1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Constants.h" 24 #include "llvm/CallingConv.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/DerivedTypes.h" 27 #include "llvm/Function.h" 28 #include "llvm/GlobalVariable.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Instructions.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Module.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineJumpTableInfo.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/DataLayout.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLibraryInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/IntegersSubsetMapping.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static const unsigned MaxParallelChains = 64; 89 90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 91 const SDValue *Parts, unsigned NumParts, 92 EVT PartVT, EVT ValueVT, const Value *V); 93 94 /// getCopyFromParts - Create a value that contains the specified legal parts 95 /// combined into the value they represent. If the parts combine to a type 96 /// larger then ValueVT then AssertOp can be used to specify whether the extra 97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 98 /// (ISD::AssertSext). 99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 100 const SDValue *Parts, 101 unsigned NumParts, EVT PartVT, EVT ValueVT, 102 const Value *V, 103 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 104 if (ValueVT.isVector()) 105 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 106 PartVT, ValueVT, V); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT, V); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT, V); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT, V); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getTargetConstant(1, TLI.getPointerTy())); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 } 214 215 /// getCopyFromPartsVector - Create a value that contains the specified legal 216 /// parts combined into the value they represent. If the parts combine to a 217 /// type larger then ValueVT then AssertOp can be used to specify whether the 218 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 219 /// ValueVT (ISD::AssertSext). 220 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 221 const SDValue *Parts, unsigned NumParts, 222 EVT PartVT, EVT ValueVT, const Value *V) { 223 assert(ValueVT.isVector() && "Not a vector value"); 224 assert(NumParts > 0 && "No parts to assemble!"); 225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 226 SDValue Val = Parts[0]; 227 228 // Handle a multi-element vector. 229 if (NumParts > 1) { 230 EVT IntermediateVT, RegisterVT; 231 unsigned NumIntermediates; 232 unsigned NumRegs = 233 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 234 NumIntermediates, RegisterVT); 235 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 236 NumParts = NumRegs; // Silence a compiler warning. 237 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 238 assert(RegisterVT == Parts[0].getValueType() && 239 "Part type doesn't match part!"); 240 241 // Assemble the parts into intermediate operands. 242 SmallVector<SDValue, 8> Ops(NumIntermediates); 243 if (NumIntermediates == NumParts) { 244 // If the register was not expanded, truncate or copy the value, 245 // as appropriate. 246 for (unsigned i = 0; i != NumParts; ++i) 247 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 248 PartVT, IntermediateVT, V); 249 } else if (NumParts > 0) { 250 // If the intermediate type was expanded, build the intermediate 251 // operands from the parts. 252 assert(NumParts % NumIntermediates == 0 && 253 "Must expand into a divisible number of parts!"); 254 unsigned Factor = NumParts / NumIntermediates; 255 for (unsigned i = 0; i != NumIntermediates; ++i) 256 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 257 PartVT, IntermediateVT, V); 258 } 259 260 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 261 // intermediate operands. 262 Val = DAG.getNode(IntermediateVT.isVector() ? 263 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 264 ValueVT, &Ops[0], NumIntermediates); 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 PartVT = Val.getValueType(); 269 270 if (PartVT == ValueVT) 271 return Val; 272 273 if (PartVT.isVector()) { 274 // If the element type of the source/dest vectors are the same, but the 275 // parts vector has more elements than the value vector, then we have a 276 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 277 // elements we want. 278 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 279 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 280 "Cannot narrow, it would be a lossy transformation"); 281 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 282 DAG.getIntPtrConstant(0)); 283 } 284 285 // Vector/Vector bitcast. 286 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 289 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 290 "Cannot handle this kind of promotion"); 291 // Promoted vector extract 292 bool Smaller = ValueVT.bitsLE(PartVT); 293 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 294 DL, ValueVT, Val); 295 296 } 297 298 // Trivial bitcast if the types are the same size and the destination 299 // vector type is legal. 300 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 301 TLI.isTypeLegal(ValueVT)) 302 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 303 304 // Handle cases such as i8 -> <1 x i1> 305 if (ValueVT.getVectorNumElements() != 1) { 306 LLVMContext &Ctx = *DAG.getContext(); 307 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 308 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (isa<InlineAsm>(CI->getCalledValue())) 311 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 312 Ctx.emitError(I, ErrMsg); 313 } else { 314 Ctx.emitError(ErrMsg); 315 } 316 report_fatal_error("Cannot handle scalar-to-vector conversion!"); 317 } 318 319 if (ValueVT.getVectorNumElements() == 1 && 320 ValueVT.getVectorElementType() != PartVT) { 321 bool Smaller = ValueVT.bitsLE(PartVT); 322 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 323 DL, ValueVT.getScalarType(), Val); 324 } 325 326 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 327 } 328 329 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 330 SDValue Val, SDValue *Parts, unsigned NumParts, 331 EVT PartVT, const Value *V); 332 333 /// getCopyToParts - Create a series of nodes that contain the specified value 334 /// split into legal parts. If the parts contain more bits than Val, then, for 335 /// integers, ExtendKind can be used to specify how to generate the extra bits. 336 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 337 SDValue Val, SDValue *Parts, unsigned NumParts, 338 EVT PartVT, const Value *V, 339 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 340 EVT ValueVT = Val.getValueType(); 341 342 // Handle the vector case separately. 343 if (ValueVT.isVector()) 344 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 unsigned PartBits = PartVT.getSizeInBits(); 348 unsigned OrigNumParts = NumParts; 349 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 350 351 if (NumParts == 0) 352 return; 353 354 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 355 if (PartVT == ValueVT) { 356 assert(NumParts == 1 && "No-op copy with multiple parts!"); 357 Parts[0] = Val; 358 return; 359 } 360 361 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 362 // If the parts cover more bits than the value has, promote the value. 363 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 364 assert(NumParts == 1 && "Do not know what to promote to!"); 365 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 366 } else { 367 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 368 ValueVT.isInteger() && 369 "Unknown mismatch!"); 370 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 371 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 372 if (PartVT == MVT::x86mmx) 373 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 374 } 375 } else if (PartBits == ValueVT.getSizeInBits()) { 376 // Different types of the same size. 377 assert(NumParts == 1 && PartVT != ValueVT); 378 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 379 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 380 // If the parts cover less bits than value has, truncate the value. 381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 382 ValueVT.isInteger() && 383 "Unknown mismatch!"); 384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 385 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 386 if (PartVT == MVT::x86mmx) 387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 388 } 389 390 // The value may have changed - recompute ValueVT. 391 ValueVT = Val.getValueType(); 392 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 393 "Failed to tile the value with PartVT!"); 394 395 if (NumParts == 1) { 396 if (PartVT != ValueVT) { 397 LLVMContext &Ctx = *DAG.getContext(); 398 Twine ErrMsg("scalar-to-vector conversion failed"); 399 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 400 if (const CallInst *CI = dyn_cast<CallInst>(I)) 401 if (isa<InlineAsm>(CI->getCalledValue())) 402 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 403 Ctx.emitError(I, ErrMsg); 404 } else { 405 Ctx.emitError(ErrMsg); 406 } 407 } 408 409 Parts[0] = Val; 410 return; 411 } 412 413 // Expand the value into multiple parts. 414 if (NumParts & (NumParts - 1)) { 415 // The number of parts is not a power of 2. Split off and copy the tail. 416 assert(PartVT.isInteger() && ValueVT.isInteger() && 417 "Do not know what to expand to!"); 418 unsigned RoundParts = 1 << Log2_32(NumParts); 419 unsigned RoundBits = RoundParts * PartBits; 420 unsigned OddParts = NumParts - RoundParts; 421 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 422 DAG.getIntPtrConstant(RoundBits)); 423 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 424 425 if (TLI.isBigEndian()) 426 // The odd parts were reversed by getCopyToParts - unreverse them. 427 std::reverse(Parts + RoundParts, Parts + NumParts); 428 429 NumParts = RoundParts; 430 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 431 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 432 } 433 434 // The number of parts is a power of 2. Repeatedly bisect the value using 435 // EXTRACT_ELEMENT. 436 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 437 EVT::getIntegerVT(*DAG.getContext(), 438 ValueVT.getSizeInBits()), 439 Val); 440 441 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 442 for (unsigned i = 0; i < NumParts; i += StepSize) { 443 unsigned ThisBits = StepSize * PartBits / 2; 444 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 445 SDValue &Part0 = Parts[i]; 446 SDValue &Part1 = Parts[i+StepSize/2]; 447 448 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 449 ThisVT, Part0, DAG.getIntPtrConstant(1)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(0)); 452 453 if (ThisBits == PartBits && ThisVT != PartVT) { 454 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 455 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 456 } 457 } 458 } 459 460 if (TLI.isBigEndian()) 461 std::reverse(Parts, Parts + OrigNumParts); 462 } 463 464 465 /// getCopyToPartsVector - Create a series of nodes that contain the specified 466 /// value split into legal parts. 467 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 468 SDValue Val, SDValue *Parts, unsigned NumParts, 469 EVT PartVT, const Value *V) { 470 EVT ValueVT = Val.getValueType(); 471 assert(ValueVT.isVector() && "Not a vector"); 472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 473 474 if (NumParts == 1) { 475 if (PartVT == ValueVT) { 476 // Nothing to do. 477 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 478 // Bitconvert vector->vector case. 479 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 480 } else if (PartVT.isVector() && 481 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 482 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 483 EVT ElementVT = PartVT.getVectorElementType(); 484 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 485 // undef elements. 486 SmallVector<SDValue, 16> Ops; 487 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 488 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 489 ElementVT, Val, DAG.getIntPtrConstant(i))); 490 491 for (unsigned i = ValueVT.getVectorNumElements(), 492 e = PartVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getUNDEF(ElementVT)); 494 495 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 496 497 // FIXME: Use CONCAT for 2x -> 4x. 498 499 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 500 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 501 } else if (PartVT.isVector() && 502 PartVT.getVectorElementType().bitsGE( 503 ValueVT.getVectorElementType()) && 504 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 505 506 // Promoted vector extract 507 bool Smaller = PartVT.bitsLE(ValueVT); 508 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 509 DL, PartVT, Val); 510 } else{ 511 // Vector -> scalar conversion. 512 assert(ValueVT.getVectorNumElements() == 1 && 513 "Only trivial vector-to-scalar conversions should get here!"); 514 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 515 PartVT, Val, DAG.getIntPtrConstant(0)); 516 517 bool Smaller = ValueVT.bitsLE(PartVT); 518 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 519 DL, PartVT, Val); 520 } 521 522 Parts[0] = Val; 523 return; 524 } 525 526 // Handle a multi-element vector. 527 EVT IntermediateVT, RegisterVT; 528 unsigned NumIntermediates; 529 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 530 IntermediateVT, 531 NumIntermediates, RegisterVT); 532 unsigned NumElements = ValueVT.getVectorNumElements(); 533 534 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 535 NumParts = NumRegs; // Silence a compiler warning. 536 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 537 538 // Split the vector into intermediate operands. 539 SmallVector<SDValue, 8> Ops(NumIntermediates); 540 for (unsigned i = 0; i != NumIntermediates; ++i) { 541 if (IntermediateVT.isVector()) 542 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 543 IntermediateVT, Val, 544 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 545 else 546 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 547 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 548 } 549 550 // Split the intermediate operands into legal parts. 551 if (NumParts == NumIntermediates) { 552 // If the register was not expanded, promote or copy the value, 553 // as appropriate. 554 for (unsigned i = 0; i != NumParts; ++i) 555 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 556 } else if (NumParts > 0) { 557 // If the intermediate type was expanded, split each the value into 558 // legal parts. 559 assert(NumParts % NumIntermediates == 0 && 560 "Must expand into a divisible number of parts!"); 561 unsigned Factor = NumParts / NumIntermediates; 562 for (unsigned i = 0; i != NumIntermediates; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 564 } 565 } 566 567 namespace { 568 /// RegsForValue - This struct represents the registers (physical or virtual) 569 /// that a particular set of values is assigned, and the type information 570 /// about the value. The most common situation is to represent one value at a 571 /// time, but struct or array values are handled element-wise as multiple 572 /// values. The splitting of aggregates is performed recursively, so that we 573 /// never have aggregate-typed registers. The values at this point do not 574 /// necessarily have legal types, so each value may require one or more 575 /// registers of some legal type. 576 /// 577 struct RegsForValue { 578 /// ValueVTs - The value types of the values, which may not be legal, and 579 /// may need be promoted or synthesized from one or more registers. 580 /// 581 SmallVector<EVT, 4> ValueVTs; 582 583 /// RegVTs - The value types of the registers. This is the same size as 584 /// ValueVTs and it records, for each value, what the type of the assigned 585 /// register or registers are. (Individual values are never synthesized 586 /// from more than one type of register.) 587 /// 588 /// With virtual registers, the contents of RegVTs is redundant with TLI's 589 /// getRegisterType member function, however when with physical registers 590 /// it is necessary to have a separate record of the types. 591 /// 592 SmallVector<EVT, 4> RegVTs; 593 594 /// Regs - This list holds the registers assigned to the values. 595 /// Each legal or promoted value requires one register, and each 596 /// expanded value requires multiple registers. 597 /// 598 SmallVector<unsigned, 4> Regs; 599 600 RegsForValue() {} 601 602 RegsForValue(const SmallVector<unsigned, 4> ®s, 603 EVT regvt, EVT valuevt) 604 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 605 606 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 607 unsigned Reg, Type *Ty) { 608 ComputeValueVTs(tli, Ty, ValueVTs); 609 610 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 611 EVT ValueVT = ValueVTs[Value]; 612 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 613 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 614 for (unsigned i = 0; i != NumRegs; ++i) 615 Regs.push_back(Reg + i); 616 RegVTs.push_back(RegisterVT); 617 Reg += NumRegs; 618 } 619 } 620 621 /// areValueTypesLegal - Return true if types of all the values are legal. 622 bool areValueTypesLegal(const TargetLowering &TLI) { 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT RegisterVT = RegVTs[Value]; 625 if (!TLI.isTypeLegal(RegisterVT)) 626 return false; 627 } 628 return true; 629 } 630 631 /// append - Add the specified values to this one. 632 void append(const RegsForValue &RHS) { 633 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 634 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 635 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 636 } 637 638 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 639 /// this value and returns the result as a ValueVTs value. This uses 640 /// Chain/Flag as the input and updates them for the output Chain/Flag. 641 /// If the Flag pointer is NULL, no flag is used. 642 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag, 645 const Value *V = 0) const; 646 647 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 648 /// specified value into the registers specified by this object. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 652 SDValue &Chain, SDValue *Flag, const Value *V) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 DebugLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 EVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (Flag == 0) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 // FIXME: We capture more information than the dag can represent. For 717 // now, just use the tightest assertzext/assertsext possible. 718 bool isSExt = true; 719 EVT FromVT(MVT::Other); 720 if (NumSignBits == RegSize) 721 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 722 else if (NumZeroBits >= RegSize-1) 723 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 724 else if (NumSignBits > RegSize-8) 725 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 726 else if (NumZeroBits >= RegSize-8) 727 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 728 else if (NumSignBits > RegSize-16) 729 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 730 else if (NumZeroBits >= RegSize-16) 731 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 732 else if (NumSignBits > RegSize-32) 733 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 734 else if (NumZeroBits >= RegSize-32) 735 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 736 else 737 continue; 738 739 // Add an assertion node. 740 assert(FromVT != MVT::Other); 741 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 742 RegisterVT, P, DAG.getValueType(FromVT)); 743 } 744 745 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 746 NumRegs, RegisterVT, ValueVT, V); 747 Part += NumRegs; 748 Parts.clear(); 749 } 750 751 return DAG.getNode(ISD::MERGE_VALUES, dl, 752 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 753 &Values[0], ValueVTs.size()); 754 } 755 756 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 757 /// specified value into the registers specified by this object. This uses 758 /// Chain/Flag as the input and updates them for the output Chain/Flag. 759 /// If the Flag pointer is NULL, no flag is used. 760 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 761 SDValue &Chain, SDValue *Flag, 762 const Value *V) const { 763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 764 765 // Get the list of the values's legal parts. 766 unsigned NumRegs = Regs.size(); 767 SmallVector<SDValue, 8> Parts(NumRegs); 768 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 769 EVT ValueVT = ValueVTs[Value]; 770 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 771 EVT RegisterVT = RegVTs[Value]; 772 773 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 774 &Parts[Part], NumParts, RegisterVT, V); 775 Part += NumParts; 776 } 777 778 // Copy the parts into the registers. 779 SmallVector<SDValue, 8> Chains(NumRegs); 780 for (unsigned i = 0; i != NumRegs; ++i) { 781 SDValue Part; 782 if (Flag == 0) { 783 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 784 } else { 785 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 786 *Flag = Part.getValue(1); 787 } 788 789 Chains[i] = Part.getValue(0); 790 } 791 792 if (NumRegs == 1 || Flag) 793 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 794 // flagged to it. That is the CopyToReg nodes and the user are considered 795 // a single scheduling unit. If we create a TokenFactor and return it as 796 // chain, then the TokenFactor is both a predecessor (operand) of the 797 // user as well as a successor (the TF operands are flagged to the user). 798 // c1, f1 = CopyToReg 799 // c2, f2 = CopyToReg 800 // c3 = TokenFactor c1, c2 801 // ... 802 // = op c3, ..., f2 803 Chain = Chains[NumRegs-1]; 804 else 805 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 806 } 807 808 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 809 /// operand list. This adds the code marker and includes the number of 810 /// values added into it. 811 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 812 unsigned MatchingIdx, 813 SelectionDAG &DAG, 814 std::vector<SDValue> &Ops) const { 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 818 if (HasMatching) 819 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 820 else if (!Regs.empty() && 821 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 822 // Put the register class of the virtual registers in the flag word. That 823 // way, later passes can recompute register class constraints for inline 824 // assembly as well as normal instructions. 825 // Don't do this for tied operands that can use the regclass information 826 // from the def. 827 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 828 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 829 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 830 } 831 832 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 833 Ops.push_back(Res); 834 835 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 836 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 837 EVT RegisterVT = RegVTs[Value]; 838 for (unsigned i = 0; i != NumRegs; ++i) { 839 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 840 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 841 } 842 } 843 } 844 845 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 846 const TargetLibraryInfo *li) { 847 AA = &aa; 848 GFI = gfi; 849 LibInfo = li; 850 TD = DAG.getTarget().getDataLayout(); 851 Context = DAG.getContext(); 852 LPadToCallSiteMap.clear(); 853 } 854 855 /// clear - Clear out the current SelectionDAG and the associated 856 /// state and prepare this SelectionDAGBuilder object to be used 857 /// for a new block. This doesn't clear out information about 858 /// additional blocks that are needed to complete switch lowering 859 /// or PHI node updating; that information is cleared out as it is 860 /// consumed. 861 void SelectionDAGBuilder::clear() { 862 NodeMap.clear(); 863 UnusedArgNodeMap.clear(); 864 PendingLoads.clear(); 865 PendingExports.clear(); 866 CurDebugLoc = DebugLoc(); 867 HasTailCall = false; 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 898 &PendingLoads[0], PendingLoads.size()); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 928 &PendingExports[0], 929 PendingExports.size()); 930 PendingExports.clear(); 931 DAG.setRoot(Root); 932 return Root; 933 } 934 935 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 936 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 937 DAG.AssignOrdering(Node, SDNodeOrder); 938 939 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 940 AssignOrderingToNode(Node->getOperand(I).getNode()); 941 } 942 943 void SelectionDAGBuilder::visit(const Instruction &I) { 944 // Set up outgoing PHI node register values before emitting the terminator. 945 if (isa<TerminatorInst>(&I)) 946 HandlePHINodesInSuccessorBlocks(I.getParent()); 947 948 CurDebugLoc = I.getDebugLoc(); 949 950 visit(I.getOpcode(), I); 951 952 if (!isa<TerminatorInst>(&I) && !HasTailCall) 953 CopyToExportRegsIfNeeded(&I); 954 955 CurDebugLoc = DebugLoc(); 956 } 957 958 void SelectionDAGBuilder::visitPHI(const PHINode &) { 959 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 960 } 961 962 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 963 // Note: this doesn't use InstVisitor, because it has to work with 964 // ConstantExpr's in addition to instructions. 965 switch (Opcode) { 966 default: llvm_unreachable("Unknown instruction type encountered!"); 967 // Build the switch statement using the Instruction.def file. 968 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 969 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 970 #include "llvm/Instruction.def" 971 } 972 973 // Assign the ordering to the freshly created DAG nodes. 974 if (NodeMap.count(&I)) { 975 ++SDNodeOrder; 976 AssignOrderingToNode(getValue(&I).getNode()); 977 } 978 } 979 980 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 981 // generate the debug data structures now that we've seen its definition. 982 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 983 SDValue Val) { 984 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 985 if (DDI.getDI()) { 986 const DbgValueInst *DI = DDI.getDI(); 987 DebugLoc dl = DDI.getdl(); 988 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 989 MDNode *Variable = DI->getVariable(); 990 uint64_t Offset = DI->getOffset(); 991 SDDbgValue *SDV; 992 if (Val.getNode()) { 993 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 994 SDV = DAG.getDbgValue(Variable, Val.getNode(), 995 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 996 DAG.AddDbgValue(SDV, Val.getNode(), false); 997 } 998 } else 999 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1000 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1001 } 1002 } 1003 1004 /// getValue - Return an SDValue for the given Value. 1005 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1006 // If we already have an SDValue for this value, use it. It's important 1007 // to do this first, so that we don't create a CopyFromReg if we already 1008 // have a regular SDValue. 1009 SDValue &N = NodeMap[V]; 1010 if (N.getNode()) return N; 1011 1012 // If there's a virtual register allocated and initialized for this 1013 // value, use it. 1014 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1015 if (It != FuncInfo.ValueMap.end()) { 1016 unsigned InReg = It->second; 1017 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 1018 SDValue Chain = DAG.getEntryNode(); 1019 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1020 resolveDanglingDebugInfo(V, N); 1021 return N; 1022 } 1023 1024 // Otherwise create a new SDValue and remember it. 1025 SDValue Val = getValueImpl(V); 1026 NodeMap[V] = Val; 1027 resolveDanglingDebugInfo(V, Val); 1028 return Val; 1029 } 1030 1031 /// getNonRegisterValue - Return an SDValue for the given Value, but 1032 /// don't look in FuncInfo.ValueMap for a virtual register. 1033 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1034 // If we already have an SDValue for this value, use it. 1035 SDValue &N = NodeMap[V]; 1036 if (N.getNode()) return N; 1037 1038 // Otherwise create a new SDValue and remember it. 1039 SDValue Val = getValueImpl(V); 1040 NodeMap[V] = Val; 1041 resolveDanglingDebugInfo(V, Val); 1042 return Val; 1043 } 1044 1045 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1046 /// Create an SDValue for the given value. 1047 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1048 if (const Constant *C = dyn_cast<Constant>(V)) { 1049 EVT VT = TLI.getValueType(V->getType(), true); 1050 1051 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1052 return DAG.getConstant(*CI, VT); 1053 1054 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1055 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1056 1057 if (isa<ConstantPointerNull>(C)) 1058 return DAG.getConstant(0, TLI.getPointerTy()); 1059 1060 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1061 return DAG.getConstantFP(*CFP, VT); 1062 1063 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1064 return DAG.getUNDEF(VT); 1065 1066 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1067 visit(CE->getOpcode(), *CE); 1068 SDValue N1 = NodeMap[V]; 1069 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1070 return N1; 1071 } 1072 1073 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1074 SmallVector<SDValue, 4> Constants; 1075 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1076 OI != OE; ++OI) { 1077 SDNode *Val = getValue(*OI).getNode(); 1078 // If the operand is an empty aggregate, there are no values. 1079 if (!Val) continue; 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Constants.push_back(SDValue(Val, i)); 1084 } 1085 1086 return DAG.getMergeValues(&Constants[0], Constants.size(), 1087 getCurDebugLoc()); 1088 } 1089 1090 if (const ConstantDataSequential *CDS = 1091 dyn_cast<ConstantDataSequential>(C)) { 1092 SmallVector<SDValue, 4> Ops; 1093 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1094 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Ops.push_back(SDValue(Val, i)); 1099 } 1100 1101 if (isa<ArrayType>(CDS->getType())) 1102 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1103 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1104 VT, &Ops[0], Ops.size()); 1105 } 1106 1107 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1108 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1109 "Unknown struct or array constant!"); 1110 1111 SmallVector<EVT, 4> ValueVTs; 1112 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1113 unsigned NumElts = ValueVTs.size(); 1114 if (NumElts == 0) 1115 return SDValue(); // empty struct 1116 SmallVector<SDValue, 4> Constants(NumElts); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 EVT EltVT = ValueVTs[i]; 1119 if (isa<UndefValue>(C)) 1120 Constants[i] = DAG.getUNDEF(EltVT); 1121 else if (EltVT.isFloatingPoint()) 1122 Constants[i] = DAG.getConstantFP(0, EltVT); 1123 else 1124 Constants[i] = DAG.getConstant(0, EltVT); 1125 } 1126 1127 return DAG.getMergeValues(&Constants[0], NumElts, 1128 getCurDebugLoc()); 1129 } 1130 1131 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1132 return DAG.getBlockAddress(BA, VT); 1133 1134 VectorType *VecTy = cast<VectorType>(V->getType()); 1135 unsigned NumElements = VecTy->getNumElements(); 1136 1137 // Now that we know the number and type of the elements, get that number of 1138 // elements into the Ops array based on what kind of constant it is. 1139 SmallVector<SDValue, 16> Ops; 1140 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1141 for (unsigned i = 0; i != NumElements; ++i) 1142 Ops.push_back(getValue(CV->getOperand(i))); 1143 } else { 1144 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1145 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1146 1147 SDValue Op; 1148 if (EltVT.isFloatingPoint()) 1149 Op = DAG.getConstantFP(0, EltVT); 1150 else 1151 Op = DAG.getConstant(0, EltVT); 1152 Ops.assign(NumElements, Op); 1153 } 1154 1155 // Create a BUILD_VECTOR node. 1156 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1157 VT, &Ops[0], Ops.size()); 1158 } 1159 1160 // If this is a static alloca, generate it as the frameindex instead of 1161 // computation. 1162 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1163 DenseMap<const AllocaInst*, int>::iterator SI = 1164 FuncInfo.StaticAllocaMap.find(AI); 1165 if (SI != FuncInfo.StaticAllocaMap.end()) 1166 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1167 } 1168 1169 // If this is an instruction which fast-isel has deferred, select it now. 1170 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1171 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1172 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1173 SDValue Chain = DAG.getEntryNode(); 1174 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1175 } 1176 1177 llvm_unreachable("Can't get register for value!"); 1178 } 1179 1180 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1181 SDValue Chain = getControlRoot(); 1182 SmallVector<ISD::OutputArg, 8> Outs; 1183 SmallVector<SDValue, 8> OutVals; 1184 1185 if (!FuncInfo.CanLowerReturn) { 1186 unsigned DemoteReg = FuncInfo.DemoteRegister; 1187 const Function *F = I.getParent()->getParent(); 1188 1189 // Emit a store of the return value through the virtual register. 1190 // Leave Outs empty so that LowerReturn won't try to load return 1191 // registers the usual way. 1192 SmallVector<EVT, 1> PtrValueVTs; 1193 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1194 PtrValueVTs); 1195 1196 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1197 SDValue RetOp = getValue(I.getOperand(0)); 1198 1199 SmallVector<EVT, 4> ValueVTs; 1200 SmallVector<uint64_t, 4> Offsets; 1201 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1202 unsigned NumValues = ValueVTs.size(); 1203 1204 SmallVector<SDValue, 4> Chains(NumValues); 1205 for (unsigned i = 0; i != NumValues; ++i) { 1206 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1207 RetPtr.getValueType(), RetPtr, 1208 DAG.getIntPtrConstant(Offsets[i])); 1209 Chains[i] = 1210 DAG.getStore(Chain, getCurDebugLoc(), 1211 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1212 // FIXME: better loc info would be nice. 1213 Add, MachinePointerInfo(), false, false, 0); 1214 } 1215 1216 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1217 MVT::Other, &Chains[0], NumValues); 1218 } else if (I.getNumOperands() != 0) { 1219 SmallVector<EVT, 4> ValueVTs; 1220 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1221 unsigned NumValues = ValueVTs.size(); 1222 if (NumValues) { 1223 SDValue RetOp = getValue(I.getOperand(0)); 1224 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1228 1229 const Function *F = I.getParent()->getParent(); 1230 if (F->getRetAttributes().hasAttribute(Attributes::SExt)) 1231 ExtendKind = ISD::SIGN_EXTEND; 1232 else if (F->getRetAttributes().hasAttribute(Attributes::ZExt)) 1233 ExtendKind = ISD::ZERO_EXTEND; 1234 1235 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1236 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1237 1238 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1239 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1240 SmallVector<SDValue, 4> Parts(NumParts); 1241 getCopyToParts(DAG, getCurDebugLoc(), 1242 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1243 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1244 1245 // 'inreg' on function refers to return value 1246 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1247 if (F->getRetAttributes().hasAttribute(Attributes::InReg)) 1248 Flags.setInReg(); 1249 1250 // Propagate extension type if any 1251 if (ExtendKind == ISD::SIGN_EXTEND) 1252 Flags.setSExt(); 1253 else if (ExtendKind == ISD::ZERO_EXTEND) 1254 Flags.setZExt(); 1255 1256 for (unsigned i = 0; i < NumParts; ++i) { 1257 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1258 /*isfixed=*/true, 0, 0)); 1259 OutVals.push_back(Parts[i]); 1260 } 1261 } 1262 } 1263 } 1264 1265 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1266 CallingConv::ID CallConv = 1267 DAG.getMachineFunction().getFunction()->getCallingConv(); 1268 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1269 Outs, OutVals, getCurDebugLoc(), DAG); 1270 1271 // Verify that the target's LowerReturn behaved as expected. 1272 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1273 "LowerReturn didn't return a valid chain!"); 1274 1275 // Update the DAG with the new chain value resulting from return lowering. 1276 DAG.setRoot(Chain); 1277 } 1278 1279 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1280 /// created for it, emit nodes to copy the value into the virtual 1281 /// registers. 1282 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1283 // Skip empty types 1284 if (V->getType()->isEmptyTy()) 1285 return; 1286 1287 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1288 if (VMI != FuncInfo.ValueMap.end()) { 1289 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1290 CopyValueToVirtualRegister(V, VMI->second); 1291 } 1292 } 1293 1294 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1295 /// the current basic block, add it to ValueMap now so that we'll get a 1296 /// CopyTo/FromReg. 1297 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1298 // No need to export constants. 1299 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1300 1301 // Already exported? 1302 if (FuncInfo.isExportedInst(V)) return; 1303 1304 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1305 CopyValueToVirtualRegister(V, Reg); 1306 } 1307 1308 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1309 const BasicBlock *FromBB) { 1310 // The operands of the setcc have to be in this block. We don't know 1311 // how to export them from some other block. 1312 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1313 // Can export from current BB. 1314 if (VI->getParent() == FromBB) 1315 return true; 1316 1317 // Is already exported, noop. 1318 return FuncInfo.isExportedInst(V); 1319 } 1320 1321 // If this is an argument, we can export it if the BB is the entry block or 1322 // if it is already exported. 1323 if (isa<Argument>(V)) { 1324 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1325 return true; 1326 1327 // Otherwise, can only export this if it is already exported. 1328 return FuncInfo.isExportedInst(V); 1329 } 1330 1331 // Otherwise, constants can always be exported. 1332 return true; 1333 } 1334 1335 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1336 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1337 const MachineBasicBlock *Dst) const { 1338 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1339 if (!BPI) 1340 return 0; 1341 const BasicBlock *SrcBB = Src->getBasicBlock(); 1342 const BasicBlock *DstBB = Dst->getBasicBlock(); 1343 return BPI->getEdgeWeight(SrcBB, DstBB); 1344 } 1345 1346 void SelectionDAGBuilder:: 1347 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1348 uint32_t Weight /* = 0 */) { 1349 if (!Weight) 1350 Weight = getEdgeWeight(Src, Dst); 1351 Src->addSuccessor(Dst, Weight); 1352 } 1353 1354 1355 static bool InBlock(const Value *V, const BasicBlock *BB) { 1356 if (const Instruction *I = dyn_cast<Instruction>(V)) 1357 return I->getParent() == BB; 1358 return true; 1359 } 1360 1361 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1362 /// This function emits a branch and is used at the leaves of an OR or an 1363 /// AND operator tree. 1364 /// 1365 void 1366 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1367 MachineBasicBlock *TBB, 1368 MachineBasicBlock *FBB, 1369 MachineBasicBlock *CurBB, 1370 MachineBasicBlock *SwitchBB) { 1371 const BasicBlock *BB = CurBB->getBasicBlock(); 1372 1373 // If the leaf of the tree is a comparison, merge the condition into 1374 // the caseblock. 1375 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1376 // The operands of the cmp have to be in this block. We don't know 1377 // how to export them from some other block. If this is the first block 1378 // of the sequence, no exporting is needed. 1379 if (CurBB == SwitchBB || 1380 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1381 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1382 ISD::CondCode Condition; 1383 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1384 Condition = getICmpCondCode(IC->getPredicate()); 1385 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1386 Condition = getFCmpCondCode(FC->getPredicate()); 1387 if (TM.Options.NoNaNsFPMath) 1388 Condition = getFCmpCodeWithoutNaN(Condition); 1389 } else { 1390 Condition = ISD::SETEQ; // silence warning. 1391 llvm_unreachable("Unknown compare instruction"); 1392 } 1393 1394 CaseBlock CB(Condition, BOp->getOperand(0), 1395 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1396 SwitchCases.push_back(CB); 1397 return; 1398 } 1399 } 1400 1401 // Create a CaseBlock record representing this branch. 1402 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1403 NULL, TBB, FBB, CurBB); 1404 SwitchCases.push_back(CB); 1405 } 1406 1407 /// FindMergedConditions - If Cond is an expression like 1408 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1409 MachineBasicBlock *TBB, 1410 MachineBasicBlock *FBB, 1411 MachineBasicBlock *CurBB, 1412 MachineBasicBlock *SwitchBB, 1413 unsigned Opc) { 1414 // If this node is not part of the or/and tree, emit it as a branch. 1415 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1416 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1417 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1418 BOp->getParent() != CurBB->getBasicBlock() || 1419 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1420 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1421 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1422 return; 1423 } 1424 1425 // Create TmpBB after CurBB. 1426 MachineFunction::iterator BBI = CurBB; 1427 MachineFunction &MF = DAG.getMachineFunction(); 1428 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1429 CurBB->getParent()->insert(++BBI, TmpBB); 1430 1431 if (Opc == Instruction::Or) { 1432 // Codegen X | Y as: 1433 // jmp_if_X TBB 1434 // jmp TmpBB 1435 // TmpBB: 1436 // jmp_if_Y TBB 1437 // jmp FBB 1438 // 1439 1440 // Emit the LHS condition. 1441 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1442 1443 // Emit the RHS condition into TmpBB. 1444 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1445 } else { 1446 assert(Opc == Instruction::And && "Unknown merge op!"); 1447 // Codegen X & Y as: 1448 // jmp_if_X TmpBB 1449 // jmp FBB 1450 // TmpBB: 1451 // jmp_if_Y TBB 1452 // jmp FBB 1453 // 1454 // This requires creation of TmpBB after CurBB. 1455 1456 // Emit the LHS condition. 1457 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1458 1459 // Emit the RHS condition into TmpBB. 1460 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1461 } 1462 } 1463 1464 /// If the set of cases should be emitted as a series of branches, return true. 1465 /// If we should emit this as a bunch of and/or'd together conditions, return 1466 /// false. 1467 bool 1468 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1469 if (Cases.size() != 2) return true; 1470 1471 // If this is two comparisons of the same values or'd or and'd together, they 1472 // will get folded into a single comparison, so don't emit two blocks. 1473 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1474 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1475 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1476 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1477 return false; 1478 } 1479 1480 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1481 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1482 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1483 Cases[0].CC == Cases[1].CC && 1484 isa<Constant>(Cases[0].CmpRHS) && 1485 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1486 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1487 return false; 1488 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1489 return false; 1490 } 1491 1492 return true; 1493 } 1494 1495 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1496 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1497 1498 // Update machine-CFG edges. 1499 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1500 1501 // Figure out which block is immediately after the current one. 1502 MachineBasicBlock *NextBlock = 0; 1503 MachineFunction::iterator BBI = BrMBB; 1504 if (++BBI != FuncInfo.MF->end()) 1505 NextBlock = BBI; 1506 1507 if (I.isUnconditional()) { 1508 // Update machine-CFG edges. 1509 BrMBB->addSuccessor(Succ0MBB); 1510 1511 // If this is not a fall-through branch, emit the branch. 1512 if (Succ0MBB != NextBlock) 1513 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1514 MVT::Other, getControlRoot(), 1515 DAG.getBasicBlock(Succ0MBB))); 1516 1517 return; 1518 } 1519 1520 // If this condition is one of the special cases we handle, do special stuff 1521 // now. 1522 const Value *CondVal = I.getCondition(); 1523 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1524 1525 // If this is a series of conditions that are or'd or and'd together, emit 1526 // this as a sequence of branches instead of setcc's with and/or operations. 1527 // As long as jumps are not expensive, this should improve performance. 1528 // For example, instead of something like: 1529 // cmp A, B 1530 // C = seteq 1531 // cmp D, E 1532 // F = setle 1533 // or C, F 1534 // jnz foo 1535 // Emit: 1536 // cmp A, B 1537 // je foo 1538 // cmp D, E 1539 // jle foo 1540 // 1541 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1542 if (!TLI.isJumpExpensive() && 1543 BOp->hasOneUse() && 1544 (BOp->getOpcode() == Instruction::And || 1545 BOp->getOpcode() == Instruction::Or)) { 1546 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1547 BOp->getOpcode()); 1548 // If the compares in later blocks need to use values not currently 1549 // exported from this block, export them now. This block should always 1550 // be the first entry. 1551 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1552 1553 // Allow some cases to be rejected. 1554 if (ShouldEmitAsBranches(SwitchCases)) { 1555 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1556 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1557 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1558 } 1559 1560 // Emit the branch for this block. 1561 visitSwitchCase(SwitchCases[0], BrMBB); 1562 SwitchCases.erase(SwitchCases.begin()); 1563 return; 1564 } 1565 1566 // Okay, we decided not to do this, remove any inserted MBB's and clear 1567 // SwitchCases. 1568 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1569 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1570 1571 SwitchCases.clear(); 1572 } 1573 } 1574 1575 // Create a CaseBlock record representing this branch. 1576 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1577 NULL, Succ0MBB, Succ1MBB, BrMBB); 1578 1579 // Use visitSwitchCase to actually insert the fast branch sequence for this 1580 // cond branch. 1581 visitSwitchCase(CB, BrMBB); 1582 } 1583 1584 /// visitSwitchCase - Emits the necessary code to represent a single node in 1585 /// the binary search tree resulting from lowering a switch instruction. 1586 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1587 MachineBasicBlock *SwitchBB) { 1588 SDValue Cond; 1589 SDValue CondLHS = getValue(CB.CmpLHS); 1590 DebugLoc dl = getCurDebugLoc(); 1591 1592 // Build the setcc now. 1593 if (CB.CmpMHS == NULL) { 1594 // Fold "(X == true)" to X and "(X == false)" to !X to 1595 // handle common cases produced by branch lowering. 1596 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1597 CB.CC == ISD::SETEQ) 1598 Cond = CondLHS; 1599 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1600 CB.CC == ISD::SETEQ) { 1601 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1602 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1603 } else 1604 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1605 } else { 1606 assert(CB.CC == ISD::SETCC_INVALID && 1607 "Condition is undefined for to-the-range belonging check."); 1608 1609 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1610 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1611 1612 SDValue CmpOp = getValue(CB.CmpMHS); 1613 EVT VT = CmpOp.getValueType(); 1614 1615 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1616 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1617 ISD::SETULE); 1618 } else { 1619 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1620 VT, CmpOp, DAG.getConstant(Low, VT)); 1621 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1622 DAG.getConstant(High-Low, VT), ISD::SETULE); 1623 } 1624 } 1625 1626 // Update successor info 1627 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1628 // TrueBB and FalseBB are always different unless the incoming IR is 1629 // degenerate. This only happens when running llc on weird IR. 1630 if (CB.TrueBB != CB.FalseBB) 1631 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1632 1633 // Set NextBlock to be the MBB immediately after the current one, if any. 1634 // This is used to avoid emitting unnecessary branches to the next block. 1635 MachineBasicBlock *NextBlock = 0; 1636 MachineFunction::iterator BBI = SwitchBB; 1637 if (++BBI != FuncInfo.MF->end()) 1638 NextBlock = BBI; 1639 1640 // If the lhs block is the next block, invert the condition so that we can 1641 // fall through to the lhs instead of the rhs block. 1642 if (CB.TrueBB == NextBlock) { 1643 std::swap(CB.TrueBB, CB.FalseBB); 1644 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1645 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1646 } 1647 1648 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1649 MVT::Other, getControlRoot(), Cond, 1650 DAG.getBasicBlock(CB.TrueBB)); 1651 1652 // Insert the false branch. Do this even if it's a fall through branch, 1653 // this makes it easier to do DAG optimizations which require inverting 1654 // the branch condition. 1655 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1656 DAG.getBasicBlock(CB.FalseBB)); 1657 1658 DAG.setRoot(BrCond); 1659 } 1660 1661 /// visitJumpTable - Emit JumpTable node in the current MBB 1662 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1663 // Emit the code for the jump table 1664 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1665 EVT PTy = TLI.getPointerTy(); 1666 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1667 JT.Reg, PTy); 1668 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1669 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1670 MVT::Other, Index.getValue(1), 1671 Table, Index); 1672 DAG.setRoot(BrJumpTable); 1673 } 1674 1675 /// visitJumpTableHeader - This function emits necessary code to produce index 1676 /// in the JumpTable from switch case. 1677 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1678 JumpTableHeader &JTH, 1679 MachineBasicBlock *SwitchBB) { 1680 // Subtract the lowest switch case value from the value being switched on and 1681 // conditional branch to default mbb if the result is greater than the 1682 // difference between smallest and largest cases. 1683 SDValue SwitchOp = getValue(JTH.SValue); 1684 EVT VT = SwitchOp.getValueType(); 1685 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1686 DAG.getConstant(JTH.First, VT)); 1687 1688 // The SDNode we just created, which holds the value being switched on minus 1689 // the smallest case value, needs to be copied to a virtual register so it 1690 // can be used as an index into the jump table in a subsequent basic block. 1691 // This value may be smaller or larger than the target's pointer type, and 1692 // therefore require extension or truncating. 1693 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1694 1695 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1696 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1697 JumpTableReg, SwitchOp); 1698 JT.Reg = JumpTableReg; 1699 1700 // Emit the range check for the jump table, and branch to the default block 1701 // for the switch statement if the value being switched on exceeds the largest 1702 // case in the switch. 1703 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1704 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1705 DAG.getConstant(JTH.Last-JTH.First,VT), 1706 ISD::SETUGT); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = 0; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 1713 if (++BBI != FuncInfo.MF->end()) 1714 NextBlock = BBI; 1715 1716 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1717 MVT::Other, CopyTo, CMP, 1718 DAG.getBasicBlock(JT.Default)); 1719 1720 if (JT.MBB != NextBlock) 1721 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1722 DAG.getBasicBlock(JT.MBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitBitTestHeader - This function emits necessary code to produce value 1728 /// suitable for "bit tests" 1729 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1730 MachineBasicBlock *SwitchBB) { 1731 // Subtract the minimum value 1732 SDValue SwitchOp = getValue(B.SValue); 1733 EVT VT = SwitchOp.getValueType(); 1734 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1735 DAG.getConstant(B.First, VT)); 1736 1737 // Check range 1738 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1739 TLI.getSetCCResultType(Sub.getValueType()), 1740 Sub, DAG.getConstant(B.Range, VT), 1741 ISD::SETUGT); 1742 1743 // Determine the type of the test operands. 1744 bool UsePtrType = false; 1745 if (!TLI.isTypeLegal(VT)) 1746 UsePtrType = true; 1747 else { 1748 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1749 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1750 // Switch table case range are encoded into series of masks. 1751 // Just use pointer type, it's guaranteed to fit. 1752 UsePtrType = true; 1753 break; 1754 } 1755 } 1756 if (UsePtrType) { 1757 VT = TLI.getPointerTy(); 1758 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1759 } 1760 1761 B.RegVT = VT; 1762 B.Reg = FuncInfo.CreateReg(VT); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1764 B.Reg, Sub); 1765 1766 // Set NextBlock to be the MBB immediately after the current one, if any. 1767 // This is used to avoid emitting unnecessary branches to the next block. 1768 MachineBasicBlock *NextBlock = 0; 1769 MachineFunction::iterator BBI = SwitchBB; 1770 if (++BBI != FuncInfo.MF->end()) 1771 NextBlock = BBI; 1772 1773 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1774 1775 addSuccessorWithWeight(SwitchBB, B.Default); 1776 addSuccessorWithWeight(SwitchBB, MBB); 1777 1778 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1779 MVT::Other, CopyTo, RangeCmp, 1780 DAG.getBasicBlock(B.Default)); 1781 1782 if (MBB != NextBlock) 1783 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1784 DAG.getBasicBlock(MBB)); 1785 1786 DAG.setRoot(BrRange); 1787 } 1788 1789 /// visitBitTestCase - this function produces one "bit test" 1790 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1791 MachineBasicBlock* NextMBB, 1792 uint32_t BranchWeightToNext, 1793 unsigned Reg, 1794 BitTestCase &B, 1795 MachineBasicBlock *SwitchBB) { 1796 EVT VT = BB.RegVT; 1797 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1798 Reg, VT); 1799 SDValue Cmp; 1800 unsigned PopCount = CountPopulation_64(B.Mask); 1801 if (PopCount == 1) { 1802 // Testing for a single bit; just compare the shift count with what it 1803 // would need to be to shift a 1 bit in that position. 1804 Cmp = DAG.getSetCC(getCurDebugLoc(), 1805 TLI.getSetCCResultType(VT), 1806 ShiftOp, 1807 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1808 ISD::SETEQ); 1809 } else if (PopCount == BB.Range) { 1810 // There is only one zero bit in the range, test for it directly. 1811 Cmp = DAG.getSetCC(getCurDebugLoc(), 1812 TLI.getSetCCResultType(VT), 1813 ShiftOp, 1814 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1815 ISD::SETNE); 1816 } else { 1817 // Make desired shift 1818 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1819 DAG.getConstant(1, VT), ShiftOp); 1820 1821 // Emit bit tests and jumps 1822 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1823 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1824 Cmp = DAG.getSetCC(getCurDebugLoc(), 1825 TLI.getSetCCResultType(VT), 1826 AndOp, DAG.getConstant(0, VT), 1827 ISD::SETNE); 1828 } 1829 1830 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1831 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1832 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1833 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1834 1835 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1836 MVT::Other, getControlRoot(), 1837 Cmp, DAG.getBasicBlock(B.TargetBB)); 1838 1839 // Set NextBlock to be the MBB immediately after the current one, if any. 1840 // This is used to avoid emitting unnecessary branches to the next block. 1841 MachineBasicBlock *NextBlock = 0; 1842 MachineFunction::iterator BBI = SwitchBB; 1843 if (++BBI != FuncInfo.MF->end()) 1844 NextBlock = BBI; 1845 1846 if (NextMBB != NextBlock) 1847 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1848 DAG.getBasicBlock(NextMBB)); 1849 1850 DAG.setRoot(BrAnd); 1851 } 1852 1853 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1854 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1855 1856 // Retrieve successors. 1857 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1858 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1859 1860 const Value *Callee(I.getCalledValue()); 1861 const Function *Fn = dyn_cast<Function>(Callee); 1862 if (isa<InlineAsm>(Callee)) 1863 visitInlineAsm(&I); 1864 else if (Fn && Fn->isIntrinsic()) { 1865 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1866 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1867 } else 1868 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1869 1870 // If the value of the invoke is used outside of its defining block, make it 1871 // available as a virtual register. 1872 CopyToExportRegsIfNeeded(&I); 1873 1874 // Update successor info 1875 addSuccessorWithWeight(InvokeMBB, Return); 1876 addSuccessorWithWeight(InvokeMBB, LandingPad); 1877 1878 // Drop into normal successor. 1879 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1880 MVT::Other, getControlRoot(), 1881 DAG.getBasicBlock(Return))); 1882 } 1883 1884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1886 } 1887 1888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1889 assert(FuncInfo.MBB->isLandingPad() && 1890 "Call to landingpad not in landing pad!"); 1891 1892 MachineBasicBlock *MBB = FuncInfo.MBB; 1893 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1894 AddLandingPadInfo(LP, MMI, MBB); 1895 1896 // If there aren't registers to copy the values into (e.g., during SjLj 1897 // exceptions), then don't bother to create these DAG nodes. 1898 if (TLI.getExceptionPointerRegister() == 0 && 1899 TLI.getExceptionSelectorRegister() == 0) 1900 return; 1901 1902 SmallVector<EVT, 2> ValueVTs; 1903 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1904 1905 // Insert the EXCEPTIONADDR instruction. 1906 assert(FuncInfo.MBB->isLandingPad() && 1907 "Call to eh.exception not in landing pad!"); 1908 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1909 SDValue Ops[2]; 1910 Ops[0] = DAG.getRoot(); 1911 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1912 SDValue Chain = Op1.getValue(1); 1913 1914 // Insert the EHSELECTION instruction. 1915 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1916 Ops[0] = Op1; 1917 Ops[1] = Chain; 1918 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1919 Chain = Op2.getValue(1); 1920 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1921 1922 Ops[0] = Op1; 1923 Ops[1] = Op2; 1924 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1925 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1926 &Ops[0], 2); 1927 1928 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1929 setValue(&LP, RetPair.first); 1930 DAG.setRoot(RetPair.second); 1931 } 1932 1933 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1934 /// small case ranges). 1935 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1936 CaseRecVector& WorkList, 1937 const Value* SV, 1938 MachineBasicBlock *Default, 1939 MachineBasicBlock *SwitchBB) { 1940 // Size is the number of Cases represented by this range. 1941 size_t Size = CR.Range.second - CR.Range.first; 1942 if (Size > 3) 1943 return false; 1944 1945 // Get the MachineFunction which holds the current MBB. This is used when 1946 // inserting any additional MBBs necessary to represent the switch. 1947 MachineFunction *CurMF = FuncInfo.MF; 1948 1949 // Figure out which block is immediately after the current one. 1950 MachineBasicBlock *NextBlock = 0; 1951 MachineFunction::iterator BBI = CR.CaseBB; 1952 1953 if (++BBI != FuncInfo.MF->end()) 1954 NextBlock = BBI; 1955 1956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1957 // If any two of the cases has the same destination, and if one value 1958 // is the same as the other, but has one bit unset that the other has set, 1959 // use bit manipulation to do two compares at once. For example: 1960 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1961 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1962 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1963 if (Size == 2 && CR.CaseBB == SwitchBB) { 1964 Case &Small = *CR.Range.first; 1965 Case &Big = *(CR.Range.second-1); 1966 1967 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1968 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1969 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1970 1971 // Check that there is only one bit different. 1972 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1973 (SmallValue | BigValue) == BigValue) { 1974 // Isolate the common bit. 1975 APInt CommonBit = BigValue & ~SmallValue; 1976 assert((SmallValue | CommonBit) == BigValue && 1977 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1978 1979 SDValue CondLHS = getValue(SV); 1980 EVT VT = CondLHS.getValueType(); 1981 DebugLoc DL = getCurDebugLoc(); 1982 1983 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1984 DAG.getConstant(CommonBit, VT)); 1985 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1986 Or, DAG.getConstant(BigValue, VT), 1987 ISD::SETEQ); 1988 1989 // Update successor info. 1990 // Both Small and Big will jump to Small.BB, so we sum up the weights. 1991 addSuccessorWithWeight(SwitchBB, Small.BB, 1992 Small.ExtraWeight + Big.ExtraWeight); 1993 addSuccessorWithWeight(SwitchBB, Default, 1994 // The default destination is the first successor in IR. 1995 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 1996 1997 // Insert the true branch. 1998 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1999 getControlRoot(), Cond, 2000 DAG.getBasicBlock(Small.BB)); 2001 2002 // Insert the false branch. 2003 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2004 DAG.getBasicBlock(Default)); 2005 2006 DAG.setRoot(BrCond); 2007 return true; 2008 } 2009 } 2010 } 2011 2012 // Order cases by weight so the most likely case will be checked first. 2013 uint32_t UnhandledWeights = 0; 2014 if (BPI) { 2015 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2016 uint32_t IWeight = I->ExtraWeight; 2017 UnhandledWeights += IWeight; 2018 for (CaseItr J = CR.Range.first; J < I; ++J) { 2019 uint32_t JWeight = J->ExtraWeight; 2020 if (IWeight > JWeight) 2021 std::swap(*I, *J); 2022 } 2023 } 2024 } 2025 // Rearrange the case blocks so that the last one falls through if possible. 2026 Case &BackCase = *(CR.Range.second-1); 2027 if (Size > 1 && 2028 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2029 // The last case block won't fall through into 'NextBlock' if we emit the 2030 // branches in this order. See if rearranging a case value would help. 2031 // We start at the bottom as it's the case with the least weight. 2032 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2033 if (I->BB == NextBlock) { 2034 std::swap(*I, BackCase); 2035 break; 2036 } 2037 } 2038 } 2039 2040 // Create a CaseBlock record representing a conditional branch to 2041 // the Case's target mbb if the value being switched on SV is equal 2042 // to C. 2043 MachineBasicBlock *CurBlock = CR.CaseBB; 2044 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2045 MachineBasicBlock *FallThrough; 2046 if (I != E-1) { 2047 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2048 CurMF->insert(BBI, FallThrough); 2049 2050 // Put SV in a virtual register to make it available from the new blocks. 2051 ExportFromCurrentBlock(SV); 2052 } else { 2053 // If the last case doesn't match, go to the default block. 2054 FallThrough = Default; 2055 } 2056 2057 const Value *RHS, *LHS, *MHS; 2058 ISD::CondCode CC; 2059 if (I->High == I->Low) { 2060 // This is just small small case range :) containing exactly 1 case 2061 CC = ISD::SETEQ; 2062 LHS = SV; RHS = I->High; MHS = NULL; 2063 } else { 2064 CC = ISD::SETCC_INVALID; 2065 LHS = I->Low; MHS = SV; RHS = I->High; 2066 } 2067 2068 // The false weight should be sum of all un-handled cases. 2069 UnhandledWeights -= I->ExtraWeight; 2070 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2071 /* me */ CurBlock, 2072 /* trueweight */ I->ExtraWeight, 2073 /* falseweight */ UnhandledWeights); 2074 2075 // If emitting the first comparison, just call visitSwitchCase to emit the 2076 // code into the current block. Otherwise, push the CaseBlock onto the 2077 // vector to be later processed by SDISel, and insert the node's MBB 2078 // before the next MBB. 2079 if (CurBlock == SwitchBB) 2080 visitSwitchCase(CB, SwitchBB); 2081 else 2082 SwitchCases.push_back(CB); 2083 2084 CurBlock = FallThrough; 2085 } 2086 2087 return true; 2088 } 2089 2090 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2091 return TLI.supportJumpTables() && 2092 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2093 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2094 } 2095 2096 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2097 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2098 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2099 return (LastExt - FirstExt + 1ULL); 2100 } 2101 2102 /// handleJTSwitchCase - Emit jumptable for current switch case range 2103 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2104 CaseRecVector &WorkList, 2105 const Value *SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 Case& FrontCase = *CR.Range.first; 2109 Case& BackCase = *(CR.Range.second-1); 2110 2111 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2112 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2113 2114 APInt TSize(First.getBitWidth(), 0); 2115 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2116 TSize += I->size(); 2117 2118 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2119 return false; 2120 2121 APInt Range = ComputeRange(First, Last); 2122 // The density is TSize / Range. Require at least 40%. 2123 // It should not be possible for IntTSize to saturate for sane code, but make 2124 // sure we handle Range saturation correctly. 2125 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2126 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2127 if (IntTSize * 10 < IntRange * 4) 2128 return false; 2129 2130 DEBUG(dbgs() << "Lowering jump table\n" 2131 << "First entry: " << First << ". Last entry: " << Last << '\n' 2132 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2133 2134 // Get the MachineFunction which holds the current MBB. This is used when 2135 // inserting any additional MBBs necessary to represent the switch. 2136 MachineFunction *CurMF = FuncInfo.MF; 2137 2138 // Figure out which block is immediately after the current one. 2139 MachineFunction::iterator BBI = CR.CaseBB; 2140 ++BBI; 2141 2142 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2143 2144 // Create a new basic block to hold the code for loading the address 2145 // of the jump table, and jumping to it. Update successor information; 2146 // we will either branch to the default case for the switch, or the jump 2147 // table. 2148 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2149 CurMF->insert(BBI, JumpTableBB); 2150 2151 addSuccessorWithWeight(CR.CaseBB, Default); 2152 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2153 2154 // Build a vector of destination BBs, corresponding to each target 2155 // of the jump table. If the value of the jump table slot corresponds to 2156 // a case statement, push the case's BB onto the vector, otherwise, push 2157 // the default BB. 2158 std::vector<MachineBasicBlock*> DestBBs; 2159 APInt TEI = First; 2160 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2161 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2162 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2163 2164 if (Low.ule(TEI) && TEI.ule(High)) { 2165 DestBBs.push_back(I->BB); 2166 if (TEI==High) 2167 ++I; 2168 } else { 2169 DestBBs.push_back(Default); 2170 } 2171 } 2172 2173 // Calculate weight for each unique destination in CR. 2174 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2175 if (FuncInfo.BPI) 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2178 DestWeights.find(I->BB); 2179 if (Itr != DestWeights.end()) 2180 Itr->second += I->ExtraWeight; 2181 else 2182 DestWeights[I->BB] = I->ExtraWeight; 2183 } 2184 2185 // Update successor info. Add one edge to each unique successor. 2186 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2187 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2188 E = DestBBs.end(); I != E; ++I) { 2189 if (!SuccsHandled[(*I)->getNumber()]) { 2190 SuccsHandled[(*I)->getNumber()] = true; 2191 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2192 DestWeights.find(*I); 2193 addSuccessorWithWeight(JumpTableBB, *I, 2194 Itr != DestWeights.end() ? Itr->second : 0); 2195 } 2196 } 2197 2198 // Create a jump table index for this jump table. 2199 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2200 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2201 ->createJumpTableIndex(DestBBs); 2202 2203 // Set the jump table information so that we can codegen it as a second 2204 // MachineBasicBlock 2205 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2206 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2207 if (CR.CaseBB == SwitchBB) 2208 visitJumpTableHeader(JT, JTH, SwitchBB); 2209 2210 JTCases.push_back(JumpTableBlock(JTH, JT)); 2211 return true; 2212 } 2213 2214 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2215 /// 2 subtrees. 2216 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2217 CaseRecVector& WorkList, 2218 const Value* SV, 2219 MachineBasicBlock *Default, 2220 MachineBasicBlock *SwitchBB) { 2221 // Get the MachineFunction which holds the current MBB. This is used when 2222 // inserting any additional MBBs necessary to represent the switch. 2223 MachineFunction *CurMF = FuncInfo.MF; 2224 2225 // Figure out which block is immediately after the current one. 2226 MachineFunction::iterator BBI = CR.CaseBB; 2227 ++BBI; 2228 2229 Case& FrontCase = *CR.Range.first; 2230 Case& BackCase = *(CR.Range.second-1); 2231 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2232 2233 // Size is the number of Cases represented by this range. 2234 unsigned Size = CR.Range.second - CR.Range.first; 2235 2236 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2237 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2238 double FMetric = 0; 2239 CaseItr Pivot = CR.Range.first + Size/2; 2240 2241 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2242 // (heuristically) allow us to emit JumpTable's later. 2243 APInt TSize(First.getBitWidth(), 0); 2244 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2245 I!=E; ++I) 2246 TSize += I->size(); 2247 2248 APInt LSize = FrontCase.size(); 2249 APInt RSize = TSize-LSize; 2250 DEBUG(dbgs() << "Selecting best pivot: \n" 2251 << "First: " << First << ", Last: " << Last <<'\n' 2252 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2253 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2254 J!=E; ++I, ++J) { 2255 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2256 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2257 APInt Range = ComputeRange(LEnd, RBegin); 2258 assert((Range - 2ULL).isNonNegative() && 2259 "Invalid case distance"); 2260 // Use volatile double here to avoid excess precision issues on some hosts, 2261 // e.g. that use 80-bit X87 registers. 2262 volatile double LDensity = 2263 (double)LSize.roundToDouble() / 2264 (LEnd - First + 1ULL).roundToDouble(); 2265 volatile double RDensity = 2266 (double)RSize.roundToDouble() / 2267 (Last - RBegin + 1ULL).roundToDouble(); 2268 double Metric = Range.logBase2()*(LDensity+RDensity); 2269 // Should always split in some non-trivial place 2270 DEBUG(dbgs() <<"=>Step\n" 2271 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2272 << "LDensity: " << LDensity 2273 << ", RDensity: " << RDensity << '\n' 2274 << "Metric: " << Metric << '\n'); 2275 if (FMetric < Metric) { 2276 Pivot = J; 2277 FMetric = Metric; 2278 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2279 } 2280 2281 LSize += J->size(); 2282 RSize -= J->size(); 2283 } 2284 if (areJTsAllowed(TLI)) { 2285 // If our case is dense we *really* should handle it earlier! 2286 assert((FMetric > 0) && "Should handle dense range earlier!"); 2287 } else { 2288 Pivot = CR.Range.first + Size/2; 2289 } 2290 2291 CaseRange LHSR(CR.Range.first, Pivot); 2292 CaseRange RHSR(Pivot, CR.Range.second); 2293 const Constant *C = Pivot->Low; 2294 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2295 2296 // We know that we branch to the LHS if the Value being switched on is 2297 // less than the Pivot value, C. We use this to optimize our binary 2298 // tree a bit, by recognizing that if SV is greater than or equal to the 2299 // LHS's Case Value, and that Case Value is exactly one less than the 2300 // Pivot's Value, then we can branch directly to the LHS's Target, 2301 // rather than creating a leaf node for it. 2302 if ((LHSR.second - LHSR.first) == 1 && 2303 LHSR.first->High == CR.GE && 2304 cast<ConstantInt>(C)->getValue() == 2305 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2306 TrueBB = LHSR.first->BB; 2307 } else { 2308 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2309 CurMF->insert(BBI, TrueBB); 2310 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2311 2312 // Put SV in a virtual register to make it available from the new blocks. 2313 ExportFromCurrentBlock(SV); 2314 } 2315 2316 // Similar to the optimization above, if the Value being switched on is 2317 // known to be less than the Constant CR.LT, and the current Case Value 2318 // is CR.LT - 1, then we can branch directly to the target block for 2319 // the current Case Value, rather than emitting a RHS leaf node for it. 2320 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2321 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2322 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2323 FalseBB = RHSR.first->BB; 2324 } else { 2325 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2326 CurMF->insert(BBI, FalseBB); 2327 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2328 2329 // Put SV in a virtual register to make it available from the new blocks. 2330 ExportFromCurrentBlock(SV); 2331 } 2332 2333 // Create a CaseBlock record representing a conditional branch to 2334 // the LHS node if the value being switched on SV is less than C. 2335 // Otherwise, branch to LHS. 2336 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2337 2338 if (CR.CaseBB == SwitchBB) 2339 visitSwitchCase(CB, SwitchBB); 2340 else 2341 SwitchCases.push_back(CB); 2342 2343 return true; 2344 } 2345 2346 /// handleBitTestsSwitchCase - if current case range has few destination and 2347 /// range span less, than machine word bitwidth, encode case range into series 2348 /// of masks and emit bit tests with these masks. 2349 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock *SwitchBB){ 2354 EVT PTy = TLI.getPointerTy(); 2355 unsigned IntPtrBits = PTy.getSizeInBits(); 2356 2357 Case& FrontCase = *CR.Range.first; 2358 Case& BackCase = *(CR.Range.second-1); 2359 2360 // Get the MachineFunction which holds the current MBB. This is used when 2361 // inserting any additional MBBs necessary to represent the switch. 2362 MachineFunction *CurMF = FuncInfo.MF; 2363 2364 // If target does not have legal shift left, do not emit bit tests at all. 2365 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2366 return false; 2367 2368 size_t numCmps = 0; 2369 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2370 I!=E; ++I) { 2371 // Single case counts one, case range - two. 2372 numCmps += (I->Low == I->High ? 1 : 2); 2373 } 2374 2375 // Count unique destinations 2376 SmallSet<MachineBasicBlock*, 4> Dests; 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2378 Dests.insert(I->BB); 2379 if (Dests.size() > 3) 2380 // Don't bother the code below, if there are too much unique destinations 2381 return false; 2382 } 2383 DEBUG(dbgs() << "Total number of unique destinations: " 2384 << Dests.size() << '\n' 2385 << "Total number of comparisons: " << numCmps << '\n'); 2386 2387 // Compute span of values. 2388 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2389 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2390 APInt cmpRange = maxValue - minValue; 2391 2392 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2393 << "Low bound: " << minValue << '\n' 2394 << "High bound: " << maxValue << '\n'); 2395 2396 if (cmpRange.uge(IntPtrBits) || 2397 (!(Dests.size() == 1 && numCmps >= 3) && 2398 !(Dests.size() == 2 && numCmps >= 5) && 2399 !(Dests.size() >= 3 && numCmps >= 6))) 2400 return false; 2401 2402 DEBUG(dbgs() << "Emitting bit tests\n"); 2403 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2404 2405 // Optimize the case where all the case values fit in a 2406 // word without having to subtract minValue. In this case, 2407 // we can optimize away the subtraction. 2408 if (maxValue.ult(IntPtrBits)) { 2409 cmpRange = maxValue; 2410 } else { 2411 lowBound = minValue; 2412 } 2413 2414 CaseBitsVector CasesBits; 2415 unsigned i, count = 0; 2416 2417 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2418 MachineBasicBlock* Dest = I->BB; 2419 for (i = 0; i < count; ++i) 2420 if (Dest == CasesBits[i].BB) 2421 break; 2422 2423 if (i == count) { 2424 assert((count < 3) && "Too much destinations to test!"); 2425 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2426 count++; 2427 } 2428 2429 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2430 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2431 2432 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2433 uint64_t hi = (highValue - lowBound).getZExtValue(); 2434 CasesBits[i].ExtraWeight += I->ExtraWeight; 2435 2436 for (uint64_t j = lo; j <= hi; j++) { 2437 CasesBits[i].Mask |= 1ULL << j; 2438 CasesBits[i].Bits++; 2439 } 2440 2441 } 2442 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2443 2444 BitTestInfo BTC; 2445 2446 // Figure out which block is immediately after the current one. 2447 MachineFunction::iterator BBI = CR.CaseBB; 2448 ++BBI; 2449 2450 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2451 2452 DEBUG(dbgs() << "Cases:\n"); 2453 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2454 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2455 << ", Bits: " << CasesBits[i].Bits 2456 << ", BB: " << CasesBits[i].BB << '\n'); 2457 2458 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, CaseBB); 2460 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2461 CaseBB, 2462 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 BitTestBlock BTB(lowBound, cmpRange, SV, 2469 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2470 CR.CaseBB, Default, BTC); 2471 2472 if (CR.CaseBB == SwitchBB) 2473 visitBitTestHeader(BTB, SwitchBB); 2474 2475 BitTestCases.push_back(BTB); 2476 2477 return true; 2478 } 2479 2480 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2481 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2482 const SwitchInst& SI) { 2483 2484 /// Use a shorter form of declaration, and also 2485 /// show the we want to use CRSBuilder as Clusterifier. 2486 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2487 2488 Clusterifier TheClusterifier; 2489 2490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2491 // Start with "simple" cases 2492 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2493 i != e; ++i) { 2494 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2495 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2496 2497 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2498 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2499 } 2500 2501 TheClusterifier.optimize(); 2502 2503 size_t numCmps = 0; 2504 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2505 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2506 Clusterifier::Cluster &C = *i; 2507 // Update edge weight for the cluster. 2508 unsigned W = C.first.Weight; 2509 2510 // FIXME: Currently work with ConstantInt based numbers. 2511 // Changing it to APInt based is a pretty heavy for this commit. 2512 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2513 C.first.getHigh().toConstantInt(), C.second, W)); 2514 2515 if (C.first.getLow() != C.first.getHigh()) 2516 // A range counts double, since it requires two compares. 2517 ++numCmps; 2518 } 2519 2520 return numCmps; 2521 } 2522 2523 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2524 MachineBasicBlock *Last) { 2525 // Update JTCases. 2526 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2527 if (JTCases[i].first.HeaderBB == First) 2528 JTCases[i].first.HeaderBB = Last; 2529 2530 // Update BitTestCases. 2531 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2532 if (BitTestCases[i].Parent == First) 2533 BitTestCases[i].Parent = Last; 2534 } 2535 2536 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2537 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2538 2539 // Figure out which block is immediately after the current one. 2540 MachineBasicBlock *NextBlock = 0; 2541 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2542 2543 // If there is only the default destination, branch to it if it is not the 2544 // next basic block. Otherwise, just fall through. 2545 if (!SI.getNumCases()) { 2546 // Update machine-CFG edges. 2547 2548 // If this is not a fall-through branch, emit the branch. 2549 SwitchMBB->addSuccessor(Default); 2550 if (Default != NextBlock) 2551 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2552 MVT::Other, getControlRoot(), 2553 DAG.getBasicBlock(Default))); 2554 2555 return; 2556 } 2557 2558 // If there are any non-default case statements, create a vector of Cases 2559 // representing each one, and sort the vector so that we can efficiently 2560 // create a binary search tree from them. 2561 CaseVector Cases; 2562 size_t numCmps = Clusterify(Cases, SI); 2563 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2564 << ". Total compares: " << numCmps << '\n'); 2565 (void)numCmps; 2566 2567 // Get the Value to be switched on and default basic blocks, which will be 2568 // inserted into CaseBlock records, representing basic blocks in the binary 2569 // search tree. 2570 const Value *SV = SI.getCondition(); 2571 2572 // Push the initial CaseRec onto the worklist 2573 CaseRecVector WorkList; 2574 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2575 CaseRange(Cases.begin(),Cases.end()))); 2576 2577 while (!WorkList.empty()) { 2578 // Grab a record representing a case range to process off the worklist 2579 CaseRec CR = WorkList.back(); 2580 WorkList.pop_back(); 2581 2582 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2583 continue; 2584 2585 // If the range has few cases (two or less) emit a series of specific 2586 // tests. 2587 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2588 continue; 2589 2590 // If the switch has more than N blocks, and is at least 40% dense, and the 2591 // target supports indirect branches, then emit a jump table rather than 2592 // lowering the switch to a binary tree of conditional branches. 2593 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2594 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2595 continue; 2596 2597 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2598 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2599 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2600 } 2601 } 2602 2603 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2604 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2605 2606 // Update machine-CFG edges with unique successors. 2607 SmallSet<BasicBlock*, 32> Done; 2608 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2609 BasicBlock *BB = I.getSuccessor(i); 2610 bool Inserted = Done.insert(BB); 2611 if (!Inserted) 2612 continue; 2613 2614 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2615 addSuccessorWithWeight(IndirectBrMBB, Succ); 2616 } 2617 2618 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2619 MVT::Other, getControlRoot(), 2620 getValue(I.getAddress()))); 2621 } 2622 2623 void SelectionDAGBuilder::visitFSub(const User &I) { 2624 // -0.0 - X --> fneg 2625 Type *Ty = I.getType(); 2626 if (isa<Constant>(I.getOperand(0)) && 2627 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2628 SDValue Op2 = getValue(I.getOperand(1)); 2629 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2630 Op2.getValueType(), Op2)); 2631 return; 2632 } 2633 2634 visitBinary(I, ISD::FSUB); 2635 } 2636 2637 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2638 SDValue Op1 = getValue(I.getOperand(0)); 2639 SDValue Op2 = getValue(I.getOperand(1)); 2640 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2641 Op1.getValueType(), Op1, Op2)); 2642 } 2643 2644 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2645 SDValue Op1 = getValue(I.getOperand(0)); 2646 SDValue Op2 = getValue(I.getOperand(1)); 2647 2648 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2649 2650 // Coerce the shift amount to the right type if we can. 2651 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2652 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2653 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2654 DebugLoc DL = getCurDebugLoc(); 2655 2656 // If the operand is smaller than the shift count type, promote it. 2657 if (ShiftSize > Op2Size) 2658 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2659 2660 // If the operand is larger than the shift count type but the shift 2661 // count type has enough bits to represent any shift value, truncate 2662 // it now. This is a common case and it exposes the truncate to 2663 // optimization early. 2664 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2665 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2666 // Otherwise we'll need to temporarily settle for some other convenient 2667 // type. Type legalization will make adjustments once the shiftee is split. 2668 else 2669 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2670 } 2671 2672 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2673 Op1.getValueType(), Op1, Op2)); 2674 } 2675 2676 void SelectionDAGBuilder::visitSDiv(const User &I) { 2677 SDValue Op1 = getValue(I.getOperand(0)); 2678 SDValue Op2 = getValue(I.getOperand(1)); 2679 2680 // Turn exact SDivs into multiplications. 2681 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2682 // exact bit. 2683 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2684 !isa<ConstantSDNode>(Op1) && 2685 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2686 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2687 else 2688 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2689 Op1, Op2)); 2690 } 2691 2692 void SelectionDAGBuilder::visitICmp(const User &I) { 2693 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2694 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2695 predicate = IC->getPredicate(); 2696 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2697 predicate = ICmpInst::Predicate(IC->getPredicate()); 2698 SDValue Op1 = getValue(I.getOperand(0)); 2699 SDValue Op2 = getValue(I.getOperand(1)); 2700 ISD::CondCode Opcode = getICmpCondCode(predicate); 2701 2702 EVT DestVT = TLI.getValueType(I.getType()); 2703 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2704 } 2705 2706 void SelectionDAGBuilder::visitFCmp(const User &I) { 2707 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2708 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2709 predicate = FC->getPredicate(); 2710 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2711 predicate = FCmpInst::Predicate(FC->getPredicate()); 2712 SDValue Op1 = getValue(I.getOperand(0)); 2713 SDValue Op2 = getValue(I.getOperand(1)); 2714 ISD::CondCode Condition = getFCmpCondCode(predicate); 2715 if (TM.Options.NoNaNsFPMath) 2716 Condition = getFCmpCodeWithoutNaN(Condition); 2717 EVT DestVT = TLI.getValueType(I.getType()); 2718 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2719 } 2720 2721 void SelectionDAGBuilder::visitSelect(const User &I) { 2722 SmallVector<EVT, 4> ValueVTs; 2723 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2724 unsigned NumValues = ValueVTs.size(); 2725 if (NumValues == 0) return; 2726 2727 SmallVector<SDValue, 4> Values(NumValues); 2728 SDValue Cond = getValue(I.getOperand(0)); 2729 SDValue TrueVal = getValue(I.getOperand(1)); 2730 SDValue FalseVal = getValue(I.getOperand(2)); 2731 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2732 ISD::VSELECT : ISD::SELECT; 2733 2734 for (unsigned i = 0; i != NumValues; ++i) 2735 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2736 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2737 Cond, 2738 SDValue(TrueVal.getNode(), 2739 TrueVal.getResNo() + i), 2740 SDValue(FalseVal.getNode(), 2741 FalseVal.getResNo() + i)); 2742 2743 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2744 DAG.getVTList(&ValueVTs[0], NumValues), 2745 &Values[0], NumValues)); 2746 } 2747 2748 void SelectionDAGBuilder::visitTrunc(const User &I) { 2749 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2750 SDValue N = getValue(I.getOperand(0)); 2751 EVT DestVT = TLI.getValueType(I.getType()); 2752 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2753 } 2754 2755 void SelectionDAGBuilder::visitZExt(const User &I) { 2756 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2757 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2758 SDValue N = getValue(I.getOperand(0)); 2759 EVT DestVT = TLI.getValueType(I.getType()); 2760 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2761 } 2762 2763 void SelectionDAGBuilder::visitSExt(const User &I) { 2764 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2765 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = TLI.getValueType(I.getType()); 2768 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2769 } 2770 2771 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2772 // FPTrunc is never a no-op cast, no need to check 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TLI.getValueType(I.getType()); 2775 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2776 DestVT, N, 2777 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2778 } 2779 2780 void SelectionDAGBuilder::visitFPExt(const User &I){ 2781 // FPExt is never a no-op cast, no need to check 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = TLI.getValueType(I.getType()); 2784 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2785 } 2786 2787 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2788 // FPToUI is never a no-op cast, no need to check 2789 SDValue N = getValue(I.getOperand(0)); 2790 EVT DestVT = TLI.getValueType(I.getType()); 2791 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2792 } 2793 2794 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2795 // FPToSI is never a no-op cast, no need to check 2796 SDValue N = getValue(I.getOperand(0)); 2797 EVT DestVT = TLI.getValueType(I.getType()); 2798 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2799 } 2800 2801 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2802 // UIToFP is never a no-op cast, no need to check 2803 SDValue N = getValue(I.getOperand(0)); 2804 EVT DestVT = TLI.getValueType(I.getType()); 2805 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2806 } 2807 2808 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2809 // SIToFP is never a no-op cast, no need to check 2810 SDValue N = getValue(I.getOperand(0)); 2811 EVT DestVT = TLI.getValueType(I.getType()); 2812 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2813 } 2814 2815 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2816 // What to do depends on the size of the integer and the size of the pointer. 2817 // We can either truncate, zero extend, or no-op, accordingly. 2818 SDValue N = getValue(I.getOperand(0)); 2819 EVT DestVT = TLI.getValueType(I.getType()); 2820 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2821 } 2822 2823 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2824 // What to do depends on the size of the integer and the size of the pointer. 2825 // We can either truncate, zero extend, or no-op, accordingly. 2826 SDValue N = getValue(I.getOperand(0)); 2827 EVT DestVT = TLI.getValueType(I.getType()); 2828 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2829 } 2830 2831 void SelectionDAGBuilder::visitBitCast(const User &I) { 2832 SDValue N = getValue(I.getOperand(0)); 2833 EVT DestVT = TLI.getValueType(I.getType()); 2834 2835 // BitCast assures us that source and destination are the same size so this is 2836 // either a BITCAST or a no-op. 2837 if (DestVT != N.getValueType()) 2838 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2839 DestVT, N)); // convert types. 2840 else 2841 setValue(&I, N); // noop cast. 2842 } 2843 2844 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2845 SDValue InVec = getValue(I.getOperand(0)); 2846 SDValue InVal = getValue(I.getOperand(1)); 2847 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2848 TLI.getPointerTy(), 2849 getValue(I.getOperand(2))); 2850 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2851 TLI.getValueType(I.getType()), 2852 InVec, InVal, InIdx)); 2853 } 2854 2855 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2856 SDValue InVec = getValue(I.getOperand(0)); 2857 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2858 TLI.getPointerTy(), 2859 getValue(I.getOperand(1))); 2860 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2861 TLI.getValueType(I.getType()), InVec, InIdx)); 2862 } 2863 2864 // Utility for visitShuffleVector - Return true if every element in Mask, 2865 // beginning from position Pos and ending in Pos+Size, falls within the 2866 // specified sequential range [L, L+Pos). or is undef. 2867 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2868 unsigned Pos, unsigned Size, int Low) { 2869 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2870 if (Mask[i] >= 0 && Mask[i] != Low) 2871 return false; 2872 return true; 2873 } 2874 2875 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2876 SDValue Src1 = getValue(I.getOperand(0)); 2877 SDValue Src2 = getValue(I.getOperand(1)); 2878 2879 SmallVector<int, 8> Mask; 2880 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2881 unsigned MaskNumElts = Mask.size(); 2882 2883 EVT VT = TLI.getValueType(I.getType()); 2884 EVT SrcVT = Src1.getValueType(); 2885 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2886 2887 if (SrcNumElts == MaskNumElts) { 2888 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2889 &Mask[0])); 2890 return; 2891 } 2892 2893 // Normalize the shuffle vector since mask and vector length don't match. 2894 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2895 // Mask is longer than the source vectors and is a multiple of the source 2896 // vectors. We can use concatenate vector to make the mask and vectors 2897 // lengths match. 2898 if (SrcNumElts*2 == MaskNumElts) { 2899 // First check for Src1 in low and Src2 in high 2900 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2901 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2902 // The shuffle is concatenating two vectors together. 2903 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2904 VT, Src1, Src2)); 2905 return; 2906 } 2907 // Then check for Src2 in low and Src1 in high 2908 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2909 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2910 // The shuffle is concatenating two vectors together. 2911 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2912 VT, Src2, Src1)); 2913 return; 2914 } 2915 } 2916 2917 // Pad both vectors with undefs to make them the same length as the mask. 2918 unsigned NumConcat = MaskNumElts / SrcNumElts; 2919 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2920 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2921 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2922 2923 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2924 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2925 MOps1[0] = Src1; 2926 MOps2[0] = Src2; 2927 2928 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2929 getCurDebugLoc(), VT, 2930 &MOps1[0], NumConcat); 2931 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2932 getCurDebugLoc(), VT, 2933 &MOps2[0], NumConcat); 2934 2935 // Readjust mask for new input vector length. 2936 SmallVector<int, 8> MappedOps; 2937 for (unsigned i = 0; i != MaskNumElts; ++i) { 2938 int Idx = Mask[i]; 2939 if (Idx >= (int)SrcNumElts) 2940 Idx -= SrcNumElts - MaskNumElts; 2941 MappedOps.push_back(Idx); 2942 } 2943 2944 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2945 &MappedOps[0])); 2946 return; 2947 } 2948 2949 if (SrcNumElts > MaskNumElts) { 2950 // Analyze the access pattern of the vector to see if we can extract 2951 // two subvectors and do the shuffle. The analysis is done by calculating 2952 // the range of elements the mask access on both vectors. 2953 int MinRange[2] = { static_cast<int>(SrcNumElts), 2954 static_cast<int>(SrcNumElts)}; 2955 int MaxRange[2] = {-1, -1}; 2956 2957 for (unsigned i = 0; i != MaskNumElts; ++i) { 2958 int Idx = Mask[i]; 2959 unsigned Input = 0; 2960 if (Idx < 0) 2961 continue; 2962 2963 if (Idx >= (int)SrcNumElts) { 2964 Input = 1; 2965 Idx -= SrcNumElts; 2966 } 2967 if (Idx > MaxRange[Input]) 2968 MaxRange[Input] = Idx; 2969 if (Idx < MinRange[Input]) 2970 MinRange[Input] = Idx; 2971 } 2972 2973 // Check if the access is smaller than the vector size and can we find 2974 // a reasonable extract index. 2975 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2976 // Extract. 2977 int StartIdx[2]; // StartIdx to extract from 2978 for (unsigned Input = 0; Input < 2; ++Input) { 2979 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2980 RangeUse[Input] = 0; // Unused 2981 StartIdx[Input] = 0; 2982 continue; 2983 } 2984 2985 // Find a good start index that is a multiple of the mask length. Then 2986 // see if the rest of the elements are in range. 2987 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2988 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2989 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2990 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2991 } 2992 2993 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2994 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2995 return; 2996 } 2997 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2998 // Extract appropriate subvector and generate a vector shuffle 2999 for (unsigned Input = 0; Input < 2; ++Input) { 3000 SDValue &Src = Input == 0 ? Src1 : Src2; 3001 if (RangeUse[Input] == 0) 3002 Src = DAG.getUNDEF(VT); 3003 else 3004 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 3005 Src, DAG.getIntPtrConstant(StartIdx[Input])); 3006 } 3007 3008 // Calculate new mask. 3009 SmallVector<int, 8> MappedOps; 3010 for (unsigned i = 0; i != MaskNumElts; ++i) { 3011 int Idx = Mask[i]; 3012 if (Idx >= 0) { 3013 if (Idx < (int)SrcNumElts) 3014 Idx -= StartIdx[0]; 3015 else 3016 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3017 } 3018 MappedOps.push_back(Idx); 3019 } 3020 3021 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 3022 &MappedOps[0])); 3023 return; 3024 } 3025 } 3026 3027 // We can't use either concat vectors or extract subvectors so fall back to 3028 // replacing the shuffle with extract and build vector. 3029 // to insert and build vector. 3030 EVT EltVT = VT.getVectorElementType(); 3031 EVT PtrVT = TLI.getPointerTy(); 3032 SmallVector<SDValue,8> Ops; 3033 for (unsigned i = 0; i != MaskNumElts; ++i) { 3034 int Idx = Mask[i]; 3035 SDValue Res; 3036 3037 if (Idx < 0) { 3038 Res = DAG.getUNDEF(EltVT); 3039 } else { 3040 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3041 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3042 3043 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3044 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3045 } 3046 3047 Ops.push_back(Res); 3048 } 3049 3050 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3051 VT, &Ops[0], Ops.size())); 3052 } 3053 3054 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3055 const Value *Op0 = I.getOperand(0); 3056 const Value *Op1 = I.getOperand(1); 3057 Type *AggTy = I.getType(); 3058 Type *ValTy = Op1->getType(); 3059 bool IntoUndef = isa<UndefValue>(Op0); 3060 bool FromUndef = isa<UndefValue>(Op1); 3061 3062 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3063 3064 SmallVector<EVT, 4> AggValueVTs; 3065 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3066 SmallVector<EVT, 4> ValValueVTs; 3067 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3068 3069 unsigned NumAggValues = AggValueVTs.size(); 3070 unsigned NumValValues = ValValueVTs.size(); 3071 SmallVector<SDValue, 4> Values(NumAggValues); 3072 3073 SDValue Agg = getValue(Op0); 3074 unsigned i = 0; 3075 // Copy the beginning value(s) from the original aggregate. 3076 for (; i != LinearIndex; ++i) 3077 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3078 SDValue(Agg.getNode(), Agg.getResNo() + i); 3079 // Copy values from the inserted value(s). 3080 if (NumValValues) { 3081 SDValue Val = getValue(Op1); 3082 for (; i != LinearIndex + NumValValues; ++i) 3083 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3084 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3085 } 3086 // Copy remaining value(s) from the original aggregate. 3087 for (; i != NumAggValues; ++i) 3088 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3089 SDValue(Agg.getNode(), Agg.getResNo() + i); 3090 3091 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3092 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3093 &Values[0], NumAggValues)); 3094 } 3095 3096 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3097 const Value *Op0 = I.getOperand(0); 3098 Type *AggTy = Op0->getType(); 3099 Type *ValTy = I.getType(); 3100 bool OutOfUndef = isa<UndefValue>(Op0); 3101 3102 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3103 3104 SmallVector<EVT, 4> ValValueVTs; 3105 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3106 3107 unsigned NumValValues = ValValueVTs.size(); 3108 3109 // Ignore a extractvalue that produces an empty object 3110 if (!NumValValues) { 3111 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3112 return; 3113 } 3114 3115 SmallVector<SDValue, 4> Values(NumValValues); 3116 3117 SDValue Agg = getValue(Op0); 3118 // Copy out the selected value(s). 3119 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3120 Values[i - LinearIndex] = 3121 OutOfUndef ? 3122 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3123 SDValue(Agg.getNode(), Agg.getResNo() + i); 3124 3125 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3126 DAG.getVTList(&ValValueVTs[0], NumValValues), 3127 &Values[0], NumValValues)); 3128 } 3129 3130 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3131 SDValue N = getValue(I.getOperand(0)); 3132 // Note that the pointer operand may be a vector of pointers. Take the scalar 3133 // element which holds a pointer. 3134 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3135 3136 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3137 OI != E; ++OI) { 3138 const Value *Idx = *OI; 3139 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3140 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3141 if (Field) { 3142 // N = N + Offset 3143 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3144 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3145 DAG.getConstant(Offset, N.getValueType())); 3146 } 3147 3148 Ty = StTy->getElementType(Field); 3149 } else { 3150 Ty = cast<SequentialType>(Ty)->getElementType(); 3151 3152 // If this is a constant subscript, handle it quickly. 3153 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3154 if (CI->isZero()) continue; 3155 uint64_t Offs = 3156 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3157 SDValue OffsVal; 3158 EVT PTy = TLI.getPointerTy(); 3159 unsigned PtrBits = PTy.getSizeInBits(); 3160 if (PtrBits < 64) 3161 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3162 TLI.getPointerTy(), 3163 DAG.getConstant(Offs, MVT::i64)); 3164 else 3165 OffsVal = DAG.getIntPtrConstant(Offs); 3166 3167 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3168 OffsVal); 3169 continue; 3170 } 3171 3172 // N = N + Idx * ElementSize; 3173 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3174 TD->getTypeAllocSize(Ty)); 3175 SDValue IdxN = getValue(Idx); 3176 3177 // If the index is smaller or larger than intptr_t, truncate or extend 3178 // it. 3179 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3180 3181 // If this is a multiply by a power of two, turn it into a shl 3182 // immediately. This is a very common case. 3183 if (ElementSize != 1) { 3184 if (ElementSize.isPowerOf2()) { 3185 unsigned Amt = ElementSize.logBase2(); 3186 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3187 N.getValueType(), IdxN, 3188 DAG.getConstant(Amt, IdxN.getValueType())); 3189 } else { 3190 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3191 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3192 N.getValueType(), IdxN, Scale); 3193 } 3194 } 3195 3196 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3197 N.getValueType(), N, IdxN); 3198 } 3199 } 3200 3201 setValue(&I, N); 3202 } 3203 3204 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3205 // If this is a fixed sized alloca in the entry block of the function, 3206 // allocate it statically on the stack. 3207 if (FuncInfo.StaticAllocaMap.count(&I)) 3208 return; // getValue will auto-populate this. 3209 3210 Type *Ty = I.getAllocatedType(); 3211 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3212 unsigned Align = 3213 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3214 I.getAlignment()); 3215 3216 SDValue AllocSize = getValue(I.getArraySize()); 3217 3218 EVT IntPtr = TLI.getPointerTy(); 3219 if (AllocSize.getValueType() != IntPtr) 3220 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3221 3222 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3223 AllocSize, 3224 DAG.getConstant(TySize, IntPtr)); 3225 3226 // Handle alignment. If the requested alignment is less than or equal to 3227 // the stack alignment, ignore it. If the size is greater than or equal to 3228 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3229 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3230 if (Align <= StackAlign) 3231 Align = 0; 3232 3233 // Round the size of the allocation up to the stack alignment size 3234 // by add SA-1 to the size. 3235 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3236 AllocSize.getValueType(), AllocSize, 3237 DAG.getIntPtrConstant(StackAlign-1)); 3238 3239 // Mask out the low bits for alignment purposes. 3240 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3241 AllocSize.getValueType(), AllocSize, 3242 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3243 3244 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3245 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3246 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3247 VTs, Ops, 3); 3248 setValue(&I, DSA); 3249 DAG.setRoot(DSA.getValue(1)); 3250 3251 // Inform the Frame Information that we have just allocated a variable-sized 3252 // object. 3253 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3254 } 3255 3256 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3257 if (I.isAtomic()) 3258 return visitAtomicLoad(I); 3259 3260 const Value *SV = I.getOperand(0); 3261 SDValue Ptr = getValue(SV); 3262 3263 Type *Ty = I.getType(); 3264 3265 bool isVolatile = I.isVolatile(); 3266 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3267 bool isInvariant = I.getMetadata("invariant.load") != 0; 3268 unsigned Alignment = I.getAlignment(); 3269 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3270 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3271 3272 SmallVector<EVT, 4> ValueVTs; 3273 SmallVector<uint64_t, 4> Offsets; 3274 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3275 unsigned NumValues = ValueVTs.size(); 3276 if (NumValues == 0) 3277 return; 3278 3279 SDValue Root; 3280 bool ConstantMemory = false; 3281 if (I.isVolatile() || NumValues > MaxParallelChains) 3282 // Serialize volatile loads with other side effects. 3283 Root = getRoot(); 3284 else if (AA->pointsToConstantMemory( 3285 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3286 // Do not serialize (non-volatile) loads of constant memory with anything. 3287 Root = DAG.getEntryNode(); 3288 ConstantMemory = true; 3289 } else { 3290 // Do not serialize non-volatile loads against each other. 3291 Root = DAG.getRoot(); 3292 } 3293 3294 SmallVector<SDValue, 4> Values(NumValues); 3295 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3296 NumValues)); 3297 EVT PtrVT = Ptr.getValueType(); 3298 unsigned ChainI = 0; 3299 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3300 // Serializing loads here may result in excessive register pressure, and 3301 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3302 // could recover a bit by hoisting nodes upward in the chain by recognizing 3303 // they are side-effect free or do not alias. The optimizer should really 3304 // avoid this case by converting large object/array copies to llvm.memcpy 3305 // (MaxParallelChains should always remain as failsafe). 3306 if (ChainI == MaxParallelChains) { 3307 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3308 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3309 MVT::Other, &Chains[0], ChainI); 3310 Root = Chain; 3311 ChainI = 0; 3312 } 3313 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3314 PtrVT, Ptr, 3315 DAG.getConstant(Offsets[i], PtrVT)); 3316 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3317 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3318 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3319 Ranges); 3320 3321 Values[i] = L; 3322 Chains[ChainI] = L.getValue(1); 3323 } 3324 3325 if (!ConstantMemory) { 3326 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3327 MVT::Other, &Chains[0], ChainI); 3328 if (isVolatile) 3329 DAG.setRoot(Chain); 3330 else 3331 PendingLoads.push_back(Chain); 3332 } 3333 3334 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3335 DAG.getVTList(&ValueVTs[0], NumValues), 3336 &Values[0], NumValues)); 3337 } 3338 3339 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3340 if (I.isAtomic()) 3341 return visitAtomicStore(I); 3342 3343 const Value *SrcV = I.getOperand(0); 3344 const Value *PtrV = I.getOperand(1); 3345 3346 SmallVector<EVT, 4> ValueVTs; 3347 SmallVector<uint64_t, 4> Offsets; 3348 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3349 unsigned NumValues = ValueVTs.size(); 3350 if (NumValues == 0) 3351 return; 3352 3353 // Get the lowered operands. Note that we do this after 3354 // checking if NumResults is zero, because with zero results 3355 // the operands won't have values in the map. 3356 SDValue Src = getValue(SrcV); 3357 SDValue Ptr = getValue(PtrV); 3358 3359 SDValue Root = getRoot(); 3360 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3361 NumValues)); 3362 EVT PtrVT = Ptr.getValueType(); 3363 bool isVolatile = I.isVolatile(); 3364 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3365 unsigned Alignment = I.getAlignment(); 3366 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3367 3368 unsigned ChainI = 0; 3369 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3370 // See visitLoad comments. 3371 if (ChainI == MaxParallelChains) { 3372 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3373 MVT::Other, &Chains[0], ChainI); 3374 Root = Chain; 3375 ChainI = 0; 3376 } 3377 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3378 DAG.getConstant(Offsets[i], PtrVT)); 3379 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3380 SDValue(Src.getNode(), Src.getResNo() + i), 3381 Add, MachinePointerInfo(PtrV, Offsets[i]), 3382 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3383 Chains[ChainI] = St; 3384 } 3385 3386 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3387 MVT::Other, &Chains[0], ChainI); 3388 ++SDNodeOrder; 3389 AssignOrderingToNode(StoreNode.getNode()); 3390 DAG.setRoot(StoreNode); 3391 } 3392 3393 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3394 SynchronizationScope Scope, 3395 bool Before, DebugLoc dl, 3396 SelectionDAG &DAG, 3397 const TargetLowering &TLI) { 3398 // Fence, if necessary 3399 if (Before) { 3400 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3401 Order = Release; 3402 else if (Order == Acquire || Order == Monotonic) 3403 return Chain; 3404 } else { 3405 if (Order == AcquireRelease) 3406 Order = Acquire; 3407 else if (Order == Release || Order == Monotonic) 3408 return Chain; 3409 } 3410 SDValue Ops[3]; 3411 Ops[0] = Chain; 3412 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3413 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3414 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3415 } 3416 3417 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3418 DebugLoc dl = getCurDebugLoc(); 3419 AtomicOrdering Order = I.getOrdering(); 3420 SynchronizationScope Scope = I.getSynchScope(); 3421 3422 SDValue InChain = getRoot(); 3423 3424 if (TLI.getInsertFencesForAtomic()) 3425 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3426 DAG, TLI); 3427 3428 SDValue L = 3429 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3430 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3431 InChain, 3432 getValue(I.getPointerOperand()), 3433 getValue(I.getCompareOperand()), 3434 getValue(I.getNewValOperand()), 3435 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3436 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3437 Scope); 3438 3439 SDValue OutChain = L.getValue(1); 3440 3441 if (TLI.getInsertFencesForAtomic()) 3442 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3443 DAG, TLI); 3444 3445 setValue(&I, L); 3446 DAG.setRoot(OutChain); 3447 } 3448 3449 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3450 DebugLoc dl = getCurDebugLoc(); 3451 ISD::NodeType NT; 3452 switch (I.getOperation()) { 3453 default: llvm_unreachable("Unknown atomicrmw operation"); 3454 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3455 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3456 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3457 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3458 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3459 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3460 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3461 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3462 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3463 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3464 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3465 } 3466 AtomicOrdering Order = I.getOrdering(); 3467 SynchronizationScope Scope = I.getSynchScope(); 3468 3469 SDValue InChain = getRoot(); 3470 3471 if (TLI.getInsertFencesForAtomic()) 3472 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3473 DAG, TLI); 3474 3475 SDValue L = 3476 DAG.getAtomic(NT, dl, 3477 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3478 InChain, 3479 getValue(I.getPointerOperand()), 3480 getValue(I.getValOperand()), 3481 I.getPointerOperand(), 0 /* Alignment */, 3482 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3483 Scope); 3484 3485 SDValue OutChain = L.getValue(1); 3486 3487 if (TLI.getInsertFencesForAtomic()) 3488 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3489 DAG, TLI); 3490 3491 setValue(&I, L); 3492 DAG.setRoot(OutChain); 3493 } 3494 3495 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3496 DebugLoc dl = getCurDebugLoc(); 3497 SDValue Ops[3]; 3498 Ops[0] = getRoot(); 3499 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3500 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3501 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3505 DebugLoc dl = getCurDebugLoc(); 3506 AtomicOrdering Order = I.getOrdering(); 3507 SynchronizationScope Scope = I.getSynchScope(); 3508 3509 SDValue InChain = getRoot(); 3510 3511 EVT VT = TLI.getValueType(I.getType()); 3512 3513 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3514 report_fatal_error("Cannot generate unaligned atomic load"); 3515 3516 SDValue L = 3517 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3518 getValue(I.getPointerOperand()), 3519 I.getPointerOperand(), I.getAlignment(), 3520 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3521 Scope); 3522 3523 SDValue OutChain = L.getValue(1); 3524 3525 if (TLI.getInsertFencesForAtomic()) 3526 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3527 DAG, TLI); 3528 3529 setValue(&I, L); 3530 DAG.setRoot(OutChain); 3531 } 3532 3533 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3534 DebugLoc dl = getCurDebugLoc(); 3535 3536 AtomicOrdering Order = I.getOrdering(); 3537 SynchronizationScope Scope = I.getSynchScope(); 3538 3539 SDValue InChain = getRoot(); 3540 3541 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3542 3543 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3544 report_fatal_error("Cannot generate unaligned atomic store"); 3545 3546 if (TLI.getInsertFencesForAtomic()) 3547 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3548 DAG, TLI); 3549 3550 SDValue OutChain = 3551 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3552 InChain, 3553 getValue(I.getPointerOperand()), 3554 getValue(I.getValueOperand()), 3555 I.getPointerOperand(), I.getAlignment(), 3556 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3557 Scope); 3558 3559 if (TLI.getInsertFencesForAtomic()) 3560 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3561 DAG, TLI); 3562 3563 DAG.setRoot(OutChain); 3564 } 3565 3566 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3567 /// node. 3568 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3569 unsigned Intrinsic) { 3570 bool HasChain = !I.doesNotAccessMemory(); 3571 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3572 3573 // Build the operand list. 3574 SmallVector<SDValue, 8> Ops; 3575 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3576 if (OnlyLoad) { 3577 // We don't need to serialize loads against other loads. 3578 Ops.push_back(DAG.getRoot()); 3579 } else { 3580 Ops.push_back(getRoot()); 3581 } 3582 } 3583 3584 // Info is set by getTgtMemInstrinsic 3585 TargetLowering::IntrinsicInfo Info; 3586 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3587 3588 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3589 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3590 Info.opc == ISD::INTRINSIC_W_CHAIN) 3591 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3592 3593 // Add all operands of the call to the operand list. 3594 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3595 SDValue Op = getValue(I.getArgOperand(i)); 3596 Ops.push_back(Op); 3597 } 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3601 3602 if (HasChain) 3603 ValueVTs.push_back(MVT::Other); 3604 3605 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3606 3607 // Create the node. 3608 SDValue Result; 3609 if (IsTgtIntrinsic) { 3610 // This is target intrinsic that touches memory 3611 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3612 VTs, &Ops[0], Ops.size(), 3613 Info.memVT, 3614 MachinePointerInfo(Info.ptrVal, Info.offset), 3615 Info.align, Info.vol, 3616 Info.readMem, Info.writeMem); 3617 } else if (!HasChain) { 3618 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3619 VTs, &Ops[0], Ops.size()); 3620 } else if (!I.getType()->isVoidTy()) { 3621 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3622 VTs, &Ops[0], Ops.size()); 3623 } else { 3624 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3625 VTs, &Ops[0], Ops.size()); 3626 } 3627 3628 if (HasChain) { 3629 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3630 if (OnlyLoad) 3631 PendingLoads.push_back(Chain); 3632 else 3633 DAG.setRoot(Chain); 3634 } 3635 3636 if (!I.getType()->isVoidTy()) { 3637 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3638 EVT VT = TLI.getValueType(PTy); 3639 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3640 } 3641 3642 setValue(&I, Result); 3643 } else { 3644 // Assign order to result here. If the intrinsic does not produce a result, 3645 // it won't be mapped to a SDNode and visit() will not assign it an order 3646 // number. 3647 ++SDNodeOrder; 3648 AssignOrderingToNode(Result.getNode()); 3649 } 3650 } 3651 3652 /// GetSignificand - Get the significand and build it into a floating-point 3653 /// number with exponent of 1: 3654 /// 3655 /// Op = (Op & 0x007fffff) | 0x3f800000; 3656 /// 3657 /// where Op is the hexidecimal representation of floating point value. 3658 static SDValue 3659 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3660 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3661 DAG.getConstant(0x007fffff, MVT::i32)); 3662 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3663 DAG.getConstant(0x3f800000, MVT::i32)); 3664 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3665 } 3666 3667 /// GetExponent - Get the exponent: 3668 /// 3669 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3670 /// 3671 /// where Op is the hexidecimal representation of floating point value. 3672 static SDValue 3673 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3674 DebugLoc dl) { 3675 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3676 DAG.getConstant(0x7f800000, MVT::i32)); 3677 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3678 DAG.getConstant(23, TLI.getPointerTy())); 3679 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3680 DAG.getConstant(127, MVT::i32)); 3681 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3682 } 3683 3684 /// getF32Constant - Get 32-bit floating point constant. 3685 static SDValue 3686 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3687 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3688 } 3689 3690 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3691 /// limited-precision mode. 3692 void 3693 SelectionDAGBuilder::visitExp(const CallInst &I) { 3694 SDValue result; 3695 DebugLoc dl = getCurDebugLoc(); 3696 3697 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3698 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3699 SDValue Op = getValue(I.getArgOperand(0)); 3700 3701 // Put the exponent in the right bit position for later addition to the 3702 // final result: 3703 // 3704 // #define LOG2OFe 1.4426950f 3705 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3706 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3707 getF32Constant(DAG, 0x3fb8aa3b)); 3708 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3709 3710 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3711 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3712 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3713 3714 // IntegerPartOfX <<= 23; 3715 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3716 DAG.getConstant(23, TLI.getPointerTy())); 3717 3718 SDValue TwoToFracPartOfX; 3719 if (LimitFloatPrecision <= 6) { 3720 // For floating-point precision of 6: 3721 // 3722 // TwoToFractionalPartOfX = 3723 // 0.997535578f + 3724 // (0.735607626f + 0.252464424f * x) * x; 3725 // 3726 // error 0.0144103317, which is 6 bits 3727 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3728 getF32Constant(DAG, 0x3e814304)); 3729 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3730 getF32Constant(DAG, 0x3f3c50c8)); 3731 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3732 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3733 getF32Constant(DAG, 0x3f7f5e7e)); 3734 } else if (LimitFloatPrecision <= 12) { 3735 // For floating-point precision of 12: 3736 // 3737 // TwoToFractionalPartOfX = 3738 // 0.999892986f + 3739 // (0.696457318f + 3740 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3741 // 3742 // 0.000107046256 error, which is 13 to 14 bits 3743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3744 getF32Constant(DAG, 0x3da235e3)); 3745 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3746 getF32Constant(DAG, 0x3e65b8f3)); 3747 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3748 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3749 getF32Constant(DAG, 0x3f324b07)); 3750 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3751 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3752 getF32Constant(DAG, 0x3f7ff8fd)); 3753 } else { // LimitFloatPrecision <= 18 3754 // For floating-point precision of 18: 3755 // 3756 // TwoToFractionalPartOfX = 3757 // 0.999999982f + 3758 // (0.693148872f + 3759 // (0.240227044f + 3760 // (0.554906021e-1f + 3761 // (0.961591928e-2f + 3762 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3763 // 3764 // error 2.47208000*10^(-7), which is better than 18 bits 3765 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0x3924b03e)); 3767 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3768 getF32Constant(DAG, 0x3ab24b87)); 3769 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3770 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3771 getF32Constant(DAG, 0x3c1d8c17)); 3772 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3773 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3774 getF32Constant(DAG, 0x3d634a1d)); 3775 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3776 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3777 getF32Constant(DAG, 0x3e75fe14)); 3778 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3779 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3780 getF32Constant(DAG, 0x3f317234)); 3781 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3782 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3783 getF32Constant(DAG, 0x3f800000)); 3784 } 3785 3786 // Add the exponent into the result in integer domain. 3787 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3788 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3789 DAG.getNode(ISD::ADD, dl, MVT::i32, 3790 t13, IntegerPartOfX)); 3791 } else { 3792 // No special expansion. 3793 result = DAG.getNode(ISD::FEXP, dl, 3794 getValue(I.getArgOperand(0)).getValueType(), 3795 getValue(I.getArgOperand(0))); 3796 } 3797 3798 setValue(&I, result); 3799 } 3800 3801 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3802 /// limited-precision mode. 3803 static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3804 const TargetLowering &TLI) { 3805 if (Op.getValueType() == MVT::f32 && 3806 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3807 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3808 3809 // Scale the exponent by log(2) [0.69314718f]. 3810 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3811 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3812 getF32Constant(DAG, 0x3f317218)); 3813 3814 // Get the significand and build it into a floating-point number with 3815 // exponent of 1. 3816 SDValue X = GetSignificand(DAG, Op1, dl); 3817 3818 SDValue LogOfMantissa; 3819 if (LimitFloatPrecision <= 6) { 3820 // For floating-point precision of 6: 3821 // 3822 // LogofMantissa = 3823 // -1.1609546f + 3824 // (1.4034025f - 0.23903021f * x) * x; 3825 // 3826 // error 0.0034276066, which is better than 8 bits 3827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3828 getF32Constant(DAG, 0xbe74c456)); 3829 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3830 getF32Constant(DAG, 0x3fb3a2b1)); 3831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3832 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3833 getF32Constant(DAG, 0x3f949a29)); 3834 } else if (LimitFloatPrecision <= 12) { 3835 // For floating-point precision of 12: 3836 // 3837 // LogOfMantissa = 3838 // -1.7417939f + 3839 // (2.8212026f + 3840 // (-1.4699568f + 3841 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3842 // 3843 // error 0.000061011436, which is 14 bits 3844 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3845 getF32Constant(DAG, 0xbd67b6d6)); 3846 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3847 getF32Constant(DAG, 0x3ee4f4b8)); 3848 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3849 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3850 getF32Constant(DAG, 0x3fbc278b)); 3851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3852 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3853 getF32Constant(DAG, 0x40348e95)); 3854 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3855 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3856 getF32Constant(DAG, 0x3fdef31a)); 3857 } else { // LimitFloatPrecision <= 18 3858 // For floating-point precision of 18: 3859 // 3860 // LogOfMantissa = 3861 // -2.1072184f + 3862 // (4.2372794f + 3863 // (-3.7029485f + 3864 // (2.2781945f + 3865 // (-0.87823314f + 3866 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3867 // 3868 // error 0.0000023660568, which is better than 18 bits 3869 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3870 getF32Constant(DAG, 0xbc91e5ac)); 3871 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3872 getF32Constant(DAG, 0x3e4350aa)); 3873 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3874 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3875 getF32Constant(DAG, 0x3f60d3e3)); 3876 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3877 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3878 getF32Constant(DAG, 0x4011cdf0)); 3879 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3880 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3881 getF32Constant(DAG, 0x406cfd1c)); 3882 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3883 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3884 getF32Constant(DAG, 0x408797cb)); 3885 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3886 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3887 getF32Constant(DAG, 0x4006dcab)); 3888 } 3889 3890 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3891 } 3892 3893 // No special expansion. 3894 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3895 } 3896 3897 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3898 /// limited-precision mode. 3899 static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3900 const TargetLowering &TLI) { 3901 if (Op.getValueType() == MVT::f32 && 3902 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3903 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3904 3905 // Get the exponent. 3906 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3907 3908 // Get the significand and build it into a floating-point number with 3909 // exponent of 1. 3910 SDValue X = GetSignificand(DAG, Op1, dl); 3911 3912 // Different possible minimax approximations of significand in 3913 // floating-point for various degrees of accuracy over [1,2]. 3914 SDValue Log2ofMantissa; 3915 if (LimitFloatPrecision <= 6) { 3916 // For floating-point precision of 6: 3917 // 3918 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3919 // 3920 // error 0.0049451742, which is more than 7 bits 3921 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3922 getF32Constant(DAG, 0xbeb08fe0)); 3923 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3924 getF32Constant(DAG, 0x40019463)); 3925 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3926 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3927 getF32Constant(DAG, 0x3fd6633d)); 3928 } else if (LimitFloatPrecision <= 12) { 3929 // For floating-point precision of 12: 3930 // 3931 // Log2ofMantissa = 3932 // -2.51285454f + 3933 // (4.07009056f + 3934 // (-2.12067489f + 3935 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3936 // 3937 // error 0.0000876136000, which is better than 13 bits 3938 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3939 getF32Constant(DAG, 0xbda7262e)); 3940 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3941 getF32Constant(DAG, 0x3f25280b)); 3942 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3943 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3944 getF32Constant(DAG, 0x4007b923)); 3945 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3946 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3947 getF32Constant(DAG, 0x40823e2f)); 3948 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3949 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3950 getF32Constant(DAG, 0x4020d29c)); 3951 } else { // LimitFloatPrecision <= 18 3952 // For floating-point precision of 18: 3953 // 3954 // Log2ofMantissa = 3955 // -3.0400495f + 3956 // (6.1129976f + 3957 // (-5.3420409f + 3958 // (3.2865683f + 3959 // (-1.2669343f + 3960 // (0.27515199f - 3961 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3962 // 3963 // error 0.0000018516, which is better than 18 bits 3964 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3965 getF32Constant(DAG, 0xbcd2769e)); 3966 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3967 getF32Constant(DAG, 0x3e8ce0b9)); 3968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3969 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3970 getF32Constant(DAG, 0x3fa22ae7)); 3971 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3972 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3973 getF32Constant(DAG, 0x40525723)); 3974 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3975 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3976 getF32Constant(DAG, 0x40aaf200)); 3977 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3978 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3979 getF32Constant(DAG, 0x40c39dad)); 3980 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3981 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3982 getF32Constant(DAG, 0x4042902c)); 3983 } 3984 3985 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3986 } 3987 3988 // No special expansion. 3989 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3990 } 3991 3992 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3993 /// limited-precision mode. 3994 static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3995 const TargetLowering &TLI) { 3996 if (Op.getValueType() == MVT::f32 && 3997 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3998 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3999 4000 // Scale the exponent by log10(2) [0.30102999f]. 4001 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4002 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4003 getF32Constant(DAG, 0x3e9a209a)); 4004 4005 // Get the significand and build it into a floating-point number with 4006 // exponent of 1. 4007 SDValue X = GetSignificand(DAG, Op1, dl); 4008 4009 SDValue Log10ofMantissa; 4010 if (LimitFloatPrecision <= 6) { 4011 // For floating-point precision of 6: 4012 // 4013 // Log10ofMantissa = 4014 // -0.50419619f + 4015 // (0.60948995f - 0.10380950f * x) * x; 4016 // 4017 // error 0.0014886165, which is 6 bits 4018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4019 getF32Constant(DAG, 0xbdd49a13)); 4020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4021 getF32Constant(DAG, 0x3f1c0789)); 4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4023 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4024 getF32Constant(DAG, 0x3f011300)); 4025 } else if (LimitFloatPrecision <= 12) { 4026 // For floating-point precision of 12: 4027 // 4028 // Log10ofMantissa = 4029 // -0.64831180f + 4030 // (0.91751397f + 4031 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4032 // 4033 // error 0.00019228036, which is better than 12 bits 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4035 getF32Constant(DAG, 0x3d431f31)); 4036 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4037 getF32Constant(DAG, 0x3ea21fb2)); 4038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4039 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4040 getF32Constant(DAG, 0x3f6ae232)); 4041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4042 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4043 getF32Constant(DAG, 0x3f25f7c3)); 4044 } else { // LimitFloatPrecision <= 18 4045 // For floating-point precision of 18: 4046 // 4047 // Log10ofMantissa = 4048 // -0.84299375f + 4049 // (1.5327582f + 4050 // (-1.0688956f + 4051 // (0.49102474f + 4052 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4053 // 4054 // error 0.0000037995730, which is better than 18 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0x3c5d51ce)); 4057 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3e00685a)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3efb6798)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x3f88d192)); 4065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4066 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4067 getF32Constant(DAG, 0x3fc4316c)); 4068 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4069 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4070 getF32Constant(DAG, 0x3f57ce70)); 4071 } 4072 4073 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4074 } 4075 4076 // No special expansion. 4077 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4078 } 4079 4080 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4081 /// limited-precision mode. 4082 void 4083 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4084 SDValue result; 4085 DebugLoc dl = getCurDebugLoc(); 4086 4087 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4088 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4089 SDValue Op = getValue(I.getArgOperand(0)); 4090 4091 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4092 4093 // FractionalPartOfX = x - (float)IntegerPartOfX; 4094 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4095 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4096 4097 // IntegerPartOfX <<= 23; 4098 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4099 DAG.getConstant(23, TLI.getPointerTy())); 4100 4101 SDValue TwoToFractionalPartOfX; 4102 if (LimitFloatPrecision <= 6) { 4103 // For floating-point precision of 6: 4104 // 4105 // TwoToFractionalPartOfX = 4106 // 0.997535578f + 4107 // (0.735607626f + 0.252464424f * x) * x; 4108 // 4109 // error 0.0144103317, which is 6 bits 4110 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0x3e814304)); 4112 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3f3c50c8)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x3f7f5e7e)); 4117 } else if (LimitFloatPrecision <= 12) { 4118 // For floating-point precision of 12: 4119 // 4120 // TwoToFractionalPartOfX = 4121 // 0.999892986f + 4122 // (0.696457318f + 4123 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4124 // 4125 // error 0.000107046256, which is 13 to 14 bits 4126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0x3da235e3)); 4128 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4129 getF32Constant(DAG, 0x3e65b8f3)); 4130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4131 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4132 getF32Constant(DAG, 0x3f324b07)); 4133 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4134 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4135 getF32Constant(DAG, 0x3f7ff8fd)); 4136 } else { // LimitFloatPrecision <= 18 4137 // For floating-point precision of 18: 4138 // 4139 // TwoToFractionalPartOfX = 4140 // 0.999999982f + 4141 // (0.693148872f + 4142 // (0.240227044f + 4143 // (0.554906021e-1f + 4144 // (0.961591928e-2f + 4145 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4146 // error 2.47208000*10^(-7), which is better than 18 bits 4147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4148 getF32Constant(DAG, 0x3924b03e)); 4149 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4150 getF32Constant(DAG, 0x3ab24b87)); 4151 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4152 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4153 getF32Constant(DAG, 0x3c1d8c17)); 4154 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4155 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4156 getF32Constant(DAG, 0x3d634a1d)); 4157 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4158 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4159 getF32Constant(DAG, 0x3e75fe14)); 4160 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4161 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4162 getF32Constant(DAG, 0x3f317234)); 4163 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4164 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4165 getF32Constant(DAG, 0x3f800000)); 4166 } 4167 4168 // Add the exponent into the result in integer domain. 4169 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4170 TwoToFractionalPartOfX); 4171 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4172 DAG.getNode(ISD::ADD, dl, MVT::i32, 4173 t13, IntegerPartOfX)); 4174 } else { 4175 // No special expansion. 4176 result = DAG.getNode(ISD::FEXP2, dl, 4177 getValue(I.getArgOperand(0)).getValueType(), 4178 getValue(I.getArgOperand(0))); 4179 } 4180 4181 setValue(&I, result); 4182 } 4183 4184 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4185 /// limited-precision mode with x == 10.0f. 4186 void 4187 SelectionDAGBuilder::visitPow(const CallInst &I) { 4188 SDValue result; 4189 const Value *Val = I.getArgOperand(0); 4190 DebugLoc dl = getCurDebugLoc(); 4191 bool IsExp10 = false; 4192 4193 if (getValue(Val).getValueType() == MVT::f32 && 4194 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4195 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4196 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4197 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4198 APFloat Ten(10.0f); 4199 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4200 } 4201 } 4202 } 4203 4204 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4205 SDValue Op = getValue(I.getArgOperand(1)); 4206 4207 // Put the exponent in the right bit position for later addition to the 4208 // final result: 4209 // 4210 // #define LOG2OF10 3.3219281f 4211 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4212 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4213 getF32Constant(DAG, 0x40549a78)); 4214 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4215 4216 // FractionalPartOfX = x - (float)IntegerPartOfX; 4217 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4218 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4219 4220 // IntegerPartOfX <<= 23; 4221 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4222 DAG.getConstant(23, TLI.getPointerTy())); 4223 4224 if (LimitFloatPrecision <= 6) { 4225 // For floating-point precision of 6: 4226 // 4227 // twoToFractionalPartOfX = 4228 // 0.997535578f + 4229 // (0.735607626f + 0.252464424f * x) * x; 4230 // 4231 // error 0.0144103317, which is 6 bits 4232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4233 getF32Constant(DAG, 0x3e814304)); 4234 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4235 getF32Constant(DAG, 0x3f3c50c8)); 4236 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4237 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4238 getF32Constant(DAG, 0x3f7f5e7e)); 4239 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4240 SDValue TwoToFractionalPartOfX = 4241 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4242 4243 result = DAG.getNode(ISD::BITCAST, dl, 4244 MVT::f32, TwoToFractionalPartOfX); 4245 } else if (LimitFloatPrecision <= 12) { 4246 // For floating-point precision of 12: 4247 // 4248 // TwoToFractionalPartOfX = 4249 // 0.999892986f + 4250 // (0.696457318f + 4251 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4252 // 4253 // error 0.000107046256, which is 13 to 14 bits 4254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0x3da235e3)); 4256 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4257 getF32Constant(DAG, 0x3e65b8f3)); 4258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4259 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4260 getF32Constant(DAG, 0x3f324b07)); 4261 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4262 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4263 getF32Constant(DAG, 0x3f7ff8fd)); 4264 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4265 SDValue TwoToFractionalPartOfX = 4266 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4267 4268 result = DAG.getNode(ISD::BITCAST, dl, 4269 MVT::f32, TwoToFractionalPartOfX); 4270 } else { // LimitFloatPrecision <= 18 4271 // For floating-point precision of 18: 4272 // 4273 // TwoToFractionalPartOfX = 4274 // 0.999999982f + 4275 // (0.693148872f + 4276 // (0.240227044f + 4277 // (0.554906021e-1f + 4278 // (0.961591928e-2f + 4279 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4280 // error 2.47208000*10^(-7), which is better than 18 bits 4281 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4282 getF32Constant(DAG, 0x3924b03e)); 4283 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4284 getF32Constant(DAG, 0x3ab24b87)); 4285 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4286 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4287 getF32Constant(DAG, 0x3c1d8c17)); 4288 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4289 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4290 getF32Constant(DAG, 0x3d634a1d)); 4291 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4292 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4293 getF32Constant(DAG, 0x3e75fe14)); 4294 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4295 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4296 getF32Constant(DAG, 0x3f317234)); 4297 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4298 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4299 getF32Constant(DAG, 0x3f800000)); 4300 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4301 SDValue TwoToFractionalPartOfX = 4302 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4303 4304 result = DAG.getNode(ISD::BITCAST, dl, 4305 MVT::f32, TwoToFractionalPartOfX); 4306 } 4307 } else { 4308 // No special expansion. 4309 result = DAG.getNode(ISD::FPOW, dl, 4310 getValue(I.getArgOperand(0)).getValueType(), 4311 getValue(I.getArgOperand(0)), 4312 getValue(I.getArgOperand(1))); 4313 } 4314 4315 setValue(&I, result); 4316 } 4317 4318 4319 /// ExpandPowI - Expand a llvm.powi intrinsic. 4320 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4321 SelectionDAG &DAG) { 4322 // If RHS is a constant, we can expand this out to a multiplication tree, 4323 // otherwise we end up lowering to a call to __powidf2 (for example). When 4324 // optimizing for size, we only want to do this if the expansion would produce 4325 // a small number of multiplies, otherwise we do the full expansion. 4326 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4327 // Get the exponent as a positive value. 4328 unsigned Val = RHSC->getSExtValue(); 4329 if ((int)Val < 0) Val = -Val; 4330 4331 // powi(x, 0) -> 1.0 4332 if (Val == 0) 4333 return DAG.getConstantFP(1.0, LHS.getValueType()); 4334 4335 const Function *F = DAG.getMachineFunction().getFunction(); 4336 if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) || 4337 // If optimizing for size, don't insert too many multiplies. This 4338 // inserts up to 5 multiplies. 4339 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4340 // We use the simple binary decomposition method to generate the multiply 4341 // sequence. There are more optimal ways to do this (for example, 4342 // powi(x,15) generates one more multiply than it should), but this has 4343 // the benefit of being both really simple and much better than a libcall. 4344 SDValue Res; // Logically starts equal to 1.0 4345 SDValue CurSquare = LHS; 4346 while (Val) { 4347 if (Val & 1) { 4348 if (Res.getNode()) 4349 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4350 else 4351 Res = CurSquare; // 1.0*CurSquare. 4352 } 4353 4354 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4355 CurSquare, CurSquare); 4356 Val >>= 1; 4357 } 4358 4359 // If the original was negative, invert the result, producing 1/(x*x*x). 4360 if (RHSC->getSExtValue() < 0) 4361 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4362 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4363 return Res; 4364 } 4365 } 4366 4367 // Otherwise, expand to a libcall. 4368 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4369 } 4370 4371 // getTruncatedArgReg - Find underlying register used for an truncated 4372 // argument. 4373 static unsigned getTruncatedArgReg(const SDValue &N) { 4374 if (N.getOpcode() != ISD::TRUNCATE) 4375 return 0; 4376 4377 const SDValue &Ext = N.getOperand(0); 4378 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4379 const SDValue &CFR = Ext.getOperand(0); 4380 if (CFR.getOpcode() == ISD::CopyFromReg) 4381 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4382 if (CFR.getOpcode() == ISD::TRUNCATE) 4383 return getTruncatedArgReg(CFR); 4384 } 4385 return 0; 4386 } 4387 4388 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4389 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4390 /// At the end of instruction selection, they will be inserted to the entry BB. 4391 bool 4392 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4393 int64_t Offset, 4394 const SDValue &N) { 4395 const Argument *Arg = dyn_cast<Argument>(V); 4396 if (!Arg) 4397 return false; 4398 4399 MachineFunction &MF = DAG.getMachineFunction(); 4400 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4401 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4402 4403 // Ignore inlined function arguments here. 4404 DIVariable DV(Variable); 4405 if (DV.isInlinedFnArgument(MF.getFunction())) 4406 return false; 4407 4408 unsigned Reg = 0; 4409 // Some arguments' frame index is recorded during argument lowering. 4410 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4411 if (Offset) 4412 Reg = TRI->getFrameRegister(MF); 4413 4414 if (!Reg && N.getNode()) { 4415 if (N.getOpcode() == ISD::CopyFromReg) 4416 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4417 else 4418 Reg = getTruncatedArgReg(N); 4419 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4420 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4421 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4422 if (PR) 4423 Reg = PR; 4424 } 4425 } 4426 4427 if (!Reg) { 4428 // Check if ValueMap has reg number. 4429 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4430 if (VMI != FuncInfo.ValueMap.end()) 4431 Reg = VMI->second; 4432 } 4433 4434 if (!Reg && N.getNode()) { 4435 // Check if frame index is available. 4436 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4437 if (FrameIndexSDNode *FINode = 4438 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4439 Reg = TRI->getFrameRegister(MF); 4440 Offset = FINode->getIndex(); 4441 } 4442 } 4443 4444 if (!Reg) 4445 return false; 4446 4447 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4448 TII->get(TargetOpcode::DBG_VALUE)) 4449 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4450 FuncInfo.ArgDbgValues.push_back(&*MIB); 4451 return true; 4452 } 4453 4454 // VisualStudio defines setjmp as _setjmp 4455 #if defined(_MSC_VER) && defined(setjmp) && \ 4456 !defined(setjmp_undefined_for_msvc) 4457 # pragma push_macro("setjmp") 4458 # undef setjmp 4459 # define setjmp_undefined_for_msvc 4460 #endif 4461 4462 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4463 /// we want to emit this as a call to a named external function, return the name 4464 /// otherwise lower it and return null. 4465 const char * 4466 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4467 DebugLoc dl = getCurDebugLoc(); 4468 SDValue Res; 4469 4470 switch (Intrinsic) { 4471 default: 4472 // By default, turn this into a target intrinsic node. 4473 visitTargetIntrinsic(I, Intrinsic); 4474 return 0; 4475 case Intrinsic::vastart: visitVAStart(I); return 0; 4476 case Intrinsic::vaend: visitVAEnd(I); return 0; 4477 case Intrinsic::vacopy: visitVACopy(I); return 0; 4478 case Intrinsic::returnaddress: 4479 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4480 getValue(I.getArgOperand(0)))); 4481 return 0; 4482 case Intrinsic::frameaddress: 4483 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4484 getValue(I.getArgOperand(0)))); 4485 return 0; 4486 case Intrinsic::setjmp: 4487 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4488 case Intrinsic::longjmp: 4489 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4490 case Intrinsic::memcpy: { 4491 // Assert for address < 256 since we support only user defined address 4492 // spaces. 4493 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4494 < 256 && 4495 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4496 < 256 && 4497 "Unknown address space"); 4498 SDValue Op1 = getValue(I.getArgOperand(0)); 4499 SDValue Op2 = getValue(I.getArgOperand(1)); 4500 SDValue Op3 = getValue(I.getArgOperand(2)); 4501 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4502 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4503 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4504 MachinePointerInfo(I.getArgOperand(0)), 4505 MachinePointerInfo(I.getArgOperand(1)))); 4506 return 0; 4507 } 4508 case Intrinsic::memset: { 4509 // Assert for address < 256 since we support only user defined address 4510 // spaces. 4511 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4512 < 256 && 4513 "Unknown address space"); 4514 SDValue Op1 = getValue(I.getArgOperand(0)); 4515 SDValue Op2 = getValue(I.getArgOperand(1)); 4516 SDValue Op3 = getValue(I.getArgOperand(2)); 4517 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4518 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4519 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4520 MachinePointerInfo(I.getArgOperand(0)))); 4521 return 0; 4522 } 4523 case Intrinsic::memmove: { 4524 // Assert for address < 256 since we support only user defined address 4525 // spaces. 4526 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4527 < 256 && 4528 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4529 < 256 && 4530 "Unknown address space"); 4531 SDValue Op1 = getValue(I.getArgOperand(0)); 4532 SDValue Op2 = getValue(I.getArgOperand(1)); 4533 SDValue Op3 = getValue(I.getArgOperand(2)); 4534 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4535 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4536 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4537 MachinePointerInfo(I.getArgOperand(0)), 4538 MachinePointerInfo(I.getArgOperand(1)))); 4539 return 0; 4540 } 4541 case Intrinsic::dbg_declare: { 4542 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4543 MDNode *Variable = DI.getVariable(); 4544 const Value *Address = DI.getAddress(); 4545 if (!Address || !DIVariable(Variable).Verify()) { 4546 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4547 return 0; 4548 } 4549 4550 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4551 // but do not always have a corresponding SDNode built. The SDNodeOrder 4552 // absolute, but not relative, values are different depending on whether 4553 // debug info exists. 4554 ++SDNodeOrder; 4555 4556 // Check if address has undef value. 4557 if (isa<UndefValue>(Address) || 4558 (Address->use_empty() && !isa<Argument>(Address))) { 4559 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4560 return 0; 4561 } 4562 4563 SDValue &N = NodeMap[Address]; 4564 if (!N.getNode() && isa<Argument>(Address)) 4565 // Check unused arguments map. 4566 N = UnusedArgNodeMap[Address]; 4567 SDDbgValue *SDV; 4568 if (N.getNode()) { 4569 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4570 Address = BCI->getOperand(0); 4571 // Parameters are handled specially. 4572 bool isParameter = 4573 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4574 isa<Argument>(Address)); 4575 4576 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4577 4578 if (isParameter && !AI) { 4579 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4580 if (FINode) 4581 // Byval parameter. We have a frame index at this point. 4582 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4583 0, dl, SDNodeOrder); 4584 else { 4585 // Address is an argument, so try to emit its dbg value using 4586 // virtual register info from the FuncInfo.ValueMap. 4587 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4588 return 0; 4589 } 4590 } else if (AI) 4591 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4592 0, dl, SDNodeOrder); 4593 else { 4594 // Can't do anything with other non-AI cases yet. 4595 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4596 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4597 DEBUG(Address->dump()); 4598 return 0; 4599 } 4600 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4601 } else { 4602 // If Address is an argument then try to emit its dbg value using 4603 // virtual register info from the FuncInfo.ValueMap. 4604 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4605 // If variable is pinned by a alloca in dominating bb then 4606 // use StaticAllocaMap. 4607 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4608 if (AI->getParent() != DI.getParent()) { 4609 DenseMap<const AllocaInst*, int>::iterator SI = 4610 FuncInfo.StaticAllocaMap.find(AI); 4611 if (SI != FuncInfo.StaticAllocaMap.end()) { 4612 SDV = DAG.getDbgValue(Variable, SI->second, 4613 0, dl, SDNodeOrder); 4614 DAG.AddDbgValue(SDV, 0, false); 4615 return 0; 4616 } 4617 } 4618 } 4619 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4620 } 4621 } 4622 return 0; 4623 } 4624 case Intrinsic::dbg_value: { 4625 const DbgValueInst &DI = cast<DbgValueInst>(I); 4626 if (!DIVariable(DI.getVariable()).Verify()) 4627 return 0; 4628 4629 MDNode *Variable = DI.getVariable(); 4630 uint64_t Offset = DI.getOffset(); 4631 const Value *V = DI.getValue(); 4632 if (!V) 4633 return 0; 4634 4635 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4636 // but do not always have a corresponding SDNode built. The SDNodeOrder 4637 // absolute, but not relative, values are different depending on whether 4638 // debug info exists. 4639 ++SDNodeOrder; 4640 SDDbgValue *SDV; 4641 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4642 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4643 DAG.AddDbgValue(SDV, 0, false); 4644 } else { 4645 // Do not use getValue() in here; we don't want to generate code at 4646 // this point if it hasn't been done yet. 4647 SDValue N = NodeMap[V]; 4648 if (!N.getNode() && isa<Argument>(V)) 4649 // Check unused arguments map. 4650 N = UnusedArgNodeMap[V]; 4651 if (N.getNode()) { 4652 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4653 SDV = DAG.getDbgValue(Variable, N.getNode(), 4654 N.getResNo(), Offset, dl, SDNodeOrder); 4655 DAG.AddDbgValue(SDV, N.getNode(), false); 4656 } 4657 } else if (!V->use_empty() ) { 4658 // Do not call getValue(V) yet, as we don't want to generate code. 4659 // Remember it for later. 4660 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4661 DanglingDebugInfoMap[V] = DDI; 4662 } else { 4663 // We may expand this to cover more cases. One case where we have no 4664 // data available is an unreferenced parameter. 4665 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4666 } 4667 } 4668 4669 // Build a debug info table entry. 4670 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4671 V = BCI->getOperand(0); 4672 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4673 // Don't handle byval struct arguments or VLAs, for example. 4674 if (!AI) { 4675 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4676 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4677 return 0; 4678 } 4679 DenseMap<const AllocaInst*, int>::iterator SI = 4680 FuncInfo.StaticAllocaMap.find(AI); 4681 if (SI == FuncInfo.StaticAllocaMap.end()) 4682 return 0; // VLAs. 4683 int FI = SI->second; 4684 4685 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4686 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4687 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4688 return 0; 4689 } 4690 4691 case Intrinsic::eh_typeid_for: { 4692 // Find the type id for the given typeinfo. 4693 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4694 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4695 Res = DAG.getConstant(TypeID, MVT::i32); 4696 setValue(&I, Res); 4697 return 0; 4698 } 4699 4700 case Intrinsic::eh_return_i32: 4701 case Intrinsic::eh_return_i64: 4702 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4703 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4704 MVT::Other, 4705 getControlRoot(), 4706 getValue(I.getArgOperand(0)), 4707 getValue(I.getArgOperand(1)))); 4708 return 0; 4709 case Intrinsic::eh_unwind_init: 4710 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4711 return 0; 4712 case Intrinsic::eh_dwarf_cfa: { 4713 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4714 TLI.getPointerTy()); 4715 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4716 TLI.getPointerTy(), 4717 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4718 TLI.getPointerTy()), 4719 CfaArg); 4720 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4721 TLI.getPointerTy(), 4722 DAG.getConstant(0, TLI.getPointerTy())); 4723 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4724 FA, Offset)); 4725 return 0; 4726 } 4727 case Intrinsic::eh_sjlj_callsite: { 4728 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4729 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4730 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4731 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4732 4733 MMI.setCurrentCallSite(CI->getZExtValue()); 4734 return 0; 4735 } 4736 case Intrinsic::eh_sjlj_functioncontext: { 4737 // Get and store the index of the function context. 4738 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4739 AllocaInst *FnCtx = 4740 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4741 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4742 MFI->setFunctionContextIndex(FI); 4743 return 0; 4744 } 4745 case Intrinsic::eh_sjlj_setjmp: { 4746 SDValue Ops[2]; 4747 Ops[0] = getRoot(); 4748 Ops[1] = getValue(I.getArgOperand(0)); 4749 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4750 DAG.getVTList(MVT::i32, MVT::Other), 4751 Ops, 2); 4752 setValue(&I, Op.getValue(0)); 4753 DAG.setRoot(Op.getValue(1)); 4754 return 0; 4755 } 4756 case Intrinsic::eh_sjlj_longjmp: { 4757 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4758 getRoot(), getValue(I.getArgOperand(0)))); 4759 return 0; 4760 } 4761 4762 case Intrinsic::x86_mmx_pslli_w: 4763 case Intrinsic::x86_mmx_pslli_d: 4764 case Intrinsic::x86_mmx_pslli_q: 4765 case Intrinsic::x86_mmx_psrli_w: 4766 case Intrinsic::x86_mmx_psrli_d: 4767 case Intrinsic::x86_mmx_psrli_q: 4768 case Intrinsic::x86_mmx_psrai_w: 4769 case Intrinsic::x86_mmx_psrai_d: { 4770 SDValue ShAmt = getValue(I.getArgOperand(1)); 4771 if (isa<ConstantSDNode>(ShAmt)) { 4772 visitTargetIntrinsic(I, Intrinsic); 4773 return 0; 4774 } 4775 unsigned NewIntrinsic = 0; 4776 EVT ShAmtVT = MVT::v2i32; 4777 switch (Intrinsic) { 4778 case Intrinsic::x86_mmx_pslli_w: 4779 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4780 break; 4781 case Intrinsic::x86_mmx_pslli_d: 4782 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4783 break; 4784 case Intrinsic::x86_mmx_pslli_q: 4785 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4786 break; 4787 case Intrinsic::x86_mmx_psrli_w: 4788 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4789 break; 4790 case Intrinsic::x86_mmx_psrli_d: 4791 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4792 break; 4793 case Intrinsic::x86_mmx_psrli_q: 4794 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4795 break; 4796 case Intrinsic::x86_mmx_psrai_w: 4797 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4798 break; 4799 case Intrinsic::x86_mmx_psrai_d: 4800 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4801 break; 4802 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4803 } 4804 4805 // The vector shift intrinsics with scalars uses 32b shift amounts but 4806 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4807 // to be zero. 4808 // We must do this early because v2i32 is not a legal type. 4809 DebugLoc dl = getCurDebugLoc(); 4810 SDValue ShOps[2]; 4811 ShOps[0] = ShAmt; 4812 ShOps[1] = DAG.getConstant(0, MVT::i32); 4813 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4814 EVT DestVT = TLI.getValueType(I.getType()); 4815 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4816 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4817 DAG.getConstant(NewIntrinsic, MVT::i32), 4818 getValue(I.getArgOperand(0)), ShAmt); 4819 setValue(&I, Res); 4820 return 0; 4821 } 4822 case Intrinsic::x86_avx_vinsertf128_pd_256: 4823 case Intrinsic::x86_avx_vinsertf128_ps_256: 4824 case Intrinsic::x86_avx_vinsertf128_si_256: 4825 case Intrinsic::x86_avx2_vinserti128: { 4826 DebugLoc dl = getCurDebugLoc(); 4827 EVT DestVT = TLI.getValueType(I.getType()); 4828 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4829 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4830 ElVT.getVectorNumElements(); 4831 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)), 4834 DAG.getIntPtrConstant(Idx)); 4835 setValue(&I, Res); 4836 return 0; 4837 } 4838 case Intrinsic::x86_avx_vextractf128_pd_256: 4839 case Intrinsic::x86_avx_vextractf128_ps_256: 4840 case Intrinsic::x86_avx_vextractf128_si_256: 4841 case Intrinsic::x86_avx2_vextracti128: { 4842 DebugLoc dl = getCurDebugLoc(); 4843 EVT DestVT = TLI.getValueType(I.getType()); 4844 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4845 DestVT.getVectorNumElements(); 4846 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 4847 getValue(I.getArgOperand(0)), 4848 DAG.getIntPtrConstant(Idx)); 4849 setValue(&I, Res); 4850 return 0; 4851 } 4852 case Intrinsic::convertff: 4853 case Intrinsic::convertfsi: 4854 case Intrinsic::convertfui: 4855 case Intrinsic::convertsif: 4856 case Intrinsic::convertuif: 4857 case Intrinsic::convertss: 4858 case Intrinsic::convertsu: 4859 case Intrinsic::convertus: 4860 case Intrinsic::convertuu: { 4861 ISD::CvtCode Code = ISD::CVT_INVALID; 4862 switch (Intrinsic) { 4863 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4864 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4865 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4866 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4867 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4868 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4869 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4870 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4871 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4872 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4873 } 4874 EVT DestVT = TLI.getValueType(I.getType()); 4875 const Value *Op1 = I.getArgOperand(0); 4876 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4877 DAG.getValueType(DestVT), 4878 DAG.getValueType(getValue(Op1).getValueType()), 4879 getValue(I.getArgOperand(1)), 4880 getValue(I.getArgOperand(2)), 4881 Code); 4882 setValue(&I, Res); 4883 return 0; 4884 } 4885 case Intrinsic::powi: 4886 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4887 getValue(I.getArgOperand(1)), DAG)); 4888 return 0; 4889 case Intrinsic::log: 4890 setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4891 return 0; 4892 case Intrinsic::log2: 4893 setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4894 return 0; 4895 case Intrinsic::log10: 4896 setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4897 return 0; 4898 case Intrinsic::exp: 4899 visitExp(I); 4900 return 0; 4901 case Intrinsic::exp2: 4902 visitExp2(I); 4903 return 0; 4904 case Intrinsic::pow: 4905 visitPow(I); 4906 return 0; 4907 case Intrinsic::sqrt: 4908 case Intrinsic::fabs: 4909 case Intrinsic::sin: 4910 case Intrinsic::cos: 4911 case Intrinsic::floor: 4912 case Intrinsic::ceil: 4913 case Intrinsic::trunc: 4914 case Intrinsic::rint: 4915 case Intrinsic::nearbyint: { 4916 unsigned Opcode; 4917 switch (Intrinsic) { 4918 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4919 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4920 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4921 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4922 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4923 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4924 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4925 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4926 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4927 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4928 } 4929 4930 setValue(&I, DAG.getNode(Opcode, dl, 4931 getValue(I.getArgOperand(0)).getValueType(), 4932 getValue(I.getArgOperand(0)))); 4933 return 0; 4934 } 4935 case Intrinsic::fma: 4936 setValue(&I, DAG.getNode(ISD::FMA, dl, 4937 getValue(I.getArgOperand(0)).getValueType(), 4938 getValue(I.getArgOperand(0)), 4939 getValue(I.getArgOperand(1)), 4940 getValue(I.getArgOperand(2)))); 4941 return 0; 4942 case Intrinsic::fmuladd: { 4943 EVT VT = TLI.getValueType(I.getType()); 4944 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4945 TLI.isOperationLegalOrCustom(ISD::FMA, VT) && 4946 TLI.isFMAFasterThanMulAndAdd(VT)){ 4947 setValue(&I, DAG.getNode(ISD::FMA, dl, 4948 getValue(I.getArgOperand(0)).getValueType(), 4949 getValue(I.getArgOperand(0)), 4950 getValue(I.getArgOperand(1)), 4951 getValue(I.getArgOperand(2)))); 4952 } else { 4953 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4954 getValue(I.getArgOperand(0)).getValueType(), 4955 getValue(I.getArgOperand(0)), 4956 getValue(I.getArgOperand(1))); 4957 SDValue Add = DAG.getNode(ISD::FADD, dl, 4958 getValue(I.getArgOperand(0)).getValueType(), 4959 Mul, 4960 getValue(I.getArgOperand(2))); 4961 setValue(&I, Add); 4962 } 4963 return 0; 4964 } 4965 case Intrinsic::convert_to_fp16: 4966 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4967 MVT::i16, getValue(I.getArgOperand(0)))); 4968 return 0; 4969 case Intrinsic::convert_from_fp16: 4970 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4971 MVT::f32, getValue(I.getArgOperand(0)))); 4972 return 0; 4973 case Intrinsic::pcmarker: { 4974 SDValue Tmp = getValue(I.getArgOperand(0)); 4975 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4976 return 0; 4977 } 4978 case Intrinsic::readcyclecounter: { 4979 SDValue Op = getRoot(); 4980 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4981 DAG.getVTList(MVT::i64, MVT::Other), 4982 &Op, 1); 4983 setValue(&I, Res); 4984 DAG.setRoot(Res.getValue(1)); 4985 return 0; 4986 } 4987 case Intrinsic::bswap: 4988 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4989 getValue(I.getArgOperand(0)).getValueType(), 4990 getValue(I.getArgOperand(0)))); 4991 return 0; 4992 case Intrinsic::cttz: { 4993 SDValue Arg = getValue(I.getArgOperand(0)); 4994 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4995 EVT Ty = Arg.getValueType(); 4996 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4997 dl, Ty, Arg)); 4998 return 0; 4999 } 5000 case Intrinsic::ctlz: { 5001 SDValue Arg = getValue(I.getArgOperand(0)); 5002 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5003 EVT Ty = Arg.getValueType(); 5004 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5005 dl, Ty, Arg)); 5006 return 0; 5007 } 5008 case Intrinsic::ctpop: { 5009 SDValue Arg = getValue(I.getArgOperand(0)); 5010 EVT Ty = Arg.getValueType(); 5011 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5012 return 0; 5013 } 5014 case Intrinsic::stacksave: { 5015 SDValue Op = getRoot(); 5016 Res = DAG.getNode(ISD::STACKSAVE, dl, 5017 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5018 setValue(&I, Res); 5019 DAG.setRoot(Res.getValue(1)); 5020 return 0; 5021 } 5022 case Intrinsic::stackrestore: { 5023 Res = getValue(I.getArgOperand(0)); 5024 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5025 return 0; 5026 } 5027 case Intrinsic::stackprotector: { 5028 // Emit code into the DAG to store the stack guard onto the stack. 5029 MachineFunction &MF = DAG.getMachineFunction(); 5030 MachineFrameInfo *MFI = MF.getFrameInfo(); 5031 EVT PtrTy = TLI.getPointerTy(); 5032 5033 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5034 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5035 5036 int FI = FuncInfo.StaticAllocaMap[Slot]; 5037 MFI->setStackProtectorIndex(FI); 5038 5039 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5040 5041 // Store the stack protector onto the stack. 5042 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5043 MachinePointerInfo::getFixedStack(FI), 5044 true, false, 0); 5045 setValue(&I, Res); 5046 DAG.setRoot(Res); 5047 return 0; 5048 } 5049 case Intrinsic::objectsize: { 5050 // If we don't know by now, we're never going to know. 5051 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5052 5053 assert(CI && "Non-constant type in __builtin_object_size?"); 5054 5055 SDValue Arg = getValue(I.getCalledValue()); 5056 EVT Ty = Arg.getValueType(); 5057 5058 if (CI->isZero()) 5059 Res = DAG.getConstant(-1ULL, Ty); 5060 else 5061 Res = DAG.getConstant(0, Ty); 5062 5063 setValue(&I, Res); 5064 return 0; 5065 } 5066 case Intrinsic::var_annotation: 5067 // Discard annotate attributes 5068 return 0; 5069 5070 case Intrinsic::init_trampoline: { 5071 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5072 5073 SDValue Ops[6]; 5074 Ops[0] = getRoot(); 5075 Ops[1] = getValue(I.getArgOperand(0)); 5076 Ops[2] = getValue(I.getArgOperand(1)); 5077 Ops[3] = getValue(I.getArgOperand(2)); 5078 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5079 Ops[5] = DAG.getSrcValue(F); 5080 5081 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5082 5083 DAG.setRoot(Res); 5084 return 0; 5085 } 5086 case Intrinsic::adjust_trampoline: { 5087 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5088 TLI.getPointerTy(), 5089 getValue(I.getArgOperand(0)))); 5090 return 0; 5091 } 5092 case Intrinsic::gcroot: 5093 if (GFI) { 5094 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5095 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5096 5097 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5098 GFI->addStackRoot(FI->getIndex(), TypeMap); 5099 } 5100 return 0; 5101 case Intrinsic::gcread: 5102 case Intrinsic::gcwrite: 5103 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5104 case Intrinsic::flt_rounds: 5105 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5106 return 0; 5107 5108 case Intrinsic::expect: { 5109 // Just replace __builtin_expect(exp, c) with EXP. 5110 setValue(&I, getValue(I.getArgOperand(0))); 5111 return 0; 5112 } 5113 5114 case Intrinsic::debugtrap: 5115 case Intrinsic::trap: { 5116 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5117 if (TrapFuncName.empty()) { 5118 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5119 ISD::TRAP : ISD::DEBUGTRAP; 5120 DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot())); 5121 return 0; 5122 } 5123 TargetLowering::ArgListTy Args; 5124 TargetLowering:: 5125 CallLoweringInfo CLI(getRoot(), I.getType(), 5126 false, false, false, false, 0, CallingConv::C, 5127 /*isTailCall=*/false, 5128 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5129 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5130 Args, DAG, getCurDebugLoc()); 5131 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5132 DAG.setRoot(Result.second); 5133 return 0; 5134 } 5135 5136 case Intrinsic::uadd_with_overflow: 5137 case Intrinsic::sadd_with_overflow: 5138 case Intrinsic::usub_with_overflow: 5139 case Intrinsic::ssub_with_overflow: 5140 case Intrinsic::umul_with_overflow: 5141 case Intrinsic::smul_with_overflow: { 5142 ISD::NodeType Op; 5143 switch (Intrinsic) { 5144 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5145 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5146 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5147 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5148 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5149 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5150 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5151 } 5152 SDValue Op1 = getValue(I.getArgOperand(0)); 5153 SDValue Op2 = getValue(I.getArgOperand(1)); 5154 5155 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5156 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5157 return 0; 5158 } 5159 case Intrinsic::prefetch: { 5160 SDValue Ops[5]; 5161 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5162 Ops[0] = getRoot(); 5163 Ops[1] = getValue(I.getArgOperand(0)); 5164 Ops[2] = getValue(I.getArgOperand(1)); 5165 Ops[3] = getValue(I.getArgOperand(2)); 5166 Ops[4] = getValue(I.getArgOperand(3)); 5167 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5168 DAG.getVTList(MVT::Other), 5169 &Ops[0], 5, 5170 EVT::getIntegerVT(*Context, 8), 5171 MachinePointerInfo(I.getArgOperand(0)), 5172 0, /* align */ 5173 false, /* volatile */ 5174 rw==0, /* read */ 5175 rw==1)); /* write */ 5176 return 0; 5177 } 5178 case Intrinsic::lifetime_start: 5179 case Intrinsic::lifetime_end: { 5180 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5181 // Stack coloring is not enabled in O0, discard region information. 5182 if (TM.getOptLevel() == CodeGenOpt::None) 5183 return 0; 5184 5185 SmallVector<Value *, 4> Allocas; 5186 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5187 5188 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5189 E = Allocas.end(); Object != E; ++Object) { 5190 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5191 5192 // Could not find an Alloca. 5193 if (!LifetimeObject) 5194 continue; 5195 5196 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5197 5198 SDValue Ops[2]; 5199 Ops[0] = getRoot(); 5200 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5201 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5202 5203 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); 5204 DAG.setRoot(Res); 5205 } 5206 } 5207 case Intrinsic::invariant_start: 5208 // Discard region information. 5209 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5210 return 0; 5211 case Intrinsic::invariant_end: 5212 // Discard region information. 5213 return 0; 5214 case Intrinsic::donothing: 5215 // ignore 5216 return 0; 5217 } 5218 } 5219 5220 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5221 bool isTailCall, 5222 MachineBasicBlock *LandingPad) { 5223 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5224 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5225 Type *RetTy = FTy->getReturnType(); 5226 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5227 MCSymbol *BeginLabel = 0; 5228 5229 TargetLowering::ArgListTy Args; 5230 TargetLowering::ArgListEntry Entry; 5231 Args.reserve(CS.arg_size()); 5232 5233 // Check whether the function can return without sret-demotion. 5234 SmallVector<ISD::OutputArg, 4> Outs; 5235 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5236 Outs, TLI); 5237 5238 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5239 DAG.getMachineFunction(), 5240 FTy->isVarArg(), Outs, 5241 FTy->getContext()); 5242 5243 SDValue DemoteStackSlot; 5244 int DemoteStackIdx = -100; 5245 5246 if (!CanLowerReturn) { 5247 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize( 5248 FTy->getReturnType()); 5249 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment( 5250 FTy->getReturnType()); 5251 MachineFunction &MF = DAG.getMachineFunction(); 5252 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5253 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5254 5255 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5256 Entry.Node = DemoteStackSlot; 5257 Entry.Ty = StackSlotPtrType; 5258 Entry.isSExt = false; 5259 Entry.isZExt = false; 5260 Entry.isInReg = false; 5261 Entry.isSRet = true; 5262 Entry.isNest = false; 5263 Entry.isByVal = false; 5264 Entry.Alignment = Align; 5265 Args.push_back(Entry); 5266 RetTy = Type::getVoidTy(FTy->getContext()); 5267 } 5268 5269 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5270 i != e; ++i) { 5271 const Value *V = *i; 5272 5273 // Skip empty types 5274 if (V->getType()->isEmptyTy()) 5275 continue; 5276 5277 SDValue ArgNode = getValue(V); 5278 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5279 5280 unsigned attrInd = i - CS.arg_begin() + 1; 5281 Entry.isSExt = CS.paramHasAttr(attrInd, Attributes::SExt); 5282 Entry.isZExt = CS.paramHasAttr(attrInd, Attributes::ZExt); 5283 Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg); 5284 Entry.isSRet = CS.paramHasAttr(attrInd, Attributes::StructRet); 5285 Entry.isNest = CS.paramHasAttr(attrInd, Attributes::Nest); 5286 Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal); 5287 Entry.Alignment = CS.getParamAlignment(attrInd); 5288 Args.push_back(Entry); 5289 } 5290 5291 if (LandingPad) { 5292 // Insert a label before the invoke call to mark the try range. This can be 5293 // used to detect deletion of the invoke via the MachineModuleInfo. 5294 BeginLabel = MMI.getContext().CreateTempSymbol(); 5295 5296 // For SjLj, keep track of which landing pads go with which invokes 5297 // so as to maintain the ordering of pads in the LSDA. 5298 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5299 if (CallSiteIndex) { 5300 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5301 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5302 5303 // Now that the call site is handled, stop tracking it. 5304 MMI.setCurrentCallSite(0); 5305 } 5306 5307 // Both PendingLoads and PendingExports must be flushed here; 5308 // this call might not return. 5309 (void)getRoot(); 5310 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5311 } 5312 5313 // Check if target-independent constraints permit a tail call here. 5314 // Target-dependent constraints are checked within TLI.LowerCallTo. 5315 if (isTailCall && 5316 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5317 isTailCall = false; 5318 5319 // If there's a possibility that fast-isel has already selected some amount 5320 // of the current basic block, don't emit a tail call. 5321 if (isTailCall && TM.Options.EnableFastISel) 5322 isTailCall = false; 5323 5324 TargetLowering:: 5325 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5326 getCurDebugLoc(), CS); 5327 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5328 assert((isTailCall || Result.second.getNode()) && 5329 "Non-null chain expected with non-tail call!"); 5330 assert((Result.second.getNode() || !Result.first.getNode()) && 5331 "Null value expected with tail call!"); 5332 if (Result.first.getNode()) { 5333 setValue(CS.getInstruction(), Result.first); 5334 } else if (!CanLowerReturn && Result.second.getNode()) { 5335 // The instruction result is the result of loading from the 5336 // hidden sret parameter. 5337 SmallVector<EVT, 1> PVTs; 5338 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5339 5340 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5341 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5342 EVT PtrVT = PVTs[0]; 5343 5344 SmallVector<EVT, 4> RetTys; 5345 SmallVector<uint64_t, 4> Offsets; 5346 RetTy = FTy->getReturnType(); 5347 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5348 5349 unsigned NumValues = RetTys.size(); 5350 SmallVector<SDValue, 4> Values(NumValues); 5351 SmallVector<SDValue, 4> Chains(NumValues); 5352 5353 for (unsigned i = 0; i < NumValues; ++i) { 5354 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5355 DemoteStackSlot, 5356 DAG.getConstant(Offsets[i], PtrVT)); 5357 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5358 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5359 false, false, false, 1); 5360 Values[i] = L; 5361 Chains[i] = L.getValue(1); 5362 } 5363 5364 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5365 MVT::Other, &Chains[0], NumValues); 5366 PendingLoads.push_back(Chain); 5367 5368 setValue(CS.getInstruction(), 5369 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5370 DAG.getVTList(&RetTys[0], RetTys.size()), 5371 &Values[0], Values.size())); 5372 } 5373 5374 // Assign order to nodes here. If the call does not produce a result, it won't 5375 // be mapped to a SDNode and visit() will not assign it an order number. 5376 if (!Result.second.getNode()) { 5377 // As a special case, a null chain means that a tail call has been emitted and 5378 // the DAG root is already updated. 5379 HasTailCall = true; 5380 ++SDNodeOrder; 5381 AssignOrderingToNode(DAG.getRoot().getNode()); 5382 } else { 5383 DAG.setRoot(Result.second); 5384 ++SDNodeOrder; 5385 AssignOrderingToNode(Result.second.getNode()); 5386 } 5387 5388 if (LandingPad) { 5389 // Insert a label at the end of the invoke call to mark the try range. This 5390 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5391 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5392 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5393 5394 // Inform MachineModuleInfo of range. 5395 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5396 } 5397 } 5398 5399 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5400 /// value is equal or not-equal to zero. 5401 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5402 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5403 UI != E; ++UI) { 5404 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5405 if (IC->isEquality()) 5406 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5407 if (C->isNullValue()) 5408 continue; 5409 // Unknown instruction. 5410 return false; 5411 } 5412 return true; 5413 } 5414 5415 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5416 Type *LoadTy, 5417 SelectionDAGBuilder &Builder) { 5418 5419 // Check to see if this load can be trivially constant folded, e.g. if the 5420 // input is from a string literal. 5421 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5422 // Cast pointer to the type we really want to load. 5423 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5424 PointerType::getUnqual(LoadTy)); 5425 5426 if (const Constant *LoadCst = 5427 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5428 Builder.TD)) 5429 return Builder.getValue(LoadCst); 5430 } 5431 5432 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5433 // still constant memory, the input chain can be the entry node. 5434 SDValue Root; 5435 bool ConstantMemory = false; 5436 5437 // Do not serialize (non-volatile) loads of constant memory with anything. 5438 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5439 Root = Builder.DAG.getEntryNode(); 5440 ConstantMemory = true; 5441 } else { 5442 // Do not serialize non-volatile loads against each other. 5443 Root = Builder.DAG.getRoot(); 5444 } 5445 5446 SDValue Ptr = Builder.getValue(PtrVal); 5447 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5448 Ptr, MachinePointerInfo(PtrVal), 5449 false /*volatile*/, 5450 false /*nontemporal*/, 5451 false /*isinvariant*/, 1 /* align=1 */); 5452 5453 if (!ConstantMemory) 5454 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5455 return LoadVal; 5456 } 5457 5458 5459 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5460 /// If so, return true and lower it, otherwise return false and it will be 5461 /// lowered like a normal call. 5462 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5463 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5464 if (I.getNumArgOperands() != 3) 5465 return false; 5466 5467 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5468 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5469 !I.getArgOperand(2)->getType()->isIntegerTy() || 5470 !I.getType()->isIntegerTy()) 5471 return false; 5472 5473 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5474 5475 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5476 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5477 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5478 bool ActuallyDoIt = true; 5479 MVT LoadVT; 5480 Type *LoadTy; 5481 switch (Size->getZExtValue()) { 5482 default: 5483 LoadVT = MVT::Other; 5484 LoadTy = 0; 5485 ActuallyDoIt = false; 5486 break; 5487 case 2: 5488 LoadVT = MVT::i16; 5489 LoadTy = Type::getInt16Ty(Size->getContext()); 5490 break; 5491 case 4: 5492 LoadVT = MVT::i32; 5493 LoadTy = Type::getInt32Ty(Size->getContext()); 5494 break; 5495 case 8: 5496 LoadVT = MVT::i64; 5497 LoadTy = Type::getInt64Ty(Size->getContext()); 5498 break; 5499 /* 5500 case 16: 5501 LoadVT = MVT::v4i32; 5502 LoadTy = Type::getInt32Ty(Size->getContext()); 5503 LoadTy = VectorType::get(LoadTy, 4); 5504 break; 5505 */ 5506 } 5507 5508 // This turns into unaligned loads. We only do this if the target natively 5509 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5510 // we'll only produce a small number of byte loads. 5511 5512 // Require that we can find a legal MVT, and only do this if the target 5513 // supports unaligned loads of that type. Expanding into byte loads would 5514 // bloat the code. 5515 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5516 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5517 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5518 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5519 ActuallyDoIt = false; 5520 } 5521 5522 if (ActuallyDoIt) { 5523 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5524 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5525 5526 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5527 ISD::SETNE); 5528 EVT CallVT = TLI.getValueType(I.getType(), true); 5529 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5530 return true; 5531 } 5532 } 5533 5534 5535 return false; 5536 } 5537 5538 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5539 /// operation (as expected), translate it to an SDNode with the specified opcode 5540 /// and return true. 5541 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5542 unsigned Opcode) { 5543 // Sanity check that it really is a unary floating-point call. 5544 if (I.getNumArgOperands() != 1 || 5545 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5546 I.getType() != I.getArgOperand(0)->getType() || 5547 !I.onlyReadsMemory()) 5548 return false; 5549 5550 SDValue Tmp = getValue(I.getArgOperand(0)); 5551 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5552 return true; 5553 } 5554 5555 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5556 // Handle inline assembly differently. 5557 if (isa<InlineAsm>(I.getCalledValue())) { 5558 visitInlineAsm(&I); 5559 return; 5560 } 5561 5562 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5563 ComputeUsesVAFloatArgument(I, &MMI); 5564 5565 const char *RenameFn = 0; 5566 if (Function *F = I.getCalledFunction()) { 5567 if (F->isDeclaration()) { 5568 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5569 if (unsigned IID = II->getIntrinsicID(F)) { 5570 RenameFn = visitIntrinsicCall(I, IID); 5571 if (!RenameFn) 5572 return; 5573 } 5574 } 5575 if (unsigned IID = F->getIntrinsicID()) { 5576 RenameFn = visitIntrinsicCall(I, IID); 5577 if (!RenameFn) 5578 return; 5579 } 5580 } 5581 5582 // Check for well-known libc/libm calls. If the function is internal, it 5583 // can't be a library call. 5584 LibFunc::Func Func; 5585 if (!F->hasLocalLinkage() && F->hasName() && 5586 LibInfo->getLibFunc(F->getName(), Func) && 5587 LibInfo->hasOptimizedCodeGen(Func)) { 5588 switch (Func) { 5589 default: break; 5590 case LibFunc::copysign: 5591 case LibFunc::copysignf: 5592 case LibFunc::copysignl: 5593 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5594 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5595 I.getType() == I.getArgOperand(0)->getType() && 5596 I.getType() == I.getArgOperand(1)->getType() && 5597 I.onlyReadsMemory()) { 5598 SDValue LHS = getValue(I.getArgOperand(0)); 5599 SDValue RHS = getValue(I.getArgOperand(1)); 5600 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5601 LHS.getValueType(), LHS, RHS)); 5602 return; 5603 } 5604 break; 5605 case LibFunc::fabs: 5606 case LibFunc::fabsf: 5607 case LibFunc::fabsl: 5608 if (visitUnaryFloatCall(I, ISD::FABS)) 5609 return; 5610 break; 5611 case LibFunc::sin: 5612 case LibFunc::sinf: 5613 case LibFunc::sinl: 5614 if (visitUnaryFloatCall(I, ISD::FSIN)) 5615 return; 5616 break; 5617 case LibFunc::cos: 5618 case LibFunc::cosf: 5619 case LibFunc::cosl: 5620 if (visitUnaryFloatCall(I, ISD::FCOS)) 5621 return; 5622 break; 5623 case LibFunc::sqrt: 5624 case LibFunc::sqrtf: 5625 case LibFunc::sqrtl: 5626 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5627 return; 5628 break; 5629 case LibFunc::floor: 5630 case LibFunc::floorf: 5631 case LibFunc::floorl: 5632 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5633 return; 5634 break; 5635 case LibFunc::nearbyint: 5636 case LibFunc::nearbyintf: 5637 case LibFunc::nearbyintl: 5638 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5639 return; 5640 break; 5641 case LibFunc::ceil: 5642 case LibFunc::ceilf: 5643 case LibFunc::ceill: 5644 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5645 return; 5646 break; 5647 case LibFunc::rint: 5648 case LibFunc::rintf: 5649 case LibFunc::rintl: 5650 if (visitUnaryFloatCall(I, ISD::FRINT)) 5651 return; 5652 break; 5653 case LibFunc::trunc: 5654 case LibFunc::truncf: 5655 case LibFunc::truncl: 5656 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5657 return; 5658 break; 5659 case LibFunc::log2: 5660 case LibFunc::log2f: 5661 case LibFunc::log2l: 5662 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5663 return; 5664 break; 5665 case LibFunc::exp2: 5666 case LibFunc::exp2f: 5667 case LibFunc::exp2l: 5668 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5669 return; 5670 break; 5671 case LibFunc::memcmp: 5672 if (visitMemCmpCall(I)) 5673 return; 5674 break; 5675 } 5676 } 5677 } 5678 5679 SDValue Callee; 5680 if (!RenameFn) 5681 Callee = getValue(I.getCalledValue()); 5682 else 5683 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5684 5685 // Check if we can potentially perform a tail call. More detailed checking is 5686 // be done within LowerCallTo, after more information about the call is known. 5687 LowerCallTo(&I, Callee, I.isTailCall()); 5688 } 5689 5690 namespace { 5691 5692 /// AsmOperandInfo - This contains information for each constraint that we are 5693 /// lowering. 5694 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5695 public: 5696 /// CallOperand - If this is the result output operand or a clobber 5697 /// this is null, otherwise it is the incoming operand to the CallInst. 5698 /// This gets modified as the asm is processed. 5699 SDValue CallOperand; 5700 5701 /// AssignedRegs - If this is a register or register class operand, this 5702 /// contains the set of register corresponding to the operand. 5703 RegsForValue AssignedRegs; 5704 5705 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5706 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5707 } 5708 5709 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5710 /// corresponds to. If there is no Value* for this operand, it returns 5711 /// MVT::Other. 5712 EVT getCallOperandValEVT(LLVMContext &Context, 5713 const TargetLowering &TLI, 5714 const DataLayout *TD) const { 5715 if (CallOperandVal == 0) return MVT::Other; 5716 5717 if (isa<BasicBlock>(CallOperandVal)) 5718 return TLI.getPointerTy(); 5719 5720 llvm::Type *OpTy = CallOperandVal->getType(); 5721 5722 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5723 // If this is an indirect operand, the operand is a pointer to the 5724 // accessed type. 5725 if (isIndirect) { 5726 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5727 if (!PtrTy) 5728 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5729 OpTy = PtrTy->getElementType(); 5730 } 5731 5732 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5733 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5734 if (STy->getNumElements() == 1) 5735 OpTy = STy->getElementType(0); 5736 5737 // If OpTy is not a single value, it may be a struct/union that we 5738 // can tile with integers. 5739 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5740 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5741 switch (BitSize) { 5742 default: break; 5743 case 1: 5744 case 8: 5745 case 16: 5746 case 32: 5747 case 64: 5748 case 128: 5749 OpTy = IntegerType::get(Context, BitSize); 5750 break; 5751 } 5752 } 5753 5754 return TLI.getValueType(OpTy, true); 5755 } 5756 }; 5757 5758 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5759 5760 } // end anonymous namespace 5761 5762 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5763 /// specified operand. We prefer to assign virtual registers, to allow the 5764 /// register allocator to handle the assignment process. However, if the asm 5765 /// uses features that we can't model on machineinstrs, we have SDISel do the 5766 /// allocation. This produces generally horrible, but correct, code. 5767 /// 5768 /// OpInfo describes the operand. 5769 /// 5770 static void GetRegistersForValue(SelectionDAG &DAG, 5771 const TargetLowering &TLI, 5772 DebugLoc DL, 5773 SDISelAsmOperandInfo &OpInfo) { 5774 LLVMContext &Context = *DAG.getContext(); 5775 5776 MachineFunction &MF = DAG.getMachineFunction(); 5777 SmallVector<unsigned, 4> Regs; 5778 5779 // If this is a constraint for a single physreg, or a constraint for a 5780 // register class, find it. 5781 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5782 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5783 OpInfo.ConstraintVT); 5784 5785 unsigned NumRegs = 1; 5786 if (OpInfo.ConstraintVT != MVT::Other) { 5787 // If this is a FP input in an integer register (or visa versa) insert a bit 5788 // cast of the input value. More generally, handle any case where the input 5789 // value disagrees with the register class we plan to stick this in. 5790 if (OpInfo.Type == InlineAsm::isInput && 5791 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5792 // Try to convert to the first EVT that the reg class contains. If the 5793 // types are identical size, use a bitcast to convert (e.g. two differing 5794 // vector types). 5795 EVT RegVT = *PhysReg.second->vt_begin(); 5796 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5797 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5798 RegVT, OpInfo.CallOperand); 5799 OpInfo.ConstraintVT = RegVT; 5800 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5801 // If the input is a FP value and we want it in FP registers, do a 5802 // bitcast to the corresponding integer type. This turns an f64 value 5803 // into i64, which can be passed with two i32 values on a 32-bit 5804 // machine. 5805 RegVT = EVT::getIntegerVT(Context, 5806 OpInfo.ConstraintVT.getSizeInBits()); 5807 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5808 RegVT, OpInfo.CallOperand); 5809 OpInfo.ConstraintVT = RegVT; 5810 } 5811 } 5812 5813 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5814 } 5815 5816 EVT RegVT; 5817 EVT ValueVT = OpInfo.ConstraintVT; 5818 5819 // If this is a constraint for a specific physical register, like {r17}, 5820 // assign it now. 5821 if (unsigned AssignedReg = PhysReg.first) { 5822 const TargetRegisterClass *RC = PhysReg.second; 5823 if (OpInfo.ConstraintVT == MVT::Other) 5824 ValueVT = *RC->vt_begin(); 5825 5826 // Get the actual register value type. This is important, because the user 5827 // may have asked for (e.g.) the AX register in i32 type. We need to 5828 // remember that AX is actually i16 to get the right extension. 5829 RegVT = *RC->vt_begin(); 5830 5831 // This is a explicit reference to a physical register. 5832 Regs.push_back(AssignedReg); 5833 5834 // If this is an expanded reference, add the rest of the regs to Regs. 5835 if (NumRegs != 1) { 5836 TargetRegisterClass::iterator I = RC->begin(); 5837 for (; *I != AssignedReg; ++I) 5838 assert(I != RC->end() && "Didn't find reg!"); 5839 5840 // Already added the first reg. 5841 --NumRegs; ++I; 5842 for (; NumRegs; --NumRegs, ++I) { 5843 assert(I != RC->end() && "Ran out of registers to allocate!"); 5844 Regs.push_back(*I); 5845 } 5846 } 5847 5848 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5849 return; 5850 } 5851 5852 // Otherwise, if this was a reference to an LLVM register class, create vregs 5853 // for this reference. 5854 if (const TargetRegisterClass *RC = PhysReg.second) { 5855 RegVT = *RC->vt_begin(); 5856 if (OpInfo.ConstraintVT == MVT::Other) 5857 ValueVT = RegVT; 5858 5859 // Create the appropriate number of virtual registers. 5860 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5861 for (; NumRegs; --NumRegs) 5862 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5863 5864 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5865 return; 5866 } 5867 5868 // Otherwise, we couldn't allocate enough registers for this. 5869 } 5870 5871 /// visitInlineAsm - Handle a call to an InlineAsm object. 5872 /// 5873 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5874 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5875 5876 /// ConstraintOperands - Information about all of the constraints. 5877 SDISelAsmOperandInfoVector ConstraintOperands; 5878 5879 TargetLowering::AsmOperandInfoVector 5880 TargetConstraints = TLI.ParseConstraints(CS); 5881 5882 bool hasMemory = false; 5883 5884 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5885 unsigned ResNo = 0; // ResNo - The result number of the next output. 5886 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5887 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5888 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5889 5890 EVT OpVT = MVT::Other; 5891 5892 // Compute the value type for each operand. 5893 switch (OpInfo.Type) { 5894 case InlineAsm::isOutput: 5895 // Indirect outputs just consume an argument. 5896 if (OpInfo.isIndirect) { 5897 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5898 break; 5899 } 5900 5901 // The return value of the call is this value. As such, there is no 5902 // corresponding argument. 5903 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5904 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5905 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5906 } else { 5907 assert(ResNo == 0 && "Asm only has one result!"); 5908 OpVT = TLI.getValueType(CS.getType()); 5909 } 5910 ++ResNo; 5911 break; 5912 case InlineAsm::isInput: 5913 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5914 break; 5915 case InlineAsm::isClobber: 5916 // Nothing to do. 5917 break; 5918 } 5919 5920 // If this is an input or an indirect output, process the call argument. 5921 // BasicBlocks are labels, currently appearing only in asm's. 5922 if (OpInfo.CallOperandVal) { 5923 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5924 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5925 } else { 5926 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5927 } 5928 5929 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5930 } 5931 5932 OpInfo.ConstraintVT = OpVT; 5933 5934 // Indirect operand accesses access memory. 5935 if (OpInfo.isIndirect) 5936 hasMemory = true; 5937 else { 5938 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5939 TargetLowering::ConstraintType 5940 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5941 if (CType == TargetLowering::C_Memory) { 5942 hasMemory = true; 5943 break; 5944 } 5945 } 5946 } 5947 } 5948 5949 SDValue Chain, Flag; 5950 5951 // We won't need to flush pending loads if this asm doesn't touch 5952 // memory and is nonvolatile. 5953 if (hasMemory || IA->hasSideEffects()) 5954 Chain = getRoot(); 5955 else 5956 Chain = DAG.getRoot(); 5957 5958 // Second pass over the constraints: compute which constraint option to use 5959 // and assign registers to constraints that want a specific physreg. 5960 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5961 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5962 5963 // If this is an output operand with a matching input operand, look up the 5964 // matching input. If their types mismatch, e.g. one is an integer, the 5965 // other is floating point, or their sizes are different, flag it as an 5966 // error. 5967 if (OpInfo.hasMatchingInput()) { 5968 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5969 5970 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5971 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5972 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5973 OpInfo.ConstraintVT); 5974 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5975 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5976 Input.ConstraintVT); 5977 if ((OpInfo.ConstraintVT.isInteger() != 5978 Input.ConstraintVT.isInteger()) || 5979 (MatchRC.second != InputRC.second)) { 5980 report_fatal_error("Unsupported asm: input constraint" 5981 " with a matching output constraint of" 5982 " incompatible type!"); 5983 } 5984 Input.ConstraintVT = OpInfo.ConstraintVT; 5985 } 5986 } 5987 5988 // Compute the constraint code and ConstraintType to use. 5989 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5990 5991 // If this is a memory input, and if the operand is not indirect, do what we 5992 // need to to provide an address for the memory input. 5993 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5994 !OpInfo.isIndirect) { 5995 assert((OpInfo.isMultipleAlternative || 5996 (OpInfo.Type == InlineAsm::isInput)) && 5997 "Can only indirectify direct input operands!"); 5998 5999 // Memory operands really want the address of the value. If we don't have 6000 // an indirect input, put it in the constpool if we can, otherwise spill 6001 // it to a stack slot. 6002 // TODO: This isn't quite right. We need to handle these according to 6003 // the addressing mode that the constraint wants. Also, this may take 6004 // an additional register for the computation and we don't want that 6005 // either. 6006 6007 // If the operand is a float, integer, or vector constant, spill to a 6008 // constant pool entry to get its address. 6009 const Value *OpVal = OpInfo.CallOperandVal; 6010 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6011 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6012 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6013 TLI.getPointerTy()); 6014 } else { 6015 // Otherwise, create a stack slot and emit a store to it before the 6016 // asm. 6017 Type *Ty = OpVal->getType(); 6018 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6019 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6020 MachineFunction &MF = DAG.getMachineFunction(); 6021 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6022 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6023 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6024 OpInfo.CallOperand, StackSlot, 6025 MachinePointerInfo::getFixedStack(SSFI), 6026 false, false, 0); 6027 OpInfo.CallOperand = StackSlot; 6028 } 6029 6030 // There is no longer a Value* corresponding to this operand. 6031 OpInfo.CallOperandVal = 0; 6032 6033 // It is now an indirect operand. 6034 OpInfo.isIndirect = true; 6035 } 6036 6037 // If this constraint is for a specific register, allocate it before 6038 // anything else. 6039 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6040 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6041 } 6042 6043 // Second pass - Loop over all of the operands, assigning virtual or physregs 6044 // to register class operands. 6045 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6046 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6047 6048 // C_Register operands have already been allocated, Other/Memory don't need 6049 // to be. 6050 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6051 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6052 } 6053 6054 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6055 std::vector<SDValue> AsmNodeOperands; 6056 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6057 AsmNodeOperands.push_back( 6058 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6059 TLI.getPointerTy())); 6060 6061 // If we have a !srcloc metadata node associated with it, we want to attach 6062 // this to the ultimately generated inline asm machineinstr. To do this, we 6063 // pass in the third operand as this (potentially null) inline asm MDNode. 6064 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6065 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6066 6067 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6068 // bits as operand 3. 6069 unsigned ExtraInfo = 0; 6070 if (IA->hasSideEffects()) 6071 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6072 if (IA->isAlignStack()) 6073 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6074 // Set the asm dialect. 6075 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6076 6077 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6078 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6079 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6080 6081 // Compute the constraint code and ConstraintType to use. 6082 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6083 6084 // Ideally, we would only check against memory constraints. However, the 6085 // meaning of an other constraint can be target-specific and we can't easily 6086 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6087 // for other constriants as well. 6088 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6089 OpInfo.ConstraintType == TargetLowering::C_Other) { 6090 if (OpInfo.Type == InlineAsm::isInput) 6091 ExtraInfo |= InlineAsm::Extra_MayLoad; 6092 else if (OpInfo.Type == InlineAsm::isOutput) 6093 ExtraInfo |= InlineAsm::Extra_MayStore; 6094 } 6095 } 6096 6097 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6098 TLI.getPointerTy())); 6099 6100 // Loop over all of the inputs, copying the operand values into the 6101 // appropriate registers and processing the output regs. 6102 RegsForValue RetValRegs; 6103 6104 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6105 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6106 6107 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6108 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6109 6110 switch (OpInfo.Type) { 6111 case InlineAsm::isOutput: { 6112 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6113 OpInfo.ConstraintType != TargetLowering::C_Register) { 6114 // Memory output, or 'other' output (e.g. 'X' constraint). 6115 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6116 6117 // Add information to the INLINEASM node to know about this output. 6118 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6119 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6120 TLI.getPointerTy())); 6121 AsmNodeOperands.push_back(OpInfo.CallOperand); 6122 break; 6123 } 6124 6125 // Otherwise, this is a register or register class output. 6126 6127 // Copy the output from the appropriate register. Find a register that 6128 // we can use. 6129 if (OpInfo.AssignedRegs.Regs.empty()) { 6130 LLVMContext &Ctx = *DAG.getContext(); 6131 Ctx.emitError(CS.getInstruction(), 6132 "couldn't allocate output register for constraint '" + 6133 Twine(OpInfo.ConstraintCode) + "'"); 6134 break; 6135 } 6136 6137 // If this is an indirect operand, store through the pointer after the 6138 // asm. 6139 if (OpInfo.isIndirect) { 6140 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6141 OpInfo.CallOperandVal)); 6142 } else { 6143 // This is the result value of the call. 6144 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6145 // Concatenate this output onto the outputs list. 6146 RetValRegs.append(OpInfo.AssignedRegs); 6147 } 6148 6149 // Add information to the INLINEASM node to know that this register is 6150 // set. 6151 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6152 InlineAsm::Kind_RegDefEarlyClobber : 6153 InlineAsm::Kind_RegDef, 6154 false, 6155 0, 6156 DAG, 6157 AsmNodeOperands); 6158 break; 6159 } 6160 case InlineAsm::isInput: { 6161 SDValue InOperandVal = OpInfo.CallOperand; 6162 6163 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6164 // If this is required to match an output register we have already set, 6165 // just use its register. 6166 unsigned OperandNo = OpInfo.getMatchedOperand(); 6167 6168 // Scan until we find the definition we already emitted of this operand. 6169 // When we find it, create a RegsForValue operand. 6170 unsigned CurOp = InlineAsm::Op_FirstOperand; 6171 for (; OperandNo; --OperandNo) { 6172 // Advance to the next operand. 6173 unsigned OpFlag = 6174 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6175 assert((InlineAsm::isRegDefKind(OpFlag) || 6176 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6177 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6178 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6179 } 6180 6181 unsigned OpFlag = 6182 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6183 if (InlineAsm::isRegDefKind(OpFlag) || 6184 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6185 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6186 if (OpInfo.isIndirect) { 6187 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6188 LLVMContext &Ctx = *DAG.getContext(); 6189 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6190 " don't know how to handle tied " 6191 "indirect register inputs"); 6192 } 6193 6194 RegsForValue MatchedRegs; 6195 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6196 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6197 MatchedRegs.RegVTs.push_back(RegVT); 6198 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6199 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6200 i != e; ++i) 6201 MatchedRegs.Regs.push_back 6202 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6203 6204 // Use the produced MatchedRegs object to 6205 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6206 Chain, &Flag, CS.getInstruction()); 6207 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6208 true, OpInfo.getMatchedOperand(), 6209 DAG, AsmNodeOperands); 6210 break; 6211 } 6212 6213 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6214 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6215 "Unexpected number of operands"); 6216 // Add information to the INLINEASM node to know about this input. 6217 // See InlineAsm.h isUseOperandTiedToDef. 6218 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6219 OpInfo.getMatchedOperand()); 6220 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6221 TLI.getPointerTy())); 6222 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6223 break; 6224 } 6225 6226 // Treat indirect 'X' constraint as memory. 6227 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6228 OpInfo.isIndirect) 6229 OpInfo.ConstraintType = TargetLowering::C_Memory; 6230 6231 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6232 std::vector<SDValue> Ops; 6233 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6234 Ops, DAG); 6235 if (Ops.empty()) { 6236 LLVMContext &Ctx = *DAG.getContext(); 6237 Ctx.emitError(CS.getInstruction(), 6238 "invalid operand for inline asm constraint '" + 6239 Twine(OpInfo.ConstraintCode) + "'"); 6240 break; 6241 } 6242 6243 // Add information to the INLINEASM node to know about this input. 6244 unsigned ResOpType = 6245 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6246 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6247 TLI.getPointerTy())); 6248 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6249 break; 6250 } 6251 6252 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6253 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6254 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6255 "Memory operands expect pointer values"); 6256 6257 // Add information to the INLINEASM node to know about this input. 6258 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6259 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6260 TLI.getPointerTy())); 6261 AsmNodeOperands.push_back(InOperandVal); 6262 break; 6263 } 6264 6265 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6266 OpInfo.ConstraintType == TargetLowering::C_Register) && 6267 "Unknown constraint type!"); 6268 6269 // TODO: Support this. 6270 if (OpInfo.isIndirect) { 6271 LLVMContext &Ctx = *DAG.getContext(); 6272 Ctx.emitError(CS.getInstruction(), 6273 "Don't know how to handle indirect register inputs yet " 6274 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6275 break; 6276 } 6277 6278 // Copy the input into the appropriate registers. 6279 if (OpInfo.AssignedRegs.Regs.empty()) { 6280 LLVMContext &Ctx = *DAG.getContext(); 6281 Ctx.emitError(CS.getInstruction(), 6282 "couldn't allocate input reg for constraint '" + 6283 Twine(OpInfo.ConstraintCode) + "'"); 6284 break; 6285 } 6286 6287 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6288 Chain, &Flag, CS.getInstruction()); 6289 6290 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6291 DAG, AsmNodeOperands); 6292 break; 6293 } 6294 case InlineAsm::isClobber: { 6295 // Add the clobbered value to the operand list, so that the register 6296 // allocator is aware that the physreg got clobbered. 6297 if (!OpInfo.AssignedRegs.Regs.empty()) 6298 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6299 false, 0, DAG, 6300 AsmNodeOperands); 6301 break; 6302 } 6303 } 6304 } 6305 6306 // Finish up input operands. Set the input chain and add the flag last. 6307 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6308 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6309 6310 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6311 DAG.getVTList(MVT::Other, MVT::Glue), 6312 &AsmNodeOperands[0], AsmNodeOperands.size()); 6313 Flag = Chain.getValue(1); 6314 6315 // If this asm returns a register value, copy the result from that register 6316 // and set it as the value of the call. 6317 if (!RetValRegs.Regs.empty()) { 6318 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6319 Chain, &Flag, CS.getInstruction()); 6320 6321 // FIXME: Why don't we do this for inline asms with MRVs? 6322 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6323 EVT ResultType = TLI.getValueType(CS.getType()); 6324 6325 // If any of the results of the inline asm is a vector, it may have the 6326 // wrong width/num elts. This can happen for register classes that can 6327 // contain multiple different value types. The preg or vreg allocated may 6328 // not have the same VT as was expected. Convert it to the right type 6329 // with bit_convert. 6330 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6331 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6332 ResultType, Val); 6333 6334 } else if (ResultType != Val.getValueType() && 6335 ResultType.isInteger() && Val.getValueType().isInteger()) { 6336 // If a result value was tied to an input value, the computed result may 6337 // have a wider width than the expected result. Extract the relevant 6338 // portion. 6339 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6340 } 6341 6342 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6343 } 6344 6345 setValue(CS.getInstruction(), Val); 6346 // Don't need to use this as a chain in this case. 6347 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6348 return; 6349 } 6350 6351 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6352 6353 // Process indirect outputs, first output all of the flagged copies out of 6354 // physregs. 6355 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6356 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6357 const Value *Ptr = IndirectStoresToEmit[i].second; 6358 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6359 Chain, &Flag, IA); 6360 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6361 } 6362 6363 // Emit the non-flagged stores from the physregs. 6364 SmallVector<SDValue, 8> OutChains; 6365 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6366 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6367 StoresToEmit[i].first, 6368 getValue(StoresToEmit[i].second), 6369 MachinePointerInfo(StoresToEmit[i].second), 6370 false, false, 0); 6371 OutChains.push_back(Val); 6372 } 6373 6374 if (!OutChains.empty()) 6375 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6376 &OutChains[0], OutChains.size()); 6377 6378 DAG.setRoot(Chain); 6379 } 6380 6381 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6382 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6383 MVT::Other, getRoot(), 6384 getValue(I.getArgOperand(0)), 6385 DAG.getSrcValue(I.getArgOperand(0)))); 6386 } 6387 6388 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6389 const DataLayout &TD = *TLI.getDataLayout(); 6390 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6391 getRoot(), getValue(I.getOperand(0)), 6392 DAG.getSrcValue(I.getOperand(0)), 6393 TD.getABITypeAlignment(I.getType())); 6394 setValue(&I, V); 6395 DAG.setRoot(V.getValue(1)); 6396 } 6397 6398 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6399 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6400 MVT::Other, getRoot(), 6401 getValue(I.getArgOperand(0)), 6402 DAG.getSrcValue(I.getArgOperand(0)))); 6403 } 6404 6405 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6406 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6407 MVT::Other, getRoot(), 6408 getValue(I.getArgOperand(0)), 6409 getValue(I.getArgOperand(1)), 6410 DAG.getSrcValue(I.getArgOperand(0)), 6411 DAG.getSrcValue(I.getArgOperand(1)))); 6412 } 6413 6414 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6415 /// implementation, which just calls LowerCall. 6416 /// FIXME: When all targets are 6417 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6418 std::pair<SDValue, SDValue> 6419 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6420 // Handle all of the outgoing arguments. 6421 CLI.Outs.clear(); 6422 CLI.OutVals.clear(); 6423 ArgListTy &Args = CLI.Args; 6424 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6425 SmallVector<EVT, 4> ValueVTs; 6426 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6427 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6428 Value != NumValues; ++Value) { 6429 EVT VT = ValueVTs[Value]; 6430 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6431 SDValue Op = SDValue(Args[i].Node.getNode(), 6432 Args[i].Node.getResNo() + Value); 6433 ISD::ArgFlagsTy Flags; 6434 unsigned OriginalAlignment = 6435 getDataLayout()->getABITypeAlignment(ArgTy); 6436 6437 if (Args[i].isZExt) 6438 Flags.setZExt(); 6439 if (Args[i].isSExt) 6440 Flags.setSExt(); 6441 if (Args[i].isInReg) 6442 Flags.setInReg(); 6443 if (Args[i].isSRet) 6444 Flags.setSRet(); 6445 if (Args[i].isByVal) { 6446 Flags.setByVal(); 6447 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6448 Type *ElementTy = Ty->getElementType(); 6449 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6450 // For ByVal, alignment should come from FE. BE will guess if this 6451 // info is not there but there are cases it cannot get right. 6452 unsigned FrameAlign; 6453 if (Args[i].Alignment) 6454 FrameAlign = Args[i].Alignment; 6455 else 6456 FrameAlign = getByValTypeAlignment(ElementTy); 6457 Flags.setByValAlign(FrameAlign); 6458 } 6459 if (Args[i].isNest) 6460 Flags.setNest(); 6461 Flags.setOrigAlign(OriginalAlignment); 6462 6463 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6464 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6465 SmallVector<SDValue, 4> Parts(NumParts); 6466 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6467 6468 if (Args[i].isSExt) 6469 ExtendKind = ISD::SIGN_EXTEND; 6470 else if (Args[i].isZExt) 6471 ExtendKind = ISD::ZERO_EXTEND; 6472 6473 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6474 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6475 6476 for (unsigned j = 0; j != NumParts; ++j) { 6477 // if it isn't first piece, alignment must be 1 6478 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6479 i < CLI.NumFixedArgs, 6480 i, j*Parts[j].getValueType().getStoreSize()); 6481 if (NumParts > 1 && j == 0) 6482 MyFlags.Flags.setSplit(); 6483 else if (j != 0) 6484 MyFlags.Flags.setOrigAlign(1); 6485 6486 CLI.Outs.push_back(MyFlags); 6487 CLI.OutVals.push_back(Parts[j]); 6488 } 6489 } 6490 } 6491 6492 // Handle the incoming return values from the call. 6493 CLI.Ins.clear(); 6494 SmallVector<EVT, 4> RetTys; 6495 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6496 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6497 EVT VT = RetTys[I]; 6498 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6499 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6500 for (unsigned i = 0; i != NumRegs; ++i) { 6501 ISD::InputArg MyFlags; 6502 MyFlags.VT = RegisterVT.getSimpleVT(); 6503 MyFlags.Used = CLI.IsReturnValueUsed; 6504 if (CLI.RetSExt) 6505 MyFlags.Flags.setSExt(); 6506 if (CLI.RetZExt) 6507 MyFlags.Flags.setZExt(); 6508 if (CLI.IsInReg) 6509 MyFlags.Flags.setInReg(); 6510 CLI.Ins.push_back(MyFlags); 6511 } 6512 } 6513 6514 SmallVector<SDValue, 4> InVals; 6515 CLI.Chain = LowerCall(CLI, InVals); 6516 6517 // Verify that the target's LowerCall behaved as expected. 6518 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6519 "LowerCall didn't return a valid chain!"); 6520 assert((!CLI.IsTailCall || InVals.empty()) && 6521 "LowerCall emitted a return value for a tail call!"); 6522 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6523 "LowerCall didn't emit the correct number of values!"); 6524 6525 // For a tail call, the return value is merely live-out and there aren't 6526 // any nodes in the DAG representing it. Return a special value to 6527 // indicate that a tail call has been emitted and no more Instructions 6528 // should be processed in the current block. 6529 if (CLI.IsTailCall) { 6530 CLI.DAG.setRoot(CLI.Chain); 6531 return std::make_pair(SDValue(), SDValue()); 6532 } 6533 6534 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6535 assert(InVals[i].getNode() && 6536 "LowerCall emitted a null value!"); 6537 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6538 "LowerCall emitted a value with the wrong type!"); 6539 }); 6540 6541 // Collect the legal value parts into potentially illegal values 6542 // that correspond to the original function's return values. 6543 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6544 if (CLI.RetSExt) 6545 AssertOp = ISD::AssertSext; 6546 else if (CLI.RetZExt) 6547 AssertOp = ISD::AssertZext; 6548 SmallVector<SDValue, 4> ReturnValues; 6549 unsigned CurReg = 0; 6550 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6551 EVT VT = RetTys[I]; 6552 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6553 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6554 6555 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6556 NumRegs, RegisterVT, VT, NULL, 6557 AssertOp)); 6558 CurReg += NumRegs; 6559 } 6560 6561 // For a function returning void, there is no return value. We can't create 6562 // such a node, so we just return a null return value in that case. In 6563 // that case, nothing will actually look at the value. 6564 if (ReturnValues.empty()) 6565 return std::make_pair(SDValue(), CLI.Chain); 6566 6567 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6568 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6569 &ReturnValues[0], ReturnValues.size()); 6570 return std::make_pair(Res, CLI.Chain); 6571 } 6572 6573 void TargetLowering::LowerOperationWrapper(SDNode *N, 6574 SmallVectorImpl<SDValue> &Results, 6575 SelectionDAG &DAG) const { 6576 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6577 if (Res.getNode()) 6578 Results.push_back(Res); 6579 } 6580 6581 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6582 llvm_unreachable("LowerOperation not implemented for this target!"); 6583 } 6584 6585 void 6586 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6587 SDValue Op = getNonRegisterValue(V); 6588 assert((Op.getOpcode() != ISD::CopyFromReg || 6589 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6590 "Copy from a reg to the same reg!"); 6591 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6592 6593 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6594 SDValue Chain = DAG.getEntryNode(); 6595 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V); 6596 PendingExports.push_back(Chain); 6597 } 6598 6599 #include "llvm/CodeGen/SelectionDAGISel.h" 6600 6601 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6602 /// entry block, return true. This includes arguments used by switches, since 6603 /// the switch may expand into multiple basic blocks. 6604 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6605 // With FastISel active, we may be splitting blocks, so force creation 6606 // of virtual registers for all non-dead arguments. 6607 if (FastISel) 6608 return A->use_empty(); 6609 6610 const BasicBlock *Entry = A->getParent()->begin(); 6611 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6612 UI != E; ++UI) { 6613 const User *U = *UI; 6614 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6615 return false; // Use not in entry block. 6616 } 6617 return true; 6618 } 6619 6620 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6621 // If this is the entry block, emit arguments. 6622 const Function &F = *LLVMBB->getParent(); 6623 SelectionDAG &DAG = SDB->DAG; 6624 DebugLoc dl = SDB->getCurDebugLoc(); 6625 const DataLayout *TD = TLI.getDataLayout(); 6626 SmallVector<ISD::InputArg, 16> Ins; 6627 6628 // Check whether the function can return without sret-demotion. 6629 SmallVector<ISD::OutputArg, 4> Outs; 6630 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6631 Outs, TLI); 6632 6633 if (!FuncInfo->CanLowerReturn) { 6634 // Put in an sret pointer parameter before all the other parameters. 6635 SmallVector<EVT, 1> ValueVTs; 6636 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6637 6638 // NOTE: Assuming that a pointer will never break down to more than one VT 6639 // or one register. 6640 ISD::ArgFlagsTy Flags; 6641 Flags.setSRet(); 6642 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6643 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6644 Ins.push_back(RetArg); 6645 } 6646 6647 // Set up the incoming argument description vector. 6648 unsigned Idx = 1; 6649 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6650 I != E; ++I, ++Idx) { 6651 SmallVector<EVT, 4> ValueVTs; 6652 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6653 bool isArgValueUsed = !I->use_empty(); 6654 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6655 Value != NumValues; ++Value) { 6656 EVT VT = ValueVTs[Value]; 6657 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6658 ISD::ArgFlagsTy Flags; 6659 unsigned OriginalAlignment = 6660 TD->getABITypeAlignment(ArgTy); 6661 6662 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6663 Flags.setZExt(); 6664 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6665 Flags.setSExt(); 6666 if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg)) 6667 Flags.setInReg(); 6668 if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet)) 6669 Flags.setSRet(); 6670 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) { 6671 Flags.setByVal(); 6672 PointerType *Ty = cast<PointerType>(I->getType()); 6673 Type *ElementTy = Ty->getElementType(); 6674 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6675 // For ByVal, alignment should be passed from FE. BE will guess if 6676 // this info is not there but there are cases it cannot get right. 6677 unsigned FrameAlign; 6678 if (F.getParamAlignment(Idx)) 6679 FrameAlign = F.getParamAlignment(Idx); 6680 else 6681 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6682 Flags.setByValAlign(FrameAlign); 6683 } 6684 if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest)) 6685 Flags.setNest(); 6686 Flags.setOrigAlign(OriginalAlignment); 6687 6688 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6689 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6690 for (unsigned i = 0; i != NumRegs; ++i) { 6691 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6692 Idx-1, i*RegisterVT.getStoreSize()); 6693 if (NumRegs > 1 && i == 0) 6694 MyFlags.Flags.setSplit(); 6695 // if it isn't first piece, alignment must be 1 6696 else if (i > 0) 6697 MyFlags.Flags.setOrigAlign(1); 6698 Ins.push_back(MyFlags); 6699 } 6700 } 6701 } 6702 6703 // Call the target to set up the argument values. 6704 SmallVector<SDValue, 8> InVals; 6705 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6706 F.isVarArg(), Ins, 6707 dl, DAG, InVals); 6708 6709 // Verify that the target's LowerFormalArguments behaved as expected. 6710 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6711 "LowerFormalArguments didn't return a valid chain!"); 6712 assert(InVals.size() == Ins.size() && 6713 "LowerFormalArguments didn't emit the correct number of values!"); 6714 DEBUG({ 6715 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6716 assert(InVals[i].getNode() && 6717 "LowerFormalArguments emitted a null value!"); 6718 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6719 "LowerFormalArguments emitted a value with the wrong type!"); 6720 } 6721 }); 6722 6723 // Update the DAG with the new chain value resulting from argument lowering. 6724 DAG.setRoot(NewRoot); 6725 6726 // Set up the argument values. 6727 unsigned i = 0; 6728 Idx = 1; 6729 if (!FuncInfo->CanLowerReturn) { 6730 // Create a virtual register for the sret pointer, and put in a copy 6731 // from the sret argument into it. 6732 SmallVector<EVT, 1> ValueVTs; 6733 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6734 EVT VT = ValueVTs[0]; 6735 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6736 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6737 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6738 RegVT, VT, NULL, AssertOp); 6739 6740 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6741 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6742 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6743 FuncInfo->DemoteRegister = SRetReg; 6744 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6745 SRetReg, ArgValue); 6746 DAG.setRoot(NewRoot); 6747 6748 // i indexes lowered arguments. Bump it past the hidden sret argument. 6749 // Idx indexes LLVM arguments. Don't touch it. 6750 ++i; 6751 } 6752 6753 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6754 ++I, ++Idx) { 6755 SmallVector<SDValue, 4> ArgValues; 6756 SmallVector<EVT, 4> ValueVTs; 6757 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6758 unsigned NumValues = ValueVTs.size(); 6759 6760 // If this argument is unused then remember its value. It is used to generate 6761 // debugging information. 6762 if (I->use_empty() && NumValues) 6763 SDB->setUnusedArgValue(I, InVals[i]); 6764 6765 for (unsigned Val = 0; Val != NumValues; ++Val) { 6766 EVT VT = ValueVTs[Val]; 6767 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6768 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6769 6770 if (!I->use_empty()) { 6771 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6772 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6773 AssertOp = ISD::AssertSext; 6774 else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6775 AssertOp = ISD::AssertZext; 6776 6777 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6778 NumParts, PartVT, VT, 6779 NULL, AssertOp)); 6780 } 6781 6782 i += NumParts; 6783 } 6784 6785 // We don't need to do anything else for unused arguments. 6786 if (ArgValues.empty()) 6787 continue; 6788 6789 // Note down frame index. 6790 if (FrameIndexSDNode *FI = 6791 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6792 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6793 6794 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6795 SDB->getCurDebugLoc()); 6796 6797 SDB->setValue(I, Res); 6798 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6799 if (LoadSDNode *LNode = 6800 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6801 if (FrameIndexSDNode *FI = 6802 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6803 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6804 } 6805 6806 // If this argument is live outside of the entry block, insert a copy from 6807 // wherever we got it to the vreg that other BB's will reference it as. 6808 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6809 // If we can, though, try to skip creating an unnecessary vreg. 6810 // FIXME: This isn't very clean... it would be nice to make this more 6811 // general. It's also subtly incompatible with the hacks FastISel 6812 // uses with vregs. 6813 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6814 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6815 FuncInfo->ValueMap[I] = Reg; 6816 continue; 6817 } 6818 } 6819 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6820 FuncInfo->InitializeRegForValue(I); 6821 SDB->CopyToExportRegsIfNeeded(I); 6822 } 6823 } 6824 6825 assert(i == InVals.size() && "Argument register count mismatch!"); 6826 6827 // Finally, if the target has anything special to do, allow it to do so. 6828 // FIXME: this should insert code into the DAG! 6829 EmitFunctionEntryCode(); 6830 } 6831 6832 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6833 /// ensure constants are generated when needed. Remember the virtual registers 6834 /// that need to be added to the Machine PHI nodes as input. We cannot just 6835 /// directly add them, because expansion might result in multiple MBB's for one 6836 /// BB. As such, the start of the BB might correspond to a different MBB than 6837 /// the end. 6838 /// 6839 void 6840 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6841 const TerminatorInst *TI = LLVMBB->getTerminator(); 6842 6843 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6844 6845 // Check successor nodes' PHI nodes that expect a constant to be available 6846 // from this block. 6847 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6848 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6849 if (!isa<PHINode>(SuccBB->begin())) continue; 6850 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6851 6852 // If this terminator has multiple identical successors (common for 6853 // switches), only handle each succ once. 6854 if (!SuccsHandled.insert(SuccMBB)) continue; 6855 6856 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6857 6858 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6859 // nodes and Machine PHI nodes, but the incoming operands have not been 6860 // emitted yet. 6861 for (BasicBlock::const_iterator I = SuccBB->begin(); 6862 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6863 // Ignore dead phi's. 6864 if (PN->use_empty()) continue; 6865 6866 // Skip empty types 6867 if (PN->getType()->isEmptyTy()) 6868 continue; 6869 6870 unsigned Reg; 6871 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6872 6873 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6874 unsigned &RegOut = ConstantsOut[C]; 6875 if (RegOut == 0) { 6876 RegOut = FuncInfo.CreateRegs(C->getType()); 6877 CopyValueToVirtualRegister(C, RegOut); 6878 } 6879 Reg = RegOut; 6880 } else { 6881 DenseMap<const Value *, unsigned>::iterator I = 6882 FuncInfo.ValueMap.find(PHIOp); 6883 if (I != FuncInfo.ValueMap.end()) 6884 Reg = I->second; 6885 else { 6886 assert(isa<AllocaInst>(PHIOp) && 6887 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6888 "Didn't codegen value into a register!??"); 6889 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6890 CopyValueToVirtualRegister(PHIOp, Reg); 6891 } 6892 } 6893 6894 // Remember that this register needs to added to the machine PHI node as 6895 // the input for this MBB. 6896 SmallVector<EVT, 4> ValueVTs; 6897 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6898 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6899 EVT VT = ValueVTs[vti]; 6900 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6901 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6902 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6903 Reg += NumRegisters; 6904 } 6905 } 6906 } 6907 ConstantsOut.clear(); 6908 } 6909