1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<bool> 139 InsertAssertAlign("insert-assert-align", cl::init(true), 140 cl::desc("Insert the experimental `assertalign` node."), 141 cl::ReallyHidden); 142 143 static cl::opt<unsigned, true> 144 LimitFPPrecision("limit-float-precision", 145 cl::desc("Generate low-precision inline sequences " 146 "for some float libcalls"), 147 cl::location(LimitFloatPrecision), cl::Hidden, 148 cl::init(0)); 149 150 static cl::opt<unsigned> SwitchPeelThreshold( 151 "switch-peel-threshold", cl::Hidden, cl::init(66), 152 cl::desc("Set the case probability threshold for peeling the case from a " 153 "switch statement. A value greater than 100 will void this " 154 "optimization")); 155 156 // Limit the width of DAG chains. This is important in general to prevent 157 // DAG-based analysis from blowing up. For example, alias analysis and 158 // load clustering may not complete in reasonable time. It is difficult to 159 // recognize and avoid this situation within each individual analysis, and 160 // future analyses are likely to have the same behavior. Limiting DAG width is 161 // the safe approach and will be especially important with global DAGs. 162 // 163 // MaxParallelChains default is arbitrarily high to avoid affecting 164 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 165 // sequence over this should have been converted to llvm.memcpy by the 166 // frontend. It is easy to induce this behavior with .ll code such as: 167 // %buffer = alloca [4096 x i8] 168 // %data = load [4096 x i8]* %argPtr 169 // store [4096 x i8] %data, [4096 x i8]* %buffer 170 static const unsigned MaxParallelChains = 64; 171 172 // Return the calling convention if the Value passed requires ABI mangling as it 173 // is a parameter to a function or a return value from a function which is not 174 // an intrinsic. 175 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 176 if (auto *R = dyn_cast<ReturnInst>(V)) 177 return R->getParent()->getParent()->getCallingConv(); 178 179 if (auto *CI = dyn_cast<CallInst>(V)) { 180 const bool IsInlineAsm = CI->isInlineAsm(); 181 const bool IsIndirectFunctionCall = 182 !IsInlineAsm && !CI->getCalledFunction(); 183 184 // It is possible that the call instruction is an inline asm statement or an 185 // indirect function call in which case the return value of 186 // getCalledFunction() would be nullptr. 187 const bool IsInstrinsicCall = 188 !IsInlineAsm && !IsIndirectFunctionCall && 189 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 190 191 if (!IsInlineAsm && !IsInstrinsicCall) 192 return CI->getCallingConv(); 193 } 194 195 return None; 196 } 197 198 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC); 202 203 /// getCopyFromParts - Create a value that contains the specified legal parts 204 /// combined into the value they represent. If the parts combine to a type 205 /// larger than ValueVT then AssertOp can be used to specify whether the extra 206 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 207 /// (ISD::AssertSext). 208 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 209 const SDValue *Parts, unsigned NumParts, 210 MVT PartVT, EVT ValueVT, const Value *V, 211 Optional<CallingConv::ID> CC = None, 212 Optional<ISD::NodeType> AssertOp = None) { 213 // Let the target assemble the parts if it wants to 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 216 PartVT, ValueVT, CC)) 217 return Val; 218 219 if (ValueVT.isVector()) 220 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 221 CC); 222 223 assert(NumParts > 0 && "No parts to assemble!"); 224 SDValue Val = Parts[0]; 225 226 if (NumParts > 1) { 227 // Assemble the value from multiple parts. 228 if (ValueVT.isInteger()) { 229 unsigned PartBits = PartVT.getSizeInBits(); 230 unsigned ValueBits = ValueVT.getSizeInBits(); 231 232 // Assemble the power of 2 part. 233 unsigned RoundParts = 234 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 235 unsigned RoundBits = PartBits * RoundParts; 236 EVT RoundVT = RoundBits == ValueBits ? 237 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 238 SDValue Lo, Hi; 239 240 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 241 242 if (RoundParts > 2) { 243 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 244 PartVT, HalfVT, V); 245 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 246 RoundParts / 2, PartVT, HalfVT, V); 247 } else { 248 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 249 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 250 } 251 252 if (DAG.getDataLayout().isBigEndian()) 253 std::swap(Lo, Hi); 254 255 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 256 257 if (RoundParts < NumParts) { 258 // Assemble the trailing non-power-of-2 part. 259 unsigned OddParts = NumParts - RoundParts; 260 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 261 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 262 OddVT, V, CC); 263 264 // Combine the round and odd parts. 265 Lo = Val; 266 if (DAG.getDataLayout().isBigEndian()) 267 std::swap(Lo, Hi); 268 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 269 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 270 Hi = 271 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 272 DAG.getConstant(Lo.getValueSizeInBits(), DL, 273 TLI.getPointerTy(DAG.getDataLayout()))); 274 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 275 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 276 } 277 } else if (PartVT.isFloatingPoint()) { 278 // FP split into multiple FP parts (for ppcf128) 279 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 280 "Unexpected split"); 281 SDValue Lo, Hi; 282 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 283 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 284 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 285 std::swap(Lo, Hi); 286 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 287 } else { 288 // FP split into integer parts (soft fp) 289 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 290 !PartVT.isVector() && "Unexpected split"); 291 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 293 } 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 // PartEVT is the type of the register class that holds the value. 298 // ValueVT is the type of the inline asm operation. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 305 ValueVT.bitsLT(PartEVT)) { 306 // For an FP value in an integer part, we need to truncate to the right 307 // width first. 308 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 309 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 310 } 311 312 // Handle types that have the same size. 313 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 314 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 315 316 // Handle types with different sizes. 317 if (PartEVT.isInteger() && ValueVT.isInteger()) { 318 if (ValueVT.bitsLT(PartEVT)) { 319 // For a truncate, see if we have any information to 320 // indicate whether the truncated bits will always be 321 // zero or sign-extension. 322 if (AssertOp.hasValue()) 323 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 324 DAG.getValueType(ValueVT)); 325 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 326 } 327 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 328 } 329 330 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 331 // FP_ROUND's are always exact here. 332 if (ValueVT.bitsLT(Val.getValueType())) 333 return DAG.getNode( 334 ISD::FP_ROUND, DL, ValueVT, Val, 335 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 336 337 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 338 } 339 340 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 341 // then truncating. 342 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 343 ValueVT.bitsLT(PartEVT)) { 344 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 345 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 346 } 347 348 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 349 } 350 351 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 352 const Twine &ErrMsg) { 353 const Instruction *I = dyn_cast_or_null<Instruction>(V); 354 if (!V) 355 return Ctx.emitError(ErrMsg); 356 357 const char *AsmError = ", possible invalid constraint for vector type"; 358 if (const CallInst *CI = dyn_cast<CallInst>(I)) 359 if (CI->isInlineAsm()) 360 return Ctx.emitError(I, ErrMsg + AsmError); 361 362 return Ctx.emitError(I, ErrMsg); 363 } 364 365 /// getCopyFromPartsVector - Create a value that contains the specified legal 366 /// parts combined into the value they represent. If the parts combine to a 367 /// type larger than ValueVT then AssertOp can be used to specify whether the 368 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 369 /// ValueVT (ISD::AssertSext). 370 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 371 const SDValue *Parts, unsigned NumParts, 372 MVT PartVT, EVT ValueVT, const Value *V, 373 Optional<CallingConv::ID> CallConv) { 374 assert(ValueVT.isVector() && "Not a vector value"); 375 assert(NumParts > 0 && "No parts to assemble!"); 376 const bool IsABIRegCopy = CallConv.hasValue(); 377 378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 379 SDValue Val = Parts[0]; 380 381 // Handle a multi-element vector. 382 if (NumParts > 1) { 383 EVT IntermediateVT; 384 MVT RegisterVT; 385 unsigned NumIntermediates; 386 unsigned NumRegs; 387 388 if (IsABIRegCopy) { 389 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 390 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 391 NumIntermediates, RegisterVT); 392 } else { 393 NumRegs = 394 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 395 NumIntermediates, RegisterVT); 396 } 397 398 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 399 NumParts = NumRegs; // Silence a compiler warning. 400 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 401 assert(RegisterVT.getSizeInBits() == 402 Parts[0].getSimpleValueType().getSizeInBits() && 403 "Part type sizes don't match!"); 404 405 // Assemble the parts into intermediate operands. 406 SmallVector<SDValue, 8> Ops(NumIntermediates); 407 if (NumIntermediates == NumParts) { 408 // If the register was not expanded, truncate or copy the value, 409 // as appropriate. 410 for (unsigned i = 0; i != NumParts; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 412 PartVT, IntermediateVT, V); 413 } else if (NumParts > 0) { 414 // If the intermediate type was expanded, build the intermediate 415 // operands from the parts. 416 assert(NumParts % NumIntermediates == 0 && 417 "Must expand into a divisible number of parts!"); 418 unsigned Factor = NumParts / NumIntermediates; 419 for (unsigned i = 0; i != NumIntermediates; ++i) 420 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 421 PartVT, IntermediateVT, V); 422 } 423 424 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 425 // intermediate operands. 426 EVT BuiltVectorTy = 427 IntermediateVT.isVector() 428 ? EVT::getVectorVT( 429 *DAG.getContext(), IntermediateVT.getScalarType(), 430 IntermediateVT.getVectorElementCount() * NumParts) 431 : EVT::getVectorVT(*DAG.getContext(), 432 IntermediateVT.getScalarType(), 433 NumIntermediates); 434 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 435 : ISD::BUILD_VECTOR, 436 DL, BuiltVectorTy, Ops); 437 } 438 439 // There is now one part, held in Val. Correct it to match ValueVT. 440 EVT PartEVT = Val.getValueType(); 441 442 if (PartEVT == ValueVT) 443 return Val; 444 445 if (PartEVT.isVector()) { 446 // If the element type of the source/dest vectors are the same, but the 447 // parts vector has more elements than the value vector, then we have a 448 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 449 // elements we want. 450 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 451 assert((PartEVT.getVectorElementCount().Min > 452 ValueVT.getVectorElementCount().Min) && 453 (PartEVT.getVectorElementCount().Scalable == 454 ValueVT.getVectorElementCount().Scalable) && 455 "Cannot narrow, it would be a lossy transformation"); 456 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 457 DAG.getVectorIdxConstant(0, DL)); 458 } 459 460 // Vector/Vector bitcast. 461 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 464 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 465 "Cannot handle this kind of promotion"); 466 // Promoted vector extract 467 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 468 469 } 470 471 // Trivial bitcast if the types are the same size and the destination 472 // vector type is legal. 473 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 474 TLI.isTypeLegal(ValueVT)) 475 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 476 477 if (ValueVT.getVectorNumElements() != 1) { 478 // Certain ABIs require that vectors are passed as integers. For vectors 479 // are the same size, this is an obvious bitcast. 480 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 481 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 482 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 483 // Bitcast Val back the original type and extract the corresponding 484 // vector we want. 485 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 486 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 487 ValueVT.getVectorElementType(), Elts); 488 Val = DAG.getBitcast(WiderVecType, Val); 489 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 490 DAG.getVectorIdxConstant(0, DL)); 491 } 492 493 diagnosePossiblyInvalidConstraint( 494 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 495 return DAG.getUNDEF(ValueVT); 496 } 497 498 // Handle cases such as i8 -> <1 x i1> 499 EVT ValueSVT = ValueVT.getVectorElementType(); 500 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 501 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 502 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 503 else 504 Val = ValueVT.isFloatingPoint() 505 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 506 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 507 } 508 509 return DAG.getBuildVector(ValueVT, DL, Val); 510 } 511 512 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 513 SDValue Val, SDValue *Parts, unsigned NumParts, 514 MVT PartVT, const Value *V, 515 Optional<CallingConv::ID> CallConv); 516 517 /// getCopyToParts - Create a series of nodes that contain the specified value 518 /// split into legal parts. If the parts contain more bits than Val, then, for 519 /// integers, ExtendKind can be used to specify how to generate the extra bits. 520 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 521 SDValue *Parts, unsigned NumParts, MVT PartVT, 522 const Value *V, 523 Optional<CallingConv::ID> CallConv = None, 524 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 525 // Let the target split the parts if it wants to 526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 527 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 528 CallConv)) 529 return; 530 EVT ValueVT = Val.getValueType(); 531 532 // Handle the vector case separately. 533 if (ValueVT.isVector()) 534 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 535 CallConv); 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 unsigned OrigNumParts = NumParts; 539 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 540 "Copying to an illegal type!"); 541 542 if (NumParts == 0) 543 return; 544 545 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 546 EVT PartEVT = PartVT; 547 if (PartEVT == ValueVT) { 548 assert(NumParts == 1 && "No-op copy with multiple parts!"); 549 Parts[0] = Val; 550 return; 551 } 552 553 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 554 // If the parts cover more bits than the value has, promote the value. 555 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 556 assert(NumParts == 1 && "Do not know what to promote to!"); 557 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 558 } else { 559 if (ValueVT.isFloatingPoint()) { 560 // FP values need to be bitcast, then extended if they are being put 561 // into a larger container. 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 563 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 564 } 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 } else if (PartBits == ValueVT.getSizeInBits()) { 574 // Different types of the same size. 575 assert(NumParts == 1 && PartEVT != ValueVT); 576 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 577 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 578 // If the parts cover less bits than value has, truncate the value. 579 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 580 ValueVT.isInteger() && 581 "Unknown mismatch!"); 582 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 583 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 584 if (PartVT == MVT::x86mmx) 585 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 586 } 587 588 // The value may have changed - recompute ValueVT. 589 ValueVT = Val.getValueType(); 590 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 591 "Failed to tile the value with PartVT!"); 592 593 if (NumParts == 1) { 594 if (PartEVT != ValueVT) { 595 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 596 "scalar-to-vector conversion failed"); 597 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 598 } 599 600 Parts[0] = Val; 601 return; 602 } 603 604 // Expand the value into multiple parts. 605 if (NumParts & (NumParts - 1)) { 606 // The number of parts is not a power of 2. Split off and copy the tail. 607 assert(PartVT.isInteger() && ValueVT.isInteger() && 608 "Do not know what to expand to!"); 609 unsigned RoundParts = 1 << Log2_32(NumParts); 610 unsigned RoundBits = RoundParts * PartBits; 611 unsigned OddParts = NumParts - RoundParts; 612 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 613 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 614 615 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 616 CallConv); 617 618 if (DAG.getDataLayout().isBigEndian()) 619 // The odd parts were reversed by getCopyToParts - unreverse them. 620 std::reverse(Parts + RoundParts, Parts + NumParts); 621 622 NumParts = RoundParts; 623 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 624 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 625 } 626 627 // The number of parts is a power of 2. Repeatedly bisect the value using 628 // EXTRACT_ELEMENT. 629 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 630 EVT::getIntegerVT(*DAG.getContext(), 631 ValueVT.getSizeInBits()), 632 Val); 633 634 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 635 for (unsigned i = 0; i < NumParts; i += StepSize) { 636 unsigned ThisBits = StepSize * PartBits / 2; 637 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 638 SDValue &Part0 = Parts[i]; 639 SDValue &Part1 = Parts[i+StepSize/2]; 640 641 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 642 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 643 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 644 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 645 646 if (ThisBits == PartBits && ThisVT != PartVT) { 647 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 648 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 649 } 650 } 651 } 652 653 if (DAG.getDataLayout().isBigEndian()) 654 std::reverse(Parts, Parts + OrigNumParts); 655 } 656 657 static SDValue widenVectorToPartType(SelectionDAG &DAG, 658 SDValue Val, const SDLoc &DL, EVT PartVT) { 659 if (!PartVT.isVector()) 660 return SDValue(); 661 662 EVT ValueVT = Val.getValueType(); 663 unsigned PartNumElts = PartVT.getVectorNumElements(); 664 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 665 if (PartNumElts > ValueNumElts && 666 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 667 EVT ElementVT = PartVT.getVectorElementType(); 668 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 669 // undef elements. 670 SmallVector<SDValue, 16> Ops; 671 DAG.ExtractVectorElements(Val, Ops); 672 SDValue EltUndef = DAG.getUNDEF(ElementVT); 673 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 674 Ops.push_back(EltUndef); 675 676 // FIXME: Use CONCAT for 2x -> 4x. 677 return DAG.getBuildVector(PartVT, DL, Ops); 678 } 679 680 return SDValue(); 681 } 682 683 /// getCopyToPartsVector - Create a series of nodes that contain the specified 684 /// value split into legal parts. 685 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 686 SDValue Val, SDValue *Parts, unsigned NumParts, 687 MVT PartVT, const Value *V, 688 Optional<CallingConv::ID> CallConv) { 689 EVT ValueVT = Val.getValueType(); 690 assert(ValueVT.isVector() && "Not a vector"); 691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 692 const bool IsABIRegCopy = CallConv.hasValue(); 693 694 if (NumParts == 1) { 695 EVT PartEVT = PartVT; 696 if (PartEVT == ValueVT) { 697 // Nothing to do. 698 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 699 // Bitconvert vector->vector case. 700 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 701 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 702 Val = Widened; 703 } else if (PartVT.isVector() && 704 PartEVT.getVectorElementType().bitsGE( 705 ValueVT.getVectorElementType()) && 706 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 707 708 // Promoted vector extract 709 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 710 } else { 711 if (ValueVT.getVectorNumElements() == 1) { 712 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 713 DAG.getVectorIdxConstant(0, DL)); 714 } else { 715 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 716 "lossy conversion of vector to scalar type"); 717 EVT IntermediateType = 718 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 719 Val = DAG.getBitcast(IntermediateType, Val); 720 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 721 } 722 } 723 724 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 725 Parts[0] = Val; 726 return; 727 } 728 729 // Handle a multi-element vector. 730 EVT IntermediateVT; 731 MVT RegisterVT; 732 unsigned NumIntermediates; 733 unsigned NumRegs; 734 if (IsABIRegCopy) { 735 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 736 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 737 NumIntermediates, RegisterVT); 738 } else { 739 NumRegs = 740 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 741 NumIntermediates, RegisterVT); 742 } 743 744 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 745 NumParts = NumRegs; // Silence a compiler warning. 746 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 747 748 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 749 IntermediateVT.getVectorNumElements() : 1; 750 751 // Convert the vector to the appropriate type if necessary. 752 auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts, 753 ValueVT.isScalableVector()); 754 EVT BuiltVectorTy = EVT::getVectorVT( 755 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 756 if (ValueVT != BuiltVectorTy) { 757 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 758 Val = Widened; 759 760 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 761 } 762 763 // Split the vector into intermediate operands. 764 SmallVector<SDValue, 8> Ops(NumIntermediates); 765 for (unsigned i = 0; i != NumIntermediates; ++i) { 766 if (IntermediateVT.isVector()) { 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 930 ExtendKind = ISD::ZERO_EXTEND; 931 932 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 933 NumParts, RegisterVT, V, CallConv, ExtendKind); 934 Part += NumParts; 935 } 936 937 // Copy the parts into the registers. 938 SmallVector<SDValue, 8> Chains(NumRegs); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 SDValue Part; 941 if (!Flag) { 942 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 943 } else { 944 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 945 *Flag = Part.getValue(1); 946 } 947 948 Chains[i] = Part.getValue(0); 949 } 950 951 if (NumRegs == 1 || Flag) 952 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 953 // flagged to it. That is the CopyToReg nodes and the user are considered 954 // a single scheduling unit. If we create a TokenFactor and return it as 955 // chain, then the TokenFactor is both a predecessor (operand) of the 956 // user as well as a successor (the TF operands are flagged to the user). 957 // c1, f1 = CopyToReg 958 // c2, f2 = CopyToReg 959 // c3 = TokenFactor c1, c2 960 // ... 961 // = op c3, ..., f2 962 Chain = Chains[NumRegs-1]; 963 else 964 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 965 } 966 967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 968 unsigned MatchingIdx, const SDLoc &dl, 969 SelectionDAG &DAG, 970 std::vector<SDValue> &Ops) const { 971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 972 973 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 974 if (HasMatching) 975 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 976 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 977 // Put the register class of the virtual registers in the flag word. That 978 // way, later passes can recompute register class constraints for inline 979 // assembly as well as normal instructions. 980 // Don't do this for tied operands that can use the regclass information 981 // from the def. 982 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 983 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 984 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 985 } 986 987 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 988 Ops.push_back(Res); 989 990 if (Code == InlineAsm::Kind_Clobber) { 991 // Clobbers should always have a 1:1 mapping with registers, and may 992 // reference registers that have illegal (e.g. vector) types. Hence, we 993 // shouldn't try to apply any sort of splitting logic to them. 994 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 995 "No 1:1 mapping from clobbers to regs?"); 996 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 997 (void)SP; 998 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 999 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1000 assert( 1001 (Regs[I] != SP || 1002 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1003 "If we clobbered the stack pointer, MFI should know about it."); 1004 } 1005 return; 1006 } 1007 1008 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1009 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 1010 MVT RegisterVT = RegVTs[Value]; 1011 for (unsigned i = 0; i != NumRegs; ++i) { 1012 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1013 unsigned TheReg = Regs[Reg++]; 1014 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1015 } 1016 } 1017 } 1018 1019 SmallVector<std::pair<unsigned, unsigned>, 4> 1020 RegsForValue::getRegsAndSizes() const { 1021 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1022 unsigned I = 0; 1023 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1024 unsigned RegCount = std::get<0>(CountAndVT); 1025 MVT RegisterVT = std::get<1>(CountAndVT); 1026 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1027 for (unsigned E = I + RegCount; I != E; ++I) 1028 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1029 } 1030 return OutVec; 1031 } 1032 1033 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1034 const TargetLibraryInfo *li) { 1035 AA = aa; 1036 GFI = gfi; 1037 LibInfo = li; 1038 DL = &DAG.getDataLayout(); 1039 Context = DAG.getContext(); 1040 LPadToCallSiteMap.clear(); 1041 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1042 } 1043 1044 void SelectionDAGBuilder::clear() { 1045 NodeMap.clear(); 1046 UnusedArgNodeMap.clear(); 1047 PendingLoads.clear(); 1048 PendingExports.clear(); 1049 PendingConstrainedFP.clear(); 1050 PendingConstrainedFPStrict.clear(); 1051 CurInst = nullptr; 1052 HasTailCall = false; 1053 SDNodeOrder = LowestSDNodeOrder; 1054 StatepointLowering.clear(); 1055 } 1056 1057 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1058 DanglingDebugInfoMap.clear(); 1059 } 1060 1061 // Update DAG root to include dependencies on Pending chains. 1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1063 SDValue Root = DAG.getRoot(); 1064 1065 if (Pending.empty()) 1066 return Root; 1067 1068 // Add current root to PendingChains, unless we already indirectly 1069 // depend on it. 1070 if (Root.getOpcode() != ISD::EntryToken) { 1071 unsigned i = 0, e = Pending.size(); 1072 for (; i != e; ++i) { 1073 assert(Pending[i].getNode()->getNumOperands() > 1); 1074 if (Pending[i].getNode()->getOperand(0) == Root) 1075 break; // Don't add the root if we already indirectly depend on it. 1076 } 1077 1078 if (i == e) 1079 Pending.push_back(Root); 1080 } 1081 1082 if (Pending.size() == 1) 1083 Root = Pending[0]; 1084 else 1085 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1086 1087 DAG.setRoot(Root); 1088 Pending.clear(); 1089 return Root; 1090 } 1091 1092 SDValue SelectionDAGBuilder::getMemoryRoot() { 1093 return updateRoot(PendingLoads); 1094 } 1095 1096 SDValue SelectionDAGBuilder::getRoot() { 1097 // Chain up all pending constrained intrinsics together with all 1098 // pending loads, by simply appending them to PendingLoads and 1099 // then calling getMemoryRoot(). 1100 PendingLoads.reserve(PendingLoads.size() + 1101 PendingConstrainedFP.size() + 1102 PendingConstrainedFPStrict.size()); 1103 PendingLoads.append(PendingConstrainedFP.begin(), 1104 PendingConstrainedFP.end()); 1105 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1106 PendingConstrainedFPStrict.end()); 1107 PendingConstrainedFP.clear(); 1108 PendingConstrainedFPStrict.clear(); 1109 return getMemoryRoot(); 1110 } 1111 1112 SDValue SelectionDAGBuilder::getControlRoot() { 1113 // We need to emit pending fpexcept.strict constrained intrinsics, 1114 // so append them to the PendingExports list. 1115 PendingExports.append(PendingConstrainedFPStrict.begin(), 1116 PendingConstrainedFPStrict.end()); 1117 PendingConstrainedFPStrict.clear(); 1118 return updateRoot(PendingExports); 1119 } 1120 1121 void SelectionDAGBuilder::visit(const Instruction &I) { 1122 // Set up outgoing PHI node register values before emitting the terminator. 1123 if (I.isTerminator()) { 1124 HandlePHINodesInSuccessorBlocks(I.getParent()); 1125 } 1126 1127 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1128 if (!isa<DbgInfoIntrinsic>(I)) 1129 ++SDNodeOrder; 1130 1131 CurInst = &I; 1132 1133 visit(I.getOpcode(), I); 1134 1135 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1136 // ConstrainedFPIntrinsics handle their own FMF. 1137 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1138 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1139 // maps to this instruction. 1140 // TODO: We could handle all flags (nsw, etc) here. 1141 // TODO: If an IR instruction maps to >1 node, only the final node will have 1142 // flags set. 1143 if (SDNode *Node = getNodeForIRValue(&I)) { 1144 SDNodeFlags IncomingFlags; 1145 IncomingFlags.copyFMF(*FPMO); 1146 if (!Node->getFlags().isDefined()) 1147 Node->setFlags(IncomingFlags); 1148 else 1149 Node->intersectFlagsWith(IncomingFlags); 1150 } 1151 } 1152 } 1153 1154 if (!I.isTerminator() && !HasTailCall && 1155 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1156 CopyToExportRegsIfNeeded(&I); 1157 1158 CurInst = nullptr; 1159 } 1160 1161 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1162 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1163 } 1164 1165 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1166 // Note: this doesn't use InstVisitor, because it has to work with 1167 // ConstantExpr's in addition to instructions. 1168 switch (Opcode) { 1169 default: llvm_unreachable("Unknown instruction type encountered!"); 1170 // Build the switch statement using the Instruction.def file. 1171 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1172 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1173 #include "llvm/IR/Instruction.def" 1174 } 1175 } 1176 1177 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1178 const DIExpression *Expr) { 1179 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1180 const DbgValueInst *DI = DDI.getDI(); 1181 DIVariable *DanglingVariable = DI->getVariable(); 1182 DIExpression *DanglingExpr = DI->getExpression(); 1183 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1184 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1185 return true; 1186 } 1187 return false; 1188 }; 1189 1190 for (auto &DDIMI : DanglingDebugInfoMap) { 1191 DanglingDebugInfoVector &DDIV = DDIMI.second; 1192 1193 // If debug info is to be dropped, run it through final checks to see 1194 // whether it can be salvaged. 1195 for (auto &DDI : DDIV) 1196 if (isMatchingDbgValue(DDI)) 1197 salvageUnresolvedDbgValue(DDI); 1198 1199 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1200 } 1201 } 1202 1203 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1204 // generate the debug data structures now that we've seen its definition. 1205 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1206 SDValue Val) { 1207 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1208 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1209 return; 1210 1211 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1212 for (auto &DDI : DDIV) { 1213 const DbgValueInst *DI = DDI.getDI(); 1214 assert(DI && "Ill-formed DanglingDebugInfo"); 1215 DebugLoc dl = DDI.getdl(); 1216 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1217 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1218 DILocalVariable *Variable = DI->getVariable(); 1219 DIExpression *Expr = DI->getExpression(); 1220 assert(Variable->isValidLocationForIntrinsic(dl) && 1221 "Expected inlined-at fields to agree"); 1222 SDDbgValue *SDV; 1223 if (Val.getNode()) { 1224 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1225 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1226 // we couldn't resolve it directly when examining the DbgValue intrinsic 1227 // in the first place we should not be more successful here). Unless we 1228 // have some test case that prove this to be correct we should avoid 1229 // calling EmitFuncArgumentDbgValue here. 1230 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1231 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1232 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1233 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1234 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1235 // inserted after the definition of Val when emitting the instructions 1236 // after ISel. An alternative could be to teach 1237 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1238 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1239 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1240 << ValSDNodeOrder << "\n"); 1241 SDV = getDbgValue(Val, Variable, Expr, dl, 1242 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1243 DAG.AddDbgValue(SDV, Val.getNode(), false); 1244 } else 1245 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1246 << "in EmitFuncArgumentDbgValue\n"); 1247 } else { 1248 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1249 auto Undef = 1250 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1251 auto SDV = 1252 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1253 DAG.AddDbgValue(SDV, nullptr, false); 1254 } 1255 } 1256 DDIV.clear(); 1257 } 1258 1259 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1260 Value *V = DDI.getDI()->getValue(); 1261 DILocalVariable *Var = DDI.getDI()->getVariable(); 1262 DIExpression *Expr = DDI.getDI()->getExpression(); 1263 DebugLoc DL = DDI.getdl(); 1264 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1265 unsigned SDOrder = DDI.getSDNodeOrder(); 1266 1267 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1268 // that DW_OP_stack_value is desired. 1269 assert(isa<DbgValueInst>(DDI.getDI())); 1270 bool StackValue = true; 1271 1272 // Can this Value can be encoded without any further work? 1273 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1274 return; 1275 1276 // Attempt to salvage back through as many instructions as possible. Bail if 1277 // a non-instruction is seen, such as a constant expression or global 1278 // variable. FIXME: Further work could recover those too. 1279 while (isa<Instruction>(V)) { 1280 Instruction &VAsInst = *cast<Instruction>(V); 1281 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1282 1283 // If we cannot salvage any further, and haven't yet found a suitable debug 1284 // expression, bail out. 1285 if (!NewExpr) 1286 break; 1287 1288 // New value and expr now represent this debuginfo. 1289 V = VAsInst.getOperand(0); 1290 Expr = NewExpr; 1291 1292 // Some kind of simplification occurred: check whether the operand of the 1293 // salvaged debug expression can be encoded in this DAG. 1294 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1295 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1296 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1297 return; 1298 } 1299 } 1300 1301 // This was the final opportunity to salvage this debug information, and it 1302 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1303 // any earlier variable location. 1304 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1305 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1306 DAG.AddDbgValue(SDV, nullptr, false); 1307 1308 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1309 << "\n"); 1310 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1311 << "\n"); 1312 } 1313 1314 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1315 DIExpression *Expr, DebugLoc dl, 1316 DebugLoc InstDL, unsigned Order) { 1317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1318 SDDbgValue *SDV; 1319 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1320 isa<ConstantPointerNull>(V)) { 1321 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, nullptr, false); 1323 return true; 1324 } 1325 1326 // If the Value is a frame index, we can create a FrameIndex debug value 1327 // without relying on the DAG at all. 1328 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1329 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1330 if (SI != FuncInfo.StaticAllocaMap.end()) { 1331 auto SDV = 1332 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1333 /*IsIndirect*/ false, dl, SDNodeOrder); 1334 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1335 // is still available even if the SDNode gets optimized out. 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 return true; 1338 } 1339 } 1340 1341 // Do not use getValue() in here; we don't want to generate code at 1342 // this point if it hasn't been done yet. 1343 SDValue N = NodeMap[V]; 1344 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1345 N = UnusedArgNodeMap[V]; 1346 if (N.getNode()) { 1347 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1348 return true; 1349 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, N.getNode(), false); 1351 return true; 1352 } 1353 1354 // Special rules apply for the first dbg.values of parameter variables in a 1355 // function. Identify them by the fact they reference Argument Values, that 1356 // they're parameters, and they are parameters of the current function. We 1357 // need to let them dangle until they get an SDNode. 1358 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1359 !InstDL.getInlinedAt(); 1360 if (!IsParamOfFunc) { 1361 // The value is not used in this block yet (or it would have an SDNode). 1362 // We still want the value to appear for the user if possible -- if it has 1363 // an associated VReg, we can refer to that instead. 1364 auto VMI = FuncInfo.ValueMap.find(V); 1365 if (VMI != FuncInfo.ValueMap.end()) { 1366 unsigned Reg = VMI->second; 1367 // If this is a PHI node, it may be split up into several MI PHI nodes 1368 // (in FunctionLoweringInfo::set). 1369 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1370 V->getType(), None); 1371 if (RFV.occupiesMultipleRegs()) { 1372 unsigned Offset = 0; 1373 unsigned BitsToDescribe = 0; 1374 if (auto VarSize = Var->getSizeInBits()) 1375 BitsToDescribe = *VarSize; 1376 if (auto Fragment = Expr->getFragmentInfo()) 1377 BitsToDescribe = Fragment->SizeInBits; 1378 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1379 unsigned RegisterSize = RegAndSize.second; 1380 // Bail out if all bits are described already. 1381 if (Offset >= BitsToDescribe) 1382 break; 1383 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1384 ? BitsToDescribe - Offset 1385 : RegisterSize; 1386 auto FragmentExpr = DIExpression::createFragmentExpression( 1387 Expr, Offset, FragmentSize); 1388 if (!FragmentExpr) 1389 continue; 1390 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1391 false, dl, SDNodeOrder); 1392 DAG.AddDbgValue(SDV, nullptr, false); 1393 Offset += RegisterSize; 1394 } 1395 } else { 1396 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1397 DAG.AddDbgValue(SDV, nullptr, false); 1398 } 1399 return true; 1400 } 1401 } 1402 1403 return false; 1404 } 1405 1406 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1407 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1408 for (auto &Pair : DanglingDebugInfoMap) 1409 for (auto &DDI : Pair.second) 1410 salvageUnresolvedDbgValue(DDI); 1411 clearDanglingDebugInfo(); 1412 } 1413 1414 /// getCopyFromRegs - If there was virtual register allocated for the value V 1415 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1416 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1417 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1418 SDValue Result; 1419 1420 if (It != FuncInfo.ValueMap.end()) { 1421 Register InReg = It->second; 1422 1423 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1424 DAG.getDataLayout(), InReg, Ty, 1425 None); // This is not an ABI copy. 1426 SDValue Chain = DAG.getEntryNode(); 1427 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1428 V); 1429 resolveDanglingDebugInfo(V, Result); 1430 } 1431 1432 return Result; 1433 } 1434 1435 /// getValue - Return an SDValue for the given Value. 1436 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1437 // If we already have an SDValue for this value, use it. It's important 1438 // to do this first, so that we don't create a CopyFromReg if we already 1439 // have a regular SDValue. 1440 SDValue &N = NodeMap[V]; 1441 if (N.getNode()) return N; 1442 1443 // If there's a virtual register allocated and initialized for this 1444 // value, use it. 1445 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1446 return copyFromReg; 1447 1448 // Otherwise create a new SDValue and remember it. 1449 SDValue Val = getValueImpl(V); 1450 NodeMap[V] = Val; 1451 resolveDanglingDebugInfo(V, Val); 1452 return Val; 1453 } 1454 1455 /// getNonRegisterValue - Return an SDValue for the given Value, but 1456 /// don't look in FuncInfo.ValueMap for a virtual register. 1457 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1458 // If we already have an SDValue for this value, use it. 1459 SDValue &N = NodeMap[V]; 1460 if (N.getNode()) { 1461 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1462 // Remove the debug location from the node as the node is about to be used 1463 // in a location which may differ from the original debug location. This 1464 // is relevant to Constant and ConstantFP nodes because they can appear 1465 // as constant expressions inside PHI nodes. 1466 N->setDebugLoc(DebugLoc()); 1467 } 1468 return N; 1469 } 1470 1471 // Otherwise create a new SDValue and remember it. 1472 SDValue Val = getValueImpl(V); 1473 NodeMap[V] = Val; 1474 resolveDanglingDebugInfo(V, Val); 1475 return Val; 1476 } 1477 1478 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1479 /// Create an SDValue for the given value. 1480 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1482 1483 if (const Constant *C = dyn_cast<Constant>(V)) { 1484 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1485 1486 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1487 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1488 1489 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1490 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1491 1492 if (isa<ConstantPointerNull>(C)) { 1493 unsigned AS = V->getType()->getPointerAddressSpace(); 1494 return DAG.getConstant(0, getCurSDLoc(), 1495 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1496 } 1497 1498 if (match(C, m_VScale(DAG.getDataLayout()))) 1499 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1500 1501 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1502 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1503 1504 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1505 return DAG.getUNDEF(VT); 1506 1507 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1508 visit(CE->getOpcode(), *CE); 1509 SDValue N1 = NodeMap[V]; 1510 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1511 return N1; 1512 } 1513 1514 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1515 SmallVector<SDValue, 4> Constants; 1516 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1517 OI != OE; ++OI) { 1518 SDNode *Val = getValue(*OI).getNode(); 1519 // If the operand is an empty aggregate, there are no values. 1520 if (!Val) continue; 1521 // Add each leaf value from the operand to the Constants list 1522 // to form a flattened list of all the values. 1523 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1524 Constants.push_back(SDValue(Val, i)); 1525 } 1526 1527 return DAG.getMergeValues(Constants, getCurSDLoc()); 1528 } 1529 1530 if (const ConstantDataSequential *CDS = 1531 dyn_cast<ConstantDataSequential>(C)) { 1532 SmallVector<SDValue, 4> Ops; 1533 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1534 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1535 // Add each leaf value from the operand to the Constants list 1536 // to form a flattened list of all the values. 1537 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1538 Ops.push_back(SDValue(Val, i)); 1539 } 1540 1541 if (isa<ArrayType>(CDS->getType())) 1542 return DAG.getMergeValues(Ops, getCurSDLoc()); 1543 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1544 } 1545 1546 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1547 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1548 "Unknown struct or array constant!"); 1549 1550 SmallVector<EVT, 4> ValueVTs; 1551 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1552 unsigned NumElts = ValueVTs.size(); 1553 if (NumElts == 0) 1554 return SDValue(); // empty struct 1555 SmallVector<SDValue, 4> Constants(NumElts); 1556 for (unsigned i = 0; i != NumElts; ++i) { 1557 EVT EltVT = ValueVTs[i]; 1558 if (isa<UndefValue>(C)) 1559 Constants[i] = DAG.getUNDEF(EltVT); 1560 else if (EltVT.isFloatingPoint()) 1561 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1562 else 1563 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1564 } 1565 1566 return DAG.getMergeValues(Constants, getCurSDLoc()); 1567 } 1568 1569 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1570 return DAG.getBlockAddress(BA, VT); 1571 1572 VectorType *VecTy = cast<VectorType>(V->getType()); 1573 1574 // Now that we know the number and type of the elements, get that number of 1575 // elements into the Ops array based on what kind of constant it is. 1576 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1577 SmallVector<SDValue, 16> Ops; 1578 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1579 for (unsigned i = 0; i != NumElements; ++i) 1580 Ops.push_back(getValue(CV->getOperand(i))); 1581 1582 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1583 } else if (isa<ConstantAggregateZero>(C)) { 1584 EVT EltVT = 1585 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1586 1587 SDValue Op; 1588 if (EltVT.isFloatingPoint()) 1589 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1590 else 1591 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1592 1593 if (isa<ScalableVectorType>(VecTy)) 1594 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1595 else { 1596 SmallVector<SDValue, 16> Ops; 1597 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1598 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1599 } 1600 } 1601 llvm_unreachable("Unknown vector constant"); 1602 } 1603 1604 // If this is a static alloca, generate it as the frameindex instead of 1605 // computation. 1606 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1607 DenseMap<const AllocaInst*, int>::iterator SI = 1608 FuncInfo.StaticAllocaMap.find(AI); 1609 if (SI != FuncInfo.StaticAllocaMap.end()) 1610 return DAG.getFrameIndex(SI->second, 1611 TLI.getFrameIndexTy(DAG.getDataLayout())); 1612 } 1613 1614 // If this is an instruction which fast-isel has deferred, select it now. 1615 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1616 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1617 1618 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1619 Inst->getType(), getABIRegCopyCC(V)); 1620 SDValue Chain = DAG.getEntryNode(); 1621 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1622 } 1623 1624 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1625 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1626 } 1627 llvm_unreachable("Can't get register for value!"); 1628 } 1629 1630 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1633 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1634 bool IsSEH = isAsynchronousEHPersonality(Pers); 1635 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1636 if (!IsSEH) 1637 CatchPadMBB->setIsEHScopeEntry(); 1638 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1639 if (IsMSVCCXX || IsCoreCLR) 1640 CatchPadMBB->setIsEHFuncletEntry(); 1641 } 1642 1643 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1644 // Update machine-CFG edge. 1645 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1646 FuncInfo.MBB->addSuccessor(TargetMBB); 1647 1648 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1649 bool IsSEH = isAsynchronousEHPersonality(Pers); 1650 if (IsSEH) { 1651 // If this is not a fall-through branch or optimizations are switched off, 1652 // emit the branch. 1653 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1654 TM.getOptLevel() == CodeGenOpt::None) 1655 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1656 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1657 return; 1658 } 1659 1660 // Figure out the funclet membership for the catchret's successor. 1661 // This will be used by the FuncletLayout pass to determine how to order the 1662 // BB's. 1663 // A 'catchret' returns to the outer scope's color. 1664 Value *ParentPad = I.getCatchSwitchParentPad(); 1665 const BasicBlock *SuccessorColor; 1666 if (isa<ConstantTokenNone>(ParentPad)) 1667 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1668 else 1669 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1670 assert(SuccessorColor && "No parent funclet for catchret!"); 1671 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1672 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1673 1674 // Create the terminator node. 1675 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1676 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1677 DAG.getBasicBlock(SuccessorColorMBB)); 1678 DAG.setRoot(Ret); 1679 } 1680 1681 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1682 // Don't emit any special code for the cleanuppad instruction. It just marks 1683 // the start of an EH scope/funclet. 1684 FuncInfo.MBB->setIsEHScopeEntry(); 1685 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1686 if (Pers != EHPersonality::Wasm_CXX) { 1687 FuncInfo.MBB->setIsEHFuncletEntry(); 1688 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1689 } 1690 } 1691 1692 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1693 // the control flow always stops at the single catch pad, as it does for a 1694 // cleanup pad. In case the exception caught is not of the types the catch pad 1695 // catches, it will be rethrown by a rethrow. 1696 static void findWasmUnwindDestinations( 1697 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1698 BranchProbability Prob, 1699 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1700 &UnwindDests) { 1701 while (EHPadBB) { 1702 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1703 if (isa<CleanupPadInst>(Pad)) { 1704 // Stop on cleanup pads. 1705 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1706 UnwindDests.back().first->setIsEHScopeEntry(); 1707 break; 1708 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1709 // Add the catchpad handlers to the possible destinations. We don't 1710 // continue to the unwind destination of the catchswitch for wasm. 1711 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 } 1715 break; 1716 } else { 1717 continue; 1718 } 1719 } 1720 } 1721 1722 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1723 /// many places it could ultimately go. In the IR, we have a single unwind 1724 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1725 /// This function skips over imaginary basic blocks that hold catchswitch 1726 /// instructions, and finds all the "real" machine 1727 /// basic block destinations. As those destinations may not be successors of 1728 /// EHPadBB, here we also calculate the edge probability to those destinations. 1729 /// The passed-in Prob is the edge probability to EHPadBB. 1730 static void findUnwindDestinations( 1731 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1732 BranchProbability Prob, 1733 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1734 &UnwindDests) { 1735 EHPersonality Personality = 1736 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1737 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1738 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1739 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1740 bool IsSEH = isAsynchronousEHPersonality(Personality); 1741 1742 if (IsWasmCXX) { 1743 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1744 assert(UnwindDests.size() <= 1 && 1745 "There should be at most one unwind destination for wasm"); 1746 return; 1747 } 1748 1749 while (EHPadBB) { 1750 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1751 BasicBlock *NewEHPadBB = nullptr; 1752 if (isa<LandingPadInst>(Pad)) { 1753 // Stop on landingpads. They are not funclets. 1754 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1755 break; 1756 } else if (isa<CleanupPadInst>(Pad)) { 1757 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1758 // personalities. 1759 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1760 UnwindDests.back().first->setIsEHScopeEntry(); 1761 UnwindDests.back().first->setIsEHFuncletEntry(); 1762 break; 1763 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1764 // Add the catchpad handlers to the possible destinations. 1765 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1766 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1767 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1768 if (IsMSVCCXX || IsCoreCLR) 1769 UnwindDests.back().first->setIsEHFuncletEntry(); 1770 if (!IsSEH) 1771 UnwindDests.back().first->setIsEHScopeEntry(); 1772 } 1773 NewEHPadBB = CatchSwitch->getUnwindDest(); 1774 } else { 1775 continue; 1776 } 1777 1778 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1779 if (BPI && NewEHPadBB) 1780 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1781 EHPadBB = NewEHPadBB; 1782 } 1783 } 1784 1785 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1786 // Update successor info. 1787 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1788 auto UnwindDest = I.getUnwindDest(); 1789 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1790 BranchProbability UnwindDestProb = 1791 (BPI && UnwindDest) 1792 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1793 : BranchProbability::getZero(); 1794 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1795 for (auto &UnwindDest : UnwindDests) { 1796 UnwindDest.first->setIsEHPad(); 1797 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1798 } 1799 FuncInfo.MBB->normalizeSuccProbs(); 1800 1801 // Create the terminator node. 1802 SDValue Ret = 1803 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1804 DAG.setRoot(Ret); 1805 } 1806 1807 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1808 report_fatal_error("visitCatchSwitch not yet implemented!"); 1809 } 1810 1811 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1813 auto &DL = DAG.getDataLayout(); 1814 SDValue Chain = getControlRoot(); 1815 SmallVector<ISD::OutputArg, 8> Outs; 1816 SmallVector<SDValue, 8> OutVals; 1817 1818 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1819 // lower 1820 // 1821 // %val = call <ty> @llvm.experimental.deoptimize() 1822 // ret <ty> %val 1823 // 1824 // differently. 1825 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1826 LowerDeoptimizingReturn(); 1827 return; 1828 } 1829 1830 if (!FuncInfo.CanLowerReturn) { 1831 unsigned DemoteReg = FuncInfo.DemoteRegister; 1832 const Function *F = I.getParent()->getParent(); 1833 1834 // Emit a store of the return value through the virtual register. 1835 // Leave Outs empty so that LowerReturn won't try to load return 1836 // registers the usual way. 1837 SmallVector<EVT, 1> PtrValueVTs; 1838 ComputeValueVTs(TLI, DL, 1839 F->getReturnType()->getPointerTo( 1840 DAG.getDataLayout().getAllocaAddrSpace()), 1841 PtrValueVTs); 1842 1843 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1844 DemoteReg, PtrValueVTs[0]); 1845 SDValue RetOp = getValue(I.getOperand(0)); 1846 1847 SmallVector<EVT, 4> ValueVTs, MemVTs; 1848 SmallVector<uint64_t, 4> Offsets; 1849 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1850 &Offsets); 1851 unsigned NumValues = ValueVTs.size(); 1852 1853 SmallVector<SDValue, 4> Chains(NumValues); 1854 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1855 for (unsigned i = 0; i != NumValues; ++i) { 1856 // An aggregate return value cannot wrap around the address space, so 1857 // offsets to its parts don't wrap either. 1858 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1859 1860 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1861 if (MemVTs[i] != ValueVTs[i]) 1862 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1863 Chains[i] = DAG.getStore( 1864 Chain, getCurSDLoc(), Val, 1865 // FIXME: better loc info would be nice. 1866 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1867 commonAlignment(BaseAlign, Offsets[i])); 1868 } 1869 1870 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1871 MVT::Other, Chains); 1872 } else if (I.getNumOperands() != 0) { 1873 SmallVector<EVT, 4> ValueVTs; 1874 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1875 unsigned NumValues = ValueVTs.size(); 1876 if (NumValues) { 1877 SDValue RetOp = getValue(I.getOperand(0)); 1878 1879 const Function *F = I.getParent()->getParent(); 1880 1881 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1882 I.getOperand(0)->getType(), F->getCallingConv(), 1883 /*IsVarArg*/ false); 1884 1885 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1886 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1887 Attribute::SExt)) 1888 ExtendKind = ISD::SIGN_EXTEND; 1889 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1890 Attribute::ZExt)) 1891 ExtendKind = ISD::ZERO_EXTEND; 1892 1893 LLVMContext &Context = F->getContext(); 1894 bool RetInReg = F->getAttributes().hasAttribute( 1895 AttributeList::ReturnIndex, Attribute::InReg); 1896 1897 for (unsigned j = 0; j != NumValues; ++j) { 1898 EVT VT = ValueVTs[j]; 1899 1900 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1901 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1902 1903 CallingConv::ID CC = F->getCallingConv(); 1904 1905 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1906 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1907 SmallVector<SDValue, 4> Parts(NumParts); 1908 getCopyToParts(DAG, getCurSDLoc(), 1909 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1910 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1911 1912 // 'inreg' on function refers to return value 1913 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1914 if (RetInReg) 1915 Flags.setInReg(); 1916 1917 if (I.getOperand(0)->getType()->isPointerTy()) { 1918 Flags.setPointer(); 1919 Flags.setPointerAddrSpace( 1920 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1921 } 1922 1923 if (NeedsRegBlock) { 1924 Flags.setInConsecutiveRegs(); 1925 if (j == NumValues - 1) 1926 Flags.setInConsecutiveRegsLast(); 1927 } 1928 1929 // Propagate extension type if any 1930 if (ExtendKind == ISD::SIGN_EXTEND) 1931 Flags.setSExt(); 1932 else if (ExtendKind == ISD::ZERO_EXTEND) 1933 Flags.setZExt(); 1934 1935 for (unsigned i = 0; i < NumParts; ++i) { 1936 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1937 VT, /*isfixed=*/true, 0, 0)); 1938 OutVals.push_back(Parts[i]); 1939 } 1940 } 1941 } 1942 } 1943 1944 // Push in swifterror virtual register as the last element of Outs. This makes 1945 // sure swifterror virtual register will be returned in the swifterror 1946 // physical register. 1947 const Function *F = I.getParent()->getParent(); 1948 if (TLI.supportSwiftError() && 1949 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1950 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1951 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1952 Flags.setSwiftError(); 1953 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1954 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1955 true /*isfixed*/, 1 /*origidx*/, 1956 0 /*partOffs*/)); 1957 // Create SDNode for the swifterror virtual register. 1958 OutVals.push_back( 1959 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1960 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1961 EVT(TLI.getPointerTy(DL)))); 1962 } 1963 1964 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1965 CallingConv::ID CallConv = 1966 DAG.getMachineFunction().getFunction().getCallingConv(); 1967 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1968 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1969 1970 // Verify that the target's LowerReturn behaved as expected. 1971 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1972 "LowerReturn didn't return a valid chain!"); 1973 1974 // Update the DAG with the new chain value resulting from return lowering. 1975 DAG.setRoot(Chain); 1976 } 1977 1978 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1979 /// created for it, emit nodes to copy the value into the virtual 1980 /// registers. 1981 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1982 // Skip empty types 1983 if (V->getType()->isEmptyTy()) 1984 return; 1985 1986 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1987 if (VMI != FuncInfo.ValueMap.end()) { 1988 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1989 CopyValueToVirtualRegister(V, VMI->second); 1990 } 1991 } 1992 1993 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1994 /// the current basic block, add it to ValueMap now so that we'll get a 1995 /// CopyTo/FromReg. 1996 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1997 // No need to export constants. 1998 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1999 2000 // Already exported? 2001 if (FuncInfo.isExportedInst(V)) return; 2002 2003 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2004 CopyValueToVirtualRegister(V, Reg); 2005 } 2006 2007 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2008 const BasicBlock *FromBB) { 2009 // The operands of the setcc have to be in this block. We don't know 2010 // how to export them from some other block. 2011 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2012 // Can export from current BB. 2013 if (VI->getParent() == FromBB) 2014 return true; 2015 2016 // Is already exported, noop. 2017 return FuncInfo.isExportedInst(V); 2018 } 2019 2020 // If this is an argument, we can export it if the BB is the entry block or 2021 // if it is already exported. 2022 if (isa<Argument>(V)) { 2023 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2024 return true; 2025 2026 // Otherwise, can only export this if it is already exported. 2027 return FuncInfo.isExportedInst(V); 2028 } 2029 2030 // Otherwise, constants can always be exported. 2031 return true; 2032 } 2033 2034 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2035 BranchProbability 2036 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2037 const MachineBasicBlock *Dst) const { 2038 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2039 const BasicBlock *SrcBB = Src->getBasicBlock(); 2040 const BasicBlock *DstBB = Dst->getBasicBlock(); 2041 if (!BPI) { 2042 // If BPI is not available, set the default probability as 1 / N, where N is 2043 // the number of successors. 2044 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2045 return BranchProbability(1, SuccSize); 2046 } 2047 return BPI->getEdgeProbability(SrcBB, DstBB); 2048 } 2049 2050 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2051 MachineBasicBlock *Dst, 2052 BranchProbability Prob) { 2053 if (!FuncInfo.BPI) 2054 Src->addSuccessorWithoutProb(Dst); 2055 else { 2056 if (Prob.isUnknown()) 2057 Prob = getEdgeProbability(Src, Dst); 2058 Src->addSuccessor(Dst, Prob); 2059 } 2060 } 2061 2062 static bool InBlock(const Value *V, const BasicBlock *BB) { 2063 if (const Instruction *I = dyn_cast<Instruction>(V)) 2064 return I->getParent() == BB; 2065 return true; 2066 } 2067 2068 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2069 /// This function emits a branch and is used at the leaves of an OR or an 2070 /// AND operator tree. 2071 void 2072 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2073 MachineBasicBlock *TBB, 2074 MachineBasicBlock *FBB, 2075 MachineBasicBlock *CurBB, 2076 MachineBasicBlock *SwitchBB, 2077 BranchProbability TProb, 2078 BranchProbability FProb, 2079 bool InvertCond) { 2080 const BasicBlock *BB = CurBB->getBasicBlock(); 2081 2082 // If the leaf of the tree is a comparison, merge the condition into 2083 // the caseblock. 2084 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2085 // The operands of the cmp have to be in this block. We don't know 2086 // how to export them from some other block. If this is the first block 2087 // of the sequence, no exporting is needed. 2088 if (CurBB == SwitchBB || 2089 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2090 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2091 ISD::CondCode Condition; 2092 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2093 ICmpInst::Predicate Pred = 2094 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2095 Condition = getICmpCondCode(Pred); 2096 } else { 2097 const FCmpInst *FC = cast<FCmpInst>(Cond); 2098 FCmpInst::Predicate Pred = 2099 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2100 Condition = getFCmpCondCode(Pred); 2101 if (TM.Options.NoNaNsFPMath) 2102 Condition = getFCmpCodeWithoutNaN(Condition); 2103 } 2104 2105 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2106 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2107 SL->SwitchCases.push_back(CB); 2108 return; 2109 } 2110 } 2111 2112 // Create a CaseBlock record representing this branch. 2113 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2114 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2115 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2116 SL->SwitchCases.push_back(CB); 2117 } 2118 2119 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2120 MachineBasicBlock *TBB, 2121 MachineBasicBlock *FBB, 2122 MachineBasicBlock *CurBB, 2123 MachineBasicBlock *SwitchBB, 2124 Instruction::BinaryOps Opc, 2125 BranchProbability TProb, 2126 BranchProbability FProb, 2127 bool InvertCond) { 2128 // Skip over not part of the tree and remember to invert op and operands at 2129 // next level. 2130 Value *NotCond; 2131 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2132 InBlock(NotCond, CurBB->getBasicBlock())) { 2133 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2134 !InvertCond); 2135 return; 2136 } 2137 2138 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2139 // Compute the effective opcode for Cond, taking into account whether it needs 2140 // to be inverted, e.g. 2141 // and (not (or A, B)), C 2142 // gets lowered as 2143 // and (and (not A, not B), C) 2144 unsigned BOpc = 0; 2145 if (BOp) { 2146 BOpc = BOp->getOpcode(); 2147 if (InvertCond) { 2148 if (BOpc == Instruction::And) 2149 BOpc = Instruction::Or; 2150 else if (BOpc == Instruction::Or) 2151 BOpc = Instruction::And; 2152 } 2153 } 2154 2155 // If this node is not part of the or/and tree, emit it as a branch. 2156 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2157 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2158 BOp->getParent() != CurBB->getBasicBlock() || 2159 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2160 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2161 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2162 TProb, FProb, InvertCond); 2163 return; 2164 } 2165 2166 // Create TmpBB after CurBB. 2167 MachineFunction::iterator BBI(CurBB); 2168 MachineFunction &MF = DAG.getMachineFunction(); 2169 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2170 CurBB->getParent()->insert(++BBI, TmpBB); 2171 2172 if (Opc == Instruction::Or) { 2173 // Codegen X | Y as: 2174 // BB1: 2175 // jmp_if_X TBB 2176 // jmp TmpBB 2177 // TmpBB: 2178 // jmp_if_Y TBB 2179 // jmp FBB 2180 // 2181 2182 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2183 // The requirement is that 2184 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2185 // = TrueProb for original BB. 2186 // Assuming the original probabilities are A and B, one choice is to set 2187 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2188 // A/(1+B) and 2B/(1+B). This choice assumes that 2189 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2190 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2191 // TmpBB, but the math is more complicated. 2192 2193 auto NewTrueProb = TProb / 2; 2194 auto NewFalseProb = TProb / 2 + FProb; 2195 // Emit the LHS condition. 2196 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2197 NewTrueProb, NewFalseProb, InvertCond); 2198 2199 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2200 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2201 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2202 // Emit the RHS condition into TmpBB. 2203 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2204 Probs[0], Probs[1], InvertCond); 2205 } else { 2206 assert(Opc == Instruction::And && "Unknown merge op!"); 2207 // Codegen X & Y as: 2208 // BB1: 2209 // jmp_if_X TmpBB 2210 // jmp FBB 2211 // TmpBB: 2212 // jmp_if_Y TBB 2213 // jmp FBB 2214 // 2215 // This requires creation of TmpBB after CurBB. 2216 2217 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2218 // The requirement is that 2219 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2220 // = FalseProb for original BB. 2221 // Assuming the original probabilities are A and B, one choice is to set 2222 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2223 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2224 // TrueProb for BB1 * FalseProb for TmpBB. 2225 2226 auto NewTrueProb = TProb + FProb / 2; 2227 auto NewFalseProb = FProb / 2; 2228 // Emit the LHS condition. 2229 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2230 NewTrueProb, NewFalseProb, InvertCond); 2231 2232 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2233 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2234 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2235 // Emit the RHS condition into TmpBB. 2236 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2237 Probs[0], Probs[1], InvertCond); 2238 } 2239 } 2240 2241 /// If the set of cases should be emitted as a series of branches, return true. 2242 /// If we should emit this as a bunch of and/or'd together conditions, return 2243 /// false. 2244 bool 2245 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2246 if (Cases.size() != 2) return true; 2247 2248 // If this is two comparisons of the same values or'd or and'd together, they 2249 // will get folded into a single comparison, so don't emit two blocks. 2250 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2251 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2252 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2253 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2254 return false; 2255 } 2256 2257 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2258 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2259 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2260 Cases[0].CC == Cases[1].CC && 2261 isa<Constant>(Cases[0].CmpRHS) && 2262 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2263 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2264 return false; 2265 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2266 return false; 2267 } 2268 2269 return true; 2270 } 2271 2272 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2273 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2274 2275 // Update machine-CFG edges. 2276 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2277 2278 if (I.isUnconditional()) { 2279 // Update machine-CFG edges. 2280 BrMBB->addSuccessor(Succ0MBB); 2281 2282 // If this is not a fall-through branch or optimizations are switched off, 2283 // emit the branch. 2284 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2285 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2286 MVT::Other, getControlRoot(), 2287 DAG.getBasicBlock(Succ0MBB))); 2288 2289 return; 2290 } 2291 2292 // If this condition is one of the special cases we handle, do special stuff 2293 // now. 2294 const Value *CondVal = I.getCondition(); 2295 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2296 2297 // If this is a series of conditions that are or'd or and'd together, emit 2298 // this as a sequence of branches instead of setcc's with and/or operations. 2299 // As long as jumps are not expensive, this should improve performance. 2300 // For example, instead of something like: 2301 // cmp A, B 2302 // C = seteq 2303 // cmp D, E 2304 // F = setle 2305 // or C, F 2306 // jnz foo 2307 // Emit: 2308 // cmp A, B 2309 // je foo 2310 // cmp D, E 2311 // jle foo 2312 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2313 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2314 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2315 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2316 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2317 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2318 Opcode, 2319 getEdgeProbability(BrMBB, Succ0MBB), 2320 getEdgeProbability(BrMBB, Succ1MBB), 2321 /*InvertCond=*/false); 2322 // If the compares in later blocks need to use values not currently 2323 // exported from this block, export them now. This block should always 2324 // be the first entry. 2325 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2326 2327 // Allow some cases to be rejected. 2328 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2329 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2330 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2331 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2332 } 2333 2334 // Emit the branch for this block. 2335 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2336 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2337 return; 2338 } 2339 2340 // Okay, we decided not to do this, remove any inserted MBB's and clear 2341 // SwitchCases. 2342 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2343 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2344 2345 SL->SwitchCases.clear(); 2346 } 2347 } 2348 2349 // Create a CaseBlock record representing this branch. 2350 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2351 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2352 2353 // Use visitSwitchCase to actually insert the fast branch sequence for this 2354 // cond branch. 2355 visitSwitchCase(CB, BrMBB); 2356 } 2357 2358 /// visitSwitchCase - Emits the necessary code to represent a single node in 2359 /// the binary search tree resulting from lowering a switch instruction. 2360 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2361 MachineBasicBlock *SwitchBB) { 2362 SDValue Cond; 2363 SDValue CondLHS = getValue(CB.CmpLHS); 2364 SDLoc dl = CB.DL; 2365 2366 if (CB.CC == ISD::SETTRUE) { 2367 // Branch or fall through to TrueBB. 2368 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2369 SwitchBB->normalizeSuccProbs(); 2370 if (CB.TrueBB != NextBlock(SwitchBB)) { 2371 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2372 DAG.getBasicBlock(CB.TrueBB))); 2373 } 2374 return; 2375 } 2376 2377 auto &TLI = DAG.getTargetLoweringInfo(); 2378 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2379 2380 // Build the setcc now. 2381 if (!CB.CmpMHS) { 2382 // Fold "(X == true)" to X and "(X == false)" to !X to 2383 // handle common cases produced by branch lowering. 2384 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2385 CB.CC == ISD::SETEQ) 2386 Cond = CondLHS; 2387 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2388 CB.CC == ISD::SETEQ) { 2389 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2391 } else { 2392 SDValue CondRHS = getValue(CB.CmpRHS); 2393 2394 // If a pointer's DAG type is larger than its memory type then the DAG 2395 // values are zero-extended. This breaks signed comparisons so truncate 2396 // back to the underlying type before doing the compare. 2397 if (CondLHS.getValueType() != MemVT) { 2398 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2399 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2400 } 2401 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2402 } 2403 } else { 2404 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2405 2406 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2407 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2408 2409 SDValue CmpOp = getValue(CB.CmpMHS); 2410 EVT VT = CmpOp.getValueType(); 2411 2412 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2413 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2414 ISD::SETLE); 2415 } else { 2416 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2417 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2418 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2419 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2420 } 2421 } 2422 2423 // Update successor info 2424 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2425 // TrueBB and FalseBB are always different unless the incoming IR is 2426 // degenerate. This only happens when running llc on weird IR. 2427 if (CB.TrueBB != CB.FalseBB) 2428 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2429 SwitchBB->normalizeSuccProbs(); 2430 2431 // If the lhs block is the next block, invert the condition so that we can 2432 // fall through to the lhs instead of the rhs block. 2433 if (CB.TrueBB == NextBlock(SwitchBB)) { 2434 std::swap(CB.TrueBB, CB.FalseBB); 2435 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2436 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2437 } 2438 2439 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2440 MVT::Other, getControlRoot(), Cond, 2441 DAG.getBasicBlock(CB.TrueBB)); 2442 2443 // Insert the false branch. Do this even if it's a fall through branch, 2444 // this makes it easier to do DAG optimizations which require inverting 2445 // the branch condition. 2446 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2447 DAG.getBasicBlock(CB.FalseBB)); 2448 2449 DAG.setRoot(BrCond); 2450 } 2451 2452 /// visitJumpTable - Emit JumpTable node in the current MBB 2453 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2454 // Emit the code for the jump table 2455 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2456 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2457 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2458 JT.Reg, PTy); 2459 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2460 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2461 MVT::Other, Index.getValue(1), 2462 Table, Index); 2463 DAG.setRoot(BrJumpTable); 2464 } 2465 2466 /// visitJumpTableHeader - This function emits necessary code to produce index 2467 /// in the JumpTable from switch case. 2468 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2469 JumpTableHeader &JTH, 2470 MachineBasicBlock *SwitchBB) { 2471 SDLoc dl = getCurSDLoc(); 2472 2473 // Subtract the lowest switch case value from the value being switched on. 2474 SDValue SwitchOp = getValue(JTH.SValue); 2475 EVT VT = SwitchOp.getValueType(); 2476 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2477 DAG.getConstant(JTH.First, dl, VT)); 2478 2479 // The SDNode we just created, which holds the value being switched on minus 2480 // the smallest case value, needs to be copied to a virtual register so it 2481 // can be used as an index into the jump table in a subsequent basic block. 2482 // This value may be smaller or larger than the target's pointer type, and 2483 // therefore require extension or truncating. 2484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2485 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2486 2487 unsigned JumpTableReg = 2488 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2489 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2490 JumpTableReg, SwitchOp); 2491 JT.Reg = JumpTableReg; 2492 2493 if (!JTH.OmitRangeCheck) { 2494 // Emit the range check for the jump table, and branch to the default block 2495 // for the switch statement if the value being switched on exceeds the 2496 // largest case in the switch. 2497 SDValue CMP = DAG.getSetCC( 2498 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2499 Sub.getValueType()), 2500 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2501 2502 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2503 MVT::Other, CopyTo, CMP, 2504 DAG.getBasicBlock(JT.Default)); 2505 2506 // Avoid emitting unnecessary branches to the next block. 2507 if (JT.MBB != NextBlock(SwitchBB)) 2508 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2509 DAG.getBasicBlock(JT.MBB)); 2510 2511 DAG.setRoot(BrCond); 2512 } else { 2513 // Avoid emitting unnecessary branches to the next block. 2514 if (JT.MBB != NextBlock(SwitchBB)) 2515 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2516 DAG.getBasicBlock(JT.MBB))); 2517 else 2518 DAG.setRoot(CopyTo); 2519 } 2520 } 2521 2522 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2523 /// variable if there exists one. 2524 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2525 SDValue &Chain) { 2526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2527 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2528 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2529 MachineFunction &MF = DAG.getMachineFunction(); 2530 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2531 MachineSDNode *Node = 2532 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2533 if (Global) { 2534 MachinePointerInfo MPInfo(Global); 2535 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2536 MachineMemOperand::MODereferenceable; 2537 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2538 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2539 DAG.setNodeMemRefs(Node, {MemRef}); 2540 } 2541 if (PtrTy != PtrMemTy) 2542 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2543 return SDValue(Node, 0); 2544 } 2545 2546 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2547 /// tail spliced into a stack protector check success bb. 2548 /// 2549 /// For a high level explanation of how this fits into the stack protector 2550 /// generation see the comment on the declaration of class 2551 /// StackProtectorDescriptor. 2552 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2553 MachineBasicBlock *ParentBB) { 2554 2555 // First create the loads to the guard/stack slot for the comparison. 2556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2557 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2558 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2559 2560 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2561 int FI = MFI.getStackProtectorIndex(); 2562 2563 SDValue Guard; 2564 SDLoc dl = getCurSDLoc(); 2565 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2566 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2567 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2568 2569 // Generate code to load the content of the guard slot. 2570 SDValue GuardVal = DAG.getLoad( 2571 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2572 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2573 MachineMemOperand::MOVolatile); 2574 2575 if (TLI.useStackGuardXorFP()) 2576 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2577 2578 // Retrieve guard check function, nullptr if instrumentation is inlined. 2579 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2580 // The target provides a guard check function to validate the guard value. 2581 // Generate a call to that function with the content of the guard slot as 2582 // argument. 2583 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2584 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2585 2586 TargetLowering::ArgListTy Args; 2587 TargetLowering::ArgListEntry Entry; 2588 Entry.Node = GuardVal; 2589 Entry.Ty = FnTy->getParamType(0); 2590 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2591 Entry.IsInReg = true; 2592 Args.push_back(Entry); 2593 2594 TargetLowering::CallLoweringInfo CLI(DAG); 2595 CLI.setDebugLoc(getCurSDLoc()) 2596 .setChain(DAG.getEntryNode()) 2597 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2598 getValue(GuardCheckFn), std::move(Args)); 2599 2600 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2601 DAG.setRoot(Result.second); 2602 return; 2603 } 2604 2605 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2606 // Otherwise, emit a volatile load to retrieve the stack guard value. 2607 SDValue Chain = DAG.getEntryNode(); 2608 if (TLI.useLoadStackGuardNode()) { 2609 Guard = getLoadStackGuard(DAG, dl, Chain); 2610 } else { 2611 const Value *IRGuard = TLI.getSDagStackGuard(M); 2612 SDValue GuardPtr = getValue(IRGuard); 2613 2614 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2615 MachinePointerInfo(IRGuard, 0), Align, 2616 MachineMemOperand::MOVolatile); 2617 } 2618 2619 // Perform the comparison via a getsetcc. 2620 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2621 *DAG.getContext(), 2622 Guard.getValueType()), 2623 Guard, GuardVal, ISD::SETNE); 2624 2625 // If the guard/stackslot do not equal, branch to failure MBB. 2626 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2627 MVT::Other, GuardVal.getOperand(0), 2628 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2629 // Otherwise branch to success MBB. 2630 SDValue Br = DAG.getNode(ISD::BR, dl, 2631 MVT::Other, BrCond, 2632 DAG.getBasicBlock(SPD.getSuccessMBB())); 2633 2634 DAG.setRoot(Br); 2635 } 2636 2637 /// Codegen the failure basic block for a stack protector check. 2638 /// 2639 /// A failure stack protector machine basic block consists simply of a call to 2640 /// __stack_chk_fail(). 2641 /// 2642 /// For a high level explanation of how this fits into the stack protector 2643 /// generation see the comment on the declaration of class 2644 /// StackProtectorDescriptor. 2645 void 2646 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2648 TargetLowering::MakeLibCallOptions CallOptions; 2649 CallOptions.setDiscardResult(true); 2650 SDValue Chain = 2651 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2652 None, CallOptions, getCurSDLoc()).second; 2653 // On PS4, the "return address" must still be within the calling function, 2654 // even if it's at the very end, so emit an explicit TRAP here. 2655 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2656 if (TM.getTargetTriple().isPS4CPU()) 2657 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2658 2659 DAG.setRoot(Chain); 2660 } 2661 2662 /// visitBitTestHeader - This function emits necessary code to produce value 2663 /// suitable for "bit tests" 2664 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2665 MachineBasicBlock *SwitchBB) { 2666 SDLoc dl = getCurSDLoc(); 2667 2668 // Subtract the minimum value. 2669 SDValue SwitchOp = getValue(B.SValue); 2670 EVT VT = SwitchOp.getValueType(); 2671 SDValue RangeSub = 2672 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2673 2674 // Determine the type of the test operands. 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 bool UsePtrType = false; 2677 if (!TLI.isTypeLegal(VT)) { 2678 UsePtrType = true; 2679 } else { 2680 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2681 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2682 // Switch table case range are encoded into series of masks. 2683 // Just use pointer type, it's guaranteed to fit. 2684 UsePtrType = true; 2685 break; 2686 } 2687 } 2688 SDValue Sub = RangeSub; 2689 if (UsePtrType) { 2690 VT = TLI.getPointerTy(DAG.getDataLayout()); 2691 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2692 } 2693 2694 B.RegVT = VT.getSimpleVT(); 2695 B.Reg = FuncInfo.CreateReg(B.RegVT); 2696 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2697 2698 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2699 2700 if (!B.OmitRangeCheck) 2701 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2702 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2703 SwitchBB->normalizeSuccProbs(); 2704 2705 SDValue Root = CopyTo; 2706 if (!B.OmitRangeCheck) { 2707 // Conditional branch to the default block. 2708 SDValue RangeCmp = DAG.getSetCC(dl, 2709 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2710 RangeSub.getValueType()), 2711 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2712 ISD::SETUGT); 2713 2714 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2715 DAG.getBasicBlock(B.Default)); 2716 } 2717 2718 // Avoid emitting unnecessary branches to the next block. 2719 if (MBB != NextBlock(SwitchBB)) 2720 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2721 2722 DAG.setRoot(Root); 2723 } 2724 2725 /// visitBitTestCase - this function produces one "bit test" 2726 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2727 MachineBasicBlock* NextMBB, 2728 BranchProbability BranchProbToNext, 2729 unsigned Reg, 2730 BitTestCase &B, 2731 MachineBasicBlock *SwitchBB) { 2732 SDLoc dl = getCurSDLoc(); 2733 MVT VT = BB.RegVT; 2734 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2735 SDValue Cmp; 2736 unsigned PopCount = countPopulation(B.Mask); 2737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2738 if (PopCount == 1) { 2739 // Testing for a single bit; just compare the shift count with what it 2740 // would need to be to shift a 1 bit in that position. 2741 Cmp = DAG.getSetCC( 2742 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2743 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2744 ISD::SETEQ); 2745 } else if (PopCount == BB.Range) { 2746 // There is only one zero bit in the range, test for it directly. 2747 Cmp = DAG.getSetCC( 2748 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2749 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2750 ISD::SETNE); 2751 } else { 2752 // Make desired shift 2753 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2754 DAG.getConstant(1, dl, VT), ShiftOp); 2755 2756 // Emit bit tests and jumps 2757 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2758 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2759 Cmp = DAG.getSetCC( 2760 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2761 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2762 } 2763 2764 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2765 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2766 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2767 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2768 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2769 // one as they are relative probabilities (and thus work more like weights), 2770 // and hence we need to normalize them to let the sum of them become one. 2771 SwitchBB->normalizeSuccProbs(); 2772 2773 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2774 MVT::Other, getControlRoot(), 2775 Cmp, DAG.getBasicBlock(B.TargetBB)); 2776 2777 // Avoid emitting unnecessary branches to the next block. 2778 if (NextMBB != NextBlock(SwitchBB)) 2779 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2780 DAG.getBasicBlock(NextMBB)); 2781 2782 DAG.setRoot(BrAnd); 2783 } 2784 2785 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2786 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2787 2788 // Retrieve successors. Look through artificial IR level blocks like 2789 // catchswitch for successors. 2790 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2791 const BasicBlock *EHPadBB = I.getSuccessor(1); 2792 2793 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2794 // have to do anything here to lower funclet bundles. 2795 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2796 LLVMContext::OB_gc_transition, 2797 LLVMContext::OB_gc_live, 2798 LLVMContext::OB_funclet, 2799 LLVMContext::OB_cfguardtarget}) && 2800 "Cannot lower invokes with arbitrary operand bundles yet!"); 2801 2802 const Value *Callee(I.getCalledOperand()); 2803 const Function *Fn = dyn_cast<Function>(Callee); 2804 if (isa<InlineAsm>(Callee)) 2805 visitInlineAsm(I); 2806 else if (Fn && Fn->isIntrinsic()) { 2807 switch (Fn->getIntrinsicID()) { 2808 default: 2809 llvm_unreachable("Cannot invoke this intrinsic"); 2810 case Intrinsic::donothing: 2811 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2812 break; 2813 case Intrinsic::experimental_patchpoint_void: 2814 case Intrinsic::experimental_patchpoint_i64: 2815 visitPatchpoint(I, EHPadBB); 2816 break; 2817 case Intrinsic::experimental_gc_statepoint: 2818 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2819 break; 2820 case Intrinsic::wasm_rethrow_in_catch: { 2821 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2822 // special because it can be invoked, so we manually lower it to a DAG 2823 // node here. 2824 SmallVector<SDValue, 8> Ops; 2825 Ops.push_back(getRoot()); // inchain 2826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2827 Ops.push_back( 2828 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2829 TLI.getPointerTy(DAG.getDataLayout()))); 2830 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2831 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2832 break; 2833 } 2834 } 2835 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2836 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2837 // Eventually we will support lowering the @llvm.experimental.deoptimize 2838 // intrinsic, and right now there are no plans to support other intrinsics 2839 // with deopt state. 2840 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2841 } else { 2842 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2843 } 2844 2845 // If the value of the invoke is used outside of its defining block, make it 2846 // available as a virtual register. 2847 // We already took care of the exported value for the statepoint instruction 2848 // during call to the LowerStatepoint. 2849 if (!isa<GCStatepointInst>(I)) { 2850 CopyToExportRegsIfNeeded(&I); 2851 } 2852 2853 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2854 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2855 BranchProbability EHPadBBProb = 2856 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2857 : BranchProbability::getZero(); 2858 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2859 2860 // Update successor info. 2861 addSuccessorWithProb(InvokeMBB, Return); 2862 for (auto &UnwindDest : UnwindDests) { 2863 UnwindDest.first->setIsEHPad(); 2864 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2865 } 2866 InvokeMBB->normalizeSuccProbs(); 2867 2868 // Drop into normal successor. 2869 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2870 DAG.getBasicBlock(Return))); 2871 } 2872 2873 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2874 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2875 2876 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2877 // have to do anything here to lower funclet bundles. 2878 assert(!I.hasOperandBundlesOtherThan( 2879 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2880 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2881 2882 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2883 visitInlineAsm(I); 2884 CopyToExportRegsIfNeeded(&I); 2885 2886 // Retrieve successors. 2887 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2888 2889 // Update successor info. 2890 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2891 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2892 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2893 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2894 Target->setIsInlineAsmBrIndirectTarget(); 2895 } 2896 CallBrMBB->normalizeSuccProbs(); 2897 2898 // Drop into default successor. 2899 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2900 MVT::Other, getControlRoot(), 2901 DAG.getBasicBlock(Return))); 2902 } 2903 2904 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2905 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2906 } 2907 2908 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2909 assert(FuncInfo.MBB->isEHPad() && 2910 "Call to landingpad not in landing pad!"); 2911 2912 // If there aren't registers to copy the values into (e.g., during SjLj 2913 // exceptions), then don't bother to create these DAG nodes. 2914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2915 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2916 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2917 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2918 return; 2919 2920 // If landingpad's return type is token type, we don't create DAG nodes 2921 // for its exception pointer and selector value. The extraction of exception 2922 // pointer or selector value from token type landingpads is not currently 2923 // supported. 2924 if (LP.getType()->isTokenTy()) 2925 return; 2926 2927 SmallVector<EVT, 2> ValueVTs; 2928 SDLoc dl = getCurSDLoc(); 2929 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2930 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2931 2932 // Get the two live-in registers as SDValues. The physregs have already been 2933 // copied into virtual registers. 2934 SDValue Ops[2]; 2935 if (FuncInfo.ExceptionPointerVirtReg) { 2936 Ops[0] = DAG.getZExtOrTrunc( 2937 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2938 FuncInfo.ExceptionPointerVirtReg, 2939 TLI.getPointerTy(DAG.getDataLayout())), 2940 dl, ValueVTs[0]); 2941 } else { 2942 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2943 } 2944 Ops[1] = DAG.getZExtOrTrunc( 2945 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2946 FuncInfo.ExceptionSelectorVirtReg, 2947 TLI.getPointerTy(DAG.getDataLayout())), 2948 dl, ValueVTs[1]); 2949 2950 // Merge into one. 2951 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2952 DAG.getVTList(ValueVTs), Ops); 2953 setValue(&LP, Res); 2954 } 2955 2956 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2957 MachineBasicBlock *Last) { 2958 // Update JTCases. 2959 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2960 if (SL->JTCases[i].first.HeaderBB == First) 2961 SL->JTCases[i].first.HeaderBB = Last; 2962 2963 // Update BitTestCases. 2964 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2965 if (SL->BitTestCases[i].Parent == First) 2966 SL->BitTestCases[i].Parent = Last; 2967 } 2968 2969 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2970 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2971 2972 // Update machine-CFG edges with unique successors. 2973 SmallSet<BasicBlock*, 32> Done; 2974 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2975 BasicBlock *BB = I.getSuccessor(i); 2976 bool Inserted = Done.insert(BB).second; 2977 if (!Inserted) 2978 continue; 2979 2980 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2981 addSuccessorWithProb(IndirectBrMBB, Succ); 2982 } 2983 IndirectBrMBB->normalizeSuccProbs(); 2984 2985 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2986 MVT::Other, getControlRoot(), 2987 getValue(I.getAddress()))); 2988 } 2989 2990 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2991 if (!DAG.getTarget().Options.TrapUnreachable) 2992 return; 2993 2994 // We may be able to ignore unreachable behind a noreturn call. 2995 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2996 const BasicBlock &BB = *I.getParent(); 2997 if (&I != &BB.front()) { 2998 BasicBlock::const_iterator PredI = 2999 std::prev(BasicBlock::const_iterator(&I)); 3000 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3001 if (Call->doesNotReturn()) 3002 return; 3003 } 3004 } 3005 } 3006 3007 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3008 } 3009 3010 void SelectionDAGBuilder::visitFSub(const User &I) { 3011 // -0.0 - X --> fneg 3012 Type *Ty = I.getType(); 3013 if (isa<Constant>(I.getOperand(0)) && 3014 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3015 SDValue Op2 = getValue(I.getOperand(1)); 3016 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3017 Op2.getValueType(), Op2)); 3018 return; 3019 } 3020 3021 visitBinary(I, ISD::FSUB); 3022 } 3023 3024 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3025 SDNodeFlags Flags; 3026 3027 SDValue Op = getValue(I.getOperand(0)); 3028 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3029 Op, Flags); 3030 setValue(&I, UnNodeValue); 3031 } 3032 3033 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3034 SDNodeFlags Flags; 3035 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3036 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3037 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3038 } 3039 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3040 Flags.setExact(ExactOp->isExact()); 3041 } 3042 3043 SDValue Op1 = getValue(I.getOperand(0)); 3044 SDValue Op2 = getValue(I.getOperand(1)); 3045 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3046 Op1, Op2, Flags); 3047 setValue(&I, BinNodeValue); 3048 } 3049 3050 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3051 SDValue Op1 = getValue(I.getOperand(0)); 3052 SDValue Op2 = getValue(I.getOperand(1)); 3053 3054 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3055 Op1.getValueType(), DAG.getDataLayout()); 3056 3057 // Coerce the shift amount to the right type if we can. 3058 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3059 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3060 unsigned Op2Size = Op2.getValueSizeInBits(); 3061 SDLoc DL = getCurSDLoc(); 3062 3063 // If the operand is smaller than the shift count type, promote it. 3064 if (ShiftSize > Op2Size) 3065 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3066 3067 // If the operand is larger than the shift count type but the shift 3068 // count type has enough bits to represent any shift value, truncate 3069 // it now. This is a common case and it exposes the truncate to 3070 // optimization early. 3071 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3072 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3073 // Otherwise we'll need to temporarily settle for some other convenient 3074 // type. Type legalization will make adjustments once the shiftee is split. 3075 else 3076 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3077 } 3078 3079 bool nuw = false; 3080 bool nsw = false; 3081 bool exact = false; 3082 3083 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3084 3085 if (const OverflowingBinaryOperator *OFBinOp = 3086 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3087 nuw = OFBinOp->hasNoUnsignedWrap(); 3088 nsw = OFBinOp->hasNoSignedWrap(); 3089 } 3090 if (const PossiblyExactOperator *ExactOp = 3091 dyn_cast<const PossiblyExactOperator>(&I)) 3092 exact = ExactOp->isExact(); 3093 } 3094 SDNodeFlags Flags; 3095 Flags.setExact(exact); 3096 Flags.setNoSignedWrap(nsw); 3097 Flags.setNoUnsignedWrap(nuw); 3098 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3099 Flags); 3100 setValue(&I, Res); 3101 } 3102 3103 void SelectionDAGBuilder::visitSDiv(const User &I) { 3104 SDValue Op1 = getValue(I.getOperand(0)); 3105 SDValue Op2 = getValue(I.getOperand(1)); 3106 3107 SDNodeFlags Flags; 3108 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3109 cast<PossiblyExactOperator>(&I)->isExact()); 3110 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3111 Op2, Flags)); 3112 } 3113 3114 void SelectionDAGBuilder::visitICmp(const User &I) { 3115 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3116 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3117 predicate = IC->getPredicate(); 3118 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3119 predicate = ICmpInst::Predicate(IC->getPredicate()); 3120 SDValue Op1 = getValue(I.getOperand(0)); 3121 SDValue Op2 = getValue(I.getOperand(1)); 3122 ISD::CondCode Opcode = getICmpCondCode(predicate); 3123 3124 auto &TLI = DAG.getTargetLoweringInfo(); 3125 EVT MemVT = 3126 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3127 3128 // If a pointer's DAG type is larger than its memory type then the DAG values 3129 // are zero-extended. This breaks signed comparisons so truncate back to the 3130 // underlying type before doing the compare. 3131 if (Op1.getValueType() != MemVT) { 3132 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3133 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3134 } 3135 3136 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3137 I.getType()); 3138 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3139 } 3140 3141 void SelectionDAGBuilder::visitFCmp(const User &I) { 3142 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3143 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3144 predicate = FC->getPredicate(); 3145 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3146 predicate = FCmpInst::Predicate(FC->getPredicate()); 3147 SDValue Op1 = getValue(I.getOperand(0)); 3148 SDValue Op2 = getValue(I.getOperand(1)); 3149 3150 ISD::CondCode Condition = getFCmpCondCode(predicate); 3151 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3152 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3153 Condition = getFCmpCodeWithoutNaN(Condition); 3154 3155 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3156 I.getType()); 3157 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3158 } 3159 3160 // Check if the condition of the select has one use or two users that are both 3161 // selects with the same condition. 3162 static bool hasOnlySelectUsers(const Value *Cond) { 3163 return llvm::all_of(Cond->users(), [](const Value *V) { 3164 return isa<SelectInst>(V); 3165 }); 3166 } 3167 3168 void SelectionDAGBuilder::visitSelect(const User &I) { 3169 SmallVector<EVT, 4> ValueVTs; 3170 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3171 ValueVTs); 3172 unsigned NumValues = ValueVTs.size(); 3173 if (NumValues == 0) return; 3174 3175 SmallVector<SDValue, 4> Values(NumValues); 3176 SDValue Cond = getValue(I.getOperand(0)); 3177 SDValue LHSVal = getValue(I.getOperand(1)); 3178 SDValue RHSVal = getValue(I.getOperand(2)); 3179 SmallVector<SDValue, 1> BaseOps(1, Cond); 3180 ISD::NodeType OpCode = 3181 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3182 3183 bool IsUnaryAbs = false; 3184 3185 // Min/max matching is only viable if all output VTs are the same. 3186 if (is_splat(ValueVTs)) { 3187 EVT VT = ValueVTs[0]; 3188 LLVMContext &Ctx = *DAG.getContext(); 3189 auto &TLI = DAG.getTargetLoweringInfo(); 3190 3191 // We care about the legality of the operation after it has been type 3192 // legalized. 3193 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3194 VT = TLI.getTypeToTransformTo(Ctx, VT); 3195 3196 // If the vselect is legal, assume we want to leave this as a vector setcc + 3197 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3198 // min/max is legal on the scalar type. 3199 bool UseScalarMinMax = VT.isVector() && 3200 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3201 3202 Value *LHS, *RHS; 3203 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3204 ISD::NodeType Opc = ISD::DELETED_NODE; 3205 switch (SPR.Flavor) { 3206 case SPF_UMAX: Opc = ISD::UMAX; break; 3207 case SPF_UMIN: Opc = ISD::UMIN; break; 3208 case SPF_SMAX: Opc = ISD::SMAX; break; 3209 case SPF_SMIN: Opc = ISD::SMIN; break; 3210 case SPF_FMINNUM: 3211 switch (SPR.NaNBehavior) { 3212 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3213 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3214 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3215 case SPNB_RETURNS_ANY: { 3216 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3217 Opc = ISD::FMINNUM; 3218 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3219 Opc = ISD::FMINIMUM; 3220 else if (UseScalarMinMax) 3221 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3222 ISD::FMINNUM : ISD::FMINIMUM; 3223 break; 3224 } 3225 } 3226 break; 3227 case SPF_FMAXNUM: 3228 switch (SPR.NaNBehavior) { 3229 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3230 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3231 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3232 case SPNB_RETURNS_ANY: 3233 3234 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3235 Opc = ISD::FMAXNUM; 3236 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3237 Opc = ISD::FMAXIMUM; 3238 else if (UseScalarMinMax) 3239 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3240 ISD::FMAXNUM : ISD::FMAXIMUM; 3241 break; 3242 } 3243 break; 3244 case SPF_ABS: 3245 IsUnaryAbs = true; 3246 Opc = ISD::ABS; 3247 break; 3248 case SPF_NABS: 3249 // TODO: we need to produce sub(0, abs(X)). 3250 default: break; 3251 } 3252 3253 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3254 (TLI.isOperationLegalOrCustom(Opc, VT) || 3255 (UseScalarMinMax && 3256 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3257 // If the underlying comparison instruction is used by any other 3258 // instruction, the consumed instructions won't be destroyed, so it is 3259 // not profitable to convert to a min/max. 3260 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3261 OpCode = Opc; 3262 LHSVal = getValue(LHS); 3263 RHSVal = getValue(RHS); 3264 BaseOps.clear(); 3265 } 3266 3267 if (IsUnaryAbs) { 3268 OpCode = Opc; 3269 LHSVal = getValue(LHS); 3270 BaseOps.clear(); 3271 } 3272 } 3273 3274 if (IsUnaryAbs) { 3275 for (unsigned i = 0; i != NumValues; ++i) { 3276 Values[i] = 3277 DAG.getNode(OpCode, getCurSDLoc(), 3278 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3279 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3280 } 3281 } else { 3282 for (unsigned i = 0; i != NumValues; ++i) { 3283 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3284 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3285 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3286 Values[i] = DAG.getNode( 3287 OpCode, getCurSDLoc(), 3288 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3289 } 3290 } 3291 3292 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3293 DAG.getVTList(ValueVTs), Values)); 3294 } 3295 3296 void SelectionDAGBuilder::visitTrunc(const User &I) { 3297 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3298 SDValue N = getValue(I.getOperand(0)); 3299 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3300 I.getType()); 3301 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3302 } 3303 3304 void SelectionDAGBuilder::visitZExt(const User &I) { 3305 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3306 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3307 SDValue N = getValue(I.getOperand(0)); 3308 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3309 I.getType()); 3310 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3311 } 3312 3313 void SelectionDAGBuilder::visitSExt(const User &I) { 3314 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3315 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3316 SDValue N = getValue(I.getOperand(0)); 3317 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3318 I.getType()); 3319 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3320 } 3321 3322 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3323 // FPTrunc is never a no-op cast, no need to check 3324 SDValue N = getValue(I.getOperand(0)); 3325 SDLoc dl = getCurSDLoc(); 3326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3327 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3328 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3329 DAG.getTargetConstant( 3330 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3331 } 3332 3333 void SelectionDAGBuilder::visitFPExt(const User &I) { 3334 // FPExt is never a no-op cast, no need to check 3335 SDValue N = getValue(I.getOperand(0)); 3336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3337 I.getType()); 3338 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3339 } 3340 3341 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3342 // FPToUI is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3350 // FPToSI is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3358 // UIToFP is never a no-op cast, no need to check 3359 SDValue N = getValue(I.getOperand(0)); 3360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3361 I.getType()); 3362 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3363 } 3364 3365 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3366 // SIToFP is never a no-op cast, no need to check 3367 SDValue N = getValue(I.getOperand(0)); 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3371 } 3372 3373 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3374 // What to do depends on the size of the integer and the size of the pointer. 3375 // We can either truncate, zero extend, or no-op, accordingly. 3376 SDValue N = getValue(I.getOperand(0)); 3377 auto &TLI = DAG.getTargetLoweringInfo(); 3378 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3379 I.getType()); 3380 EVT PtrMemVT = 3381 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3382 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3383 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3384 setValue(&I, N); 3385 } 3386 3387 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3388 // What to do depends on the size of the integer and the size of the pointer. 3389 // We can either truncate, zero extend, or no-op, accordingly. 3390 SDValue N = getValue(I.getOperand(0)); 3391 auto &TLI = DAG.getTargetLoweringInfo(); 3392 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3393 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3394 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3395 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3396 setValue(&I, N); 3397 } 3398 3399 void SelectionDAGBuilder::visitBitCast(const User &I) { 3400 SDValue N = getValue(I.getOperand(0)); 3401 SDLoc dl = getCurSDLoc(); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 3405 // BitCast assures us that source and destination are the same size so this is 3406 // either a BITCAST or a no-op. 3407 if (DestVT != N.getValueType()) 3408 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3409 DestVT, N)); // convert types. 3410 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3411 // might fold any kind of constant expression to an integer constant and that 3412 // is not what we are looking for. Only recognize a bitcast of a genuine 3413 // constant integer as an opaque constant. 3414 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3415 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3416 /*isOpaque*/true)); 3417 else 3418 setValue(&I, N); // noop cast. 3419 } 3420 3421 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3423 const Value *SV = I.getOperand(0); 3424 SDValue N = getValue(SV); 3425 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3426 3427 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3428 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3429 3430 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3431 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3432 3433 setValue(&I, N); 3434 } 3435 3436 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 SDValue InVec = getValue(I.getOperand(0)); 3439 SDValue InVal = getValue(I.getOperand(1)); 3440 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3441 TLI.getVectorIdxTy(DAG.getDataLayout())); 3442 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3444 InVec, InVal, InIdx)); 3445 } 3446 3447 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3449 SDValue InVec = getValue(I.getOperand(0)); 3450 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3451 TLI.getVectorIdxTy(DAG.getDataLayout())); 3452 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3453 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3454 InVec, InIdx)); 3455 } 3456 3457 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3458 SDValue Src1 = getValue(I.getOperand(0)); 3459 SDValue Src2 = getValue(I.getOperand(1)); 3460 ArrayRef<int> Mask; 3461 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3462 Mask = SVI->getShuffleMask(); 3463 else 3464 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3465 SDLoc DL = getCurSDLoc(); 3466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3467 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3468 EVT SrcVT = Src1.getValueType(); 3469 3470 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3471 VT.isScalableVector()) { 3472 // Canonical splat form of first element of first input vector. 3473 SDValue FirstElt = 3474 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3475 DAG.getVectorIdxConstant(0, DL)); 3476 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3477 return; 3478 } 3479 3480 // For now, we only handle splats for scalable vectors. 3481 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3482 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3483 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3484 3485 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3486 unsigned MaskNumElts = Mask.size(); 3487 3488 if (SrcNumElts == MaskNumElts) { 3489 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3490 return; 3491 } 3492 3493 // Normalize the shuffle vector since mask and vector length don't match. 3494 if (SrcNumElts < MaskNumElts) { 3495 // Mask is longer than the source vectors. We can use concatenate vector to 3496 // make the mask and vectors lengths match. 3497 3498 if (MaskNumElts % SrcNumElts == 0) { 3499 // Mask length is a multiple of the source vector length. 3500 // Check if the shuffle is some kind of concatenation of the input 3501 // vectors. 3502 unsigned NumConcat = MaskNumElts / SrcNumElts; 3503 bool IsConcat = true; 3504 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3505 for (unsigned i = 0; i != MaskNumElts; ++i) { 3506 int Idx = Mask[i]; 3507 if (Idx < 0) 3508 continue; 3509 // Ensure the indices in each SrcVT sized piece are sequential and that 3510 // the same source is used for the whole piece. 3511 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3512 (ConcatSrcs[i / SrcNumElts] >= 0 && 3513 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3514 IsConcat = false; 3515 break; 3516 } 3517 // Remember which source this index came from. 3518 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3519 } 3520 3521 // The shuffle is concatenating multiple vectors together. Just emit 3522 // a CONCAT_VECTORS operation. 3523 if (IsConcat) { 3524 SmallVector<SDValue, 8> ConcatOps; 3525 for (auto Src : ConcatSrcs) { 3526 if (Src < 0) 3527 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3528 else if (Src == 0) 3529 ConcatOps.push_back(Src1); 3530 else 3531 ConcatOps.push_back(Src2); 3532 } 3533 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3534 return; 3535 } 3536 } 3537 3538 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3539 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3540 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3541 PaddedMaskNumElts); 3542 3543 // Pad both vectors with undefs to make them the same length as the mask. 3544 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3545 3546 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3547 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3548 MOps1[0] = Src1; 3549 MOps2[0] = Src2; 3550 3551 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3552 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3553 3554 // Readjust mask for new input vector length. 3555 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3556 for (unsigned i = 0; i != MaskNumElts; ++i) { 3557 int Idx = Mask[i]; 3558 if (Idx >= (int)SrcNumElts) 3559 Idx -= SrcNumElts - PaddedMaskNumElts; 3560 MappedOps[i] = Idx; 3561 } 3562 3563 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3564 3565 // If the concatenated vector was padded, extract a subvector with the 3566 // correct number of elements. 3567 if (MaskNumElts != PaddedMaskNumElts) 3568 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3569 DAG.getVectorIdxConstant(0, DL)); 3570 3571 setValue(&I, Result); 3572 return; 3573 } 3574 3575 if (SrcNumElts > MaskNumElts) { 3576 // Analyze the access pattern of the vector to see if we can extract 3577 // two subvectors and do the shuffle. 3578 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3579 bool CanExtract = true; 3580 for (int Idx : Mask) { 3581 unsigned Input = 0; 3582 if (Idx < 0) 3583 continue; 3584 3585 if (Idx >= (int)SrcNumElts) { 3586 Input = 1; 3587 Idx -= SrcNumElts; 3588 } 3589 3590 // If all the indices come from the same MaskNumElts sized portion of 3591 // the sources we can use extract. Also make sure the extract wouldn't 3592 // extract past the end of the source. 3593 int NewStartIdx = alignDown(Idx, MaskNumElts); 3594 if (NewStartIdx + MaskNumElts > SrcNumElts || 3595 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3596 CanExtract = false; 3597 // Make sure we always update StartIdx as we use it to track if all 3598 // elements are undef. 3599 StartIdx[Input] = NewStartIdx; 3600 } 3601 3602 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3603 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3604 return; 3605 } 3606 if (CanExtract) { 3607 // Extract appropriate subvector and generate a vector shuffle 3608 for (unsigned Input = 0; Input < 2; ++Input) { 3609 SDValue &Src = Input == 0 ? Src1 : Src2; 3610 if (StartIdx[Input] < 0) 3611 Src = DAG.getUNDEF(VT); 3612 else { 3613 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3614 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3615 } 3616 } 3617 3618 // Calculate new mask. 3619 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3620 for (int &Idx : MappedOps) { 3621 if (Idx >= (int)SrcNumElts) 3622 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3623 else if (Idx >= 0) 3624 Idx -= StartIdx[0]; 3625 } 3626 3627 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3628 return; 3629 } 3630 } 3631 3632 // We can't use either concat vectors or extract subvectors so fall back to 3633 // replacing the shuffle with extract and build vector. 3634 // to insert and build vector. 3635 EVT EltVT = VT.getVectorElementType(); 3636 SmallVector<SDValue,8> Ops; 3637 for (int Idx : Mask) { 3638 SDValue Res; 3639 3640 if (Idx < 0) { 3641 Res = DAG.getUNDEF(EltVT); 3642 } else { 3643 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3644 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3645 3646 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3647 DAG.getVectorIdxConstant(Idx, DL)); 3648 } 3649 3650 Ops.push_back(Res); 3651 } 3652 3653 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3654 } 3655 3656 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3657 ArrayRef<unsigned> Indices; 3658 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3659 Indices = IV->getIndices(); 3660 else 3661 Indices = cast<ConstantExpr>(&I)->getIndices(); 3662 3663 const Value *Op0 = I.getOperand(0); 3664 const Value *Op1 = I.getOperand(1); 3665 Type *AggTy = I.getType(); 3666 Type *ValTy = Op1->getType(); 3667 bool IntoUndef = isa<UndefValue>(Op0); 3668 bool FromUndef = isa<UndefValue>(Op1); 3669 3670 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3671 3672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3673 SmallVector<EVT, 4> AggValueVTs; 3674 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3675 SmallVector<EVT, 4> ValValueVTs; 3676 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3677 3678 unsigned NumAggValues = AggValueVTs.size(); 3679 unsigned NumValValues = ValValueVTs.size(); 3680 SmallVector<SDValue, 4> Values(NumAggValues); 3681 3682 // Ignore an insertvalue that produces an empty object 3683 if (!NumAggValues) { 3684 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3685 return; 3686 } 3687 3688 SDValue Agg = getValue(Op0); 3689 unsigned i = 0; 3690 // Copy the beginning value(s) from the original aggregate. 3691 for (; i != LinearIndex; ++i) 3692 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3693 SDValue(Agg.getNode(), Agg.getResNo() + i); 3694 // Copy values from the inserted value(s). 3695 if (NumValValues) { 3696 SDValue Val = getValue(Op1); 3697 for (; i != LinearIndex + NumValValues; ++i) 3698 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3699 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3700 } 3701 // Copy remaining value(s) from the original aggregate. 3702 for (; i != NumAggValues; ++i) 3703 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3704 SDValue(Agg.getNode(), Agg.getResNo() + i); 3705 3706 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3707 DAG.getVTList(AggValueVTs), Values)); 3708 } 3709 3710 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3711 ArrayRef<unsigned> Indices; 3712 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3713 Indices = EV->getIndices(); 3714 else 3715 Indices = cast<ConstantExpr>(&I)->getIndices(); 3716 3717 const Value *Op0 = I.getOperand(0); 3718 Type *AggTy = Op0->getType(); 3719 Type *ValTy = I.getType(); 3720 bool OutOfUndef = isa<UndefValue>(Op0); 3721 3722 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3723 3724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3725 SmallVector<EVT, 4> ValValueVTs; 3726 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3727 3728 unsigned NumValValues = ValValueVTs.size(); 3729 3730 // Ignore a extractvalue that produces an empty object 3731 if (!NumValValues) { 3732 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3733 return; 3734 } 3735 3736 SmallVector<SDValue, 4> Values(NumValValues); 3737 3738 SDValue Agg = getValue(Op0); 3739 // Copy out the selected value(s). 3740 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3741 Values[i - LinearIndex] = 3742 OutOfUndef ? 3743 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3744 SDValue(Agg.getNode(), Agg.getResNo() + i); 3745 3746 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3747 DAG.getVTList(ValValueVTs), Values)); 3748 } 3749 3750 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3751 Value *Op0 = I.getOperand(0); 3752 // Note that the pointer operand may be a vector of pointers. Take the scalar 3753 // element which holds a pointer. 3754 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3755 SDValue N = getValue(Op0); 3756 SDLoc dl = getCurSDLoc(); 3757 auto &TLI = DAG.getTargetLoweringInfo(); 3758 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3759 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3760 3761 // Normalize Vector GEP - all scalar operands should be converted to the 3762 // splat vector. 3763 bool IsVectorGEP = I.getType()->isVectorTy(); 3764 ElementCount VectorElementCount = 3765 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3766 : ElementCount(0, false); 3767 3768 if (IsVectorGEP && !N.getValueType().isVector()) { 3769 LLVMContext &Context = *DAG.getContext(); 3770 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3771 if (VectorElementCount.Scalable) 3772 N = DAG.getSplatVector(VT, dl, N); 3773 else 3774 N = DAG.getSplatBuildVector(VT, dl, N); 3775 } 3776 3777 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3778 GTI != E; ++GTI) { 3779 const Value *Idx = GTI.getOperand(); 3780 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3781 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3782 if (Field) { 3783 // N = N + Offset 3784 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3785 3786 // In an inbounds GEP with an offset that is nonnegative even when 3787 // interpreted as signed, assume there is no unsigned overflow. 3788 SDNodeFlags Flags; 3789 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3790 Flags.setNoUnsignedWrap(true); 3791 3792 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3793 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3794 } 3795 } else { 3796 // IdxSize is the width of the arithmetic according to IR semantics. 3797 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3798 // (and fix up the result later). 3799 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3800 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3801 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3802 // We intentionally mask away the high bits here; ElementSize may not 3803 // fit in IdxTy. 3804 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3805 bool ElementScalable = ElementSize.isScalable(); 3806 3807 // If this is a scalar constant or a splat vector of constants, 3808 // handle it quickly. 3809 const auto *C = dyn_cast<Constant>(Idx); 3810 if (C && isa<VectorType>(C->getType())) 3811 C = C->getSplatValue(); 3812 3813 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3814 if (CI && CI->isZero()) 3815 continue; 3816 if (CI && !ElementScalable) { 3817 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3818 LLVMContext &Context = *DAG.getContext(); 3819 SDValue OffsVal; 3820 if (IsVectorGEP) 3821 OffsVal = DAG.getConstant( 3822 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3823 else 3824 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3825 3826 // In an inbounds GEP with an offset that is nonnegative even when 3827 // interpreted as signed, assume there is no unsigned overflow. 3828 SDNodeFlags Flags; 3829 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3830 Flags.setNoUnsignedWrap(true); 3831 3832 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3833 3834 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3835 continue; 3836 } 3837 3838 // N = N + Idx * ElementMul; 3839 SDValue IdxN = getValue(Idx); 3840 3841 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3842 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3843 VectorElementCount); 3844 if (VectorElementCount.Scalable) 3845 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3846 else 3847 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3848 } 3849 3850 // If the index is smaller or larger than intptr_t, truncate or extend 3851 // it. 3852 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3853 3854 if (ElementScalable) { 3855 EVT VScaleTy = N.getValueType().getScalarType(); 3856 SDValue VScale = DAG.getNode( 3857 ISD::VSCALE, dl, VScaleTy, 3858 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3859 if (IsVectorGEP) 3860 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3861 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3862 } else { 3863 // If this is a multiply by a power of two, turn it into a shl 3864 // immediately. This is a very common case. 3865 if (ElementMul != 1) { 3866 if (ElementMul.isPowerOf2()) { 3867 unsigned Amt = ElementMul.logBase2(); 3868 IdxN = DAG.getNode(ISD::SHL, dl, 3869 N.getValueType(), IdxN, 3870 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3871 } else { 3872 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3873 IdxN.getValueType()); 3874 IdxN = DAG.getNode(ISD::MUL, dl, 3875 N.getValueType(), IdxN, Scale); 3876 } 3877 } 3878 } 3879 3880 N = DAG.getNode(ISD::ADD, dl, 3881 N.getValueType(), N, IdxN); 3882 } 3883 } 3884 3885 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3886 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3887 3888 setValue(&I, N); 3889 } 3890 3891 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3892 // If this is a fixed sized alloca in the entry block of the function, 3893 // allocate it statically on the stack. 3894 if (FuncInfo.StaticAllocaMap.count(&I)) 3895 return; // getValue will auto-populate this. 3896 3897 SDLoc dl = getCurSDLoc(); 3898 Type *Ty = I.getAllocatedType(); 3899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3900 auto &DL = DAG.getDataLayout(); 3901 uint64_t TySize = DL.getTypeAllocSize(Ty); 3902 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3903 3904 SDValue AllocSize = getValue(I.getArraySize()); 3905 3906 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3907 if (AllocSize.getValueType() != IntPtr) 3908 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3909 3910 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3911 AllocSize, 3912 DAG.getConstant(TySize, dl, IntPtr)); 3913 3914 // Handle alignment. If the requested alignment is less than or equal to 3915 // the stack alignment, ignore it. If the size is greater than or equal to 3916 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3917 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3918 if (*Alignment <= StackAlign) 3919 Alignment = None; 3920 3921 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3922 // Round the size of the allocation up to the stack alignment size 3923 // by add SA-1 to the size. This doesn't overflow because we're computing 3924 // an address inside an alloca. 3925 SDNodeFlags Flags; 3926 Flags.setNoUnsignedWrap(true); 3927 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3928 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3929 3930 // Mask out the low bits for alignment purposes. 3931 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3932 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3933 3934 SDValue Ops[] = { 3935 getRoot(), AllocSize, 3936 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3937 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3938 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3939 setValue(&I, DSA); 3940 DAG.setRoot(DSA.getValue(1)); 3941 3942 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3943 } 3944 3945 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3946 if (I.isAtomic()) 3947 return visitAtomicLoad(I); 3948 3949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3950 const Value *SV = I.getOperand(0); 3951 if (TLI.supportSwiftError()) { 3952 // Swifterror values can come from either a function parameter with 3953 // swifterror attribute or an alloca with swifterror attribute. 3954 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3955 if (Arg->hasSwiftErrorAttr()) 3956 return visitLoadFromSwiftError(I); 3957 } 3958 3959 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3960 if (Alloca->isSwiftError()) 3961 return visitLoadFromSwiftError(I); 3962 } 3963 } 3964 3965 SDValue Ptr = getValue(SV); 3966 3967 Type *Ty = I.getType(); 3968 Align Alignment = I.getAlign(); 3969 3970 AAMDNodes AAInfo; 3971 I.getAAMetadata(AAInfo); 3972 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3973 3974 SmallVector<EVT, 4> ValueVTs, MemVTs; 3975 SmallVector<uint64_t, 4> Offsets; 3976 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3977 unsigned NumValues = ValueVTs.size(); 3978 if (NumValues == 0) 3979 return; 3980 3981 bool isVolatile = I.isVolatile(); 3982 3983 SDValue Root; 3984 bool ConstantMemory = false; 3985 if (isVolatile) 3986 // Serialize volatile loads with other side effects. 3987 Root = getRoot(); 3988 else if (NumValues > MaxParallelChains) 3989 Root = getMemoryRoot(); 3990 else if (AA && 3991 AA->pointsToConstantMemory(MemoryLocation( 3992 SV, 3993 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3994 AAInfo))) { 3995 // Do not serialize (non-volatile) loads of constant memory with anything. 3996 Root = DAG.getEntryNode(); 3997 ConstantMemory = true; 3998 } else { 3999 // Do not serialize non-volatile loads against each other. 4000 Root = DAG.getRoot(); 4001 } 4002 4003 SDLoc dl = getCurSDLoc(); 4004 4005 if (isVolatile) 4006 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4007 4008 // An aggregate load cannot wrap around the address space, so offsets to its 4009 // parts don't wrap either. 4010 SDNodeFlags Flags; 4011 Flags.setNoUnsignedWrap(true); 4012 4013 SmallVector<SDValue, 4> Values(NumValues); 4014 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4015 EVT PtrVT = Ptr.getValueType(); 4016 4017 MachineMemOperand::Flags MMOFlags 4018 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4019 4020 unsigned ChainI = 0; 4021 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4022 // Serializing loads here may result in excessive register pressure, and 4023 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4024 // could recover a bit by hoisting nodes upward in the chain by recognizing 4025 // they are side-effect free or do not alias. The optimizer should really 4026 // avoid this case by converting large object/array copies to llvm.memcpy 4027 // (MaxParallelChains should always remain as failsafe). 4028 if (ChainI == MaxParallelChains) { 4029 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4030 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4031 makeArrayRef(Chains.data(), ChainI)); 4032 Root = Chain; 4033 ChainI = 0; 4034 } 4035 SDValue A = DAG.getNode(ISD::ADD, dl, 4036 PtrVT, Ptr, 4037 DAG.getConstant(Offsets[i], dl, PtrVT), 4038 Flags); 4039 4040 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4041 MachinePointerInfo(SV, Offsets[i]), Alignment, 4042 MMOFlags, AAInfo, Ranges); 4043 Chains[ChainI] = L.getValue(1); 4044 4045 if (MemVTs[i] != ValueVTs[i]) 4046 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4047 4048 Values[i] = L; 4049 } 4050 4051 if (!ConstantMemory) { 4052 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4053 makeArrayRef(Chains.data(), ChainI)); 4054 if (isVolatile) 4055 DAG.setRoot(Chain); 4056 else 4057 PendingLoads.push_back(Chain); 4058 } 4059 4060 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4061 DAG.getVTList(ValueVTs), Values)); 4062 } 4063 4064 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4065 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4066 "call visitStoreToSwiftError when backend supports swifterror"); 4067 4068 SmallVector<EVT, 4> ValueVTs; 4069 SmallVector<uint64_t, 4> Offsets; 4070 const Value *SrcV = I.getOperand(0); 4071 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4072 SrcV->getType(), ValueVTs, &Offsets); 4073 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4074 "expect a single EVT for swifterror"); 4075 4076 SDValue Src = getValue(SrcV); 4077 // Create a virtual register, then update the virtual register. 4078 Register VReg = 4079 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4080 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4081 // Chain can be getRoot or getControlRoot. 4082 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4083 SDValue(Src.getNode(), Src.getResNo())); 4084 DAG.setRoot(CopyNode); 4085 } 4086 4087 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4088 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4089 "call visitLoadFromSwiftError when backend supports swifterror"); 4090 4091 assert(!I.isVolatile() && 4092 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4093 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4094 "Support volatile, non temporal, invariant for load_from_swift_error"); 4095 4096 const Value *SV = I.getOperand(0); 4097 Type *Ty = I.getType(); 4098 AAMDNodes AAInfo; 4099 I.getAAMetadata(AAInfo); 4100 assert( 4101 (!AA || 4102 !AA->pointsToConstantMemory(MemoryLocation( 4103 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4104 AAInfo))) && 4105 "load_from_swift_error should not be constant memory"); 4106 4107 SmallVector<EVT, 4> ValueVTs; 4108 SmallVector<uint64_t, 4> Offsets; 4109 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4110 ValueVTs, &Offsets); 4111 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4112 "expect a single EVT for swifterror"); 4113 4114 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4115 SDValue L = DAG.getCopyFromReg( 4116 getRoot(), getCurSDLoc(), 4117 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4118 4119 setValue(&I, L); 4120 } 4121 4122 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4123 if (I.isAtomic()) 4124 return visitAtomicStore(I); 4125 4126 const Value *SrcV = I.getOperand(0); 4127 const Value *PtrV = I.getOperand(1); 4128 4129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4130 if (TLI.supportSwiftError()) { 4131 // Swifterror values can come from either a function parameter with 4132 // swifterror attribute or an alloca with swifterror attribute. 4133 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4134 if (Arg->hasSwiftErrorAttr()) 4135 return visitStoreToSwiftError(I); 4136 } 4137 4138 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4139 if (Alloca->isSwiftError()) 4140 return visitStoreToSwiftError(I); 4141 } 4142 } 4143 4144 SmallVector<EVT, 4> ValueVTs, MemVTs; 4145 SmallVector<uint64_t, 4> Offsets; 4146 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4147 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4148 unsigned NumValues = ValueVTs.size(); 4149 if (NumValues == 0) 4150 return; 4151 4152 // Get the lowered operands. Note that we do this after 4153 // checking if NumResults is zero, because with zero results 4154 // the operands won't have values in the map. 4155 SDValue Src = getValue(SrcV); 4156 SDValue Ptr = getValue(PtrV); 4157 4158 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4159 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4160 SDLoc dl = getCurSDLoc(); 4161 Align Alignment = I.getAlign(); 4162 AAMDNodes AAInfo; 4163 I.getAAMetadata(AAInfo); 4164 4165 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4166 4167 // An aggregate load cannot wrap around the address space, so offsets to its 4168 // parts don't wrap either. 4169 SDNodeFlags Flags; 4170 Flags.setNoUnsignedWrap(true); 4171 4172 unsigned ChainI = 0; 4173 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4174 // See visitLoad comments. 4175 if (ChainI == MaxParallelChains) { 4176 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4177 makeArrayRef(Chains.data(), ChainI)); 4178 Root = Chain; 4179 ChainI = 0; 4180 } 4181 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4182 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4183 if (MemVTs[i] != ValueVTs[i]) 4184 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4185 SDValue St = 4186 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4187 Alignment, MMOFlags, AAInfo); 4188 Chains[ChainI] = St; 4189 } 4190 4191 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4192 makeArrayRef(Chains.data(), ChainI)); 4193 DAG.setRoot(StoreNode); 4194 } 4195 4196 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4197 bool IsCompressing) { 4198 SDLoc sdl = getCurSDLoc(); 4199 4200 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4201 MaybeAlign &Alignment) { 4202 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4203 Src0 = I.getArgOperand(0); 4204 Ptr = I.getArgOperand(1); 4205 Alignment = 4206 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4207 Mask = I.getArgOperand(3); 4208 }; 4209 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4210 MaybeAlign &Alignment) { 4211 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4212 Src0 = I.getArgOperand(0); 4213 Ptr = I.getArgOperand(1); 4214 Mask = I.getArgOperand(2); 4215 Alignment = None; 4216 }; 4217 4218 Value *PtrOperand, *MaskOperand, *Src0Operand; 4219 MaybeAlign Alignment; 4220 if (IsCompressing) 4221 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4222 else 4223 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4224 4225 SDValue Ptr = getValue(PtrOperand); 4226 SDValue Src0 = getValue(Src0Operand); 4227 SDValue Mask = getValue(MaskOperand); 4228 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4229 4230 EVT VT = Src0.getValueType(); 4231 if (!Alignment) 4232 Alignment = DAG.getEVTAlign(VT); 4233 4234 AAMDNodes AAInfo; 4235 I.getAAMetadata(AAInfo); 4236 4237 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4238 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4239 // TODO: Make MachineMemOperands aware of scalable 4240 // vectors. 4241 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4242 SDValue StoreNode = 4243 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4244 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4245 DAG.setRoot(StoreNode); 4246 setValue(&I, StoreNode); 4247 } 4248 4249 // Get a uniform base for the Gather/Scatter intrinsic. 4250 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4251 // We try to represent it as a base pointer + vector of indices. 4252 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4253 // The first operand of the GEP may be a single pointer or a vector of pointers 4254 // Example: 4255 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4256 // or 4257 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4258 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4259 // 4260 // When the first GEP operand is a single pointer - it is the uniform base we 4261 // are looking for. If first operand of the GEP is a splat vector - we 4262 // extract the splat value and use it as a uniform base. 4263 // In all other cases the function returns 'false'. 4264 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4265 ISD::MemIndexType &IndexType, SDValue &Scale, 4266 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4267 SelectionDAG& DAG = SDB->DAG; 4268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4269 const DataLayout &DL = DAG.getDataLayout(); 4270 4271 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4272 4273 // Handle splat constant pointer. 4274 if (auto *C = dyn_cast<Constant>(Ptr)) { 4275 C = C->getSplatValue(); 4276 if (!C) 4277 return false; 4278 4279 Base = SDB->getValue(C); 4280 4281 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4282 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4283 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4284 IndexType = ISD::SIGNED_SCALED; 4285 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4286 return true; 4287 } 4288 4289 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4290 if (!GEP || GEP->getParent() != CurBB) 4291 return false; 4292 4293 if (GEP->getNumOperands() != 2) 4294 return false; 4295 4296 const Value *BasePtr = GEP->getPointerOperand(); 4297 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4298 4299 // Make sure the base is scalar and the index is a vector. 4300 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4301 return false; 4302 4303 Base = SDB->getValue(BasePtr); 4304 Index = SDB->getValue(IndexVal); 4305 IndexType = ISD::SIGNED_SCALED; 4306 Scale = DAG.getTargetConstant( 4307 DL.getTypeAllocSize(GEP->getResultElementType()), 4308 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4309 return true; 4310 } 4311 4312 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4313 SDLoc sdl = getCurSDLoc(); 4314 4315 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4316 const Value *Ptr = I.getArgOperand(1); 4317 SDValue Src0 = getValue(I.getArgOperand(0)); 4318 SDValue Mask = getValue(I.getArgOperand(3)); 4319 EVT VT = Src0.getValueType(); 4320 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlign(VT); 4323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4324 4325 AAMDNodes AAInfo; 4326 I.getAAMetadata(AAInfo); 4327 4328 SDValue Base; 4329 SDValue Index; 4330 ISD::MemIndexType IndexType; 4331 SDValue Scale; 4332 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4333 I.getParent()); 4334 4335 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4336 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4337 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4338 // TODO: Make MachineMemOperands aware of scalable 4339 // vectors. 4340 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4341 if (!UniformBase) { 4342 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4343 Index = getValue(Ptr); 4344 IndexType = ISD::SIGNED_SCALED; 4345 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4346 } 4347 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4348 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4349 Ops, MMO, IndexType); 4350 DAG.setRoot(Scatter); 4351 setValue(&I, Scatter); 4352 } 4353 4354 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4355 SDLoc sdl = getCurSDLoc(); 4356 4357 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4358 MaybeAlign &Alignment) { 4359 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4360 Ptr = I.getArgOperand(0); 4361 Alignment = 4362 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4363 Mask = I.getArgOperand(2); 4364 Src0 = I.getArgOperand(3); 4365 }; 4366 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4367 MaybeAlign &Alignment) { 4368 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4369 Ptr = I.getArgOperand(0); 4370 Alignment = None; 4371 Mask = I.getArgOperand(1); 4372 Src0 = I.getArgOperand(2); 4373 }; 4374 4375 Value *PtrOperand, *MaskOperand, *Src0Operand; 4376 MaybeAlign Alignment; 4377 if (IsExpanding) 4378 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4379 else 4380 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4381 4382 SDValue Ptr = getValue(PtrOperand); 4383 SDValue Src0 = getValue(Src0Operand); 4384 SDValue Mask = getValue(MaskOperand); 4385 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4386 4387 EVT VT = Src0.getValueType(); 4388 if (!Alignment) 4389 Alignment = DAG.getEVTAlign(VT); 4390 4391 AAMDNodes AAInfo; 4392 I.getAAMetadata(AAInfo); 4393 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4394 4395 // Do not serialize masked loads of constant memory with anything. 4396 MemoryLocation ML; 4397 if (VT.isScalableVector()) 4398 ML = MemoryLocation(PtrOperand); 4399 else 4400 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4401 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4402 AAInfo); 4403 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4404 4405 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4406 4407 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4408 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4409 // TODO: Make MachineMemOperands aware of scalable 4410 // vectors. 4411 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4412 4413 SDValue Load = 4414 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4415 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4416 if (AddToChain) 4417 PendingLoads.push_back(Load.getValue(1)); 4418 setValue(&I, Load); 4419 } 4420 4421 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4422 SDLoc sdl = getCurSDLoc(); 4423 4424 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4425 const Value *Ptr = I.getArgOperand(0); 4426 SDValue Src0 = getValue(I.getArgOperand(3)); 4427 SDValue Mask = getValue(I.getArgOperand(2)); 4428 4429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4431 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4432 if (!Alignment) 4433 Alignment = DAG.getEVTAlign(VT); 4434 4435 AAMDNodes AAInfo; 4436 I.getAAMetadata(AAInfo); 4437 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4438 4439 SDValue Root = DAG.getRoot(); 4440 SDValue Base; 4441 SDValue Index; 4442 ISD::MemIndexType IndexType; 4443 SDValue Scale; 4444 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4445 I.getParent()); 4446 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4447 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4448 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4449 // TODO: Make MachineMemOperands aware of scalable 4450 // vectors. 4451 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4452 4453 if (!UniformBase) { 4454 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4455 Index = getValue(Ptr); 4456 IndexType = ISD::SIGNED_SCALED; 4457 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4458 } 4459 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4460 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4461 Ops, MMO, IndexType); 4462 4463 PendingLoads.push_back(Gather.getValue(1)); 4464 setValue(&I, Gather); 4465 } 4466 4467 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4468 SDLoc dl = getCurSDLoc(); 4469 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4470 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4471 SyncScope::ID SSID = I.getSyncScopeID(); 4472 4473 SDValue InChain = getRoot(); 4474 4475 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4476 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4477 4478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4479 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4480 4481 MachineFunction &MF = DAG.getMachineFunction(); 4482 MachineMemOperand *MMO = MF.getMachineMemOperand( 4483 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4484 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4485 FailureOrdering); 4486 4487 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4488 dl, MemVT, VTs, InChain, 4489 getValue(I.getPointerOperand()), 4490 getValue(I.getCompareOperand()), 4491 getValue(I.getNewValOperand()), MMO); 4492 4493 SDValue OutChain = L.getValue(2); 4494 4495 setValue(&I, L); 4496 DAG.setRoot(OutChain); 4497 } 4498 4499 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4500 SDLoc dl = getCurSDLoc(); 4501 ISD::NodeType NT; 4502 switch (I.getOperation()) { 4503 default: llvm_unreachable("Unknown atomicrmw operation"); 4504 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4505 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4506 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4507 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4508 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4509 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4510 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4511 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4512 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4513 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4514 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4515 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4516 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4517 } 4518 AtomicOrdering Ordering = I.getOrdering(); 4519 SyncScope::ID SSID = I.getSyncScopeID(); 4520 4521 SDValue InChain = getRoot(); 4522 4523 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4525 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4526 4527 MachineFunction &MF = DAG.getMachineFunction(); 4528 MachineMemOperand *MMO = MF.getMachineMemOperand( 4529 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4530 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4531 4532 SDValue L = 4533 DAG.getAtomic(NT, dl, MemVT, InChain, 4534 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4535 MMO); 4536 4537 SDValue OutChain = L.getValue(1); 4538 4539 setValue(&I, L); 4540 DAG.setRoot(OutChain); 4541 } 4542 4543 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4544 SDLoc dl = getCurSDLoc(); 4545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4546 SDValue Ops[3]; 4547 Ops[0] = getRoot(); 4548 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4549 TLI.getFenceOperandTy(DAG.getDataLayout())); 4550 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4551 TLI.getFenceOperandTy(DAG.getDataLayout())); 4552 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4553 } 4554 4555 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4556 SDLoc dl = getCurSDLoc(); 4557 AtomicOrdering Order = I.getOrdering(); 4558 SyncScope::ID SSID = I.getSyncScopeID(); 4559 4560 SDValue InChain = getRoot(); 4561 4562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4563 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4564 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4565 4566 if (!TLI.supportsUnalignedAtomics() && 4567 I.getAlignment() < MemVT.getSizeInBits() / 8) 4568 report_fatal_error("Cannot generate unaligned atomic load"); 4569 4570 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4571 4572 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4573 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4574 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4575 4576 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4577 4578 SDValue Ptr = getValue(I.getPointerOperand()); 4579 4580 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4581 // TODO: Once this is better exercised by tests, it should be merged with 4582 // the normal path for loads to prevent future divergence. 4583 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4584 if (MemVT != VT) 4585 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4586 4587 setValue(&I, L); 4588 SDValue OutChain = L.getValue(1); 4589 if (!I.isUnordered()) 4590 DAG.setRoot(OutChain); 4591 else 4592 PendingLoads.push_back(OutChain); 4593 return; 4594 } 4595 4596 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4597 Ptr, MMO); 4598 4599 SDValue OutChain = L.getValue(1); 4600 if (MemVT != VT) 4601 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4602 4603 setValue(&I, L); 4604 DAG.setRoot(OutChain); 4605 } 4606 4607 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4608 SDLoc dl = getCurSDLoc(); 4609 4610 AtomicOrdering Ordering = I.getOrdering(); 4611 SyncScope::ID SSID = I.getSyncScopeID(); 4612 4613 SDValue InChain = getRoot(); 4614 4615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4616 EVT MemVT = 4617 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4618 4619 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4620 report_fatal_error("Cannot generate unaligned atomic store"); 4621 4622 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4623 4624 MachineFunction &MF = DAG.getMachineFunction(); 4625 MachineMemOperand *MMO = MF.getMachineMemOperand( 4626 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4627 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4628 4629 SDValue Val = getValue(I.getValueOperand()); 4630 if (Val.getValueType() != MemVT) 4631 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4632 SDValue Ptr = getValue(I.getPointerOperand()); 4633 4634 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4635 // TODO: Once this is better exercised by tests, it should be merged with 4636 // the normal path for stores to prevent future divergence. 4637 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4638 DAG.setRoot(S); 4639 return; 4640 } 4641 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4642 Ptr, Val, MMO); 4643 4644 4645 DAG.setRoot(OutChain); 4646 } 4647 4648 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4649 /// node. 4650 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4651 unsigned Intrinsic) { 4652 // Ignore the callsite's attributes. A specific call site may be marked with 4653 // readnone, but the lowering code will expect the chain based on the 4654 // definition. 4655 const Function *F = I.getCalledFunction(); 4656 bool HasChain = !F->doesNotAccessMemory(); 4657 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4658 4659 // Build the operand list. 4660 SmallVector<SDValue, 8> Ops; 4661 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4662 if (OnlyLoad) { 4663 // We don't need to serialize loads against other loads. 4664 Ops.push_back(DAG.getRoot()); 4665 } else { 4666 Ops.push_back(getRoot()); 4667 } 4668 } 4669 4670 // Info is set by getTgtMemInstrinsic 4671 TargetLowering::IntrinsicInfo Info; 4672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4673 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4674 DAG.getMachineFunction(), 4675 Intrinsic); 4676 4677 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4678 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4679 Info.opc == ISD::INTRINSIC_W_CHAIN) 4680 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4681 TLI.getPointerTy(DAG.getDataLayout()))); 4682 4683 // Add all operands of the call to the operand list. 4684 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4685 const Value *Arg = I.getArgOperand(i); 4686 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4687 Ops.push_back(getValue(Arg)); 4688 continue; 4689 } 4690 4691 // Use TargetConstant instead of a regular constant for immarg. 4692 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4693 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4694 assert(CI->getBitWidth() <= 64 && 4695 "large intrinsic immediates not handled"); 4696 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4697 } else { 4698 Ops.push_back( 4699 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4700 } 4701 } 4702 4703 SmallVector<EVT, 4> ValueVTs; 4704 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4705 4706 if (HasChain) 4707 ValueVTs.push_back(MVT::Other); 4708 4709 SDVTList VTs = DAG.getVTList(ValueVTs); 4710 4711 // Create the node. 4712 SDValue Result; 4713 if (IsTgtIntrinsic) { 4714 // This is target intrinsic that touches memory 4715 AAMDNodes AAInfo; 4716 I.getAAMetadata(AAInfo); 4717 Result = 4718 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4719 MachinePointerInfo(Info.ptrVal, Info.offset), 4720 Info.align, Info.flags, Info.size, AAInfo); 4721 } else if (!HasChain) { 4722 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4723 } else if (!I.getType()->isVoidTy()) { 4724 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4725 } else { 4726 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4727 } 4728 4729 if (HasChain) { 4730 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4731 if (OnlyLoad) 4732 PendingLoads.push_back(Chain); 4733 else 4734 DAG.setRoot(Chain); 4735 } 4736 4737 if (!I.getType()->isVoidTy()) { 4738 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4739 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4740 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4741 } else 4742 Result = lowerRangeToAssertZExt(DAG, I, Result); 4743 4744 MaybeAlign Alignment = I.getRetAlign(); 4745 if (!Alignment) 4746 Alignment = F->getAttributes().getRetAlignment(); 4747 // Insert `assertalign` node if there's an alignment. 4748 if (InsertAssertAlign && Alignment) { 4749 Result = 4750 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4751 } 4752 4753 setValue(&I, Result); 4754 } 4755 } 4756 4757 /// GetSignificand - Get the significand and build it into a floating-point 4758 /// number with exponent of 1: 4759 /// 4760 /// Op = (Op & 0x007fffff) | 0x3f800000; 4761 /// 4762 /// where Op is the hexadecimal representation of floating point value. 4763 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4764 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4765 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4766 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4767 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4768 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4769 } 4770 4771 /// GetExponent - Get the exponent: 4772 /// 4773 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4774 /// 4775 /// where Op is the hexadecimal representation of floating point value. 4776 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4777 const TargetLowering &TLI, const SDLoc &dl) { 4778 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4779 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4780 SDValue t1 = DAG.getNode( 4781 ISD::SRL, dl, MVT::i32, t0, 4782 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4783 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4784 DAG.getConstant(127, dl, MVT::i32)); 4785 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4786 } 4787 4788 /// getF32Constant - Get 32-bit floating point constant. 4789 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4790 const SDLoc &dl) { 4791 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4792 MVT::f32); 4793 } 4794 4795 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4796 SelectionDAG &DAG) { 4797 // TODO: What fast-math-flags should be set on the floating-point nodes? 4798 4799 // IntegerPartOfX = ((int32_t)(t0); 4800 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4801 4802 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4803 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4804 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4805 4806 // IntegerPartOfX <<= 23; 4807 IntegerPartOfX = DAG.getNode( 4808 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4809 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4810 DAG.getDataLayout()))); 4811 4812 SDValue TwoToFractionalPartOfX; 4813 if (LimitFloatPrecision <= 6) { 4814 // For floating-point precision of 6: 4815 // 4816 // TwoToFractionalPartOfX = 4817 // 0.997535578f + 4818 // (0.735607626f + 0.252464424f * x) * x; 4819 // 4820 // error 0.0144103317, which is 6 bits 4821 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4822 getF32Constant(DAG, 0x3e814304, dl)); 4823 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4824 getF32Constant(DAG, 0x3f3c50c8, dl)); 4825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4826 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4827 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4828 } else if (LimitFloatPrecision <= 12) { 4829 // For floating-point precision of 12: 4830 // 4831 // TwoToFractionalPartOfX = 4832 // 0.999892986f + 4833 // (0.696457318f + 4834 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4835 // 4836 // error 0.000107046256, which is 13 to 14 bits 4837 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4838 getF32Constant(DAG, 0x3da235e3, dl)); 4839 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4840 getF32Constant(DAG, 0x3e65b8f3, dl)); 4841 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4842 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4843 getF32Constant(DAG, 0x3f324b07, dl)); 4844 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4845 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4846 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4847 } else { // LimitFloatPrecision <= 18 4848 // For floating-point precision of 18: 4849 // 4850 // TwoToFractionalPartOfX = 4851 // 0.999999982f + 4852 // (0.693148872f + 4853 // (0.240227044f + 4854 // (0.554906021e-1f + 4855 // (0.961591928e-2f + 4856 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4857 // error 2.47208000*10^(-7), which is better than 18 bits 4858 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4859 getF32Constant(DAG, 0x3924b03e, dl)); 4860 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4861 getF32Constant(DAG, 0x3ab24b87, dl)); 4862 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4863 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4864 getF32Constant(DAG, 0x3c1d8c17, dl)); 4865 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4866 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4867 getF32Constant(DAG, 0x3d634a1d, dl)); 4868 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4869 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4870 getF32Constant(DAG, 0x3e75fe14, dl)); 4871 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4872 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4873 getF32Constant(DAG, 0x3f317234, dl)); 4874 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4875 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4876 getF32Constant(DAG, 0x3f800000, dl)); 4877 } 4878 4879 // Add the exponent into the result in integer domain. 4880 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4881 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4882 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4883 } 4884 4885 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4886 /// limited-precision mode. 4887 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4888 const TargetLowering &TLI) { 4889 if (Op.getValueType() == MVT::f32 && 4890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4891 4892 // Put the exponent in the right bit position for later addition to the 4893 // final result: 4894 // 4895 // t0 = Op * log2(e) 4896 4897 // TODO: What fast-math-flags should be set here? 4898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4899 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4900 return getLimitedPrecisionExp2(t0, dl, DAG); 4901 } 4902 4903 // No special expansion. 4904 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4905 } 4906 4907 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4908 /// limited-precision mode. 4909 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4910 const TargetLowering &TLI) { 4911 // TODO: What fast-math-flags should be set on the floating-point nodes? 4912 4913 if (Op.getValueType() == MVT::f32 && 4914 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4915 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4916 4917 // Scale the exponent by log(2). 4918 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4919 SDValue LogOfExponent = 4920 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4921 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4922 4923 // Get the significand and build it into a floating-point number with 4924 // exponent of 1. 4925 SDValue X = GetSignificand(DAG, Op1, dl); 4926 4927 SDValue LogOfMantissa; 4928 if (LimitFloatPrecision <= 6) { 4929 // For floating-point precision of 6: 4930 // 4931 // LogofMantissa = 4932 // -1.1609546f + 4933 // (1.4034025f - 0.23903021f * x) * x; 4934 // 4935 // error 0.0034276066, which is better than 8 bits 4936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4937 getF32Constant(DAG, 0xbe74c456, dl)); 4938 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4939 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4941 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4942 getF32Constant(DAG, 0x3f949a29, dl)); 4943 } else if (LimitFloatPrecision <= 12) { 4944 // For floating-point precision of 12: 4945 // 4946 // LogOfMantissa = 4947 // -1.7417939f + 4948 // (2.8212026f + 4949 // (-1.4699568f + 4950 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4951 // 4952 // error 0.000061011436, which is 14 bits 4953 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4954 getF32Constant(DAG, 0xbd67b6d6, dl)); 4955 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4956 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4958 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4959 getF32Constant(DAG, 0x3fbc278b, dl)); 4960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4962 getF32Constant(DAG, 0x40348e95, dl)); 4963 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4964 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4965 getF32Constant(DAG, 0x3fdef31a, dl)); 4966 } else { // LimitFloatPrecision <= 18 4967 // For floating-point precision of 18: 4968 // 4969 // LogOfMantissa = 4970 // -2.1072184f + 4971 // (4.2372794f + 4972 // (-3.7029485f + 4973 // (2.2781945f + 4974 // (-0.87823314f + 4975 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4976 // 4977 // error 0.0000023660568, which is better than 18 bits 4978 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4979 getF32Constant(DAG, 0xbc91e5ac, dl)); 4980 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4981 getF32Constant(DAG, 0x3e4350aa, dl)); 4982 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4983 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4984 getF32Constant(DAG, 0x3f60d3e3, dl)); 4985 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4986 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4987 getF32Constant(DAG, 0x4011cdf0, dl)); 4988 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4989 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4990 getF32Constant(DAG, 0x406cfd1c, dl)); 4991 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4992 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4993 getF32Constant(DAG, 0x408797cb, dl)); 4994 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4995 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4996 getF32Constant(DAG, 0x4006dcab, dl)); 4997 } 4998 4999 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5000 } 5001 5002 // No special expansion. 5003 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5004 } 5005 5006 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5007 /// limited-precision mode. 5008 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5009 const TargetLowering &TLI) { 5010 // TODO: What fast-math-flags should be set on the floating-point nodes? 5011 5012 if (Op.getValueType() == MVT::f32 && 5013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5014 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5015 5016 // Get the exponent. 5017 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5018 5019 // Get the significand and build it into a floating-point number with 5020 // exponent of 1. 5021 SDValue X = GetSignificand(DAG, Op1, dl); 5022 5023 // Different possible minimax approximations of significand in 5024 // floating-point for various degrees of accuracy over [1,2]. 5025 SDValue Log2ofMantissa; 5026 if (LimitFloatPrecision <= 6) { 5027 // For floating-point precision of 6: 5028 // 5029 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5030 // 5031 // error 0.0049451742, which is more than 7 bits 5032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5033 getF32Constant(DAG, 0xbeb08fe0, dl)); 5034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5035 getF32Constant(DAG, 0x40019463, dl)); 5036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5037 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5038 getF32Constant(DAG, 0x3fd6633d, dl)); 5039 } else if (LimitFloatPrecision <= 12) { 5040 // For floating-point precision of 12: 5041 // 5042 // Log2ofMantissa = 5043 // -2.51285454f + 5044 // (4.07009056f + 5045 // (-2.12067489f + 5046 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5047 // 5048 // error 0.0000876136000, which is better than 13 bits 5049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5050 getF32Constant(DAG, 0xbda7262e, dl)); 5051 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5052 getF32Constant(DAG, 0x3f25280b, dl)); 5053 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5054 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5055 getF32Constant(DAG, 0x4007b923, dl)); 5056 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5057 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5058 getF32Constant(DAG, 0x40823e2f, dl)); 5059 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5060 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5061 getF32Constant(DAG, 0x4020d29c, dl)); 5062 } else { // LimitFloatPrecision <= 18 5063 // For floating-point precision of 18: 5064 // 5065 // Log2ofMantissa = 5066 // -3.0400495f + 5067 // (6.1129976f + 5068 // (-5.3420409f + 5069 // (3.2865683f + 5070 // (-1.2669343f + 5071 // (0.27515199f - 5072 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5073 // 5074 // error 0.0000018516, which is better than 18 bits 5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5076 getF32Constant(DAG, 0xbcd2769e, dl)); 5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5078 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5081 getF32Constant(DAG, 0x3fa22ae7, dl)); 5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5084 getF32Constant(DAG, 0x40525723, dl)); 5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5086 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5087 getF32Constant(DAG, 0x40aaf200, dl)); 5088 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5089 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5090 getF32Constant(DAG, 0x40c39dad, dl)); 5091 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5092 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5093 getF32Constant(DAG, 0x4042902c, dl)); 5094 } 5095 5096 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5097 } 5098 5099 // No special expansion. 5100 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5101 } 5102 5103 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5104 /// limited-precision mode. 5105 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5106 const TargetLowering &TLI) { 5107 // TODO: What fast-math-flags should be set on the floating-point nodes? 5108 5109 if (Op.getValueType() == MVT::f32 && 5110 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5111 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5112 5113 // Scale the exponent by log10(2) [0.30102999f]. 5114 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5115 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5116 getF32Constant(DAG, 0x3e9a209a, dl)); 5117 5118 // Get the significand and build it into a floating-point number with 5119 // exponent of 1. 5120 SDValue X = GetSignificand(DAG, Op1, dl); 5121 5122 SDValue Log10ofMantissa; 5123 if (LimitFloatPrecision <= 6) { 5124 // For floating-point precision of 6: 5125 // 5126 // Log10ofMantissa = 5127 // -0.50419619f + 5128 // (0.60948995f - 0.10380950f * x) * x; 5129 // 5130 // error 0.0014886165, which is 6 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0xbdd49a13, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x3f1c0789, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x3f011300, dl)); 5138 } else if (LimitFloatPrecision <= 12) { 5139 // For floating-point precision of 12: 5140 // 5141 // Log10ofMantissa = 5142 // -0.64831180f + 5143 // (0.91751397f + 5144 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5145 // 5146 // error 0.00019228036, which is better than 12 bits 5147 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5148 getF32Constant(DAG, 0x3d431f31, dl)); 5149 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5150 getF32Constant(DAG, 0x3ea21fb2, dl)); 5151 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5152 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5153 getF32Constant(DAG, 0x3f6ae232, dl)); 5154 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5155 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5156 getF32Constant(DAG, 0x3f25f7c3, dl)); 5157 } else { // LimitFloatPrecision <= 18 5158 // For floating-point precision of 18: 5159 // 5160 // Log10ofMantissa = 5161 // -0.84299375f + 5162 // (1.5327582f + 5163 // (-1.0688956f + 5164 // (0.49102474f + 5165 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5166 // 5167 // error 0.0000037995730, which is better than 18 bits 5168 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5169 getF32Constant(DAG, 0x3c5d51ce, dl)); 5170 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5171 getF32Constant(DAG, 0x3e00685a, dl)); 5172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5173 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5174 getF32Constant(DAG, 0x3efb6798, dl)); 5175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5176 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5177 getF32Constant(DAG, 0x3f88d192, dl)); 5178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5179 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5180 getF32Constant(DAG, 0x3fc4316c, dl)); 5181 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5182 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5183 getF32Constant(DAG, 0x3f57ce70, dl)); 5184 } 5185 5186 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5187 } 5188 5189 // No special expansion. 5190 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5191 } 5192 5193 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5194 /// limited-precision mode. 5195 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5196 const TargetLowering &TLI) { 5197 if (Op.getValueType() == MVT::f32 && 5198 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5199 return getLimitedPrecisionExp2(Op, dl, DAG); 5200 5201 // No special expansion. 5202 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5203 } 5204 5205 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5206 /// limited-precision mode with x == 10.0f. 5207 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5208 SelectionDAG &DAG, const TargetLowering &TLI) { 5209 bool IsExp10 = false; 5210 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5211 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5212 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5213 APFloat Ten(10.0f); 5214 IsExp10 = LHSC->isExactlyValue(Ten); 5215 } 5216 } 5217 5218 // TODO: What fast-math-flags should be set on the FMUL node? 5219 if (IsExp10) { 5220 // Put the exponent in the right bit position for later addition to the 5221 // final result: 5222 // 5223 // #define LOG2OF10 3.3219281f 5224 // t0 = Op * LOG2OF10; 5225 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5226 getF32Constant(DAG, 0x40549a78, dl)); 5227 return getLimitedPrecisionExp2(t0, dl, DAG); 5228 } 5229 5230 // No special expansion. 5231 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5232 } 5233 5234 /// ExpandPowI - Expand a llvm.powi intrinsic. 5235 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5236 SelectionDAG &DAG) { 5237 // If RHS is a constant, we can expand this out to a multiplication tree, 5238 // otherwise we end up lowering to a call to __powidf2 (for example). When 5239 // optimizing for size, we only want to do this if the expansion would produce 5240 // a small number of multiplies, otherwise we do the full expansion. 5241 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5242 // Get the exponent as a positive value. 5243 unsigned Val = RHSC->getSExtValue(); 5244 if ((int)Val < 0) Val = -Val; 5245 5246 // powi(x, 0) -> 1.0 5247 if (Val == 0) 5248 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5249 5250 bool OptForSize = DAG.shouldOptForSize(); 5251 if (!OptForSize || 5252 // If optimizing for size, don't insert too many multiplies. 5253 // This inserts up to 5 multiplies. 5254 countPopulation(Val) + Log2_32(Val) < 7) { 5255 // We use the simple binary decomposition method to generate the multiply 5256 // sequence. There are more optimal ways to do this (for example, 5257 // powi(x,15) generates one more multiply than it should), but this has 5258 // the benefit of being both really simple and much better than a libcall. 5259 SDValue Res; // Logically starts equal to 1.0 5260 SDValue CurSquare = LHS; 5261 // TODO: Intrinsics should have fast-math-flags that propagate to these 5262 // nodes. 5263 while (Val) { 5264 if (Val & 1) { 5265 if (Res.getNode()) 5266 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5267 else 5268 Res = CurSquare; // 1.0*CurSquare. 5269 } 5270 5271 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5272 CurSquare, CurSquare); 5273 Val >>= 1; 5274 } 5275 5276 // If the original was negative, invert the result, producing 1/(x*x*x). 5277 if (RHSC->getSExtValue() < 0) 5278 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5279 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5280 return Res; 5281 } 5282 } 5283 5284 // Otherwise, expand to a libcall. 5285 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5286 } 5287 5288 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5289 SDValue LHS, SDValue RHS, SDValue Scale, 5290 SelectionDAG &DAG, const TargetLowering &TLI) { 5291 EVT VT = LHS.getValueType(); 5292 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5293 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5294 LLVMContext &Ctx = *DAG.getContext(); 5295 5296 // If the type is legal but the operation isn't, this node might survive all 5297 // the way to operation legalization. If we end up there and we do not have 5298 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5299 // node. 5300 5301 // Coax the legalizer into expanding the node during type legalization instead 5302 // by bumping the size by one bit. This will force it to Promote, enabling the 5303 // early expansion and avoiding the need to expand later. 5304 5305 // We don't have to do this if Scale is 0; that can always be expanded, unless 5306 // it's a saturating signed operation. Those can experience true integer 5307 // division overflow, a case which we must avoid. 5308 5309 // FIXME: We wouldn't have to do this (or any of the early 5310 // expansion/promotion) if it was possible to expand a libcall of an 5311 // illegal type during operation legalization. But it's not, so things 5312 // get a bit hacky. 5313 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5314 if ((ScaleInt > 0 || (Saturating && Signed)) && 5315 (TLI.isTypeLegal(VT) || 5316 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5317 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5318 Opcode, VT, ScaleInt); 5319 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5320 EVT PromVT; 5321 if (VT.isScalarInteger()) 5322 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5323 else if (VT.isVector()) { 5324 PromVT = VT.getVectorElementType(); 5325 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5326 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5327 } else 5328 llvm_unreachable("Wrong VT for DIVFIX?"); 5329 if (Signed) { 5330 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5331 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5332 } else { 5333 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5334 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5335 } 5336 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5337 // For saturating operations, we need to shift up the LHS to get the 5338 // proper saturation width, and then shift down again afterwards. 5339 if (Saturating) 5340 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5341 DAG.getConstant(1, DL, ShiftTy)); 5342 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5343 if (Saturating) 5344 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5345 DAG.getConstant(1, DL, ShiftTy)); 5346 return DAG.getZExtOrTrunc(Res, DL, VT); 5347 } 5348 } 5349 5350 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5351 } 5352 5353 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5354 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5355 static void 5356 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5357 const SDValue &N) { 5358 switch (N.getOpcode()) { 5359 case ISD::CopyFromReg: { 5360 SDValue Op = N.getOperand(1); 5361 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5362 Op.getValueType().getSizeInBits()); 5363 return; 5364 } 5365 case ISD::BITCAST: 5366 case ISD::AssertZext: 5367 case ISD::AssertSext: 5368 case ISD::TRUNCATE: 5369 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5370 return; 5371 case ISD::BUILD_PAIR: 5372 case ISD::BUILD_VECTOR: 5373 case ISD::CONCAT_VECTORS: 5374 for (SDValue Op : N->op_values()) 5375 getUnderlyingArgRegs(Regs, Op); 5376 return; 5377 default: 5378 return; 5379 } 5380 } 5381 5382 /// If the DbgValueInst is a dbg_value of a function argument, create the 5383 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5384 /// instruction selection, they will be inserted to the entry BB. 5385 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5386 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5387 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5388 const Argument *Arg = dyn_cast<Argument>(V); 5389 if (!Arg) 5390 return false; 5391 5392 if (!IsDbgDeclare) { 5393 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5394 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5395 // the entry block. 5396 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5397 if (!IsInEntryBlock) 5398 return false; 5399 5400 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5401 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5402 // variable that also is a param. 5403 // 5404 // Although, if we are at the top of the entry block already, we can still 5405 // emit using ArgDbgValue. This might catch some situations when the 5406 // dbg.value refers to an argument that isn't used in the entry block, so 5407 // any CopyToReg node would be optimized out and the only way to express 5408 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5409 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5410 // we should only emit as ArgDbgValue if the Variable is an argument to the 5411 // current function, and the dbg.value intrinsic is found in the entry 5412 // block. 5413 bool VariableIsFunctionInputArg = Variable->isParameter() && 5414 !DL->getInlinedAt(); 5415 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5416 if (!IsInPrologue && !VariableIsFunctionInputArg) 5417 return false; 5418 5419 // Here we assume that a function argument on IR level only can be used to 5420 // describe one input parameter on source level. If we for example have 5421 // source code like this 5422 // 5423 // struct A { long x, y; }; 5424 // void foo(struct A a, long b) { 5425 // ... 5426 // b = a.x; 5427 // ... 5428 // } 5429 // 5430 // and IR like this 5431 // 5432 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5433 // entry: 5434 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5435 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5436 // call void @llvm.dbg.value(metadata i32 %b, "b", 5437 // ... 5438 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5439 // ... 5440 // 5441 // then the last dbg.value is describing a parameter "b" using a value that 5442 // is an argument. But since we already has used %a1 to describe a parameter 5443 // we should not handle that last dbg.value here (that would result in an 5444 // incorrect hoisting of the DBG_VALUE to the function entry). 5445 // Notice that we allow one dbg.value per IR level argument, to accommodate 5446 // for the situation with fragments above. 5447 if (VariableIsFunctionInputArg) { 5448 unsigned ArgNo = Arg->getArgNo(); 5449 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5450 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5451 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5452 return false; 5453 FuncInfo.DescribedArgs.set(ArgNo); 5454 } 5455 } 5456 5457 MachineFunction &MF = DAG.getMachineFunction(); 5458 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5459 5460 bool IsIndirect = false; 5461 Optional<MachineOperand> Op; 5462 // Some arguments' frame index is recorded during argument lowering. 5463 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5464 if (FI != std::numeric_limits<int>::max()) 5465 Op = MachineOperand::CreateFI(FI); 5466 5467 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5468 if (!Op && N.getNode()) { 5469 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5470 Register Reg; 5471 if (ArgRegsAndSizes.size() == 1) 5472 Reg = ArgRegsAndSizes.front().first; 5473 5474 if (Reg && Reg.isVirtual()) { 5475 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5476 Register PR = RegInfo.getLiveInPhysReg(Reg); 5477 if (PR) 5478 Reg = PR; 5479 } 5480 if (Reg) { 5481 Op = MachineOperand::CreateReg(Reg, false); 5482 IsIndirect = IsDbgDeclare; 5483 } 5484 } 5485 5486 if (!Op && N.getNode()) { 5487 // Check if frame index is available. 5488 SDValue LCandidate = peekThroughBitcasts(N); 5489 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5490 if (FrameIndexSDNode *FINode = 5491 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5492 Op = MachineOperand::CreateFI(FINode->getIndex()); 5493 } 5494 5495 if (!Op) { 5496 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5497 auto splitMultiRegDbgValue 5498 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5499 unsigned Offset = 0; 5500 for (auto RegAndSize : SplitRegs) { 5501 // If the expression is already a fragment, the current register 5502 // offset+size might extend beyond the fragment. In this case, only 5503 // the register bits that are inside the fragment are relevant. 5504 int RegFragmentSizeInBits = RegAndSize.second; 5505 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5506 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5507 // The register is entirely outside the expression fragment, 5508 // so is irrelevant for debug info. 5509 if (Offset >= ExprFragmentSizeInBits) 5510 break; 5511 // The register is partially outside the expression fragment, only 5512 // the low bits within the fragment are relevant for debug info. 5513 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5514 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5515 } 5516 } 5517 5518 auto FragmentExpr = DIExpression::createFragmentExpression( 5519 Expr, Offset, RegFragmentSizeInBits); 5520 Offset += RegAndSize.second; 5521 // If a valid fragment expression cannot be created, the variable's 5522 // correct value cannot be determined and so it is set as Undef. 5523 if (!FragmentExpr) { 5524 SDDbgValue *SDV = DAG.getConstantDbgValue( 5525 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5526 DAG.AddDbgValue(SDV, nullptr, false); 5527 continue; 5528 } 5529 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5530 FuncInfo.ArgDbgValues.push_back( 5531 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5532 RegAndSize.first, Variable, *FragmentExpr)); 5533 } 5534 }; 5535 5536 // Check if ValueMap has reg number. 5537 DenseMap<const Value *, Register>::const_iterator 5538 VMI = FuncInfo.ValueMap.find(V); 5539 if (VMI != FuncInfo.ValueMap.end()) { 5540 const auto &TLI = DAG.getTargetLoweringInfo(); 5541 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5542 V->getType(), getABIRegCopyCC(V)); 5543 if (RFV.occupiesMultipleRegs()) { 5544 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5545 return true; 5546 } 5547 5548 Op = MachineOperand::CreateReg(VMI->second, false); 5549 IsIndirect = IsDbgDeclare; 5550 } else if (ArgRegsAndSizes.size() > 1) { 5551 // This was split due to the calling convention, and no virtual register 5552 // mapping exists for the value. 5553 splitMultiRegDbgValue(ArgRegsAndSizes); 5554 return true; 5555 } 5556 } 5557 5558 if (!Op) 5559 return false; 5560 5561 assert(Variable->isValidLocationForIntrinsic(DL) && 5562 "Expected inlined-at fields to agree"); 5563 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5564 FuncInfo.ArgDbgValues.push_back( 5565 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5566 *Op, Variable, Expr)); 5567 5568 return true; 5569 } 5570 5571 /// Return the appropriate SDDbgValue based on N. 5572 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5573 DILocalVariable *Variable, 5574 DIExpression *Expr, 5575 const DebugLoc &dl, 5576 unsigned DbgSDNodeOrder) { 5577 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5578 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5579 // stack slot locations. 5580 // 5581 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5582 // debug values here after optimization: 5583 // 5584 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5585 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5586 // 5587 // Both describe the direct values of their associated variables. 5588 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5589 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5590 } 5591 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5592 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5593 } 5594 5595 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5596 switch (Intrinsic) { 5597 case Intrinsic::smul_fix: 5598 return ISD::SMULFIX; 5599 case Intrinsic::umul_fix: 5600 return ISD::UMULFIX; 5601 case Intrinsic::smul_fix_sat: 5602 return ISD::SMULFIXSAT; 5603 case Intrinsic::umul_fix_sat: 5604 return ISD::UMULFIXSAT; 5605 case Intrinsic::sdiv_fix: 5606 return ISD::SDIVFIX; 5607 case Intrinsic::udiv_fix: 5608 return ISD::UDIVFIX; 5609 case Intrinsic::sdiv_fix_sat: 5610 return ISD::SDIVFIXSAT; 5611 case Intrinsic::udiv_fix_sat: 5612 return ISD::UDIVFIXSAT; 5613 default: 5614 llvm_unreachable("Unhandled fixed point intrinsic"); 5615 } 5616 } 5617 5618 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5619 const char *FunctionName) { 5620 assert(FunctionName && "FunctionName must not be nullptr"); 5621 SDValue Callee = DAG.getExternalSymbol( 5622 FunctionName, 5623 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5624 LowerCallTo(I, Callee, I.isTailCall()); 5625 } 5626 5627 /// Given a @llvm.call.preallocated.setup, return the corresponding 5628 /// preallocated call. 5629 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5630 assert(cast<CallBase>(PreallocatedSetup) 5631 ->getCalledFunction() 5632 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5633 "expected call_preallocated_setup Value"); 5634 for (auto *U : PreallocatedSetup->users()) { 5635 auto *UseCall = cast<CallBase>(U); 5636 const Function *Fn = UseCall->getCalledFunction(); 5637 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5638 return UseCall; 5639 } 5640 } 5641 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5642 } 5643 5644 /// Lower the call to the specified intrinsic function. 5645 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5646 unsigned Intrinsic) { 5647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5648 SDLoc sdl = getCurSDLoc(); 5649 DebugLoc dl = getCurDebugLoc(); 5650 SDValue Res; 5651 5652 switch (Intrinsic) { 5653 default: 5654 // By default, turn this into a target intrinsic node. 5655 visitTargetIntrinsic(I, Intrinsic); 5656 return; 5657 case Intrinsic::vscale: { 5658 match(&I, m_VScale(DAG.getDataLayout())); 5659 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5660 setValue(&I, 5661 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5662 return; 5663 } 5664 case Intrinsic::vastart: visitVAStart(I); return; 5665 case Intrinsic::vaend: visitVAEnd(I); return; 5666 case Intrinsic::vacopy: visitVACopy(I); return; 5667 case Intrinsic::returnaddress: 5668 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5669 TLI.getPointerTy(DAG.getDataLayout()), 5670 getValue(I.getArgOperand(0)))); 5671 return; 5672 case Intrinsic::addressofreturnaddress: 5673 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5674 TLI.getPointerTy(DAG.getDataLayout()))); 5675 return; 5676 case Intrinsic::sponentry: 5677 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5678 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5679 return; 5680 case Intrinsic::frameaddress: 5681 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5682 TLI.getFrameIndexTy(DAG.getDataLayout()), 5683 getValue(I.getArgOperand(0)))); 5684 return; 5685 case Intrinsic::read_register: { 5686 Value *Reg = I.getArgOperand(0); 5687 SDValue Chain = getRoot(); 5688 SDValue RegName = 5689 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5690 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5691 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5692 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5693 setValue(&I, Res); 5694 DAG.setRoot(Res.getValue(1)); 5695 return; 5696 } 5697 case Intrinsic::write_register: { 5698 Value *Reg = I.getArgOperand(0); 5699 Value *RegValue = I.getArgOperand(1); 5700 SDValue Chain = getRoot(); 5701 SDValue RegName = 5702 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5703 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5704 RegName, getValue(RegValue))); 5705 return; 5706 } 5707 case Intrinsic::memcpy: { 5708 const auto &MCI = cast<MemCpyInst>(I); 5709 SDValue Op1 = getValue(I.getArgOperand(0)); 5710 SDValue Op2 = getValue(I.getArgOperand(1)); 5711 SDValue Op3 = getValue(I.getArgOperand(2)); 5712 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5713 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5714 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5715 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5716 bool isVol = MCI.isVolatile(); 5717 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5718 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5719 // node. 5720 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5721 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5722 /* AlwaysInline */ false, isTC, 5723 MachinePointerInfo(I.getArgOperand(0)), 5724 MachinePointerInfo(I.getArgOperand(1))); 5725 updateDAGForMaybeTailCall(MC); 5726 return; 5727 } 5728 case Intrinsic::memcpy_inline: { 5729 const auto &MCI = cast<MemCpyInlineInst>(I); 5730 SDValue Dst = getValue(I.getArgOperand(0)); 5731 SDValue Src = getValue(I.getArgOperand(1)); 5732 SDValue Size = getValue(I.getArgOperand(2)); 5733 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5734 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5735 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5736 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5737 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5738 bool isVol = MCI.isVolatile(); 5739 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5740 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5741 // node. 5742 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5743 /* AlwaysInline */ true, isTC, 5744 MachinePointerInfo(I.getArgOperand(0)), 5745 MachinePointerInfo(I.getArgOperand(1))); 5746 updateDAGForMaybeTailCall(MC); 5747 return; 5748 } 5749 case Intrinsic::memset: { 5750 const auto &MSI = cast<MemSetInst>(I); 5751 SDValue Op1 = getValue(I.getArgOperand(0)); 5752 SDValue Op2 = getValue(I.getArgOperand(1)); 5753 SDValue Op3 = getValue(I.getArgOperand(2)); 5754 // @llvm.memset defines 0 and 1 to both mean no alignment. 5755 Align Alignment = MSI.getDestAlign().valueOrOne(); 5756 bool isVol = MSI.isVolatile(); 5757 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5758 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5759 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5760 MachinePointerInfo(I.getArgOperand(0))); 5761 updateDAGForMaybeTailCall(MS); 5762 return; 5763 } 5764 case Intrinsic::memmove: { 5765 const auto &MMI = cast<MemMoveInst>(I); 5766 SDValue Op1 = getValue(I.getArgOperand(0)); 5767 SDValue Op2 = getValue(I.getArgOperand(1)); 5768 SDValue Op3 = getValue(I.getArgOperand(2)); 5769 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5770 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5771 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5772 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5773 bool isVol = MMI.isVolatile(); 5774 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5775 // FIXME: Support passing different dest/src alignments to the memmove DAG 5776 // node. 5777 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5778 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5779 isTC, MachinePointerInfo(I.getArgOperand(0)), 5780 MachinePointerInfo(I.getArgOperand(1))); 5781 updateDAGForMaybeTailCall(MM); 5782 return; 5783 } 5784 case Intrinsic::memcpy_element_unordered_atomic: { 5785 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5786 SDValue Dst = getValue(MI.getRawDest()); 5787 SDValue Src = getValue(MI.getRawSource()); 5788 SDValue Length = getValue(MI.getLength()); 5789 5790 unsigned DstAlign = MI.getDestAlignment(); 5791 unsigned SrcAlign = MI.getSourceAlignment(); 5792 Type *LengthTy = MI.getLength()->getType(); 5793 unsigned ElemSz = MI.getElementSizeInBytes(); 5794 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5795 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5796 SrcAlign, Length, LengthTy, ElemSz, isTC, 5797 MachinePointerInfo(MI.getRawDest()), 5798 MachinePointerInfo(MI.getRawSource())); 5799 updateDAGForMaybeTailCall(MC); 5800 return; 5801 } 5802 case Intrinsic::memmove_element_unordered_atomic: { 5803 auto &MI = cast<AtomicMemMoveInst>(I); 5804 SDValue Dst = getValue(MI.getRawDest()); 5805 SDValue Src = getValue(MI.getRawSource()); 5806 SDValue Length = getValue(MI.getLength()); 5807 5808 unsigned DstAlign = MI.getDestAlignment(); 5809 unsigned SrcAlign = MI.getSourceAlignment(); 5810 Type *LengthTy = MI.getLength()->getType(); 5811 unsigned ElemSz = MI.getElementSizeInBytes(); 5812 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5813 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5814 SrcAlign, Length, LengthTy, ElemSz, isTC, 5815 MachinePointerInfo(MI.getRawDest()), 5816 MachinePointerInfo(MI.getRawSource())); 5817 updateDAGForMaybeTailCall(MC); 5818 return; 5819 } 5820 case Intrinsic::memset_element_unordered_atomic: { 5821 auto &MI = cast<AtomicMemSetInst>(I); 5822 SDValue Dst = getValue(MI.getRawDest()); 5823 SDValue Val = getValue(MI.getValue()); 5824 SDValue Length = getValue(MI.getLength()); 5825 5826 unsigned DstAlign = MI.getDestAlignment(); 5827 Type *LengthTy = MI.getLength()->getType(); 5828 unsigned ElemSz = MI.getElementSizeInBytes(); 5829 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5830 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5831 LengthTy, ElemSz, isTC, 5832 MachinePointerInfo(MI.getRawDest())); 5833 updateDAGForMaybeTailCall(MC); 5834 return; 5835 } 5836 case Intrinsic::call_preallocated_setup: { 5837 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5838 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5839 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5840 getRoot(), SrcValue); 5841 setValue(&I, Res); 5842 DAG.setRoot(Res); 5843 return; 5844 } 5845 case Intrinsic::call_preallocated_arg: { 5846 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5847 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5848 SDValue Ops[3]; 5849 Ops[0] = getRoot(); 5850 Ops[1] = SrcValue; 5851 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5852 MVT::i32); // arg index 5853 SDValue Res = DAG.getNode( 5854 ISD::PREALLOCATED_ARG, sdl, 5855 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5856 setValue(&I, Res); 5857 DAG.setRoot(Res.getValue(1)); 5858 return; 5859 } 5860 case Intrinsic::dbg_addr: 5861 case Intrinsic::dbg_declare: { 5862 const auto &DI = cast<DbgVariableIntrinsic>(I); 5863 DILocalVariable *Variable = DI.getVariable(); 5864 DIExpression *Expression = DI.getExpression(); 5865 dropDanglingDebugInfo(Variable, Expression); 5866 assert(Variable && "Missing variable"); 5867 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5868 << "\n"); 5869 // Check if address has undef value. 5870 const Value *Address = DI.getVariableLocation(); 5871 if (!Address || isa<UndefValue>(Address) || 5872 (Address->use_empty() && !isa<Argument>(Address))) { 5873 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5874 << " (bad/undef/unused-arg address)\n"); 5875 return; 5876 } 5877 5878 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5879 5880 // Check if this variable can be described by a frame index, typically 5881 // either as a static alloca or a byval parameter. 5882 int FI = std::numeric_limits<int>::max(); 5883 if (const auto *AI = 5884 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5885 if (AI->isStaticAlloca()) { 5886 auto I = FuncInfo.StaticAllocaMap.find(AI); 5887 if (I != FuncInfo.StaticAllocaMap.end()) 5888 FI = I->second; 5889 } 5890 } else if (const auto *Arg = dyn_cast<Argument>( 5891 Address->stripInBoundsConstantOffsets())) { 5892 FI = FuncInfo.getArgumentFrameIndex(Arg); 5893 } 5894 5895 // llvm.dbg.addr is control dependent and always generates indirect 5896 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5897 // the MachineFunction variable table. 5898 if (FI != std::numeric_limits<int>::max()) { 5899 if (Intrinsic == Intrinsic::dbg_addr) { 5900 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5901 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5902 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5903 } else { 5904 LLVM_DEBUG(dbgs() << "Skipping " << DI 5905 << " (variable info stashed in MF side table)\n"); 5906 } 5907 return; 5908 } 5909 5910 SDValue &N = NodeMap[Address]; 5911 if (!N.getNode() && isa<Argument>(Address)) 5912 // Check unused arguments map. 5913 N = UnusedArgNodeMap[Address]; 5914 SDDbgValue *SDV; 5915 if (N.getNode()) { 5916 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5917 Address = BCI->getOperand(0); 5918 // Parameters are handled specially. 5919 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5920 if (isParameter && FINode) { 5921 // Byval parameter. We have a frame index at this point. 5922 SDV = 5923 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5924 /*IsIndirect*/ true, dl, SDNodeOrder); 5925 } else if (isa<Argument>(Address)) { 5926 // Address is an argument, so try to emit its dbg value using 5927 // virtual register info from the FuncInfo.ValueMap. 5928 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5929 return; 5930 } else { 5931 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5932 true, dl, SDNodeOrder); 5933 } 5934 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5935 } else { 5936 // If Address is an argument then try to emit its dbg value using 5937 // virtual register info from the FuncInfo.ValueMap. 5938 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5939 N)) { 5940 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5941 << " (could not emit func-arg dbg_value)\n"); 5942 } 5943 } 5944 return; 5945 } 5946 case Intrinsic::dbg_label: { 5947 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5948 DILabel *Label = DI.getLabel(); 5949 assert(Label && "Missing label"); 5950 5951 SDDbgLabel *SDV; 5952 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5953 DAG.AddDbgLabel(SDV); 5954 return; 5955 } 5956 case Intrinsic::dbg_value: { 5957 const DbgValueInst &DI = cast<DbgValueInst>(I); 5958 assert(DI.getVariable() && "Missing variable"); 5959 5960 DILocalVariable *Variable = DI.getVariable(); 5961 DIExpression *Expression = DI.getExpression(); 5962 dropDanglingDebugInfo(Variable, Expression); 5963 const Value *V = DI.getValue(); 5964 if (!V) 5965 return; 5966 5967 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5968 SDNodeOrder)) 5969 return; 5970 5971 // TODO: Dangling debug info will eventually either be resolved or produce 5972 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5973 // between the original dbg.value location and its resolved DBG_VALUE, which 5974 // we should ideally fill with an extra Undef DBG_VALUE. 5975 5976 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5977 return; 5978 } 5979 5980 case Intrinsic::eh_typeid_for: { 5981 // Find the type id for the given typeinfo. 5982 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5983 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5984 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5985 setValue(&I, Res); 5986 return; 5987 } 5988 5989 case Intrinsic::eh_return_i32: 5990 case Intrinsic::eh_return_i64: 5991 DAG.getMachineFunction().setCallsEHReturn(true); 5992 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5993 MVT::Other, 5994 getControlRoot(), 5995 getValue(I.getArgOperand(0)), 5996 getValue(I.getArgOperand(1)))); 5997 return; 5998 case Intrinsic::eh_unwind_init: 5999 DAG.getMachineFunction().setCallsUnwindInit(true); 6000 return; 6001 case Intrinsic::eh_dwarf_cfa: 6002 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6003 TLI.getPointerTy(DAG.getDataLayout()), 6004 getValue(I.getArgOperand(0)))); 6005 return; 6006 case Intrinsic::eh_sjlj_callsite: { 6007 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6008 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6009 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6010 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6011 6012 MMI.setCurrentCallSite(CI->getZExtValue()); 6013 return; 6014 } 6015 case Intrinsic::eh_sjlj_functioncontext: { 6016 // Get and store the index of the function context. 6017 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6018 AllocaInst *FnCtx = 6019 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6020 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6021 MFI.setFunctionContextIndex(FI); 6022 return; 6023 } 6024 case Intrinsic::eh_sjlj_setjmp: { 6025 SDValue Ops[2]; 6026 Ops[0] = getRoot(); 6027 Ops[1] = getValue(I.getArgOperand(0)); 6028 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6029 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6030 setValue(&I, Op.getValue(0)); 6031 DAG.setRoot(Op.getValue(1)); 6032 return; 6033 } 6034 case Intrinsic::eh_sjlj_longjmp: 6035 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6036 getRoot(), getValue(I.getArgOperand(0)))); 6037 return; 6038 case Intrinsic::eh_sjlj_setup_dispatch: 6039 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6040 getRoot())); 6041 return; 6042 case Intrinsic::masked_gather: 6043 visitMaskedGather(I); 6044 return; 6045 case Intrinsic::masked_load: 6046 visitMaskedLoad(I); 6047 return; 6048 case Intrinsic::masked_scatter: 6049 visitMaskedScatter(I); 6050 return; 6051 case Intrinsic::masked_store: 6052 visitMaskedStore(I); 6053 return; 6054 case Intrinsic::masked_expandload: 6055 visitMaskedLoad(I, true /* IsExpanding */); 6056 return; 6057 case Intrinsic::masked_compressstore: 6058 visitMaskedStore(I, true /* IsCompressing */); 6059 return; 6060 case Intrinsic::powi: 6061 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6062 getValue(I.getArgOperand(1)), DAG)); 6063 return; 6064 case Intrinsic::log: 6065 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6066 return; 6067 case Intrinsic::log2: 6068 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6069 return; 6070 case Intrinsic::log10: 6071 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6072 return; 6073 case Intrinsic::exp: 6074 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6075 return; 6076 case Intrinsic::exp2: 6077 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6078 return; 6079 case Intrinsic::pow: 6080 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6081 getValue(I.getArgOperand(1)), DAG, TLI)); 6082 return; 6083 case Intrinsic::sqrt: 6084 case Intrinsic::fabs: 6085 case Intrinsic::sin: 6086 case Intrinsic::cos: 6087 case Intrinsic::floor: 6088 case Intrinsic::ceil: 6089 case Intrinsic::trunc: 6090 case Intrinsic::rint: 6091 case Intrinsic::nearbyint: 6092 case Intrinsic::round: 6093 case Intrinsic::roundeven: 6094 case Intrinsic::canonicalize: { 6095 unsigned Opcode; 6096 switch (Intrinsic) { 6097 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6098 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6099 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6100 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6101 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6102 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6103 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6104 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6105 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6106 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6107 case Intrinsic::round: Opcode = ISD::FROUND; break; 6108 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6109 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6110 } 6111 6112 setValue(&I, DAG.getNode(Opcode, sdl, 6113 getValue(I.getArgOperand(0)).getValueType(), 6114 getValue(I.getArgOperand(0)))); 6115 return; 6116 } 6117 case Intrinsic::lround: 6118 case Intrinsic::llround: 6119 case Intrinsic::lrint: 6120 case Intrinsic::llrint: { 6121 unsigned Opcode; 6122 switch (Intrinsic) { 6123 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6124 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6125 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6126 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6127 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6128 } 6129 6130 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6131 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6132 getValue(I.getArgOperand(0)))); 6133 return; 6134 } 6135 case Intrinsic::minnum: 6136 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)), 6139 getValue(I.getArgOperand(1)))); 6140 return; 6141 case Intrinsic::maxnum: 6142 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6143 getValue(I.getArgOperand(0)).getValueType(), 6144 getValue(I.getArgOperand(0)), 6145 getValue(I.getArgOperand(1)))); 6146 return; 6147 case Intrinsic::minimum: 6148 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6149 getValue(I.getArgOperand(0)).getValueType(), 6150 getValue(I.getArgOperand(0)), 6151 getValue(I.getArgOperand(1)))); 6152 return; 6153 case Intrinsic::maximum: 6154 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6155 getValue(I.getArgOperand(0)).getValueType(), 6156 getValue(I.getArgOperand(0)), 6157 getValue(I.getArgOperand(1)))); 6158 return; 6159 case Intrinsic::copysign: 6160 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6161 getValue(I.getArgOperand(0)).getValueType(), 6162 getValue(I.getArgOperand(0)), 6163 getValue(I.getArgOperand(1)))); 6164 return; 6165 case Intrinsic::fma: 6166 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6167 getValue(I.getArgOperand(0)).getValueType(), 6168 getValue(I.getArgOperand(0)), 6169 getValue(I.getArgOperand(1)), 6170 getValue(I.getArgOperand(2)))); 6171 return; 6172 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6173 case Intrinsic::INTRINSIC: 6174 #include "llvm/IR/ConstrainedOps.def" 6175 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6176 return; 6177 case Intrinsic::fmuladd: { 6178 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6179 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6180 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6181 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6182 getValue(I.getArgOperand(0)).getValueType(), 6183 getValue(I.getArgOperand(0)), 6184 getValue(I.getArgOperand(1)), 6185 getValue(I.getArgOperand(2)))); 6186 } else { 6187 // TODO: Intrinsic calls should have fast-math-flags. 6188 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6189 getValue(I.getArgOperand(0)).getValueType(), 6190 getValue(I.getArgOperand(0)), 6191 getValue(I.getArgOperand(1))); 6192 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6193 getValue(I.getArgOperand(0)).getValueType(), 6194 Mul, 6195 getValue(I.getArgOperand(2))); 6196 setValue(&I, Add); 6197 } 6198 return; 6199 } 6200 case Intrinsic::convert_to_fp16: 6201 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6202 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6203 getValue(I.getArgOperand(0)), 6204 DAG.getTargetConstant(0, sdl, 6205 MVT::i32)))); 6206 return; 6207 case Intrinsic::convert_from_fp16: 6208 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6209 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6210 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6211 getValue(I.getArgOperand(0))))); 6212 return; 6213 case Intrinsic::pcmarker: { 6214 SDValue Tmp = getValue(I.getArgOperand(0)); 6215 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6216 return; 6217 } 6218 case Intrinsic::readcyclecounter: { 6219 SDValue Op = getRoot(); 6220 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6221 DAG.getVTList(MVT::i64, MVT::Other), Op); 6222 setValue(&I, Res); 6223 DAG.setRoot(Res.getValue(1)); 6224 return; 6225 } 6226 case Intrinsic::bitreverse: 6227 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6228 getValue(I.getArgOperand(0)).getValueType(), 6229 getValue(I.getArgOperand(0)))); 6230 return; 6231 case Intrinsic::bswap: 6232 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6233 getValue(I.getArgOperand(0)).getValueType(), 6234 getValue(I.getArgOperand(0)))); 6235 return; 6236 case Intrinsic::cttz: { 6237 SDValue Arg = getValue(I.getArgOperand(0)); 6238 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6239 EVT Ty = Arg.getValueType(); 6240 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6241 sdl, Ty, Arg)); 6242 return; 6243 } 6244 case Intrinsic::ctlz: { 6245 SDValue Arg = getValue(I.getArgOperand(0)); 6246 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6247 EVT Ty = Arg.getValueType(); 6248 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6249 sdl, Ty, Arg)); 6250 return; 6251 } 6252 case Intrinsic::ctpop: { 6253 SDValue Arg = getValue(I.getArgOperand(0)); 6254 EVT Ty = Arg.getValueType(); 6255 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6256 return; 6257 } 6258 case Intrinsic::fshl: 6259 case Intrinsic::fshr: { 6260 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6261 SDValue X = getValue(I.getArgOperand(0)); 6262 SDValue Y = getValue(I.getArgOperand(1)); 6263 SDValue Z = getValue(I.getArgOperand(2)); 6264 EVT VT = X.getValueType(); 6265 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6266 SDValue Zero = DAG.getConstant(0, sdl, VT); 6267 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6268 6269 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6270 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6271 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6272 return; 6273 } 6274 6275 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6276 // avoid the select that is necessary in the general case to filter out 6277 // the 0-shift possibility that leads to UB. 6278 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6279 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6280 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6281 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6282 return; 6283 } 6284 6285 // Some targets only rotate one way. Try the opposite direction. 6286 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6287 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6288 // Negate the shift amount because it is safe to ignore the high bits. 6289 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6290 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6291 return; 6292 } 6293 6294 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6295 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6296 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6297 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6298 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6299 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6300 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6301 return; 6302 } 6303 6304 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6305 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6306 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6307 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6308 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6309 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6310 6311 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6312 // and that is undefined. We must compare and select to avoid UB. 6313 EVT CCVT = MVT::i1; 6314 if (VT.isVector()) 6315 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6316 6317 // For fshl, 0-shift returns the 1st arg (X). 6318 // For fshr, 0-shift returns the 2nd arg (Y). 6319 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6320 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6321 return; 6322 } 6323 case Intrinsic::sadd_sat: { 6324 SDValue Op1 = getValue(I.getArgOperand(0)); 6325 SDValue Op2 = getValue(I.getArgOperand(1)); 6326 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6327 return; 6328 } 6329 case Intrinsic::uadd_sat: { 6330 SDValue Op1 = getValue(I.getArgOperand(0)); 6331 SDValue Op2 = getValue(I.getArgOperand(1)); 6332 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6333 return; 6334 } 6335 case Intrinsic::ssub_sat: { 6336 SDValue Op1 = getValue(I.getArgOperand(0)); 6337 SDValue Op2 = getValue(I.getArgOperand(1)); 6338 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6339 return; 6340 } 6341 case Intrinsic::usub_sat: { 6342 SDValue Op1 = getValue(I.getArgOperand(0)); 6343 SDValue Op2 = getValue(I.getArgOperand(1)); 6344 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6345 return; 6346 } 6347 case Intrinsic::smul_fix: 6348 case Intrinsic::umul_fix: 6349 case Intrinsic::smul_fix_sat: 6350 case Intrinsic::umul_fix_sat: { 6351 SDValue Op1 = getValue(I.getArgOperand(0)); 6352 SDValue Op2 = getValue(I.getArgOperand(1)); 6353 SDValue Op3 = getValue(I.getArgOperand(2)); 6354 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6355 Op1.getValueType(), Op1, Op2, Op3)); 6356 return; 6357 } 6358 case Intrinsic::sdiv_fix: 6359 case Intrinsic::udiv_fix: 6360 case Intrinsic::sdiv_fix_sat: 6361 case Intrinsic::udiv_fix_sat: { 6362 SDValue Op1 = getValue(I.getArgOperand(0)); 6363 SDValue Op2 = getValue(I.getArgOperand(1)); 6364 SDValue Op3 = getValue(I.getArgOperand(2)); 6365 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6366 Op1, Op2, Op3, DAG, TLI)); 6367 return; 6368 } 6369 case Intrinsic::stacksave: { 6370 SDValue Op = getRoot(); 6371 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6372 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6373 setValue(&I, Res); 6374 DAG.setRoot(Res.getValue(1)); 6375 return; 6376 } 6377 case Intrinsic::stackrestore: 6378 Res = getValue(I.getArgOperand(0)); 6379 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6380 return; 6381 case Intrinsic::get_dynamic_area_offset: { 6382 SDValue Op = getRoot(); 6383 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6384 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6385 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6386 // target. 6387 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6388 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6389 " intrinsic!"); 6390 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6391 Op); 6392 DAG.setRoot(Op); 6393 setValue(&I, Res); 6394 return; 6395 } 6396 case Intrinsic::stackguard: { 6397 MachineFunction &MF = DAG.getMachineFunction(); 6398 const Module &M = *MF.getFunction().getParent(); 6399 SDValue Chain = getRoot(); 6400 if (TLI.useLoadStackGuardNode()) { 6401 Res = getLoadStackGuard(DAG, sdl, Chain); 6402 } else { 6403 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6404 const Value *Global = TLI.getSDagStackGuard(M); 6405 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6406 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6407 MachinePointerInfo(Global, 0), Align, 6408 MachineMemOperand::MOVolatile); 6409 } 6410 if (TLI.useStackGuardXorFP()) 6411 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6412 DAG.setRoot(Chain); 6413 setValue(&I, Res); 6414 return; 6415 } 6416 case Intrinsic::stackprotector: { 6417 // Emit code into the DAG to store the stack guard onto the stack. 6418 MachineFunction &MF = DAG.getMachineFunction(); 6419 MachineFrameInfo &MFI = MF.getFrameInfo(); 6420 SDValue Src, Chain = getRoot(); 6421 6422 if (TLI.useLoadStackGuardNode()) 6423 Src = getLoadStackGuard(DAG, sdl, Chain); 6424 else 6425 Src = getValue(I.getArgOperand(0)); // The guard's value. 6426 6427 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6428 6429 int FI = FuncInfo.StaticAllocaMap[Slot]; 6430 MFI.setStackProtectorIndex(FI); 6431 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6432 6433 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6434 6435 // Store the stack protector onto the stack. 6436 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6437 DAG.getMachineFunction(), FI), 6438 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6439 setValue(&I, Res); 6440 DAG.setRoot(Res); 6441 return; 6442 } 6443 case Intrinsic::objectsize: 6444 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6445 6446 case Intrinsic::is_constant: 6447 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6448 6449 case Intrinsic::annotation: 6450 case Intrinsic::ptr_annotation: 6451 case Intrinsic::launder_invariant_group: 6452 case Intrinsic::strip_invariant_group: 6453 // Drop the intrinsic, but forward the value 6454 setValue(&I, getValue(I.getOperand(0))); 6455 return; 6456 case Intrinsic::assume: 6457 case Intrinsic::var_annotation: 6458 case Intrinsic::sideeffect: 6459 // Discard annotate attributes, assumptions, and artificial side-effects. 6460 return; 6461 6462 case Intrinsic::codeview_annotation: { 6463 // Emit a label associated with this metadata. 6464 MachineFunction &MF = DAG.getMachineFunction(); 6465 MCSymbol *Label = 6466 MF.getMMI().getContext().createTempSymbol("annotation", true); 6467 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6468 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6469 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6470 DAG.setRoot(Res); 6471 return; 6472 } 6473 6474 case Intrinsic::init_trampoline: { 6475 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6476 6477 SDValue Ops[6]; 6478 Ops[0] = getRoot(); 6479 Ops[1] = getValue(I.getArgOperand(0)); 6480 Ops[2] = getValue(I.getArgOperand(1)); 6481 Ops[3] = getValue(I.getArgOperand(2)); 6482 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6483 Ops[5] = DAG.getSrcValue(F); 6484 6485 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6486 6487 DAG.setRoot(Res); 6488 return; 6489 } 6490 case Intrinsic::adjust_trampoline: 6491 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6492 TLI.getPointerTy(DAG.getDataLayout()), 6493 getValue(I.getArgOperand(0)))); 6494 return; 6495 case Intrinsic::gcroot: { 6496 assert(DAG.getMachineFunction().getFunction().hasGC() && 6497 "only valid in functions with gc specified, enforced by Verifier"); 6498 assert(GFI && "implied by previous"); 6499 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6500 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6501 6502 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6503 GFI->addStackRoot(FI->getIndex(), TypeMap); 6504 return; 6505 } 6506 case Intrinsic::gcread: 6507 case Intrinsic::gcwrite: 6508 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6509 case Intrinsic::flt_rounds: 6510 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6511 setValue(&I, Res); 6512 DAG.setRoot(Res.getValue(1)); 6513 return; 6514 6515 case Intrinsic::expect: 6516 // Just replace __builtin_expect(exp, c) with EXP. 6517 setValue(&I, getValue(I.getArgOperand(0))); 6518 return; 6519 6520 case Intrinsic::debugtrap: 6521 case Intrinsic::trap: { 6522 StringRef TrapFuncName = 6523 I.getAttributes() 6524 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6525 .getValueAsString(); 6526 if (TrapFuncName.empty()) { 6527 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6528 ISD::TRAP : ISD::DEBUGTRAP; 6529 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6530 return; 6531 } 6532 TargetLowering::ArgListTy Args; 6533 6534 TargetLowering::CallLoweringInfo CLI(DAG); 6535 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6536 CallingConv::C, I.getType(), 6537 DAG.getExternalSymbol(TrapFuncName.data(), 6538 TLI.getPointerTy(DAG.getDataLayout())), 6539 std::move(Args)); 6540 6541 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6542 DAG.setRoot(Result.second); 6543 return; 6544 } 6545 6546 case Intrinsic::uadd_with_overflow: 6547 case Intrinsic::sadd_with_overflow: 6548 case Intrinsic::usub_with_overflow: 6549 case Intrinsic::ssub_with_overflow: 6550 case Intrinsic::umul_with_overflow: 6551 case Intrinsic::smul_with_overflow: { 6552 ISD::NodeType Op; 6553 switch (Intrinsic) { 6554 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6555 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6556 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6557 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6558 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6559 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6560 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6561 } 6562 SDValue Op1 = getValue(I.getArgOperand(0)); 6563 SDValue Op2 = getValue(I.getArgOperand(1)); 6564 6565 EVT ResultVT = Op1.getValueType(); 6566 EVT OverflowVT = MVT::i1; 6567 if (ResultVT.isVector()) 6568 OverflowVT = EVT::getVectorVT( 6569 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6570 6571 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6572 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6573 return; 6574 } 6575 case Intrinsic::prefetch: { 6576 SDValue Ops[5]; 6577 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6578 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6579 Ops[0] = DAG.getRoot(); 6580 Ops[1] = getValue(I.getArgOperand(0)); 6581 Ops[2] = getValue(I.getArgOperand(1)); 6582 Ops[3] = getValue(I.getArgOperand(2)); 6583 Ops[4] = getValue(I.getArgOperand(3)); 6584 SDValue Result = DAG.getMemIntrinsicNode( 6585 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6586 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6587 /* align */ None, Flags); 6588 6589 // Chain the prefetch in parallell with any pending loads, to stay out of 6590 // the way of later optimizations. 6591 PendingLoads.push_back(Result); 6592 Result = getRoot(); 6593 DAG.setRoot(Result); 6594 return; 6595 } 6596 case Intrinsic::lifetime_start: 6597 case Intrinsic::lifetime_end: { 6598 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6599 // Stack coloring is not enabled in O0, discard region information. 6600 if (TM.getOptLevel() == CodeGenOpt::None) 6601 return; 6602 6603 const int64_t ObjectSize = 6604 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6605 Value *const ObjectPtr = I.getArgOperand(1); 6606 SmallVector<const Value *, 4> Allocas; 6607 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6608 6609 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6610 E = Allocas.end(); Object != E; ++Object) { 6611 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6612 6613 // Could not find an Alloca. 6614 if (!LifetimeObject) 6615 continue; 6616 6617 // First check that the Alloca is static, otherwise it won't have a 6618 // valid frame index. 6619 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6620 if (SI == FuncInfo.StaticAllocaMap.end()) 6621 return; 6622 6623 const int FrameIndex = SI->second; 6624 int64_t Offset; 6625 if (GetPointerBaseWithConstantOffset( 6626 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6627 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6628 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6629 Offset); 6630 DAG.setRoot(Res); 6631 } 6632 return; 6633 } 6634 case Intrinsic::invariant_start: 6635 // Discard region information. 6636 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6637 return; 6638 case Intrinsic::invariant_end: 6639 // Discard region information. 6640 return; 6641 case Intrinsic::clear_cache: 6642 /// FunctionName may be null. 6643 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6644 lowerCallToExternalSymbol(I, FunctionName); 6645 return; 6646 case Intrinsic::donothing: 6647 // ignore 6648 return; 6649 case Intrinsic::experimental_stackmap: 6650 visitStackmap(I); 6651 return; 6652 case Intrinsic::experimental_patchpoint_void: 6653 case Intrinsic::experimental_patchpoint_i64: 6654 visitPatchpoint(I); 6655 return; 6656 case Intrinsic::experimental_gc_statepoint: 6657 LowerStatepoint(cast<GCStatepointInst>(I)); 6658 return; 6659 case Intrinsic::experimental_gc_result: 6660 visitGCResult(cast<GCResultInst>(I)); 6661 return; 6662 case Intrinsic::experimental_gc_relocate: 6663 visitGCRelocate(cast<GCRelocateInst>(I)); 6664 return; 6665 case Intrinsic::instrprof_increment: 6666 llvm_unreachable("instrprof failed to lower an increment"); 6667 case Intrinsic::instrprof_value_profile: 6668 llvm_unreachable("instrprof failed to lower a value profiling call"); 6669 case Intrinsic::localescape: { 6670 MachineFunction &MF = DAG.getMachineFunction(); 6671 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6672 6673 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6674 // is the same on all targets. 6675 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6676 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6677 if (isa<ConstantPointerNull>(Arg)) 6678 continue; // Skip null pointers. They represent a hole in index space. 6679 AllocaInst *Slot = cast<AllocaInst>(Arg); 6680 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6681 "can only escape static allocas"); 6682 int FI = FuncInfo.StaticAllocaMap[Slot]; 6683 MCSymbol *FrameAllocSym = 6684 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6685 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6686 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6687 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6688 .addSym(FrameAllocSym) 6689 .addFrameIndex(FI); 6690 } 6691 6692 return; 6693 } 6694 6695 case Intrinsic::localrecover: { 6696 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6697 MachineFunction &MF = DAG.getMachineFunction(); 6698 6699 // Get the symbol that defines the frame offset. 6700 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6701 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6702 unsigned IdxVal = 6703 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6704 MCSymbol *FrameAllocSym = 6705 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6706 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6707 6708 Value *FP = I.getArgOperand(1); 6709 SDValue FPVal = getValue(FP); 6710 EVT PtrVT = FPVal.getValueType(); 6711 6712 // Create a MCSymbol for the label to avoid any target lowering 6713 // that would make this PC relative. 6714 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6715 SDValue OffsetVal = 6716 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6717 6718 // Add the offset to the FP. 6719 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6720 setValue(&I, Add); 6721 6722 return; 6723 } 6724 6725 case Intrinsic::eh_exceptionpointer: 6726 case Intrinsic::eh_exceptioncode: { 6727 // Get the exception pointer vreg, copy from it, and resize it to fit. 6728 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6729 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6730 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6731 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6732 SDValue N = 6733 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6734 if (Intrinsic == Intrinsic::eh_exceptioncode) 6735 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6736 setValue(&I, N); 6737 return; 6738 } 6739 case Intrinsic::xray_customevent: { 6740 // Here we want to make sure that the intrinsic behaves as if it has a 6741 // specific calling convention, and only for x86_64. 6742 // FIXME: Support other platforms later. 6743 const auto &Triple = DAG.getTarget().getTargetTriple(); 6744 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6745 return; 6746 6747 SDLoc DL = getCurSDLoc(); 6748 SmallVector<SDValue, 8> Ops; 6749 6750 // We want to say that we always want the arguments in registers. 6751 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6752 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6753 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6754 SDValue Chain = getRoot(); 6755 Ops.push_back(LogEntryVal); 6756 Ops.push_back(StrSizeVal); 6757 Ops.push_back(Chain); 6758 6759 // We need to enforce the calling convention for the callsite, so that 6760 // argument ordering is enforced correctly, and that register allocation can 6761 // see that some registers may be assumed clobbered and have to preserve 6762 // them across calls to the intrinsic. 6763 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6764 DL, NodeTys, Ops); 6765 SDValue patchableNode = SDValue(MN, 0); 6766 DAG.setRoot(patchableNode); 6767 setValue(&I, patchableNode); 6768 return; 6769 } 6770 case Intrinsic::xray_typedevent: { 6771 // Here we want to make sure that the intrinsic behaves as if it has a 6772 // specific calling convention, and only for x86_64. 6773 // FIXME: Support other platforms later. 6774 const auto &Triple = DAG.getTarget().getTargetTriple(); 6775 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6776 return; 6777 6778 SDLoc DL = getCurSDLoc(); 6779 SmallVector<SDValue, 8> Ops; 6780 6781 // We want to say that we always want the arguments in registers. 6782 // It's unclear to me how manipulating the selection DAG here forces callers 6783 // to provide arguments in registers instead of on the stack. 6784 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6785 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6786 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6787 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6788 SDValue Chain = getRoot(); 6789 Ops.push_back(LogTypeId); 6790 Ops.push_back(LogEntryVal); 6791 Ops.push_back(StrSizeVal); 6792 Ops.push_back(Chain); 6793 6794 // We need to enforce the calling convention for the callsite, so that 6795 // argument ordering is enforced correctly, and that register allocation can 6796 // see that some registers may be assumed clobbered and have to preserve 6797 // them across calls to the intrinsic. 6798 MachineSDNode *MN = DAG.getMachineNode( 6799 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6800 SDValue patchableNode = SDValue(MN, 0); 6801 DAG.setRoot(patchableNode); 6802 setValue(&I, patchableNode); 6803 return; 6804 } 6805 case Intrinsic::experimental_deoptimize: 6806 LowerDeoptimizeCall(&I); 6807 return; 6808 6809 case Intrinsic::experimental_vector_reduce_v2_fadd: 6810 case Intrinsic::experimental_vector_reduce_v2_fmul: 6811 case Intrinsic::experimental_vector_reduce_add: 6812 case Intrinsic::experimental_vector_reduce_mul: 6813 case Intrinsic::experimental_vector_reduce_and: 6814 case Intrinsic::experimental_vector_reduce_or: 6815 case Intrinsic::experimental_vector_reduce_xor: 6816 case Intrinsic::experimental_vector_reduce_smax: 6817 case Intrinsic::experimental_vector_reduce_smin: 6818 case Intrinsic::experimental_vector_reduce_umax: 6819 case Intrinsic::experimental_vector_reduce_umin: 6820 case Intrinsic::experimental_vector_reduce_fmax: 6821 case Intrinsic::experimental_vector_reduce_fmin: 6822 visitVectorReduce(I, Intrinsic); 6823 return; 6824 6825 case Intrinsic::icall_branch_funnel: { 6826 SmallVector<SDValue, 16> Ops; 6827 Ops.push_back(getValue(I.getArgOperand(0))); 6828 6829 int64_t Offset; 6830 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6831 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6832 if (!Base) 6833 report_fatal_error( 6834 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6835 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6836 6837 struct BranchFunnelTarget { 6838 int64_t Offset; 6839 SDValue Target; 6840 }; 6841 SmallVector<BranchFunnelTarget, 8> Targets; 6842 6843 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6844 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6845 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6846 if (ElemBase != Base) 6847 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6848 "to the same GlobalValue"); 6849 6850 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6851 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6852 if (!GA) 6853 report_fatal_error( 6854 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6855 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6856 GA->getGlobal(), getCurSDLoc(), 6857 Val.getValueType(), GA->getOffset())}); 6858 } 6859 llvm::sort(Targets, 6860 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6861 return T1.Offset < T2.Offset; 6862 }); 6863 6864 for (auto &T : Targets) { 6865 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6866 Ops.push_back(T.Target); 6867 } 6868 6869 Ops.push_back(DAG.getRoot()); // Chain 6870 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6871 getCurSDLoc(), MVT::Other, Ops), 6872 0); 6873 DAG.setRoot(N); 6874 setValue(&I, N); 6875 HasTailCall = true; 6876 return; 6877 } 6878 6879 case Intrinsic::wasm_landingpad_index: 6880 // Information this intrinsic contained has been transferred to 6881 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6882 // delete it now. 6883 return; 6884 6885 case Intrinsic::aarch64_settag: 6886 case Intrinsic::aarch64_settag_zero: { 6887 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6888 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6889 SDValue Val = TSI.EmitTargetCodeForSetTag( 6890 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6891 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6892 ZeroMemory); 6893 DAG.setRoot(Val); 6894 setValue(&I, Val); 6895 return; 6896 } 6897 case Intrinsic::ptrmask: { 6898 SDValue Ptr = getValue(I.getOperand(0)); 6899 SDValue Const = getValue(I.getOperand(1)); 6900 6901 EVT PtrVT = Ptr.getValueType(); 6902 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6903 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6904 return; 6905 } 6906 case Intrinsic::get_active_lane_mask: { 6907 auto DL = getCurSDLoc(); 6908 SDValue Index = getValue(I.getOperand(0)); 6909 SDValue BTC = getValue(I.getOperand(1)); 6910 Type *ElementTy = I.getOperand(0)->getType(); 6911 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6912 unsigned VecWidth = VT.getVectorNumElements(); 6913 6914 SmallVector<SDValue, 16> OpsBTC; 6915 SmallVector<SDValue, 16> OpsIndex; 6916 SmallVector<SDValue, 16> OpsStepConstants; 6917 for (unsigned i = 0; i < VecWidth; i++) { 6918 OpsBTC.push_back(BTC); 6919 OpsIndex.push_back(Index); 6920 OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy))); 6921 } 6922 6923 EVT CCVT = MVT::i1; 6924 CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth); 6925 6926 auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth)); 6927 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6928 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6929 SDValue VectorInduction = DAG.getNode( 6930 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6931 SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC); 6932 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6933 VectorBTC, ISD::CondCode::SETULE); 6934 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6935 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6936 SetCC)); 6937 return; 6938 } 6939 } 6940 } 6941 6942 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6943 const ConstrainedFPIntrinsic &FPI) { 6944 SDLoc sdl = getCurSDLoc(); 6945 6946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6947 SmallVector<EVT, 4> ValueVTs; 6948 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6949 ValueVTs.push_back(MVT::Other); // Out chain 6950 6951 // We do not need to serialize constrained FP intrinsics against 6952 // each other or against (nonvolatile) loads, so they can be 6953 // chained like loads. 6954 SDValue Chain = DAG.getRoot(); 6955 SmallVector<SDValue, 4> Opers; 6956 Opers.push_back(Chain); 6957 if (FPI.isUnaryOp()) { 6958 Opers.push_back(getValue(FPI.getArgOperand(0))); 6959 } else if (FPI.isTernaryOp()) { 6960 Opers.push_back(getValue(FPI.getArgOperand(0))); 6961 Opers.push_back(getValue(FPI.getArgOperand(1))); 6962 Opers.push_back(getValue(FPI.getArgOperand(2))); 6963 } else { 6964 Opers.push_back(getValue(FPI.getArgOperand(0))); 6965 Opers.push_back(getValue(FPI.getArgOperand(1))); 6966 } 6967 6968 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6969 assert(Result.getNode()->getNumValues() == 2); 6970 6971 // Push node to the appropriate list so that future instructions can be 6972 // chained up correctly. 6973 SDValue OutChain = Result.getValue(1); 6974 switch (EB) { 6975 case fp::ExceptionBehavior::ebIgnore: 6976 // The only reason why ebIgnore nodes still need to be chained is that 6977 // they might depend on the current rounding mode, and therefore must 6978 // not be moved across instruction that may change that mode. 6979 LLVM_FALLTHROUGH; 6980 case fp::ExceptionBehavior::ebMayTrap: 6981 // These must not be moved across calls or instructions that may change 6982 // floating-point exception masks. 6983 PendingConstrainedFP.push_back(OutChain); 6984 break; 6985 case fp::ExceptionBehavior::ebStrict: 6986 // These must not be moved across calls or instructions that may change 6987 // floating-point exception masks or read floating-point exception flags. 6988 // In addition, they cannot be optimized out even if unused. 6989 PendingConstrainedFPStrict.push_back(OutChain); 6990 break; 6991 } 6992 }; 6993 6994 SDVTList VTs = DAG.getVTList(ValueVTs); 6995 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6996 6997 SDNodeFlags Flags; 6998 if (EB == fp::ExceptionBehavior::ebIgnore) 6999 Flags.setNoFPExcept(true); 7000 7001 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7002 Flags.copyFMF(*FPOp); 7003 7004 unsigned Opcode; 7005 switch (FPI.getIntrinsicID()) { 7006 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7007 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7008 case Intrinsic::INTRINSIC: \ 7009 Opcode = ISD::STRICT_##DAGN; \ 7010 break; 7011 #include "llvm/IR/ConstrainedOps.def" 7012 case Intrinsic::experimental_constrained_fmuladd: { 7013 Opcode = ISD::STRICT_FMA; 7014 // Break fmuladd into fmul and fadd. 7015 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7016 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7017 ValueVTs[0])) { 7018 Opers.pop_back(); 7019 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7020 pushOutChain(Mul, EB); 7021 Opcode = ISD::STRICT_FADD; 7022 Opers.clear(); 7023 Opers.push_back(Mul.getValue(1)); 7024 Opers.push_back(Mul.getValue(0)); 7025 Opers.push_back(getValue(FPI.getArgOperand(2))); 7026 } 7027 break; 7028 } 7029 } 7030 7031 // A few strict DAG nodes carry additional operands that are not 7032 // set up by the default code above. 7033 switch (Opcode) { 7034 default: break; 7035 case ISD::STRICT_FP_ROUND: 7036 Opers.push_back( 7037 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7038 break; 7039 case ISD::STRICT_FSETCC: 7040 case ISD::STRICT_FSETCCS: { 7041 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7042 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7043 break; 7044 } 7045 } 7046 7047 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7048 pushOutChain(Result, EB); 7049 7050 SDValue FPResult = Result.getValue(0); 7051 setValue(&FPI, FPResult); 7052 } 7053 7054 std::pair<SDValue, SDValue> 7055 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7056 const BasicBlock *EHPadBB) { 7057 MachineFunction &MF = DAG.getMachineFunction(); 7058 MachineModuleInfo &MMI = MF.getMMI(); 7059 MCSymbol *BeginLabel = nullptr; 7060 7061 if (EHPadBB) { 7062 // Insert a label before the invoke call to mark the try range. This can be 7063 // used to detect deletion of the invoke via the MachineModuleInfo. 7064 BeginLabel = MMI.getContext().createTempSymbol(); 7065 7066 // For SjLj, keep track of which landing pads go with which invokes 7067 // so as to maintain the ordering of pads in the LSDA. 7068 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7069 if (CallSiteIndex) { 7070 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7071 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7072 7073 // Now that the call site is handled, stop tracking it. 7074 MMI.setCurrentCallSite(0); 7075 } 7076 7077 // Both PendingLoads and PendingExports must be flushed here; 7078 // this call might not return. 7079 (void)getRoot(); 7080 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7081 7082 CLI.setChain(getRoot()); 7083 } 7084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7085 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7086 7087 assert((CLI.IsTailCall || Result.second.getNode()) && 7088 "Non-null chain expected with non-tail call!"); 7089 assert((Result.second.getNode() || !Result.first.getNode()) && 7090 "Null value expected with tail call!"); 7091 7092 if (!Result.second.getNode()) { 7093 // As a special case, a null chain means that a tail call has been emitted 7094 // and the DAG root is already updated. 7095 HasTailCall = true; 7096 7097 // Since there's no actual continuation from this block, nothing can be 7098 // relying on us setting vregs for them. 7099 PendingExports.clear(); 7100 } else { 7101 DAG.setRoot(Result.second); 7102 } 7103 7104 if (EHPadBB) { 7105 // Insert a label at the end of the invoke call to mark the try range. This 7106 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7107 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7108 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7109 7110 // Inform MachineModuleInfo of range. 7111 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7112 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7113 // actually use outlined funclets and their LSDA info style. 7114 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7115 assert(CLI.CB); 7116 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7117 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7118 } else if (!isScopedEHPersonality(Pers)) { 7119 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7120 } 7121 } 7122 7123 return Result; 7124 } 7125 7126 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7127 bool isTailCall, 7128 const BasicBlock *EHPadBB) { 7129 auto &DL = DAG.getDataLayout(); 7130 FunctionType *FTy = CB.getFunctionType(); 7131 Type *RetTy = CB.getType(); 7132 7133 TargetLowering::ArgListTy Args; 7134 Args.reserve(CB.arg_size()); 7135 7136 const Value *SwiftErrorVal = nullptr; 7137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7138 7139 if (isTailCall) { 7140 // Avoid emitting tail calls in functions with the disable-tail-calls 7141 // attribute. 7142 auto *Caller = CB.getParent()->getParent(); 7143 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7144 "true") 7145 isTailCall = false; 7146 7147 // We can't tail call inside a function with a swifterror argument. Lowering 7148 // does not support this yet. It would have to move into the swifterror 7149 // register before the call. 7150 if (TLI.supportSwiftError() && 7151 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7152 isTailCall = false; 7153 } 7154 7155 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7156 TargetLowering::ArgListEntry Entry; 7157 const Value *V = *I; 7158 7159 // Skip empty types 7160 if (V->getType()->isEmptyTy()) 7161 continue; 7162 7163 SDValue ArgNode = getValue(V); 7164 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7165 7166 Entry.setAttributes(&CB, I - CB.arg_begin()); 7167 7168 // Use swifterror virtual register as input to the call. 7169 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7170 SwiftErrorVal = V; 7171 // We find the virtual register for the actual swifterror argument. 7172 // Instead of using the Value, we use the virtual register instead. 7173 Entry.Node = 7174 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7175 EVT(TLI.getPointerTy(DL))); 7176 } 7177 7178 Args.push_back(Entry); 7179 7180 // If we have an explicit sret argument that is an Instruction, (i.e., it 7181 // might point to function-local memory), we can't meaningfully tail-call. 7182 if (Entry.IsSRet && isa<Instruction>(V)) 7183 isTailCall = false; 7184 } 7185 7186 // If call site has a cfguardtarget operand bundle, create and add an 7187 // additional ArgListEntry. 7188 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7189 TargetLowering::ArgListEntry Entry; 7190 Value *V = Bundle->Inputs[0]; 7191 SDValue ArgNode = getValue(V); 7192 Entry.Node = ArgNode; 7193 Entry.Ty = V->getType(); 7194 Entry.IsCFGuardTarget = true; 7195 Args.push_back(Entry); 7196 } 7197 7198 // Check if target-independent constraints permit a tail call here. 7199 // Target-dependent constraints are checked within TLI->LowerCallTo. 7200 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7201 isTailCall = false; 7202 7203 // Disable tail calls if there is an swifterror argument. Targets have not 7204 // been updated to support tail calls. 7205 if (TLI.supportSwiftError() && SwiftErrorVal) 7206 isTailCall = false; 7207 7208 TargetLowering::CallLoweringInfo CLI(DAG); 7209 CLI.setDebugLoc(getCurSDLoc()) 7210 .setChain(getRoot()) 7211 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7212 .setTailCall(isTailCall) 7213 .setConvergent(CB.isConvergent()) 7214 .setIsPreallocated( 7215 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7216 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7217 7218 if (Result.first.getNode()) { 7219 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7220 setValue(&CB, Result.first); 7221 } 7222 7223 // The last element of CLI.InVals has the SDValue for swifterror return. 7224 // Here we copy it to a virtual register and update SwiftErrorMap for 7225 // book-keeping. 7226 if (SwiftErrorVal && TLI.supportSwiftError()) { 7227 // Get the last element of InVals. 7228 SDValue Src = CLI.InVals.back(); 7229 Register VReg = 7230 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7231 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7232 DAG.setRoot(CopyNode); 7233 } 7234 } 7235 7236 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7237 SelectionDAGBuilder &Builder) { 7238 // Check to see if this load can be trivially constant folded, e.g. if the 7239 // input is from a string literal. 7240 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7241 // Cast pointer to the type we really want to load. 7242 Type *LoadTy = 7243 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7244 if (LoadVT.isVector()) 7245 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7246 7247 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7248 PointerType::getUnqual(LoadTy)); 7249 7250 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7251 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7252 return Builder.getValue(LoadCst); 7253 } 7254 7255 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7256 // still constant memory, the input chain can be the entry node. 7257 SDValue Root; 7258 bool ConstantMemory = false; 7259 7260 // Do not serialize (non-volatile) loads of constant memory with anything. 7261 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7262 Root = Builder.DAG.getEntryNode(); 7263 ConstantMemory = true; 7264 } else { 7265 // Do not serialize non-volatile loads against each other. 7266 Root = Builder.DAG.getRoot(); 7267 } 7268 7269 SDValue Ptr = Builder.getValue(PtrVal); 7270 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7271 Ptr, MachinePointerInfo(PtrVal), 7272 /* Alignment = */ 1); 7273 7274 if (!ConstantMemory) 7275 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7276 return LoadVal; 7277 } 7278 7279 /// Record the value for an instruction that produces an integer result, 7280 /// converting the type where necessary. 7281 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7282 SDValue Value, 7283 bool IsSigned) { 7284 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7285 I.getType(), true); 7286 if (IsSigned) 7287 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7288 else 7289 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7290 setValue(&I, Value); 7291 } 7292 7293 /// See if we can lower a memcmp call into an optimized form. If so, return 7294 /// true and lower it. Otherwise return false, and it will be lowered like a 7295 /// normal call. 7296 /// The caller already checked that \p I calls the appropriate LibFunc with a 7297 /// correct prototype. 7298 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7299 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7300 const Value *Size = I.getArgOperand(2); 7301 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7302 if (CSize && CSize->getZExtValue() == 0) { 7303 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7304 I.getType(), true); 7305 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7306 return true; 7307 } 7308 7309 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7310 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7311 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7312 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7313 if (Res.first.getNode()) { 7314 processIntegerCallValue(I, Res.first, true); 7315 PendingLoads.push_back(Res.second); 7316 return true; 7317 } 7318 7319 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7320 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7321 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7322 return false; 7323 7324 // If the target has a fast compare for the given size, it will return a 7325 // preferred load type for that size. Require that the load VT is legal and 7326 // that the target supports unaligned loads of that type. Otherwise, return 7327 // INVALID. 7328 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7330 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7331 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7332 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7333 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7334 // TODO: Check alignment of src and dest ptrs. 7335 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7336 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7337 if (!TLI.isTypeLegal(LVT) || 7338 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7339 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7340 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7341 } 7342 7343 return LVT; 7344 }; 7345 7346 // This turns into unaligned loads. We only do this if the target natively 7347 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7348 // we'll only produce a small number of byte loads. 7349 MVT LoadVT; 7350 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7351 switch (NumBitsToCompare) { 7352 default: 7353 return false; 7354 case 16: 7355 LoadVT = MVT::i16; 7356 break; 7357 case 32: 7358 LoadVT = MVT::i32; 7359 break; 7360 case 64: 7361 case 128: 7362 case 256: 7363 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7364 break; 7365 } 7366 7367 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7368 return false; 7369 7370 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7371 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7372 7373 // Bitcast to a wide integer type if the loads are vectors. 7374 if (LoadVT.isVector()) { 7375 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7376 LoadL = DAG.getBitcast(CmpVT, LoadL); 7377 LoadR = DAG.getBitcast(CmpVT, LoadR); 7378 } 7379 7380 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7381 processIntegerCallValue(I, Cmp, false); 7382 return true; 7383 } 7384 7385 /// See if we can lower a memchr call into an optimized form. If so, return 7386 /// true and lower it. Otherwise return false, and it will be lowered like a 7387 /// normal call. 7388 /// The caller already checked that \p I calls the appropriate LibFunc with a 7389 /// correct prototype. 7390 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7391 const Value *Src = I.getArgOperand(0); 7392 const Value *Char = I.getArgOperand(1); 7393 const Value *Length = I.getArgOperand(2); 7394 7395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7396 std::pair<SDValue, SDValue> Res = 7397 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7398 getValue(Src), getValue(Char), getValue(Length), 7399 MachinePointerInfo(Src)); 7400 if (Res.first.getNode()) { 7401 setValue(&I, Res.first); 7402 PendingLoads.push_back(Res.second); 7403 return true; 7404 } 7405 7406 return false; 7407 } 7408 7409 /// See if we can lower a mempcpy call into an optimized form. If so, return 7410 /// true and lower it. Otherwise return false, and it will be lowered like a 7411 /// normal call. 7412 /// The caller already checked that \p I calls the appropriate LibFunc with a 7413 /// correct prototype. 7414 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7415 SDValue Dst = getValue(I.getArgOperand(0)); 7416 SDValue Src = getValue(I.getArgOperand(1)); 7417 SDValue Size = getValue(I.getArgOperand(2)); 7418 7419 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7420 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7421 // DAG::getMemcpy needs Alignment to be defined. 7422 Align Alignment = std::min(DstAlign, SrcAlign); 7423 7424 bool isVol = false; 7425 SDLoc sdl = getCurSDLoc(); 7426 7427 // In the mempcpy context we need to pass in a false value for isTailCall 7428 // because the return pointer needs to be adjusted by the size of 7429 // the copied memory. 7430 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7431 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7432 /*isTailCall=*/false, 7433 MachinePointerInfo(I.getArgOperand(0)), 7434 MachinePointerInfo(I.getArgOperand(1))); 7435 assert(MC.getNode() != nullptr && 7436 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7437 DAG.setRoot(MC); 7438 7439 // Check if Size needs to be truncated or extended. 7440 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7441 7442 // Adjust return pointer to point just past the last dst byte. 7443 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7444 Dst, Size); 7445 setValue(&I, DstPlusSize); 7446 return true; 7447 } 7448 7449 /// See if we can lower a strcpy call into an optimized form. If so, return 7450 /// true and lower it, otherwise return false and it will be lowered like a 7451 /// normal call. 7452 /// The caller already checked that \p I calls the appropriate LibFunc with a 7453 /// correct prototype. 7454 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7455 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7456 7457 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7458 std::pair<SDValue, SDValue> Res = 7459 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7460 getValue(Arg0), getValue(Arg1), 7461 MachinePointerInfo(Arg0), 7462 MachinePointerInfo(Arg1), isStpcpy); 7463 if (Res.first.getNode()) { 7464 setValue(&I, Res.first); 7465 DAG.setRoot(Res.second); 7466 return true; 7467 } 7468 7469 return false; 7470 } 7471 7472 /// See if we can lower a strcmp call into an optimized form. If so, return 7473 /// true and lower it, otherwise return false and it will be lowered like a 7474 /// normal call. 7475 /// The caller already checked that \p I calls the appropriate LibFunc with a 7476 /// correct prototype. 7477 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7478 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7479 7480 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7481 std::pair<SDValue, SDValue> Res = 7482 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7483 getValue(Arg0), getValue(Arg1), 7484 MachinePointerInfo(Arg0), 7485 MachinePointerInfo(Arg1)); 7486 if (Res.first.getNode()) { 7487 processIntegerCallValue(I, Res.first, true); 7488 PendingLoads.push_back(Res.second); 7489 return true; 7490 } 7491 7492 return false; 7493 } 7494 7495 /// See if we can lower a strlen call into an optimized form. If so, return 7496 /// true and lower it, otherwise return false and it will be lowered like a 7497 /// normal call. 7498 /// The caller already checked that \p I calls the appropriate LibFunc with a 7499 /// correct prototype. 7500 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7501 const Value *Arg0 = I.getArgOperand(0); 7502 7503 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7504 std::pair<SDValue, SDValue> Res = 7505 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7506 getValue(Arg0), MachinePointerInfo(Arg0)); 7507 if (Res.first.getNode()) { 7508 processIntegerCallValue(I, Res.first, false); 7509 PendingLoads.push_back(Res.second); 7510 return true; 7511 } 7512 7513 return false; 7514 } 7515 7516 /// See if we can lower a strnlen call into an optimized form. If so, return 7517 /// true and lower it, otherwise return false and it will be lowered like a 7518 /// normal call. 7519 /// The caller already checked that \p I calls the appropriate LibFunc with a 7520 /// correct prototype. 7521 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7522 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7523 7524 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7525 std::pair<SDValue, SDValue> Res = 7526 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7527 getValue(Arg0), getValue(Arg1), 7528 MachinePointerInfo(Arg0)); 7529 if (Res.first.getNode()) { 7530 processIntegerCallValue(I, Res.first, false); 7531 PendingLoads.push_back(Res.second); 7532 return true; 7533 } 7534 7535 return false; 7536 } 7537 7538 /// See if we can lower a unary floating-point operation into an SDNode with 7539 /// the specified Opcode. If so, return true and lower it, otherwise return 7540 /// false and it will be lowered like a normal call. 7541 /// The caller already checked that \p I calls the appropriate LibFunc with a 7542 /// correct prototype. 7543 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7544 unsigned Opcode) { 7545 // We already checked this call's prototype; verify it doesn't modify errno. 7546 if (!I.onlyReadsMemory()) 7547 return false; 7548 7549 SDValue Tmp = getValue(I.getArgOperand(0)); 7550 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7551 return true; 7552 } 7553 7554 /// See if we can lower a binary floating-point operation into an SDNode with 7555 /// the specified Opcode. If so, return true and lower it. Otherwise return 7556 /// false, and it will be lowered like a normal call. 7557 /// The caller already checked that \p I calls the appropriate LibFunc with a 7558 /// correct prototype. 7559 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7560 unsigned Opcode) { 7561 // We already checked this call's prototype; verify it doesn't modify errno. 7562 if (!I.onlyReadsMemory()) 7563 return false; 7564 7565 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7566 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7567 EVT VT = Tmp0.getValueType(); 7568 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7569 return true; 7570 } 7571 7572 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7573 // Handle inline assembly differently. 7574 if (I.isInlineAsm()) { 7575 visitInlineAsm(I); 7576 return; 7577 } 7578 7579 if (Function *F = I.getCalledFunction()) { 7580 if (F->isDeclaration()) { 7581 // Is this an LLVM intrinsic or a target-specific intrinsic? 7582 unsigned IID = F->getIntrinsicID(); 7583 if (!IID) 7584 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7585 IID = II->getIntrinsicID(F); 7586 7587 if (IID) { 7588 visitIntrinsicCall(I, IID); 7589 return; 7590 } 7591 } 7592 7593 // Check for well-known libc/libm calls. If the function is internal, it 7594 // can't be a library call. Don't do the check if marked as nobuiltin for 7595 // some reason or the call site requires strict floating point semantics. 7596 LibFunc Func; 7597 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7598 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7599 LibInfo->hasOptimizedCodeGen(Func)) { 7600 switch (Func) { 7601 default: break; 7602 case LibFunc_copysign: 7603 case LibFunc_copysignf: 7604 case LibFunc_copysignl: 7605 // We already checked this call's prototype; verify it doesn't modify 7606 // errno. 7607 if (I.onlyReadsMemory()) { 7608 SDValue LHS = getValue(I.getArgOperand(0)); 7609 SDValue RHS = getValue(I.getArgOperand(1)); 7610 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7611 LHS.getValueType(), LHS, RHS)); 7612 return; 7613 } 7614 break; 7615 case LibFunc_fabs: 7616 case LibFunc_fabsf: 7617 case LibFunc_fabsl: 7618 if (visitUnaryFloatCall(I, ISD::FABS)) 7619 return; 7620 break; 7621 case LibFunc_fmin: 7622 case LibFunc_fminf: 7623 case LibFunc_fminl: 7624 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7625 return; 7626 break; 7627 case LibFunc_fmax: 7628 case LibFunc_fmaxf: 7629 case LibFunc_fmaxl: 7630 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7631 return; 7632 break; 7633 case LibFunc_sin: 7634 case LibFunc_sinf: 7635 case LibFunc_sinl: 7636 if (visitUnaryFloatCall(I, ISD::FSIN)) 7637 return; 7638 break; 7639 case LibFunc_cos: 7640 case LibFunc_cosf: 7641 case LibFunc_cosl: 7642 if (visitUnaryFloatCall(I, ISD::FCOS)) 7643 return; 7644 break; 7645 case LibFunc_sqrt: 7646 case LibFunc_sqrtf: 7647 case LibFunc_sqrtl: 7648 case LibFunc_sqrt_finite: 7649 case LibFunc_sqrtf_finite: 7650 case LibFunc_sqrtl_finite: 7651 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7652 return; 7653 break; 7654 case LibFunc_floor: 7655 case LibFunc_floorf: 7656 case LibFunc_floorl: 7657 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7658 return; 7659 break; 7660 case LibFunc_nearbyint: 7661 case LibFunc_nearbyintf: 7662 case LibFunc_nearbyintl: 7663 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7664 return; 7665 break; 7666 case LibFunc_ceil: 7667 case LibFunc_ceilf: 7668 case LibFunc_ceill: 7669 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7670 return; 7671 break; 7672 case LibFunc_rint: 7673 case LibFunc_rintf: 7674 case LibFunc_rintl: 7675 if (visitUnaryFloatCall(I, ISD::FRINT)) 7676 return; 7677 break; 7678 case LibFunc_round: 7679 case LibFunc_roundf: 7680 case LibFunc_roundl: 7681 if (visitUnaryFloatCall(I, ISD::FROUND)) 7682 return; 7683 break; 7684 case LibFunc_trunc: 7685 case LibFunc_truncf: 7686 case LibFunc_truncl: 7687 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7688 return; 7689 break; 7690 case LibFunc_log2: 7691 case LibFunc_log2f: 7692 case LibFunc_log2l: 7693 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7694 return; 7695 break; 7696 case LibFunc_exp2: 7697 case LibFunc_exp2f: 7698 case LibFunc_exp2l: 7699 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7700 return; 7701 break; 7702 case LibFunc_memcmp: 7703 if (visitMemCmpCall(I)) 7704 return; 7705 break; 7706 case LibFunc_mempcpy: 7707 if (visitMemPCpyCall(I)) 7708 return; 7709 break; 7710 case LibFunc_memchr: 7711 if (visitMemChrCall(I)) 7712 return; 7713 break; 7714 case LibFunc_strcpy: 7715 if (visitStrCpyCall(I, false)) 7716 return; 7717 break; 7718 case LibFunc_stpcpy: 7719 if (visitStrCpyCall(I, true)) 7720 return; 7721 break; 7722 case LibFunc_strcmp: 7723 if (visitStrCmpCall(I)) 7724 return; 7725 break; 7726 case LibFunc_strlen: 7727 if (visitStrLenCall(I)) 7728 return; 7729 break; 7730 case LibFunc_strnlen: 7731 if (visitStrNLenCall(I)) 7732 return; 7733 break; 7734 } 7735 } 7736 } 7737 7738 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7739 // have to do anything here to lower funclet bundles. 7740 // CFGuardTarget bundles are lowered in LowerCallTo. 7741 assert(!I.hasOperandBundlesOtherThan( 7742 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7743 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7744 "Cannot lower calls with arbitrary operand bundles!"); 7745 7746 SDValue Callee = getValue(I.getCalledOperand()); 7747 7748 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7749 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7750 else 7751 // Check if we can potentially perform a tail call. More detailed checking 7752 // is be done within LowerCallTo, after more information about the call is 7753 // known. 7754 LowerCallTo(I, Callee, I.isTailCall()); 7755 } 7756 7757 namespace { 7758 7759 /// AsmOperandInfo - This contains information for each constraint that we are 7760 /// lowering. 7761 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7762 public: 7763 /// CallOperand - If this is the result output operand or a clobber 7764 /// this is null, otherwise it is the incoming operand to the CallInst. 7765 /// This gets modified as the asm is processed. 7766 SDValue CallOperand; 7767 7768 /// AssignedRegs - If this is a register or register class operand, this 7769 /// contains the set of register corresponding to the operand. 7770 RegsForValue AssignedRegs; 7771 7772 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7773 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7774 } 7775 7776 /// Whether or not this operand accesses memory 7777 bool hasMemory(const TargetLowering &TLI) const { 7778 // Indirect operand accesses access memory. 7779 if (isIndirect) 7780 return true; 7781 7782 for (const auto &Code : Codes) 7783 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7784 return true; 7785 7786 return false; 7787 } 7788 7789 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7790 /// corresponds to. If there is no Value* for this operand, it returns 7791 /// MVT::Other. 7792 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7793 const DataLayout &DL) const { 7794 if (!CallOperandVal) return MVT::Other; 7795 7796 if (isa<BasicBlock>(CallOperandVal)) 7797 return TLI.getProgramPointerTy(DL); 7798 7799 llvm::Type *OpTy = CallOperandVal->getType(); 7800 7801 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7802 // If this is an indirect operand, the operand is a pointer to the 7803 // accessed type. 7804 if (isIndirect) { 7805 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7806 if (!PtrTy) 7807 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7808 OpTy = PtrTy->getElementType(); 7809 } 7810 7811 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7812 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7813 if (STy->getNumElements() == 1) 7814 OpTy = STy->getElementType(0); 7815 7816 // If OpTy is not a single value, it may be a struct/union that we 7817 // can tile with integers. 7818 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7819 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7820 switch (BitSize) { 7821 default: break; 7822 case 1: 7823 case 8: 7824 case 16: 7825 case 32: 7826 case 64: 7827 case 128: 7828 OpTy = IntegerType::get(Context, BitSize); 7829 break; 7830 } 7831 } 7832 7833 return TLI.getValueType(DL, OpTy, true); 7834 } 7835 }; 7836 7837 7838 } // end anonymous namespace 7839 7840 /// Make sure that the output operand \p OpInfo and its corresponding input 7841 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7842 /// out). 7843 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7844 SDISelAsmOperandInfo &MatchingOpInfo, 7845 SelectionDAG &DAG) { 7846 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7847 return; 7848 7849 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7850 const auto &TLI = DAG.getTargetLoweringInfo(); 7851 7852 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7853 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7854 OpInfo.ConstraintVT); 7855 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7856 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7857 MatchingOpInfo.ConstraintVT); 7858 if ((OpInfo.ConstraintVT.isInteger() != 7859 MatchingOpInfo.ConstraintVT.isInteger()) || 7860 (MatchRC.second != InputRC.second)) { 7861 // FIXME: error out in a more elegant fashion 7862 report_fatal_error("Unsupported asm: input constraint" 7863 " with a matching output constraint of" 7864 " incompatible type!"); 7865 } 7866 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7867 } 7868 7869 /// Get a direct memory input to behave well as an indirect operand. 7870 /// This may introduce stores, hence the need for a \p Chain. 7871 /// \return The (possibly updated) chain. 7872 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7873 SDISelAsmOperandInfo &OpInfo, 7874 SelectionDAG &DAG) { 7875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7876 7877 // If we don't have an indirect input, put it in the constpool if we can, 7878 // otherwise spill it to a stack slot. 7879 // TODO: This isn't quite right. We need to handle these according to 7880 // the addressing mode that the constraint wants. Also, this may take 7881 // an additional register for the computation and we don't want that 7882 // either. 7883 7884 // If the operand is a float, integer, or vector constant, spill to a 7885 // constant pool entry to get its address. 7886 const Value *OpVal = OpInfo.CallOperandVal; 7887 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7888 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7889 OpInfo.CallOperand = DAG.getConstantPool( 7890 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7891 return Chain; 7892 } 7893 7894 // Otherwise, create a stack slot and emit a store to it before the asm. 7895 Type *Ty = OpVal->getType(); 7896 auto &DL = DAG.getDataLayout(); 7897 uint64_t TySize = DL.getTypeAllocSize(Ty); 7898 MachineFunction &MF = DAG.getMachineFunction(); 7899 int SSFI = MF.getFrameInfo().CreateStackObject( 7900 TySize, DL.getPrefTypeAlign(Ty), false); 7901 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7902 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7903 MachinePointerInfo::getFixedStack(MF, SSFI), 7904 TLI.getMemValueType(DL, Ty)); 7905 OpInfo.CallOperand = StackSlot; 7906 7907 return Chain; 7908 } 7909 7910 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7911 /// specified operand. We prefer to assign virtual registers, to allow the 7912 /// register allocator to handle the assignment process. However, if the asm 7913 /// uses features that we can't model on machineinstrs, we have SDISel do the 7914 /// allocation. This produces generally horrible, but correct, code. 7915 /// 7916 /// OpInfo describes the operand 7917 /// RefOpInfo describes the matching operand if any, the operand otherwise 7918 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7919 SDISelAsmOperandInfo &OpInfo, 7920 SDISelAsmOperandInfo &RefOpInfo) { 7921 LLVMContext &Context = *DAG.getContext(); 7922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7923 7924 MachineFunction &MF = DAG.getMachineFunction(); 7925 SmallVector<unsigned, 4> Regs; 7926 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7927 7928 // No work to do for memory operations. 7929 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7930 return; 7931 7932 // If this is a constraint for a single physreg, or a constraint for a 7933 // register class, find it. 7934 unsigned AssignedReg; 7935 const TargetRegisterClass *RC; 7936 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7937 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7938 // RC is unset only on failure. Return immediately. 7939 if (!RC) 7940 return; 7941 7942 // Get the actual register value type. This is important, because the user 7943 // may have asked for (e.g.) the AX register in i32 type. We need to 7944 // remember that AX is actually i16 to get the right extension. 7945 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7946 7947 if (OpInfo.ConstraintVT != MVT::Other) { 7948 // If this is an FP operand in an integer register (or visa versa), or more 7949 // generally if the operand value disagrees with the register class we plan 7950 // to stick it in, fix the operand type. 7951 // 7952 // If this is an input value, the bitcast to the new type is done now. 7953 // Bitcast for output value is done at the end of visitInlineAsm(). 7954 if ((OpInfo.Type == InlineAsm::isOutput || 7955 OpInfo.Type == InlineAsm::isInput) && 7956 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7957 // Try to convert to the first EVT that the reg class contains. If the 7958 // types are identical size, use a bitcast to convert (e.g. two differing 7959 // vector types). Note: output bitcast is done at the end of 7960 // visitInlineAsm(). 7961 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7962 // Exclude indirect inputs while they are unsupported because the code 7963 // to perform the load is missing and thus OpInfo.CallOperand still 7964 // refers to the input address rather than the pointed-to value. 7965 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7966 OpInfo.CallOperand = 7967 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7968 OpInfo.ConstraintVT = RegVT; 7969 // If the operand is an FP value and we want it in integer registers, 7970 // use the corresponding integer type. This turns an f64 value into 7971 // i64, which can be passed with two i32 values on a 32-bit machine. 7972 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7973 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7974 if (OpInfo.Type == InlineAsm::isInput) 7975 OpInfo.CallOperand = 7976 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7977 OpInfo.ConstraintVT = VT; 7978 } 7979 } 7980 } 7981 7982 // No need to allocate a matching input constraint since the constraint it's 7983 // matching to has already been allocated. 7984 if (OpInfo.isMatchingInputConstraint()) 7985 return; 7986 7987 EVT ValueVT = OpInfo.ConstraintVT; 7988 if (OpInfo.ConstraintVT == MVT::Other) 7989 ValueVT = RegVT; 7990 7991 // Initialize NumRegs. 7992 unsigned NumRegs = 1; 7993 if (OpInfo.ConstraintVT != MVT::Other) 7994 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7995 7996 // If this is a constraint for a specific physical register, like {r17}, 7997 // assign it now. 7998 7999 // If this associated to a specific register, initialize iterator to correct 8000 // place. If virtual, make sure we have enough registers 8001 8002 // Initialize iterator if necessary 8003 TargetRegisterClass::iterator I = RC->begin(); 8004 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8005 8006 // Do not check for single registers. 8007 if (AssignedReg) { 8008 for (; *I != AssignedReg; ++I) 8009 assert(I != RC->end() && "AssignedReg should be member of RC"); 8010 } 8011 8012 for (; NumRegs; --NumRegs, ++I) { 8013 assert(I != RC->end() && "Ran out of registers to allocate!"); 8014 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8015 Regs.push_back(R); 8016 } 8017 8018 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8019 } 8020 8021 static unsigned 8022 findMatchingInlineAsmOperand(unsigned OperandNo, 8023 const std::vector<SDValue> &AsmNodeOperands) { 8024 // Scan until we find the definition we already emitted of this operand. 8025 unsigned CurOp = InlineAsm::Op_FirstOperand; 8026 for (; OperandNo; --OperandNo) { 8027 // Advance to the next operand. 8028 unsigned OpFlag = 8029 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8030 assert((InlineAsm::isRegDefKind(OpFlag) || 8031 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8032 InlineAsm::isMemKind(OpFlag)) && 8033 "Skipped past definitions?"); 8034 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8035 } 8036 return CurOp; 8037 } 8038 8039 namespace { 8040 8041 class ExtraFlags { 8042 unsigned Flags = 0; 8043 8044 public: 8045 explicit ExtraFlags(const CallBase &Call) { 8046 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8047 if (IA->hasSideEffects()) 8048 Flags |= InlineAsm::Extra_HasSideEffects; 8049 if (IA->isAlignStack()) 8050 Flags |= InlineAsm::Extra_IsAlignStack; 8051 if (Call.isConvergent()) 8052 Flags |= InlineAsm::Extra_IsConvergent; 8053 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8054 } 8055 8056 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8057 // Ideally, we would only check against memory constraints. However, the 8058 // meaning of an Other constraint can be target-specific and we can't easily 8059 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8060 // for Other constraints as well. 8061 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8062 OpInfo.ConstraintType == TargetLowering::C_Other) { 8063 if (OpInfo.Type == InlineAsm::isInput) 8064 Flags |= InlineAsm::Extra_MayLoad; 8065 else if (OpInfo.Type == InlineAsm::isOutput) 8066 Flags |= InlineAsm::Extra_MayStore; 8067 else if (OpInfo.Type == InlineAsm::isClobber) 8068 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8069 } 8070 } 8071 8072 unsigned get() const { return Flags; } 8073 }; 8074 8075 } // end anonymous namespace 8076 8077 /// visitInlineAsm - Handle a call to an InlineAsm object. 8078 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8079 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8080 8081 /// ConstraintOperands - Information about all of the constraints. 8082 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8083 8084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8085 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8086 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8087 8088 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8089 // AsmDialect, MayLoad, MayStore). 8090 bool HasSideEffect = IA->hasSideEffects(); 8091 ExtraFlags ExtraInfo(Call); 8092 8093 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8094 unsigned ResNo = 0; // ResNo - The result number of the next output. 8095 unsigned NumMatchingOps = 0; 8096 for (auto &T : TargetConstraints) { 8097 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8098 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8099 8100 // Compute the value type for each operand. 8101 if (OpInfo.Type == InlineAsm::isInput || 8102 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8103 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8104 8105 // Process the call argument. BasicBlocks are labels, currently appearing 8106 // only in asm's. 8107 if (isa<CallBrInst>(Call) && 8108 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8109 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8110 NumMatchingOps) && 8111 (NumMatchingOps == 0 || 8112 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8113 NumMatchingOps))) { 8114 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8115 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8116 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8117 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8118 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8119 } else { 8120 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8121 } 8122 8123 OpInfo.ConstraintVT = 8124 OpInfo 8125 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8126 .getSimpleVT(); 8127 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8128 // The return value of the call is this value. As such, there is no 8129 // corresponding argument. 8130 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8131 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8132 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8133 DAG.getDataLayout(), STy->getElementType(ResNo)); 8134 } else { 8135 assert(ResNo == 0 && "Asm only has one result!"); 8136 OpInfo.ConstraintVT = 8137 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8138 } 8139 ++ResNo; 8140 } else { 8141 OpInfo.ConstraintVT = MVT::Other; 8142 } 8143 8144 if (OpInfo.hasMatchingInput()) 8145 ++NumMatchingOps; 8146 8147 if (!HasSideEffect) 8148 HasSideEffect = OpInfo.hasMemory(TLI); 8149 8150 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8151 // FIXME: Could we compute this on OpInfo rather than T? 8152 8153 // Compute the constraint code and ConstraintType to use. 8154 TLI.ComputeConstraintToUse(T, SDValue()); 8155 8156 if (T.ConstraintType == TargetLowering::C_Immediate && 8157 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8158 // We've delayed emitting a diagnostic like the "n" constraint because 8159 // inlining could cause an integer showing up. 8160 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8161 "' expects an integer constant " 8162 "expression"); 8163 8164 ExtraInfo.update(T); 8165 } 8166 8167 8168 // We won't need to flush pending loads if this asm doesn't touch 8169 // memory and is nonvolatile. 8170 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8171 8172 bool IsCallBr = isa<CallBrInst>(Call); 8173 if (IsCallBr) { 8174 // If this is a callbr we need to flush pending exports since inlineasm_br 8175 // is a terminator. We need to do this before nodes are glued to 8176 // the inlineasm_br node. 8177 Chain = getControlRoot(); 8178 } 8179 8180 // Second pass over the constraints: compute which constraint option to use. 8181 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8182 // If this is an output operand with a matching input operand, look up the 8183 // matching input. If their types mismatch, e.g. one is an integer, the 8184 // other is floating point, or their sizes are different, flag it as an 8185 // error. 8186 if (OpInfo.hasMatchingInput()) { 8187 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8188 patchMatchingInput(OpInfo, Input, DAG); 8189 } 8190 8191 // Compute the constraint code and ConstraintType to use. 8192 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8193 8194 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8195 OpInfo.Type == InlineAsm::isClobber) 8196 continue; 8197 8198 // If this is a memory input, and if the operand is not indirect, do what we 8199 // need to provide an address for the memory input. 8200 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8201 !OpInfo.isIndirect) { 8202 assert((OpInfo.isMultipleAlternative || 8203 (OpInfo.Type == InlineAsm::isInput)) && 8204 "Can only indirectify direct input operands!"); 8205 8206 // Memory operands really want the address of the value. 8207 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8208 8209 // There is no longer a Value* corresponding to this operand. 8210 OpInfo.CallOperandVal = nullptr; 8211 8212 // It is now an indirect operand. 8213 OpInfo.isIndirect = true; 8214 } 8215 8216 } 8217 8218 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8219 std::vector<SDValue> AsmNodeOperands; 8220 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8221 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8222 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8223 8224 // If we have a !srcloc metadata node associated with it, we want to attach 8225 // this to the ultimately generated inline asm machineinstr. To do this, we 8226 // pass in the third operand as this (potentially null) inline asm MDNode. 8227 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8228 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8229 8230 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8231 // bits as operand 3. 8232 AsmNodeOperands.push_back(DAG.getTargetConstant( 8233 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8234 8235 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8236 // this, assign virtual and physical registers for inputs and otput. 8237 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8238 // Assign Registers. 8239 SDISelAsmOperandInfo &RefOpInfo = 8240 OpInfo.isMatchingInputConstraint() 8241 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8242 : OpInfo; 8243 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8244 8245 auto DetectWriteToReservedRegister = [&]() { 8246 const MachineFunction &MF = DAG.getMachineFunction(); 8247 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8248 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8249 if (Register::isPhysicalRegister(Reg) && 8250 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8251 const char *RegName = TRI.getName(Reg); 8252 emitInlineAsmError(Call, "write to reserved register '" + 8253 Twine(RegName) + "'"); 8254 return true; 8255 } 8256 } 8257 return false; 8258 }; 8259 8260 switch (OpInfo.Type) { 8261 case InlineAsm::isOutput: 8262 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8263 unsigned ConstraintID = 8264 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8265 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8266 "Failed to convert memory constraint code to constraint id."); 8267 8268 // Add information to the INLINEASM node to know about this output. 8269 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8270 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8271 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8272 MVT::i32)); 8273 AsmNodeOperands.push_back(OpInfo.CallOperand); 8274 } else { 8275 // Otherwise, this outputs to a register (directly for C_Register / 8276 // C_RegisterClass, and a target-defined fashion for 8277 // C_Immediate/C_Other). Find a register that we can use. 8278 if (OpInfo.AssignedRegs.Regs.empty()) { 8279 emitInlineAsmError( 8280 Call, "couldn't allocate output register for constraint '" + 8281 Twine(OpInfo.ConstraintCode) + "'"); 8282 return; 8283 } 8284 8285 if (DetectWriteToReservedRegister()) 8286 return; 8287 8288 // Add information to the INLINEASM node to know that this register is 8289 // set. 8290 OpInfo.AssignedRegs.AddInlineAsmOperands( 8291 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8292 : InlineAsm::Kind_RegDef, 8293 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8294 } 8295 break; 8296 8297 case InlineAsm::isInput: { 8298 SDValue InOperandVal = OpInfo.CallOperand; 8299 8300 if (OpInfo.isMatchingInputConstraint()) { 8301 // If this is required to match an output register we have already set, 8302 // just use its register. 8303 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8304 AsmNodeOperands); 8305 unsigned OpFlag = 8306 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8307 if (InlineAsm::isRegDefKind(OpFlag) || 8308 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8309 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8310 if (OpInfo.isIndirect) { 8311 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8312 emitInlineAsmError(Call, "inline asm not supported yet: " 8313 "don't know how to handle tied " 8314 "indirect register inputs"); 8315 return; 8316 } 8317 8318 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8319 SmallVector<unsigned, 4> Regs; 8320 8321 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8322 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8323 MachineRegisterInfo &RegInfo = 8324 DAG.getMachineFunction().getRegInfo(); 8325 for (unsigned i = 0; i != NumRegs; ++i) 8326 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8327 } else { 8328 emitInlineAsmError(Call, 8329 "inline asm error: This value type register " 8330 "class is not natively supported!"); 8331 return; 8332 } 8333 8334 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8335 8336 SDLoc dl = getCurSDLoc(); 8337 // Use the produced MatchedRegs object to 8338 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8339 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8340 true, OpInfo.getMatchedOperand(), dl, 8341 DAG, AsmNodeOperands); 8342 break; 8343 } 8344 8345 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8346 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8347 "Unexpected number of operands"); 8348 // Add information to the INLINEASM node to know about this input. 8349 // See InlineAsm.h isUseOperandTiedToDef. 8350 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8351 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8352 OpInfo.getMatchedOperand()); 8353 AsmNodeOperands.push_back(DAG.getTargetConstant( 8354 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8355 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8356 break; 8357 } 8358 8359 // Treat indirect 'X' constraint as memory. 8360 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8361 OpInfo.isIndirect) 8362 OpInfo.ConstraintType = TargetLowering::C_Memory; 8363 8364 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8365 OpInfo.ConstraintType == TargetLowering::C_Other) { 8366 std::vector<SDValue> Ops; 8367 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8368 Ops, DAG); 8369 if (Ops.empty()) { 8370 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8371 if (isa<ConstantSDNode>(InOperandVal)) { 8372 emitInlineAsmError(Call, "value out of range for constraint '" + 8373 Twine(OpInfo.ConstraintCode) + "'"); 8374 return; 8375 } 8376 8377 emitInlineAsmError(Call, 8378 "invalid operand for inline asm constraint '" + 8379 Twine(OpInfo.ConstraintCode) + "'"); 8380 return; 8381 } 8382 8383 // Add information to the INLINEASM node to know about this input. 8384 unsigned ResOpType = 8385 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8386 AsmNodeOperands.push_back(DAG.getTargetConstant( 8387 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8388 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8389 break; 8390 } 8391 8392 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8393 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8394 assert(InOperandVal.getValueType() == 8395 TLI.getPointerTy(DAG.getDataLayout()) && 8396 "Memory operands expect pointer values"); 8397 8398 unsigned ConstraintID = 8399 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8400 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8401 "Failed to convert memory constraint code to constraint id."); 8402 8403 // Add information to the INLINEASM node to know about this input. 8404 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8405 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8406 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8407 getCurSDLoc(), 8408 MVT::i32)); 8409 AsmNodeOperands.push_back(InOperandVal); 8410 break; 8411 } 8412 8413 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8414 OpInfo.ConstraintType == TargetLowering::C_Register) && 8415 "Unknown constraint type!"); 8416 8417 // TODO: Support this. 8418 if (OpInfo.isIndirect) { 8419 emitInlineAsmError( 8420 Call, "Don't know how to handle indirect register inputs yet " 8421 "for constraint '" + 8422 Twine(OpInfo.ConstraintCode) + "'"); 8423 return; 8424 } 8425 8426 // Copy the input into the appropriate registers. 8427 if (OpInfo.AssignedRegs.Regs.empty()) { 8428 emitInlineAsmError(Call, 8429 "couldn't allocate input reg for constraint '" + 8430 Twine(OpInfo.ConstraintCode) + "'"); 8431 return; 8432 } 8433 8434 if (DetectWriteToReservedRegister()) 8435 return; 8436 8437 SDLoc dl = getCurSDLoc(); 8438 8439 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8440 &Call); 8441 8442 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8443 dl, DAG, AsmNodeOperands); 8444 break; 8445 } 8446 case InlineAsm::isClobber: 8447 // Add the clobbered value to the operand list, so that the register 8448 // allocator is aware that the physreg got clobbered. 8449 if (!OpInfo.AssignedRegs.Regs.empty()) 8450 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8451 false, 0, getCurSDLoc(), DAG, 8452 AsmNodeOperands); 8453 break; 8454 } 8455 } 8456 8457 // Finish up input operands. Set the input chain and add the flag last. 8458 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8459 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8460 8461 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8462 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8463 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8464 Flag = Chain.getValue(1); 8465 8466 // Do additional work to generate outputs. 8467 8468 SmallVector<EVT, 1> ResultVTs; 8469 SmallVector<SDValue, 1> ResultValues; 8470 SmallVector<SDValue, 8> OutChains; 8471 8472 llvm::Type *CallResultType = Call.getType(); 8473 ArrayRef<Type *> ResultTypes; 8474 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8475 ResultTypes = StructResult->elements(); 8476 else if (!CallResultType->isVoidTy()) 8477 ResultTypes = makeArrayRef(CallResultType); 8478 8479 auto CurResultType = ResultTypes.begin(); 8480 auto handleRegAssign = [&](SDValue V) { 8481 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8482 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8483 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8484 ++CurResultType; 8485 // If the type of the inline asm call site return value is different but has 8486 // same size as the type of the asm output bitcast it. One example of this 8487 // is for vectors with different width / number of elements. This can 8488 // happen for register classes that can contain multiple different value 8489 // types. The preg or vreg allocated may not have the same VT as was 8490 // expected. 8491 // 8492 // This can also happen for a return value that disagrees with the register 8493 // class it is put in, eg. a double in a general-purpose register on a 8494 // 32-bit machine. 8495 if (ResultVT != V.getValueType() && 8496 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8497 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8498 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8499 V.getValueType().isInteger()) { 8500 // If a result value was tied to an input value, the computed result 8501 // may have a wider width than the expected result. Extract the 8502 // relevant portion. 8503 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8504 } 8505 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8506 ResultVTs.push_back(ResultVT); 8507 ResultValues.push_back(V); 8508 }; 8509 8510 // Deal with output operands. 8511 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8512 if (OpInfo.Type == InlineAsm::isOutput) { 8513 SDValue Val; 8514 // Skip trivial output operands. 8515 if (OpInfo.AssignedRegs.Regs.empty()) 8516 continue; 8517 8518 switch (OpInfo.ConstraintType) { 8519 case TargetLowering::C_Register: 8520 case TargetLowering::C_RegisterClass: 8521 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8522 Chain, &Flag, &Call); 8523 break; 8524 case TargetLowering::C_Immediate: 8525 case TargetLowering::C_Other: 8526 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8527 OpInfo, DAG); 8528 break; 8529 case TargetLowering::C_Memory: 8530 break; // Already handled. 8531 case TargetLowering::C_Unknown: 8532 assert(false && "Unexpected unknown constraint"); 8533 } 8534 8535 // Indirect output manifest as stores. Record output chains. 8536 if (OpInfo.isIndirect) { 8537 const Value *Ptr = OpInfo.CallOperandVal; 8538 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8539 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8540 MachinePointerInfo(Ptr)); 8541 OutChains.push_back(Store); 8542 } else { 8543 // generate CopyFromRegs to associated registers. 8544 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8545 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8546 for (const SDValue &V : Val->op_values()) 8547 handleRegAssign(V); 8548 } else 8549 handleRegAssign(Val); 8550 } 8551 } 8552 } 8553 8554 // Set results. 8555 if (!ResultValues.empty()) { 8556 assert(CurResultType == ResultTypes.end() && 8557 "Mismatch in number of ResultTypes"); 8558 assert(ResultValues.size() == ResultTypes.size() && 8559 "Mismatch in number of output operands in asm result"); 8560 8561 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8562 DAG.getVTList(ResultVTs), ResultValues); 8563 setValue(&Call, V); 8564 } 8565 8566 // Collect store chains. 8567 if (!OutChains.empty()) 8568 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8569 8570 // Only Update Root if inline assembly has a memory effect. 8571 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8572 DAG.setRoot(Chain); 8573 } 8574 8575 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8576 const Twine &Message) { 8577 LLVMContext &Ctx = *DAG.getContext(); 8578 Ctx.emitError(&Call, Message); 8579 8580 // Make sure we leave the DAG in a valid state 8581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8582 SmallVector<EVT, 1> ValueVTs; 8583 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8584 8585 if (ValueVTs.empty()) 8586 return; 8587 8588 SmallVector<SDValue, 1> Ops; 8589 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8590 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8591 8592 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8593 } 8594 8595 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8596 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8597 MVT::Other, getRoot(), 8598 getValue(I.getArgOperand(0)), 8599 DAG.getSrcValue(I.getArgOperand(0)))); 8600 } 8601 8602 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8604 const DataLayout &DL = DAG.getDataLayout(); 8605 SDValue V = DAG.getVAArg( 8606 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8607 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8608 DL.getABITypeAlign(I.getType()).value()); 8609 DAG.setRoot(V.getValue(1)); 8610 8611 if (I.getType()->isPointerTy()) 8612 V = DAG.getPtrExtOrTrunc( 8613 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8614 setValue(&I, V); 8615 } 8616 8617 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8618 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8619 MVT::Other, getRoot(), 8620 getValue(I.getArgOperand(0)), 8621 DAG.getSrcValue(I.getArgOperand(0)))); 8622 } 8623 8624 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8625 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8626 MVT::Other, getRoot(), 8627 getValue(I.getArgOperand(0)), 8628 getValue(I.getArgOperand(1)), 8629 DAG.getSrcValue(I.getArgOperand(0)), 8630 DAG.getSrcValue(I.getArgOperand(1)))); 8631 } 8632 8633 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8634 const Instruction &I, 8635 SDValue Op) { 8636 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8637 if (!Range) 8638 return Op; 8639 8640 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8641 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8642 return Op; 8643 8644 APInt Lo = CR.getUnsignedMin(); 8645 if (!Lo.isMinValue()) 8646 return Op; 8647 8648 APInt Hi = CR.getUnsignedMax(); 8649 unsigned Bits = std::max(Hi.getActiveBits(), 8650 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8651 8652 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8653 8654 SDLoc SL = getCurSDLoc(); 8655 8656 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8657 DAG.getValueType(SmallVT)); 8658 unsigned NumVals = Op.getNode()->getNumValues(); 8659 if (NumVals == 1) 8660 return ZExt; 8661 8662 SmallVector<SDValue, 4> Ops; 8663 8664 Ops.push_back(ZExt); 8665 for (unsigned I = 1; I != NumVals; ++I) 8666 Ops.push_back(Op.getValue(I)); 8667 8668 return DAG.getMergeValues(Ops, SL); 8669 } 8670 8671 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8672 /// the call being lowered. 8673 /// 8674 /// This is a helper for lowering intrinsics that follow a target calling 8675 /// convention or require stack pointer adjustment. Only a subset of the 8676 /// intrinsic's operands need to participate in the calling convention. 8677 void SelectionDAGBuilder::populateCallLoweringInfo( 8678 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8679 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8680 bool IsPatchPoint) { 8681 TargetLowering::ArgListTy Args; 8682 Args.reserve(NumArgs); 8683 8684 // Populate the argument list. 8685 // Attributes for args start at offset 1, after the return attribute. 8686 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8687 ArgI != ArgE; ++ArgI) { 8688 const Value *V = Call->getOperand(ArgI); 8689 8690 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8691 8692 TargetLowering::ArgListEntry Entry; 8693 Entry.Node = getValue(V); 8694 Entry.Ty = V->getType(); 8695 Entry.setAttributes(Call, ArgI); 8696 Args.push_back(Entry); 8697 } 8698 8699 CLI.setDebugLoc(getCurSDLoc()) 8700 .setChain(getRoot()) 8701 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8702 .setDiscardResult(Call->use_empty()) 8703 .setIsPatchPoint(IsPatchPoint) 8704 .setIsPreallocated( 8705 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8706 } 8707 8708 /// Add a stack map intrinsic call's live variable operands to a stackmap 8709 /// or patchpoint target node's operand list. 8710 /// 8711 /// Constants are converted to TargetConstants purely as an optimization to 8712 /// avoid constant materialization and register allocation. 8713 /// 8714 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8715 /// generate addess computation nodes, and so FinalizeISel can convert the 8716 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8717 /// address materialization and register allocation, but may also be required 8718 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8719 /// alloca in the entry block, then the runtime may assume that the alloca's 8720 /// StackMap location can be read immediately after compilation and that the 8721 /// location is valid at any point during execution (this is similar to the 8722 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8723 /// only available in a register, then the runtime would need to trap when 8724 /// execution reaches the StackMap in order to read the alloca's location. 8725 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8726 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8727 SelectionDAGBuilder &Builder) { 8728 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8729 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8730 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8731 Ops.push_back( 8732 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8733 Ops.push_back( 8734 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8735 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8736 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8737 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8738 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8739 } else 8740 Ops.push_back(OpVal); 8741 } 8742 } 8743 8744 /// Lower llvm.experimental.stackmap directly to its target opcode. 8745 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8746 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8747 // [live variables...]) 8748 8749 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8750 8751 SDValue Chain, InFlag, Callee, NullPtr; 8752 SmallVector<SDValue, 32> Ops; 8753 8754 SDLoc DL = getCurSDLoc(); 8755 Callee = getValue(CI.getCalledOperand()); 8756 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8757 8758 // The stackmap intrinsic only records the live variables (the arguments 8759 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8760 // intrinsic, this won't be lowered to a function call. This means we don't 8761 // have to worry about calling conventions and target specific lowering code. 8762 // Instead we perform the call lowering right here. 8763 // 8764 // chain, flag = CALLSEQ_START(chain, 0, 0) 8765 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8766 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8767 // 8768 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8769 InFlag = Chain.getValue(1); 8770 8771 // Add the <id> and <numBytes> constants. 8772 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8773 Ops.push_back(DAG.getTargetConstant( 8774 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8775 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8776 Ops.push_back(DAG.getTargetConstant( 8777 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8778 MVT::i32)); 8779 8780 // Push live variables for the stack map. 8781 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8782 8783 // We are not pushing any register mask info here on the operands list, 8784 // because the stackmap doesn't clobber anything. 8785 8786 // Push the chain and the glue flag. 8787 Ops.push_back(Chain); 8788 Ops.push_back(InFlag); 8789 8790 // Create the STACKMAP node. 8791 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8792 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8793 Chain = SDValue(SM, 0); 8794 InFlag = Chain.getValue(1); 8795 8796 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8797 8798 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8799 8800 // Set the root to the target-lowered call chain. 8801 DAG.setRoot(Chain); 8802 8803 // Inform the Frame Information that we have a stackmap in this function. 8804 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8805 } 8806 8807 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8808 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8809 const BasicBlock *EHPadBB) { 8810 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8811 // i32 <numBytes>, 8812 // i8* <target>, 8813 // i32 <numArgs>, 8814 // [Args...], 8815 // [live variables...]) 8816 8817 CallingConv::ID CC = CB.getCallingConv(); 8818 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8819 bool HasDef = !CB.getType()->isVoidTy(); 8820 SDLoc dl = getCurSDLoc(); 8821 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8822 8823 // Handle immediate and symbolic callees. 8824 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8825 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8826 /*isTarget=*/true); 8827 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8828 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8829 SDLoc(SymbolicCallee), 8830 SymbolicCallee->getValueType(0)); 8831 8832 // Get the real number of arguments participating in the call <numArgs> 8833 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8834 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8835 8836 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8837 // Intrinsics include all meta-operands up to but not including CC. 8838 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8839 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8840 "Not enough arguments provided to the patchpoint intrinsic"); 8841 8842 // For AnyRegCC the arguments are lowered later on manually. 8843 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8844 Type *ReturnTy = 8845 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8846 8847 TargetLowering::CallLoweringInfo CLI(DAG); 8848 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8849 ReturnTy, true); 8850 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8851 8852 SDNode *CallEnd = Result.second.getNode(); 8853 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8854 CallEnd = CallEnd->getOperand(0).getNode(); 8855 8856 /// Get a call instruction from the call sequence chain. 8857 /// Tail calls are not allowed. 8858 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8859 "Expected a callseq node."); 8860 SDNode *Call = CallEnd->getOperand(0).getNode(); 8861 bool HasGlue = Call->getGluedNode(); 8862 8863 // Replace the target specific call node with the patchable intrinsic. 8864 SmallVector<SDValue, 8> Ops; 8865 8866 // Add the <id> and <numBytes> constants. 8867 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8868 Ops.push_back(DAG.getTargetConstant( 8869 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8870 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8871 Ops.push_back(DAG.getTargetConstant( 8872 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8873 MVT::i32)); 8874 8875 // Add the callee. 8876 Ops.push_back(Callee); 8877 8878 // Adjust <numArgs> to account for any arguments that have been passed on the 8879 // stack instead. 8880 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8881 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8882 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8883 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8884 8885 // Add the calling convention 8886 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8887 8888 // Add the arguments we omitted previously. The register allocator should 8889 // place these in any free register. 8890 if (IsAnyRegCC) 8891 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8892 Ops.push_back(getValue(CB.getArgOperand(i))); 8893 8894 // Push the arguments from the call instruction up to the register mask. 8895 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8896 Ops.append(Call->op_begin() + 2, e); 8897 8898 // Push live variables for the stack map. 8899 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8900 8901 // Push the register mask info. 8902 if (HasGlue) 8903 Ops.push_back(*(Call->op_end()-2)); 8904 else 8905 Ops.push_back(*(Call->op_end()-1)); 8906 8907 // Push the chain (this is originally the first operand of the call, but 8908 // becomes now the last or second to last operand). 8909 Ops.push_back(*(Call->op_begin())); 8910 8911 // Push the glue flag (last operand). 8912 if (HasGlue) 8913 Ops.push_back(*(Call->op_end()-1)); 8914 8915 SDVTList NodeTys; 8916 if (IsAnyRegCC && HasDef) { 8917 // Create the return types based on the intrinsic definition 8918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8919 SmallVector<EVT, 3> ValueVTs; 8920 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8921 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8922 8923 // There is always a chain and a glue type at the end 8924 ValueVTs.push_back(MVT::Other); 8925 ValueVTs.push_back(MVT::Glue); 8926 NodeTys = DAG.getVTList(ValueVTs); 8927 } else 8928 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8929 8930 // Replace the target specific call node with a PATCHPOINT node. 8931 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8932 dl, NodeTys, Ops); 8933 8934 // Update the NodeMap. 8935 if (HasDef) { 8936 if (IsAnyRegCC) 8937 setValue(&CB, SDValue(MN, 0)); 8938 else 8939 setValue(&CB, Result.first); 8940 } 8941 8942 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8943 // call sequence. Furthermore the location of the chain and glue can change 8944 // when the AnyReg calling convention is used and the intrinsic returns a 8945 // value. 8946 if (IsAnyRegCC && HasDef) { 8947 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8948 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8949 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8950 } else 8951 DAG.ReplaceAllUsesWith(Call, MN); 8952 DAG.DeleteNode(Call); 8953 8954 // Inform the Frame Information that we have a patchpoint in this function. 8955 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8956 } 8957 8958 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8959 unsigned Intrinsic) { 8960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8961 SDValue Op1 = getValue(I.getArgOperand(0)); 8962 SDValue Op2; 8963 if (I.getNumArgOperands() > 1) 8964 Op2 = getValue(I.getArgOperand(1)); 8965 SDLoc dl = getCurSDLoc(); 8966 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8967 SDValue Res; 8968 FastMathFlags FMF; 8969 if (isa<FPMathOperator>(I)) 8970 FMF = I.getFastMathFlags(); 8971 8972 switch (Intrinsic) { 8973 case Intrinsic::experimental_vector_reduce_v2_fadd: 8974 if (FMF.allowReassoc()) 8975 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8976 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8977 else 8978 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8979 break; 8980 case Intrinsic::experimental_vector_reduce_v2_fmul: 8981 if (FMF.allowReassoc()) 8982 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8983 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8984 else 8985 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8986 break; 8987 case Intrinsic::experimental_vector_reduce_add: 8988 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8989 break; 8990 case Intrinsic::experimental_vector_reduce_mul: 8991 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8992 break; 8993 case Intrinsic::experimental_vector_reduce_and: 8994 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8995 break; 8996 case Intrinsic::experimental_vector_reduce_or: 8997 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8998 break; 8999 case Intrinsic::experimental_vector_reduce_xor: 9000 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9001 break; 9002 case Intrinsic::experimental_vector_reduce_smax: 9003 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9004 break; 9005 case Intrinsic::experimental_vector_reduce_smin: 9006 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9007 break; 9008 case Intrinsic::experimental_vector_reduce_umax: 9009 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9010 break; 9011 case Intrinsic::experimental_vector_reduce_umin: 9012 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9013 break; 9014 case Intrinsic::experimental_vector_reduce_fmax: 9015 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9016 break; 9017 case Intrinsic::experimental_vector_reduce_fmin: 9018 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9019 break; 9020 default: 9021 llvm_unreachable("Unhandled vector reduce intrinsic"); 9022 } 9023 setValue(&I, Res); 9024 } 9025 9026 /// Returns an AttributeList representing the attributes applied to the return 9027 /// value of the given call. 9028 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9029 SmallVector<Attribute::AttrKind, 2> Attrs; 9030 if (CLI.RetSExt) 9031 Attrs.push_back(Attribute::SExt); 9032 if (CLI.RetZExt) 9033 Attrs.push_back(Attribute::ZExt); 9034 if (CLI.IsInReg) 9035 Attrs.push_back(Attribute::InReg); 9036 9037 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9038 Attrs); 9039 } 9040 9041 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9042 /// implementation, which just calls LowerCall. 9043 /// FIXME: When all targets are 9044 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9045 std::pair<SDValue, SDValue> 9046 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9047 // Handle the incoming return values from the call. 9048 CLI.Ins.clear(); 9049 Type *OrigRetTy = CLI.RetTy; 9050 SmallVector<EVT, 4> RetTys; 9051 SmallVector<uint64_t, 4> Offsets; 9052 auto &DL = CLI.DAG.getDataLayout(); 9053 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9054 9055 if (CLI.IsPostTypeLegalization) { 9056 // If we are lowering a libcall after legalization, split the return type. 9057 SmallVector<EVT, 4> OldRetTys; 9058 SmallVector<uint64_t, 4> OldOffsets; 9059 RetTys.swap(OldRetTys); 9060 Offsets.swap(OldOffsets); 9061 9062 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9063 EVT RetVT = OldRetTys[i]; 9064 uint64_t Offset = OldOffsets[i]; 9065 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9066 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9067 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9068 RetTys.append(NumRegs, RegisterVT); 9069 for (unsigned j = 0; j != NumRegs; ++j) 9070 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9071 } 9072 } 9073 9074 SmallVector<ISD::OutputArg, 4> Outs; 9075 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9076 9077 bool CanLowerReturn = 9078 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9079 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9080 9081 SDValue DemoteStackSlot; 9082 int DemoteStackIdx = -100; 9083 if (!CanLowerReturn) { 9084 // FIXME: equivalent assert? 9085 // assert(!CS.hasInAllocaArgument() && 9086 // "sret demotion is incompatible with inalloca"); 9087 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9088 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9089 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9090 DemoteStackIdx = 9091 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9092 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9093 DL.getAllocaAddrSpace()); 9094 9095 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9096 ArgListEntry Entry; 9097 Entry.Node = DemoteStackSlot; 9098 Entry.Ty = StackSlotPtrType; 9099 Entry.IsSExt = false; 9100 Entry.IsZExt = false; 9101 Entry.IsInReg = false; 9102 Entry.IsSRet = true; 9103 Entry.IsNest = false; 9104 Entry.IsByVal = false; 9105 Entry.IsReturned = false; 9106 Entry.IsSwiftSelf = false; 9107 Entry.IsSwiftError = false; 9108 Entry.IsCFGuardTarget = false; 9109 Entry.Alignment = Alignment; 9110 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9111 CLI.NumFixedArgs += 1; 9112 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9113 9114 // sret demotion isn't compatible with tail-calls, since the sret argument 9115 // points into the callers stack frame. 9116 CLI.IsTailCall = false; 9117 } else { 9118 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9119 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9120 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9121 ISD::ArgFlagsTy Flags; 9122 if (NeedsRegBlock) { 9123 Flags.setInConsecutiveRegs(); 9124 if (I == RetTys.size() - 1) 9125 Flags.setInConsecutiveRegsLast(); 9126 } 9127 EVT VT = RetTys[I]; 9128 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9129 CLI.CallConv, VT); 9130 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9131 CLI.CallConv, VT); 9132 for (unsigned i = 0; i != NumRegs; ++i) { 9133 ISD::InputArg MyFlags; 9134 MyFlags.Flags = Flags; 9135 MyFlags.VT = RegisterVT; 9136 MyFlags.ArgVT = VT; 9137 MyFlags.Used = CLI.IsReturnValueUsed; 9138 if (CLI.RetTy->isPointerTy()) { 9139 MyFlags.Flags.setPointer(); 9140 MyFlags.Flags.setPointerAddrSpace( 9141 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9142 } 9143 if (CLI.RetSExt) 9144 MyFlags.Flags.setSExt(); 9145 if (CLI.RetZExt) 9146 MyFlags.Flags.setZExt(); 9147 if (CLI.IsInReg) 9148 MyFlags.Flags.setInReg(); 9149 CLI.Ins.push_back(MyFlags); 9150 } 9151 } 9152 } 9153 9154 // We push in swifterror return as the last element of CLI.Ins. 9155 ArgListTy &Args = CLI.getArgs(); 9156 if (supportSwiftError()) { 9157 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9158 if (Args[i].IsSwiftError) { 9159 ISD::InputArg MyFlags; 9160 MyFlags.VT = getPointerTy(DL); 9161 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9162 MyFlags.Flags.setSwiftError(); 9163 CLI.Ins.push_back(MyFlags); 9164 } 9165 } 9166 } 9167 9168 // Handle all of the outgoing arguments. 9169 CLI.Outs.clear(); 9170 CLI.OutVals.clear(); 9171 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9172 SmallVector<EVT, 4> ValueVTs; 9173 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9174 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9175 Type *FinalType = Args[i].Ty; 9176 if (Args[i].IsByVal) 9177 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9178 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9179 FinalType, CLI.CallConv, CLI.IsVarArg); 9180 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9181 ++Value) { 9182 EVT VT = ValueVTs[Value]; 9183 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9184 SDValue Op = SDValue(Args[i].Node.getNode(), 9185 Args[i].Node.getResNo() + Value); 9186 ISD::ArgFlagsTy Flags; 9187 9188 // Certain targets (such as MIPS), may have a different ABI alignment 9189 // for a type depending on the context. Give the target a chance to 9190 // specify the alignment it wants. 9191 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9192 9193 if (Args[i].Ty->isPointerTy()) { 9194 Flags.setPointer(); 9195 Flags.setPointerAddrSpace( 9196 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9197 } 9198 if (Args[i].IsZExt) 9199 Flags.setZExt(); 9200 if (Args[i].IsSExt) 9201 Flags.setSExt(); 9202 if (Args[i].IsInReg) { 9203 // If we are using vectorcall calling convention, a structure that is 9204 // passed InReg - is surely an HVA 9205 if (CLI.CallConv == CallingConv::X86_VectorCall && 9206 isa<StructType>(FinalType)) { 9207 // The first value of a structure is marked 9208 if (0 == Value) 9209 Flags.setHvaStart(); 9210 Flags.setHva(); 9211 } 9212 // Set InReg Flag 9213 Flags.setInReg(); 9214 } 9215 if (Args[i].IsSRet) 9216 Flags.setSRet(); 9217 if (Args[i].IsSwiftSelf) 9218 Flags.setSwiftSelf(); 9219 if (Args[i].IsSwiftError) 9220 Flags.setSwiftError(); 9221 if (Args[i].IsCFGuardTarget) 9222 Flags.setCFGuardTarget(); 9223 if (Args[i].IsByVal) 9224 Flags.setByVal(); 9225 if (Args[i].IsPreallocated) { 9226 Flags.setPreallocated(); 9227 // Set the byval flag for CCAssignFn callbacks that don't know about 9228 // preallocated. This way we can know how many bytes we should've 9229 // allocated and how many bytes a callee cleanup function will pop. If 9230 // we port preallocated to more targets, we'll have to add custom 9231 // preallocated handling in the various CC lowering callbacks. 9232 Flags.setByVal(); 9233 } 9234 if (Args[i].IsInAlloca) { 9235 Flags.setInAlloca(); 9236 // Set the byval flag for CCAssignFn callbacks that don't know about 9237 // inalloca. This way we can know how many bytes we should've allocated 9238 // and how many bytes a callee cleanup function will pop. If we port 9239 // inalloca to more targets, we'll have to add custom inalloca handling 9240 // in the various CC lowering callbacks. 9241 Flags.setByVal(); 9242 } 9243 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9244 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9245 Type *ElementTy = Ty->getElementType(); 9246 9247 unsigned FrameSize = DL.getTypeAllocSize( 9248 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9249 Flags.setByValSize(FrameSize); 9250 9251 // info is not there but there are cases it cannot get right. 9252 Align FrameAlign; 9253 if (auto MA = Args[i].Alignment) 9254 FrameAlign = *MA; 9255 else 9256 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9257 Flags.setByValAlign(FrameAlign); 9258 } 9259 if (Args[i].IsNest) 9260 Flags.setNest(); 9261 if (NeedsRegBlock) 9262 Flags.setInConsecutiveRegs(); 9263 Flags.setOrigAlign(OriginalAlignment); 9264 9265 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9266 CLI.CallConv, VT); 9267 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9268 CLI.CallConv, VT); 9269 SmallVector<SDValue, 4> Parts(NumParts); 9270 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9271 9272 if (Args[i].IsSExt) 9273 ExtendKind = ISD::SIGN_EXTEND; 9274 else if (Args[i].IsZExt) 9275 ExtendKind = ISD::ZERO_EXTEND; 9276 9277 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9278 // for now. 9279 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9280 CanLowerReturn) { 9281 assert((CLI.RetTy == Args[i].Ty || 9282 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9283 CLI.RetTy->getPointerAddressSpace() == 9284 Args[i].Ty->getPointerAddressSpace())) && 9285 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9286 // Before passing 'returned' to the target lowering code, ensure that 9287 // either the register MVT and the actual EVT are the same size or that 9288 // the return value and argument are extended in the same way; in these 9289 // cases it's safe to pass the argument register value unchanged as the 9290 // return register value (although it's at the target's option whether 9291 // to do so) 9292 // TODO: allow code generation to take advantage of partially preserved 9293 // registers rather than clobbering the entire register when the 9294 // parameter extension method is not compatible with the return 9295 // extension method 9296 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9297 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9298 CLI.RetZExt == Args[i].IsZExt)) 9299 Flags.setReturned(); 9300 } 9301 9302 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9303 CLI.CallConv, ExtendKind); 9304 9305 for (unsigned j = 0; j != NumParts; ++j) { 9306 // if it isn't first piece, alignment must be 1 9307 // For scalable vectors the scalable part is currently handled 9308 // by individual targets, so we just use the known minimum size here. 9309 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9310 i < CLI.NumFixedArgs, i, 9311 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9312 if (NumParts > 1 && j == 0) 9313 MyFlags.Flags.setSplit(); 9314 else if (j != 0) { 9315 MyFlags.Flags.setOrigAlign(Align(1)); 9316 if (j == NumParts - 1) 9317 MyFlags.Flags.setSplitEnd(); 9318 } 9319 9320 CLI.Outs.push_back(MyFlags); 9321 CLI.OutVals.push_back(Parts[j]); 9322 } 9323 9324 if (NeedsRegBlock && Value == NumValues - 1) 9325 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9326 } 9327 } 9328 9329 SmallVector<SDValue, 4> InVals; 9330 CLI.Chain = LowerCall(CLI, InVals); 9331 9332 // Update CLI.InVals to use outside of this function. 9333 CLI.InVals = InVals; 9334 9335 // Verify that the target's LowerCall behaved as expected. 9336 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9337 "LowerCall didn't return a valid chain!"); 9338 assert((!CLI.IsTailCall || InVals.empty()) && 9339 "LowerCall emitted a return value for a tail call!"); 9340 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9341 "LowerCall didn't emit the correct number of values!"); 9342 9343 // For a tail call, the return value is merely live-out and there aren't 9344 // any nodes in the DAG representing it. Return a special value to 9345 // indicate that a tail call has been emitted and no more Instructions 9346 // should be processed in the current block. 9347 if (CLI.IsTailCall) { 9348 CLI.DAG.setRoot(CLI.Chain); 9349 return std::make_pair(SDValue(), SDValue()); 9350 } 9351 9352 #ifndef NDEBUG 9353 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9354 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9355 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9356 "LowerCall emitted a value with the wrong type!"); 9357 } 9358 #endif 9359 9360 SmallVector<SDValue, 4> ReturnValues; 9361 if (!CanLowerReturn) { 9362 // The instruction result is the result of loading from the 9363 // hidden sret parameter. 9364 SmallVector<EVT, 1> PVTs; 9365 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9366 9367 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9368 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9369 EVT PtrVT = PVTs[0]; 9370 9371 unsigned NumValues = RetTys.size(); 9372 ReturnValues.resize(NumValues); 9373 SmallVector<SDValue, 4> Chains(NumValues); 9374 9375 // An aggregate return value cannot wrap around the address space, so 9376 // offsets to its parts don't wrap either. 9377 SDNodeFlags Flags; 9378 Flags.setNoUnsignedWrap(true); 9379 9380 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9381 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9382 for (unsigned i = 0; i < NumValues; ++i) { 9383 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9384 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9385 PtrVT), Flags); 9386 SDValue L = CLI.DAG.getLoad( 9387 RetTys[i], CLI.DL, CLI.Chain, Add, 9388 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9389 DemoteStackIdx, Offsets[i]), 9390 HiddenSRetAlign); 9391 ReturnValues[i] = L; 9392 Chains[i] = L.getValue(1); 9393 } 9394 9395 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9396 } else { 9397 // Collect the legal value parts into potentially illegal values 9398 // that correspond to the original function's return values. 9399 Optional<ISD::NodeType> AssertOp; 9400 if (CLI.RetSExt) 9401 AssertOp = ISD::AssertSext; 9402 else if (CLI.RetZExt) 9403 AssertOp = ISD::AssertZext; 9404 unsigned CurReg = 0; 9405 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9406 EVT VT = RetTys[I]; 9407 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9408 CLI.CallConv, VT); 9409 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9410 CLI.CallConv, VT); 9411 9412 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9413 NumRegs, RegisterVT, VT, nullptr, 9414 CLI.CallConv, AssertOp)); 9415 CurReg += NumRegs; 9416 } 9417 9418 // For a function returning void, there is no return value. We can't create 9419 // such a node, so we just return a null return value in that case. In 9420 // that case, nothing will actually look at the value. 9421 if (ReturnValues.empty()) 9422 return std::make_pair(SDValue(), CLI.Chain); 9423 } 9424 9425 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9426 CLI.DAG.getVTList(RetTys), ReturnValues); 9427 return std::make_pair(Res, CLI.Chain); 9428 } 9429 9430 void TargetLowering::LowerOperationWrapper(SDNode *N, 9431 SmallVectorImpl<SDValue> &Results, 9432 SelectionDAG &DAG) const { 9433 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9434 Results.push_back(Res); 9435 } 9436 9437 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9438 llvm_unreachable("LowerOperation not implemented for this target!"); 9439 } 9440 9441 void 9442 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9443 SDValue Op = getNonRegisterValue(V); 9444 assert((Op.getOpcode() != ISD::CopyFromReg || 9445 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9446 "Copy from a reg to the same reg!"); 9447 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9448 9449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9450 // If this is an InlineAsm we have to match the registers required, not the 9451 // notional registers required by the type. 9452 9453 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9454 None); // This is not an ABI copy. 9455 SDValue Chain = DAG.getEntryNode(); 9456 9457 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9458 FuncInfo.PreferredExtendType.end()) 9459 ? ISD::ANY_EXTEND 9460 : FuncInfo.PreferredExtendType[V]; 9461 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9462 PendingExports.push_back(Chain); 9463 } 9464 9465 #include "llvm/CodeGen/SelectionDAGISel.h" 9466 9467 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9468 /// entry block, return true. This includes arguments used by switches, since 9469 /// the switch may expand into multiple basic blocks. 9470 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9471 // With FastISel active, we may be splitting blocks, so force creation 9472 // of virtual registers for all non-dead arguments. 9473 if (FastISel) 9474 return A->use_empty(); 9475 9476 const BasicBlock &Entry = A->getParent()->front(); 9477 for (const User *U : A->users()) 9478 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9479 return false; // Use not in entry block. 9480 9481 return true; 9482 } 9483 9484 using ArgCopyElisionMapTy = 9485 DenseMap<const Argument *, 9486 std::pair<const AllocaInst *, const StoreInst *>>; 9487 9488 /// Scan the entry block of the function in FuncInfo for arguments that look 9489 /// like copies into a local alloca. Record any copied arguments in 9490 /// ArgCopyElisionCandidates. 9491 static void 9492 findArgumentCopyElisionCandidates(const DataLayout &DL, 9493 FunctionLoweringInfo *FuncInfo, 9494 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9495 // Record the state of every static alloca used in the entry block. Argument 9496 // allocas are all used in the entry block, so we need approximately as many 9497 // entries as we have arguments. 9498 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9499 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9500 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9501 StaticAllocas.reserve(NumArgs * 2); 9502 9503 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9504 if (!V) 9505 return nullptr; 9506 V = V->stripPointerCasts(); 9507 const auto *AI = dyn_cast<AllocaInst>(V); 9508 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9509 return nullptr; 9510 auto Iter = StaticAllocas.insert({AI, Unknown}); 9511 return &Iter.first->second; 9512 }; 9513 9514 // Look for stores of arguments to static allocas. Look through bitcasts and 9515 // GEPs to handle type coercions, as long as the alloca is fully initialized 9516 // by the store. Any non-store use of an alloca escapes it and any subsequent 9517 // unanalyzed store might write it. 9518 // FIXME: Handle structs initialized with multiple stores. 9519 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9520 // Look for stores, and handle non-store uses conservatively. 9521 const auto *SI = dyn_cast<StoreInst>(&I); 9522 if (!SI) { 9523 // We will look through cast uses, so ignore them completely. 9524 if (I.isCast()) 9525 continue; 9526 // Ignore debug info intrinsics, they don't escape or store to allocas. 9527 if (isa<DbgInfoIntrinsic>(I)) 9528 continue; 9529 // This is an unknown instruction. Assume it escapes or writes to all 9530 // static alloca operands. 9531 for (const Use &U : I.operands()) { 9532 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9533 *Info = StaticAllocaInfo::Clobbered; 9534 } 9535 continue; 9536 } 9537 9538 // If the stored value is a static alloca, mark it as escaped. 9539 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9540 *Info = StaticAllocaInfo::Clobbered; 9541 9542 // Check if the destination is a static alloca. 9543 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9544 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9545 if (!Info) 9546 continue; 9547 const AllocaInst *AI = cast<AllocaInst>(Dst); 9548 9549 // Skip allocas that have been initialized or clobbered. 9550 if (*Info != StaticAllocaInfo::Unknown) 9551 continue; 9552 9553 // Check if the stored value is an argument, and that this store fully 9554 // initializes the alloca. Don't elide copies from the same argument twice. 9555 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9556 const auto *Arg = dyn_cast<Argument>(Val); 9557 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9558 Arg->getType()->isEmptyTy() || 9559 DL.getTypeStoreSize(Arg->getType()) != 9560 DL.getTypeAllocSize(AI->getAllocatedType()) || 9561 ArgCopyElisionCandidates.count(Arg)) { 9562 *Info = StaticAllocaInfo::Clobbered; 9563 continue; 9564 } 9565 9566 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9567 << '\n'); 9568 9569 // Mark this alloca and store for argument copy elision. 9570 *Info = StaticAllocaInfo::Elidable; 9571 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9572 9573 // Stop scanning if we've seen all arguments. This will happen early in -O0 9574 // builds, which is useful, because -O0 builds have large entry blocks and 9575 // many allocas. 9576 if (ArgCopyElisionCandidates.size() == NumArgs) 9577 break; 9578 } 9579 } 9580 9581 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9582 /// ArgVal is a load from a suitable fixed stack object. 9583 static void tryToElideArgumentCopy( 9584 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9585 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9586 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9587 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9588 SDValue ArgVal, bool &ArgHasUses) { 9589 // Check if this is a load from a fixed stack object. 9590 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9591 if (!LNode) 9592 return; 9593 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9594 if (!FINode) 9595 return; 9596 9597 // Check that the fixed stack object is the right size and alignment. 9598 // Look at the alignment that the user wrote on the alloca instead of looking 9599 // at the stack object. 9600 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9601 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9602 const AllocaInst *AI = ArgCopyIter->second.first; 9603 int FixedIndex = FINode->getIndex(); 9604 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9605 int OldIndex = AllocaIndex; 9606 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9607 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9608 LLVM_DEBUG( 9609 dbgs() << " argument copy elision failed due to bad fixed stack " 9610 "object size\n"); 9611 return; 9612 } 9613 Align RequiredAlignment = AI->getAlign(); 9614 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9615 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9616 "greater than stack argument alignment (" 9617 << DebugStr(RequiredAlignment) << " vs " 9618 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9619 return; 9620 } 9621 9622 // Perform the elision. Delete the old stack object and replace its only use 9623 // in the variable info map. Mark the stack object as mutable. 9624 LLVM_DEBUG({ 9625 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9626 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9627 << '\n'; 9628 }); 9629 MFI.RemoveStackObject(OldIndex); 9630 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9631 AllocaIndex = FixedIndex; 9632 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9633 Chains.push_back(ArgVal.getValue(1)); 9634 9635 // Avoid emitting code for the store implementing the copy. 9636 const StoreInst *SI = ArgCopyIter->second.second; 9637 ElidedArgCopyInstrs.insert(SI); 9638 9639 // Check for uses of the argument again so that we can avoid exporting ArgVal 9640 // if it is't used by anything other than the store. 9641 for (const Value *U : Arg.users()) { 9642 if (U != SI) { 9643 ArgHasUses = true; 9644 break; 9645 } 9646 } 9647 } 9648 9649 void SelectionDAGISel::LowerArguments(const Function &F) { 9650 SelectionDAG &DAG = SDB->DAG; 9651 SDLoc dl = SDB->getCurSDLoc(); 9652 const DataLayout &DL = DAG.getDataLayout(); 9653 SmallVector<ISD::InputArg, 16> Ins; 9654 9655 // In Naked functions we aren't going to save any registers. 9656 if (F.hasFnAttribute(Attribute::Naked)) 9657 return; 9658 9659 if (!FuncInfo->CanLowerReturn) { 9660 // Put in an sret pointer parameter before all the other parameters. 9661 SmallVector<EVT, 1> ValueVTs; 9662 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9663 F.getReturnType()->getPointerTo( 9664 DAG.getDataLayout().getAllocaAddrSpace()), 9665 ValueVTs); 9666 9667 // NOTE: Assuming that a pointer will never break down to more than one VT 9668 // or one register. 9669 ISD::ArgFlagsTy Flags; 9670 Flags.setSRet(); 9671 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9672 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9673 ISD::InputArg::NoArgIndex, 0); 9674 Ins.push_back(RetArg); 9675 } 9676 9677 // Look for stores of arguments to static allocas. Mark such arguments with a 9678 // flag to ask the target to give us the memory location of that argument if 9679 // available. 9680 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9681 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9682 ArgCopyElisionCandidates); 9683 9684 // Set up the incoming argument description vector. 9685 for (const Argument &Arg : F.args()) { 9686 unsigned ArgNo = Arg.getArgNo(); 9687 SmallVector<EVT, 4> ValueVTs; 9688 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9689 bool isArgValueUsed = !Arg.use_empty(); 9690 unsigned PartBase = 0; 9691 Type *FinalType = Arg.getType(); 9692 if (Arg.hasAttribute(Attribute::ByVal)) 9693 FinalType = Arg.getParamByValType(); 9694 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9695 FinalType, F.getCallingConv(), F.isVarArg()); 9696 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9697 Value != NumValues; ++Value) { 9698 EVT VT = ValueVTs[Value]; 9699 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9700 ISD::ArgFlagsTy Flags; 9701 9702 // Certain targets (such as MIPS), may have a different ABI alignment 9703 // for a type depending on the context. Give the target a chance to 9704 // specify the alignment it wants. 9705 const Align OriginalAlignment( 9706 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9707 9708 if (Arg.getType()->isPointerTy()) { 9709 Flags.setPointer(); 9710 Flags.setPointerAddrSpace( 9711 cast<PointerType>(Arg.getType())->getAddressSpace()); 9712 } 9713 if (Arg.hasAttribute(Attribute::ZExt)) 9714 Flags.setZExt(); 9715 if (Arg.hasAttribute(Attribute::SExt)) 9716 Flags.setSExt(); 9717 if (Arg.hasAttribute(Attribute::InReg)) { 9718 // If we are using vectorcall calling convention, a structure that is 9719 // passed InReg - is surely an HVA 9720 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9721 isa<StructType>(Arg.getType())) { 9722 // The first value of a structure is marked 9723 if (0 == Value) 9724 Flags.setHvaStart(); 9725 Flags.setHva(); 9726 } 9727 // Set InReg Flag 9728 Flags.setInReg(); 9729 } 9730 if (Arg.hasAttribute(Attribute::StructRet)) 9731 Flags.setSRet(); 9732 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9733 Flags.setSwiftSelf(); 9734 if (Arg.hasAttribute(Attribute::SwiftError)) 9735 Flags.setSwiftError(); 9736 if (Arg.hasAttribute(Attribute::ByVal)) 9737 Flags.setByVal(); 9738 if (Arg.hasAttribute(Attribute::InAlloca)) { 9739 Flags.setInAlloca(); 9740 // Set the byval flag for CCAssignFn callbacks that don't know about 9741 // inalloca. This way we can know how many bytes we should've allocated 9742 // and how many bytes a callee cleanup function will pop. If we port 9743 // inalloca to more targets, we'll have to add custom inalloca handling 9744 // in the various CC lowering callbacks. 9745 Flags.setByVal(); 9746 } 9747 if (Arg.hasAttribute(Attribute::Preallocated)) { 9748 Flags.setPreallocated(); 9749 // Set the byval flag for CCAssignFn callbacks that don't know about 9750 // preallocated. This way we can know how many bytes we should've 9751 // allocated and how many bytes a callee cleanup function will pop. If 9752 // we port preallocated to more targets, we'll have to add custom 9753 // preallocated handling in the various CC lowering callbacks. 9754 Flags.setByVal(); 9755 } 9756 if (F.getCallingConv() == CallingConv::X86_INTR) { 9757 // IA Interrupt passes frame (1st parameter) by value in the stack. 9758 if (ArgNo == 0) 9759 Flags.setByVal(); 9760 } 9761 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9762 Type *ElementTy = Arg.getParamByValType(); 9763 9764 // For ByVal, size and alignment should be passed from FE. BE will 9765 // guess if this info is not there but there are cases it cannot get 9766 // right. 9767 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9768 Flags.setByValSize(FrameSize); 9769 9770 unsigned FrameAlign; 9771 if (Arg.getParamAlignment()) 9772 FrameAlign = Arg.getParamAlignment(); 9773 else 9774 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9775 Flags.setByValAlign(Align(FrameAlign)); 9776 } 9777 if (Arg.hasAttribute(Attribute::Nest)) 9778 Flags.setNest(); 9779 if (NeedsRegBlock) 9780 Flags.setInConsecutiveRegs(); 9781 Flags.setOrigAlign(OriginalAlignment); 9782 if (ArgCopyElisionCandidates.count(&Arg)) 9783 Flags.setCopyElisionCandidate(); 9784 if (Arg.hasAttribute(Attribute::Returned)) 9785 Flags.setReturned(); 9786 9787 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9788 *CurDAG->getContext(), F.getCallingConv(), VT); 9789 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9790 *CurDAG->getContext(), F.getCallingConv(), VT); 9791 for (unsigned i = 0; i != NumRegs; ++i) { 9792 // For scalable vectors, use the minimum size; individual targets 9793 // are responsible for handling scalable vector arguments and 9794 // return values. 9795 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9796 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9797 if (NumRegs > 1 && i == 0) 9798 MyFlags.Flags.setSplit(); 9799 // if it isn't first piece, alignment must be 1 9800 else if (i > 0) { 9801 MyFlags.Flags.setOrigAlign(Align(1)); 9802 if (i == NumRegs - 1) 9803 MyFlags.Flags.setSplitEnd(); 9804 } 9805 Ins.push_back(MyFlags); 9806 } 9807 if (NeedsRegBlock && Value == NumValues - 1) 9808 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9809 PartBase += VT.getStoreSize().getKnownMinSize(); 9810 } 9811 } 9812 9813 // Call the target to set up the argument values. 9814 SmallVector<SDValue, 8> InVals; 9815 SDValue NewRoot = TLI->LowerFormalArguments( 9816 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9817 9818 // Verify that the target's LowerFormalArguments behaved as expected. 9819 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9820 "LowerFormalArguments didn't return a valid chain!"); 9821 assert(InVals.size() == Ins.size() && 9822 "LowerFormalArguments didn't emit the correct number of values!"); 9823 LLVM_DEBUG({ 9824 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9825 assert(InVals[i].getNode() && 9826 "LowerFormalArguments emitted a null value!"); 9827 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9828 "LowerFormalArguments emitted a value with the wrong type!"); 9829 } 9830 }); 9831 9832 // Update the DAG with the new chain value resulting from argument lowering. 9833 DAG.setRoot(NewRoot); 9834 9835 // Set up the argument values. 9836 unsigned i = 0; 9837 if (!FuncInfo->CanLowerReturn) { 9838 // Create a virtual register for the sret pointer, and put in a copy 9839 // from the sret argument into it. 9840 SmallVector<EVT, 1> ValueVTs; 9841 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9842 F.getReturnType()->getPointerTo( 9843 DAG.getDataLayout().getAllocaAddrSpace()), 9844 ValueVTs); 9845 MVT VT = ValueVTs[0].getSimpleVT(); 9846 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9847 Optional<ISD::NodeType> AssertOp = None; 9848 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9849 nullptr, F.getCallingConv(), AssertOp); 9850 9851 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9852 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9853 Register SRetReg = 9854 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9855 FuncInfo->DemoteRegister = SRetReg; 9856 NewRoot = 9857 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9858 DAG.setRoot(NewRoot); 9859 9860 // i indexes lowered arguments. Bump it past the hidden sret argument. 9861 ++i; 9862 } 9863 9864 SmallVector<SDValue, 4> Chains; 9865 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9866 for (const Argument &Arg : F.args()) { 9867 SmallVector<SDValue, 4> ArgValues; 9868 SmallVector<EVT, 4> ValueVTs; 9869 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9870 unsigned NumValues = ValueVTs.size(); 9871 if (NumValues == 0) 9872 continue; 9873 9874 bool ArgHasUses = !Arg.use_empty(); 9875 9876 // Elide the copying store if the target loaded this argument from a 9877 // suitable fixed stack object. 9878 if (Ins[i].Flags.isCopyElisionCandidate()) { 9879 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9880 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9881 InVals[i], ArgHasUses); 9882 } 9883 9884 // If this argument is unused then remember its value. It is used to generate 9885 // debugging information. 9886 bool isSwiftErrorArg = 9887 TLI->supportSwiftError() && 9888 Arg.hasAttribute(Attribute::SwiftError); 9889 if (!ArgHasUses && !isSwiftErrorArg) { 9890 SDB->setUnusedArgValue(&Arg, InVals[i]); 9891 9892 // Also remember any frame index for use in FastISel. 9893 if (FrameIndexSDNode *FI = 9894 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9895 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9896 } 9897 9898 for (unsigned Val = 0; Val != NumValues; ++Val) { 9899 EVT VT = ValueVTs[Val]; 9900 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9901 F.getCallingConv(), VT); 9902 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9903 *CurDAG->getContext(), F.getCallingConv(), VT); 9904 9905 // Even an apparent 'unused' swifterror argument needs to be returned. So 9906 // we do generate a copy for it that can be used on return from the 9907 // function. 9908 if (ArgHasUses || isSwiftErrorArg) { 9909 Optional<ISD::NodeType> AssertOp; 9910 if (Arg.hasAttribute(Attribute::SExt)) 9911 AssertOp = ISD::AssertSext; 9912 else if (Arg.hasAttribute(Attribute::ZExt)) 9913 AssertOp = ISD::AssertZext; 9914 9915 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9916 PartVT, VT, nullptr, 9917 F.getCallingConv(), AssertOp)); 9918 } 9919 9920 i += NumParts; 9921 } 9922 9923 // We don't need to do anything else for unused arguments. 9924 if (ArgValues.empty()) 9925 continue; 9926 9927 // Note down frame index. 9928 if (FrameIndexSDNode *FI = 9929 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9930 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9931 9932 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9933 SDB->getCurSDLoc()); 9934 9935 SDB->setValue(&Arg, Res); 9936 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9937 // We want to associate the argument with the frame index, among 9938 // involved operands, that correspond to the lowest address. The 9939 // getCopyFromParts function, called earlier, is swapping the order of 9940 // the operands to BUILD_PAIR depending on endianness. The result of 9941 // that swapping is that the least significant bits of the argument will 9942 // be in the first operand of the BUILD_PAIR node, and the most 9943 // significant bits will be in the second operand. 9944 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9945 if (LoadSDNode *LNode = 9946 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9947 if (FrameIndexSDNode *FI = 9948 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9949 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9950 } 9951 9952 // Analyses past this point are naive and don't expect an assertion. 9953 if (Res.getOpcode() == ISD::AssertZext) 9954 Res = Res.getOperand(0); 9955 9956 // Update the SwiftErrorVRegDefMap. 9957 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9958 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9959 if (Register::isVirtualRegister(Reg)) 9960 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9961 Reg); 9962 } 9963 9964 // If this argument is live outside of the entry block, insert a copy from 9965 // wherever we got it to the vreg that other BB's will reference it as. 9966 if (Res.getOpcode() == ISD::CopyFromReg) { 9967 // If we can, though, try to skip creating an unnecessary vreg. 9968 // FIXME: This isn't very clean... it would be nice to make this more 9969 // general. 9970 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9971 if (Register::isVirtualRegister(Reg)) { 9972 FuncInfo->ValueMap[&Arg] = Reg; 9973 continue; 9974 } 9975 } 9976 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9977 FuncInfo->InitializeRegForValue(&Arg); 9978 SDB->CopyToExportRegsIfNeeded(&Arg); 9979 } 9980 } 9981 9982 if (!Chains.empty()) { 9983 Chains.push_back(NewRoot); 9984 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9985 } 9986 9987 DAG.setRoot(NewRoot); 9988 9989 assert(i == InVals.size() && "Argument register count mismatch!"); 9990 9991 // If any argument copy elisions occurred and we have debug info, update the 9992 // stale frame indices used in the dbg.declare variable info table. 9993 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9994 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9995 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9996 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9997 if (I != ArgCopyElisionFrameIndexMap.end()) 9998 VI.Slot = I->second; 9999 } 10000 } 10001 10002 // Finally, if the target has anything special to do, allow it to do so. 10003 emitFunctionEntryCode(); 10004 } 10005 10006 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10007 /// ensure constants are generated when needed. Remember the virtual registers 10008 /// that need to be added to the Machine PHI nodes as input. We cannot just 10009 /// directly add them, because expansion might result in multiple MBB's for one 10010 /// BB. As such, the start of the BB might correspond to a different MBB than 10011 /// the end. 10012 void 10013 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10014 const Instruction *TI = LLVMBB->getTerminator(); 10015 10016 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10017 10018 // Check PHI nodes in successors that expect a value to be available from this 10019 // block. 10020 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10021 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10022 if (!isa<PHINode>(SuccBB->begin())) continue; 10023 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10024 10025 // If this terminator has multiple identical successors (common for 10026 // switches), only handle each succ once. 10027 if (!SuccsHandled.insert(SuccMBB).second) 10028 continue; 10029 10030 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10031 10032 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10033 // nodes and Machine PHI nodes, but the incoming operands have not been 10034 // emitted yet. 10035 for (const PHINode &PN : SuccBB->phis()) { 10036 // Ignore dead phi's. 10037 if (PN.use_empty()) 10038 continue; 10039 10040 // Skip empty types 10041 if (PN.getType()->isEmptyTy()) 10042 continue; 10043 10044 unsigned Reg; 10045 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10046 10047 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10048 unsigned &RegOut = ConstantsOut[C]; 10049 if (RegOut == 0) { 10050 RegOut = FuncInfo.CreateRegs(C); 10051 CopyValueToVirtualRegister(C, RegOut); 10052 } 10053 Reg = RegOut; 10054 } else { 10055 DenseMap<const Value *, Register>::iterator I = 10056 FuncInfo.ValueMap.find(PHIOp); 10057 if (I != FuncInfo.ValueMap.end()) 10058 Reg = I->second; 10059 else { 10060 assert(isa<AllocaInst>(PHIOp) && 10061 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10062 "Didn't codegen value into a register!??"); 10063 Reg = FuncInfo.CreateRegs(PHIOp); 10064 CopyValueToVirtualRegister(PHIOp, Reg); 10065 } 10066 } 10067 10068 // Remember that this register needs to added to the machine PHI node as 10069 // the input for this MBB. 10070 SmallVector<EVT, 4> ValueVTs; 10071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10072 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10073 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10074 EVT VT = ValueVTs[vti]; 10075 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10076 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10077 FuncInfo.PHINodesToUpdate.push_back( 10078 std::make_pair(&*MBBI++, Reg + i)); 10079 Reg += NumRegisters; 10080 } 10081 } 10082 } 10083 10084 ConstantsOut.clear(); 10085 } 10086 10087 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10088 /// is 0. 10089 MachineBasicBlock * 10090 SelectionDAGBuilder::StackProtectorDescriptor:: 10091 AddSuccessorMBB(const BasicBlock *BB, 10092 MachineBasicBlock *ParentMBB, 10093 bool IsLikely, 10094 MachineBasicBlock *SuccMBB) { 10095 // If SuccBB has not been created yet, create it. 10096 if (!SuccMBB) { 10097 MachineFunction *MF = ParentMBB->getParent(); 10098 MachineFunction::iterator BBI(ParentMBB); 10099 SuccMBB = MF->CreateMachineBasicBlock(BB); 10100 MF->insert(++BBI, SuccMBB); 10101 } 10102 // Add it as a successor of ParentMBB. 10103 ParentMBB->addSuccessor( 10104 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10105 return SuccMBB; 10106 } 10107 10108 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10109 MachineFunction::iterator I(MBB); 10110 if (++I == FuncInfo.MF->end()) 10111 return nullptr; 10112 return &*I; 10113 } 10114 10115 /// During lowering new call nodes can be created (such as memset, etc.). 10116 /// Those will become new roots of the current DAG, but complications arise 10117 /// when they are tail calls. In such cases, the call lowering will update 10118 /// the root, but the builder still needs to know that a tail call has been 10119 /// lowered in order to avoid generating an additional return. 10120 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10121 // If the node is null, we do have a tail call. 10122 if (MaybeTC.getNode() != nullptr) 10123 DAG.setRoot(MaybeTC); 10124 else 10125 HasTailCall = true; 10126 } 10127 10128 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10129 MachineBasicBlock *SwitchMBB, 10130 MachineBasicBlock *DefaultMBB) { 10131 MachineFunction *CurMF = FuncInfo.MF; 10132 MachineBasicBlock *NextMBB = nullptr; 10133 MachineFunction::iterator BBI(W.MBB); 10134 if (++BBI != FuncInfo.MF->end()) 10135 NextMBB = &*BBI; 10136 10137 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10138 10139 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10140 10141 if (Size == 2 && W.MBB == SwitchMBB) { 10142 // If any two of the cases has the same destination, and if one value 10143 // is the same as the other, but has one bit unset that the other has set, 10144 // use bit manipulation to do two compares at once. For example: 10145 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10146 // TODO: This could be extended to merge any 2 cases in switches with 3 10147 // cases. 10148 // TODO: Handle cases where W.CaseBB != SwitchBB. 10149 CaseCluster &Small = *W.FirstCluster; 10150 CaseCluster &Big = *W.LastCluster; 10151 10152 if (Small.Low == Small.High && Big.Low == Big.High && 10153 Small.MBB == Big.MBB) { 10154 const APInt &SmallValue = Small.Low->getValue(); 10155 const APInt &BigValue = Big.Low->getValue(); 10156 10157 // Check that there is only one bit different. 10158 APInt CommonBit = BigValue ^ SmallValue; 10159 if (CommonBit.isPowerOf2()) { 10160 SDValue CondLHS = getValue(Cond); 10161 EVT VT = CondLHS.getValueType(); 10162 SDLoc DL = getCurSDLoc(); 10163 10164 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10165 DAG.getConstant(CommonBit, DL, VT)); 10166 SDValue Cond = DAG.getSetCC( 10167 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10168 ISD::SETEQ); 10169 10170 // Update successor info. 10171 // Both Small and Big will jump to Small.BB, so we sum up the 10172 // probabilities. 10173 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10174 if (BPI) 10175 addSuccessorWithProb( 10176 SwitchMBB, DefaultMBB, 10177 // The default destination is the first successor in IR. 10178 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10179 else 10180 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10181 10182 // Insert the true branch. 10183 SDValue BrCond = 10184 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10185 DAG.getBasicBlock(Small.MBB)); 10186 // Insert the false branch. 10187 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10188 DAG.getBasicBlock(DefaultMBB)); 10189 10190 DAG.setRoot(BrCond); 10191 return; 10192 } 10193 } 10194 } 10195 10196 if (TM.getOptLevel() != CodeGenOpt::None) { 10197 // Here, we order cases by probability so the most likely case will be 10198 // checked first. However, two clusters can have the same probability in 10199 // which case their relative ordering is non-deterministic. So we use Low 10200 // as a tie-breaker as clusters are guaranteed to never overlap. 10201 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10202 [](const CaseCluster &a, const CaseCluster &b) { 10203 return a.Prob != b.Prob ? 10204 a.Prob > b.Prob : 10205 a.Low->getValue().slt(b.Low->getValue()); 10206 }); 10207 10208 // Rearrange the case blocks so that the last one falls through if possible 10209 // without changing the order of probabilities. 10210 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10211 --I; 10212 if (I->Prob > W.LastCluster->Prob) 10213 break; 10214 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10215 std::swap(*I, *W.LastCluster); 10216 break; 10217 } 10218 } 10219 } 10220 10221 // Compute total probability. 10222 BranchProbability DefaultProb = W.DefaultProb; 10223 BranchProbability UnhandledProbs = DefaultProb; 10224 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10225 UnhandledProbs += I->Prob; 10226 10227 MachineBasicBlock *CurMBB = W.MBB; 10228 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10229 bool FallthroughUnreachable = false; 10230 MachineBasicBlock *Fallthrough; 10231 if (I == W.LastCluster) { 10232 // For the last cluster, fall through to the default destination. 10233 Fallthrough = DefaultMBB; 10234 FallthroughUnreachable = isa<UnreachableInst>( 10235 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10236 } else { 10237 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10238 CurMF->insert(BBI, Fallthrough); 10239 // Put Cond in a virtual register to make it available from the new blocks. 10240 ExportFromCurrentBlock(Cond); 10241 } 10242 UnhandledProbs -= I->Prob; 10243 10244 switch (I->Kind) { 10245 case CC_JumpTable: { 10246 // FIXME: Optimize away range check based on pivot comparisons. 10247 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10248 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10249 10250 // The jump block hasn't been inserted yet; insert it here. 10251 MachineBasicBlock *JumpMBB = JT->MBB; 10252 CurMF->insert(BBI, JumpMBB); 10253 10254 auto JumpProb = I->Prob; 10255 auto FallthroughProb = UnhandledProbs; 10256 10257 // If the default statement is a target of the jump table, we evenly 10258 // distribute the default probability to successors of CurMBB. Also 10259 // update the probability on the edge from JumpMBB to Fallthrough. 10260 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10261 SE = JumpMBB->succ_end(); 10262 SI != SE; ++SI) { 10263 if (*SI == DefaultMBB) { 10264 JumpProb += DefaultProb / 2; 10265 FallthroughProb -= DefaultProb / 2; 10266 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10267 JumpMBB->normalizeSuccProbs(); 10268 break; 10269 } 10270 } 10271 10272 if (FallthroughUnreachable) { 10273 // Skip the range check if the fallthrough block is unreachable. 10274 JTH->OmitRangeCheck = true; 10275 } 10276 10277 if (!JTH->OmitRangeCheck) 10278 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10279 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10280 CurMBB->normalizeSuccProbs(); 10281 10282 // The jump table header will be inserted in our current block, do the 10283 // range check, and fall through to our fallthrough block. 10284 JTH->HeaderBB = CurMBB; 10285 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10286 10287 // If we're in the right place, emit the jump table header right now. 10288 if (CurMBB == SwitchMBB) { 10289 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10290 JTH->Emitted = true; 10291 } 10292 break; 10293 } 10294 case CC_BitTests: { 10295 // FIXME: Optimize away range check based on pivot comparisons. 10296 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10297 10298 // The bit test blocks haven't been inserted yet; insert them here. 10299 for (BitTestCase &BTC : BTB->Cases) 10300 CurMF->insert(BBI, BTC.ThisBB); 10301 10302 // Fill in fields of the BitTestBlock. 10303 BTB->Parent = CurMBB; 10304 BTB->Default = Fallthrough; 10305 10306 BTB->DefaultProb = UnhandledProbs; 10307 // If the cases in bit test don't form a contiguous range, we evenly 10308 // distribute the probability on the edge to Fallthrough to two 10309 // successors of CurMBB. 10310 if (!BTB->ContiguousRange) { 10311 BTB->Prob += DefaultProb / 2; 10312 BTB->DefaultProb -= DefaultProb / 2; 10313 } 10314 10315 if (FallthroughUnreachable) { 10316 // Skip the range check if the fallthrough block is unreachable. 10317 BTB->OmitRangeCheck = true; 10318 } 10319 10320 // If we're in the right place, emit the bit test header right now. 10321 if (CurMBB == SwitchMBB) { 10322 visitBitTestHeader(*BTB, SwitchMBB); 10323 BTB->Emitted = true; 10324 } 10325 break; 10326 } 10327 case CC_Range: { 10328 const Value *RHS, *LHS, *MHS; 10329 ISD::CondCode CC; 10330 if (I->Low == I->High) { 10331 // Check Cond == I->Low. 10332 CC = ISD::SETEQ; 10333 LHS = Cond; 10334 RHS=I->Low; 10335 MHS = nullptr; 10336 } else { 10337 // Check I->Low <= Cond <= I->High. 10338 CC = ISD::SETLE; 10339 LHS = I->Low; 10340 MHS = Cond; 10341 RHS = I->High; 10342 } 10343 10344 // If Fallthrough is unreachable, fold away the comparison. 10345 if (FallthroughUnreachable) 10346 CC = ISD::SETTRUE; 10347 10348 // The false probability is the sum of all unhandled cases. 10349 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10350 getCurSDLoc(), I->Prob, UnhandledProbs); 10351 10352 if (CurMBB == SwitchMBB) 10353 visitSwitchCase(CB, SwitchMBB); 10354 else 10355 SL->SwitchCases.push_back(CB); 10356 10357 break; 10358 } 10359 } 10360 CurMBB = Fallthrough; 10361 } 10362 } 10363 10364 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10365 CaseClusterIt First, 10366 CaseClusterIt Last) { 10367 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10368 if (X.Prob != CC.Prob) 10369 return X.Prob > CC.Prob; 10370 10371 // Ties are broken by comparing the case value. 10372 return X.Low->getValue().slt(CC.Low->getValue()); 10373 }); 10374 } 10375 10376 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10377 const SwitchWorkListItem &W, 10378 Value *Cond, 10379 MachineBasicBlock *SwitchMBB) { 10380 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10381 "Clusters not sorted?"); 10382 10383 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10384 10385 // Balance the tree based on branch probabilities to create a near-optimal (in 10386 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10387 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10388 CaseClusterIt LastLeft = W.FirstCluster; 10389 CaseClusterIt FirstRight = W.LastCluster; 10390 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10391 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10392 10393 // Move LastLeft and FirstRight towards each other from opposite directions to 10394 // find a partitioning of the clusters which balances the probability on both 10395 // sides. If LeftProb and RightProb are equal, alternate which side is 10396 // taken to ensure 0-probability nodes are distributed evenly. 10397 unsigned I = 0; 10398 while (LastLeft + 1 < FirstRight) { 10399 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10400 LeftProb += (++LastLeft)->Prob; 10401 else 10402 RightProb += (--FirstRight)->Prob; 10403 I++; 10404 } 10405 10406 while (true) { 10407 // Our binary search tree differs from a typical BST in that ours can have up 10408 // to three values in each leaf. The pivot selection above doesn't take that 10409 // into account, which means the tree might require more nodes and be less 10410 // efficient. We compensate for this here. 10411 10412 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10413 unsigned NumRight = W.LastCluster - FirstRight + 1; 10414 10415 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10416 // If one side has less than 3 clusters, and the other has more than 3, 10417 // consider taking a cluster from the other side. 10418 10419 if (NumLeft < NumRight) { 10420 // Consider moving the first cluster on the right to the left side. 10421 CaseCluster &CC = *FirstRight; 10422 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10423 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10424 if (LeftSideRank <= RightSideRank) { 10425 // Moving the cluster to the left does not demote it. 10426 ++LastLeft; 10427 ++FirstRight; 10428 continue; 10429 } 10430 } else { 10431 assert(NumRight < NumLeft); 10432 // Consider moving the last element on the left to the right side. 10433 CaseCluster &CC = *LastLeft; 10434 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10435 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10436 if (RightSideRank <= LeftSideRank) { 10437 // Moving the cluster to the right does not demot it. 10438 --LastLeft; 10439 --FirstRight; 10440 continue; 10441 } 10442 } 10443 } 10444 break; 10445 } 10446 10447 assert(LastLeft + 1 == FirstRight); 10448 assert(LastLeft >= W.FirstCluster); 10449 assert(FirstRight <= W.LastCluster); 10450 10451 // Use the first element on the right as pivot since we will make less-than 10452 // comparisons against it. 10453 CaseClusterIt PivotCluster = FirstRight; 10454 assert(PivotCluster > W.FirstCluster); 10455 assert(PivotCluster <= W.LastCluster); 10456 10457 CaseClusterIt FirstLeft = W.FirstCluster; 10458 CaseClusterIt LastRight = W.LastCluster; 10459 10460 const ConstantInt *Pivot = PivotCluster->Low; 10461 10462 // New blocks will be inserted immediately after the current one. 10463 MachineFunction::iterator BBI(W.MBB); 10464 ++BBI; 10465 10466 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10467 // we can branch to its destination directly if it's squeezed exactly in 10468 // between the known lower bound and Pivot - 1. 10469 MachineBasicBlock *LeftMBB; 10470 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10471 FirstLeft->Low == W.GE && 10472 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10473 LeftMBB = FirstLeft->MBB; 10474 } else { 10475 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10476 FuncInfo.MF->insert(BBI, LeftMBB); 10477 WorkList.push_back( 10478 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10479 // Put Cond in a virtual register to make it available from the new blocks. 10480 ExportFromCurrentBlock(Cond); 10481 } 10482 10483 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10484 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10485 // directly if RHS.High equals the current upper bound. 10486 MachineBasicBlock *RightMBB; 10487 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10488 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10489 RightMBB = FirstRight->MBB; 10490 } else { 10491 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10492 FuncInfo.MF->insert(BBI, RightMBB); 10493 WorkList.push_back( 10494 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10495 // Put Cond in a virtual register to make it available from the new blocks. 10496 ExportFromCurrentBlock(Cond); 10497 } 10498 10499 // Create the CaseBlock record that will be used to lower the branch. 10500 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10501 getCurSDLoc(), LeftProb, RightProb); 10502 10503 if (W.MBB == SwitchMBB) 10504 visitSwitchCase(CB, SwitchMBB); 10505 else 10506 SL->SwitchCases.push_back(CB); 10507 } 10508 10509 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10510 // from the swith statement. 10511 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10512 BranchProbability PeeledCaseProb) { 10513 if (PeeledCaseProb == BranchProbability::getOne()) 10514 return BranchProbability::getZero(); 10515 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10516 10517 uint32_t Numerator = CaseProb.getNumerator(); 10518 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10519 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10520 } 10521 10522 // Try to peel the top probability case if it exceeds the threshold. 10523 // Return current MachineBasicBlock for the switch statement if the peeling 10524 // does not occur. 10525 // If the peeling is performed, return the newly created MachineBasicBlock 10526 // for the peeled switch statement. Also update Clusters to remove the peeled 10527 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10528 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10529 const SwitchInst &SI, CaseClusterVector &Clusters, 10530 BranchProbability &PeeledCaseProb) { 10531 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10532 // Don't perform if there is only one cluster or optimizing for size. 10533 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10534 TM.getOptLevel() == CodeGenOpt::None || 10535 SwitchMBB->getParent()->getFunction().hasMinSize()) 10536 return SwitchMBB; 10537 10538 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10539 unsigned PeeledCaseIndex = 0; 10540 bool SwitchPeeled = false; 10541 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10542 CaseCluster &CC = Clusters[Index]; 10543 if (CC.Prob < TopCaseProb) 10544 continue; 10545 TopCaseProb = CC.Prob; 10546 PeeledCaseIndex = Index; 10547 SwitchPeeled = true; 10548 } 10549 if (!SwitchPeeled) 10550 return SwitchMBB; 10551 10552 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10553 << TopCaseProb << "\n"); 10554 10555 // Record the MBB for the peeled switch statement. 10556 MachineFunction::iterator BBI(SwitchMBB); 10557 ++BBI; 10558 MachineBasicBlock *PeeledSwitchMBB = 10559 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10560 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10561 10562 ExportFromCurrentBlock(SI.getCondition()); 10563 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10564 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10565 nullptr, nullptr, TopCaseProb.getCompl()}; 10566 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10567 10568 Clusters.erase(PeeledCaseIt); 10569 for (CaseCluster &CC : Clusters) { 10570 LLVM_DEBUG( 10571 dbgs() << "Scale the probablity for one cluster, before scaling: " 10572 << CC.Prob << "\n"); 10573 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10574 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10575 } 10576 PeeledCaseProb = TopCaseProb; 10577 return PeeledSwitchMBB; 10578 } 10579 10580 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10581 // Extract cases from the switch. 10582 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10583 CaseClusterVector Clusters; 10584 Clusters.reserve(SI.getNumCases()); 10585 for (auto I : SI.cases()) { 10586 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10587 const ConstantInt *CaseVal = I.getCaseValue(); 10588 BranchProbability Prob = 10589 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10590 : BranchProbability(1, SI.getNumCases() + 1); 10591 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10592 } 10593 10594 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10595 10596 // Cluster adjacent cases with the same destination. We do this at all 10597 // optimization levels because it's cheap to do and will make codegen faster 10598 // if there are many clusters. 10599 sortAndRangeify(Clusters); 10600 10601 // The branch probablity of the peeled case. 10602 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10603 MachineBasicBlock *PeeledSwitchMBB = 10604 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10605 10606 // If there is only the default destination, jump there directly. 10607 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10608 if (Clusters.empty()) { 10609 assert(PeeledSwitchMBB == SwitchMBB); 10610 SwitchMBB->addSuccessor(DefaultMBB); 10611 if (DefaultMBB != NextBlock(SwitchMBB)) { 10612 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10613 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10614 } 10615 return; 10616 } 10617 10618 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10619 SL->findBitTestClusters(Clusters, &SI); 10620 10621 LLVM_DEBUG({ 10622 dbgs() << "Case clusters: "; 10623 for (const CaseCluster &C : Clusters) { 10624 if (C.Kind == CC_JumpTable) 10625 dbgs() << "JT:"; 10626 if (C.Kind == CC_BitTests) 10627 dbgs() << "BT:"; 10628 10629 C.Low->getValue().print(dbgs(), true); 10630 if (C.Low != C.High) { 10631 dbgs() << '-'; 10632 C.High->getValue().print(dbgs(), true); 10633 } 10634 dbgs() << ' '; 10635 } 10636 dbgs() << '\n'; 10637 }); 10638 10639 assert(!Clusters.empty()); 10640 SwitchWorkList WorkList; 10641 CaseClusterIt First = Clusters.begin(); 10642 CaseClusterIt Last = Clusters.end() - 1; 10643 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10644 // Scale the branchprobability for DefaultMBB if the peel occurs and 10645 // DefaultMBB is not replaced. 10646 if (PeeledCaseProb != BranchProbability::getZero() && 10647 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10648 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10649 WorkList.push_back( 10650 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10651 10652 while (!WorkList.empty()) { 10653 SwitchWorkListItem W = WorkList.back(); 10654 WorkList.pop_back(); 10655 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10656 10657 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10658 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10659 // For optimized builds, lower large range as a balanced binary tree. 10660 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10661 continue; 10662 } 10663 10664 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10665 } 10666 } 10667 10668 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10669 SmallVector<EVT, 4> ValueVTs; 10670 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10671 ValueVTs); 10672 unsigned NumValues = ValueVTs.size(); 10673 if (NumValues == 0) return; 10674 10675 SmallVector<SDValue, 4> Values(NumValues); 10676 SDValue Op = getValue(I.getOperand(0)); 10677 10678 for (unsigned i = 0; i != NumValues; ++i) 10679 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10680 SDValue(Op.getNode(), Op.getResNo() + i)); 10681 10682 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10683 DAG.getVTList(ValueVTs), Values)); 10684 } 10685