackSlot; 9032 int DemoteStackIdx = -100; 9033 if (!CanLowerReturn) { 9034 // FIXME: equivalent assert? 9035 // assert(!CS.hasInAllocaArgument() && 9036 // "sret demotion is incompatible with inalloca"); 9037 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9038 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9039 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9040 DemoteStackIdx = 9041 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9042 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9043 DL.getAllocaAddrSpace()); 9044 9045 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9046 ArgListEntry Entry; 9047 Entry.Node = DemoteStackSlot; 9048 Entry.Ty = StackSlotPtrType; 9049 Entry.IsSExt = false; 9050 Entry.IsZExt = false; 9051 Entry.IsInReg = false; 9052 Entry.IsSRet = true; 9053 Entry.IsNest = false; 9054 Entry.IsByVal = false; 9055 Entry.IsReturned = false; 9056 Entry.IsSwiftSelf = false; 9057 Entry.IsSwiftError = false; 9058 Entry.IsCFGuardTarget = false; 9059 Entry.Alignment = Alignment; 9060 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9061 CLI.NumFixedArgs += 1; 9062 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9063 9064 // sret demotion isn't compatible with tail-calls, since the sret argument 9065 // points into the callers stack frame. 9066 CLI.IsTailCall = false; 9067 } else { 9068 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9069 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9070 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9071 ISD::ArgFlagsTy Flags; 9072 if (NeedsRegBlock) { 9073 Flags.setInConsecutiveRegs(); 9074 if (I == RetTys.size() - 1) 9075 Flags.setInConsecutiveRegsLast(); 9076 } 9077 EVT VT = RetTys[I]; 9078 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9079 CLI.CallConv, VT); 9080 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9081 CLI.CallConv, VT); 9082 for (unsigned i = 0; i != NumRegs; ++i) { 9083 ISD::InputArg MyFlags; 9084 MyFlags.Flags = Flags; 9085 MyFlags.VT = RegisterVT; 9086 MyFlags.ArgVT = VT; 9087 MyFlags.Used = CLI.IsReturnValueUsed; 9088 if (CLI.RetTy->isPointerTy()) { 9089 MyFlags.Flags.setPointer(); 9090 MyFlags.Flags.setPointerAddrSpace( 9091 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9092 } 9093 if (CLI.RetSExt) 9094 MyFlags.Flags.setSExt(); 9095 if (CLI.RetZExt) 9096 MyFlags.Flags.setZExt(); 9097 if (CLI.IsInReg) 9098 MyFlags.Flags.setInReg(); 9099 CLI.Ins.push_back(MyFlags); 9100 } 9101 } 9102 } 9103 9104 // We push in swifterror return as the last element of CLI.Ins. 9105 ArgListTy &Args = CLI.getArgs(); 9106 if (supportSwiftError()) { 9107 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9108 if (Args[i].IsSwiftError) { 9109 ISD::InputArg MyFlags; 9110 MyFlags.VT = getPointerTy(DL); 9111 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9112 MyFlags.Flags.setSwiftError(); 9113 CLI.Ins.push_back(MyFlags); 9114 } 9115 } 9116 } 9117 9118 // Handle all of the outgoing arguments. 9119 CLI.Outs.clear(); 9120 CLI.OutVals.clear(); 9121 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9122 SmallVector<EVT, 4> ValueVTs; 9123 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9124 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9125 Type *FinalType = Args[i].Ty; 9126 if (Args[i].IsByVal) 9127 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9128 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9129 FinalType, CLI.CallConv, CLI.IsVarArg); 9130 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9131 ++Value) { 9132 EVT VT = ValueVTs[Value]; 9133 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9134 SDValue Op = SDValue(Args[i].Node.getNode(), 9135 Args[i].Node.getResNo() + Value); 9136 ISD::ArgFlagsTy Flags; 9137 9138 // Certain targets (such as MIPS), may have a different ABI alignment 9139 // for a type depending on the context. Give the target a chance to 9140 // specify the alignment it wants. 9141 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9142 9143 if (Args[i].Ty->isPointerTy()) { 9144 Flags.setPointer(); 9145 Flags.setPointerAddrSpace( 9146 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9147 } 9148 if (Args[i].IsZExt) 9149 Flags.setZExt(); 9150 if (Args[i].IsSExt) 9151 Flags.setSExt(); 9152 if (Args[i].IsInReg) { 9153 // If we are using vectorcall calling convention, a structure that is 9154 // passed InReg - is surely an HVA 9155 if (CLI.CallConv == CallingConv::X86_VectorCall && 9156 isa<StructType>(FinalType)) { 9157 // The first value of a structure is marked 9158 if (0 == Value) 9159 Flags.setHvaStart(); 9160 Flags.setHva(); 9161 } 9162 // Set InReg Flag 9163 Flags.setInReg(); 9164 } 9165 if (Args[i].IsSRet) 9166 Flags.setSRet(); 9167 if (Args[i].IsSwiftSelf) 9168 Flags.setSwiftSelf(); 9169 if (Args[i].IsSwiftError) 9170 Flags.setSwiftError(); 9171 if (Args[i].IsCFGuardTarget) 9172 Flags.setCFGuardTarget(); 9173 if (Args[i].IsByVal) 9174 Flags.setByVal(); 9175 if (Args[i].IsPreallocated) { 9176 Flags.setPreallocated(); 9177 // Set the byval flag for CCAssignFn callbacks that don't know about 9178 // preallocated. This way we can know how many bytes we should've 9179 // allocated and how many bytes a callee cleanup function will pop. If 9180 // we port preallocated to more targets, we'll have to add custom 9181 // preallocated handling in the various CC lowering callbacks. 9182 Flags.setByVal(); 9183 } 9184 if (Args[i].IsInAlloca) { 9185 Flags.setInAlloca(); 9186 // Set the byval flag for CCAssignFn callbacks that don't know about 9187 // inalloca. This way we can know how many bytes we should've allocated 9188 // and how many bytes a callee cleanup function will pop. If we port 9189 // inalloca to more targets, we'll have to add custom inalloca handling 9190 // in the various CC lowering callbacks. 9191 Flags.setByVal(); 9192 } 9193 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9194 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9195 Type *ElementTy = Ty->getElementType(); 9196 9197 unsigned FrameSize = DL.getTypeAllocSize( 9198 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9199 Flags.setByValSize(FrameSize); 9200 9201 // info is not there but there are cases it cannot get right. 9202 Align FrameAlign; 9203 if (auto MA = Args[i].Alignment) 9204 FrameAlign = *MA; 9205 else 9206 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9207 Flags.setByValAlign(FrameAlign); 9208 } 9209 if (Args[i].IsNest) 9210 Flags.setNest(); 9211 if (NeedsRegBlock) 9212 Flags.setInConsecutiveRegs(); 9213 Flags.setOrigAlign(OriginalAlignment); 9214 9215 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9216 CLI.CallConv, VT); 9217 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9218 CLI.CallConv, VT); 9219 SmallVector<SDValue, 4> Parts(NumParts); 9220 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9221 9222 if (Args[i].IsSExt) 9223 ExtendKind = ISD::SIGN_EXTEND; 9224 else if (Args[i].IsZExt) 9225 ExtendKind = ISD::ZERO_EXTEND; 9226 9227 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9228 // for now. 9229 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9230 CanLowerReturn) { 9231 assert((CLI.RetTy == Args[i].Ty || 9232 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9233 CLI.RetTy->getPointerAddressSpace() == 9234 Args[i].Ty->getPointerAddressSpace())) && 9235 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9236 // Before passing 'returned' to the target lowering code, ensure that 9237 // either the register MVT and the actual EVT are the same size or that 9238 // the return value and argument are extended in the same way; in these 9239 // cases it's safe to pass the argument register value unchanged as the 9240 // return register value (although it's at the target's option whether 9241 // to do so) 9242 // TODO: allow code generation to take advantage of partially preserved 9243 // registers rather than clobbering the entire register when the 9244 // parameter extension method is not compatible with the return 9245 // extension method 9246 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9247 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9248 CLI.RetZExt == Args[i].IsZExt)) 9249 Flags.setReturned(); 9250 } 9251 9252 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9253 CLI.CallConv, ExtendKind); 9254 9255 for (unsigned j = 0; j != NumParts; ++j) { 9256 // if it isn't first piece, alignment must be 1 9257 // For scalable vectors the scalable part is currently handled 9258 // by individual targets, so we just use the known minimum size here. 9259 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9260 i < CLI.NumFixedArgs, i, 9261 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9262 if (NumParts > 1 && j == 0) 9263 MyFlags.Flags.setSplit(); 9264 else if (j != 0) { 9265 MyFlags.Flags.setOrigAlign(Align(1)); 9266 if (j == NumParts - 1) 9267 MyFlags.Flags.setSplitEnd(); 9268 } 9269 9270 CLI.Outs.push_back(MyFlags); 9271 CLI.OutVals.push_back(Parts[j]); 9272 } 9273 9274 if (NeedsRegBlock && Value == NumValues - 1) 9275 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9276 } 9277 } 9278 9279 SmallVector<SDValue, 4> InVals; 9280 CLI.Chain = LowerCall(CLI, InVals); 9281 9282 // Update CLI.InVals to use outside of this function. 9283 CLI.InVals = InVals; 9284 9285 // Verify that the target's LowerCall behaved as expected. 9286 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9287 "LowerCall didn't return a valid chain!"); 9288 assert((!CLI.IsTailCall || InVals.empty()) && 9289 "LowerCall emitted a return value for a tail call!"); 9290 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9291 "LowerCall didn't emit the correct number of values!"); 9292 9293 // For a tail call, the return value is merely live-out and there aren't 9294 // any nodes in the DAG representing it. Return a special value to 9295 // indicate that a tail call has been emitted and no more Instructions 9296 // should be processed in the current block. 9297 if (CLI.IsTailCall) { 9298 CLI.DAG.setRoot(CLI.Chain); 9299 return std::make_pair(SDValue(), SDValue()); 9300 } 9301 9302 #ifndef NDEBUG 9303 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9304 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9305 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9306 "LowerCall emitted a value with the wrong type!"); 9307 } 9308 #endif 9309 9310 SmallVector<SDValue, 4> ReturnValues; 9311 if (!CanLowerReturn) { 9312 // The instruction result is the result of loading from the 9313 // hidden sret parameter. 9314 SmallVector<EVT, 1> PVTs; 9315 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9316 9317 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9318 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9319 EVT PtrVT = PVTs[0]; 9320 9321 unsigned NumValues = RetTys.size(); 9322 ReturnValues.resize(NumValues); 9323 SmallVector<SDValue, 4> Chains(NumValues); 9324 9325 // An aggregate return value cannot wrap around the address space, so 9326 // offsets to its parts don't wrap either. 9327 SDNodeFlags Flags; 9328 Flags.setNoUnsignedWrap(true); 9329 9330 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9331 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9332 for (unsigned i = 0; i < NumValues; ++i) { 9333 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9334 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9335 PtrVT), Flags); 9336 SDValue L = CLI.DAG.getLoad( 9337 RetTys[i], CLI.DL, CLI.Chain, Add, 9338 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9339 DemoteStackIdx, Offsets[i]), 9340 HiddenSRetAlign); 9341 ReturnValues[i] = L; 9342 Chains[i] = L.getValue(1); 9343 } 9344 9345 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9346 } else { 9347 // Collect the legal value parts into potentially illegal values 9348 // that correspond to the original function's return values. 9349 Optional<ISD::NodeType> AssertOp; 9350 if (CLI.RetSExt) 9351 AssertOp = ISD::AssertSext; 9352 else if (CLI.RetZExt) 9353 AssertOp = ISD::AssertZext; 9354 unsigned CurReg = 0; 9355 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9356 EVT VT = RetTys[I]; 9357 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9358 CLI.CallConv, VT); 9359 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9360 CLI.CallConv, VT); 9361 9362 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9363 NumRegs, RegisterVT, VT, nullptr, 9364 CLI.CallConv, AssertOp)); 9365 CurReg += NumRegs; 9366 } 9367 9368 // For a function returning void, there is no return value. We can't create 9369 // such a node, so we just return a null return value in that case. In 9370 // that case, nothing will actually look at the value. 9371 if (ReturnValues.empty()) 9372 return std::make_pair(SDValue(), CLI.Chain); 9373 } 9374 9375 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9376 CLI.DAG.getVTList(RetTys), ReturnValues); 9377 return std::make_pair(Res, CLI.Chain); 9378 } 9379 9380 void TargetLowering::LowerOperationWrapper(SDNode *N, 9381 SmallVectorImpl<SDValue> &Results, 9382 SelectionDAG &DAG) const { 9383 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9384 Results.push_back(Res); 9385 } 9386 9387 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9388 llvm_unreachable("LowerOperation not implemented for this target!"); 9389 } 9390 9391 void 9392 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9393 SDValue Op = getNonRegisterValue(V); 9394 assert((Op.getOpcode() != ISD::CopyFromReg || 9395 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9396 "Copy from a reg to the same reg!"); 9397 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9398 9399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9400 // If this is an InlineAsm we have to match the registers required, not the 9401 // notional registers required by the type. 9402 9403 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9404 None); // This is not an ABI copy. 9405 SDValue Chain = DAG.getEntryNode(); 9406 9407 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9408 FuncInfo.PreferredExtendType.end()) 9409 ? ISD::ANY_EXTEND 9410 : FuncInfo.PreferredExtendType[V]; 9411 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9412 PendingExports.push_back(Chain); 9413 } 9414 9415 #include "llvm/CodeGen/SelectionDAGISel.h" 9416 9417 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9418 /// entry block, return true. This includes arguments used by switches, since 9419 /// the switch may expand into multiple basic blocks. 9420 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9421 // With FastISel active, we may be splitting blocks, so force creation 9422 // of virtual registers for all non-dead arguments. 9423 if (FastISel) 9424 return A->use_empty(); 9425 9426 const BasicBlock &Entry = A->getParent()->front(); 9427 for (const User *U : A->users()) 9428 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9429 return false; // Use not in entry block. 9430 9431 return true; 9432 } 9433 9434 using ArgCopyElisionMapTy = 9435 DenseMap<const Argument *, 9436 std::pair<const AllocaInst *, const StoreInst *>>; 9437 9438 /// Scan the entry block of the function in FuncInfo for arguments that look 9439 /// like copies into a local alloca. Record any copied arguments in 9440 /// ArgCopyElisionCandidates. 9441 static void 9442 findArgumentCopyElisionCandidates(const DataLayout &DL, 9443 FunctionLoweringInfo *FuncInfo, 9444 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9445 // Record the state of every static alloca used in the entry block. Argument 9446 // allocas are all used in the entry block, so we need approximately as many 9447 // entries as we have arguments. 9448 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9449 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9450 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9451 StaticAllocas.reserve(NumArgs * 2); 9452 9453 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9454 if (!V) 9455 return nullptr; 9456 V = V->stripPointerCasts(); 9457 const auto *AI = dyn_cast<AllocaInst>(V); 9458 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9459 return nullptr; 9460 auto Iter = StaticAllocas.insert({AI, Unknown}); 9461 return &Iter.first->second; 9462 }; 9463 9464 // Look for stores of arguments to static allocas. Look through bitcasts and 9465 // GEPs to handle type coercions, as long as the alloca is fully initialized 9466 // by the store. Any non-store use of an alloca escapes it and any subsequent 9467 // unanalyzed store might write it. 9468 // FIXME: Handle structs initialized with multiple stores. 9469 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9470 // Look for stores, and handle non-store uses conservatively. 9471 const auto *SI = dyn_cast<StoreInst>(&I); 9472 if (!SI) { 9473 // We will look through cast uses, so ignore them completely. 9474 if (I.isCast()) 9475 continue; 9476 // Ignore debug info intrinsics, they don't escape or store to allocas. 9477 if (isa<DbgInfoIntrinsic>(I)) 9478 continue; 9479 // This is an unknown instruction. Assume it escapes or writes to all 9480 // static alloca operands. 9481 for (const Use &U : I.operands()) { 9482 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9483 *Info = StaticAllocaInfo::Clobbered; 9484 } 9485 continue; 9486 } 9487 9488 // If the stored value is a static alloca, mark it as escaped. 9489 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9490 *Info = StaticAllocaInfo::Clobbered; 9491 9492 // Check if the destination is a static alloca. 9493 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9494 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9495 if (!Info) 9496 continue; 9497 const AllocaInst *AI = cast<AllocaInst>(Dst); 9498 9499 // Skip allocas that have been initialized or clobbered. 9500 if (*Info != StaticAllocaInfo::Unknown) 9501 continue; 9502 9503 // Check if the stored value is an argument, and that this store fully 9504 // initializes the alloca. Don't elide copies from the same argument twice. 9505 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9506 const auto *Arg = dyn_cast<Argument>(Val); 9507 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9508 Arg->getType()->isEmptyTy() || 9509 DL.getTypeStoreSize(Arg->getType()) != 9510 DL.getTypeAllocSize(AI->getAllocatedType()) || 9511 ArgCopyElisionCandidates.count(Arg)) { 9512 *Info = StaticAllocaInfo::Clobbered; 9513 continue; 9514 } 9515 9516 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9517 << '\n'); 9518 9519 // Mark this alloca and store for argument copy elision. 9520 *Info = StaticAllocaInfo::Elidable; 9521 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9522 9523 // Stop scanning if we've seen all arguments. This will happen early in -O0 9524 // builds, which is useful, because -O0 builds have large entry blocks and 9525 // many allocas. 9526 if (ArgCopyElisionCandidates.size() == NumArgs) 9527 break; 9528 } 9529 } 9530 9531 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9532 /// ArgVal is a load from a suitable fixed stack object. 9533 static void tryToElideArgumentCopy( 9534 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9535 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9536 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9537 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9538 SDValue ArgVal, bool &ArgHasUses) { 9539 // Check if this is a load from a fixed stack object. 9540 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9541 if (!LNode) 9542 return; 9543 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9544 if (!FINode) 9545 return; 9546 9547 // Check that the fixed stack object is the right size and alignment. 9548 // Look at the alignment that the user wrote on the alloca instead of looking 9549 // at the stack object. 9550 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9551 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9552 const AllocaInst *AI = ArgCopyIter->second.first; 9553 int FixedIndex = FINode->getIndex(); 9554 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9555 int OldIndex = AllocaIndex; 9556 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9557 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9558 LLVM_DEBUG( 9559 dbgs() << " argument copy elision failed due to bad fixed stack " 9560 "object size\n"); 9561 return; 9562 } 9563 Align RequiredAlignment = AI->getAlign(); 9564 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9565 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9566 "greater than stack argument alignment (" 9567 << DebugStr(RequiredAlignment) << " vs " 9568 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9569 return; 9570 } 9571 9572 // Perform the elision. Delete the old stack object and replace its only use 9573 // in the variable info map. Mark the stack object as mutable. 9574 LLVM_DEBUG({ 9575 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9576 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9577 << '\n'; 9578 }); 9579 MFI.RemoveStackObject(OldIndex); 9580 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9581 AllocaIndex = FixedIndex; 9582 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9583 Chains.push_back(ArgVal.getValue(1)); 9584 9585 // Avoid emitting code for the store implementing the copy. 9586 const StoreInst *SI = ArgCopyIter->second.second; 9587 ElidedArgCopyInstrs.insert(SI); 9588 9589 // Check for uses of the argument again so that we can avoid exporting ArgVal 9590 // if it is't used by anything other than the store. 9591 for (const Value *U : Arg.users()) { 9592 if (U != SI) { 9593 ArgHasUses = true; 9594 break; 9595 } 9596 } 9597 } 9598 9599 void SelectionDAGISel::LowerArguments(const Function &F) { 9600 SelectionDAG &DAG = SDB->DAG; 9601 SDLoc dl = SDB->getCurSDLoc(); 9602 const DataLayout &DL = DAG.getDataLayout(); 9603 SmallVector<ISD::InputArg, 16> Ins; 9604 9605 if (!FuncInfo->CanLowerReturn) { 9606 // Put in an sret pointer parameter before all the other parameters. 9607 SmallVector<EVT, 1> ValueVTs; 9608 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9609 F.getReturnType()->getPointerTo( 9610 DAG.getDataLayout().getAllocaAddrSpace()), 9611 ValueVTs); 9612 9613 // NOTE: Assuming that a pointer will never break down to more than one VT 9614 // or one register. 9615 ISD::ArgFlagsTy Flags; 9616 Flags.setSRet(); 9617 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9618 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9619 ISD::InputArg::NoArgIndex, 0); 9620 Ins.push_back(RetArg); 9621 } 9622 9623 // Look for stores of arguments to static allocas. Mark such arguments with a 9624 // flag to ask the target to give us the memory location of that argument if 9625 // available. 9626 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9627 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9628 ArgCopyElisionCandidates); 9629 9630 // Set up the incoming argument description vector. 9631 for (const Argument &Arg : F.args()) { 9632 unsigned ArgNo = Arg.getArgNo(); 9633 SmallVector<EVT, 4> ValueVTs; 9634 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9635 bool isArgValueUsed = !Arg.use_empty(); 9636 unsigned PartBase = 0; 9637 Type *FinalType = Arg.getType(); 9638 if (Arg.hasAttribute(Attribute::ByVal)) 9639 FinalType = Arg.getParamByValType(); 9640 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9641 FinalType, F.getCallingConv(), F.isVarArg()); 9642 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9643 Value != NumValues; ++Value) { 9644 EVT VT = ValueVTs[Value]; 9645 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9646 ISD::ArgFlagsTy Flags; 9647 9648 // Certain targets (such as MIPS), may have a different ABI alignment 9649 // for a type depending on the context. Give the target a chance to 9650 // specify the alignment it wants. 9651 const Align OriginalAlignment( 9652 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9653 9654 if (Arg.getType()->isPointerTy()) { 9655 Flags.setPointer(); 9656 Flags.setPointerAddrSpace( 9657 cast<PointerType>(Arg.getType())->getAddressSpace()); 9658 } 9659 if (Arg.hasAttribute(Attribute::ZExt)) 9660 Flags.setZExt(); 9661 if (Arg.hasAttribute(Attribute::SExt)) 9662 Flags.setSExt(); 9663 if (Arg.hasAttribute(Attribute::InReg)) { 9664 // If we are using vectorcall calling convention, a structure that is 9665 // passed InReg - is surely an HVA 9666 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9667 isa<StructType>(Arg.getType())) { 9668 // The first value of a structure is marked 9669 if (0 == Value) 9670 Flags.setHvaStart(); 9671 Flags.setHva(); 9672 } 9673 // Set InReg Flag 9674 Flags.setInReg(); 9675 } 9676 if (Arg.hasAttribute(Attribute::StructRet)) 9677 Flags.setSRet(); 9678 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9679 Flags.setSwiftSelf(); 9680 if (Arg.hasAttribute(Attribute::SwiftError)) 9681 Flags.setSwiftError(); 9682 if (Arg.hasAttribute(Attribute::ByVal)) 9683 Flags.setByVal(); 9684 if (Arg.hasAttribute(Attribute::InAlloca)) { 9685 Flags.setInAlloca(); 9686 // Set the byval flag for CCAssignFn callbacks that don't know about 9687 // inalloca. This way we can know how many bytes we should've allocated 9688 // and how many bytes a callee cleanup function will pop. If we port 9689 // inalloca to more targets, we'll have to add custom inalloca handling 9690 // in the various CC lowering callbacks. 9691 Flags.setByVal(); 9692 } 9693 if (Arg.hasAttribute(Attribute::Preallocated)) { 9694 Flags.setPreallocated(); 9695 // Set the byval flag for CCAssignFn callbacks that don't know about 9696 // preallocated. This way we can know how many bytes we should've 9697 // allocated and how many bytes a callee cleanup function will pop. If 9698 // we port preallocated to more targets, we'll have to add custom 9699 // preallocated handling in the various CC lowering callbacks. 9700 Flags.setByVal(); 9701 } 9702 if (F.getCallingConv() == CallingConv::X86_INTR) { 9703 // IA Interrupt passes frame (1st parameter) by value in the stack. 9704 if (ArgNo == 0) 9705 Flags.setByVal(); 9706 } 9707 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9708 Type *ElementTy = Arg.getParamByValType(); 9709 9710 // For ByVal, size and alignment should be passed from FE. BE will 9711 // guess if this info is not there but there are cases it cannot get 9712 // right. 9713 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9714 Flags.setByValSize(FrameSize); 9715 9716 unsigned FrameAlign; 9717 if (Arg.getParamAlignment()) 9718 FrameAlign = Arg.getParamAlignment(); 9719 else 9720 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9721 Flags.setByValAlign(Align(FrameAlign)); 9722 } 9723 if (Arg.hasAttribute(Attribute::Nest)) 9724 Flags.setNest(); 9725 if (NeedsRegBlock) 9726 Flags.setInConsecutiveRegs(); 9727 Flags.setOrigAlign(OriginalAlignment); 9728 if (ArgCopyElisionCandidates.count(&Arg)) 9729 Flags.setCopyElisionCandidate(); 9730 if (Arg.hasAttribute(Attribute::Returned)) 9731 Flags.setReturned(); 9732 9733 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9734 *CurDAG->getContext(), F.getCallingConv(), VT); 9735 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9736 *CurDAG->getContext(), F.getCallingConv(), VT); 9737 for (unsigned i = 0; i != NumRegs; ++i) { 9738 // For scalable vectors, use the minimum size; individual targets 9739 // are responsible for handling scalable vector arguments and 9740 // return values. 9741 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9742 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9743 if (NumRegs > 1 && i == 0) 9744 MyFlags.Flags.setSplit(); 9745 // if it isn't first piece, alignment must be 1 9746 else if (i > 0) { 9747 MyFlags.Flags.setOrigAlign(Align(1)); 9748 if (i == NumRegs - 1) 9749 MyFlags.Flags.setSplitEnd(); 9750 } 9751 Ins.push_back(MyFlags); 9752 } 9753 if (NeedsRegBlock && Value == NumValues - 1) 9754 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9755 PartBase += VT.getStoreSize().getKnownMinSize(); 9756 } 9757 } 9758 9759 // Call the target to set up the argument values. 9760 SmallVector<SDValue, 8> InVals; 9761 SDValue NewRoot = TLI->LowerFormalArguments( 9762 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9763 9764 // Verify that the target's LowerFormalArguments behaved as expected. 9765 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9766 "LowerFormalArguments didn't return a valid chain!"); 9767 assert(InVals.size() == Ins.size() && 9768 "LowerFormalArguments didn't emit the correct number of values!"); 9769 LLVM_DEBUG({ 9770 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9771 assert(InVals[i].getNode() && 9772 "LowerFormalArguments emitted a null value!"); 9773 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9774 "LowerFormalArguments emitted a value with the wrong type!"); 9775 } 9776 }); 9777 9778 // Update the DAG with the new chain value resulting from argument lowering. 9779 DAG.setRoot(NewRoot); 9780 9781 // Set up the argument values. 9782 unsigned i = 0; 9783 if (!FuncInfo->CanLowerReturn) { 9784 // Create a virtual register for the sret pointer, and put in a copy 9785 // from the sret argument into it. 9786 SmallVector<EVT, 1> ValueVTs; 9787 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9788 F.getReturnType()->getPointerTo( 9789 DAG.getDataLayout().getAllocaAddrSpace()), 9790 ValueVTs); 9791 MVT VT = ValueVTs[0].getSimpleVT(); 9792 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9793 Optional<ISD::NodeType> AssertOp = None; 9794 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9795 nullptr, F.getCallingConv(), AssertOp); 9796 9797 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9798 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9799 Register SRetReg = 9800 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9801 FuncInfo->DemoteRegister = SRetReg; 9802 NewRoot = 9803 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9804 DAG.setRoot(NewRoot); 9805 9806 // i indexes lowered arguments. Bump it past the hidden sret argument. 9807 ++i; 9808 } 9809 9810 SmallVector<SDValue, 4> Chains; 9811 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9812 for (const Argument &Arg : F.args()) { 9813 SmallVector<SDValue, 4> ArgValues; 9814 SmallVector<EVT, 4> ValueVTs; 9815 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9816 unsigned NumValues = ValueVTs.size(); 9817 if (NumValues == 0) 9818 continue; 9819 9820 bool ArgHasUses = !Arg.use_empty(); 9821 9822 // Elide the copying store if the target loaded this argument from a 9823 // suitable fixed stack object. 9824 if (Ins[i].Flags.isCopyElisionCandidate()) { 9825 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9826 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9827 InVals[i], ArgHasUses); 9828 } 9829 9830 // If this argument is unused then remember its value. It is used to generate 9831 // debugging information. 9832 bool isSwiftErrorArg = 9833 TLI->supportSwiftError() && 9834 Arg.hasAttribute(Attribute::SwiftError); 9835 if (!ArgHasUses && !isSwiftErrorArg) { 9836 SDB->setUnusedArgValue(&Arg, InVals[i]); 9837 9838 // Also remember any frame index for use in FastISel. 9839 if (FrameIndexSDNode *FI = 9840 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9841 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9842 } 9843 9844 for (unsigned Val = 0; Val != NumValues; ++Val) { 9845 EVT VT = ValueVTs[Val]; 9846 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9847 F.getCallingConv(), VT); 9848 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9849 *CurDAG->getContext(), F.getCallingConv(), VT); 9850 9851 // Even an apparent 'unused' swifterror argument needs to be returned. So 9852 // we do generate a copy for it that can be used on return from the 9853 // function. 9854 if (ArgHasUses || isSwiftErrorArg) { 9855 Optional<ISD::NodeType> AssertOp; 9856 if (Arg.hasAttribute(Attribute::SExt)) 9857 AssertOp = ISD::AssertSext; 9858 else if (Arg.hasAttribute(Attribute::ZExt)) 9859 AssertOp = ISD::AssertZext; 9860 9861 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9862 PartVT, VT, nullptr, 9863 F.getCallingConv(), AssertOp)); 9864 } 9865 9866 i += NumParts; 9867 } 9868 9869 // We don't need to do anything else for unused arguments. 9870 if (ArgValues.empty()) 9871 continue; 9872 9873 // Note down frame index. 9874 if (FrameIndexSDNode *FI = 9875 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9876 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9877 9878 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9879 SDB->getCurSDLoc()); 9880 9881 SDB->setValue(&Arg, Res); 9882 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9883 // We want to associate the argument with the frame index, among 9884 // involved operands, that correspond to the lowest address. The 9885 // getCopyFromParts function, called earlier, is swapping the order of 9886 // the operands to BUILD_PAIR depending on endianness. The result of 9887 // that swapping is that the least significant bits of the argument will 9888 // be in the first operand of the BUILD_PAIR node, and the most 9889 // significant bits will be in the second operand. 9890 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9891 if (LoadSDNode *LNode = 9892 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9893 if (FrameIndexSDNode *FI = 9894 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9895 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9896 } 9897 9898 // Analyses past this point are naive and don't expect an assertion. 9899 if (Res.getOpcode() == ISD::AssertZext) 9900 Res = Res.getOperand(0); 9901 9902 // Update the SwiftErrorVRegDefMap. 9903 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9904 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9905 if (Register::isVirtualRegister(Reg)) 9906 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9907 Reg); 9908 } 9909 9910 // If this argument is live outside of the entry block, insert a copy from 9911 // wherever we got it to the vreg that other BB's will reference it as. 9912 if (Res.getOpcode() == ISD::CopyFromReg) { 9913 // If we can, though, try to skip creating an unnecessary vreg. 9914 // FIXME: This isn't very clean... it would be nice to make this more 9915 // general. 9916 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9917 if (Register::isVirtualRegister(Reg)) { 9918 FuncInfo->ValueMap[&Arg] = Reg; 9919 continue; 9920 } 9921 } 9922 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9923 FuncInfo->InitializeRegForValue(&Arg); 9924 SDB->CopyToExportRegsIfNeeded(&Arg); 9925 } 9926 } 9927 9928 if (!Chains.empty()) { 9929 Chains.push_back(NewRoot); 9930 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9931 } 9932 9933 DAG.setRoot(NewRoot); 9934 9935 assert(i == InVals.size() && "Argument register count mismatch!"); 9936 9937 // If any argument copy elisions occurred and we have debug info, update the 9938 // stale frame indices used in the dbg.declare variable info table. 9939 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9940 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9941 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9942 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9943 if (I != ArgCopyElisionFrameIndexMap.end()) 9944 VI.Slot = I->second; 9945 } 9946 } 9947 9948 // Finally, if the target has anything special to do, allow it to do so. 9949 emitFunctionEntryCode(); 9950 } 9951 9952 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9953 /// ensure constants are generated when needed. Remember the virtual registers 9954 /// that need to be added to the Machine PHI nodes as input. We cannot just 9955 /// directly add them, because expansion might result in multiple MBB's for one 9956 /// BB. As such, the start of the BB might correspond to a different MBB than 9957 /// the end. 9958 void 9959 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9960 const Instruction *TI = LLVMBB->getTerminator(); 9961 9962 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9963 9964 // Check PHI nodes in successors that expect a value to be available from this 9965 // block. 9966 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9967 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9968 if (!isa<PHINode>(SuccBB->begin())) continue; 9969 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9970 9971 // If this terminator has multiple identical successors (common for 9972 // switches), only handle each succ once. 9973 if (!SuccsHandled.insert(SuccMBB).second) 9974 continue; 9975 9976 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9977 9978 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9979 // nodes and Machine PHI nodes, but the incoming operands have not been 9980 // emitted yet. 9981 for (const PHINode &PN : SuccBB->phis()) { 9982 // Ignore dead phi's. 9983 if (PN.use_empty()) 9984 continue; 9985 9986 // Skip empty types 9987 if (PN.getType()->isEmptyTy()) 9988 continue; 9989 9990 unsigned Reg; 9991 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9992 9993 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9994 unsigned &RegOut = ConstantsOut[C]; 9995 if (RegOut == 0) { 9996 RegOut = FuncInfo.CreateRegs(C); 9997 CopyValueToVirtualRegister(C, RegOut); 9998 } 9999 Reg = RegOut; 10000 } else { 10001 DenseMap<const Value *, Register>::iterator I = 10002 FuncInfo.ValueMap.find(PHIOp); 10003 if (I != FuncInfo.ValueMap.end()) 10004 Reg = I->second; 10005 else { 10006 assert(isa<AllocaInst>(PHIOp) && 10007 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10008 "Didn't codegen value into a register!??"); 10009 Reg = FuncInfo.CreateRegs(PHIOp); 10010 CopyValueToVirtualRegister(PHIOp, Reg); 10011 } 10012 } 10013 10014 // Remember that this register needs to added to the machine PHI node as 10015 // the input for this MBB. 10016 SmallVector<EVT, 4> ValueVTs; 10017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10018 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10019 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10020 EVT VT = ValueVTs[vti]; 10021 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10022 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10023 FuncInfo.PHINodesToUpdate.push_back( 10024 std::make_pair(&*MBBI++, Reg + i)); 10025 Reg += NumRegisters; 10026 } 10027 } 10028 } 10029 10030 ConstantsOut.clear(); 10031 } 10032 10033 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10034 /// is 0. 10035 MachineBasicBlock * 10036 SelectionDAGBuilder::StackProtectorDescriptor:: 10037 AddSuccessorMBB(const BasicBlock *BB, 10038 MachineBasicBlock *ParentMBB, 10039 bool IsLikely, 10040 MachineBasicBlock *SuccMBB) { 10041 // If SuccBB has not been created yet, create it. 10042 if (!SuccMBB) { 10043 MachineFunction *MF = ParentMBB->getParent(); 10044 MachineFunction::iterator BBI(ParentMBB); 10045 SuccMBB = MF->CreateMachineBasicBlock(BB); 10046 MF->insert(++BBI, SuccMBB); 10047 } 10048 // Add it as a successor of ParentMBB. 10049 ParentMBB->addSuccessor( 10050 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10051 return SuccMBB; 10052 } 10053 10054 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10055 MachineFunction::iterator I(MBB); 10056 if (++I == FuncInfo.MF->end()) 10057 return nullptr; 10058 return &*I; 10059 } 10060 10061 /// During lowering new call nodes can be created (such as memset, etc.). 10062 /// Those will become new roots of the current DAG, but complications arise 10063 /// when they are tail calls. In such cases, the call lowering will update 10064 /// the root, but the builder still needs to know that a tail call has been 10065 /// lowered in order to avoid generating an additional return. 10066 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10067 // If the node is null, we do have a tail call. 10068 if (MaybeTC.getNode() != nullptr) 10069 DAG.setRoot(MaybeTC); 10070 else 10071 HasTailCall = true; 10072 } 10073 10074 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10075 MachineBasicBlock *SwitchMBB, 10076 MachineBasicBlock *DefaultMBB) { 10077 MachineFunction *CurMF = FuncInfo.MF; 10078 MachineBasicBlock *NextMBB = nullptr; 10079 MachineFunction::iterator BBI(W.MBB); 10080 if (++BBI != FuncInfo.MF->end()) 10081 NextMBB = &*BBI; 10082 10083 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10084 10085 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10086 10087 if (Size == 2 && W.MBB == SwitchMBB) { 10088 // If any two of the cases has the same destination, and if one value 10089 // is the same as the other, but has one bit unset that the other has set, 10090 // use bit manipulation to do two compares at once. For example: 10091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10092 // TODO: This could be extended to merge any 2 cases in switches with 3 10093 // cases. 10094 // TODO: Handle cases where W.CaseBB != SwitchBB. 10095 CaseCluster &Small = *W.FirstCluster; 10096 CaseCluster &Big = *W.LastCluster; 10097 10098 if (Small.Low == Small.High && Big.Low == Big.High && 10099 Small.MBB == Big.MBB) { 10100 const APInt &SmallValue = Small.Low->getValue(); 10101 const APInt &BigValue = Big.Low->getValue(); 10102 10103 // Check that there is only one bit different. 10104 APInt CommonBit = BigValue ^ SmallValue; 10105 if (CommonBit.isPowerOf2()) { 10106 SDValue CondLHS = getValue(Cond); 10107 EVT VT = CondLHS.getValueType(); 10108 SDLoc DL = getCurSDLoc(); 10109 10110 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10111 DAG.getConstant(CommonBit, DL, VT)); 10112 SDValue Cond = DAG.getSetCC( 10113 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10114 ISD::SETEQ); 10115 10116 // Update successor info. 10117 // Both Small and Big will jump to Small.BB, so we sum up the 10118 // probabilities. 10119 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10120 if (BPI) 10121 addSuccessorWithProb( 10122 SwitchMBB, DefaultMBB, 10123 // The default destination is the first successor in IR. 10124 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10125 else 10126 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10127 10128 // Insert the true branch. 10129 SDValue BrCond = 10130 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10131 DAG.getBasicBlock(Small.MBB)); 10132 // Insert the false branch. 10133 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10134 DAG.getBasicBlock(DefaultMBB)); 10135 10136 DAG.setRoot(BrCond); 10137 return; 10138 } 10139 } 10140 } 10141 10142 if (TM.getOptLevel() != CodeGenOpt::None) { 10143 // Here, we order cases by probability so the most likely case will be 10144 // checked first. However, two clusters can have the same probability in 10145 // which case their relative ordering is non-deterministic. So we use Low 10146 // as a tie-breaker as clusters are guaranteed to never overlap. 10147 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10148 [](const CaseCluster &a, const CaseCluster &b) { 10149 return a.Prob != b.Prob ? 10150 a.Prob > b.Prob : 10151 a.Low->getValue().slt(b.Low->getValue()); 10152 }); 10153 10154 // Rearrange the case blocks so that the last one falls through if possible 10155 // without changing the order of probabilities. 10156 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10157 --I; 10158 if (I->Prob > W.LastCluster->Prob) 10159 break; 10160 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10161 std::swap(*I, *W.LastCluster); 10162 break; 10163 } 10164 } 10165 } 10166 10167 // Compute total probability. 10168 BranchProbability DefaultProb = W.DefaultProb; 10169 BranchProbability UnhandledProbs = DefaultProb; 10170 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10171 UnhandledProbs += I->Prob; 10172 10173 MachineBasicBlock *CurMBB = W.MBB; 10174 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10175 bool FallthroughUnreachable = false; 10176 MachineBasicBlock *Fallthrough; 10177 if (I == W.LastCluster) { 10178 // For the last cluster, fall through to the default destination. 10179 Fallthrough = DefaultMBB; 10180 FallthroughUnreachable = isa<UnreachableInst>( 10181 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10182 } else { 10183 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10184 CurMF->insert(BBI, Fallthrough); 10185 // Put Cond in a virtual register to make it available from the new blocks. 10186 ExportFromCurrentBlock(Cond); 10187 } 10188 UnhandledProbs -= I->Prob; 10189 10190 switch (I->Kind) { 10191 case CC_JumpTable: { 10192 // FIXME: Optimize away range check based on pivot comparisons. 10193 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10194 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10195 10196 // The jump block hasn't been inserted yet; insert it here. 10197 MachineBasicBlock *JumpMBB = JT->MBB; 10198 CurMF->insert(BBI, JumpMBB); 10199 10200 auto JumpProb = I->Prob; 10201 auto FallthroughProb = UnhandledProbs; 10202 10203 // If the default statement is a target of the jump table, we evenly 10204 // distribute the default probability to successors of CurMBB. Also 10205 // update the probability on the edge from JumpMBB to Fallthrough. 10206 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10207 SE = JumpMBB->succ_end(); 10208 SI != SE; ++SI) { 10209 if (*SI == DefaultMBB) { 10210 JumpProb += DefaultProb / 2; 10211 FallthroughProb -= DefaultProb / 2; 10212 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10213 JumpMBB->normalizeSuccProbs(); 10214 break; 10215 } 10216 } 10217 10218 if (FallthroughUnreachable) { 10219 // Skip the range check if the fallthrough block is unreachable. 10220 JTH->OmitRangeCheck = true; 10221 } 10222 10223 if (!JTH->OmitRangeCheck) 10224 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10225 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10226 CurMBB->normalizeSuccProbs(); 10227 10228 // The jump table header will be inserted in our current block, do the 10229 // range check, and fall through to our fallthrough block. 10230 JTH->HeaderBB = CurMBB; 10231 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10232 10233 // If we're in the right place, emit the jump table header right now. 10234 if (CurMBB == SwitchMBB) { 10235 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10236 JTH->Emitted = true; 10237 } 10238 break; 10239 } 10240 case CC_BitTests: { 10241 // FIXME: Optimize away range check based on pivot comparisons. 10242 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10243 10244 // The bit test blocks haven't been inserted yet; insert them here. 10245 for (BitTestCase &BTC : BTB->Cases) 10246 CurMF->insert(BBI, BTC.ThisBB); 10247 10248 // Fill in fields of the BitTestBlock. 10249 BTB->Parent = CurMBB; 10250 BTB->Default = Fallthrough; 10251 10252 BTB->DefaultProb = UnhandledProbs; 10253 // If the cases in bit test don't form a contiguous range, we evenly 10254 // distribute the probability on the edge to Fallthrough to two 10255 // successors of CurMBB. 10256 if (!BTB->ContiguousRange) { 10257 BTB->Prob += DefaultProb / 2; 10258 BTB->DefaultProb -= DefaultProb / 2; 10259 } 10260 10261 if (FallthroughUnreachable) { 10262 // Skip the range check if the fallthrough block is unreachable. 10263 BTB->OmitRangeCheck = true; 10264 } 10265 10266 // If we're in the right place, emit the bit test header right now. 10267 if (CurMBB == SwitchMBB) { 10268 visitBitTestHeader(*BTB, SwitchMBB); 10269 BTB->Emitted = true; 10270 } 10271 break; 10272 } 10273 case CC_Range: { 10274 const Value *RHS, *LHS, *MHS; 10275 ISD::CondCode CC; 10276 if (I->Low == I->High) { 10277 // Check Cond == I->Low. 10278 CC = ISD::SETEQ; 10279 LHS = Cond; 10280 RHS=I->Low; 10281 MHS = nullptr; 10282 } else { 10283 // Check I->Low <= Cond <= I->High. 10284 CC = ISD::SETLE; 10285 LHS = I->Low; 10286 MHS = Cond; 10287 RHS = I->High; 10288 } 10289 10290 // If Fallthrough is unreachable, fold away the comparison. 10291 if (FallthroughUnreachable) 10292 CC = ISD::SETTRUE; 10293 10294 // The false probability is the sum of all unhandled cases. 10295 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10296 getCurSDLoc(), I->Prob, UnhandledProbs); 10297 10298 if (CurMBB == SwitchMBB) 10299 visitSwitchCase(CB, SwitchMBB); 10300 else 10301 SL->SwitchCases.push_back(CB); 10302 10303 break; 10304 } 10305 } 10306 CurMBB = Fallthrough; 10307 } 10308 } 10309 10310 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10311 CaseClusterIt First, 10312 CaseClusterIt Last) { 10313 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10314 if (X.Prob != CC.Prob) 10315 return X.Prob > CC.Prob; 10316 10317 // Ties are broken by comparing the case value. 10318 return X.Low->getValue().slt(CC.Low->getValue()); 10319 }); 10320 } 10321 10322 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10323 const SwitchWorkListItem &W, 10324 Value *Cond, 10325 MachineBasicBlock *SwitchMBB) { 10326 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10327 "Clusters not sorted?"); 10328 10329 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10330 10331 // Balance the tree based on branch probabilities to create a near-optimal (in 10332 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10333 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10334 CaseClusterIt LastLeft = W.FirstCluster; 10335 CaseClusterIt FirstRight = W.LastCluster; 10336 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10337 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10338 10339 // Move LastLeft and FirstRight towards each other from opposite directions to 10340 // find a partitioning of the clusters which balances the probability on both 10341 // sides. If LeftProb and RightProb are equal, alternate which side is 10342 // taken to ensure 0-probability nodes are distributed evenly. 10343 unsigned I = 0; 10344 while (LastLeft + 1 < FirstRight) { 10345 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10346 LeftProb += (++LastLeft)->Prob; 10347 else 10348 RightProb += (--FirstRight)->Prob; 10349 I++; 10350 } 10351 10352 while (true) { 10353 // Our binary search tree differs from a typical BST in that ours can have up 10354 // to three values in each leaf. The pivot selection above doesn't take that 10355 // into account, which means the tree might require more nodes and be less 10356 // efficient. We compensate for this here. 10357 10358 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10359 unsigned NumRight = W.LastCluster - FirstRight + 1; 10360 10361 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10362 // If one side has less than 3 clusters, and the other has more than 3, 10363 // consider taking a cluster from the other side. 10364 10365 if (NumLeft < NumRight) { 10366 // Consider moving the first cluster on the right to the left side. 10367 CaseCluster &CC = *FirstRight; 10368 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10369 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10370 if (LeftSideRank <= RightSideRank) { 10371 // Moving the cluster to the left does not demote it. 10372 ++LastLeft; 10373 ++FirstRight; 10374 continue; 10375 } 10376 } else { 10377 assert(NumRight < NumLeft); 10378 // Consider moving the last element on the left to the right side. 10379 CaseCluster &CC = *LastLeft; 10380 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10381 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10382 if (RightSideRank <= LeftSideRank) { 10383 // Moving the cluster to the right does not demot it. 10384 --LastLeft; 10385 --FirstRight; 10386 continue; 10387 } 10388 } 10389 } 10390 break; 10391 } 10392 10393 assert(LastLeft + 1 == FirstRight); 10394 assert(LastLeft >= W.FirstCluster); 10395 assert(FirstRight <= W.LastCluster); 10396 10397 // Use the first element on the right as pivot since we will make less-than 10398 // comparisons against it. 10399 CaseClusterIt PivotCluster = FirstRight; 10400 assert(PivotCluster > W.FirstCluster); 10401 assert(PivotCluster <= W.LastCluster); 10402 10403 CaseClusterIt FirstLeft = W.FirstCluster; 10404 CaseClusterIt LastRight = W.LastCluster; 10405 10406 const ConstantInt *Pivot = PivotCluster->Low; 10407 10408 // New blocks will be inserted immediately after the current one. 10409 MachineFunction::iterator BBI(W.MBB); 10410 ++BBI; 10411 10412 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10413 // we can branch to its destination directly if it's squeezed exactly in 10414 // between the known lower bound and Pivot - 1. 10415 MachineBasicBlock *LeftMBB; 10416 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10417 FirstLeft->Low == W.GE && 10418 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10419 LeftMBB = FirstLeft->MBB; 10420 } else { 10421 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10422 FuncInfo.MF->insert(BBI, LeftMBB); 10423 WorkList.push_back( 10424 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10425 // Put Cond in a virtual register to make it available from the new blocks. 10426 ExportFromCurrentBlock(Cond); 10427 } 10428 10429 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10430 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10431 // directly if RHS.High equals the current upper bound. 10432 MachineBasicBlock *RightMBB; 10433 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10434 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10435 RightMBB = FirstRight->MBB; 10436 } else { 10437 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10438 FuncInfo.MF->insert(BBI, RightMBB); 10439 WorkList.push_back( 10440 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10441 // Put Cond in a virtual register to make it available from the new blocks. 10442 ExportFromCurrentBlock(Cond); 10443 } 10444 10445 // Create the CaseBlock record that will be used to lower the branch. 10446 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10447 getCurSDLoc(), LeftProb, RightProb); 10448 10449 if (W.MBB == SwitchMBB) 10450 visitSwitchCase(CB, SwitchMBB); 10451 else 10452 SL->SwitchCases.push_back(CB); 10453 } 10454 10455 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10456 // from the swith statement. 10457 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10458 BranchProbability PeeledCaseProb) { 10459 if (PeeledCaseProb == BranchProbability::getOne()) 10460 return BranchProbability::getZero(); 10461 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10462 10463 uint32_t Numerator = CaseProb.getNumerator(); 10464 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10465 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10466 } 10467 10468 // Try to peel the top probability case if it exceeds the threshold. 10469 // Return current MachineBasicBlock for the switch statement if the peeling 10470 // does not occur. 10471 // If the peeling is performed, return the newly created MachineBasicBlock 10472 // for the peeled switch statement. Also update Clusters to remove the peeled 10473 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10474 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10475 const SwitchInst &SI, CaseClusterVector &Clusters, 10476 BranchProbability &PeeledCaseProb) { 10477 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10478 // Don't perform if there is only one cluster or optimizing for size. 10479 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10480 TM.getOptLevel() == CodeGenOpt::None || 10481 SwitchMBB->getParent()->getFunction().hasMinSize()) 10482 return SwitchMBB; 10483 10484 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10485 unsigned PeeledCaseIndex = 0; 10486 bool SwitchPeeled = false; 10487 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10488 CaseCluster &CC = Clusters[Index]; 10489 if (CC.Prob < TopCaseProb) 10490 continue; 10491 TopCaseProb = CC.Prob; 10492 PeeledCaseIndex = Index; 10493 SwitchPeeled = true; 10494 } 10495 if (!SwitchPeeled) 10496 return SwitchMBB; 10497 10498 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10499 << TopCaseProb << "\n"); 10500 10501 // Record the MBB for the peeled switch statement. 10502 MachineFunction::iterator BBI(SwitchMBB); 10503 ++BBI; 10504 MachineBasicBlock *PeeledSwitchMBB = 10505 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10506 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10507 10508 ExportFromCurrentBlock(SI.getCondition()); 10509 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10510 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10511 nullptr, nullptr, TopCaseProb.getCompl()}; 10512 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10513 10514 Clusters.erase(PeeledCaseIt); 10515 for (CaseCluster &CC : Clusters) { 10516 LLVM_DEBUG( 10517 dbgs() << "Scale the probablity for one cluster, before scaling: " 10518 << CC.Prob << "\n"); 10519 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10520 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10521 } 10522 PeeledCaseProb = TopCaseProb; 10523 return PeeledSwitchMBB; 10524 } 10525 10526 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10527 // Extract cases from the switch. 10528 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10529 CaseClusterVector Clusters; 10530 Clusters.reserve(SI.getNumCases()); 10531 for (auto I : SI.cases()) { 10532 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10533 const ConstantInt *CaseVal = I.getCaseValue(); 10534 BranchProbability Prob = 10535 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10536 : BranchProbability(1, SI.getNumCases() + 1); 10537 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10538 } 10539 10540 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10541 10542 // Cluster adjacent cases with the same destination. We do this at all 10543 // optimization levels because it's cheap to do and will make codegen faster 10544 // if there are many clusters. 10545 sortAndRangeify(Clusters); 10546 10547 // The branch probablity of the peeled case. 10548 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10549 MachineBasicBlock *PeeledSwitchMBB = 10550 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10551 10552 // If there is only the default destination, jump there directly. 10553 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10554 if (Clusters.empty()) { 10555 assert(PeeledSwitchMBB == SwitchMBB); 10556 SwitchMBB->addSuccessor(DefaultMBB); 10557 if (DefaultMBB != NextBlock(SwitchMBB)) { 10558 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10559 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10560 } 10561 return; 10562 } 10563 10564 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10565 SL->findBitTestClusters(Clusters, &SI); 10566 10567 LLVM_DEBUG({ 10568 dbgs() << "Case clusters: "; 10569 for (const CaseCluster &C : Clusters) { 10570 if (C.Kind == CC_JumpTable) 10571 dbgs() << "JT:"; 10572 if (C.Kind == CC_BitTests) 10573 dbgs() << "BT:"; 10574 10575 C.Low->getValue().print(dbgs(), true); 10576 if (C.Low != C.High) { 10577 dbgs() << '-'; 10578 C.High->getValue().print(dbgs(), true); 10579 } 10580 dbgs() << ' '; 10581 } 10582 dbgs() << '\n'; 10583 }); 10584 10585 assert(!Clusters.empty()); 10586 SwitchWorkList WorkList; 10587 CaseClusterIt First = Clusters.begin(); 10588 CaseClusterIt Last = Clusters.end() - 1; 10589 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10590 // Scale the branchprobability for DefaultMBB if the peel occurs and 10591 // DefaultMBB is not replaced. 10592 if (PeeledCaseProb != BranchProbability::getZero() && 10593 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10594 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10595 WorkList.push_back( 10596 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10597 10598 while (!WorkList.empty()) { 10599 SwitchWorkListItem W = WorkList.back(); 10600 WorkList.pop_back(); 10601 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10602 10603 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10604 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10605 // For optimized builds, lower large range as a balanced binary tree. 10606 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10607 continue; 10608 } 10609 10610 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10611 } 10612 } 10613 10614 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10615 SmallVector<EVT, 4> ValueVTs; 10616 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10617 ValueVTs); 10618 unsigned NumValues = ValueVTs.size(); 10619 if (NumValues == 0) return; 10620 10621 SmallVector<SDValue, 4> Values(NumValues); 10622 SDValue Op = getValue(I.getOperand(0)); 10623 10624 for (unsigned i = 0; i != NumValues; ++i) 10625 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10626 SDValue(Op.getNode(), Op.getResNo() + i)); 10627 10628 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10629 DAG.getVTList(ValueVTs), Values)); 10630 } 10631