xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 4b0a365beb2578e9476b454972d0b33a48398175)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281   BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                  MachineBasicBlock *Dst) {
1287   uint32_t weight = getEdgeWeight(Src, Dst);
1288   Src->addSuccessor(Dst, weight);
1289 }
1290 
1291 
1292 static bool InBlock(const Value *V, const BasicBlock *BB) {
1293   if (const Instruction *I = dyn_cast<Instruction>(V))
1294     return I->getParent() == BB;
1295   return true;
1296 }
1297 
1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299 /// This function emits a branch and is used at the leaves of an OR or an
1300 /// AND operator tree.
1301 ///
1302 void
1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                   MachineBasicBlock *TBB,
1305                                                   MachineBasicBlock *FBB,
1306                                                   MachineBasicBlock *CurBB,
1307                                                   MachineBasicBlock *SwitchBB) {
1308   const BasicBlock *BB = CurBB->getBasicBlock();
1309 
1310   // If the leaf of the tree is a comparison, merge the condition into
1311   // the caseblock.
1312   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313     // The operands of the cmp have to be in this block.  We don't know
1314     // how to export them from some other block.  If this is the first block
1315     // of the sequence, no exporting is needed.
1316     if (CurBB == SwitchBB ||
1317         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319       ISD::CondCode Condition;
1320       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321         Condition = getICmpCondCode(IC->getPredicate());
1322       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323         Condition = getFCmpCondCode(FC->getPredicate());
1324       } else {
1325         Condition = ISD::SETEQ; // silence warning.
1326         llvm_unreachable("Unknown compare instruction");
1327       }
1328 
1329       CaseBlock CB(Condition, BOp->getOperand(0),
1330                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331       SwitchCases.push_back(CB);
1332       return;
1333     }
1334   }
1335 
1336   // Create a CaseBlock record representing this branch.
1337   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338                NULL, TBB, FBB, CurBB);
1339   SwitchCases.push_back(CB);
1340 }
1341 
1342 /// FindMergedConditions - If Cond is an expression like
1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                                MachineBasicBlock *TBB,
1345                                                MachineBasicBlock *FBB,
1346                                                MachineBasicBlock *CurBB,
1347                                                MachineBasicBlock *SwitchBB,
1348                                                unsigned Opc) {
1349   // If this node is not part of the or/and tree, emit it as a branch.
1350   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353       BOp->getParent() != CurBB->getBasicBlock() ||
1354       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357     return;
1358   }
1359 
1360   //  Create TmpBB after CurBB.
1361   MachineFunction::iterator BBI = CurBB;
1362   MachineFunction &MF = DAG.getMachineFunction();
1363   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364   CurBB->getParent()->insert(++BBI, TmpBB);
1365 
1366   if (Opc == Instruction::Or) {
1367     // Codegen X | Y as:
1368     //   jmp_if_X TBB
1369     //   jmp TmpBB
1370     // TmpBB:
1371     //   jmp_if_Y TBB
1372     //   jmp FBB
1373     //
1374 
1375     // Emit the LHS condition.
1376     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377 
1378     // Emit the RHS condition into TmpBB.
1379     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380   } else {
1381     assert(Opc == Instruction::And && "Unknown merge op!");
1382     // Codegen X & Y as:
1383     //   jmp_if_X TmpBB
1384     //   jmp FBB
1385     // TmpBB:
1386     //   jmp_if_Y TBB
1387     //   jmp FBB
1388     //
1389     //  This requires creation of TmpBB after CurBB.
1390 
1391     // Emit the LHS condition.
1392     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393 
1394     // Emit the RHS condition into TmpBB.
1395     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396   }
1397 }
1398 
1399 /// If the set of cases should be emitted as a series of branches, return true.
1400 /// If we should emit this as a bunch of and/or'd together conditions, return
1401 /// false.
1402 bool
1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404   if (Cases.size() != 2) return true;
1405 
1406   // If this is two comparisons of the same values or'd or and'd together, they
1407   // will get folded into a single comparison, so don't emit two blocks.
1408   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412     return false;
1413   }
1414 
1415   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418       Cases[0].CC == Cases[1].CC &&
1419       isa<Constant>(Cases[0].CmpRHS) &&
1420       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422       return false;
1423     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424       return false;
1425   }
1426 
1427   return true;
1428 }
1429 
1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432 
1433   // Update machine-CFG edges.
1434   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435 
1436   // Figure out which block is immediately after the current one.
1437   MachineBasicBlock *NextBlock = 0;
1438   MachineFunction::iterator BBI = BrMBB;
1439   if (++BBI != FuncInfo.MF->end())
1440     NextBlock = BBI;
1441 
1442   if (I.isUnconditional()) {
1443     // Update machine-CFG edges.
1444     BrMBB->addSuccessor(Succ0MBB);
1445 
1446     // If this is not a fall-through branch, emit the branch.
1447     if (Succ0MBB != NextBlock)
1448       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                               MVT::Other, getControlRoot(),
1450                               DAG.getBasicBlock(Succ0MBB)));
1451 
1452     return;
1453   }
1454 
1455   // If this condition is one of the special cases we handle, do special stuff
1456   // now.
1457   const Value *CondVal = I.getCondition();
1458   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459 
1460   // If this is a series of conditions that are or'd or and'd together, emit
1461   // this as a sequence of branches instead of setcc's with and/or operations.
1462   // As long as jumps are not expensive, this should improve performance.
1463   // For example, instead of something like:
1464   //     cmp A, B
1465   //     C = seteq
1466   //     cmp D, E
1467   //     F = setle
1468   //     or C, F
1469   //     jnz foo
1470   // Emit:
1471   //     cmp A, B
1472   //     je foo
1473   //     cmp D, E
1474   //     jle foo
1475   //
1476   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477     if (!TLI.isJumpExpensive() &&
1478         BOp->hasOneUse() &&
1479         (BOp->getOpcode() == Instruction::And ||
1480          BOp->getOpcode() == Instruction::Or)) {
1481       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                            BOp->getOpcode());
1483       // If the compares in later blocks need to use values not currently
1484       // exported from this block, export them now.  This block should always
1485       // be the first entry.
1486       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487 
1488       // Allow some cases to be rejected.
1489       if (ShouldEmitAsBranches(SwitchCases)) {
1490         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493         }
1494 
1495         // Emit the branch for this block.
1496         visitSwitchCase(SwitchCases[0], BrMBB);
1497         SwitchCases.erase(SwitchCases.begin());
1498         return;
1499       }
1500 
1501       // Okay, we decided not to do this, remove any inserted MBB's and clear
1502       // SwitchCases.
1503       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505 
1506       SwitchCases.clear();
1507     }
1508   }
1509 
1510   // Create a CaseBlock record representing this branch.
1511   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512                NULL, Succ0MBB, Succ1MBB, BrMBB);
1513 
1514   // Use visitSwitchCase to actually insert the fast branch sequence for this
1515   // cond branch.
1516   visitSwitchCase(CB, BrMBB);
1517 }
1518 
1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
1520 /// the binary search tree resulting from lowering a switch instruction.
1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                           MachineBasicBlock *SwitchBB) {
1523   SDValue Cond;
1524   SDValue CondLHS = getValue(CB.CmpLHS);
1525   DebugLoc dl = getCurDebugLoc();
1526 
1527   // Build the setcc now.
1528   if (CB.CmpMHS == NULL) {
1529     // Fold "(X == true)" to X and "(X == false)" to !X to
1530     // handle common cases produced by branch lowering.
1531     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532         CB.CC == ISD::SETEQ)
1533       Cond = CondLHS;
1534     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535              CB.CC == ISD::SETEQ) {
1536       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538     } else
1539       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540   } else {
1541     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542 
1543     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545 
1546     SDValue CmpOp = getValue(CB.CmpMHS);
1547     EVT VT = CmpOp.getValueType();
1548 
1549     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                           ISD::SETLE);
1552     } else {
1553       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                 VT, CmpOp, DAG.getConstant(Low, VT));
1555       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1557     }
1558   }
1559 
1560   // Update successor info
1561   addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562   addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563 
1564   // Set NextBlock to be the MBB immediately after the current one, if any.
1565   // This is used to avoid emitting unnecessary branches to the next block.
1566   MachineBasicBlock *NextBlock = 0;
1567   MachineFunction::iterator BBI = SwitchBB;
1568   if (++BBI != FuncInfo.MF->end())
1569     NextBlock = BBI;
1570 
1571   // If the lhs block is the next block, invert the condition so that we can
1572   // fall through to the lhs instead of the rhs block.
1573   if (CB.TrueBB == NextBlock) {
1574     std::swap(CB.TrueBB, CB.FalseBB);
1575     SDValue True = DAG.getConstant(1, Cond.getValueType());
1576     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577   }
1578 
1579   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                                MVT::Other, getControlRoot(), Cond,
1581                                DAG.getBasicBlock(CB.TrueBB));
1582 
1583   // Insert the false branch. Do this even if it's a fall through branch,
1584   // this makes it easier to do DAG optimizations which require inverting
1585   // the branch condition.
1586   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                        DAG.getBasicBlock(CB.FalseBB));
1588 
1589   DAG.setRoot(BrCond);
1590 }
1591 
1592 /// visitJumpTable - Emit JumpTable node in the current MBB
1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594   // Emit the code for the jump table
1595   assert(JT.Reg != -1U && "Should lower JT Header first!");
1596   EVT PTy = TLI.getPointerTy();
1597   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                      JT.Reg, PTy);
1599   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                     MVT::Other, Index.getValue(1),
1602                                     Table, Index);
1603   DAG.setRoot(BrJumpTable);
1604 }
1605 
1606 /// visitJumpTableHeader - This function emits necessary code to produce index
1607 /// in the JumpTable from switch case.
1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                                JumpTableHeader &JTH,
1610                                                MachineBasicBlock *SwitchBB) {
1611   // Subtract the lowest switch case value from the value being switched on and
1612   // conditional branch to default mbb if the result is greater than the
1613   // difference between smallest and largest cases.
1614   SDValue SwitchOp = getValue(JTH.SValue);
1615   EVT VT = SwitchOp.getValueType();
1616   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                             DAG.getConstant(JTH.First, VT));
1618 
1619   // The SDNode we just created, which holds the value being switched on minus
1620   // the smallest case value, needs to be copied to a virtual register so it
1621   // can be used as an index into the jump table in a subsequent basic block.
1622   // This value may be smaller or larger than the target's pointer type, and
1623   // therefore require extension or truncating.
1624   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625 
1626   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                     JumpTableReg, SwitchOp);
1629   JT.Reg = JumpTableReg;
1630 
1631   // Emit the range check for the jump table, and branch to the default block
1632   // for the switch statement if the value being switched on exceeds the largest
1633   // case in the switch.
1634   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                              DAG.getConstant(JTH.Last-JTH.First,VT),
1637                              ISD::SETUGT);
1638 
1639   // Set NextBlock to be the MBB immediately after the current one, if any.
1640   // This is used to avoid emitting unnecessary branches to the next block.
1641   MachineBasicBlock *NextBlock = 0;
1642   MachineFunction::iterator BBI = SwitchBB;
1643 
1644   if (++BBI != FuncInfo.MF->end())
1645     NextBlock = BBI;
1646 
1647   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                                MVT::Other, CopyTo, CMP,
1649                                DAG.getBasicBlock(JT.Default));
1650 
1651   if (JT.MBB != NextBlock)
1652     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                          DAG.getBasicBlock(JT.MBB));
1654 
1655   DAG.setRoot(BrCond);
1656 }
1657 
1658 /// visitBitTestHeader - This function emits necessary code to produce value
1659 /// suitable for "bit tests"
1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                              MachineBasicBlock *SwitchBB) {
1662   // Subtract the minimum value
1663   SDValue SwitchOp = getValue(B.SValue);
1664   EVT VT = SwitchOp.getValueType();
1665   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                             DAG.getConstant(B.First, VT));
1667 
1668   // Check range
1669   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                   TLI.getSetCCResultType(Sub.getValueType()),
1671                                   Sub, DAG.getConstant(B.Range, VT),
1672                                   ISD::SETUGT);
1673 
1674   // Determine the type of the test operands.
1675   bool UsePtrType = false;
1676   if (!TLI.isTypeLegal(VT))
1677     UsePtrType = true;
1678   else {
1679     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681         // Switch table case range are encoded into series of masks.
1682         // Just use pointer type, it's guaranteed to fit.
1683         UsePtrType = true;
1684         break;
1685       }
1686   }
1687   if (UsePtrType) {
1688     VT = TLI.getPointerTy();
1689     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690   }
1691 
1692   B.RegVT = VT;
1693   B.Reg = FuncInfo.CreateReg(VT);
1694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                     B.Reg, Sub);
1696 
1697   // Set NextBlock to be the MBB immediately after the current one, if any.
1698   // This is used to avoid emitting unnecessary branches to the next block.
1699   MachineBasicBlock *NextBlock = 0;
1700   MachineFunction::iterator BBI = SwitchBB;
1701   if (++BBI != FuncInfo.MF->end())
1702     NextBlock = BBI;
1703 
1704   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705 
1706   addSuccessorWithWeight(SwitchBB, B.Default);
1707   addSuccessorWithWeight(SwitchBB, MBB);
1708 
1709   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                 MVT::Other, CopyTo, RangeCmp,
1711                                 DAG.getBasicBlock(B.Default));
1712 
1713   if (MBB != NextBlock)
1714     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                           DAG.getBasicBlock(MBB));
1716 
1717   DAG.setRoot(BrRange);
1718 }
1719 
1720 /// visitBitTestCase - this function produces one "bit test"
1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                            MachineBasicBlock* NextMBB,
1723                                            unsigned Reg,
1724                                            BitTestCase &B,
1725                                            MachineBasicBlock *SwitchBB) {
1726   EVT VT = BB.RegVT;
1727   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                        Reg, VT);
1729   SDValue Cmp;
1730   unsigned PopCount = CountPopulation_64(B.Mask);
1731   if (PopCount == 1) {
1732     // Testing for a single bit; just compare the shift count with what it
1733     // would need to be to shift a 1 bit in that position.
1734     Cmp = DAG.getSetCC(getCurDebugLoc(),
1735                        TLI.getSetCCResultType(VT),
1736                        ShiftOp,
1737                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1738                        ISD::SETEQ);
1739   } else if (PopCount == BB.Range) {
1740     // There is only one zero bit in the range, test for it directly.
1741     Cmp = DAG.getSetCC(getCurDebugLoc(),
1742                        TLI.getSetCCResultType(VT),
1743                        ShiftOp,
1744                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1745                        ISD::SETNE);
1746   } else {
1747     // Make desired shift
1748     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1749                                     DAG.getConstant(1, VT), ShiftOp);
1750 
1751     // Emit bit tests and jumps
1752     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1753                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1754     Cmp = DAG.getSetCC(getCurDebugLoc(),
1755                        TLI.getSetCCResultType(VT),
1756                        AndOp, DAG.getConstant(0, VT),
1757                        ISD::SETNE);
1758   }
1759 
1760   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1761   addSuccessorWithWeight(SwitchBB, NextMBB);
1762 
1763   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1764                               MVT::Other, getControlRoot(),
1765                               Cmp, DAG.getBasicBlock(B.TargetBB));
1766 
1767   // Set NextBlock to be the MBB immediately after the current one, if any.
1768   // This is used to avoid emitting unnecessary branches to the next block.
1769   MachineBasicBlock *NextBlock = 0;
1770   MachineFunction::iterator BBI = SwitchBB;
1771   if (++BBI != FuncInfo.MF->end())
1772     NextBlock = BBI;
1773 
1774   if (NextMBB != NextBlock)
1775     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1776                         DAG.getBasicBlock(NextMBB));
1777 
1778   DAG.setRoot(BrAnd);
1779 }
1780 
1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1782   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1783 
1784   // Retrieve successors.
1785   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1786   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1787 
1788   const Value *Callee(I.getCalledValue());
1789   if (isa<InlineAsm>(Callee))
1790     visitInlineAsm(&I);
1791   else
1792     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1793 
1794   // If the value of the invoke is used outside of its defining block, make it
1795   // available as a virtual register.
1796   CopyToExportRegsIfNeeded(&I);
1797 
1798   // Update successor info
1799   InvokeMBB->addSuccessor(Return);
1800   InvokeMBB->addSuccessor(LandingPad);
1801 
1802   // Drop into normal successor.
1803   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1804                           MVT::Other, getControlRoot(),
1805                           DAG.getBasicBlock(Return)));
1806 }
1807 
1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1809 }
1810 
1811 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1812   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1813 }
1814 
1815 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1816   // FIXME: Handle this
1817   assert(FuncInfo.MBB->isLandingPad() &&
1818          "Call to landingpad not in landing pad!");
1819 
1820   MachineBasicBlock *MBB = FuncInfo.MBB;
1821   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1822   AddLandingPadInfo(LP, MMI, MBB);
1823 
1824   SmallVector<EVT, 2> ValueVTs;
1825   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1826 
1827   // Insert the EXCEPTIONADDR instruction.
1828   assert(FuncInfo.MBB->isLandingPad() &&
1829          "Call to eh.exception not in landing pad!");
1830   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1831   SDValue Ops[2];
1832   Ops[0] = DAG.getRoot();
1833   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1834   SDValue Chain = Op1.getValue(1);
1835 
1836   // Insert the EHSELECTION instruction.
1837   VTs = DAG.getVTList(ValueVTs[1], MVT::Other);
1838   Ops[0] = Op1;
1839   Ops[1] = Chain;
1840   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1841   Chain = Op2.getValue(1);
1842   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32)
1843 
1844   Ops[0] = Op1;
1845   Ops[1] = Op2;
1846   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1847                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1848                             &Ops[0], 2);
1849 
1850   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1851   setValue(&LP, RetPair.first);
1852   DAG.setRoot(RetPair.second);
1853 }
1854 
1855 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1856 /// small case ranges).
1857 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1858                                                  CaseRecVector& WorkList,
1859                                                  const Value* SV,
1860                                                  MachineBasicBlock *Default,
1861                                                  MachineBasicBlock *SwitchBB) {
1862   Case& BackCase  = *(CR.Range.second-1);
1863 
1864   // Size is the number of Cases represented by this range.
1865   size_t Size = CR.Range.second - CR.Range.first;
1866   if (Size > 3)
1867     return false;
1868 
1869   // Get the MachineFunction which holds the current MBB.  This is used when
1870   // inserting any additional MBBs necessary to represent the switch.
1871   MachineFunction *CurMF = FuncInfo.MF;
1872 
1873   // Figure out which block is immediately after the current one.
1874   MachineBasicBlock *NextBlock = 0;
1875   MachineFunction::iterator BBI = CR.CaseBB;
1876 
1877   if (++BBI != FuncInfo.MF->end())
1878     NextBlock = BBI;
1879 
1880   // If any two of the cases has the same destination, and if one value
1881   // is the same as the other, but has one bit unset that the other has set,
1882   // use bit manipulation to do two compares at once.  For example:
1883   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1884   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1885   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1886   if (Size == 2 && CR.CaseBB == SwitchBB) {
1887     Case &Small = *CR.Range.first;
1888     Case &Big = *(CR.Range.second-1);
1889 
1890     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1891       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1892       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1893 
1894       // Check that there is only one bit different.
1895       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1896           (SmallValue | BigValue) == BigValue) {
1897         // Isolate the common bit.
1898         APInt CommonBit = BigValue & ~SmallValue;
1899         assert((SmallValue | CommonBit) == BigValue &&
1900                CommonBit.countPopulation() == 1 && "Not a common bit?");
1901 
1902         SDValue CondLHS = getValue(SV);
1903         EVT VT = CondLHS.getValueType();
1904         DebugLoc DL = getCurDebugLoc();
1905 
1906         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1907                                  DAG.getConstant(CommonBit, VT));
1908         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1909                                     Or, DAG.getConstant(BigValue, VT),
1910                                     ISD::SETEQ);
1911 
1912         // Update successor info.
1913         SwitchBB->addSuccessor(Small.BB);
1914         SwitchBB->addSuccessor(Default);
1915 
1916         // Insert the true branch.
1917         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1918                                      getControlRoot(), Cond,
1919                                      DAG.getBasicBlock(Small.BB));
1920 
1921         // Insert the false branch.
1922         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1923                              DAG.getBasicBlock(Default));
1924 
1925         DAG.setRoot(BrCond);
1926         return true;
1927       }
1928     }
1929   }
1930 
1931   // Rearrange the case blocks so that the last one falls through if possible.
1932   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1933     // The last case block won't fall through into 'NextBlock' if we emit the
1934     // branches in this order.  See if rearranging a case value would help.
1935     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1936       if (I->BB == NextBlock) {
1937         std::swap(*I, BackCase);
1938         break;
1939       }
1940     }
1941   }
1942 
1943   // Create a CaseBlock record representing a conditional branch to
1944   // the Case's target mbb if the value being switched on SV is equal
1945   // to C.
1946   MachineBasicBlock *CurBlock = CR.CaseBB;
1947   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1948     MachineBasicBlock *FallThrough;
1949     if (I != E-1) {
1950       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1951       CurMF->insert(BBI, FallThrough);
1952 
1953       // Put SV in a virtual register to make it available from the new blocks.
1954       ExportFromCurrentBlock(SV);
1955     } else {
1956       // If the last case doesn't match, go to the default block.
1957       FallThrough = Default;
1958     }
1959 
1960     const Value *RHS, *LHS, *MHS;
1961     ISD::CondCode CC;
1962     if (I->High == I->Low) {
1963       // This is just small small case range :) containing exactly 1 case
1964       CC = ISD::SETEQ;
1965       LHS = SV; RHS = I->High; MHS = NULL;
1966     } else {
1967       CC = ISD::SETLE;
1968       LHS = I->Low; MHS = SV; RHS = I->High;
1969     }
1970     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1971 
1972     // If emitting the first comparison, just call visitSwitchCase to emit the
1973     // code into the current block.  Otherwise, push the CaseBlock onto the
1974     // vector to be later processed by SDISel, and insert the node's MBB
1975     // before the next MBB.
1976     if (CurBlock == SwitchBB)
1977       visitSwitchCase(CB, SwitchBB);
1978     else
1979       SwitchCases.push_back(CB);
1980 
1981     CurBlock = FallThrough;
1982   }
1983 
1984   return true;
1985 }
1986 
1987 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1988   return !DisableJumpTables &&
1989           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1990            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1991 }
1992 
1993 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1994   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1995   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1996   return (LastExt - FirstExt + 1ULL);
1997 }
1998 
1999 /// handleJTSwitchCase - Emit jumptable for current switch case range
2000 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
2001                                              CaseRecVector& WorkList,
2002                                              const Value* SV,
2003                                              MachineBasicBlock* Default,
2004                                              MachineBasicBlock *SwitchBB) {
2005   Case& FrontCase = *CR.Range.first;
2006   Case& BackCase  = *(CR.Range.second-1);
2007 
2008   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2009   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2010 
2011   APInt TSize(First.getBitWidth(), 0);
2012   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2013        I!=E; ++I)
2014     TSize += I->size();
2015 
2016   if (!areJTsAllowed(TLI) || TSize.ult(4))
2017     return false;
2018 
2019   APInt Range = ComputeRange(First, Last);
2020   double Density = TSize.roundToDouble() / Range.roundToDouble();
2021   if (Density < 0.4)
2022     return false;
2023 
2024   DEBUG(dbgs() << "Lowering jump table\n"
2025                << "First entry: " << First << ". Last entry: " << Last << '\n'
2026                << "Range: " << Range
2027                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2028 
2029   // Get the MachineFunction which holds the current MBB.  This is used when
2030   // inserting any additional MBBs necessary to represent the switch.
2031   MachineFunction *CurMF = FuncInfo.MF;
2032 
2033   // Figure out which block is immediately after the current one.
2034   MachineFunction::iterator BBI = CR.CaseBB;
2035   ++BBI;
2036 
2037   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2038 
2039   // Create a new basic block to hold the code for loading the address
2040   // of the jump table, and jumping to it.  Update successor information;
2041   // we will either branch to the default case for the switch, or the jump
2042   // table.
2043   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2044   CurMF->insert(BBI, JumpTableBB);
2045 
2046   addSuccessorWithWeight(CR.CaseBB, Default);
2047   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2048 
2049   // Build a vector of destination BBs, corresponding to each target
2050   // of the jump table. If the value of the jump table slot corresponds to
2051   // a case statement, push the case's BB onto the vector, otherwise, push
2052   // the default BB.
2053   std::vector<MachineBasicBlock*> DestBBs;
2054   APInt TEI = First;
2055   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2056     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2057     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2058 
2059     if (Low.sle(TEI) && TEI.sle(High)) {
2060       DestBBs.push_back(I->BB);
2061       if (TEI==High)
2062         ++I;
2063     } else {
2064       DestBBs.push_back(Default);
2065     }
2066   }
2067 
2068   // Update successor info. Add one edge to each unique successor.
2069   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2070   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2071          E = DestBBs.end(); I != E; ++I) {
2072     if (!SuccsHandled[(*I)->getNumber()]) {
2073       SuccsHandled[(*I)->getNumber()] = true;
2074       addSuccessorWithWeight(JumpTableBB, *I);
2075     }
2076   }
2077 
2078   // Create a jump table index for this jump table.
2079   unsigned JTEncoding = TLI.getJumpTableEncoding();
2080   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2081                        ->createJumpTableIndex(DestBBs);
2082 
2083   // Set the jump table information so that we can codegen it as a second
2084   // MachineBasicBlock
2085   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2086   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2087   if (CR.CaseBB == SwitchBB)
2088     visitJumpTableHeader(JT, JTH, SwitchBB);
2089 
2090   JTCases.push_back(JumpTableBlock(JTH, JT));
2091 
2092   return true;
2093 }
2094 
2095 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2096 /// 2 subtrees.
2097 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2098                                                   CaseRecVector& WorkList,
2099                                                   const Value* SV,
2100                                                   MachineBasicBlock *Default,
2101                                                   MachineBasicBlock *SwitchBB) {
2102   // Get the MachineFunction which holds the current MBB.  This is used when
2103   // inserting any additional MBBs necessary to represent the switch.
2104   MachineFunction *CurMF = FuncInfo.MF;
2105 
2106   // Figure out which block is immediately after the current one.
2107   MachineFunction::iterator BBI = CR.CaseBB;
2108   ++BBI;
2109 
2110   Case& FrontCase = *CR.Range.first;
2111   Case& BackCase  = *(CR.Range.second-1);
2112   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2113 
2114   // Size is the number of Cases represented by this range.
2115   unsigned Size = CR.Range.second - CR.Range.first;
2116 
2117   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2118   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2119   double FMetric = 0;
2120   CaseItr Pivot = CR.Range.first + Size/2;
2121 
2122   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2123   // (heuristically) allow us to emit JumpTable's later.
2124   APInt TSize(First.getBitWidth(), 0);
2125   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2126        I!=E; ++I)
2127     TSize += I->size();
2128 
2129   APInt LSize = FrontCase.size();
2130   APInt RSize = TSize-LSize;
2131   DEBUG(dbgs() << "Selecting best pivot: \n"
2132                << "First: " << First << ", Last: " << Last <<'\n'
2133                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2134   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2135        J!=E; ++I, ++J) {
2136     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2137     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2138     APInt Range = ComputeRange(LEnd, RBegin);
2139     assert((Range - 2ULL).isNonNegative() &&
2140            "Invalid case distance");
2141     // Use volatile double here to avoid excess precision issues on some hosts,
2142     // e.g. that use 80-bit X87 registers.
2143     volatile double LDensity =
2144        (double)LSize.roundToDouble() /
2145                            (LEnd - First + 1ULL).roundToDouble();
2146     volatile double RDensity =
2147       (double)RSize.roundToDouble() /
2148                            (Last - RBegin + 1ULL).roundToDouble();
2149     double Metric = Range.logBase2()*(LDensity+RDensity);
2150     // Should always split in some non-trivial place
2151     DEBUG(dbgs() <<"=>Step\n"
2152                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2153                  << "LDensity: " << LDensity
2154                  << ", RDensity: " << RDensity << '\n'
2155                  << "Metric: " << Metric << '\n');
2156     if (FMetric < Metric) {
2157       Pivot = J;
2158       FMetric = Metric;
2159       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2160     }
2161 
2162     LSize += J->size();
2163     RSize -= J->size();
2164   }
2165   if (areJTsAllowed(TLI)) {
2166     // If our case is dense we *really* should handle it earlier!
2167     assert((FMetric > 0) && "Should handle dense range earlier!");
2168   } else {
2169     Pivot = CR.Range.first + Size/2;
2170   }
2171 
2172   CaseRange LHSR(CR.Range.first, Pivot);
2173   CaseRange RHSR(Pivot, CR.Range.second);
2174   Constant *C = Pivot->Low;
2175   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2176 
2177   // We know that we branch to the LHS if the Value being switched on is
2178   // less than the Pivot value, C.  We use this to optimize our binary
2179   // tree a bit, by recognizing that if SV is greater than or equal to the
2180   // LHS's Case Value, and that Case Value is exactly one less than the
2181   // Pivot's Value, then we can branch directly to the LHS's Target,
2182   // rather than creating a leaf node for it.
2183   if ((LHSR.second - LHSR.first) == 1 &&
2184       LHSR.first->High == CR.GE &&
2185       cast<ConstantInt>(C)->getValue() ==
2186       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2187     TrueBB = LHSR.first->BB;
2188   } else {
2189     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2190     CurMF->insert(BBI, TrueBB);
2191     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2192 
2193     // Put SV in a virtual register to make it available from the new blocks.
2194     ExportFromCurrentBlock(SV);
2195   }
2196 
2197   // Similar to the optimization above, if the Value being switched on is
2198   // known to be less than the Constant CR.LT, and the current Case Value
2199   // is CR.LT - 1, then we can branch directly to the target block for
2200   // the current Case Value, rather than emitting a RHS leaf node for it.
2201   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2202       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2203       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2204     FalseBB = RHSR.first->BB;
2205   } else {
2206     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2207     CurMF->insert(BBI, FalseBB);
2208     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2209 
2210     // Put SV in a virtual register to make it available from the new blocks.
2211     ExportFromCurrentBlock(SV);
2212   }
2213 
2214   // Create a CaseBlock record representing a conditional branch to
2215   // the LHS node if the value being switched on SV is less than C.
2216   // Otherwise, branch to LHS.
2217   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2218 
2219   if (CR.CaseBB == SwitchBB)
2220     visitSwitchCase(CB, SwitchBB);
2221   else
2222     SwitchCases.push_back(CB);
2223 
2224   return true;
2225 }
2226 
2227 /// handleBitTestsSwitchCase - if current case range has few destination and
2228 /// range span less, than machine word bitwidth, encode case range into series
2229 /// of masks and emit bit tests with these masks.
2230 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2231                                                    CaseRecVector& WorkList,
2232                                                    const Value* SV,
2233                                                    MachineBasicBlock* Default,
2234                                                    MachineBasicBlock *SwitchBB){
2235   EVT PTy = TLI.getPointerTy();
2236   unsigned IntPtrBits = PTy.getSizeInBits();
2237 
2238   Case& FrontCase = *CR.Range.first;
2239   Case& BackCase  = *(CR.Range.second-1);
2240 
2241   // Get the MachineFunction which holds the current MBB.  This is used when
2242   // inserting any additional MBBs necessary to represent the switch.
2243   MachineFunction *CurMF = FuncInfo.MF;
2244 
2245   // If target does not have legal shift left, do not emit bit tests at all.
2246   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2247     return false;
2248 
2249   size_t numCmps = 0;
2250   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2251        I!=E; ++I) {
2252     // Single case counts one, case range - two.
2253     numCmps += (I->Low == I->High ? 1 : 2);
2254   }
2255 
2256   // Count unique destinations
2257   SmallSet<MachineBasicBlock*, 4> Dests;
2258   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2259     Dests.insert(I->BB);
2260     if (Dests.size() > 3)
2261       // Don't bother the code below, if there are too much unique destinations
2262       return false;
2263   }
2264   DEBUG(dbgs() << "Total number of unique destinations: "
2265         << Dests.size() << '\n'
2266         << "Total number of comparisons: " << numCmps << '\n');
2267 
2268   // Compute span of values.
2269   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2270   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2271   APInt cmpRange = maxValue - minValue;
2272 
2273   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2274                << "Low bound: " << minValue << '\n'
2275                << "High bound: " << maxValue << '\n');
2276 
2277   if (cmpRange.uge(IntPtrBits) ||
2278       (!(Dests.size() == 1 && numCmps >= 3) &&
2279        !(Dests.size() == 2 && numCmps >= 5) &&
2280        !(Dests.size() >= 3 && numCmps >= 6)))
2281     return false;
2282 
2283   DEBUG(dbgs() << "Emitting bit tests\n");
2284   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2285 
2286   // Optimize the case where all the case values fit in a
2287   // word without having to subtract minValue. In this case,
2288   // we can optimize away the subtraction.
2289   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2290     cmpRange = maxValue;
2291   } else {
2292     lowBound = minValue;
2293   }
2294 
2295   CaseBitsVector CasesBits;
2296   unsigned i, count = 0;
2297 
2298   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2299     MachineBasicBlock* Dest = I->BB;
2300     for (i = 0; i < count; ++i)
2301       if (Dest == CasesBits[i].BB)
2302         break;
2303 
2304     if (i == count) {
2305       assert((count < 3) && "Too much destinations to test!");
2306       CasesBits.push_back(CaseBits(0, Dest, 0));
2307       count++;
2308     }
2309 
2310     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2311     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2312 
2313     uint64_t lo = (lowValue - lowBound).getZExtValue();
2314     uint64_t hi = (highValue - lowBound).getZExtValue();
2315 
2316     for (uint64_t j = lo; j <= hi; j++) {
2317       CasesBits[i].Mask |=  1ULL << j;
2318       CasesBits[i].Bits++;
2319     }
2320 
2321   }
2322   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2323 
2324   BitTestInfo BTC;
2325 
2326   // Figure out which block is immediately after the current one.
2327   MachineFunction::iterator BBI = CR.CaseBB;
2328   ++BBI;
2329 
2330   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2331 
2332   DEBUG(dbgs() << "Cases:\n");
2333   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2334     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2335                  << ", Bits: " << CasesBits[i].Bits
2336                  << ", BB: " << CasesBits[i].BB << '\n');
2337 
2338     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2339     CurMF->insert(BBI, CaseBB);
2340     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2341                               CaseBB,
2342                               CasesBits[i].BB));
2343 
2344     // Put SV in a virtual register to make it available from the new blocks.
2345     ExportFromCurrentBlock(SV);
2346   }
2347 
2348   BitTestBlock BTB(lowBound, cmpRange, SV,
2349                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2350                    CR.CaseBB, Default, BTC);
2351 
2352   if (CR.CaseBB == SwitchBB)
2353     visitBitTestHeader(BTB, SwitchBB);
2354 
2355   BitTestCases.push_back(BTB);
2356 
2357   return true;
2358 }
2359 
2360 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2361 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2362                                        const SwitchInst& SI) {
2363   size_t numCmps = 0;
2364 
2365   // Start with "simple" cases
2366   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2367     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2368     Cases.push_back(Case(SI.getSuccessorValue(i),
2369                          SI.getSuccessorValue(i),
2370                          SMBB));
2371   }
2372   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2373 
2374   // Merge case into clusters
2375   if (Cases.size() >= 2)
2376     // Must recompute end() each iteration because it may be
2377     // invalidated by erase if we hold on to it
2378     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2379          J != Cases.end(); ) {
2380       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2381       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2382       MachineBasicBlock* nextBB = J->BB;
2383       MachineBasicBlock* currentBB = I->BB;
2384 
2385       // If the two neighboring cases go to the same destination, merge them
2386       // into a single case.
2387       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2388         I->High = J->High;
2389         J = Cases.erase(J);
2390       } else {
2391         I = J++;
2392       }
2393     }
2394 
2395   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2396     if (I->Low != I->High)
2397       // A range counts double, since it requires two compares.
2398       ++numCmps;
2399   }
2400 
2401   return numCmps;
2402 }
2403 
2404 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2405                                            MachineBasicBlock *Last) {
2406   // Update JTCases.
2407   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2408     if (JTCases[i].first.HeaderBB == First)
2409       JTCases[i].first.HeaderBB = Last;
2410 
2411   // Update BitTestCases.
2412   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2413     if (BitTestCases[i].Parent == First)
2414       BitTestCases[i].Parent = Last;
2415 }
2416 
2417 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2418   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2419 
2420   // Figure out which block is immediately after the current one.
2421   MachineBasicBlock *NextBlock = 0;
2422   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2423 
2424   // If there is only the default destination, branch to it if it is not the
2425   // next basic block.  Otherwise, just fall through.
2426   if (SI.getNumOperands() == 2) {
2427     // Update machine-CFG edges.
2428 
2429     // If this is not a fall-through branch, emit the branch.
2430     SwitchMBB->addSuccessor(Default);
2431     if (Default != NextBlock)
2432       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2433                               MVT::Other, getControlRoot(),
2434                               DAG.getBasicBlock(Default)));
2435 
2436     return;
2437   }
2438 
2439   // If there are any non-default case statements, create a vector of Cases
2440   // representing each one, and sort the vector so that we can efficiently
2441   // create a binary search tree from them.
2442   CaseVector Cases;
2443   size_t numCmps = Clusterify(Cases, SI);
2444   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2445                << ". Total compares: " << numCmps << '\n');
2446   numCmps = 0;
2447 
2448   // Get the Value to be switched on and default basic blocks, which will be
2449   // inserted into CaseBlock records, representing basic blocks in the binary
2450   // search tree.
2451   const Value *SV = SI.getOperand(0);
2452 
2453   // Push the initial CaseRec onto the worklist
2454   CaseRecVector WorkList;
2455   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2456                              CaseRange(Cases.begin(),Cases.end())));
2457 
2458   while (!WorkList.empty()) {
2459     // Grab a record representing a case range to process off the worklist
2460     CaseRec CR = WorkList.back();
2461     WorkList.pop_back();
2462 
2463     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2464       continue;
2465 
2466     // If the range has few cases (two or less) emit a series of specific
2467     // tests.
2468     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2469       continue;
2470 
2471     // If the switch has more than 5 blocks, and at least 40% dense, and the
2472     // target supports indirect branches, then emit a jump table rather than
2473     // lowering the switch to a binary tree of conditional branches.
2474     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2475       continue;
2476 
2477     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2478     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2479     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2480   }
2481 }
2482 
2483 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2484   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2485 
2486   // Update machine-CFG edges with unique successors.
2487   SmallVector<BasicBlock*, 32> succs;
2488   succs.reserve(I.getNumSuccessors());
2489   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2490     succs.push_back(I.getSuccessor(i));
2491   array_pod_sort(succs.begin(), succs.end());
2492   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2493   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2494     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2495     addSuccessorWithWeight(IndirectBrMBB, Succ);
2496   }
2497 
2498   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2499                           MVT::Other, getControlRoot(),
2500                           getValue(I.getAddress())));
2501 }
2502 
2503 void SelectionDAGBuilder::visitFSub(const User &I) {
2504   // -0.0 - X --> fneg
2505   Type *Ty = I.getType();
2506   if (isa<Constant>(I.getOperand(0)) &&
2507       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2508     SDValue Op2 = getValue(I.getOperand(1));
2509     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2510                              Op2.getValueType(), Op2));
2511     return;
2512   }
2513 
2514   visitBinary(I, ISD::FSUB);
2515 }
2516 
2517 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2518   SDValue Op1 = getValue(I.getOperand(0));
2519   SDValue Op2 = getValue(I.getOperand(1));
2520   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2521                            Op1.getValueType(), Op1, Op2));
2522 }
2523 
2524 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2525   SDValue Op1 = getValue(I.getOperand(0));
2526   SDValue Op2 = getValue(I.getOperand(1));
2527 
2528   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2529 
2530   // Coerce the shift amount to the right type if we can.
2531   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2532     unsigned ShiftSize = ShiftTy.getSizeInBits();
2533     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2534     DebugLoc DL = getCurDebugLoc();
2535 
2536     // If the operand is smaller than the shift count type, promote it.
2537     if (ShiftSize > Op2Size)
2538       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2539 
2540     // If the operand is larger than the shift count type but the shift
2541     // count type has enough bits to represent any shift value, truncate
2542     // it now. This is a common case and it exposes the truncate to
2543     // optimization early.
2544     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2545       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2546     // Otherwise we'll need to temporarily settle for some other convenient
2547     // type.  Type legalization will make adjustments once the shiftee is split.
2548     else
2549       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2550   }
2551 
2552   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2553                            Op1.getValueType(), Op1, Op2));
2554 }
2555 
2556 void SelectionDAGBuilder::visitSDiv(const User &I) {
2557   SDValue Op1 = getValue(I.getOperand(0));
2558   SDValue Op2 = getValue(I.getOperand(1));
2559 
2560   // Turn exact SDivs into multiplications.
2561   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2562   // exact bit.
2563   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2564       !isa<ConstantSDNode>(Op1) &&
2565       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2566     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2567   else
2568     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2569                              Op1, Op2));
2570 }
2571 
2572 void SelectionDAGBuilder::visitICmp(const User &I) {
2573   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2574   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2575     predicate = IC->getPredicate();
2576   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2577     predicate = ICmpInst::Predicate(IC->getPredicate());
2578   SDValue Op1 = getValue(I.getOperand(0));
2579   SDValue Op2 = getValue(I.getOperand(1));
2580   ISD::CondCode Opcode = getICmpCondCode(predicate);
2581 
2582   EVT DestVT = TLI.getValueType(I.getType());
2583   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2584 }
2585 
2586 void SelectionDAGBuilder::visitFCmp(const User &I) {
2587   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2588   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2589     predicate = FC->getPredicate();
2590   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2591     predicate = FCmpInst::Predicate(FC->getPredicate());
2592   SDValue Op1 = getValue(I.getOperand(0));
2593   SDValue Op2 = getValue(I.getOperand(1));
2594   ISD::CondCode Condition = getFCmpCondCode(predicate);
2595   EVT DestVT = TLI.getValueType(I.getType());
2596   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2597 }
2598 
2599 void SelectionDAGBuilder::visitSelect(const User &I) {
2600   SmallVector<EVT, 4> ValueVTs;
2601   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2602   unsigned NumValues = ValueVTs.size();
2603   if (NumValues == 0) return;
2604 
2605   SmallVector<SDValue, 4> Values(NumValues);
2606   SDValue Cond     = getValue(I.getOperand(0));
2607   SDValue TrueVal  = getValue(I.getOperand(1));
2608   SDValue FalseVal = getValue(I.getOperand(2));
2609 
2610   for (unsigned i = 0; i != NumValues; ++i)
2611     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2612                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2613                             Cond,
2614                             SDValue(TrueVal.getNode(),
2615                                     TrueVal.getResNo() + i),
2616                             SDValue(FalseVal.getNode(),
2617                                     FalseVal.getResNo() + i));
2618 
2619   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2620                            DAG.getVTList(&ValueVTs[0], NumValues),
2621                            &Values[0], NumValues));
2622 }
2623 
2624 void SelectionDAGBuilder::visitTrunc(const User &I) {
2625   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2626   SDValue N = getValue(I.getOperand(0));
2627   EVT DestVT = TLI.getValueType(I.getType());
2628   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2629 }
2630 
2631 void SelectionDAGBuilder::visitZExt(const User &I) {
2632   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2633   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2634   SDValue N = getValue(I.getOperand(0));
2635   EVT DestVT = TLI.getValueType(I.getType());
2636   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2637 }
2638 
2639 void SelectionDAGBuilder::visitSExt(const User &I) {
2640   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2641   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2642   SDValue N = getValue(I.getOperand(0));
2643   EVT DestVT = TLI.getValueType(I.getType());
2644   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2645 }
2646 
2647 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2648   // FPTrunc is never a no-op cast, no need to check
2649   SDValue N = getValue(I.getOperand(0));
2650   EVT DestVT = TLI.getValueType(I.getType());
2651   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2652                            DestVT, N, DAG.getIntPtrConstant(0)));
2653 }
2654 
2655 void SelectionDAGBuilder::visitFPExt(const User &I){
2656   // FPTrunc is never a no-op cast, no need to check
2657   SDValue N = getValue(I.getOperand(0));
2658   EVT DestVT = TLI.getValueType(I.getType());
2659   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2660 }
2661 
2662 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2663   // FPToUI is never a no-op cast, no need to check
2664   SDValue N = getValue(I.getOperand(0));
2665   EVT DestVT = TLI.getValueType(I.getType());
2666   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2667 }
2668 
2669 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2670   // FPToSI is never a no-op cast, no need to check
2671   SDValue N = getValue(I.getOperand(0));
2672   EVT DestVT = TLI.getValueType(I.getType());
2673   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2674 }
2675 
2676 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2677   // UIToFP is never a no-op cast, no need to check
2678   SDValue N = getValue(I.getOperand(0));
2679   EVT DestVT = TLI.getValueType(I.getType());
2680   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2681 }
2682 
2683 void SelectionDAGBuilder::visitSIToFP(const User &I){
2684   // SIToFP is never a no-op cast, no need to check
2685   SDValue N = getValue(I.getOperand(0));
2686   EVT DestVT = TLI.getValueType(I.getType());
2687   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2688 }
2689 
2690 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2691   // What to do depends on the size of the integer and the size of the pointer.
2692   // We can either truncate, zero extend, or no-op, accordingly.
2693   SDValue N = getValue(I.getOperand(0));
2694   EVT DestVT = TLI.getValueType(I.getType());
2695   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2696 }
2697 
2698 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2699   // What to do depends on the size of the integer and the size of the pointer.
2700   // We can either truncate, zero extend, or no-op, accordingly.
2701   SDValue N = getValue(I.getOperand(0));
2702   EVT DestVT = TLI.getValueType(I.getType());
2703   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2704 }
2705 
2706 void SelectionDAGBuilder::visitBitCast(const User &I) {
2707   SDValue N = getValue(I.getOperand(0));
2708   EVT DestVT = TLI.getValueType(I.getType());
2709 
2710   // BitCast assures us that source and destination are the same size so this is
2711   // either a BITCAST or a no-op.
2712   if (DestVT != N.getValueType())
2713     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2714                              DestVT, N)); // convert types.
2715   else
2716     setValue(&I, N);            // noop cast.
2717 }
2718 
2719 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2720   SDValue InVec = getValue(I.getOperand(0));
2721   SDValue InVal = getValue(I.getOperand(1));
2722   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2723                               TLI.getPointerTy(),
2724                               getValue(I.getOperand(2)));
2725   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2726                            TLI.getValueType(I.getType()),
2727                            InVec, InVal, InIdx));
2728 }
2729 
2730 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2731   SDValue InVec = getValue(I.getOperand(0));
2732   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2733                               TLI.getPointerTy(),
2734                               getValue(I.getOperand(1)));
2735   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2736                            TLI.getValueType(I.getType()), InVec, InIdx));
2737 }
2738 
2739 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2740 // from SIndx and increasing to the element length (undefs are allowed).
2741 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2742   unsigned MaskNumElts = Mask.size();
2743   for (unsigned i = 0; i != MaskNumElts; ++i)
2744     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2745       return false;
2746   return true;
2747 }
2748 
2749 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2750   SmallVector<int, 8> Mask;
2751   SDValue Src1 = getValue(I.getOperand(0));
2752   SDValue Src2 = getValue(I.getOperand(1));
2753 
2754   // Convert the ConstantVector mask operand into an array of ints, with -1
2755   // representing undef values.
2756   SmallVector<Constant*, 8> MaskElts;
2757   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2758   unsigned MaskNumElts = MaskElts.size();
2759   for (unsigned i = 0; i != MaskNumElts; ++i) {
2760     if (isa<UndefValue>(MaskElts[i]))
2761       Mask.push_back(-1);
2762     else
2763       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2764   }
2765 
2766   EVT VT = TLI.getValueType(I.getType());
2767   EVT SrcVT = Src1.getValueType();
2768   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2769 
2770   if (SrcNumElts == MaskNumElts) {
2771     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2772                                       &Mask[0]));
2773     return;
2774   }
2775 
2776   // Normalize the shuffle vector since mask and vector length don't match.
2777   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2778     // Mask is longer than the source vectors and is a multiple of the source
2779     // vectors.  We can use concatenate vector to make the mask and vectors
2780     // lengths match.
2781     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2782       // The shuffle is concatenating two vectors together.
2783       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2784                                VT, Src1, Src2));
2785       return;
2786     }
2787 
2788     // Pad both vectors with undefs to make them the same length as the mask.
2789     unsigned NumConcat = MaskNumElts / SrcNumElts;
2790     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2791     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2792     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2793 
2794     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2795     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2796     MOps1[0] = Src1;
2797     MOps2[0] = Src2;
2798 
2799     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2800                                                   getCurDebugLoc(), VT,
2801                                                   &MOps1[0], NumConcat);
2802     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2803                                                   getCurDebugLoc(), VT,
2804                                                   &MOps2[0], NumConcat);
2805 
2806     // Readjust mask for new input vector length.
2807     SmallVector<int, 8> MappedOps;
2808     for (unsigned i = 0; i != MaskNumElts; ++i) {
2809       int Idx = Mask[i];
2810       if (Idx < (int)SrcNumElts)
2811         MappedOps.push_back(Idx);
2812       else
2813         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2814     }
2815 
2816     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2817                                       &MappedOps[0]));
2818     return;
2819   }
2820 
2821   if (SrcNumElts > MaskNumElts) {
2822     // Analyze the access pattern of the vector to see if we can extract
2823     // two subvectors and do the shuffle. The analysis is done by calculating
2824     // the range of elements the mask access on both vectors.
2825     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2826                         static_cast<int>(SrcNumElts+1)};
2827     int MaxRange[2] = {-1, -1};
2828 
2829     for (unsigned i = 0; i != MaskNumElts; ++i) {
2830       int Idx = Mask[i];
2831       int Input = 0;
2832       if (Idx < 0)
2833         continue;
2834 
2835       if (Idx >= (int)SrcNumElts) {
2836         Input = 1;
2837         Idx -= SrcNumElts;
2838       }
2839       if (Idx > MaxRange[Input])
2840         MaxRange[Input] = Idx;
2841       if (Idx < MinRange[Input])
2842         MinRange[Input] = Idx;
2843     }
2844 
2845     // Check if the access is smaller than the vector size and can we find
2846     // a reasonable extract index.
2847     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2848                                  // Extract.
2849     int StartIdx[2];  // StartIdx to extract from
2850     for (int Input=0; Input < 2; ++Input) {
2851       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2852         RangeUse[Input] = 0; // Unused
2853         StartIdx[Input] = 0;
2854       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2855         // Fits within range but we should see if we can find a good
2856         // start index that is a multiple of the mask length.
2857         if (MaxRange[Input] < (int)MaskNumElts) {
2858           RangeUse[Input] = 1; // Extract from beginning of the vector
2859           StartIdx[Input] = 0;
2860         } else {
2861           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2862           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2863               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2864             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2865         }
2866       }
2867     }
2868 
2869     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2870       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2871       return;
2872     }
2873     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2874       // Extract appropriate subvector and generate a vector shuffle
2875       for (int Input=0; Input < 2; ++Input) {
2876         SDValue &Src = Input == 0 ? Src1 : Src2;
2877         if (RangeUse[Input] == 0)
2878           Src = DAG.getUNDEF(VT);
2879         else
2880           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2881                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2882       }
2883 
2884       // Calculate new mask.
2885       SmallVector<int, 8> MappedOps;
2886       for (unsigned i = 0; i != MaskNumElts; ++i) {
2887         int Idx = Mask[i];
2888         if (Idx < 0)
2889           MappedOps.push_back(Idx);
2890         else if (Idx < (int)SrcNumElts)
2891           MappedOps.push_back(Idx - StartIdx[0]);
2892         else
2893           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2894       }
2895 
2896       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2897                                         &MappedOps[0]));
2898       return;
2899     }
2900   }
2901 
2902   // We can't use either concat vectors or extract subvectors so fall back to
2903   // replacing the shuffle with extract and build vector.
2904   // to insert and build vector.
2905   EVT EltVT = VT.getVectorElementType();
2906   EVT PtrVT = TLI.getPointerTy();
2907   SmallVector<SDValue,8> Ops;
2908   for (unsigned i = 0; i != MaskNumElts; ++i) {
2909     if (Mask[i] < 0) {
2910       Ops.push_back(DAG.getUNDEF(EltVT));
2911     } else {
2912       int Idx = Mask[i];
2913       SDValue Res;
2914 
2915       if (Idx < (int)SrcNumElts)
2916         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2917                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2918       else
2919         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2920                           EltVT, Src2,
2921                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2922 
2923       Ops.push_back(Res);
2924     }
2925   }
2926 
2927   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2928                            VT, &Ops[0], Ops.size()));
2929 }
2930 
2931 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2932   const Value *Op0 = I.getOperand(0);
2933   const Value *Op1 = I.getOperand(1);
2934   Type *AggTy = I.getType();
2935   Type *ValTy = Op1->getType();
2936   bool IntoUndef = isa<UndefValue>(Op0);
2937   bool FromUndef = isa<UndefValue>(Op1);
2938 
2939   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2940 
2941   SmallVector<EVT, 4> AggValueVTs;
2942   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2943   SmallVector<EVT, 4> ValValueVTs;
2944   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2945 
2946   unsigned NumAggValues = AggValueVTs.size();
2947   unsigned NumValValues = ValValueVTs.size();
2948   SmallVector<SDValue, 4> Values(NumAggValues);
2949 
2950   SDValue Agg = getValue(Op0);
2951   unsigned i = 0;
2952   // Copy the beginning value(s) from the original aggregate.
2953   for (; i != LinearIndex; ++i)
2954     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2955                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2956   // Copy values from the inserted value(s).
2957   if (NumValValues) {
2958     SDValue Val = getValue(Op1);
2959     for (; i != LinearIndex + NumValValues; ++i)
2960       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2961                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2962   }
2963   // Copy remaining value(s) from the original aggregate.
2964   for (; i != NumAggValues; ++i)
2965     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2966                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2967 
2968   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2969                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2970                            &Values[0], NumAggValues));
2971 }
2972 
2973 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2974   const Value *Op0 = I.getOperand(0);
2975   Type *AggTy = Op0->getType();
2976   Type *ValTy = I.getType();
2977   bool OutOfUndef = isa<UndefValue>(Op0);
2978 
2979   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2980 
2981   SmallVector<EVT, 4> ValValueVTs;
2982   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2983 
2984   unsigned NumValValues = ValValueVTs.size();
2985 
2986   // Ignore a extractvalue that produces an empty object
2987   if (!NumValValues) {
2988     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2989     return;
2990   }
2991 
2992   SmallVector<SDValue, 4> Values(NumValValues);
2993 
2994   SDValue Agg = getValue(Op0);
2995   // Copy out the selected value(s).
2996   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2997     Values[i - LinearIndex] =
2998       OutOfUndef ?
2999         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3000         SDValue(Agg.getNode(), Agg.getResNo() + i);
3001 
3002   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3003                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3004                            &Values[0], NumValValues));
3005 }
3006 
3007 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3008   SDValue N = getValue(I.getOperand(0));
3009   Type *Ty = I.getOperand(0)->getType();
3010 
3011   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3012        OI != E; ++OI) {
3013     const Value *Idx = *OI;
3014     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3015       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3016       if (Field) {
3017         // N = N + Offset
3018         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3019         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3020                         DAG.getIntPtrConstant(Offset));
3021       }
3022 
3023       Ty = StTy->getElementType(Field);
3024     } else {
3025       Ty = cast<SequentialType>(Ty)->getElementType();
3026 
3027       // If this is a constant subscript, handle it quickly.
3028       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3029         if (CI->isZero()) continue;
3030         uint64_t Offs =
3031             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3032         SDValue OffsVal;
3033         EVT PTy = TLI.getPointerTy();
3034         unsigned PtrBits = PTy.getSizeInBits();
3035         if (PtrBits < 64)
3036           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3037                                 TLI.getPointerTy(),
3038                                 DAG.getConstant(Offs, MVT::i64));
3039         else
3040           OffsVal = DAG.getIntPtrConstant(Offs);
3041 
3042         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3043                         OffsVal);
3044         continue;
3045       }
3046 
3047       // N = N + Idx * ElementSize;
3048       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3049                                 TD->getTypeAllocSize(Ty));
3050       SDValue IdxN = getValue(Idx);
3051 
3052       // If the index is smaller or larger than intptr_t, truncate or extend
3053       // it.
3054       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3055 
3056       // If this is a multiply by a power of two, turn it into a shl
3057       // immediately.  This is a very common case.
3058       if (ElementSize != 1) {
3059         if (ElementSize.isPowerOf2()) {
3060           unsigned Amt = ElementSize.logBase2();
3061           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3062                              N.getValueType(), IdxN,
3063                              DAG.getConstant(Amt, TLI.getPointerTy()));
3064         } else {
3065           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3066           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3067                              N.getValueType(), IdxN, Scale);
3068         }
3069       }
3070 
3071       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3072                       N.getValueType(), N, IdxN);
3073     }
3074   }
3075 
3076   setValue(&I, N);
3077 }
3078 
3079 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3080   // If this is a fixed sized alloca in the entry block of the function,
3081   // allocate it statically on the stack.
3082   if (FuncInfo.StaticAllocaMap.count(&I))
3083     return;   // getValue will auto-populate this.
3084 
3085   Type *Ty = I.getAllocatedType();
3086   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3087   unsigned Align =
3088     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3089              I.getAlignment());
3090 
3091   SDValue AllocSize = getValue(I.getArraySize());
3092 
3093   EVT IntPtr = TLI.getPointerTy();
3094   if (AllocSize.getValueType() != IntPtr)
3095     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3096 
3097   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3098                           AllocSize,
3099                           DAG.getConstant(TySize, IntPtr));
3100 
3101   // Handle alignment.  If the requested alignment is less than or equal to
3102   // the stack alignment, ignore it.  If the size is greater than or equal to
3103   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3104   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3105   if (Align <= StackAlign)
3106     Align = 0;
3107 
3108   // Round the size of the allocation up to the stack alignment size
3109   // by add SA-1 to the size.
3110   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3111                           AllocSize.getValueType(), AllocSize,
3112                           DAG.getIntPtrConstant(StackAlign-1));
3113 
3114   // Mask out the low bits for alignment purposes.
3115   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3116                           AllocSize.getValueType(), AllocSize,
3117                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3118 
3119   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3120   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3121   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3122                             VTs, Ops, 3);
3123   setValue(&I, DSA);
3124   DAG.setRoot(DSA.getValue(1));
3125 
3126   // Inform the Frame Information that we have just allocated a variable-sized
3127   // object.
3128   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3129 }
3130 
3131 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3132   const Value *SV = I.getOperand(0);
3133   SDValue Ptr = getValue(SV);
3134 
3135   Type *Ty = I.getType();
3136 
3137   bool isVolatile = I.isVolatile();
3138   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3139   unsigned Alignment = I.getAlignment();
3140   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3141 
3142   SmallVector<EVT, 4> ValueVTs;
3143   SmallVector<uint64_t, 4> Offsets;
3144   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3145   unsigned NumValues = ValueVTs.size();
3146   if (NumValues == 0)
3147     return;
3148 
3149   SDValue Root;
3150   bool ConstantMemory = false;
3151   if (I.isVolatile() || NumValues > MaxParallelChains)
3152     // Serialize volatile loads with other side effects.
3153     Root = getRoot();
3154   else if (AA->pointsToConstantMemory(
3155              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3156     // Do not serialize (non-volatile) loads of constant memory with anything.
3157     Root = DAG.getEntryNode();
3158     ConstantMemory = true;
3159   } else {
3160     // Do not serialize non-volatile loads against each other.
3161     Root = DAG.getRoot();
3162   }
3163 
3164   SmallVector<SDValue, 4> Values(NumValues);
3165   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3166                                           NumValues));
3167   EVT PtrVT = Ptr.getValueType();
3168   unsigned ChainI = 0;
3169   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3170     // Serializing loads here may result in excessive register pressure, and
3171     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3172     // could recover a bit by hoisting nodes upward in the chain by recognizing
3173     // they are side-effect free or do not alias. The optimizer should really
3174     // avoid this case by converting large object/array copies to llvm.memcpy
3175     // (MaxParallelChains should always remain as failsafe).
3176     if (ChainI == MaxParallelChains) {
3177       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3178       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3179                                   MVT::Other, &Chains[0], ChainI);
3180       Root = Chain;
3181       ChainI = 0;
3182     }
3183     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3184                             PtrVT, Ptr,
3185                             DAG.getConstant(Offsets[i], PtrVT));
3186     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3187                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3188                             isNonTemporal, Alignment, TBAAInfo);
3189 
3190     Values[i] = L;
3191     Chains[ChainI] = L.getValue(1);
3192   }
3193 
3194   if (!ConstantMemory) {
3195     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3196                                 MVT::Other, &Chains[0], ChainI);
3197     if (isVolatile)
3198       DAG.setRoot(Chain);
3199     else
3200       PendingLoads.push_back(Chain);
3201   }
3202 
3203   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3204                            DAG.getVTList(&ValueVTs[0], NumValues),
3205                            &Values[0], NumValues));
3206 }
3207 
3208 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3209   const Value *SrcV = I.getOperand(0);
3210   const Value *PtrV = I.getOperand(1);
3211 
3212   SmallVector<EVT, 4> ValueVTs;
3213   SmallVector<uint64_t, 4> Offsets;
3214   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3215   unsigned NumValues = ValueVTs.size();
3216   if (NumValues == 0)
3217     return;
3218 
3219   // Get the lowered operands. Note that we do this after
3220   // checking if NumResults is zero, because with zero results
3221   // the operands won't have values in the map.
3222   SDValue Src = getValue(SrcV);
3223   SDValue Ptr = getValue(PtrV);
3224 
3225   SDValue Root = getRoot();
3226   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3227                                           NumValues));
3228   EVT PtrVT = Ptr.getValueType();
3229   bool isVolatile = I.isVolatile();
3230   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3231   unsigned Alignment = I.getAlignment();
3232   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3233 
3234   unsigned ChainI = 0;
3235   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3236     // See visitLoad comments.
3237     if (ChainI == MaxParallelChains) {
3238       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3239                                   MVT::Other, &Chains[0], ChainI);
3240       Root = Chain;
3241       ChainI = 0;
3242     }
3243     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3244                               DAG.getConstant(Offsets[i], PtrVT));
3245     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3246                               SDValue(Src.getNode(), Src.getResNo() + i),
3247                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3248                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3249     Chains[ChainI] = St;
3250   }
3251 
3252   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3253                                   MVT::Other, &Chains[0], ChainI);
3254   ++SDNodeOrder;
3255   AssignOrderingToNode(StoreNode.getNode());
3256   DAG.setRoot(StoreNode);
3257 }
3258 
3259 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3260 }
3261 
3262 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3263 }
3264 
3265 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3266   DebugLoc dl = getCurDebugLoc();
3267   SDValue Ops[3];
3268   Ops[0] = getRoot();
3269   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3270   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3271   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3272 }
3273 
3274 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3275 /// node.
3276 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3277                                                unsigned Intrinsic) {
3278   bool HasChain = !I.doesNotAccessMemory();
3279   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3280 
3281   // Build the operand list.
3282   SmallVector<SDValue, 8> Ops;
3283   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3284     if (OnlyLoad) {
3285       // We don't need to serialize loads against other loads.
3286       Ops.push_back(DAG.getRoot());
3287     } else {
3288       Ops.push_back(getRoot());
3289     }
3290   }
3291 
3292   // Info is set by getTgtMemInstrinsic
3293   TargetLowering::IntrinsicInfo Info;
3294   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3295 
3296   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3297   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3298       Info.opc == ISD::INTRINSIC_W_CHAIN)
3299     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3300 
3301   // Add all operands of the call to the operand list.
3302   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3303     SDValue Op = getValue(I.getArgOperand(i));
3304     assert(TLI.isTypeLegal(Op.getValueType()) &&
3305            "Intrinsic uses a non-legal type?");
3306     Ops.push_back(Op);
3307   }
3308 
3309   SmallVector<EVT, 4> ValueVTs;
3310   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3311 #ifndef NDEBUG
3312   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3313     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3314            "Intrinsic uses a non-legal type?");
3315   }
3316 #endif // NDEBUG
3317 
3318   if (HasChain)
3319     ValueVTs.push_back(MVT::Other);
3320 
3321   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3322 
3323   // Create the node.
3324   SDValue Result;
3325   if (IsTgtIntrinsic) {
3326     // This is target intrinsic that touches memory
3327     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3328                                      VTs, &Ops[0], Ops.size(),
3329                                      Info.memVT,
3330                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3331                                      Info.align, Info.vol,
3332                                      Info.readMem, Info.writeMem);
3333   } else if (!HasChain) {
3334     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3335                          VTs, &Ops[0], Ops.size());
3336   } else if (!I.getType()->isVoidTy()) {
3337     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3338                          VTs, &Ops[0], Ops.size());
3339   } else {
3340     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3341                          VTs, &Ops[0], Ops.size());
3342   }
3343 
3344   if (HasChain) {
3345     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3346     if (OnlyLoad)
3347       PendingLoads.push_back(Chain);
3348     else
3349       DAG.setRoot(Chain);
3350   }
3351 
3352   if (!I.getType()->isVoidTy()) {
3353     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3354       EVT VT = TLI.getValueType(PTy);
3355       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3356     }
3357 
3358     setValue(&I, Result);
3359   }
3360 }
3361 
3362 /// GetSignificand - Get the significand and build it into a floating-point
3363 /// number with exponent of 1:
3364 ///
3365 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3366 ///
3367 /// where Op is the hexidecimal representation of floating point value.
3368 static SDValue
3369 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3370   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3371                            DAG.getConstant(0x007fffff, MVT::i32));
3372   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3373                            DAG.getConstant(0x3f800000, MVT::i32));
3374   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3375 }
3376 
3377 /// GetExponent - Get the exponent:
3378 ///
3379 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3380 ///
3381 /// where Op is the hexidecimal representation of floating point value.
3382 static SDValue
3383 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3384             DebugLoc dl) {
3385   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3386                            DAG.getConstant(0x7f800000, MVT::i32));
3387   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3388                            DAG.getConstant(23, TLI.getPointerTy()));
3389   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3390                            DAG.getConstant(127, MVT::i32));
3391   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3392 }
3393 
3394 /// getF32Constant - Get 32-bit floating point constant.
3395 static SDValue
3396 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3397   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3398 }
3399 
3400 /// Inlined utility function to implement binary input atomic intrinsics for
3401 /// visitIntrinsicCall: I is a call instruction
3402 ///                     Op is the associated NodeType for I
3403 const char *
3404 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3405                                            ISD::NodeType Op) {
3406   SDValue Root = getRoot();
3407   SDValue L =
3408     DAG.getAtomic(Op, getCurDebugLoc(),
3409                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3410                   Root,
3411                   getValue(I.getArgOperand(0)),
3412                   getValue(I.getArgOperand(1)),
3413                   I.getArgOperand(0));
3414   setValue(&I, L);
3415   DAG.setRoot(L.getValue(1));
3416   return 0;
3417 }
3418 
3419 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3420 const char *
3421 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3422   SDValue Op1 = getValue(I.getArgOperand(0));
3423   SDValue Op2 = getValue(I.getArgOperand(1));
3424 
3425   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3426   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3427   return 0;
3428 }
3429 
3430 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3431 /// limited-precision mode.
3432 void
3433 SelectionDAGBuilder::visitExp(const CallInst &I) {
3434   SDValue result;
3435   DebugLoc dl = getCurDebugLoc();
3436 
3437   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3438       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3439     SDValue Op = getValue(I.getArgOperand(0));
3440 
3441     // Put the exponent in the right bit position for later addition to the
3442     // final result:
3443     //
3444     //   #define LOG2OFe 1.4426950f
3445     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3446     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3447                              getF32Constant(DAG, 0x3fb8aa3b));
3448     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3449 
3450     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3451     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3452     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3453 
3454     //   IntegerPartOfX <<= 23;
3455     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3456                                  DAG.getConstant(23, TLI.getPointerTy()));
3457 
3458     if (LimitFloatPrecision <= 6) {
3459       // For floating-point precision of 6:
3460       //
3461       //   TwoToFractionalPartOfX =
3462       //     0.997535578f +
3463       //       (0.735607626f + 0.252464424f * x) * x;
3464       //
3465       // error 0.0144103317, which is 6 bits
3466       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3467                                getF32Constant(DAG, 0x3e814304));
3468       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3469                                getF32Constant(DAG, 0x3f3c50c8));
3470       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3471       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3472                                getF32Constant(DAG, 0x3f7f5e7e));
3473       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3474 
3475       // Add the exponent into the result in integer domain.
3476       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3477                                TwoToFracPartOfX, IntegerPartOfX);
3478 
3479       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3480     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3481       // For floating-point precision of 12:
3482       //
3483       //   TwoToFractionalPartOfX =
3484       //     0.999892986f +
3485       //       (0.696457318f +
3486       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3487       //
3488       // 0.000107046256 error, which is 13 to 14 bits
3489       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3490                                getF32Constant(DAG, 0x3da235e3));
3491       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3492                                getF32Constant(DAG, 0x3e65b8f3));
3493       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3494       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3495                                getF32Constant(DAG, 0x3f324b07));
3496       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3497       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3498                                getF32Constant(DAG, 0x3f7ff8fd));
3499       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3500 
3501       // Add the exponent into the result in integer domain.
3502       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3503                                TwoToFracPartOfX, IntegerPartOfX);
3504 
3505       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3506     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3507       // For floating-point precision of 18:
3508       //
3509       //   TwoToFractionalPartOfX =
3510       //     0.999999982f +
3511       //       (0.693148872f +
3512       //         (0.240227044f +
3513       //           (0.554906021e-1f +
3514       //             (0.961591928e-2f +
3515       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3516       //
3517       // error 2.47208000*10^(-7), which is better than 18 bits
3518       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3519                                getF32Constant(DAG, 0x3924b03e));
3520       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3521                                getF32Constant(DAG, 0x3ab24b87));
3522       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3523       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3524                                getF32Constant(DAG, 0x3c1d8c17));
3525       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3526       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3527                                getF32Constant(DAG, 0x3d634a1d));
3528       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3529       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3530                                getF32Constant(DAG, 0x3e75fe14));
3531       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3532       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3533                                 getF32Constant(DAG, 0x3f317234));
3534       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3535       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3536                                 getF32Constant(DAG, 0x3f800000));
3537       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3538                                              MVT::i32, t13);
3539 
3540       // Add the exponent into the result in integer domain.
3541       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3542                                 TwoToFracPartOfX, IntegerPartOfX);
3543 
3544       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3545     }
3546   } else {
3547     // No special expansion.
3548     result = DAG.getNode(ISD::FEXP, dl,
3549                          getValue(I.getArgOperand(0)).getValueType(),
3550                          getValue(I.getArgOperand(0)));
3551   }
3552 
3553   setValue(&I, result);
3554 }
3555 
3556 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3557 /// limited-precision mode.
3558 void
3559 SelectionDAGBuilder::visitLog(const CallInst &I) {
3560   SDValue result;
3561   DebugLoc dl = getCurDebugLoc();
3562 
3563   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3564       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3565     SDValue Op = getValue(I.getArgOperand(0));
3566     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3567 
3568     // Scale the exponent by log(2) [0.69314718f].
3569     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3570     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3571                                         getF32Constant(DAG, 0x3f317218));
3572 
3573     // Get the significand and build it into a floating-point number with
3574     // exponent of 1.
3575     SDValue X = GetSignificand(DAG, Op1, dl);
3576 
3577     if (LimitFloatPrecision <= 6) {
3578       // For floating-point precision of 6:
3579       //
3580       //   LogofMantissa =
3581       //     -1.1609546f +
3582       //       (1.4034025f - 0.23903021f * x) * x;
3583       //
3584       // error 0.0034276066, which is better than 8 bits
3585       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3586                                getF32Constant(DAG, 0xbe74c456));
3587       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3588                                getF32Constant(DAG, 0x3fb3a2b1));
3589       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3590       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3591                                           getF32Constant(DAG, 0x3f949a29));
3592 
3593       result = DAG.getNode(ISD::FADD, dl,
3594                            MVT::f32, LogOfExponent, LogOfMantissa);
3595     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3596       // For floating-point precision of 12:
3597       //
3598       //   LogOfMantissa =
3599       //     -1.7417939f +
3600       //       (2.8212026f +
3601       //         (-1.4699568f +
3602       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3603       //
3604       // error 0.000061011436, which is 14 bits
3605       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3606                                getF32Constant(DAG, 0xbd67b6d6));
3607       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3608                                getF32Constant(DAG, 0x3ee4f4b8));
3609       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3610       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3611                                getF32Constant(DAG, 0x3fbc278b));
3612       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3613       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3614                                getF32Constant(DAG, 0x40348e95));
3615       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3616       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3617                                           getF32Constant(DAG, 0x3fdef31a));
3618 
3619       result = DAG.getNode(ISD::FADD, dl,
3620                            MVT::f32, LogOfExponent, LogOfMantissa);
3621     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3622       // For floating-point precision of 18:
3623       //
3624       //   LogOfMantissa =
3625       //     -2.1072184f +
3626       //       (4.2372794f +
3627       //         (-3.7029485f +
3628       //           (2.2781945f +
3629       //             (-0.87823314f +
3630       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3631       //
3632       // error 0.0000023660568, which is better than 18 bits
3633       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3634                                getF32Constant(DAG, 0xbc91e5ac));
3635       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3636                                getF32Constant(DAG, 0x3e4350aa));
3637       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3638       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3639                                getF32Constant(DAG, 0x3f60d3e3));
3640       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3641       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3642                                getF32Constant(DAG, 0x4011cdf0));
3643       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3644       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3645                                getF32Constant(DAG, 0x406cfd1c));
3646       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3647       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3648                                getF32Constant(DAG, 0x408797cb));
3649       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3650       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3651                                           getF32Constant(DAG, 0x4006dcab));
3652 
3653       result = DAG.getNode(ISD::FADD, dl,
3654                            MVT::f32, LogOfExponent, LogOfMantissa);
3655     }
3656   } else {
3657     // No special expansion.
3658     result = DAG.getNode(ISD::FLOG, dl,
3659                          getValue(I.getArgOperand(0)).getValueType(),
3660                          getValue(I.getArgOperand(0)));
3661   }
3662 
3663   setValue(&I, result);
3664 }
3665 
3666 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3667 /// limited-precision mode.
3668 void
3669 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3670   SDValue result;
3671   DebugLoc dl = getCurDebugLoc();
3672 
3673   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3674       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3675     SDValue Op = getValue(I.getArgOperand(0));
3676     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3677 
3678     // Get the exponent.
3679     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3680 
3681     // Get the significand and build it into a floating-point number with
3682     // exponent of 1.
3683     SDValue X = GetSignificand(DAG, Op1, dl);
3684 
3685     // Different possible minimax approximations of significand in
3686     // floating-point for various degrees of accuracy over [1,2].
3687     if (LimitFloatPrecision <= 6) {
3688       // For floating-point precision of 6:
3689       //
3690       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3691       //
3692       // error 0.0049451742, which is more than 7 bits
3693       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3694                                getF32Constant(DAG, 0xbeb08fe0));
3695       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3696                                getF32Constant(DAG, 0x40019463));
3697       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3698       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3699                                            getF32Constant(DAG, 0x3fd6633d));
3700 
3701       result = DAG.getNode(ISD::FADD, dl,
3702                            MVT::f32, LogOfExponent, Log2ofMantissa);
3703     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3704       // For floating-point precision of 12:
3705       //
3706       //   Log2ofMantissa =
3707       //     -2.51285454f +
3708       //       (4.07009056f +
3709       //         (-2.12067489f +
3710       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3711       //
3712       // error 0.0000876136000, which is better than 13 bits
3713       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3714                                getF32Constant(DAG, 0xbda7262e));
3715       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3716                                getF32Constant(DAG, 0x3f25280b));
3717       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3718       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3719                                getF32Constant(DAG, 0x4007b923));
3720       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3721       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3722                                getF32Constant(DAG, 0x40823e2f));
3723       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3724       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3725                                            getF32Constant(DAG, 0x4020d29c));
3726 
3727       result = DAG.getNode(ISD::FADD, dl,
3728                            MVT::f32, LogOfExponent, Log2ofMantissa);
3729     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3730       // For floating-point precision of 18:
3731       //
3732       //   Log2ofMantissa =
3733       //     -3.0400495f +
3734       //       (6.1129976f +
3735       //         (-5.3420409f +
3736       //           (3.2865683f +
3737       //             (-1.2669343f +
3738       //               (0.27515199f -
3739       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3740       //
3741       // error 0.0000018516, which is better than 18 bits
3742       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3743                                getF32Constant(DAG, 0xbcd2769e));
3744       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3745                                getF32Constant(DAG, 0x3e8ce0b9));
3746       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3747       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3748                                getF32Constant(DAG, 0x3fa22ae7));
3749       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3750       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3751                                getF32Constant(DAG, 0x40525723));
3752       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3753       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3754                                getF32Constant(DAG, 0x40aaf200));
3755       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3756       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3757                                getF32Constant(DAG, 0x40c39dad));
3758       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3759       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3760                                            getF32Constant(DAG, 0x4042902c));
3761 
3762       result = DAG.getNode(ISD::FADD, dl,
3763                            MVT::f32, LogOfExponent, Log2ofMantissa);
3764     }
3765   } else {
3766     // No special expansion.
3767     result = DAG.getNode(ISD::FLOG2, dl,
3768                          getValue(I.getArgOperand(0)).getValueType(),
3769                          getValue(I.getArgOperand(0)));
3770   }
3771 
3772   setValue(&I, result);
3773 }
3774 
3775 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3776 /// limited-precision mode.
3777 void
3778 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3779   SDValue result;
3780   DebugLoc dl = getCurDebugLoc();
3781 
3782   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3783       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3784     SDValue Op = getValue(I.getArgOperand(0));
3785     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3786 
3787     // Scale the exponent by log10(2) [0.30102999f].
3788     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3789     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3790                                         getF32Constant(DAG, 0x3e9a209a));
3791 
3792     // Get the significand and build it into a floating-point number with
3793     // exponent of 1.
3794     SDValue X = GetSignificand(DAG, Op1, dl);
3795 
3796     if (LimitFloatPrecision <= 6) {
3797       // For floating-point precision of 6:
3798       //
3799       //   Log10ofMantissa =
3800       //     -0.50419619f +
3801       //       (0.60948995f - 0.10380950f * x) * x;
3802       //
3803       // error 0.0014886165, which is 6 bits
3804       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3805                                getF32Constant(DAG, 0xbdd49a13));
3806       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3807                                getF32Constant(DAG, 0x3f1c0789));
3808       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3809       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3810                                             getF32Constant(DAG, 0x3f011300));
3811 
3812       result = DAG.getNode(ISD::FADD, dl,
3813                            MVT::f32, LogOfExponent, Log10ofMantissa);
3814     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3815       // For floating-point precision of 12:
3816       //
3817       //   Log10ofMantissa =
3818       //     -0.64831180f +
3819       //       (0.91751397f +
3820       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3821       //
3822       // error 0.00019228036, which is better than 12 bits
3823       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3824                                getF32Constant(DAG, 0x3d431f31));
3825       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3826                                getF32Constant(DAG, 0x3ea21fb2));
3827       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3828       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3829                                getF32Constant(DAG, 0x3f6ae232));
3830       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3831       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3832                                             getF32Constant(DAG, 0x3f25f7c3));
3833 
3834       result = DAG.getNode(ISD::FADD, dl,
3835                            MVT::f32, LogOfExponent, Log10ofMantissa);
3836     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3837       // For floating-point precision of 18:
3838       //
3839       //   Log10ofMantissa =
3840       //     -0.84299375f +
3841       //       (1.5327582f +
3842       //         (-1.0688956f +
3843       //           (0.49102474f +
3844       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3845       //
3846       // error 0.0000037995730, which is better than 18 bits
3847       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3848                                getF32Constant(DAG, 0x3c5d51ce));
3849       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3850                                getF32Constant(DAG, 0x3e00685a));
3851       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3852       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3853                                getF32Constant(DAG, 0x3efb6798));
3854       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3855       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3856                                getF32Constant(DAG, 0x3f88d192));
3857       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3858       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3859                                getF32Constant(DAG, 0x3fc4316c));
3860       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3861       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3862                                             getF32Constant(DAG, 0x3f57ce70));
3863 
3864       result = DAG.getNode(ISD::FADD, dl,
3865                            MVT::f32, LogOfExponent, Log10ofMantissa);
3866     }
3867   } else {
3868     // No special expansion.
3869     result = DAG.getNode(ISD::FLOG10, dl,
3870                          getValue(I.getArgOperand(0)).getValueType(),
3871                          getValue(I.getArgOperand(0)));
3872   }
3873 
3874   setValue(&I, result);
3875 }
3876 
3877 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3878 /// limited-precision mode.
3879 void
3880 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3881   SDValue result;
3882   DebugLoc dl = getCurDebugLoc();
3883 
3884   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3885       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3886     SDValue Op = getValue(I.getArgOperand(0));
3887 
3888     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3889 
3890     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3891     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3892     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3893 
3894     //   IntegerPartOfX <<= 23;
3895     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3896                                  DAG.getConstant(23, TLI.getPointerTy()));
3897 
3898     if (LimitFloatPrecision <= 6) {
3899       // For floating-point precision of 6:
3900       //
3901       //   TwoToFractionalPartOfX =
3902       //     0.997535578f +
3903       //       (0.735607626f + 0.252464424f * x) * x;
3904       //
3905       // error 0.0144103317, which is 6 bits
3906       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3907                                getF32Constant(DAG, 0x3e814304));
3908       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3909                                getF32Constant(DAG, 0x3f3c50c8));
3910       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3911       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3912                                getF32Constant(DAG, 0x3f7f5e7e));
3913       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3914       SDValue TwoToFractionalPartOfX =
3915         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3916 
3917       result = DAG.getNode(ISD::BITCAST, dl,
3918                            MVT::f32, TwoToFractionalPartOfX);
3919     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3920       // For floating-point precision of 12:
3921       //
3922       //   TwoToFractionalPartOfX =
3923       //     0.999892986f +
3924       //       (0.696457318f +
3925       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3926       //
3927       // error 0.000107046256, which is 13 to 14 bits
3928       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3929                                getF32Constant(DAG, 0x3da235e3));
3930       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3931                                getF32Constant(DAG, 0x3e65b8f3));
3932       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3933       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3934                                getF32Constant(DAG, 0x3f324b07));
3935       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3936       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3937                                getF32Constant(DAG, 0x3f7ff8fd));
3938       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3939       SDValue TwoToFractionalPartOfX =
3940         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3941 
3942       result = DAG.getNode(ISD::BITCAST, dl,
3943                            MVT::f32, TwoToFractionalPartOfX);
3944     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3945       // For floating-point precision of 18:
3946       //
3947       //   TwoToFractionalPartOfX =
3948       //     0.999999982f +
3949       //       (0.693148872f +
3950       //         (0.240227044f +
3951       //           (0.554906021e-1f +
3952       //             (0.961591928e-2f +
3953       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3954       // error 2.47208000*10^(-7), which is better than 18 bits
3955       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3956                                getF32Constant(DAG, 0x3924b03e));
3957       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3958                                getF32Constant(DAG, 0x3ab24b87));
3959       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3960       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3961                                getF32Constant(DAG, 0x3c1d8c17));
3962       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3963       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3964                                getF32Constant(DAG, 0x3d634a1d));
3965       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3966       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3967                                getF32Constant(DAG, 0x3e75fe14));
3968       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3969       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3970                                 getF32Constant(DAG, 0x3f317234));
3971       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3972       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3973                                 getF32Constant(DAG, 0x3f800000));
3974       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3975       SDValue TwoToFractionalPartOfX =
3976         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3977 
3978       result = DAG.getNode(ISD::BITCAST, dl,
3979                            MVT::f32, TwoToFractionalPartOfX);
3980     }
3981   } else {
3982     // No special expansion.
3983     result = DAG.getNode(ISD::FEXP2, dl,
3984                          getValue(I.getArgOperand(0)).getValueType(),
3985                          getValue(I.getArgOperand(0)));
3986   }
3987 
3988   setValue(&I, result);
3989 }
3990 
3991 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3992 /// limited-precision mode with x == 10.0f.
3993 void
3994 SelectionDAGBuilder::visitPow(const CallInst &I) {
3995   SDValue result;
3996   const Value *Val = I.getArgOperand(0);
3997   DebugLoc dl = getCurDebugLoc();
3998   bool IsExp10 = false;
3999 
4000   if (getValue(Val).getValueType() == MVT::f32 &&
4001       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4002       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4003     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4004       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4005         APFloat Ten(10.0f);
4006         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4007       }
4008     }
4009   }
4010 
4011   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4012     SDValue Op = getValue(I.getArgOperand(1));
4013 
4014     // Put the exponent in the right bit position for later addition to the
4015     // final result:
4016     //
4017     //   #define LOG2OF10 3.3219281f
4018     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4019     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4020                              getF32Constant(DAG, 0x40549a78));
4021     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4022 
4023     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4024     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4025     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4026 
4027     //   IntegerPartOfX <<= 23;
4028     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4029                                  DAG.getConstant(23, TLI.getPointerTy()));
4030 
4031     if (LimitFloatPrecision <= 6) {
4032       // For floating-point precision of 6:
4033       //
4034       //   twoToFractionalPartOfX =
4035       //     0.997535578f +
4036       //       (0.735607626f + 0.252464424f * x) * x;
4037       //
4038       // error 0.0144103317, which is 6 bits
4039       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4040                                getF32Constant(DAG, 0x3e814304));
4041       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4042                                getF32Constant(DAG, 0x3f3c50c8));
4043       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4044       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4045                                getF32Constant(DAG, 0x3f7f5e7e));
4046       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4047       SDValue TwoToFractionalPartOfX =
4048         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4049 
4050       result = DAG.getNode(ISD::BITCAST, dl,
4051                            MVT::f32, TwoToFractionalPartOfX);
4052     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4053       // For floating-point precision of 12:
4054       //
4055       //   TwoToFractionalPartOfX =
4056       //     0.999892986f +
4057       //       (0.696457318f +
4058       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4059       //
4060       // error 0.000107046256, which is 13 to 14 bits
4061       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4062                                getF32Constant(DAG, 0x3da235e3));
4063       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4064                                getF32Constant(DAG, 0x3e65b8f3));
4065       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4066       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4067                                getF32Constant(DAG, 0x3f324b07));
4068       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4069       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4070                                getF32Constant(DAG, 0x3f7ff8fd));
4071       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4072       SDValue TwoToFractionalPartOfX =
4073         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4074 
4075       result = DAG.getNode(ISD::BITCAST, dl,
4076                            MVT::f32, TwoToFractionalPartOfX);
4077     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4078       // For floating-point precision of 18:
4079       //
4080       //   TwoToFractionalPartOfX =
4081       //     0.999999982f +
4082       //       (0.693148872f +
4083       //         (0.240227044f +
4084       //           (0.554906021e-1f +
4085       //             (0.961591928e-2f +
4086       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4087       // error 2.47208000*10^(-7), which is better than 18 bits
4088       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4089                                getF32Constant(DAG, 0x3924b03e));
4090       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4091                                getF32Constant(DAG, 0x3ab24b87));
4092       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4093       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4094                                getF32Constant(DAG, 0x3c1d8c17));
4095       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4096       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4097                                getF32Constant(DAG, 0x3d634a1d));
4098       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4099       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4100                                getF32Constant(DAG, 0x3e75fe14));
4101       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4102       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4103                                 getF32Constant(DAG, 0x3f317234));
4104       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4105       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4106                                 getF32Constant(DAG, 0x3f800000));
4107       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4108       SDValue TwoToFractionalPartOfX =
4109         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4110 
4111       result = DAG.getNode(ISD::BITCAST, dl,
4112                            MVT::f32, TwoToFractionalPartOfX);
4113     }
4114   } else {
4115     // No special expansion.
4116     result = DAG.getNode(ISD::FPOW, dl,
4117                          getValue(I.getArgOperand(0)).getValueType(),
4118                          getValue(I.getArgOperand(0)),
4119                          getValue(I.getArgOperand(1)));
4120   }
4121 
4122   setValue(&I, result);
4123 }
4124 
4125 
4126 /// ExpandPowI - Expand a llvm.powi intrinsic.
4127 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4128                           SelectionDAG &DAG) {
4129   // If RHS is a constant, we can expand this out to a multiplication tree,
4130   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4131   // optimizing for size, we only want to do this if the expansion would produce
4132   // a small number of multiplies, otherwise we do the full expansion.
4133   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4134     // Get the exponent as a positive value.
4135     unsigned Val = RHSC->getSExtValue();
4136     if ((int)Val < 0) Val = -Val;
4137 
4138     // powi(x, 0) -> 1.0
4139     if (Val == 0)
4140       return DAG.getConstantFP(1.0, LHS.getValueType());
4141 
4142     const Function *F = DAG.getMachineFunction().getFunction();
4143     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4144         // If optimizing for size, don't insert too many multiplies.  This
4145         // inserts up to 5 multiplies.
4146         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4147       // We use the simple binary decomposition method to generate the multiply
4148       // sequence.  There are more optimal ways to do this (for example,
4149       // powi(x,15) generates one more multiply than it should), but this has
4150       // the benefit of being both really simple and much better than a libcall.
4151       SDValue Res;  // Logically starts equal to 1.0
4152       SDValue CurSquare = LHS;
4153       while (Val) {
4154         if (Val & 1) {
4155           if (Res.getNode())
4156             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4157           else
4158             Res = CurSquare;  // 1.0*CurSquare.
4159         }
4160 
4161         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4162                                 CurSquare, CurSquare);
4163         Val >>= 1;
4164       }
4165 
4166       // If the original was negative, invert the result, producing 1/(x*x*x).
4167       if (RHSC->getSExtValue() < 0)
4168         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4169                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4170       return Res;
4171     }
4172   }
4173 
4174   // Otherwise, expand to a libcall.
4175   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4176 }
4177 
4178 // getTruncatedArgReg - Find underlying register used for an truncated
4179 // argument.
4180 static unsigned getTruncatedArgReg(const SDValue &N) {
4181   if (N.getOpcode() != ISD::TRUNCATE)
4182     return 0;
4183 
4184   const SDValue &Ext = N.getOperand(0);
4185   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4186     const SDValue &CFR = Ext.getOperand(0);
4187     if (CFR.getOpcode() == ISD::CopyFromReg)
4188       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4189     else
4190       if (CFR.getOpcode() == ISD::TRUNCATE)
4191         return getTruncatedArgReg(CFR);
4192   }
4193   return 0;
4194 }
4195 
4196 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4197 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4198 /// At the end of instruction selection, they will be inserted to the entry BB.
4199 bool
4200 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4201                                               int64_t Offset,
4202                                               const SDValue &N) {
4203   const Argument *Arg = dyn_cast<Argument>(V);
4204   if (!Arg)
4205     return false;
4206 
4207   MachineFunction &MF = DAG.getMachineFunction();
4208   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4209   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4210 
4211   // Ignore inlined function arguments here.
4212   DIVariable DV(Variable);
4213   if (DV.isInlinedFnArgument(MF.getFunction()))
4214     return false;
4215 
4216   unsigned Reg = 0;
4217   if (Arg->hasByValAttr()) {
4218     // Byval arguments' frame index is recorded during argument lowering.
4219     // Use this info directly.
4220     Reg = TRI->getFrameRegister(MF);
4221     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4222     // If byval argument ofset is not recorded then ignore this.
4223     if (!Offset)
4224       Reg = 0;
4225   }
4226 
4227   if (N.getNode()) {
4228     if (N.getOpcode() == ISD::CopyFromReg)
4229       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4230     else
4231       Reg = getTruncatedArgReg(N);
4232     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4233       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4234       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4235       if (PR)
4236         Reg = PR;
4237     }
4238   }
4239 
4240   if (!Reg) {
4241     // Check if ValueMap has reg number.
4242     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4243     if (VMI != FuncInfo.ValueMap.end())
4244       Reg = VMI->second;
4245   }
4246 
4247   if (!Reg && N.getNode()) {
4248     // Check if frame index is available.
4249     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4250       if (FrameIndexSDNode *FINode =
4251           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4252         Reg = TRI->getFrameRegister(MF);
4253         Offset = FINode->getIndex();
4254       }
4255   }
4256 
4257   if (!Reg)
4258     return false;
4259 
4260   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4261                                     TII->get(TargetOpcode::DBG_VALUE))
4262     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4263   FuncInfo.ArgDbgValues.push_back(&*MIB);
4264   return true;
4265 }
4266 
4267 // VisualStudio defines setjmp as _setjmp
4268 #if defined(_MSC_VER) && defined(setjmp) && \
4269                          !defined(setjmp_undefined_for_msvc)
4270 #  pragma push_macro("setjmp")
4271 #  undef setjmp
4272 #  define setjmp_undefined_for_msvc
4273 #endif
4274 
4275 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4276 /// we want to emit this as a call to a named external function, return the name
4277 /// otherwise lower it and return null.
4278 const char *
4279 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4280   DebugLoc dl = getCurDebugLoc();
4281   SDValue Res;
4282 
4283   switch (Intrinsic) {
4284   default:
4285     // By default, turn this into a target intrinsic node.
4286     visitTargetIntrinsic(I, Intrinsic);
4287     return 0;
4288   case Intrinsic::vastart:  visitVAStart(I); return 0;
4289   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4290   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4291   case Intrinsic::returnaddress:
4292     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4293                              getValue(I.getArgOperand(0))));
4294     return 0;
4295   case Intrinsic::frameaddress:
4296     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4297                              getValue(I.getArgOperand(0))));
4298     return 0;
4299   case Intrinsic::setjmp:
4300     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4301   case Intrinsic::longjmp:
4302     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4303   case Intrinsic::memcpy: {
4304     // Assert for address < 256 since we support only user defined address
4305     // spaces.
4306     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4307            < 256 &&
4308            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4309            < 256 &&
4310            "Unknown address space");
4311     SDValue Op1 = getValue(I.getArgOperand(0));
4312     SDValue Op2 = getValue(I.getArgOperand(1));
4313     SDValue Op3 = getValue(I.getArgOperand(2));
4314     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4315     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4316     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4317                               MachinePointerInfo(I.getArgOperand(0)),
4318                               MachinePointerInfo(I.getArgOperand(1))));
4319     return 0;
4320   }
4321   case Intrinsic::memset: {
4322     // Assert for address < 256 since we support only user defined address
4323     // spaces.
4324     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4325            < 256 &&
4326            "Unknown address space");
4327     SDValue Op1 = getValue(I.getArgOperand(0));
4328     SDValue Op2 = getValue(I.getArgOperand(1));
4329     SDValue Op3 = getValue(I.getArgOperand(2));
4330     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4331     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4332     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4333                               MachinePointerInfo(I.getArgOperand(0))));
4334     return 0;
4335   }
4336   case Intrinsic::memmove: {
4337     // Assert for address < 256 since we support only user defined address
4338     // spaces.
4339     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4340            < 256 &&
4341            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4342            < 256 &&
4343            "Unknown address space");
4344     SDValue Op1 = getValue(I.getArgOperand(0));
4345     SDValue Op2 = getValue(I.getArgOperand(1));
4346     SDValue Op3 = getValue(I.getArgOperand(2));
4347     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4348     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4349     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4350                                MachinePointerInfo(I.getArgOperand(0)),
4351                                MachinePointerInfo(I.getArgOperand(1))));
4352     return 0;
4353   }
4354   case Intrinsic::dbg_declare: {
4355     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4356     MDNode *Variable = DI.getVariable();
4357     const Value *Address = DI.getAddress();
4358     if (!Address || !DIVariable(DI.getVariable()).Verify())
4359       return 0;
4360 
4361     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4362     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4363     // absolute, but not relative, values are different depending on whether
4364     // debug info exists.
4365     ++SDNodeOrder;
4366 
4367     // Check if address has undef value.
4368     if (isa<UndefValue>(Address) ||
4369         (Address->use_empty() && !isa<Argument>(Address))) {
4370       DEBUG(dbgs() << "Dropping debug info for " << DI);
4371       return 0;
4372     }
4373 
4374     SDValue &N = NodeMap[Address];
4375     if (!N.getNode() && isa<Argument>(Address))
4376       // Check unused arguments map.
4377       N = UnusedArgNodeMap[Address];
4378     SDDbgValue *SDV;
4379     if (N.getNode()) {
4380       // Parameters are handled specially.
4381       bool isParameter =
4382         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4383       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4384         Address = BCI->getOperand(0);
4385       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4386 
4387       if (isParameter && !AI) {
4388         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4389         if (FINode)
4390           // Byval parameter.  We have a frame index at this point.
4391           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4392                                 0, dl, SDNodeOrder);
4393         else {
4394           // Address is an argument, so try to emit its dbg value using
4395           // virtual register info from the FuncInfo.ValueMap.
4396           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4397           return 0;
4398         }
4399       } else if (AI)
4400         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4401                               0, dl, SDNodeOrder);
4402       else {
4403         // Can't do anything with other non-AI cases yet.
4404         DEBUG(dbgs() << "Dropping debug info for " << DI);
4405         return 0;
4406       }
4407       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4408     } else {
4409       // If Address is an argument then try to emit its dbg value using
4410       // virtual register info from the FuncInfo.ValueMap.
4411       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4412         // If variable is pinned by a alloca in dominating bb then
4413         // use StaticAllocaMap.
4414         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4415           if (AI->getParent() != DI.getParent()) {
4416             DenseMap<const AllocaInst*, int>::iterator SI =
4417               FuncInfo.StaticAllocaMap.find(AI);
4418             if (SI != FuncInfo.StaticAllocaMap.end()) {
4419               SDV = DAG.getDbgValue(Variable, SI->second,
4420                                     0, dl, SDNodeOrder);
4421               DAG.AddDbgValue(SDV, 0, false);
4422               return 0;
4423             }
4424           }
4425         }
4426         DEBUG(dbgs() << "Dropping debug info for " << DI);
4427       }
4428     }
4429     return 0;
4430   }
4431   case Intrinsic::dbg_value: {
4432     const DbgValueInst &DI = cast<DbgValueInst>(I);
4433     if (!DIVariable(DI.getVariable()).Verify())
4434       return 0;
4435 
4436     MDNode *Variable = DI.getVariable();
4437     uint64_t Offset = DI.getOffset();
4438     const Value *V = DI.getValue();
4439     if (!V)
4440       return 0;
4441 
4442     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4443     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4444     // absolute, but not relative, values are different depending on whether
4445     // debug info exists.
4446     ++SDNodeOrder;
4447     SDDbgValue *SDV;
4448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4449       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4450       DAG.AddDbgValue(SDV, 0, false);
4451     } else {
4452       // Do not use getValue() in here; we don't want to generate code at
4453       // this point if it hasn't been done yet.
4454       SDValue N = NodeMap[V];
4455       if (!N.getNode() && isa<Argument>(V))
4456         // Check unused arguments map.
4457         N = UnusedArgNodeMap[V];
4458       if (N.getNode()) {
4459         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4460           SDV = DAG.getDbgValue(Variable, N.getNode(),
4461                                 N.getResNo(), Offset, dl, SDNodeOrder);
4462           DAG.AddDbgValue(SDV, N.getNode(), false);
4463         }
4464       } else if (!V->use_empty() ) {
4465         // Do not call getValue(V) yet, as we don't want to generate code.
4466         // Remember it for later.
4467         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4468         DanglingDebugInfoMap[V] = DDI;
4469       } else {
4470         // We may expand this to cover more cases.  One case where we have no
4471         // data available is an unreferenced parameter.
4472         DEBUG(dbgs() << "Dropping debug info for " << DI);
4473       }
4474     }
4475 
4476     // Build a debug info table entry.
4477     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4478       V = BCI->getOperand(0);
4479     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4480     // Don't handle byval struct arguments or VLAs, for example.
4481     if (!AI)
4482       return 0;
4483     DenseMap<const AllocaInst*, int>::iterator SI =
4484       FuncInfo.StaticAllocaMap.find(AI);
4485     if (SI == FuncInfo.StaticAllocaMap.end())
4486       return 0; // VLAs.
4487     int FI = SI->second;
4488 
4489     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4490     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4491       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4492     return 0;
4493   }
4494   case Intrinsic::eh_exception: {
4495     // Insert the EXCEPTIONADDR instruction.
4496     assert(FuncInfo.MBB->isLandingPad() &&
4497            "Call to eh.exception not in landing pad!");
4498     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4499     SDValue Ops[1];
4500     Ops[0] = DAG.getRoot();
4501     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4502     setValue(&I, Op);
4503     DAG.setRoot(Op.getValue(1));
4504     return 0;
4505   }
4506 
4507   case Intrinsic::eh_selector: {
4508     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4509     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4510     if (CallMBB->isLandingPad())
4511       AddCatchInfo(I, &MMI, CallMBB);
4512     else {
4513 #ifndef NDEBUG
4514       FuncInfo.CatchInfoLost.insert(&I);
4515 #endif
4516       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4517       unsigned Reg = TLI.getExceptionSelectorRegister();
4518       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4519     }
4520 
4521     // Insert the EHSELECTION instruction.
4522     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4523     SDValue Ops[2];
4524     Ops[0] = getValue(I.getArgOperand(0));
4525     Ops[1] = getRoot();
4526     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4527     DAG.setRoot(Op.getValue(1));
4528     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4529     return 0;
4530   }
4531 
4532   case Intrinsic::eh_typeid_for: {
4533     // Find the type id for the given typeinfo.
4534     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4535     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4536     Res = DAG.getConstant(TypeID, MVT::i32);
4537     setValue(&I, Res);
4538     return 0;
4539   }
4540 
4541   case Intrinsic::eh_return_i32:
4542   case Intrinsic::eh_return_i64:
4543     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4544     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4545                             MVT::Other,
4546                             getControlRoot(),
4547                             getValue(I.getArgOperand(0)),
4548                             getValue(I.getArgOperand(1))));
4549     return 0;
4550   case Intrinsic::eh_unwind_init:
4551     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4552     return 0;
4553   case Intrinsic::eh_dwarf_cfa: {
4554     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4555                                         TLI.getPointerTy());
4556     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4557                                  TLI.getPointerTy(),
4558                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4559                                              TLI.getPointerTy()),
4560                                  CfaArg);
4561     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4562                              TLI.getPointerTy(),
4563                              DAG.getConstant(0, TLI.getPointerTy()));
4564     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4565                              FA, Offset));
4566     return 0;
4567   }
4568   case Intrinsic::eh_sjlj_callsite: {
4569     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4570     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4571     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4572     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4573 
4574     MMI.setCurrentCallSite(CI->getZExtValue());
4575     return 0;
4576   }
4577   case Intrinsic::eh_sjlj_setjmp: {
4578     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4579                              getValue(I.getArgOperand(0))));
4580     return 0;
4581   }
4582   case Intrinsic::eh_sjlj_longjmp: {
4583     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4584                             getRoot(), getValue(I.getArgOperand(0))));
4585     return 0;
4586   }
4587   case Intrinsic::eh_sjlj_dispatch_setup: {
4588     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4589                             getRoot(), getValue(I.getArgOperand(0))));
4590     return 0;
4591   }
4592 
4593   case Intrinsic::x86_mmx_pslli_w:
4594   case Intrinsic::x86_mmx_pslli_d:
4595   case Intrinsic::x86_mmx_pslli_q:
4596   case Intrinsic::x86_mmx_psrli_w:
4597   case Intrinsic::x86_mmx_psrli_d:
4598   case Intrinsic::x86_mmx_psrli_q:
4599   case Intrinsic::x86_mmx_psrai_w:
4600   case Intrinsic::x86_mmx_psrai_d: {
4601     SDValue ShAmt = getValue(I.getArgOperand(1));
4602     if (isa<ConstantSDNode>(ShAmt)) {
4603       visitTargetIntrinsic(I, Intrinsic);
4604       return 0;
4605     }
4606     unsigned NewIntrinsic = 0;
4607     EVT ShAmtVT = MVT::v2i32;
4608     switch (Intrinsic) {
4609     case Intrinsic::x86_mmx_pslli_w:
4610       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4611       break;
4612     case Intrinsic::x86_mmx_pslli_d:
4613       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4614       break;
4615     case Intrinsic::x86_mmx_pslli_q:
4616       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4617       break;
4618     case Intrinsic::x86_mmx_psrli_w:
4619       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4620       break;
4621     case Intrinsic::x86_mmx_psrli_d:
4622       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4623       break;
4624     case Intrinsic::x86_mmx_psrli_q:
4625       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4626       break;
4627     case Intrinsic::x86_mmx_psrai_w:
4628       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4629       break;
4630     case Intrinsic::x86_mmx_psrai_d:
4631       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4632       break;
4633     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4634     }
4635 
4636     // The vector shift intrinsics with scalars uses 32b shift amounts but
4637     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4638     // to be zero.
4639     // We must do this early because v2i32 is not a legal type.
4640     DebugLoc dl = getCurDebugLoc();
4641     SDValue ShOps[2];
4642     ShOps[0] = ShAmt;
4643     ShOps[1] = DAG.getConstant(0, MVT::i32);
4644     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4645     EVT DestVT = TLI.getValueType(I.getType());
4646     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4647     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4648                        DAG.getConstant(NewIntrinsic, MVT::i32),
4649                        getValue(I.getArgOperand(0)), ShAmt);
4650     setValue(&I, Res);
4651     return 0;
4652   }
4653   case Intrinsic::convertff:
4654   case Intrinsic::convertfsi:
4655   case Intrinsic::convertfui:
4656   case Intrinsic::convertsif:
4657   case Intrinsic::convertuif:
4658   case Intrinsic::convertss:
4659   case Intrinsic::convertsu:
4660   case Intrinsic::convertus:
4661   case Intrinsic::convertuu: {
4662     ISD::CvtCode Code = ISD::CVT_INVALID;
4663     switch (Intrinsic) {
4664     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4665     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4666     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4667     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4668     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4669     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4670     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4671     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4672     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4673     }
4674     EVT DestVT = TLI.getValueType(I.getType());
4675     const Value *Op1 = I.getArgOperand(0);
4676     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4677                                DAG.getValueType(DestVT),
4678                                DAG.getValueType(getValue(Op1).getValueType()),
4679                                getValue(I.getArgOperand(1)),
4680                                getValue(I.getArgOperand(2)),
4681                                Code);
4682     setValue(&I, Res);
4683     return 0;
4684   }
4685   case Intrinsic::sqrt:
4686     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4687                              getValue(I.getArgOperand(0)).getValueType(),
4688                              getValue(I.getArgOperand(0))));
4689     return 0;
4690   case Intrinsic::powi:
4691     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4692                             getValue(I.getArgOperand(1)), DAG));
4693     return 0;
4694   case Intrinsic::sin:
4695     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4696                              getValue(I.getArgOperand(0)).getValueType(),
4697                              getValue(I.getArgOperand(0))));
4698     return 0;
4699   case Intrinsic::cos:
4700     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4701                              getValue(I.getArgOperand(0)).getValueType(),
4702                              getValue(I.getArgOperand(0))));
4703     return 0;
4704   case Intrinsic::log:
4705     visitLog(I);
4706     return 0;
4707   case Intrinsic::log2:
4708     visitLog2(I);
4709     return 0;
4710   case Intrinsic::log10:
4711     visitLog10(I);
4712     return 0;
4713   case Intrinsic::exp:
4714     visitExp(I);
4715     return 0;
4716   case Intrinsic::exp2:
4717     visitExp2(I);
4718     return 0;
4719   case Intrinsic::pow:
4720     visitPow(I);
4721     return 0;
4722   case Intrinsic::fma:
4723     setValue(&I, DAG.getNode(ISD::FMA, dl,
4724                              getValue(I.getArgOperand(0)).getValueType(),
4725                              getValue(I.getArgOperand(0)),
4726                              getValue(I.getArgOperand(1)),
4727                              getValue(I.getArgOperand(2))));
4728     return 0;
4729   case Intrinsic::convert_to_fp16:
4730     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4731                              MVT::i16, getValue(I.getArgOperand(0))));
4732     return 0;
4733   case Intrinsic::convert_from_fp16:
4734     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4735                              MVT::f32, getValue(I.getArgOperand(0))));
4736     return 0;
4737   case Intrinsic::pcmarker: {
4738     SDValue Tmp = getValue(I.getArgOperand(0));
4739     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4740     return 0;
4741   }
4742   case Intrinsic::readcyclecounter: {
4743     SDValue Op = getRoot();
4744     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4745                       DAG.getVTList(MVT::i64, MVT::Other),
4746                       &Op, 1);
4747     setValue(&I, Res);
4748     DAG.setRoot(Res.getValue(1));
4749     return 0;
4750   }
4751   case Intrinsic::bswap:
4752     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4753                              getValue(I.getArgOperand(0)).getValueType(),
4754                              getValue(I.getArgOperand(0))));
4755     return 0;
4756   case Intrinsic::cttz: {
4757     SDValue Arg = getValue(I.getArgOperand(0));
4758     EVT Ty = Arg.getValueType();
4759     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4760     return 0;
4761   }
4762   case Intrinsic::ctlz: {
4763     SDValue Arg = getValue(I.getArgOperand(0));
4764     EVT Ty = Arg.getValueType();
4765     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4766     return 0;
4767   }
4768   case Intrinsic::ctpop: {
4769     SDValue Arg = getValue(I.getArgOperand(0));
4770     EVT Ty = Arg.getValueType();
4771     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4772     return 0;
4773   }
4774   case Intrinsic::stacksave: {
4775     SDValue Op = getRoot();
4776     Res = DAG.getNode(ISD::STACKSAVE, dl,
4777                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4778     setValue(&I, Res);
4779     DAG.setRoot(Res.getValue(1));
4780     return 0;
4781   }
4782   case Intrinsic::stackrestore: {
4783     Res = getValue(I.getArgOperand(0));
4784     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4785     return 0;
4786   }
4787   case Intrinsic::stackprotector: {
4788     // Emit code into the DAG to store the stack guard onto the stack.
4789     MachineFunction &MF = DAG.getMachineFunction();
4790     MachineFrameInfo *MFI = MF.getFrameInfo();
4791     EVT PtrTy = TLI.getPointerTy();
4792 
4793     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4794     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4795 
4796     int FI = FuncInfo.StaticAllocaMap[Slot];
4797     MFI->setStackProtectorIndex(FI);
4798 
4799     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4800 
4801     // Store the stack protector onto the stack.
4802     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4803                        MachinePointerInfo::getFixedStack(FI),
4804                        true, false, 0);
4805     setValue(&I, Res);
4806     DAG.setRoot(Res);
4807     return 0;
4808   }
4809   case Intrinsic::objectsize: {
4810     // If we don't know by now, we're never going to know.
4811     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4812 
4813     assert(CI && "Non-constant type in __builtin_object_size?");
4814 
4815     SDValue Arg = getValue(I.getCalledValue());
4816     EVT Ty = Arg.getValueType();
4817 
4818     if (CI->isZero())
4819       Res = DAG.getConstant(-1ULL, Ty);
4820     else
4821       Res = DAG.getConstant(0, Ty);
4822 
4823     setValue(&I, Res);
4824     return 0;
4825   }
4826   case Intrinsic::var_annotation:
4827     // Discard annotate attributes
4828     return 0;
4829 
4830   case Intrinsic::init_trampoline: {
4831     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4832 
4833     SDValue Ops[6];
4834     Ops[0] = getRoot();
4835     Ops[1] = getValue(I.getArgOperand(0));
4836     Ops[2] = getValue(I.getArgOperand(1));
4837     Ops[3] = getValue(I.getArgOperand(2));
4838     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4839     Ops[5] = DAG.getSrcValue(F);
4840 
4841     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4842                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4843                       Ops, 6);
4844 
4845     setValue(&I, Res);
4846     DAG.setRoot(Res.getValue(1));
4847     return 0;
4848   }
4849   case Intrinsic::gcroot:
4850     if (GFI) {
4851       const Value *Alloca = I.getArgOperand(0);
4852       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4853 
4854       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4855       GFI->addStackRoot(FI->getIndex(), TypeMap);
4856     }
4857     return 0;
4858   case Intrinsic::gcread:
4859   case Intrinsic::gcwrite:
4860     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4861     return 0;
4862   case Intrinsic::flt_rounds:
4863     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4864     return 0;
4865 
4866   case Intrinsic::expect: {
4867     // Just replace __builtin_expect(exp, c) with EXP.
4868     setValue(&I, getValue(I.getArgOperand(0)));
4869     return 0;
4870   }
4871 
4872   case Intrinsic::trap: {
4873     StringRef TrapFuncName = getTrapFunctionName();
4874     if (TrapFuncName.empty()) {
4875       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4876       return 0;
4877     }
4878     TargetLowering::ArgListTy Args;
4879     std::pair<SDValue, SDValue> Result =
4880       TLI.LowerCallTo(getRoot(), I.getType(),
4881                  false, false, false, false, 0, CallingConv::C,
4882                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4883                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4884                  Args, DAG, getCurDebugLoc());
4885     DAG.setRoot(Result.second);
4886     return 0;
4887   }
4888   case Intrinsic::uadd_with_overflow:
4889     return implVisitAluOverflow(I, ISD::UADDO);
4890   case Intrinsic::sadd_with_overflow:
4891     return implVisitAluOverflow(I, ISD::SADDO);
4892   case Intrinsic::usub_with_overflow:
4893     return implVisitAluOverflow(I, ISD::USUBO);
4894   case Intrinsic::ssub_with_overflow:
4895     return implVisitAluOverflow(I, ISD::SSUBO);
4896   case Intrinsic::umul_with_overflow:
4897     return implVisitAluOverflow(I, ISD::UMULO);
4898   case Intrinsic::smul_with_overflow:
4899     return implVisitAluOverflow(I, ISD::SMULO);
4900 
4901   case Intrinsic::prefetch: {
4902     SDValue Ops[5];
4903     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4904     Ops[0] = getRoot();
4905     Ops[1] = getValue(I.getArgOperand(0));
4906     Ops[2] = getValue(I.getArgOperand(1));
4907     Ops[3] = getValue(I.getArgOperand(2));
4908     Ops[4] = getValue(I.getArgOperand(3));
4909     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4910                                         DAG.getVTList(MVT::Other),
4911                                         &Ops[0], 5,
4912                                         EVT::getIntegerVT(*Context, 8),
4913                                         MachinePointerInfo(I.getArgOperand(0)),
4914                                         0, /* align */
4915                                         false, /* volatile */
4916                                         rw==0, /* read */
4917                                         rw==1)); /* write */
4918     return 0;
4919   }
4920   case Intrinsic::memory_barrier: {
4921     SDValue Ops[6];
4922     Ops[0] = getRoot();
4923     for (int x = 1; x < 6; ++x)
4924       Ops[x] = getValue(I.getArgOperand(x - 1));
4925 
4926     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4927     return 0;
4928   }
4929   case Intrinsic::atomic_cmp_swap: {
4930     SDValue Root = getRoot();
4931     SDValue L =
4932       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4933                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4934                     Root,
4935                     getValue(I.getArgOperand(0)),
4936                     getValue(I.getArgOperand(1)),
4937                     getValue(I.getArgOperand(2)),
4938                     MachinePointerInfo(I.getArgOperand(0)));
4939     setValue(&I, L);
4940     DAG.setRoot(L.getValue(1));
4941     return 0;
4942   }
4943   case Intrinsic::atomic_load_add:
4944     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4945   case Intrinsic::atomic_load_sub:
4946     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4947   case Intrinsic::atomic_load_or:
4948     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4949   case Intrinsic::atomic_load_xor:
4950     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4951   case Intrinsic::atomic_load_and:
4952     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4953   case Intrinsic::atomic_load_nand:
4954     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4955   case Intrinsic::atomic_load_max:
4956     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4957   case Intrinsic::atomic_load_min:
4958     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4959   case Intrinsic::atomic_load_umin:
4960     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4961   case Intrinsic::atomic_load_umax:
4962     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4963   case Intrinsic::atomic_swap:
4964     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4965 
4966   case Intrinsic::invariant_start:
4967   case Intrinsic::lifetime_start:
4968     // Discard region information.
4969     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4970     return 0;
4971   case Intrinsic::invariant_end:
4972   case Intrinsic::lifetime_end:
4973     // Discard region information.
4974     return 0;
4975   }
4976 }
4977 
4978 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4979                                       bool isTailCall,
4980                                       MachineBasicBlock *LandingPad) {
4981   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4982   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4983   Type *RetTy = FTy->getReturnType();
4984   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4985   MCSymbol *BeginLabel = 0;
4986 
4987   TargetLowering::ArgListTy Args;
4988   TargetLowering::ArgListEntry Entry;
4989   Args.reserve(CS.arg_size());
4990 
4991   // Check whether the function can return without sret-demotion.
4992   SmallVector<ISD::OutputArg, 4> Outs;
4993   SmallVector<uint64_t, 4> Offsets;
4994   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4995                 Outs, TLI, &Offsets);
4996 
4997   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4998 					   DAG.getMachineFunction(),
4999 					   FTy->isVarArg(), Outs,
5000 					   FTy->getContext());
5001 
5002   SDValue DemoteStackSlot;
5003   int DemoteStackIdx = -100;
5004 
5005   if (!CanLowerReturn) {
5006     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5007                       FTy->getReturnType());
5008     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5009                       FTy->getReturnType());
5010     MachineFunction &MF = DAG.getMachineFunction();
5011     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5012     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5013 
5014     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5015     Entry.Node = DemoteStackSlot;
5016     Entry.Ty = StackSlotPtrType;
5017     Entry.isSExt = false;
5018     Entry.isZExt = false;
5019     Entry.isInReg = false;
5020     Entry.isSRet = true;
5021     Entry.isNest = false;
5022     Entry.isByVal = false;
5023     Entry.Alignment = Align;
5024     Args.push_back(Entry);
5025     RetTy = Type::getVoidTy(FTy->getContext());
5026   }
5027 
5028   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5029        i != e; ++i) {
5030     const Value *V = *i;
5031 
5032     // Skip empty types
5033     if (V->getType()->isEmptyTy())
5034       continue;
5035 
5036     SDValue ArgNode = getValue(V);
5037     Entry.Node = ArgNode; Entry.Ty = V->getType();
5038 
5039     unsigned attrInd = i - CS.arg_begin() + 1;
5040     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5041     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5042     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5043     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5044     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5045     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5046     Entry.Alignment = CS.getParamAlignment(attrInd);
5047     Args.push_back(Entry);
5048   }
5049 
5050   if (LandingPad) {
5051     // Insert a label before the invoke call to mark the try range.  This can be
5052     // used to detect deletion of the invoke via the MachineModuleInfo.
5053     BeginLabel = MMI.getContext().CreateTempSymbol();
5054 
5055     // For SjLj, keep track of which landing pads go with which invokes
5056     // so as to maintain the ordering of pads in the LSDA.
5057     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5058     if (CallSiteIndex) {
5059       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5060       // Now that the call site is handled, stop tracking it.
5061       MMI.setCurrentCallSite(0);
5062     }
5063 
5064     // Both PendingLoads and PendingExports must be flushed here;
5065     // this call might not return.
5066     (void)getRoot();
5067     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5068   }
5069 
5070   // Check if target-independent constraints permit a tail call here.
5071   // Target-dependent constraints are checked within TLI.LowerCallTo.
5072   if (isTailCall &&
5073       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5074     isTailCall = false;
5075 
5076   // If there's a possibility that fast-isel has already selected some amount
5077   // of the current basic block, don't emit a tail call.
5078   if (isTailCall && EnableFastISel)
5079     isTailCall = false;
5080 
5081   std::pair<SDValue,SDValue> Result =
5082     TLI.LowerCallTo(getRoot(), RetTy,
5083                     CS.paramHasAttr(0, Attribute::SExt),
5084                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5085                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5086                     CS.getCallingConv(),
5087                     isTailCall,
5088                     !CS.getInstruction()->use_empty(),
5089                     Callee, Args, DAG, getCurDebugLoc());
5090   assert((isTailCall || Result.second.getNode()) &&
5091          "Non-null chain expected with non-tail call!");
5092   assert((Result.second.getNode() || !Result.first.getNode()) &&
5093          "Null value expected with tail call!");
5094   if (Result.first.getNode()) {
5095     setValue(CS.getInstruction(), Result.first);
5096   } else if (!CanLowerReturn && Result.second.getNode()) {
5097     // The instruction result is the result of loading from the
5098     // hidden sret parameter.
5099     SmallVector<EVT, 1> PVTs;
5100     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5101 
5102     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5103     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5104     EVT PtrVT = PVTs[0];
5105     unsigned NumValues = Outs.size();
5106     SmallVector<SDValue, 4> Values(NumValues);
5107     SmallVector<SDValue, 4> Chains(NumValues);
5108 
5109     for (unsigned i = 0; i < NumValues; ++i) {
5110       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5111                                 DemoteStackSlot,
5112                                 DAG.getConstant(Offsets[i], PtrVT));
5113       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5114                               Add,
5115                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5116                               false, false, 1);
5117       Values[i] = L;
5118       Chains[i] = L.getValue(1);
5119     }
5120 
5121     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5122                                 MVT::Other, &Chains[0], NumValues);
5123     PendingLoads.push_back(Chain);
5124 
5125     // Collect the legal value parts into potentially illegal values
5126     // that correspond to the original function's return values.
5127     SmallVector<EVT, 4> RetTys;
5128     RetTy = FTy->getReturnType();
5129     ComputeValueVTs(TLI, RetTy, RetTys);
5130     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5131     SmallVector<SDValue, 4> ReturnValues;
5132     unsigned CurReg = 0;
5133     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5134       EVT VT = RetTys[I];
5135       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5136       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5137 
5138       SDValue ReturnValue =
5139         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5140                          RegisterVT, VT, AssertOp);
5141       ReturnValues.push_back(ReturnValue);
5142       CurReg += NumRegs;
5143     }
5144 
5145     setValue(CS.getInstruction(),
5146              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5147                          DAG.getVTList(&RetTys[0], RetTys.size()),
5148                          &ReturnValues[0], ReturnValues.size()));
5149   }
5150 
5151   // Assign order to nodes here. If the call does not produce a result, it won't
5152   // be mapped to a SDNode and visit() will not assign it an order number.
5153   if (!Result.second.getNode()) {
5154     // As a special case, a null chain means that a tail call has been emitted and
5155     // the DAG root is already updated.
5156     HasTailCall = true;
5157     ++SDNodeOrder;
5158     AssignOrderingToNode(DAG.getRoot().getNode());
5159   } else {
5160     DAG.setRoot(Result.second);
5161     ++SDNodeOrder;
5162     AssignOrderingToNode(Result.second.getNode());
5163   }
5164 
5165   if (LandingPad) {
5166     // Insert a label at the end of the invoke call to mark the try range.  This
5167     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5168     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5169     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5170 
5171     // Inform MachineModuleInfo of range.
5172     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5173   }
5174 }
5175 
5176 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5177 /// value is equal or not-equal to zero.
5178 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5179   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5180        UI != E; ++UI) {
5181     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5182       if (IC->isEquality())
5183         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5184           if (C->isNullValue())
5185             continue;
5186     // Unknown instruction.
5187     return false;
5188   }
5189   return true;
5190 }
5191 
5192 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5193                              Type *LoadTy,
5194                              SelectionDAGBuilder &Builder) {
5195 
5196   // Check to see if this load can be trivially constant folded, e.g. if the
5197   // input is from a string literal.
5198   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5199     // Cast pointer to the type we really want to load.
5200     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5201                                          PointerType::getUnqual(LoadTy));
5202 
5203     if (const Constant *LoadCst =
5204           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5205                                        Builder.TD))
5206       return Builder.getValue(LoadCst);
5207   }
5208 
5209   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5210   // still constant memory, the input chain can be the entry node.
5211   SDValue Root;
5212   bool ConstantMemory = false;
5213 
5214   // Do not serialize (non-volatile) loads of constant memory with anything.
5215   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5216     Root = Builder.DAG.getEntryNode();
5217     ConstantMemory = true;
5218   } else {
5219     // Do not serialize non-volatile loads against each other.
5220     Root = Builder.DAG.getRoot();
5221   }
5222 
5223   SDValue Ptr = Builder.getValue(PtrVal);
5224   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5225                                         Ptr, MachinePointerInfo(PtrVal),
5226                                         false /*volatile*/,
5227                                         false /*nontemporal*/, 1 /* align=1 */);
5228 
5229   if (!ConstantMemory)
5230     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5231   return LoadVal;
5232 }
5233 
5234 
5235 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5236 /// If so, return true and lower it, otherwise return false and it will be
5237 /// lowered like a normal call.
5238 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5239   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5240   if (I.getNumArgOperands() != 3)
5241     return false;
5242 
5243   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5244   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5245       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5246       !I.getType()->isIntegerTy())
5247     return false;
5248 
5249   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5250 
5251   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5252   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5253   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5254     bool ActuallyDoIt = true;
5255     MVT LoadVT;
5256     Type *LoadTy;
5257     switch (Size->getZExtValue()) {
5258     default:
5259       LoadVT = MVT::Other;
5260       LoadTy = 0;
5261       ActuallyDoIt = false;
5262       break;
5263     case 2:
5264       LoadVT = MVT::i16;
5265       LoadTy = Type::getInt16Ty(Size->getContext());
5266       break;
5267     case 4:
5268       LoadVT = MVT::i32;
5269       LoadTy = Type::getInt32Ty(Size->getContext());
5270       break;
5271     case 8:
5272       LoadVT = MVT::i64;
5273       LoadTy = Type::getInt64Ty(Size->getContext());
5274       break;
5275         /*
5276     case 16:
5277       LoadVT = MVT::v4i32;
5278       LoadTy = Type::getInt32Ty(Size->getContext());
5279       LoadTy = VectorType::get(LoadTy, 4);
5280       break;
5281          */
5282     }
5283 
5284     // This turns into unaligned loads.  We only do this if the target natively
5285     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5286     // we'll only produce a small number of byte loads.
5287 
5288     // Require that we can find a legal MVT, and only do this if the target
5289     // supports unaligned loads of that type.  Expanding into byte loads would
5290     // bloat the code.
5291     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5292       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5293       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5294       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5295         ActuallyDoIt = false;
5296     }
5297 
5298     if (ActuallyDoIt) {
5299       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5300       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5301 
5302       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5303                                  ISD::SETNE);
5304       EVT CallVT = TLI.getValueType(I.getType(), true);
5305       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5306       return true;
5307     }
5308   }
5309 
5310 
5311   return false;
5312 }
5313 
5314 
5315 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5316   // Handle inline assembly differently.
5317   if (isa<InlineAsm>(I.getCalledValue())) {
5318     visitInlineAsm(&I);
5319     return;
5320   }
5321 
5322   // See if any floating point values are being passed to this function. This is
5323   // used to emit an undefined reference to fltused on Windows.
5324   FunctionType *FT =
5325     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5326   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5327   if (FT->isVarArg() &&
5328       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5329     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5330       Type* T = I.getArgOperand(i)->getType();
5331       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5332            i != e; ++i) {
5333         if (!i->isFloatingPointTy()) continue;
5334         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5335         break;
5336       }
5337     }
5338   }
5339 
5340   const char *RenameFn = 0;
5341   if (Function *F = I.getCalledFunction()) {
5342     if (F->isDeclaration()) {
5343       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5344         if (unsigned IID = II->getIntrinsicID(F)) {
5345           RenameFn = visitIntrinsicCall(I, IID);
5346           if (!RenameFn)
5347             return;
5348         }
5349       }
5350       if (unsigned IID = F->getIntrinsicID()) {
5351         RenameFn = visitIntrinsicCall(I, IID);
5352         if (!RenameFn)
5353           return;
5354       }
5355     }
5356 
5357     // Check for well-known libc/libm calls.  If the function is internal, it
5358     // can't be a library call.
5359     if (!F->hasLocalLinkage() && F->hasName()) {
5360       StringRef Name = F->getName();
5361       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5362         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5363             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5364             I.getType() == I.getArgOperand(0)->getType() &&
5365             I.getType() == I.getArgOperand(1)->getType()) {
5366           SDValue LHS = getValue(I.getArgOperand(0));
5367           SDValue RHS = getValue(I.getArgOperand(1));
5368           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5369                                    LHS.getValueType(), LHS, RHS));
5370           return;
5371         }
5372       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5373         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5374             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5375             I.getType() == I.getArgOperand(0)->getType()) {
5376           SDValue Tmp = getValue(I.getArgOperand(0));
5377           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5378                                    Tmp.getValueType(), Tmp));
5379           return;
5380         }
5381       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5382         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5383             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5384             I.getType() == I.getArgOperand(0)->getType() &&
5385             I.onlyReadsMemory()) {
5386           SDValue Tmp = getValue(I.getArgOperand(0));
5387           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5388                                    Tmp.getValueType(), Tmp));
5389           return;
5390         }
5391       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5392         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5393             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5394             I.getType() == I.getArgOperand(0)->getType() &&
5395             I.onlyReadsMemory()) {
5396           SDValue Tmp = getValue(I.getArgOperand(0));
5397           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5398                                    Tmp.getValueType(), Tmp));
5399           return;
5400         }
5401       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5402         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5403             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5404             I.getType() == I.getArgOperand(0)->getType() &&
5405             I.onlyReadsMemory()) {
5406           SDValue Tmp = getValue(I.getArgOperand(0));
5407           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5408                                    Tmp.getValueType(), Tmp));
5409           return;
5410         }
5411       } else if (Name == "memcmp") {
5412         if (visitMemCmpCall(I))
5413           return;
5414       }
5415     }
5416   }
5417 
5418   SDValue Callee;
5419   if (!RenameFn)
5420     Callee = getValue(I.getCalledValue());
5421   else
5422     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5423 
5424   // Check if we can potentially perform a tail call. More detailed checking is
5425   // be done within LowerCallTo, after more information about the call is known.
5426   LowerCallTo(&I, Callee, I.isTailCall());
5427 }
5428 
5429 namespace {
5430 
5431 /// AsmOperandInfo - This contains information for each constraint that we are
5432 /// lowering.
5433 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5434 public:
5435   /// CallOperand - If this is the result output operand or a clobber
5436   /// this is null, otherwise it is the incoming operand to the CallInst.
5437   /// This gets modified as the asm is processed.
5438   SDValue CallOperand;
5439 
5440   /// AssignedRegs - If this is a register or register class operand, this
5441   /// contains the set of register corresponding to the operand.
5442   RegsForValue AssignedRegs;
5443 
5444   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5445     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5446   }
5447 
5448   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5449   /// busy in OutputRegs/InputRegs.
5450   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5451                          std::set<unsigned> &OutputRegs,
5452                          std::set<unsigned> &InputRegs,
5453                          const TargetRegisterInfo &TRI) const {
5454     if (isOutReg) {
5455       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5456         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5457     }
5458     if (isInReg) {
5459       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5460         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5461     }
5462   }
5463 
5464   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5465   /// corresponds to.  If there is no Value* for this operand, it returns
5466   /// MVT::Other.
5467   EVT getCallOperandValEVT(LLVMContext &Context,
5468                            const TargetLowering &TLI,
5469                            const TargetData *TD) const {
5470     if (CallOperandVal == 0) return MVT::Other;
5471 
5472     if (isa<BasicBlock>(CallOperandVal))
5473       return TLI.getPointerTy();
5474 
5475     llvm::Type *OpTy = CallOperandVal->getType();
5476 
5477     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5478     // If this is an indirect operand, the operand is a pointer to the
5479     // accessed type.
5480     if (isIndirect) {
5481       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5482       if (!PtrTy)
5483         report_fatal_error("Indirect operand for inline asm not a pointer!");
5484       OpTy = PtrTy->getElementType();
5485     }
5486 
5487     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5488     if (StructType *STy = dyn_cast<StructType>(OpTy))
5489       if (STy->getNumElements() == 1)
5490         OpTy = STy->getElementType(0);
5491 
5492     // If OpTy is not a single value, it may be a struct/union that we
5493     // can tile with integers.
5494     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5495       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5496       switch (BitSize) {
5497       default: break;
5498       case 1:
5499       case 8:
5500       case 16:
5501       case 32:
5502       case 64:
5503       case 128:
5504         OpTy = IntegerType::get(Context, BitSize);
5505         break;
5506       }
5507     }
5508 
5509     return TLI.getValueType(OpTy, true);
5510   }
5511 
5512 private:
5513   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5514   /// specified set.
5515   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5516                                 const TargetRegisterInfo &TRI) {
5517     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5518     Regs.insert(Reg);
5519     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5520       for (; *Aliases; ++Aliases)
5521         Regs.insert(*Aliases);
5522   }
5523 };
5524 
5525 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5526 
5527 } // end anonymous namespace
5528 
5529 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5530 /// specified operand.  We prefer to assign virtual registers, to allow the
5531 /// register allocator to handle the assignment process.  However, if the asm
5532 /// uses features that we can't model on machineinstrs, we have SDISel do the
5533 /// allocation.  This produces generally horrible, but correct, code.
5534 ///
5535 ///   OpInfo describes the operand.
5536 ///   Input and OutputRegs are the set of already allocated physical registers.
5537 ///
5538 static void GetRegistersForValue(SelectionDAG &DAG,
5539                                  const TargetLowering &TLI,
5540                                  DebugLoc DL,
5541                                  SDISelAsmOperandInfo &OpInfo,
5542                                  std::set<unsigned> &OutputRegs,
5543                                  std::set<unsigned> &InputRegs) {
5544   LLVMContext &Context = *DAG.getContext();
5545 
5546   // Compute whether this value requires an input register, an output register,
5547   // or both.
5548   bool isOutReg = false;
5549   bool isInReg = false;
5550   switch (OpInfo.Type) {
5551   case InlineAsm::isOutput:
5552     isOutReg = true;
5553 
5554     // If there is an input constraint that matches this, we need to reserve
5555     // the input register so no other inputs allocate to it.
5556     isInReg = OpInfo.hasMatchingInput();
5557     break;
5558   case InlineAsm::isInput:
5559     isInReg = true;
5560     isOutReg = false;
5561     break;
5562   case InlineAsm::isClobber:
5563     isOutReg = true;
5564     isInReg = true;
5565     break;
5566   }
5567 
5568 
5569   MachineFunction &MF = DAG.getMachineFunction();
5570   SmallVector<unsigned, 4> Regs;
5571 
5572   // If this is a constraint for a single physreg, or a constraint for a
5573   // register class, find it.
5574   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5575     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5576                                      OpInfo.ConstraintVT);
5577 
5578   unsigned NumRegs = 1;
5579   if (OpInfo.ConstraintVT != MVT::Other) {
5580     // If this is a FP input in an integer register (or visa versa) insert a bit
5581     // cast of the input value.  More generally, handle any case where the input
5582     // value disagrees with the register class we plan to stick this in.
5583     if (OpInfo.Type == InlineAsm::isInput &&
5584         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5585       // Try to convert to the first EVT that the reg class contains.  If the
5586       // types are identical size, use a bitcast to convert (e.g. two differing
5587       // vector types).
5588       EVT RegVT = *PhysReg.second->vt_begin();
5589       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5590         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5591                                          RegVT, OpInfo.CallOperand);
5592         OpInfo.ConstraintVT = RegVT;
5593       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5594         // If the input is a FP value and we want it in FP registers, do a
5595         // bitcast to the corresponding integer type.  This turns an f64 value
5596         // into i64, which can be passed with two i32 values on a 32-bit
5597         // machine.
5598         RegVT = EVT::getIntegerVT(Context,
5599                                   OpInfo.ConstraintVT.getSizeInBits());
5600         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5601                                          RegVT, OpInfo.CallOperand);
5602         OpInfo.ConstraintVT = RegVT;
5603       }
5604     }
5605 
5606     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5607   }
5608 
5609   EVT RegVT;
5610   EVT ValueVT = OpInfo.ConstraintVT;
5611 
5612   // If this is a constraint for a specific physical register, like {r17},
5613   // assign it now.
5614   if (unsigned AssignedReg = PhysReg.first) {
5615     const TargetRegisterClass *RC = PhysReg.second;
5616     if (OpInfo.ConstraintVT == MVT::Other)
5617       ValueVT = *RC->vt_begin();
5618 
5619     // Get the actual register value type.  This is important, because the user
5620     // may have asked for (e.g.) the AX register in i32 type.  We need to
5621     // remember that AX is actually i16 to get the right extension.
5622     RegVT = *RC->vt_begin();
5623 
5624     // This is a explicit reference to a physical register.
5625     Regs.push_back(AssignedReg);
5626 
5627     // If this is an expanded reference, add the rest of the regs to Regs.
5628     if (NumRegs != 1) {
5629       TargetRegisterClass::iterator I = RC->begin();
5630       for (; *I != AssignedReg; ++I)
5631         assert(I != RC->end() && "Didn't find reg!");
5632 
5633       // Already added the first reg.
5634       --NumRegs; ++I;
5635       for (; NumRegs; --NumRegs, ++I) {
5636         assert(I != RC->end() && "Ran out of registers to allocate!");
5637         Regs.push_back(*I);
5638       }
5639     }
5640 
5641     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5642     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5643     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5644     return;
5645   }
5646 
5647   // Otherwise, if this was a reference to an LLVM register class, create vregs
5648   // for this reference.
5649   if (const TargetRegisterClass *RC = PhysReg.second) {
5650     RegVT = *RC->vt_begin();
5651     if (OpInfo.ConstraintVT == MVT::Other)
5652       ValueVT = RegVT;
5653 
5654     // Create the appropriate number of virtual registers.
5655     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5656     for (; NumRegs; --NumRegs)
5657       Regs.push_back(RegInfo.createVirtualRegister(RC));
5658 
5659     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5660     return;
5661   }
5662 
5663   // Otherwise, we couldn't allocate enough registers for this.
5664 }
5665 
5666 /// visitInlineAsm - Handle a call to an InlineAsm object.
5667 ///
5668 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5669   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5670 
5671   /// ConstraintOperands - Information about all of the constraints.
5672   SDISelAsmOperandInfoVector ConstraintOperands;
5673 
5674   std::set<unsigned> OutputRegs, InputRegs;
5675 
5676   TargetLowering::AsmOperandInfoVector
5677     TargetConstraints = TLI.ParseConstraints(CS);
5678 
5679   bool hasMemory = false;
5680 
5681   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5682   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5683   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5684     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5685     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5686 
5687     EVT OpVT = MVT::Other;
5688 
5689     // Compute the value type for each operand.
5690     switch (OpInfo.Type) {
5691     case InlineAsm::isOutput:
5692       // Indirect outputs just consume an argument.
5693       if (OpInfo.isIndirect) {
5694         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5695         break;
5696       }
5697 
5698       // The return value of the call is this value.  As such, there is no
5699       // corresponding argument.
5700       assert(!CS.getType()->isVoidTy() &&
5701              "Bad inline asm!");
5702       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5703         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5704       } else {
5705         assert(ResNo == 0 && "Asm only has one result!");
5706         OpVT = TLI.getValueType(CS.getType());
5707       }
5708       ++ResNo;
5709       break;
5710     case InlineAsm::isInput:
5711       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5712       break;
5713     case InlineAsm::isClobber:
5714       // Nothing to do.
5715       break;
5716     }
5717 
5718     // If this is an input or an indirect output, process the call argument.
5719     // BasicBlocks are labels, currently appearing only in asm's.
5720     if (OpInfo.CallOperandVal) {
5721       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5722         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5723       } else {
5724         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5725       }
5726 
5727       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5728     }
5729 
5730     OpInfo.ConstraintVT = OpVT;
5731 
5732     // Indirect operand accesses access memory.
5733     if (OpInfo.isIndirect)
5734       hasMemory = true;
5735     else {
5736       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5737         TargetLowering::ConstraintType
5738           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5739         if (CType == TargetLowering::C_Memory) {
5740           hasMemory = true;
5741           break;
5742         }
5743       }
5744     }
5745   }
5746 
5747   SDValue Chain, Flag;
5748 
5749   // We won't need to flush pending loads if this asm doesn't touch
5750   // memory and is nonvolatile.
5751   if (hasMemory || IA->hasSideEffects())
5752     Chain = getRoot();
5753   else
5754     Chain = DAG.getRoot();
5755 
5756   // Second pass over the constraints: compute which constraint option to use
5757   // and assign registers to constraints that want a specific physreg.
5758   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5759     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5760 
5761     // If this is an output operand with a matching input operand, look up the
5762     // matching input. If their types mismatch, e.g. one is an integer, the
5763     // other is floating point, or their sizes are different, flag it as an
5764     // error.
5765     if (OpInfo.hasMatchingInput()) {
5766       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5767 
5768       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5769 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5770 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5771 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5772 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5773         if ((OpInfo.ConstraintVT.isInteger() !=
5774              Input.ConstraintVT.isInteger()) ||
5775             (MatchRC.second != InputRC.second)) {
5776           report_fatal_error("Unsupported asm: input constraint"
5777                              " with a matching output constraint of"
5778                              " incompatible type!");
5779         }
5780         Input.ConstraintVT = OpInfo.ConstraintVT;
5781       }
5782     }
5783 
5784     // Compute the constraint code and ConstraintType to use.
5785     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5786 
5787     // If this is a memory input, and if the operand is not indirect, do what we
5788     // need to to provide an address for the memory input.
5789     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5790         !OpInfo.isIndirect) {
5791       assert((OpInfo.isMultipleAlternative ||
5792               (OpInfo.Type == InlineAsm::isInput)) &&
5793              "Can only indirectify direct input operands!");
5794 
5795       // Memory operands really want the address of the value.  If we don't have
5796       // an indirect input, put it in the constpool if we can, otherwise spill
5797       // it to a stack slot.
5798       // TODO: This isn't quite right. We need to handle these according to
5799       // the addressing mode that the constraint wants. Also, this may take
5800       // an additional register for the computation and we don't want that
5801       // either.
5802 
5803       // If the operand is a float, integer, or vector constant, spill to a
5804       // constant pool entry to get its address.
5805       const Value *OpVal = OpInfo.CallOperandVal;
5806       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5807           isa<ConstantVector>(OpVal)) {
5808         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5809                                                  TLI.getPointerTy());
5810       } else {
5811         // Otherwise, create a stack slot and emit a store to it before the
5812         // asm.
5813         Type *Ty = OpVal->getType();
5814         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5815         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5816         MachineFunction &MF = DAG.getMachineFunction();
5817         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5818         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5819         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5820                              OpInfo.CallOperand, StackSlot,
5821                              MachinePointerInfo::getFixedStack(SSFI),
5822                              false, false, 0);
5823         OpInfo.CallOperand = StackSlot;
5824       }
5825 
5826       // There is no longer a Value* corresponding to this operand.
5827       OpInfo.CallOperandVal = 0;
5828 
5829       // It is now an indirect operand.
5830       OpInfo.isIndirect = true;
5831     }
5832 
5833     // If this constraint is for a specific register, allocate it before
5834     // anything else.
5835     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5836       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5837                            InputRegs);
5838   }
5839 
5840   // Second pass - Loop over all of the operands, assigning virtual or physregs
5841   // to register class operands.
5842   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5843     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5844 
5845     // C_Register operands have already been allocated, Other/Memory don't need
5846     // to be.
5847     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5848       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5849                            InputRegs);
5850   }
5851 
5852   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5853   std::vector<SDValue> AsmNodeOperands;
5854   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5855   AsmNodeOperands.push_back(
5856           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5857                                       TLI.getPointerTy()));
5858 
5859   // If we have a !srcloc metadata node associated with it, we want to attach
5860   // this to the ultimately generated inline asm machineinstr.  To do this, we
5861   // pass in the third operand as this (potentially null) inline asm MDNode.
5862   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5863   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5864 
5865   // Remember the HasSideEffect and AlignStack bits as operand 3.
5866   unsigned ExtraInfo = 0;
5867   if (IA->hasSideEffects())
5868     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5869   if (IA->isAlignStack())
5870     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5871   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5872                                                   TLI.getPointerTy()));
5873 
5874   // Loop over all of the inputs, copying the operand values into the
5875   // appropriate registers and processing the output regs.
5876   RegsForValue RetValRegs;
5877 
5878   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5879   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5880 
5881   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5882     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5883 
5884     switch (OpInfo.Type) {
5885     case InlineAsm::isOutput: {
5886       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5887           OpInfo.ConstraintType != TargetLowering::C_Register) {
5888         // Memory output, or 'other' output (e.g. 'X' constraint).
5889         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5890 
5891         // Add information to the INLINEASM node to know about this output.
5892         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5893         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5894                                                         TLI.getPointerTy()));
5895         AsmNodeOperands.push_back(OpInfo.CallOperand);
5896         break;
5897       }
5898 
5899       // Otherwise, this is a register or register class output.
5900 
5901       // Copy the output from the appropriate register.  Find a register that
5902       // we can use.
5903       if (OpInfo.AssignedRegs.Regs.empty())
5904         report_fatal_error("Couldn't allocate output reg for constraint '" +
5905                            Twine(OpInfo.ConstraintCode) + "'!");
5906 
5907       // If this is an indirect operand, store through the pointer after the
5908       // asm.
5909       if (OpInfo.isIndirect) {
5910         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5911                                                       OpInfo.CallOperandVal));
5912       } else {
5913         // This is the result value of the call.
5914         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5915         // Concatenate this output onto the outputs list.
5916         RetValRegs.append(OpInfo.AssignedRegs);
5917       }
5918 
5919       // Add information to the INLINEASM node to know that this register is
5920       // set.
5921       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5922                                            InlineAsm::Kind_RegDefEarlyClobber :
5923                                                InlineAsm::Kind_RegDef,
5924                                                false,
5925                                                0,
5926                                                DAG,
5927                                                AsmNodeOperands);
5928       break;
5929     }
5930     case InlineAsm::isInput: {
5931       SDValue InOperandVal = OpInfo.CallOperand;
5932 
5933       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5934         // If this is required to match an output register we have already set,
5935         // just use its register.
5936         unsigned OperandNo = OpInfo.getMatchedOperand();
5937 
5938         // Scan until we find the definition we already emitted of this operand.
5939         // When we find it, create a RegsForValue operand.
5940         unsigned CurOp = InlineAsm::Op_FirstOperand;
5941         for (; OperandNo; --OperandNo) {
5942           // Advance to the next operand.
5943           unsigned OpFlag =
5944             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5945           assert((InlineAsm::isRegDefKind(OpFlag) ||
5946                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5947                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5948           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5949         }
5950 
5951         unsigned OpFlag =
5952           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5953         if (InlineAsm::isRegDefKind(OpFlag) ||
5954             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5955           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5956           if (OpInfo.isIndirect) {
5957             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5958             LLVMContext &Ctx = *DAG.getContext();
5959             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5960                           " don't know how to handle tied "
5961                           "indirect register inputs");
5962           }
5963 
5964           RegsForValue MatchedRegs;
5965           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5966           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5967           MatchedRegs.RegVTs.push_back(RegVT);
5968           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5969           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5970                i != e; ++i)
5971             MatchedRegs.Regs.push_back
5972               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5973 
5974           // Use the produced MatchedRegs object to
5975           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5976                                     Chain, &Flag);
5977           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5978                                            true, OpInfo.getMatchedOperand(),
5979                                            DAG, AsmNodeOperands);
5980           break;
5981         }
5982 
5983         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5984         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5985                "Unexpected number of operands");
5986         // Add information to the INLINEASM node to know about this input.
5987         // See InlineAsm.h isUseOperandTiedToDef.
5988         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5989                                                     OpInfo.getMatchedOperand());
5990         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5991                                                         TLI.getPointerTy()));
5992         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5993         break;
5994       }
5995 
5996       // Treat indirect 'X' constraint as memory.
5997       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5998           OpInfo.isIndirect)
5999         OpInfo.ConstraintType = TargetLowering::C_Memory;
6000 
6001       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6002         std::vector<SDValue> Ops;
6003         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6004                                          Ops, DAG);
6005         if (Ops.empty())
6006           report_fatal_error("Invalid operand for inline asm constraint '" +
6007                              Twine(OpInfo.ConstraintCode) + "'!");
6008 
6009         // Add information to the INLINEASM node to know about this input.
6010         unsigned ResOpType =
6011           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6012         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6013                                                         TLI.getPointerTy()));
6014         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6015         break;
6016       }
6017 
6018       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6019         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6020         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6021                "Memory operands expect pointer values");
6022 
6023         // Add information to the INLINEASM node to know about this input.
6024         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6025         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6026                                                         TLI.getPointerTy()));
6027         AsmNodeOperands.push_back(InOperandVal);
6028         break;
6029       }
6030 
6031       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6032               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6033              "Unknown constraint type!");
6034       assert(!OpInfo.isIndirect &&
6035              "Don't know how to handle indirect register inputs yet!");
6036 
6037       // Copy the input into the appropriate registers.
6038       if (OpInfo.AssignedRegs.Regs.empty())
6039         report_fatal_error("Couldn't allocate input reg for constraint '" +
6040                            Twine(OpInfo.ConstraintCode) + "'!");
6041 
6042       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6043                                         Chain, &Flag);
6044 
6045       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6046                                                DAG, AsmNodeOperands);
6047       break;
6048     }
6049     case InlineAsm::isClobber: {
6050       // Add the clobbered value to the operand list, so that the register
6051       // allocator is aware that the physreg got clobbered.
6052       if (!OpInfo.AssignedRegs.Regs.empty())
6053         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6054                                                  false, 0, DAG,
6055                                                  AsmNodeOperands);
6056       break;
6057     }
6058     }
6059   }
6060 
6061   // Finish up input operands.  Set the input chain and add the flag last.
6062   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6063   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6064 
6065   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6066                       DAG.getVTList(MVT::Other, MVT::Glue),
6067                       &AsmNodeOperands[0], AsmNodeOperands.size());
6068   Flag = Chain.getValue(1);
6069 
6070   // If this asm returns a register value, copy the result from that register
6071   // and set it as the value of the call.
6072   if (!RetValRegs.Regs.empty()) {
6073     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6074                                              Chain, &Flag);
6075 
6076     // FIXME: Why don't we do this for inline asms with MRVs?
6077     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6078       EVT ResultType = TLI.getValueType(CS.getType());
6079 
6080       // If any of the results of the inline asm is a vector, it may have the
6081       // wrong width/num elts.  This can happen for register classes that can
6082       // contain multiple different value types.  The preg or vreg allocated may
6083       // not have the same VT as was expected.  Convert it to the right type
6084       // with bit_convert.
6085       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6086         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6087                           ResultType, Val);
6088 
6089       } else if (ResultType != Val.getValueType() &&
6090                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6091         // If a result value was tied to an input value, the computed result may
6092         // have a wider width than the expected result.  Extract the relevant
6093         // portion.
6094         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6095       }
6096 
6097       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6098     }
6099 
6100     setValue(CS.getInstruction(), Val);
6101     // Don't need to use this as a chain in this case.
6102     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6103       return;
6104   }
6105 
6106   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6107 
6108   // Process indirect outputs, first output all of the flagged copies out of
6109   // physregs.
6110   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6111     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6112     const Value *Ptr = IndirectStoresToEmit[i].second;
6113     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6114                                              Chain, &Flag);
6115     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6116   }
6117 
6118   // Emit the non-flagged stores from the physregs.
6119   SmallVector<SDValue, 8> OutChains;
6120   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6121     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6122                                StoresToEmit[i].first,
6123                                getValue(StoresToEmit[i].second),
6124                                MachinePointerInfo(StoresToEmit[i].second),
6125                                false, false, 0);
6126     OutChains.push_back(Val);
6127   }
6128 
6129   if (!OutChains.empty())
6130     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6131                         &OutChains[0], OutChains.size());
6132 
6133   DAG.setRoot(Chain);
6134 }
6135 
6136 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6137   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6138                           MVT::Other, getRoot(),
6139                           getValue(I.getArgOperand(0)),
6140                           DAG.getSrcValue(I.getArgOperand(0))));
6141 }
6142 
6143 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6144   const TargetData &TD = *TLI.getTargetData();
6145   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6146                            getRoot(), getValue(I.getOperand(0)),
6147                            DAG.getSrcValue(I.getOperand(0)),
6148                            TD.getABITypeAlignment(I.getType()));
6149   setValue(&I, V);
6150   DAG.setRoot(V.getValue(1));
6151 }
6152 
6153 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6154   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6155                           MVT::Other, getRoot(),
6156                           getValue(I.getArgOperand(0)),
6157                           DAG.getSrcValue(I.getArgOperand(0))));
6158 }
6159 
6160 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6161   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6162                           MVT::Other, getRoot(),
6163                           getValue(I.getArgOperand(0)),
6164                           getValue(I.getArgOperand(1)),
6165                           DAG.getSrcValue(I.getArgOperand(0)),
6166                           DAG.getSrcValue(I.getArgOperand(1))));
6167 }
6168 
6169 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6170 /// implementation, which just calls LowerCall.
6171 /// FIXME: When all targets are
6172 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6173 std::pair<SDValue, SDValue>
6174 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6175                             bool RetSExt, bool RetZExt, bool isVarArg,
6176                             bool isInreg, unsigned NumFixedArgs,
6177                             CallingConv::ID CallConv, bool isTailCall,
6178                             bool isReturnValueUsed,
6179                             SDValue Callee,
6180                             ArgListTy &Args, SelectionDAG &DAG,
6181                             DebugLoc dl) const {
6182   // Handle all of the outgoing arguments.
6183   SmallVector<ISD::OutputArg, 32> Outs;
6184   SmallVector<SDValue, 32> OutVals;
6185   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6186     SmallVector<EVT, 4> ValueVTs;
6187     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6188     for (unsigned Value = 0, NumValues = ValueVTs.size();
6189          Value != NumValues; ++Value) {
6190       EVT VT = ValueVTs[Value];
6191       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6192       SDValue Op = SDValue(Args[i].Node.getNode(),
6193                            Args[i].Node.getResNo() + Value);
6194       ISD::ArgFlagsTy Flags;
6195       unsigned OriginalAlignment =
6196         getTargetData()->getABITypeAlignment(ArgTy);
6197 
6198       if (Args[i].isZExt)
6199         Flags.setZExt();
6200       if (Args[i].isSExt)
6201         Flags.setSExt();
6202       if (Args[i].isInReg)
6203         Flags.setInReg();
6204       if (Args[i].isSRet)
6205         Flags.setSRet();
6206       if (Args[i].isByVal) {
6207         Flags.setByVal();
6208         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6209         Type *ElementTy = Ty->getElementType();
6210         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6211         // For ByVal, alignment should come from FE.  BE will guess if this
6212         // info is not there but there are cases it cannot get right.
6213         unsigned FrameAlign;
6214         if (Args[i].Alignment)
6215           FrameAlign = Args[i].Alignment;
6216         else
6217           FrameAlign = getByValTypeAlignment(ElementTy);
6218         Flags.setByValAlign(FrameAlign);
6219       }
6220       if (Args[i].isNest)
6221         Flags.setNest();
6222       Flags.setOrigAlign(OriginalAlignment);
6223 
6224       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6225       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6226       SmallVector<SDValue, 4> Parts(NumParts);
6227       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6228 
6229       if (Args[i].isSExt)
6230         ExtendKind = ISD::SIGN_EXTEND;
6231       else if (Args[i].isZExt)
6232         ExtendKind = ISD::ZERO_EXTEND;
6233 
6234       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6235                      PartVT, ExtendKind);
6236 
6237       for (unsigned j = 0; j != NumParts; ++j) {
6238         // if it isn't first piece, alignment must be 1
6239         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6240                                i < NumFixedArgs);
6241         if (NumParts > 1 && j == 0)
6242           MyFlags.Flags.setSplit();
6243         else if (j != 0)
6244           MyFlags.Flags.setOrigAlign(1);
6245 
6246         Outs.push_back(MyFlags);
6247         OutVals.push_back(Parts[j]);
6248       }
6249     }
6250   }
6251 
6252   // Handle the incoming return values from the call.
6253   SmallVector<ISD::InputArg, 32> Ins;
6254   SmallVector<EVT, 4> RetTys;
6255   ComputeValueVTs(*this, RetTy, RetTys);
6256   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6257     EVT VT = RetTys[I];
6258     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6259     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6260     for (unsigned i = 0; i != NumRegs; ++i) {
6261       ISD::InputArg MyFlags;
6262       MyFlags.VT = RegisterVT.getSimpleVT();
6263       MyFlags.Used = isReturnValueUsed;
6264       if (RetSExt)
6265         MyFlags.Flags.setSExt();
6266       if (RetZExt)
6267         MyFlags.Flags.setZExt();
6268       if (isInreg)
6269         MyFlags.Flags.setInReg();
6270       Ins.push_back(MyFlags);
6271     }
6272   }
6273 
6274   SmallVector<SDValue, 4> InVals;
6275   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6276                     Outs, OutVals, Ins, dl, DAG, InVals);
6277 
6278   // Verify that the target's LowerCall behaved as expected.
6279   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6280          "LowerCall didn't return a valid chain!");
6281   assert((!isTailCall || InVals.empty()) &&
6282          "LowerCall emitted a return value for a tail call!");
6283   assert((isTailCall || InVals.size() == Ins.size()) &&
6284          "LowerCall didn't emit the correct number of values!");
6285 
6286   // For a tail call, the return value is merely live-out and there aren't
6287   // any nodes in the DAG representing it. Return a special value to
6288   // indicate that a tail call has been emitted and no more Instructions
6289   // should be processed in the current block.
6290   if (isTailCall) {
6291     DAG.setRoot(Chain);
6292     return std::make_pair(SDValue(), SDValue());
6293   }
6294 
6295   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6296           assert(InVals[i].getNode() &&
6297                  "LowerCall emitted a null value!");
6298           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6299                  "LowerCall emitted a value with the wrong type!");
6300         });
6301 
6302   // Collect the legal value parts into potentially illegal values
6303   // that correspond to the original function's return values.
6304   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6305   if (RetSExt)
6306     AssertOp = ISD::AssertSext;
6307   else if (RetZExt)
6308     AssertOp = ISD::AssertZext;
6309   SmallVector<SDValue, 4> ReturnValues;
6310   unsigned CurReg = 0;
6311   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6312     EVT VT = RetTys[I];
6313     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6314     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6315 
6316     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6317                                             NumRegs, RegisterVT, VT,
6318                                             AssertOp));
6319     CurReg += NumRegs;
6320   }
6321 
6322   // For a function returning void, there is no return value. We can't create
6323   // such a node, so we just return a null return value in that case. In
6324   // that case, nothing will actually look at the value.
6325   if (ReturnValues.empty())
6326     return std::make_pair(SDValue(), Chain);
6327 
6328   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6329                             DAG.getVTList(&RetTys[0], RetTys.size()),
6330                             &ReturnValues[0], ReturnValues.size());
6331   return std::make_pair(Res, Chain);
6332 }
6333 
6334 void TargetLowering::LowerOperationWrapper(SDNode *N,
6335                                            SmallVectorImpl<SDValue> &Results,
6336                                            SelectionDAG &DAG) const {
6337   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6338   if (Res.getNode())
6339     Results.push_back(Res);
6340 }
6341 
6342 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6343   llvm_unreachable("LowerOperation not implemented for this target!");
6344   return SDValue();
6345 }
6346 
6347 void
6348 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6349   SDValue Op = getNonRegisterValue(V);
6350   assert((Op.getOpcode() != ISD::CopyFromReg ||
6351           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6352          "Copy from a reg to the same reg!");
6353   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6354 
6355   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6356   SDValue Chain = DAG.getEntryNode();
6357   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6358   PendingExports.push_back(Chain);
6359 }
6360 
6361 #include "llvm/CodeGen/SelectionDAGISel.h"
6362 
6363 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6364 /// entry block, return true.  This includes arguments used by switches, since
6365 /// the switch may expand into multiple basic blocks.
6366 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6367   // With FastISel active, we may be splitting blocks, so force creation
6368   // of virtual registers for all non-dead arguments.
6369   if (EnableFastISel)
6370     return A->use_empty();
6371 
6372   const BasicBlock *Entry = A->getParent()->begin();
6373   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6374        UI != E; ++UI) {
6375     const User *U = *UI;
6376     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6377       return false;  // Use not in entry block.
6378   }
6379   return true;
6380 }
6381 
6382 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6383   // If this is the entry block, emit arguments.
6384   const Function &F = *LLVMBB->getParent();
6385   SelectionDAG &DAG = SDB->DAG;
6386   DebugLoc dl = SDB->getCurDebugLoc();
6387   const TargetData *TD = TLI.getTargetData();
6388   SmallVector<ISD::InputArg, 16> Ins;
6389 
6390   // Check whether the function can return without sret-demotion.
6391   SmallVector<ISD::OutputArg, 4> Outs;
6392   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6393                 Outs, TLI);
6394 
6395   if (!FuncInfo->CanLowerReturn) {
6396     // Put in an sret pointer parameter before all the other parameters.
6397     SmallVector<EVT, 1> ValueVTs;
6398     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6399 
6400     // NOTE: Assuming that a pointer will never break down to more than one VT
6401     // or one register.
6402     ISD::ArgFlagsTy Flags;
6403     Flags.setSRet();
6404     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6405     ISD::InputArg RetArg(Flags, RegisterVT, true);
6406     Ins.push_back(RetArg);
6407   }
6408 
6409   // Set up the incoming argument description vector.
6410   unsigned Idx = 1;
6411   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6412        I != E; ++I, ++Idx) {
6413     SmallVector<EVT, 4> ValueVTs;
6414     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6415     bool isArgValueUsed = !I->use_empty();
6416     for (unsigned Value = 0, NumValues = ValueVTs.size();
6417          Value != NumValues; ++Value) {
6418       EVT VT = ValueVTs[Value];
6419       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6420       ISD::ArgFlagsTy Flags;
6421       unsigned OriginalAlignment =
6422         TD->getABITypeAlignment(ArgTy);
6423 
6424       if (F.paramHasAttr(Idx, Attribute::ZExt))
6425         Flags.setZExt();
6426       if (F.paramHasAttr(Idx, Attribute::SExt))
6427         Flags.setSExt();
6428       if (F.paramHasAttr(Idx, Attribute::InReg))
6429         Flags.setInReg();
6430       if (F.paramHasAttr(Idx, Attribute::StructRet))
6431         Flags.setSRet();
6432       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6433         Flags.setByVal();
6434         PointerType *Ty = cast<PointerType>(I->getType());
6435         Type *ElementTy = Ty->getElementType();
6436         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6437         // For ByVal, alignment should be passed from FE.  BE will guess if
6438         // this info is not there but there are cases it cannot get right.
6439         unsigned FrameAlign;
6440         if (F.getParamAlignment(Idx))
6441           FrameAlign = F.getParamAlignment(Idx);
6442         else
6443           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6444         Flags.setByValAlign(FrameAlign);
6445       }
6446       if (F.paramHasAttr(Idx, Attribute::Nest))
6447         Flags.setNest();
6448       Flags.setOrigAlign(OriginalAlignment);
6449 
6450       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6451       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6452       for (unsigned i = 0; i != NumRegs; ++i) {
6453         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6454         if (NumRegs > 1 && i == 0)
6455           MyFlags.Flags.setSplit();
6456         // if it isn't first piece, alignment must be 1
6457         else if (i > 0)
6458           MyFlags.Flags.setOrigAlign(1);
6459         Ins.push_back(MyFlags);
6460       }
6461     }
6462   }
6463 
6464   // Call the target to set up the argument values.
6465   SmallVector<SDValue, 8> InVals;
6466   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6467                                              F.isVarArg(), Ins,
6468                                              dl, DAG, InVals);
6469 
6470   // Verify that the target's LowerFormalArguments behaved as expected.
6471   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6472          "LowerFormalArguments didn't return a valid chain!");
6473   assert(InVals.size() == Ins.size() &&
6474          "LowerFormalArguments didn't emit the correct number of values!");
6475   DEBUG({
6476       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6477         assert(InVals[i].getNode() &&
6478                "LowerFormalArguments emitted a null value!");
6479         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6480                "LowerFormalArguments emitted a value with the wrong type!");
6481       }
6482     });
6483 
6484   // Update the DAG with the new chain value resulting from argument lowering.
6485   DAG.setRoot(NewRoot);
6486 
6487   // Set up the argument values.
6488   unsigned i = 0;
6489   Idx = 1;
6490   if (!FuncInfo->CanLowerReturn) {
6491     // Create a virtual register for the sret pointer, and put in a copy
6492     // from the sret argument into it.
6493     SmallVector<EVT, 1> ValueVTs;
6494     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6495     EVT VT = ValueVTs[0];
6496     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6497     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6498     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6499                                         RegVT, VT, AssertOp);
6500 
6501     MachineFunction& MF = SDB->DAG.getMachineFunction();
6502     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6503     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6504     FuncInfo->DemoteRegister = SRetReg;
6505     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6506                                     SRetReg, ArgValue);
6507     DAG.setRoot(NewRoot);
6508 
6509     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6510     // Idx indexes LLVM arguments.  Don't touch it.
6511     ++i;
6512   }
6513 
6514   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6515       ++I, ++Idx) {
6516     SmallVector<SDValue, 4> ArgValues;
6517     SmallVector<EVT, 4> ValueVTs;
6518     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6519     unsigned NumValues = ValueVTs.size();
6520 
6521     // If this argument is unused then remember its value. It is used to generate
6522     // debugging information.
6523     if (I->use_empty() && NumValues)
6524       SDB->setUnusedArgValue(I, InVals[i]);
6525 
6526     for (unsigned Val = 0; Val != NumValues; ++Val) {
6527       EVT VT = ValueVTs[Val];
6528       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6529       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6530 
6531       if (!I->use_empty()) {
6532         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6533         if (F.paramHasAttr(Idx, Attribute::SExt))
6534           AssertOp = ISD::AssertSext;
6535         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6536           AssertOp = ISD::AssertZext;
6537 
6538         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6539                                              NumParts, PartVT, VT,
6540                                              AssertOp));
6541       }
6542 
6543       i += NumParts;
6544     }
6545 
6546     // We don't need to do anything else for unused arguments.
6547     if (ArgValues.empty())
6548       continue;
6549 
6550     // Note down frame index for byval arguments.
6551     if (I->hasByValAttr())
6552       if (FrameIndexSDNode *FI =
6553           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6554         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6555 
6556     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6557                                      SDB->getCurDebugLoc());
6558     SDB->setValue(I, Res);
6559 
6560     // If this argument is live outside of the entry block, insert a copy from
6561     // wherever we got it to the vreg that other BB's will reference it as.
6562     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6563       // If we can, though, try to skip creating an unnecessary vreg.
6564       // FIXME: This isn't very clean... it would be nice to make this more
6565       // general.  It's also subtly incompatible with the hacks FastISel
6566       // uses with vregs.
6567       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6568       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6569         FuncInfo->ValueMap[I] = Reg;
6570         continue;
6571       }
6572     }
6573     if (!isOnlyUsedInEntryBlock(I)) {
6574       FuncInfo->InitializeRegForValue(I);
6575       SDB->CopyToExportRegsIfNeeded(I);
6576     }
6577   }
6578 
6579   assert(i == InVals.size() && "Argument register count mismatch!");
6580 
6581   // Finally, if the target has anything special to do, allow it to do so.
6582   // FIXME: this should insert code into the DAG!
6583   EmitFunctionEntryCode();
6584 }
6585 
6586 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6587 /// ensure constants are generated when needed.  Remember the virtual registers
6588 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6589 /// directly add them, because expansion might result in multiple MBB's for one
6590 /// BB.  As such, the start of the BB might correspond to a different MBB than
6591 /// the end.
6592 ///
6593 void
6594 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6595   const TerminatorInst *TI = LLVMBB->getTerminator();
6596 
6597   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6598 
6599   // Check successor nodes' PHI nodes that expect a constant to be available
6600   // from this block.
6601   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6602     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6603     if (!isa<PHINode>(SuccBB->begin())) continue;
6604     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6605 
6606     // If this terminator has multiple identical successors (common for
6607     // switches), only handle each succ once.
6608     if (!SuccsHandled.insert(SuccMBB)) continue;
6609 
6610     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6611 
6612     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6613     // nodes and Machine PHI nodes, but the incoming operands have not been
6614     // emitted yet.
6615     for (BasicBlock::const_iterator I = SuccBB->begin();
6616          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6617       // Ignore dead phi's.
6618       if (PN->use_empty()) continue;
6619 
6620       // Skip empty types
6621       if (PN->getType()->isEmptyTy())
6622         continue;
6623 
6624       unsigned Reg;
6625       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6626 
6627       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6628         unsigned &RegOut = ConstantsOut[C];
6629         if (RegOut == 0) {
6630           RegOut = FuncInfo.CreateRegs(C->getType());
6631           CopyValueToVirtualRegister(C, RegOut);
6632         }
6633         Reg = RegOut;
6634       } else {
6635         DenseMap<const Value *, unsigned>::iterator I =
6636           FuncInfo.ValueMap.find(PHIOp);
6637         if (I != FuncInfo.ValueMap.end())
6638           Reg = I->second;
6639         else {
6640           assert(isa<AllocaInst>(PHIOp) &&
6641                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6642                  "Didn't codegen value into a register!??");
6643           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6644           CopyValueToVirtualRegister(PHIOp, Reg);
6645         }
6646       }
6647 
6648       // Remember that this register needs to added to the machine PHI node as
6649       // the input for this MBB.
6650       SmallVector<EVT, 4> ValueVTs;
6651       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6652       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6653         EVT VT = ValueVTs[vti];
6654         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6655         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6656           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6657         Reg += NumRegisters;
6658       }
6659     }
6660   }
6661   ConstantsOut.clear();
6662 }
6663