1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 41 #include "llvm/CodeGen/MachineMemOperand.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RuntimeLibcalls.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 48 #include "llvm/CodeGen/StackMaps.h" 49 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 50 #include "llvm/CodeGen/TargetFrameLowering.h" 51 #include "llvm/CodeGen/TargetInstrInfo.h" 52 #include "llvm/CodeGen/TargetOpcodes.h" 53 #include "llvm/CodeGen/TargetRegisterInfo.h" 54 #include "llvm/CodeGen/TargetSubtargetInfo.h" 55 #include "llvm/CodeGen/WinEHFuncInfo.h" 56 #include "llvm/IR/Argument.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/CFG.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/ConstantRange.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/DiagnosticInfo.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/InlineAsm.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/IntrinsicInst.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/IntrinsicsAArch64.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Statepoint.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/Support/AtomicOrdering.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Target/TargetIntrinsicInfo.h" 95 #include "llvm/Target/TargetMachine.h" 96 #include "llvm/Target/TargetOptions.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include <cstddef> 99 #include <iterator> 100 #include <limits> 101 #include <tuple> 102 103 using namespace llvm; 104 using namespace PatternMatch; 105 using namespace SwitchCG; 106 107 #define DEBUG_TYPE "isel" 108 109 /// LimitFloatPrecision - Generate low-precision inline sequences for 110 /// some float libcalls (6, 8 or 12 bits). 111 static unsigned LimitFloatPrecision; 112 113 static cl::opt<bool> 114 InsertAssertAlign("insert-assert-align", cl::init(true), 115 cl::desc("Insert the experimental `assertalign` node."), 116 cl::ReallyHidden); 117 118 static cl::opt<unsigned, true> 119 LimitFPPrecision("limit-float-precision", 120 cl::desc("Generate low-precision inline sequences " 121 "for some float libcalls"), 122 cl::location(LimitFloatPrecision), cl::Hidden, 123 cl::init(0)); 124 125 static cl::opt<unsigned> SwitchPeelThreshold( 126 "switch-peel-threshold", cl::Hidden, cl::init(66), 127 cl::desc("Set the case probability threshold for peeling the case from a " 128 "switch statement. A value greater than 100 will void this " 129 "optimization")); 130 131 // Limit the width of DAG chains. This is important in general to prevent 132 // DAG-based analysis from blowing up. For example, alias analysis and 133 // load clustering may not complete in reasonable time. It is difficult to 134 // recognize and avoid this situation within each individual analysis, and 135 // future analyses are likely to have the same behavior. Limiting DAG width is 136 // the safe approach and will be especially important with global DAGs. 137 // 138 // MaxParallelChains default is arbitrarily high to avoid affecting 139 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 140 // sequence over this should have been converted to llvm.memcpy by the 141 // frontend. It is easy to induce this behavior with .ll code such as: 142 // %buffer = alloca [4096 x i8] 143 // %data = load [4096 x i8]* %argPtr 144 // store [4096 x i8] %data, [4096 x i8]* %buffer 145 static const unsigned MaxParallelChains = 64; 146 147 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 148 const SDValue *Parts, unsigned NumParts, 149 MVT PartVT, EVT ValueVT, const Value *V, 150 Optional<CallingConv::ID> CC); 151 152 /// getCopyFromParts - Create a value that contains the specified legal parts 153 /// combined into the value they represent. If the parts combine to a type 154 /// larger than ValueVT then AssertOp can be used to specify whether the extra 155 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 156 /// (ISD::AssertSext). 157 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 Optional<CallingConv::ID> CC = None, 161 Optional<ISD::NodeType> AssertOp = None) { 162 // Let the target assemble the parts if it wants to 163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 164 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 165 PartVT, ValueVT, CC)) 166 return Val; 167 168 if (ValueVT.isVector()) 169 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 170 CC); 171 172 assert(NumParts > 0 && "No parts to assemble!"); 173 SDValue Val = Parts[0]; 174 175 if (NumParts > 1) { 176 // Assemble the value from multiple parts. 177 if (ValueVT.isInteger()) { 178 unsigned PartBits = PartVT.getSizeInBits(); 179 unsigned ValueBits = ValueVT.getSizeInBits(); 180 181 // Assemble the power of 2 part. 182 unsigned RoundParts = 183 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 184 unsigned RoundBits = PartBits * RoundParts; 185 EVT RoundVT = RoundBits == ValueBits ? 186 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 187 SDValue Lo, Hi; 188 189 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 190 191 if (RoundParts > 2) { 192 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 193 PartVT, HalfVT, V); 194 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 195 RoundParts / 2, PartVT, HalfVT, V); 196 } else { 197 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 199 } 200 201 if (DAG.getDataLayout().isBigEndian()) 202 std::swap(Lo, Hi); 203 204 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 205 206 if (RoundParts < NumParts) { 207 // Assemble the trailing non-power-of-2 part. 208 unsigned OddParts = NumParts - RoundParts; 209 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 210 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 211 OddVT, V, CC); 212 213 // Combine the round and odd parts. 214 Lo = Val; 215 if (DAG.getDataLayout().isBigEndian()) 216 std::swap(Lo, Hi); 217 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 218 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 219 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 220 DAG.getConstant(Lo.getValueSizeInBits(), DL, 221 TLI.getShiftAmountTy( 222 TotalVT, DAG.getDataLayout()))); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 225 } 226 } else if (PartVT.isFloatingPoint()) { 227 // FP split into multiple FP parts (for ppcf128) 228 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 229 "Unexpected split"); 230 SDValue Lo, Hi; 231 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 233 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 234 std::swap(Lo, Hi); 235 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 236 } else { 237 // FP split into integer parts (soft fp) 238 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 239 !PartVT.isVector() && "Unexpected split"); 240 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 241 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 242 } 243 } 244 245 // There is now one part, held in Val. Correct it to match ValueVT. 246 // PartEVT is the type of the register class that holds the value. 247 // ValueVT is the type of the inline asm operation. 248 EVT PartEVT = Val.getValueType(); 249 250 if (PartEVT == ValueVT) 251 return Val; 252 253 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 254 ValueVT.bitsLT(PartEVT)) { 255 // For an FP value in an integer part, we need to truncate to the right 256 // width first. 257 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 258 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 259 } 260 261 // Handle types that have the same size. 262 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 263 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 264 265 // Handle types with different sizes. 266 if (PartEVT.isInteger() && ValueVT.isInteger()) { 267 if (ValueVT.bitsLT(PartEVT)) { 268 // For a truncate, see if we have any information to 269 // indicate whether the truncated bits will always be 270 // zero or sign-extension. 271 if (AssertOp.hasValue()) 272 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 273 DAG.getValueType(ValueVT)); 274 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 275 } 276 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 277 } 278 279 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 280 // FP_ROUND's are always exact here. 281 if (ValueVT.bitsLT(Val.getValueType())) 282 return DAG.getNode( 283 ISD::FP_ROUND, DL, ValueVT, Val, 284 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 285 286 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 287 } 288 289 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 290 // then truncating. 291 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 292 ValueVT.bitsLT(PartEVT)) { 293 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 294 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 295 } 296 297 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 298 } 299 300 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 301 const Twine &ErrMsg) { 302 const Instruction *I = dyn_cast_or_null<Instruction>(V); 303 if (!V) 304 return Ctx.emitError(ErrMsg); 305 306 const char *AsmError = ", possible invalid constraint for vector type"; 307 if (const CallInst *CI = dyn_cast<CallInst>(I)) 308 if (CI->isInlineAsm()) 309 return Ctx.emitError(I, ErrMsg + AsmError); 310 311 return Ctx.emitError(I, ErrMsg); 312 } 313 314 /// getCopyFromPartsVector - Create a value that contains the specified legal 315 /// parts combined into the value they represent. If the parts combine to a 316 /// type larger than ValueVT then AssertOp can be used to specify whether the 317 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 318 /// ValueVT (ISD::AssertSext). 319 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 320 const SDValue *Parts, unsigned NumParts, 321 MVT PartVT, EVT ValueVT, const Value *V, 322 Optional<CallingConv::ID> CallConv) { 323 assert(ValueVT.isVector() && "Not a vector value"); 324 assert(NumParts > 0 && "No parts to assemble!"); 325 const bool IsABIRegCopy = CallConv.hasValue(); 326 327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 328 SDValue Val = Parts[0]; 329 330 // Handle a multi-element vector. 331 if (NumParts > 1) { 332 EVT IntermediateVT; 333 MVT RegisterVT; 334 unsigned NumIntermediates; 335 unsigned NumRegs; 336 337 if (IsABIRegCopy) { 338 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 339 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 340 NumIntermediates, RegisterVT); 341 } else { 342 NumRegs = 343 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } 346 347 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 348 NumParts = NumRegs; // Silence a compiler warning. 349 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 350 assert(RegisterVT.getSizeInBits() == 351 Parts[0].getSimpleValueType().getSizeInBits() && 352 "Part type sizes don't match!"); 353 354 // Assemble the parts into intermediate operands. 355 SmallVector<SDValue, 8> Ops(NumIntermediates); 356 if (NumIntermediates == NumParts) { 357 // If the register was not expanded, truncate or copy the value, 358 // as appropriate. 359 for (unsigned i = 0; i != NumParts; ++i) 360 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 361 PartVT, IntermediateVT, V, CallConv); 362 } else if (NumParts > 0) { 363 // If the intermediate type was expanded, build the intermediate 364 // operands from the parts. 365 assert(NumParts % NumIntermediates == 0 && 366 "Must expand into a divisible number of parts!"); 367 unsigned Factor = NumParts / NumIntermediates; 368 for (unsigned i = 0; i != NumIntermediates; ++i) 369 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 370 PartVT, IntermediateVT, V, CallConv); 371 } 372 373 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 374 // intermediate operands. 375 EVT BuiltVectorTy = 376 IntermediateVT.isVector() 377 ? EVT::getVectorVT( 378 *DAG.getContext(), IntermediateVT.getScalarType(), 379 IntermediateVT.getVectorElementCount() * NumParts) 380 : EVT::getVectorVT(*DAG.getContext(), 381 IntermediateVT.getScalarType(), 382 NumIntermediates); 383 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 384 : ISD::BUILD_VECTOR, 385 DL, BuiltVectorTy, Ops); 386 } 387 388 // There is now one part, held in Val. Correct it to match ValueVT. 389 EVT PartEVT = Val.getValueType(); 390 391 if (PartEVT == ValueVT) 392 return Val; 393 394 if (PartEVT.isVector()) { 395 // Vector/Vector bitcast. 396 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 397 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 398 399 // If the element type of the source/dest vectors are the same, but the 400 // parts vector has more elements than the value vector, then we have a 401 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 402 // elements we want. 403 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 404 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 405 ValueVT.getVectorElementCount().getKnownMinValue()) && 406 (PartEVT.getVectorElementCount().isScalable() == 407 ValueVT.getVectorElementCount().isScalable()) && 408 "Cannot narrow, it would be a lossy transformation"); 409 PartEVT = 410 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 411 ValueVT.getVectorElementCount()); 412 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 if (PartEVT == ValueVT) 415 return Val; 416 } 417 418 // Promoted vector extract 419 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 420 } 421 422 // Trivial bitcast if the types are the same size and the destination 423 // vector type is legal. 424 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 425 TLI.isTypeLegal(ValueVT)) 426 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 427 428 if (ValueVT.getVectorNumElements() != 1) { 429 // Certain ABIs require that vectors are passed as integers. For vectors 430 // are the same size, this is an obvious bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 } else if (ValueVT.bitsLT(PartEVT)) { 434 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 435 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 436 // Drop the extra bits. 437 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 438 return DAG.getBitcast(ValueVT, Val); 439 } 440 441 diagnosePossiblyInvalidConstraint( 442 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 443 return DAG.getUNDEF(ValueVT); 444 } 445 446 // Handle cases such as i8 -> <1 x i1> 447 EVT ValueSVT = ValueVT.getVectorElementType(); 448 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 449 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 451 else 452 Val = ValueVT.isFloatingPoint() 453 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 454 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 455 } 456 457 return DAG.getBuildVector(ValueVT, DL, Val); 458 } 459 460 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 461 SDValue Val, SDValue *Parts, unsigned NumParts, 462 MVT PartVT, const Value *V, 463 Optional<CallingConv::ID> CallConv); 464 465 /// getCopyToParts - Create a series of nodes that contain the specified value 466 /// split into legal parts. If the parts contain more bits than Val, then, for 467 /// integers, ExtendKind can be used to specify how to generate the extra bits. 468 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 469 SDValue *Parts, unsigned NumParts, MVT PartVT, 470 const Value *V, 471 Optional<CallingConv::ID> CallConv = None, 472 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 473 // Let the target split the parts if it wants to 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 476 CallConv)) 477 return; 478 EVT ValueVT = Val.getValueType(); 479 480 // Handle the vector case separately. 481 if (ValueVT.isVector()) 482 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 483 CallConv); 484 485 unsigned PartBits = PartVT.getSizeInBits(); 486 unsigned OrigNumParts = NumParts; 487 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 488 "Copying to an illegal type!"); 489 490 if (NumParts == 0) 491 return; 492 493 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 494 EVT PartEVT = PartVT; 495 if (PartEVT == ValueVT) { 496 assert(NumParts == 1 && "No-op copy with multiple parts!"); 497 Parts[0] = Val; 498 return; 499 } 500 501 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 502 // If the parts cover more bits than the value has, promote the value. 503 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 504 assert(NumParts == 1 && "Do not know what to promote to!"); 505 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 506 } else { 507 if (ValueVT.isFloatingPoint()) { 508 // FP values need to be bitcast, then extended if they are being put 509 // into a larger container. 510 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 511 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 512 } 513 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 514 ValueVT.isInteger() && 515 "Unknown mismatch!"); 516 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 517 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 518 if (PartVT == MVT::x86mmx) 519 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 520 } 521 } else if (PartBits == ValueVT.getSizeInBits()) { 522 // Different types of the same size. 523 assert(NumParts == 1 && PartEVT != ValueVT); 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 526 // If the parts cover less bits than value has, truncate the value. 527 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 528 ValueVT.isInteger() && 529 "Unknown mismatch!"); 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 531 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 532 if (PartVT == MVT::x86mmx) 533 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 534 } 535 536 // The value may have changed - recompute ValueVT. 537 ValueVT = Val.getValueType(); 538 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 539 "Failed to tile the value with PartVT!"); 540 541 if (NumParts == 1) { 542 if (PartEVT != ValueVT) { 543 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 544 "scalar-to-vector conversion failed"); 545 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 546 } 547 548 Parts[0] = Val; 549 return; 550 } 551 552 // Expand the value into multiple parts. 553 if (NumParts & (NumParts - 1)) { 554 // The number of parts is not a power of 2. Split off and copy the tail. 555 assert(PartVT.isInteger() && ValueVT.isInteger() && 556 "Do not know what to expand to!"); 557 unsigned RoundParts = 1 << Log2_32(NumParts); 558 unsigned RoundBits = RoundParts * PartBits; 559 unsigned OddParts = NumParts - RoundParts; 560 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 561 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 562 563 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 564 CallConv); 565 566 if (DAG.getDataLayout().isBigEndian()) 567 // The odd parts were reversed by getCopyToParts - unreverse them. 568 std::reverse(Parts + RoundParts, Parts + NumParts); 569 570 NumParts = RoundParts; 571 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 572 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 573 } 574 575 // The number of parts is a power of 2. Repeatedly bisect the value using 576 // EXTRACT_ELEMENT. 577 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 578 EVT::getIntegerVT(*DAG.getContext(), 579 ValueVT.getSizeInBits()), 580 Val); 581 582 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 583 for (unsigned i = 0; i < NumParts; i += StepSize) { 584 unsigned ThisBits = StepSize * PartBits / 2; 585 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 586 SDValue &Part0 = Parts[i]; 587 SDValue &Part1 = Parts[i+StepSize/2]; 588 589 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 590 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 591 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 593 594 if (ThisBits == PartBits && ThisVT != PartVT) { 595 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 596 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 597 } 598 } 599 } 600 601 if (DAG.getDataLayout().isBigEndian()) 602 std::reverse(Parts, Parts + OrigNumParts); 603 } 604 605 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 606 const SDLoc &DL, EVT PartVT) { 607 if (!PartVT.isVector()) 608 return SDValue(); 609 610 EVT ValueVT = Val.getValueType(); 611 ElementCount PartNumElts = PartVT.getVectorElementCount(); 612 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 613 614 // We only support widening vectors with equivalent element types and 615 // fixed/scalable properties. If a target needs to widen a fixed-length type 616 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 617 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 618 PartNumElts.isScalable() != ValueNumElts.isScalable() || 619 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 620 return SDValue(); 621 622 // Widening a scalable vector to another scalable vector is done by inserting 623 // the vector into a larger undef one. 624 if (PartNumElts.isScalable()) 625 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 626 Val, DAG.getVectorIdxConstant(0, DL)); 627 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 DAG.ExtractVectorElements(Val, Ops); 633 SDValue EltUndef = DAG.getUNDEF(ElementVT); 634 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 /// getCopyToPartsVector - Create a series of nodes that contain the specified 641 /// value split into legal parts. 642 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 643 SDValue Val, SDValue *Parts, unsigned NumParts, 644 MVT PartVT, const Value *V, 645 Optional<CallingConv::ID> CallConv) { 646 EVT ValueVT = Val.getValueType(); 647 assert(ValueVT.isVector() && "Not a vector"); 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 const bool IsABIRegCopy = CallConv.hasValue(); 650 651 if (NumParts == 1) { 652 EVT PartEVT = PartVT; 653 if (PartEVT == ValueVT) { 654 // Nothing to do. 655 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 656 // Bitconvert vector->vector case. 657 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 658 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 659 Val = Widened; 660 } else if (PartVT.isVector() && 661 PartEVT.getVectorElementType().bitsGE( 662 ValueVT.getVectorElementType()) && 663 PartEVT.getVectorElementCount() == 664 ValueVT.getVectorElementCount()) { 665 666 // Promoted vector extract 667 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 668 } else if (PartEVT.isVector() && 669 PartEVT.getVectorElementType() != 670 ValueVT.getVectorElementType() && 671 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 672 TargetLowering::TypeWidenVector) { 673 // Combination of widening and promotion. 674 EVT WidenVT = 675 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 676 PartVT.getVectorElementCount()); 677 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 678 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 679 } else { 680 if (ValueVT.getVectorElementCount().isScalar()) { 681 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 682 DAG.getVectorIdxConstant(0, DL)); 683 } else { 684 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 685 assert(PartVT.getFixedSizeInBits() > ValueSize && 686 "lossy conversion of vector to scalar type"); 687 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 688 Val = DAG.getBitcast(IntermediateType, Val); 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } 691 } 692 693 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 694 Parts[0] = Val; 695 return; 696 } 697 698 // Handle a multi-element vector. 699 EVT IntermediateVT; 700 MVT RegisterVT; 701 unsigned NumIntermediates; 702 unsigned NumRegs; 703 if (IsABIRegCopy) { 704 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 705 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 706 NumIntermediates, RegisterVT); 707 } else { 708 NumRegs = 709 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 710 NumIntermediates, RegisterVT); 711 } 712 713 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 714 NumParts = NumRegs; // Silence a compiler warning. 715 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 716 717 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 718 "Mixing scalable and fixed vectors when copying in parts"); 719 720 Optional<ElementCount> DestEltCnt; 721 722 if (IntermediateVT.isVector()) 723 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 724 else 725 DestEltCnt = ElementCount::getFixed(NumIntermediates); 726 727 EVT BuiltVectorTy = EVT::getVectorVT( 728 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 729 730 if (ValueVT == BuiltVectorTy) { 731 // Nothing to do. 732 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 733 // Bitconvert vector->vector case. 734 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 735 } else { 736 if (BuiltVectorTy.getVectorElementType().bitsGT( 737 ValueVT.getVectorElementType())) { 738 // Integer promotion. 739 ValueVT = EVT::getVectorVT(*DAG.getContext(), 740 BuiltVectorTy.getVectorElementType(), 741 ValueVT.getVectorElementCount()); 742 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 743 } 744 745 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 746 Val = Widened; 747 } 748 } 749 750 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 751 752 // Split the vector into intermediate operands. 753 SmallVector<SDValue, 8> Ops(NumIntermediates); 754 for (unsigned i = 0; i != NumIntermediates; ++i) { 755 if (IntermediateVT.isVector()) { 756 // This does something sensible for scalable vectors - see the 757 // definition of EXTRACT_SUBVECTOR for further details. 758 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 759 Ops[i] = 760 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 761 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 762 } else { 763 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 764 DAG.getVectorIdxConstant(i, DL)); 765 } 766 } 767 768 // Split the intermediate operands into legal parts. 769 if (NumParts == NumIntermediates) { 770 // If the register was not expanded, promote or copy the value, 771 // as appropriate. 772 for (unsigned i = 0; i != NumParts; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 774 } else if (NumParts > 0) { 775 // If the intermediate type was expanded, split each the value into 776 // legal parts. 777 assert(NumIntermediates != 0 && "division by zero"); 778 assert(NumParts % NumIntermediates == 0 && 779 "Must expand into a divisible number of parts!"); 780 unsigned Factor = NumParts / NumIntermediates; 781 for (unsigned i = 0; i != NumIntermediates; ++i) 782 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 783 CallConv); 784 } 785 } 786 787 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 788 EVT valuevt, Optional<CallingConv::ID> CC) 789 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 790 RegCount(1, regs.size()), CallConv(CC) {} 791 792 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 793 const DataLayout &DL, unsigned Reg, Type *Ty, 794 Optional<CallingConv::ID> CC) { 795 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 796 797 CallConv = CC; 798 799 for (EVT ValueVT : ValueVTs) { 800 unsigned NumRegs = 801 isABIMangled() 802 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getNumRegisters(Context, ValueVT); 804 MVT RegisterVT = 805 isABIMangled() 806 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 807 : TLI.getRegisterType(Context, ValueVT); 808 for (unsigned i = 0; i != NumRegs; ++i) 809 Regs.push_back(Reg + i); 810 RegVTs.push_back(RegisterVT); 811 RegCount.push_back(NumRegs); 812 Reg += NumRegs; 813 } 814 } 815 816 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 817 FunctionLoweringInfo &FuncInfo, 818 const SDLoc &dl, SDValue &Chain, 819 SDValue *Flag, const Value *V) const { 820 // A Value with type {} or [0 x %t] needs no registers. 821 if (ValueVTs.empty()) 822 return SDValue(); 823 824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 825 826 // Assemble the legal parts into the final values. 827 SmallVector<SDValue, 4> Values(ValueVTs.size()); 828 SmallVector<SDValue, 8> Parts; 829 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 830 // Copy the legal parts from the registers. 831 EVT ValueVT = ValueVTs[Value]; 832 unsigned NumRegs = RegCount[Value]; 833 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 834 *DAG.getContext(), 835 CallConv.getValue(), RegVTs[Value]) 836 : RegVTs[Value]; 837 838 Parts.resize(NumRegs); 839 for (unsigned i = 0; i != NumRegs; ++i) { 840 SDValue P; 841 if (!Flag) { 842 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 843 } else { 844 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 845 *Flag = P.getValue(2); 846 } 847 848 Chain = P.getValue(1); 849 Parts[i] = P; 850 851 // If the source register was virtual and if we know something about it, 852 // add an assert node. 853 if (!Register::isVirtualRegister(Regs[Part + i]) || 854 !RegisterVT.isInteger()) 855 continue; 856 857 const FunctionLoweringInfo::LiveOutInfo *LOI = 858 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 859 if (!LOI) 860 continue; 861 862 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 863 unsigned NumSignBits = LOI->NumSignBits; 864 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 865 866 if (NumZeroBits == RegSize) { 867 // The current value is a zero. 868 // Explicitly express that as it would be easier for 869 // optimizations to kick in. 870 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 871 continue; 872 } 873 874 // FIXME: We capture more information than the dag can represent. For 875 // now, just use the tightest assertzext/assertsext possible. 876 bool isSExt; 877 EVT FromVT(MVT::Other); 878 if (NumZeroBits) { 879 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 880 isSExt = false; 881 } else if (NumSignBits > 1) { 882 FromVT = 883 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 884 isSExt = true; 885 } else { 886 continue; 887 } 888 // Add an assertion node. 889 assert(FromVT != MVT::Other); 890 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 891 RegisterVT, P, DAG.getValueType(FromVT)); 892 } 893 894 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 895 RegisterVT, ValueVT, V, CallConv); 896 Part += NumRegs; 897 Parts.clear(); 898 } 899 900 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 901 } 902 903 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 904 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 905 const Value *V, 906 ISD::NodeType PreferredExtendType) const { 907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 908 ISD::NodeType ExtendKind = PreferredExtendType; 909 910 // Get the list of the values's legal parts. 911 unsigned NumRegs = Regs.size(); 912 SmallVector<SDValue, 8> Parts(NumRegs); 913 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 914 unsigned NumParts = RegCount[Value]; 915 916 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 917 *DAG.getContext(), 918 CallConv.getValue(), RegVTs[Value]) 919 : RegVTs[Value]; 920 921 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 922 ExtendKind = ISD::ZERO_EXTEND; 923 924 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 925 NumParts, RegisterVT, V, CallConv, ExtendKind); 926 Part += NumParts; 927 } 928 929 // Copy the parts into the registers. 930 SmallVector<SDValue, 8> Chains(NumRegs); 931 for (unsigned i = 0; i != NumRegs; ++i) { 932 SDValue Part; 933 if (!Flag) { 934 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 935 } else { 936 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 937 *Flag = Part.getValue(1); 938 } 939 940 Chains[i] = Part.getValue(0); 941 } 942 943 if (NumRegs == 1 || Flag) 944 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 945 // flagged to it. That is the CopyToReg nodes and the user are considered 946 // a single scheduling unit. If we create a TokenFactor and return it as 947 // chain, then the TokenFactor is both a predecessor (operand) of the 948 // user as well as a successor (the TF operands are flagged to the user). 949 // c1, f1 = CopyToReg 950 // c2, f2 = CopyToReg 951 // c3 = TokenFactor c1, c2 952 // ... 953 // = op c3, ..., f2 954 Chain = Chains[NumRegs-1]; 955 else 956 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 957 } 958 959 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 960 unsigned MatchingIdx, const SDLoc &dl, 961 SelectionDAG &DAG, 962 std::vector<SDValue> &Ops) const { 963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 964 965 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 966 if (HasMatching) 967 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 968 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 969 // Put the register class of the virtual registers in the flag word. That 970 // way, later passes can recompute register class constraints for inline 971 // assembly as well as normal instructions. 972 // Don't do this for tied operands that can use the regclass information 973 // from the def. 974 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 975 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 976 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 977 } 978 979 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 980 Ops.push_back(Res); 981 982 if (Code == InlineAsm::Kind_Clobber) { 983 // Clobbers should always have a 1:1 mapping with registers, and may 984 // reference registers that have illegal (e.g. vector) types. Hence, we 985 // shouldn't try to apply any sort of splitting logic to them. 986 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 987 "No 1:1 mapping from clobbers to regs?"); 988 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 989 (void)SP; 990 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 991 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 992 assert( 993 (Regs[I] != SP || 994 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 995 "If we clobbered the stack pointer, MFI should know about it."); 996 } 997 return; 998 } 999 1000 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1001 MVT RegisterVT = RegVTs[Value]; 1002 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1003 RegisterVT); 1004 for (unsigned i = 0; i != NumRegs; ++i) { 1005 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1006 unsigned TheReg = Regs[Reg++]; 1007 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1008 } 1009 } 1010 } 1011 1012 SmallVector<std::pair<unsigned, TypeSize>, 4> 1013 RegsForValue::getRegsAndSizes() const { 1014 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1015 unsigned I = 0; 1016 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1017 unsigned RegCount = std::get<0>(CountAndVT); 1018 MVT RegisterVT = std::get<1>(CountAndVT); 1019 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1020 for (unsigned E = I + RegCount; I != E; ++I) 1021 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1022 } 1023 return OutVec; 1024 } 1025 1026 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1027 const TargetLibraryInfo *li) { 1028 AA = aa; 1029 GFI = gfi; 1030 LibInfo = li; 1031 Context = DAG.getContext(); 1032 LPadToCallSiteMap.clear(); 1033 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1034 } 1035 1036 void SelectionDAGBuilder::clear() { 1037 NodeMap.clear(); 1038 UnusedArgNodeMap.clear(); 1039 PendingLoads.clear(); 1040 PendingExports.clear(); 1041 PendingConstrainedFP.clear(); 1042 PendingConstrainedFPStrict.clear(); 1043 CurInst = nullptr; 1044 HasTailCall = false; 1045 SDNodeOrder = LowestSDNodeOrder; 1046 StatepointLowering.clear(); 1047 } 1048 1049 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1050 DanglingDebugInfoMap.clear(); 1051 } 1052 1053 // Update DAG root to include dependencies on Pending chains. 1054 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1055 SDValue Root = DAG.getRoot(); 1056 1057 if (Pending.empty()) 1058 return Root; 1059 1060 // Add current root to PendingChains, unless we already indirectly 1061 // depend on it. 1062 if (Root.getOpcode() != ISD::EntryToken) { 1063 unsigned i = 0, e = Pending.size(); 1064 for (; i != e; ++i) { 1065 assert(Pending[i].getNode()->getNumOperands() > 1); 1066 if (Pending[i].getNode()->getOperand(0) == Root) 1067 break; // Don't add the root if we already indirectly depend on it. 1068 } 1069 1070 if (i == e) 1071 Pending.push_back(Root); 1072 } 1073 1074 if (Pending.size() == 1) 1075 Root = Pending[0]; 1076 else 1077 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1078 1079 DAG.setRoot(Root); 1080 Pending.clear(); 1081 return Root; 1082 } 1083 1084 SDValue SelectionDAGBuilder::getMemoryRoot() { 1085 return updateRoot(PendingLoads); 1086 } 1087 1088 SDValue SelectionDAGBuilder::getRoot() { 1089 // Chain up all pending constrained intrinsics together with all 1090 // pending loads, by simply appending them to PendingLoads and 1091 // then calling getMemoryRoot(). 1092 PendingLoads.reserve(PendingLoads.size() + 1093 PendingConstrainedFP.size() + 1094 PendingConstrainedFPStrict.size()); 1095 PendingLoads.append(PendingConstrainedFP.begin(), 1096 PendingConstrainedFP.end()); 1097 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1098 PendingConstrainedFPStrict.end()); 1099 PendingConstrainedFP.clear(); 1100 PendingConstrainedFPStrict.clear(); 1101 return getMemoryRoot(); 1102 } 1103 1104 SDValue SelectionDAGBuilder::getControlRoot() { 1105 // We need to emit pending fpexcept.strict constrained intrinsics, 1106 // so append them to the PendingExports list. 1107 PendingExports.append(PendingConstrainedFPStrict.begin(), 1108 PendingConstrainedFPStrict.end()); 1109 PendingConstrainedFPStrict.clear(); 1110 return updateRoot(PendingExports); 1111 } 1112 1113 void SelectionDAGBuilder::visit(const Instruction &I) { 1114 // Set up outgoing PHI node register values before emitting the terminator. 1115 if (I.isTerminator()) { 1116 HandlePHINodesInSuccessorBlocks(I.getParent()); 1117 } 1118 1119 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1120 if (!isa<DbgInfoIntrinsic>(I)) 1121 ++SDNodeOrder; 1122 1123 CurInst = &I; 1124 1125 visit(I.getOpcode(), I); 1126 1127 if (!I.isTerminator() && !HasTailCall && 1128 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1129 CopyToExportRegsIfNeeded(&I); 1130 1131 CurInst = nullptr; 1132 } 1133 1134 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1135 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1136 } 1137 1138 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1139 // Note: this doesn't use InstVisitor, because it has to work with 1140 // ConstantExpr's in addition to instructions. 1141 switch (Opcode) { 1142 default: llvm_unreachable("Unknown instruction type encountered!"); 1143 // Build the switch statement using the Instruction.def file. 1144 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1145 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1146 #include "llvm/IR/Instruction.def" 1147 } 1148 } 1149 1150 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1151 DebugLoc DL, unsigned Order) { 1152 // We treat variadic dbg_values differently at this stage. 1153 if (DI->hasArgList()) { 1154 // For variadic dbg_values we will now insert an undef. 1155 // FIXME: We can potentially recover these! 1156 SmallVector<SDDbgOperand, 2> Locs; 1157 for (const Value *V : DI->getValues()) { 1158 auto Undef = UndefValue::get(V->getType()); 1159 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1160 } 1161 SDDbgValue *SDV = DAG.getDbgValueList( 1162 DI->getVariable(), DI->getExpression(), Locs, {}, 1163 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1164 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1165 } else { 1166 // TODO: Dangling debug info will eventually either be resolved or produce 1167 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1168 // between the original dbg.value location and its resolved DBG_VALUE, 1169 // which we should ideally fill with an extra Undef DBG_VALUE. 1170 assert(DI->getNumVariableLocationOps() == 1 && 1171 "DbgValueInst without an ArgList should have a single location " 1172 "operand."); 1173 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1174 } 1175 } 1176 1177 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1178 const DIExpression *Expr) { 1179 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1180 const DbgValueInst *DI = DDI.getDI(); 1181 DIVariable *DanglingVariable = DI->getVariable(); 1182 DIExpression *DanglingExpr = DI->getExpression(); 1183 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1184 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1185 return true; 1186 } 1187 return false; 1188 }; 1189 1190 for (auto &DDIMI : DanglingDebugInfoMap) { 1191 DanglingDebugInfoVector &DDIV = DDIMI.second; 1192 1193 // If debug info is to be dropped, run it through final checks to see 1194 // whether it can be salvaged. 1195 for (auto &DDI : DDIV) 1196 if (isMatchingDbgValue(DDI)) 1197 salvageUnresolvedDbgValue(DDI); 1198 1199 erase_if(DDIV, isMatchingDbgValue); 1200 } 1201 } 1202 1203 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1204 // generate the debug data structures now that we've seen its definition. 1205 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1206 SDValue Val) { 1207 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1208 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1209 return; 1210 1211 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1212 for (auto &DDI : DDIV) { 1213 const DbgValueInst *DI = DDI.getDI(); 1214 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1215 assert(DI && "Ill-formed DanglingDebugInfo"); 1216 DebugLoc dl = DDI.getdl(); 1217 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1218 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1219 DILocalVariable *Variable = DI->getVariable(); 1220 DIExpression *Expr = DI->getExpression(); 1221 assert(Variable->isValidLocationForIntrinsic(dl) && 1222 "Expected inlined-at fields to agree"); 1223 SDDbgValue *SDV; 1224 if (Val.getNode()) { 1225 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1226 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1227 // we couldn't resolve it directly when examining the DbgValue intrinsic 1228 // in the first place we should not be more successful here). Unless we 1229 // have some test case that prove this to be correct we should avoid 1230 // calling EmitFuncArgumentDbgValue here. 1231 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1232 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1233 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1234 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1235 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1236 // inserted after the definition of Val when emitting the instructions 1237 // after ISel. An alternative could be to teach 1238 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1239 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1240 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1241 << ValSDNodeOrder << "\n"); 1242 SDV = getDbgValue(Val, Variable, Expr, dl, 1243 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1244 DAG.AddDbgValue(SDV, false); 1245 } else 1246 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1247 << "in EmitFuncArgumentDbgValue\n"); 1248 } else { 1249 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1250 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1251 auto SDV = 1252 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1253 DAG.AddDbgValue(SDV, false); 1254 } 1255 } 1256 DDIV.clear(); 1257 } 1258 1259 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1260 // TODO: For the variadic implementation, instead of only checking the fail 1261 // state of `handleDebugValue`, we need know specifically which values were 1262 // invalid, so that we attempt to salvage only those values when processing 1263 // a DIArgList. 1264 assert(!DDI.getDI()->hasArgList() && 1265 "Not implemented for variadic dbg_values"); 1266 Value *V = DDI.getDI()->getValue(0); 1267 DILocalVariable *Var = DDI.getDI()->getVariable(); 1268 DIExpression *Expr = DDI.getDI()->getExpression(); 1269 DebugLoc DL = DDI.getdl(); 1270 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1271 unsigned SDOrder = DDI.getSDNodeOrder(); 1272 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1273 // that DW_OP_stack_value is desired. 1274 assert(isa<DbgValueInst>(DDI.getDI())); 1275 bool StackValue = true; 1276 1277 // Can this Value can be encoded without any further work? 1278 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1279 return; 1280 1281 // Attempt to salvage back through as many instructions as possible. Bail if 1282 // a non-instruction is seen, such as a constant expression or global 1283 // variable. FIXME: Further work could recover those too. 1284 while (isa<Instruction>(V)) { 1285 Instruction &VAsInst = *cast<Instruction>(V); 1286 // Temporary "0", awaiting real implementation. 1287 SmallVector<uint64_t, 16> Ops; 1288 SmallVector<Value *, 4> AdditionalValues; 1289 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1290 AdditionalValues); 1291 // If we cannot salvage any further, and haven't yet found a suitable debug 1292 // expression, bail out. 1293 if (!V) 1294 break; 1295 1296 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1297 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1298 // here for variadic dbg_values, remove that condition. 1299 if (!AdditionalValues.empty()) 1300 break; 1301 1302 // New value and expr now represent this debuginfo. 1303 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1304 1305 // Some kind of simplification occurred: check whether the operand of the 1306 // salvaged debug expression can be encoded in this DAG. 1307 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1308 /*IsVariadic=*/false)) { 1309 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1310 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1311 return; 1312 } 1313 } 1314 1315 // This was the final opportunity to salvage this debug information, and it 1316 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1317 // any earlier variable location. 1318 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1319 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1320 DAG.AddDbgValue(SDV, false); 1321 1322 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1323 << "\n"); 1324 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1325 << "\n"); 1326 } 1327 1328 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1329 DILocalVariable *Var, 1330 DIExpression *Expr, DebugLoc dl, 1331 DebugLoc InstDL, unsigned Order, 1332 bool IsVariadic) { 1333 if (Values.empty()) 1334 return true; 1335 SmallVector<SDDbgOperand> LocationOps; 1336 SmallVector<SDNode *> Dependencies; 1337 for (const Value *V : Values) { 1338 // Constant value. 1339 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1340 isa<ConstantPointerNull>(V)) { 1341 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1342 continue; 1343 } 1344 1345 // If the Value is a frame index, we can create a FrameIndex debug value 1346 // without relying on the DAG at all. 1347 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1348 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1349 if (SI != FuncInfo.StaticAllocaMap.end()) { 1350 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1351 continue; 1352 } 1353 } 1354 1355 // Do not use getValue() in here; we don't want to generate code at 1356 // this point if it hasn't been done yet. 1357 SDValue N = NodeMap[V]; 1358 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1359 N = UnusedArgNodeMap[V]; 1360 if (N.getNode()) { 1361 // Only emit func arg dbg value for non-variadic dbg.values for now. 1362 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1363 return true; 1364 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1365 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1366 // describe stack slot locations. 1367 // 1368 // Consider "int x = 0; int *px = &x;". There are two kinds of 1369 // interesting debug values here after optimization: 1370 // 1371 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1372 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1373 // 1374 // Both describe the direct values of their associated variables. 1375 Dependencies.push_back(N.getNode()); 1376 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1377 continue; 1378 } 1379 LocationOps.emplace_back( 1380 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1381 continue; 1382 } 1383 1384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1385 // Special rules apply for the first dbg.values of parameter variables in a 1386 // function. Identify them by the fact they reference Argument Values, that 1387 // they're parameters, and they are parameters of the current function. We 1388 // need to let them dangle until they get an SDNode. 1389 bool IsParamOfFunc = 1390 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1391 if (IsParamOfFunc) 1392 return false; 1393 1394 // The value is not used in this block yet (or it would have an SDNode). 1395 // We still want the value to appear for the user if possible -- if it has 1396 // an associated VReg, we can refer to that instead. 1397 auto VMI = FuncInfo.ValueMap.find(V); 1398 if (VMI != FuncInfo.ValueMap.end()) { 1399 unsigned Reg = VMI->second; 1400 // If this is a PHI node, it may be split up into several MI PHI nodes 1401 // (in FunctionLoweringInfo::set). 1402 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1403 V->getType(), None); 1404 if (RFV.occupiesMultipleRegs()) { 1405 // FIXME: We could potentially support variadic dbg_values here. 1406 if (IsVariadic) 1407 return false; 1408 unsigned Offset = 0; 1409 unsigned BitsToDescribe = 0; 1410 if (auto VarSize = Var->getSizeInBits()) 1411 BitsToDescribe = *VarSize; 1412 if (auto Fragment = Expr->getFragmentInfo()) 1413 BitsToDescribe = Fragment->SizeInBits; 1414 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1415 // Bail out if all bits are described already. 1416 if (Offset >= BitsToDescribe) 1417 break; 1418 // TODO: handle scalable vectors. 1419 unsigned RegisterSize = RegAndSize.second; 1420 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1421 ? BitsToDescribe - Offset 1422 : RegisterSize; 1423 auto FragmentExpr = DIExpression::createFragmentExpression( 1424 Expr, Offset, FragmentSize); 1425 if (!FragmentExpr) 1426 continue; 1427 SDDbgValue *SDV = DAG.getVRegDbgValue( 1428 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1429 DAG.AddDbgValue(SDV, false); 1430 Offset += RegisterSize; 1431 } 1432 return true; 1433 } 1434 // We can use simple vreg locations for variadic dbg_values as well. 1435 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1436 continue; 1437 } 1438 // We failed to create a SDDbgOperand for V. 1439 return false; 1440 } 1441 1442 // We have created a SDDbgOperand for each Value in Values. 1443 // Should use Order instead of SDNodeOrder? 1444 assert(!LocationOps.empty()); 1445 SDDbgValue *SDV = 1446 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1447 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1448 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1449 return true; 1450 } 1451 1452 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1453 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1454 for (auto &Pair : DanglingDebugInfoMap) 1455 for (auto &DDI : Pair.second) 1456 salvageUnresolvedDbgValue(DDI); 1457 clearDanglingDebugInfo(); 1458 } 1459 1460 /// getCopyFromRegs - If there was virtual register allocated for the value V 1461 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1462 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1463 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1464 SDValue Result; 1465 1466 if (It != FuncInfo.ValueMap.end()) { 1467 Register InReg = It->second; 1468 1469 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1470 DAG.getDataLayout(), InReg, Ty, 1471 None); // This is not an ABI copy. 1472 SDValue Chain = DAG.getEntryNode(); 1473 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1474 V); 1475 resolveDanglingDebugInfo(V, Result); 1476 } 1477 1478 return Result; 1479 } 1480 1481 /// getValue - Return an SDValue for the given Value. 1482 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1483 // If we already have an SDValue for this value, use it. It's important 1484 // to do this first, so that we don't create a CopyFromReg if we already 1485 // have a regular SDValue. 1486 SDValue &N = NodeMap[V]; 1487 if (N.getNode()) return N; 1488 1489 // If there's a virtual register allocated and initialized for this 1490 // value, use it. 1491 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1492 return copyFromReg; 1493 1494 // Otherwise create a new SDValue and remember it. 1495 SDValue Val = getValueImpl(V); 1496 NodeMap[V] = Val; 1497 resolveDanglingDebugInfo(V, Val); 1498 return Val; 1499 } 1500 1501 /// getNonRegisterValue - Return an SDValue for the given Value, but 1502 /// don't look in FuncInfo.ValueMap for a virtual register. 1503 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1504 // If we already have an SDValue for this value, use it. 1505 SDValue &N = NodeMap[V]; 1506 if (N.getNode()) { 1507 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1508 // Remove the debug location from the node as the node is about to be used 1509 // in a location which may differ from the original debug location. This 1510 // is relevant to Constant and ConstantFP nodes because they can appear 1511 // as constant expressions inside PHI nodes. 1512 N->setDebugLoc(DebugLoc()); 1513 } 1514 return N; 1515 } 1516 1517 // Otherwise create a new SDValue and remember it. 1518 SDValue Val = getValueImpl(V); 1519 NodeMap[V] = Val; 1520 resolveDanglingDebugInfo(V, Val); 1521 return Val; 1522 } 1523 1524 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1525 /// Create an SDValue for the given value. 1526 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1528 1529 if (const Constant *C = dyn_cast<Constant>(V)) { 1530 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1531 1532 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1533 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1534 1535 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1536 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1537 1538 if (isa<ConstantPointerNull>(C)) { 1539 unsigned AS = V->getType()->getPointerAddressSpace(); 1540 return DAG.getConstant(0, getCurSDLoc(), 1541 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1542 } 1543 1544 if (match(C, m_VScale(DAG.getDataLayout()))) 1545 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1546 1547 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1548 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1549 1550 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1551 return DAG.getUNDEF(VT); 1552 1553 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1554 visit(CE->getOpcode(), *CE); 1555 SDValue N1 = NodeMap[V]; 1556 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1557 return N1; 1558 } 1559 1560 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1561 SmallVector<SDValue, 4> Constants; 1562 for (const Use &U : C->operands()) { 1563 SDNode *Val = getValue(U).getNode(); 1564 // If the operand is an empty aggregate, there are no values. 1565 if (!Val) continue; 1566 // Add each leaf value from the operand to the Constants list 1567 // to form a flattened list of all the values. 1568 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1569 Constants.push_back(SDValue(Val, i)); 1570 } 1571 1572 return DAG.getMergeValues(Constants, getCurSDLoc()); 1573 } 1574 1575 if (const ConstantDataSequential *CDS = 1576 dyn_cast<ConstantDataSequential>(C)) { 1577 SmallVector<SDValue, 4> Ops; 1578 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1579 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1580 // Add each leaf value from the operand to the Constants list 1581 // to form a flattened list of all the values. 1582 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1583 Ops.push_back(SDValue(Val, i)); 1584 } 1585 1586 if (isa<ArrayType>(CDS->getType())) 1587 return DAG.getMergeValues(Ops, getCurSDLoc()); 1588 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1589 } 1590 1591 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1592 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1593 "Unknown struct or array constant!"); 1594 1595 SmallVector<EVT, 4> ValueVTs; 1596 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1597 unsigned NumElts = ValueVTs.size(); 1598 if (NumElts == 0) 1599 return SDValue(); // empty struct 1600 SmallVector<SDValue, 4> Constants(NumElts); 1601 for (unsigned i = 0; i != NumElts; ++i) { 1602 EVT EltVT = ValueVTs[i]; 1603 if (isa<UndefValue>(C)) 1604 Constants[i] = DAG.getUNDEF(EltVT); 1605 else if (EltVT.isFloatingPoint()) 1606 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1607 else 1608 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1609 } 1610 1611 return DAG.getMergeValues(Constants, getCurSDLoc()); 1612 } 1613 1614 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1615 return DAG.getBlockAddress(BA, VT); 1616 1617 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1618 return getValue(Equiv->getGlobalValue()); 1619 1620 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1621 return getValue(NC->getGlobalValue()); 1622 1623 VectorType *VecTy = cast<VectorType>(V->getType()); 1624 1625 // Now that we know the number and type of the elements, get that number of 1626 // elements into the Ops array based on what kind of constant it is. 1627 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1628 SmallVector<SDValue, 16> Ops; 1629 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1630 for (unsigned i = 0; i != NumElements; ++i) 1631 Ops.push_back(getValue(CV->getOperand(i))); 1632 1633 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1634 } 1635 1636 if (isa<ConstantAggregateZero>(C)) { 1637 EVT EltVT = 1638 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1639 1640 SDValue Op; 1641 if (EltVT.isFloatingPoint()) 1642 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1643 else 1644 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1645 1646 if (isa<ScalableVectorType>(VecTy)) 1647 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1648 1649 SmallVector<SDValue, 16> Ops; 1650 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1651 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1652 } 1653 1654 llvm_unreachable("Unknown vector constant"); 1655 } 1656 1657 // If this is a static alloca, generate it as the frameindex instead of 1658 // computation. 1659 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1660 DenseMap<const AllocaInst*, int>::iterator SI = 1661 FuncInfo.StaticAllocaMap.find(AI); 1662 if (SI != FuncInfo.StaticAllocaMap.end()) 1663 return DAG.getFrameIndex(SI->second, 1664 TLI.getFrameIndexTy(DAG.getDataLayout())); 1665 } 1666 1667 // If this is an instruction which fast-isel has deferred, select it now. 1668 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1669 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1670 1671 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1672 Inst->getType(), None); 1673 SDValue Chain = DAG.getEntryNode(); 1674 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1675 } 1676 1677 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1678 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1679 1680 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1681 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1682 1683 llvm_unreachable("Can't get register for value!"); 1684 } 1685 1686 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1687 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1688 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1689 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1690 bool IsSEH = isAsynchronousEHPersonality(Pers); 1691 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1692 if (!IsSEH) 1693 CatchPadMBB->setIsEHScopeEntry(); 1694 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1695 if (IsMSVCCXX || IsCoreCLR) 1696 CatchPadMBB->setIsEHFuncletEntry(); 1697 } 1698 1699 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1700 // Update machine-CFG edge. 1701 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1702 FuncInfo.MBB->addSuccessor(TargetMBB); 1703 TargetMBB->setIsEHCatchretTarget(true); 1704 DAG.getMachineFunction().setHasEHCatchret(true); 1705 1706 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1707 bool IsSEH = isAsynchronousEHPersonality(Pers); 1708 if (IsSEH) { 1709 // If this is not a fall-through branch or optimizations are switched off, 1710 // emit the branch. 1711 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1712 TM.getOptLevel() == CodeGenOpt::None) 1713 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1714 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1715 return; 1716 } 1717 1718 // Figure out the funclet membership for the catchret's successor. 1719 // This will be used by the FuncletLayout pass to determine how to order the 1720 // BB's. 1721 // A 'catchret' returns to the outer scope's color. 1722 Value *ParentPad = I.getCatchSwitchParentPad(); 1723 const BasicBlock *SuccessorColor; 1724 if (isa<ConstantTokenNone>(ParentPad)) 1725 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1726 else 1727 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1728 assert(SuccessorColor && "No parent funclet for catchret!"); 1729 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1730 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1731 1732 // Create the terminator node. 1733 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1734 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1735 DAG.getBasicBlock(SuccessorColorMBB)); 1736 DAG.setRoot(Ret); 1737 } 1738 1739 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1740 // Don't emit any special code for the cleanuppad instruction. It just marks 1741 // the start of an EH scope/funclet. 1742 FuncInfo.MBB->setIsEHScopeEntry(); 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 if (Pers != EHPersonality::Wasm_CXX) { 1745 FuncInfo.MBB->setIsEHFuncletEntry(); 1746 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1747 } 1748 } 1749 1750 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1751 // not match, it is OK to add only the first unwind destination catchpad to the 1752 // successors, because there will be at least one invoke instruction within the 1753 // catch scope that points to the next unwind destination, if one exists, so 1754 // CFGSort cannot mess up with BB sorting order. 1755 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1756 // call within them, and catchpads only consisting of 'catch (...)' have a 1757 // '__cxa_end_catch' call within them, both of which generate invokes in case 1758 // the next unwind destination exists, i.e., the next unwind destination is not 1759 // the caller.) 1760 // 1761 // Having at most one EH pad successor is also simpler and helps later 1762 // transformations. 1763 // 1764 // For example, 1765 // current: 1766 // invoke void @foo to ... unwind label %catch.dispatch 1767 // catch.dispatch: 1768 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1769 // catch.start: 1770 // ... 1771 // ... in this BB or some other child BB dominated by this BB there will be an 1772 // invoke that points to 'next' BB as an unwind destination 1773 // 1774 // next: ; We don't need to add this to 'current' BB's successor 1775 // ... 1776 static void findWasmUnwindDestinations( 1777 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1778 BranchProbability Prob, 1779 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1780 &UnwindDests) { 1781 while (EHPadBB) { 1782 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1783 if (isa<CleanupPadInst>(Pad)) { 1784 // Stop on cleanup pads. 1785 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1786 UnwindDests.back().first->setIsEHScopeEntry(); 1787 break; 1788 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1789 // Add the catchpad handlers to the possible destinations. We don't 1790 // continue to the unwind destination of the catchswitch for wasm. 1791 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1792 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1793 UnwindDests.back().first->setIsEHScopeEntry(); 1794 } 1795 break; 1796 } else { 1797 continue; 1798 } 1799 } 1800 } 1801 1802 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1803 /// many places it could ultimately go. In the IR, we have a single unwind 1804 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1805 /// This function skips over imaginary basic blocks that hold catchswitch 1806 /// instructions, and finds all the "real" machine 1807 /// basic block destinations. As those destinations may not be successors of 1808 /// EHPadBB, here we also calculate the edge probability to those destinations. 1809 /// The passed-in Prob is the edge probability to EHPadBB. 1810 static void findUnwindDestinations( 1811 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1812 BranchProbability Prob, 1813 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1814 &UnwindDests) { 1815 EHPersonality Personality = 1816 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1817 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1818 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1819 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1820 bool IsSEH = isAsynchronousEHPersonality(Personality); 1821 1822 if (IsWasmCXX) { 1823 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1824 assert(UnwindDests.size() <= 1 && 1825 "There should be at most one unwind destination for wasm"); 1826 return; 1827 } 1828 1829 while (EHPadBB) { 1830 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1831 BasicBlock *NewEHPadBB = nullptr; 1832 if (isa<LandingPadInst>(Pad)) { 1833 // Stop on landingpads. They are not funclets. 1834 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1835 break; 1836 } else if (isa<CleanupPadInst>(Pad)) { 1837 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1838 // personalities. 1839 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1840 UnwindDests.back().first->setIsEHScopeEntry(); 1841 UnwindDests.back().first->setIsEHFuncletEntry(); 1842 break; 1843 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1844 // Add the catchpad handlers to the possible destinations. 1845 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1846 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1847 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1848 if (IsMSVCCXX || IsCoreCLR) 1849 UnwindDests.back().first->setIsEHFuncletEntry(); 1850 if (!IsSEH) 1851 UnwindDests.back().first->setIsEHScopeEntry(); 1852 } 1853 NewEHPadBB = CatchSwitch->getUnwindDest(); 1854 } else { 1855 continue; 1856 } 1857 1858 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1859 if (BPI && NewEHPadBB) 1860 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1861 EHPadBB = NewEHPadBB; 1862 } 1863 } 1864 1865 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1866 // Update successor info. 1867 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1868 auto UnwindDest = I.getUnwindDest(); 1869 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1870 BranchProbability UnwindDestProb = 1871 (BPI && UnwindDest) 1872 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1873 : BranchProbability::getZero(); 1874 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1875 for (auto &UnwindDest : UnwindDests) { 1876 UnwindDest.first->setIsEHPad(); 1877 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1878 } 1879 FuncInfo.MBB->normalizeSuccProbs(); 1880 1881 // Create the terminator node. 1882 SDValue Ret = 1883 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1884 DAG.setRoot(Ret); 1885 } 1886 1887 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1888 report_fatal_error("visitCatchSwitch not yet implemented!"); 1889 } 1890 1891 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1893 auto &DL = DAG.getDataLayout(); 1894 SDValue Chain = getControlRoot(); 1895 SmallVector<ISD::OutputArg, 8> Outs; 1896 SmallVector<SDValue, 8> OutVals; 1897 1898 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1899 // lower 1900 // 1901 // %val = call <ty> @llvm.experimental.deoptimize() 1902 // ret <ty> %val 1903 // 1904 // differently. 1905 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1906 LowerDeoptimizingReturn(); 1907 return; 1908 } 1909 1910 if (!FuncInfo.CanLowerReturn) { 1911 unsigned DemoteReg = FuncInfo.DemoteRegister; 1912 const Function *F = I.getParent()->getParent(); 1913 1914 // Emit a store of the return value through the virtual register. 1915 // Leave Outs empty so that LowerReturn won't try to load return 1916 // registers the usual way. 1917 SmallVector<EVT, 1> PtrValueVTs; 1918 ComputeValueVTs(TLI, DL, 1919 F->getReturnType()->getPointerTo( 1920 DAG.getDataLayout().getAllocaAddrSpace()), 1921 PtrValueVTs); 1922 1923 SDValue RetPtr = 1924 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1925 SDValue RetOp = getValue(I.getOperand(0)); 1926 1927 SmallVector<EVT, 4> ValueVTs, MemVTs; 1928 SmallVector<uint64_t, 4> Offsets; 1929 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1930 &Offsets); 1931 unsigned NumValues = ValueVTs.size(); 1932 1933 SmallVector<SDValue, 4> Chains(NumValues); 1934 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1935 for (unsigned i = 0; i != NumValues; ++i) { 1936 // An aggregate return value cannot wrap around the address space, so 1937 // offsets to its parts don't wrap either. 1938 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1939 TypeSize::Fixed(Offsets[i])); 1940 1941 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1942 if (MemVTs[i] != ValueVTs[i]) 1943 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1944 Chains[i] = DAG.getStore( 1945 Chain, getCurSDLoc(), Val, 1946 // FIXME: better loc info would be nice. 1947 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1948 commonAlignment(BaseAlign, Offsets[i])); 1949 } 1950 1951 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1952 MVT::Other, Chains); 1953 } else if (I.getNumOperands() != 0) { 1954 SmallVector<EVT, 4> ValueVTs; 1955 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1956 unsigned NumValues = ValueVTs.size(); 1957 if (NumValues) { 1958 SDValue RetOp = getValue(I.getOperand(0)); 1959 1960 const Function *F = I.getParent()->getParent(); 1961 1962 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1963 I.getOperand(0)->getType(), F->getCallingConv(), 1964 /*IsVarArg*/ false, DL); 1965 1966 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1967 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1968 ExtendKind = ISD::SIGN_EXTEND; 1969 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1970 ExtendKind = ISD::ZERO_EXTEND; 1971 1972 LLVMContext &Context = F->getContext(); 1973 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1974 1975 for (unsigned j = 0; j != NumValues; ++j) { 1976 EVT VT = ValueVTs[j]; 1977 1978 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1979 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1980 1981 CallingConv::ID CC = F->getCallingConv(); 1982 1983 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1984 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1985 SmallVector<SDValue, 4> Parts(NumParts); 1986 getCopyToParts(DAG, getCurSDLoc(), 1987 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1988 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1989 1990 // 'inreg' on function refers to return value 1991 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1992 if (RetInReg) 1993 Flags.setInReg(); 1994 1995 if (I.getOperand(0)->getType()->isPointerTy()) { 1996 Flags.setPointer(); 1997 Flags.setPointerAddrSpace( 1998 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1999 } 2000 2001 if (NeedsRegBlock) { 2002 Flags.setInConsecutiveRegs(); 2003 if (j == NumValues - 1) 2004 Flags.setInConsecutiveRegsLast(); 2005 } 2006 2007 // Propagate extension type if any 2008 if (ExtendKind == ISD::SIGN_EXTEND) 2009 Flags.setSExt(); 2010 else if (ExtendKind == ISD::ZERO_EXTEND) 2011 Flags.setZExt(); 2012 2013 for (unsigned i = 0; i < NumParts; ++i) { 2014 Outs.push_back(ISD::OutputArg(Flags, 2015 Parts[i].getValueType().getSimpleVT(), 2016 VT, /*isfixed=*/true, 0, 0)); 2017 OutVals.push_back(Parts[i]); 2018 } 2019 } 2020 } 2021 } 2022 2023 // Push in swifterror virtual register as the last element of Outs. This makes 2024 // sure swifterror virtual register will be returned in the swifterror 2025 // physical register. 2026 const Function *F = I.getParent()->getParent(); 2027 if (TLI.supportSwiftError() && 2028 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2029 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2030 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2031 Flags.setSwiftError(); 2032 Outs.push_back(ISD::OutputArg( 2033 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2034 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2035 // Create SDNode for the swifterror virtual register. 2036 OutVals.push_back( 2037 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2038 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2039 EVT(TLI.getPointerTy(DL)))); 2040 } 2041 2042 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2043 CallingConv::ID CallConv = 2044 DAG.getMachineFunction().getFunction().getCallingConv(); 2045 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2046 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2047 2048 // Verify that the target's LowerReturn behaved as expected. 2049 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2050 "LowerReturn didn't return a valid chain!"); 2051 2052 // Update the DAG with the new chain value resulting from return lowering. 2053 DAG.setRoot(Chain); 2054 } 2055 2056 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2057 /// created for it, emit nodes to copy the value into the virtual 2058 /// registers. 2059 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2060 // Skip empty types 2061 if (V->getType()->isEmptyTy()) 2062 return; 2063 2064 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2065 if (VMI != FuncInfo.ValueMap.end()) { 2066 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2067 CopyValueToVirtualRegister(V, VMI->second); 2068 } 2069 } 2070 2071 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2072 /// the current basic block, add it to ValueMap now so that we'll get a 2073 /// CopyTo/FromReg. 2074 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2075 // No need to export constants. 2076 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2077 2078 // Already exported? 2079 if (FuncInfo.isExportedInst(V)) return; 2080 2081 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2082 CopyValueToVirtualRegister(V, Reg); 2083 } 2084 2085 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2086 const BasicBlock *FromBB) { 2087 // The operands of the setcc have to be in this block. We don't know 2088 // how to export them from some other block. 2089 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2090 // Can export from current BB. 2091 if (VI->getParent() == FromBB) 2092 return true; 2093 2094 // Is already exported, noop. 2095 return FuncInfo.isExportedInst(V); 2096 } 2097 2098 // If this is an argument, we can export it if the BB is the entry block or 2099 // if it is already exported. 2100 if (isa<Argument>(V)) { 2101 if (FromBB->isEntryBlock()) 2102 return true; 2103 2104 // Otherwise, can only export this if it is already exported. 2105 return FuncInfo.isExportedInst(V); 2106 } 2107 2108 // Otherwise, constants can always be exported. 2109 return true; 2110 } 2111 2112 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2113 BranchProbability 2114 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2115 const MachineBasicBlock *Dst) const { 2116 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2117 const BasicBlock *SrcBB = Src->getBasicBlock(); 2118 const BasicBlock *DstBB = Dst->getBasicBlock(); 2119 if (!BPI) { 2120 // If BPI is not available, set the default probability as 1 / N, where N is 2121 // the number of successors. 2122 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2123 return BranchProbability(1, SuccSize); 2124 } 2125 return BPI->getEdgeProbability(SrcBB, DstBB); 2126 } 2127 2128 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2129 MachineBasicBlock *Dst, 2130 BranchProbability Prob) { 2131 if (!FuncInfo.BPI) 2132 Src->addSuccessorWithoutProb(Dst); 2133 else { 2134 if (Prob.isUnknown()) 2135 Prob = getEdgeProbability(Src, Dst); 2136 Src->addSuccessor(Dst, Prob); 2137 } 2138 } 2139 2140 static bool InBlock(const Value *V, const BasicBlock *BB) { 2141 if (const Instruction *I = dyn_cast<Instruction>(V)) 2142 return I->getParent() == BB; 2143 return true; 2144 } 2145 2146 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2147 /// This function emits a branch and is used at the leaves of an OR or an 2148 /// AND operator tree. 2149 void 2150 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2151 MachineBasicBlock *TBB, 2152 MachineBasicBlock *FBB, 2153 MachineBasicBlock *CurBB, 2154 MachineBasicBlock *SwitchBB, 2155 BranchProbability TProb, 2156 BranchProbability FProb, 2157 bool InvertCond) { 2158 const BasicBlock *BB = CurBB->getBasicBlock(); 2159 2160 // If the leaf of the tree is a comparison, merge the condition into 2161 // the caseblock. 2162 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2163 // The operands of the cmp have to be in this block. We don't know 2164 // how to export them from some other block. If this is the first block 2165 // of the sequence, no exporting is needed. 2166 if (CurBB == SwitchBB || 2167 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2168 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2169 ISD::CondCode Condition; 2170 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2171 ICmpInst::Predicate Pred = 2172 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2173 Condition = getICmpCondCode(Pred); 2174 } else { 2175 const FCmpInst *FC = cast<FCmpInst>(Cond); 2176 FCmpInst::Predicate Pred = 2177 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2178 Condition = getFCmpCondCode(Pred); 2179 if (TM.Options.NoNaNsFPMath) 2180 Condition = getFCmpCodeWithoutNaN(Condition); 2181 } 2182 2183 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2184 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2185 SL->SwitchCases.push_back(CB); 2186 return; 2187 } 2188 } 2189 2190 // Create a CaseBlock record representing this branch. 2191 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2192 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2193 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2194 SL->SwitchCases.push_back(CB); 2195 } 2196 2197 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2198 MachineBasicBlock *TBB, 2199 MachineBasicBlock *FBB, 2200 MachineBasicBlock *CurBB, 2201 MachineBasicBlock *SwitchBB, 2202 Instruction::BinaryOps Opc, 2203 BranchProbability TProb, 2204 BranchProbability FProb, 2205 bool InvertCond) { 2206 // Skip over not part of the tree and remember to invert op and operands at 2207 // next level. 2208 Value *NotCond; 2209 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2210 InBlock(NotCond, CurBB->getBasicBlock())) { 2211 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2212 !InvertCond); 2213 return; 2214 } 2215 2216 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2217 const Value *BOpOp0, *BOpOp1; 2218 // Compute the effective opcode for Cond, taking into account whether it needs 2219 // to be inverted, e.g. 2220 // and (not (or A, B)), C 2221 // gets lowered as 2222 // and (and (not A, not B), C) 2223 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2224 if (BOp) { 2225 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2226 ? Instruction::And 2227 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2228 ? Instruction::Or 2229 : (Instruction::BinaryOps)0); 2230 if (InvertCond) { 2231 if (BOpc == Instruction::And) 2232 BOpc = Instruction::Or; 2233 else if (BOpc == Instruction::Or) 2234 BOpc = Instruction::And; 2235 } 2236 } 2237 2238 // If this node is not part of the or/and tree, emit it as a branch. 2239 // Note that all nodes in the tree should have same opcode. 2240 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2241 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2242 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2243 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2244 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2245 TProb, FProb, InvertCond); 2246 return; 2247 } 2248 2249 // Create TmpBB after CurBB. 2250 MachineFunction::iterator BBI(CurBB); 2251 MachineFunction &MF = DAG.getMachineFunction(); 2252 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2253 CurBB->getParent()->insert(++BBI, TmpBB); 2254 2255 if (Opc == Instruction::Or) { 2256 // Codegen X | Y as: 2257 // BB1: 2258 // jmp_if_X TBB 2259 // jmp TmpBB 2260 // TmpBB: 2261 // jmp_if_Y TBB 2262 // jmp FBB 2263 // 2264 2265 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2266 // The requirement is that 2267 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2268 // = TrueProb for original BB. 2269 // Assuming the original probabilities are A and B, one choice is to set 2270 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2271 // A/(1+B) and 2B/(1+B). This choice assumes that 2272 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2273 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2274 // TmpBB, but the math is more complicated. 2275 2276 auto NewTrueProb = TProb / 2; 2277 auto NewFalseProb = TProb / 2 + FProb; 2278 // Emit the LHS condition. 2279 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2280 NewFalseProb, InvertCond); 2281 2282 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2283 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2284 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2285 // Emit the RHS condition into TmpBB. 2286 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2287 Probs[1], InvertCond); 2288 } else { 2289 assert(Opc == Instruction::And && "Unknown merge op!"); 2290 // Codegen X & Y as: 2291 // BB1: 2292 // jmp_if_X TmpBB 2293 // jmp FBB 2294 // TmpBB: 2295 // jmp_if_Y TBB 2296 // jmp FBB 2297 // 2298 // This requires creation of TmpBB after CurBB. 2299 2300 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2301 // The requirement is that 2302 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2303 // = FalseProb for original BB. 2304 // Assuming the original probabilities are A and B, one choice is to set 2305 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2306 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2307 // TrueProb for BB1 * FalseProb for TmpBB. 2308 2309 auto NewTrueProb = TProb + FProb / 2; 2310 auto NewFalseProb = FProb / 2; 2311 // Emit the LHS condition. 2312 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2313 NewFalseProb, InvertCond); 2314 2315 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2316 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2317 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2318 // Emit the RHS condition into TmpBB. 2319 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2320 Probs[1], InvertCond); 2321 } 2322 } 2323 2324 /// If the set of cases should be emitted as a series of branches, return true. 2325 /// If we should emit this as a bunch of and/or'd together conditions, return 2326 /// false. 2327 bool 2328 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2329 if (Cases.size() != 2) return true; 2330 2331 // If this is two comparisons of the same values or'd or and'd together, they 2332 // will get folded into a single comparison, so don't emit two blocks. 2333 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2334 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2335 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2336 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2337 return false; 2338 } 2339 2340 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2341 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2342 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2343 Cases[0].CC == Cases[1].CC && 2344 isa<Constant>(Cases[0].CmpRHS) && 2345 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2346 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2347 return false; 2348 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2349 return false; 2350 } 2351 2352 return true; 2353 } 2354 2355 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2356 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2357 2358 // Update machine-CFG edges. 2359 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2360 2361 if (I.isUnconditional()) { 2362 // Update machine-CFG edges. 2363 BrMBB->addSuccessor(Succ0MBB); 2364 2365 // If this is not a fall-through branch or optimizations are switched off, 2366 // emit the branch. 2367 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2368 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2369 MVT::Other, getControlRoot(), 2370 DAG.getBasicBlock(Succ0MBB))); 2371 2372 return; 2373 } 2374 2375 // If this condition is one of the special cases we handle, do special stuff 2376 // now. 2377 const Value *CondVal = I.getCondition(); 2378 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2379 2380 // If this is a series of conditions that are or'd or and'd together, emit 2381 // this as a sequence of branches instead of setcc's with and/or operations. 2382 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2383 // unpredictable branches, and vector extracts because those jumps are likely 2384 // expensive for any target), this should improve performance. 2385 // For example, instead of something like: 2386 // cmp A, B 2387 // C = seteq 2388 // cmp D, E 2389 // F = setle 2390 // or C, F 2391 // jnz foo 2392 // Emit: 2393 // cmp A, B 2394 // je foo 2395 // cmp D, E 2396 // jle foo 2397 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2398 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2399 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2400 Value *Vec; 2401 const Value *BOp0, *BOp1; 2402 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2403 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2404 Opcode = Instruction::And; 2405 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2406 Opcode = Instruction::Or; 2407 2408 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2409 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2410 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2411 getEdgeProbability(BrMBB, Succ0MBB), 2412 getEdgeProbability(BrMBB, Succ1MBB), 2413 /*InvertCond=*/false); 2414 // If the compares in later blocks need to use values not currently 2415 // exported from this block, export them now. This block should always 2416 // be the first entry. 2417 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2418 2419 // Allow some cases to be rejected. 2420 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2421 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2422 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2423 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2424 } 2425 2426 // Emit the branch for this block. 2427 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2428 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2429 return; 2430 } 2431 2432 // Okay, we decided not to do this, remove any inserted MBB's and clear 2433 // SwitchCases. 2434 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2435 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2436 2437 SL->SwitchCases.clear(); 2438 } 2439 } 2440 2441 // Create a CaseBlock record representing this branch. 2442 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2443 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2444 2445 // Use visitSwitchCase to actually insert the fast branch sequence for this 2446 // cond branch. 2447 visitSwitchCase(CB, BrMBB); 2448 } 2449 2450 /// visitSwitchCase - Emits the necessary code to represent a single node in 2451 /// the binary search tree resulting from lowering a switch instruction. 2452 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2453 MachineBasicBlock *SwitchBB) { 2454 SDValue Cond; 2455 SDValue CondLHS = getValue(CB.CmpLHS); 2456 SDLoc dl = CB.DL; 2457 2458 if (CB.CC == ISD::SETTRUE) { 2459 // Branch or fall through to TrueBB. 2460 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2461 SwitchBB->normalizeSuccProbs(); 2462 if (CB.TrueBB != NextBlock(SwitchBB)) { 2463 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2464 DAG.getBasicBlock(CB.TrueBB))); 2465 } 2466 return; 2467 } 2468 2469 auto &TLI = DAG.getTargetLoweringInfo(); 2470 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2471 2472 // Build the setcc now. 2473 if (!CB.CmpMHS) { 2474 // Fold "(X == true)" to X and "(X == false)" to !X to 2475 // handle common cases produced by branch lowering. 2476 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2477 CB.CC == ISD::SETEQ) 2478 Cond = CondLHS; 2479 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2480 CB.CC == ISD::SETEQ) { 2481 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2482 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2483 } else { 2484 SDValue CondRHS = getValue(CB.CmpRHS); 2485 2486 // If a pointer's DAG type is larger than its memory type then the DAG 2487 // values are zero-extended. This breaks signed comparisons so truncate 2488 // back to the underlying type before doing the compare. 2489 if (CondLHS.getValueType() != MemVT) { 2490 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2491 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2492 } 2493 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2494 } 2495 } else { 2496 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2497 2498 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2499 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2500 2501 SDValue CmpOp = getValue(CB.CmpMHS); 2502 EVT VT = CmpOp.getValueType(); 2503 2504 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2505 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2506 ISD::SETLE); 2507 } else { 2508 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2509 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2510 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2511 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2512 } 2513 } 2514 2515 // Update successor info 2516 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2517 // TrueBB and FalseBB are always different unless the incoming IR is 2518 // degenerate. This only happens when running llc on weird IR. 2519 if (CB.TrueBB != CB.FalseBB) 2520 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2521 SwitchBB->normalizeSuccProbs(); 2522 2523 // If the lhs block is the next block, invert the condition so that we can 2524 // fall through to the lhs instead of the rhs block. 2525 if (CB.TrueBB == NextBlock(SwitchBB)) { 2526 std::swap(CB.TrueBB, CB.FalseBB); 2527 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2528 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2529 } 2530 2531 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2532 MVT::Other, getControlRoot(), Cond, 2533 DAG.getBasicBlock(CB.TrueBB)); 2534 2535 // Insert the false branch. Do this even if it's a fall through branch, 2536 // this makes it easier to do DAG optimizations which require inverting 2537 // the branch condition. 2538 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2539 DAG.getBasicBlock(CB.FalseBB)); 2540 2541 DAG.setRoot(BrCond); 2542 } 2543 2544 /// visitJumpTable - Emit JumpTable node in the current MBB 2545 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2546 // Emit the code for the jump table 2547 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2548 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2549 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2550 JT.Reg, PTy); 2551 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2552 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2553 MVT::Other, Index.getValue(1), 2554 Table, Index); 2555 DAG.setRoot(BrJumpTable); 2556 } 2557 2558 /// visitJumpTableHeader - This function emits necessary code to produce index 2559 /// in the JumpTable from switch case. 2560 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2561 JumpTableHeader &JTH, 2562 MachineBasicBlock *SwitchBB) { 2563 SDLoc dl = getCurSDLoc(); 2564 2565 // Subtract the lowest switch case value from the value being switched on. 2566 SDValue SwitchOp = getValue(JTH.SValue); 2567 EVT VT = SwitchOp.getValueType(); 2568 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2569 DAG.getConstant(JTH.First, dl, VT)); 2570 2571 // The SDNode we just created, which holds the value being switched on minus 2572 // the smallest case value, needs to be copied to a virtual register so it 2573 // can be used as an index into the jump table in a subsequent basic block. 2574 // This value may be smaller or larger than the target's pointer type, and 2575 // therefore require extension or truncating. 2576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2577 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2578 2579 unsigned JumpTableReg = 2580 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2581 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2582 JumpTableReg, SwitchOp); 2583 JT.Reg = JumpTableReg; 2584 2585 if (!JTH.FallthroughUnreachable) { 2586 // Emit the range check for the jump table, and branch to the default block 2587 // for the switch statement if the value being switched on exceeds the 2588 // largest case in the switch. 2589 SDValue CMP = DAG.getSetCC( 2590 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2591 Sub.getValueType()), 2592 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2593 2594 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2595 MVT::Other, CopyTo, CMP, 2596 DAG.getBasicBlock(JT.Default)); 2597 2598 // Avoid emitting unnecessary branches to the next block. 2599 if (JT.MBB != NextBlock(SwitchBB)) 2600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2601 DAG.getBasicBlock(JT.MBB)); 2602 2603 DAG.setRoot(BrCond); 2604 } else { 2605 // Avoid emitting unnecessary branches to the next block. 2606 if (JT.MBB != NextBlock(SwitchBB)) 2607 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2608 DAG.getBasicBlock(JT.MBB))); 2609 else 2610 DAG.setRoot(CopyTo); 2611 } 2612 } 2613 2614 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2615 /// variable if there exists one. 2616 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2617 SDValue &Chain) { 2618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2619 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2620 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2621 MachineFunction &MF = DAG.getMachineFunction(); 2622 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2623 MachineSDNode *Node = 2624 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2625 if (Global) { 2626 MachinePointerInfo MPInfo(Global); 2627 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2628 MachineMemOperand::MODereferenceable; 2629 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2630 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2631 DAG.setNodeMemRefs(Node, {MemRef}); 2632 } 2633 if (PtrTy != PtrMemTy) 2634 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2635 return SDValue(Node, 0); 2636 } 2637 2638 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2639 /// tail spliced into a stack protector check success bb. 2640 /// 2641 /// For a high level explanation of how this fits into the stack protector 2642 /// generation see the comment on the declaration of class 2643 /// StackProtectorDescriptor. 2644 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2645 MachineBasicBlock *ParentBB) { 2646 2647 // First create the loads to the guard/stack slot for the comparison. 2648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2649 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2650 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2651 2652 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2653 int FI = MFI.getStackProtectorIndex(); 2654 2655 SDValue Guard; 2656 SDLoc dl = getCurSDLoc(); 2657 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2658 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2659 Align Align = 2660 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2661 2662 // Generate code to load the content of the guard slot. 2663 SDValue GuardVal = DAG.getLoad( 2664 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2666 MachineMemOperand::MOVolatile); 2667 2668 if (TLI.useStackGuardXorFP()) 2669 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2670 2671 // Retrieve guard check function, nullptr if instrumentation is inlined. 2672 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2673 // The target provides a guard check function to validate the guard value. 2674 // Generate a call to that function with the content of the guard slot as 2675 // argument. 2676 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2677 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2678 2679 TargetLowering::ArgListTy Args; 2680 TargetLowering::ArgListEntry Entry; 2681 Entry.Node = GuardVal; 2682 Entry.Ty = FnTy->getParamType(0); 2683 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2684 Entry.IsInReg = true; 2685 Args.push_back(Entry); 2686 2687 TargetLowering::CallLoweringInfo CLI(DAG); 2688 CLI.setDebugLoc(getCurSDLoc()) 2689 .setChain(DAG.getEntryNode()) 2690 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2691 getValue(GuardCheckFn), std::move(Args)); 2692 2693 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2694 DAG.setRoot(Result.second); 2695 return; 2696 } 2697 2698 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2699 // Otherwise, emit a volatile load to retrieve the stack guard value. 2700 SDValue Chain = DAG.getEntryNode(); 2701 if (TLI.useLoadStackGuardNode()) { 2702 Guard = getLoadStackGuard(DAG, dl, Chain); 2703 } else { 2704 const Value *IRGuard = TLI.getSDagStackGuard(M); 2705 SDValue GuardPtr = getValue(IRGuard); 2706 2707 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2708 MachinePointerInfo(IRGuard, 0), Align, 2709 MachineMemOperand::MOVolatile); 2710 } 2711 2712 // Perform the comparison via a getsetcc. 2713 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2714 *DAG.getContext(), 2715 Guard.getValueType()), 2716 Guard, GuardVal, ISD::SETNE); 2717 2718 // If the guard/stackslot do not equal, branch to failure MBB. 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, GuardVal.getOperand(0), 2721 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2722 // Otherwise branch to success MBB. 2723 SDValue Br = DAG.getNode(ISD::BR, dl, 2724 MVT::Other, BrCond, 2725 DAG.getBasicBlock(SPD.getSuccessMBB())); 2726 2727 DAG.setRoot(Br); 2728 } 2729 2730 /// Codegen the failure basic block for a stack protector check. 2731 /// 2732 /// A failure stack protector machine basic block consists simply of a call to 2733 /// __stack_chk_fail(). 2734 /// 2735 /// For a high level explanation of how this fits into the stack protector 2736 /// generation see the comment on the declaration of class 2737 /// StackProtectorDescriptor. 2738 void 2739 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2741 TargetLowering::MakeLibCallOptions CallOptions; 2742 CallOptions.setDiscardResult(true); 2743 SDValue Chain = 2744 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2745 None, CallOptions, getCurSDLoc()).second; 2746 // On PS4, the "return address" must still be within the calling function, 2747 // even if it's at the very end, so emit an explicit TRAP here. 2748 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2749 if (TM.getTargetTriple().isPS4()) 2750 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2751 // WebAssembly needs an unreachable instruction after a non-returning call, 2752 // because the function return type can be different from __stack_chk_fail's 2753 // return type (void). 2754 if (TM.getTargetTriple().isWasm()) 2755 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2756 2757 DAG.setRoot(Chain); 2758 } 2759 2760 /// visitBitTestHeader - This function emits necessary code to produce value 2761 /// suitable for "bit tests" 2762 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2763 MachineBasicBlock *SwitchBB) { 2764 SDLoc dl = getCurSDLoc(); 2765 2766 // Subtract the minimum value. 2767 SDValue SwitchOp = getValue(B.SValue); 2768 EVT VT = SwitchOp.getValueType(); 2769 SDValue RangeSub = 2770 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2771 2772 // Determine the type of the test operands. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 bool UsePtrType = false; 2775 if (!TLI.isTypeLegal(VT)) { 2776 UsePtrType = true; 2777 } else { 2778 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2779 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2780 // Switch table case range are encoded into series of masks. 2781 // Just use pointer type, it's guaranteed to fit. 2782 UsePtrType = true; 2783 break; 2784 } 2785 } 2786 SDValue Sub = RangeSub; 2787 if (UsePtrType) { 2788 VT = TLI.getPointerTy(DAG.getDataLayout()); 2789 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2790 } 2791 2792 B.RegVT = VT.getSimpleVT(); 2793 B.Reg = FuncInfo.CreateReg(B.RegVT); 2794 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2795 2796 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2797 2798 if (!B.FallthroughUnreachable) 2799 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2800 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2801 SwitchBB->normalizeSuccProbs(); 2802 2803 SDValue Root = CopyTo; 2804 if (!B.FallthroughUnreachable) { 2805 // Conditional branch to the default block. 2806 SDValue RangeCmp = DAG.getSetCC(dl, 2807 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2808 RangeSub.getValueType()), 2809 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2810 ISD::SETUGT); 2811 2812 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2813 DAG.getBasicBlock(B.Default)); 2814 } 2815 2816 // Avoid emitting unnecessary branches to the next block. 2817 if (MBB != NextBlock(SwitchBB)) 2818 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2819 2820 DAG.setRoot(Root); 2821 } 2822 2823 /// visitBitTestCase - this function produces one "bit test" 2824 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2825 MachineBasicBlock* NextMBB, 2826 BranchProbability BranchProbToNext, 2827 unsigned Reg, 2828 BitTestCase &B, 2829 MachineBasicBlock *SwitchBB) { 2830 SDLoc dl = getCurSDLoc(); 2831 MVT VT = BB.RegVT; 2832 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2833 SDValue Cmp; 2834 unsigned PopCount = countPopulation(B.Mask); 2835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2836 if (PopCount == 1) { 2837 // Testing for a single bit; just compare the shift count with what it 2838 // would need to be to shift a 1 bit in that position. 2839 Cmp = DAG.getSetCC( 2840 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2841 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2842 ISD::SETEQ); 2843 } else if (PopCount == BB.Range) { 2844 // There is only one zero bit in the range, test for it directly. 2845 Cmp = DAG.getSetCC( 2846 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2847 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2848 ISD::SETNE); 2849 } else { 2850 // Make desired shift 2851 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2852 DAG.getConstant(1, dl, VT), ShiftOp); 2853 2854 // Emit bit tests and jumps 2855 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2856 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2857 Cmp = DAG.getSetCC( 2858 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2859 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2860 } 2861 2862 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2863 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2864 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2865 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2866 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2867 // one as they are relative probabilities (and thus work more like weights), 2868 // and hence we need to normalize them to let the sum of them become one. 2869 SwitchBB->normalizeSuccProbs(); 2870 2871 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2872 MVT::Other, getControlRoot(), 2873 Cmp, DAG.getBasicBlock(B.TargetBB)); 2874 2875 // Avoid emitting unnecessary branches to the next block. 2876 if (NextMBB != NextBlock(SwitchBB)) 2877 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2878 DAG.getBasicBlock(NextMBB)); 2879 2880 DAG.setRoot(BrAnd); 2881 } 2882 2883 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2884 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2885 2886 // Retrieve successors. Look through artificial IR level blocks like 2887 // catchswitch for successors. 2888 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2889 const BasicBlock *EHPadBB = I.getSuccessor(1); 2890 2891 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2892 // have to do anything here to lower funclet bundles. 2893 assert(!I.hasOperandBundlesOtherThan( 2894 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2895 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2896 LLVMContext::OB_cfguardtarget, 2897 LLVMContext::OB_clang_arc_attachedcall}) && 2898 "Cannot lower invokes with arbitrary operand bundles yet!"); 2899 2900 const Value *Callee(I.getCalledOperand()); 2901 const Function *Fn = dyn_cast<Function>(Callee); 2902 if (isa<InlineAsm>(Callee)) 2903 visitInlineAsm(I, EHPadBB); 2904 else if (Fn && Fn->isIntrinsic()) { 2905 switch (Fn->getIntrinsicID()) { 2906 default: 2907 llvm_unreachable("Cannot invoke this intrinsic"); 2908 case Intrinsic::donothing: 2909 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2910 case Intrinsic::seh_try_begin: 2911 case Intrinsic::seh_scope_begin: 2912 case Intrinsic::seh_try_end: 2913 case Intrinsic::seh_scope_end: 2914 break; 2915 case Intrinsic::experimental_patchpoint_void: 2916 case Intrinsic::experimental_patchpoint_i64: 2917 visitPatchpoint(I, EHPadBB); 2918 break; 2919 case Intrinsic::experimental_gc_statepoint: 2920 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2921 break; 2922 case Intrinsic::wasm_rethrow: { 2923 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2924 // special because it can be invoked, so we manually lower it to a DAG 2925 // node here. 2926 SmallVector<SDValue, 8> Ops; 2927 Ops.push_back(getRoot()); // inchain 2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2929 Ops.push_back( 2930 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2931 TLI.getPointerTy(DAG.getDataLayout()))); 2932 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2933 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2934 break; 2935 } 2936 } 2937 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2938 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2939 // Eventually we will support lowering the @llvm.experimental.deoptimize 2940 // intrinsic, and right now there are no plans to support other intrinsics 2941 // with deopt state. 2942 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2943 } else { 2944 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2945 } 2946 2947 // If the value of the invoke is used outside of its defining block, make it 2948 // available as a virtual register. 2949 // We already took care of the exported value for the statepoint instruction 2950 // during call to the LowerStatepoint. 2951 if (!isa<GCStatepointInst>(I)) { 2952 CopyToExportRegsIfNeeded(&I); 2953 } 2954 2955 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2957 BranchProbability EHPadBBProb = 2958 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2959 : BranchProbability::getZero(); 2960 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2961 2962 // Update successor info. 2963 addSuccessorWithProb(InvokeMBB, Return); 2964 for (auto &UnwindDest : UnwindDests) { 2965 UnwindDest.first->setIsEHPad(); 2966 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2967 } 2968 InvokeMBB->normalizeSuccProbs(); 2969 2970 // Drop into normal successor. 2971 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2972 DAG.getBasicBlock(Return))); 2973 } 2974 2975 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2976 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2977 2978 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2979 // have to do anything here to lower funclet bundles. 2980 assert(!I.hasOperandBundlesOtherThan( 2981 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2982 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2983 2984 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2985 visitInlineAsm(I); 2986 CopyToExportRegsIfNeeded(&I); 2987 2988 // Retrieve successors. 2989 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2990 2991 // Update successor info. 2992 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2993 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2994 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2995 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2996 Target->setIsInlineAsmBrIndirectTarget(); 2997 } 2998 CallBrMBB->normalizeSuccProbs(); 2999 3000 // Drop into default successor. 3001 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3002 MVT::Other, getControlRoot(), 3003 DAG.getBasicBlock(Return))); 3004 } 3005 3006 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3007 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3008 } 3009 3010 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3011 assert(FuncInfo.MBB->isEHPad() && 3012 "Call to landingpad not in landing pad!"); 3013 3014 // If there aren't registers to copy the values into (e.g., during SjLj 3015 // exceptions), then don't bother to create these DAG nodes. 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3018 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3019 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3020 return; 3021 3022 // If landingpad's return type is token type, we don't create DAG nodes 3023 // for its exception pointer and selector value. The extraction of exception 3024 // pointer or selector value from token type landingpads is not currently 3025 // supported. 3026 if (LP.getType()->isTokenTy()) 3027 return; 3028 3029 SmallVector<EVT, 2> ValueVTs; 3030 SDLoc dl = getCurSDLoc(); 3031 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3032 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3033 3034 // Get the two live-in registers as SDValues. The physregs have already been 3035 // copied into virtual registers. 3036 SDValue Ops[2]; 3037 if (FuncInfo.ExceptionPointerVirtReg) { 3038 Ops[0] = DAG.getZExtOrTrunc( 3039 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3040 FuncInfo.ExceptionPointerVirtReg, 3041 TLI.getPointerTy(DAG.getDataLayout())), 3042 dl, ValueVTs[0]); 3043 } else { 3044 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3045 } 3046 Ops[1] = DAG.getZExtOrTrunc( 3047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3048 FuncInfo.ExceptionSelectorVirtReg, 3049 TLI.getPointerTy(DAG.getDataLayout())), 3050 dl, ValueVTs[1]); 3051 3052 // Merge into one. 3053 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3054 DAG.getVTList(ValueVTs), Ops); 3055 setValue(&LP, Res); 3056 } 3057 3058 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3059 MachineBasicBlock *Last) { 3060 // Update JTCases. 3061 for (JumpTableBlock &JTB : SL->JTCases) 3062 if (JTB.first.HeaderBB == First) 3063 JTB.first.HeaderBB = Last; 3064 3065 // Update BitTestCases. 3066 for (BitTestBlock &BTB : SL->BitTestCases) 3067 if (BTB.Parent == First) 3068 BTB.Parent = Last; 3069 } 3070 3071 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3072 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3073 3074 // Update machine-CFG edges with unique successors. 3075 SmallSet<BasicBlock*, 32> Done; 3076 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3077 BasicBlock *BB = I.getSuccessor(i); 3078 bool Inserted = Done.insert(BB).second; 3079 if (!Inserted) 3080 continue; 3081 3082 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3083 addSuccessorWithProb(IndirectBrMBB, Succ); 3084 } 3085 IndirectBrMBB->normalizeSuccProbs(); 3086 3087 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3088 MVT::Other, getControlRoot(), 3089 getValue(I.getAddress()))); 3090 } 3091 3092 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3093 if (!DAG.getTarget().Options.TrapUnreachable) 3094 return; 3095 3096 // We may be able to ignore unreachable behind a noreturn call. 3097 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3098 const BasicBlock &BB = *I.getParent(); 3099 if (&I != &BB.front()) { 3100 BasicBlock::const_iterator PredI = 3101 std::prev(BasicBlock::const_iterator(&I)); 3102 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3103 if (Call->doesNotReturn()) 3104 return; 3105 } 3106 } 3107 } 3108 3109 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3110 } 3111 3112 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3113 SDNodeFlags Flags; 3114 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3115 Flags.copyFMF(*FPOp); 3116 3117 SDValue Op = getValue(I.getOperand(0)); 3118 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3119 Op, Flags); 3120 setValue(&I, UnNodeValue); 3121 } 3122 3123 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3124 SDNodeFlags Flags; 3125 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3126 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3127 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3128 } 3129 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3130 Flags.setExact(ExactOp->isExact()); 3131 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3132 Flags.copyFMF(*FPOp); 3133 3134 SDValue Op1 = getValue(I.getOperand(0)); 3135 SDValue Op2 = getValue(I.getOperand(1)); 3136 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3137 Op1, Op2, Flags); 3138 setValue(&I, BinNodeValue); 3139 } 3140 3141 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3142 SDValue Op1 = getValue(I.getOperand(0)); 3143 SDValue Op2 = getValue(I.getOperand(1)); 3144 3145 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3146 Op1.getValueType(), DAG.getDataLayout()); 3147 3148 // Coerce the shift amount to the right type if we can. This exposes the 3149 // truncate or zext to optimization early. 3150 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3151 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3152 "Unexpected shift type"); 3153 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3154 } 3155 3156 bool nuw = false; 3157 bool nsw = false; 3158 bool exact = false; 3159 3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3161 3162 if (const OverflowingBinaryOperator *OFBinOp = 3163 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3164 nuw = OFBinOp->hasNoUnsignedWrap(); 3165 nsw = OFBinOp->hasNoSignedWrap(); 3166 } 3167 if (const PossiblyExactOperator *ExactOp = 3168 dyn_cast<const PossiblyExactOperator>(&I)) 3169 exact = ExactOp->isExact(); 3170 } 3171 SDNodeFlags Flags; 3172 Flags.setExact(exact); 3173 Flags.setNoSignedWrap(nsw); 3174 Flags.setNoUnsignedWrap(nuw); 3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3176 Flags); 3177 setValue(&I, Res); 3178 } 3179 3180 void SelectionDAGBuilder::visitSDiv(const User &I) { 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 3184 SDNodeFlags Flags; 3185 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3186 cast<PossiblyExactOperator>(&I)->isExact()); 3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3188 Op2, Flags)); 3189 } 3190 3191 void SelectionDAGBuilder::visitICmp(const User &I) { 3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3194 predicate = IC->getPredicate(); 3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3196 predicate = ICmpInst::Predicate(IC->getPredicate()); 3197 SDValue Op1 = getValue(I.getOperand(0)); 3198 SDValue Op2 = getValue(I.getOperand(1)); 3199 ISD::CondCode Opcode = getICmpCondCode(predicate); 3200 3201 auto &TLI = DAG.getTargetLoweringInfo(); 3202 EVT MemVT = 3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3204 3205 // If a pointer's DAG type is larger than its memory type then the DAG values 3206 // are zero-extended. This breaks signed comparisons so truncate back to the 3207 // underlying type before doing the compare. 3208 if (Op1.getValueType() != MemVT) { 3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3211 } 3212 3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3214 I.getType()); 3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3216 } 3217 3218 void SelectionDAGBuilder::visitFCmp(const User &I) { 3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3221 predicate = FC->getPredicate(); 3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3223 predicate = FCmpInst::Predicate(FC->getPredicate()); 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 3227 ISD::CondCode Condition = getFCmpCondCode(predicate); 3228 auto *FPMO = cast<FPMathOperator>(&I); 3229 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3230 Condition = getFCmpCodeWithoutNaN(Condition); 3231 3232 SDNodeFlags Flags; 3233 Flags.copyFMF(*FPMO); 3234 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3235 3236 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3237 I.getType()); 3238 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3239 } 3240 3241 // Check if the condition of the select has one use or two users that are both 3242 // selects with the same condition. 3243 static bool hasOnlySelectUsers(const Value *Cond) { 3244 return llvm::all_of(Cond->users(), [](const Value *V) { 3245 return isa<SelectInst>(V); 3246 }); 3247 } 3248 3249 void SelectionDAGBuilder::visitSelect(const User &I) { 3250 SmallVector<EVT, 4> ValueVTs; 3251 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3252 ValueVTs); 3253 unsigned NumValues = ValueVTs.size(); 3254 if (NumValues == 0) return; 3255 3256 SmallVector<SDValue, 4> Values(NumValues); 3257 SDValue Cond = getValue(I.getOperand(0)); 3258 SDValue LHSVal = getValue(I.getOperand(1)); 3259 SDValue RHSVal = getValue(I.getOperand(2)); 3260 SmallVector<SDValue, 1> BaseOps(1, Cond); 3261 ISD::NodeType OpCode = 3262 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3263 3264 bool IsUnaryAbs = false; 3265 bool Negate = false; 3266 3267 SDNodeFlags Flags; 3268 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3269 Flags.copyFMF(*FPOp); 3270 3271 // Min/max matching is only viable if all output VTs are the same. 3272 if (is_splat(ValueVTs)) { 3273 EVT VT = ValueVTs[0]; 3274 LLVMContext &Ctx = *DAG.getContext(); 3275 auto &TLI = DAG.getTargetLoweringInfo(); 3276 3277 // We care about the legality of the operation after it has been type 3278 // legalized. 3279 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3280 VT = TLI.getTypeToTransformTo(Ctx, VT); 3281 3282 // If the vselect is legal, assume we want to leave this as a vector setcc + 3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3284 // min/max is legal on the scalar type. 3285 bool UseScalarMinMax = VT.isVector() && 3286 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3287 3288 Value *LHS, *RHS; 3289 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3290 ISD::NodeType Opc = ISD::DELETED_NODE; 3291 switch (SPR.Flavor) { 3292 case SPF_UMAX: Opc = ISD::UMAX; break; 3293 case SPF_UMIN: Opc = ISD::UMIN; break; 3294 case SPF_SMAX: Opc = ISD::SMAX; break; 3295 case SPF_SMIN: Opc = ISD::SMIN; break; 3296 case SPF_FMINNUM: 3297 switch (SPR.NaNBehavior) { 3298 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3299 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3300 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3301 case SPNB_RETURNS_ANY: { 3302 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3303 Opc = ISD::FMINNUM; 3304 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3305 Opc = ISD::FMINIMUM; 3306 else if (UseScalarMinMax) 3307 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3308 ISD::FMINNUM : ISD::FMINIMUM; 3309 break; 3310 } 3311 } 3312 break; 3313 case SPF_FMAXNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3318 case SPNB_RETURNS_ANY: 3319 3320 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3321 Opc = ISD::FMAXNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3323 Opc = ISD::FMAXIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3326 ISD::FMAXNUM : ISD::FMAXIMUM; 3327 break; 3328 } 3329 break; 3330 case SPF_NABS: 3331 Negate = true; 3332 LLVM_FALLTHROUGH; 3333 case SPF_ABS: 3334 IsUnaryAbs = true; 3335 Opc = ISD::ABS; 3336 break; 3337 default: break; 3338 } 3339 3340 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3341 (TLI.isOperationLegalOrCustom(Opc, VT) || 3342 (UseScalarMinMax && 3343 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3344 // If the underlying comparison instruction is used by any other 3345 // instruction, the consumed instructions won't be destroyed, so it is 3346 // not profitable to convert to a min/max. 3347 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3348 OpCode = Opc; 3349 LHSVal = getValue(LHS); 3350 RHSVal = getValue(RHS); 3351 BaseOps.clear(); 3352 } 3353 3354 if (IsUnaryAbs) { 3355 OpCode = Opc; 3356 LHSVal = getValue(LHS); 3357 BaseOps.clear(); 3358 } 3359 } 3360 3361 if (IsUnaryAbs) { 3362 for (unsigned i = 0; i != NumValues; ++i) { 3363 SDLoc dl = getCurSDLoc(); 3364 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3365 Values[i] = 3366 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3367 if (Negate) 3368 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3369 Values[i]); 3370 } 3371 } else { 3372 for (unsigned i = 0; i != NumValues; ++i) { 3373 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3374 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3375 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3376 Values[i] = DAG.getNode( 3377 OpCode, getCurSDLoc(), 3378 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3379 } 3380 } 3381 3382 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3383 DAG.getVTList(ValueVTs), Values)); 3384 } 3385 3386 void SelectionDAGBuilder::visitTrunc(const User &I) { 3387 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3388 SDValue N = getValue(I.getOperand(0)); 3389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3390 I.getType()); 3391 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3392 } 3393 3394 void SelectionDAGBuilder::visitZExt(const User &I) { 3395 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3396 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3397 SDValue N = getValue(I.getOperand(0)); 3398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3399 I.getType()); 3400 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3401 } 3402 3403 void SelectionDAGBuilder::visitSExt(const User &I) { 3404 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3405 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3406 SDValue N = getValue(I.getOperand(0)); 3407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3408 I.getType()); 3409 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3410 } 3411 3412 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3413 // FPTrunc is never a no-op cast, no need to check 3414 SDValue N = getValue(I.getOperand(0)); 3415 SDLoc dl = getCurSDLoc(); 3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3417 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3418 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3419 DAG.getTargetConstant( 3420 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3421 } 3422 3423 void SelectionDAGBuilder::visitFPExt(const User &I) { 3424 // FPExt is never a no-op cast, no need to check 3425 SDValue N = getValue(I.getOperand(0)); 3426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3427 I.getType()); 3428 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3429 } 3430 3431 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3432 // FPToUI is never a no-op cast, no need to check 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3440 // FPToSI is never a no-op cast, no need to check 3441 SDValue N = getValue(I.getOperand(0)); 3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3443 I.getType()); 3444 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3445 } 3446 3447 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3448 // UIToFP is never a no-op cast, no need to check 3449 SDValue N = getValue(I.getOperand(0)); 3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3451 I.getType()); 3452 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3453 } 3454 3455 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3456 // SIToFP is never a no-op cast, no need to check 3457 SDValue N = getValue(I.getOperand(0)); 3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3459 I.getType()); 3460 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3461 } 3462 3463 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3464 // What to do depends on the size of the integer and the size of the pointer. 3465 // We can either truncate, zero extend, or no-op, accordingly. 3466 SDValue N = getValue(I.getOperand(0)); 3467 auto &TLI = DAG.getTargetLoweringInfo(); 3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3469 I.getType()); 3470 EVT PtrMemVT = 3471 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3472 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3473 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3474 setValue(&I, N); 3475 } 3476 3477 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3478 // What to do depends on the size of the integer and the size of the pointer. 3479 // We can either truncate, zero extend, or no-op, accordingly. 3480 SDValue N = getValue(I.getOperand(0)); 3481 auto &TLI = DAG.getTargetLoweringInfo(); 3482 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3483 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3484 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3485 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3486 setValue(&I, N); 3487 } 3488 3489 void SelectionDAGBuilder::visitBitCast(const User &I) { 3490 SDValue N = getValue(I.getOperand(0)); 3491 SDLoc dl = getCurSDLoc(); 3492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3493 I.getType()); 3494 3495 // BitCast assures us that source and destination are the same size so this is 3496 // either a BITCAST or a no-op. 3497 if (DestVT != N.getValueType()) 3498 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3499 DestVT, N)); // convert types. 3500 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3501 // might fold any kind of constant expression to an integer constant and that 3502 // is not what we are looking for. Only recognize a bitcast of a genuine 3503 // constant integer as an opaque constant. 3504 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3505 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3506 /*isOpaque*/true)); 3507 else 3508 setValue(&I, N); // noop cast. 3509 } 3510 3511 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3513 const Value *SV = I.getOperand(0); 3514 SDValue N = getValue(SV); 3515 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3516 3517 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3518 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3519 3520 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3521 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3522 3523 setValue(&I, N); 3524 } 3525 3526 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3528 SDValue InVec = getValue(I.getOperand(0)); 3529 SDValue InVal = getValue(I.getOperand(1)); 3530 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3531 TLI.getVectorIdxTy(DAG.getDataLayout())); 3532 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3533 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3534 InVec, InVal, InIdx)); 3535 } 3536 3537 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3539 SDValue InVec = getValue(I.getOperand(0)); 3540 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3541 TLI.getVectorIdxTy(DAG.getDataLayout())); 3542 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3543 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3544 InVec, InIdx)); 3545 } 3546 3547 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3548 SDValue Src1 = getValue(I.getOperand(0)); 3549 SDValue Src2 = getValue(I.getOperand(1)); 3550 ArrayRef<int> Mask; 3551 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3552 Mask = SVI->getShuffleMask(); 3553 else 3554 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3555 SDLoc DL = getCurSDLoc(); 3556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3557 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3558 EVT SrcVT = Src1.getValueType(); 3559 3560 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3561 VT.isScalableVector()) { 3562 // Canonical splat form of first element of first input vector. 3563 SDValue FirstElt = 3564 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3565 DAG.getVectorIdxConstant(0, DL)); 3566 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3567 return; 3568 } 3569 3570 // For now, we only handle splats for scalable vectors. 3571 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3572 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3573 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3574 3575 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3576 unsigned MaskNumElts = Mask.size(); 3577 3578 if (SrcNumElts == MaskNumElts) { 3579 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3580 return; 3581 } 3582 3583 // Normalize the shuffle vector since mask and vector length don't match. 3584 if (SrcNumElts < MaskNumElts) { 3585 // Mask is longer than the source vectors. We can use concatenate vector to 3586 // make the mask and vectors lengths match. 3587 3588 if (MaskNumElts % SrcNumElts == 0) { 3589 // Mask length is a multiple of the source vector length. 3590 // Check if the shuffle is some kind of concatenation of the input 3591 // vectors. 3592 unsigned NumConcat = MaskNumElts / SrcNumElts; 3593 bool IsConcat = true; 3594 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3595 for (unsigned i = 0; i != MaskNumElts; ++i) { 3596 int Idx = Mask[i]; 3597 if (Idx < 0) 3598 continue; 3599 // Ensure the indices in each SrcVT sized piece are sequential and that 3600 // the same source is used for the whole piece. 3601 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3602 (ConcatSrcs[i / SrcNumElts] >= 0 && 3603 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3604 IsConcat = false; 3605 break; 3606 } 3607 // Remember which source this index came from. 3608 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3609 } 3610 3611 // The shuffle is concatenating multiple vectors together. Just emit 3612 // a CONCAT_VECTORS operation. 3613 if (IsConcat) { 3614 SmallVector<SDValue, 8> ConcatOps; 3615 for (auto Src : ConcatSrcs) { 3616 if (Src < 0) 3617 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3618 else if (Src == 0) 3619 ConcatOps.push_back(Src1); 3620 else 3621 ConcatOps.push_back(Src2); 3622 } 3623 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3624 return; 3625 } 3626 } 3627 3628 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3629 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3630 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3631 PaddedMaskNumElts); 3632 3633 // Pad both vectors with undefs to make them the same length as the mask. 3634 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3635 3636 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3637 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3638 MOps1[0] = Src1; 3639 MOps2[0] = Src2; 3640 3641 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3642 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3643 3644 // Readjust mask for new input vector length. 3645 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3646 for (unsigned i = 0; i != MaskNumElts; ++i) { 3647 int Idx = Mask[i]; 3648 if (Idx >= (int)SrcNumElts) 3649 Idx -= SrcNumElts - PaddedMaskNumElts; 3650 MappedOps[i] = Idx; 3651 } 3652 3653 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3654 3655 // If the concatenated vector was padded, extract a subvector with the 3656 // correct number of elements. 3657 if (MaskNumElts != PaddedMaskNumElts) 3658 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3659 DAG.getVectorIdxConstant(0, DL)); 3660 3661 setValue(&I, Result); 3662 return; 3663 } 3664 3665 if (SrcNumElts > MaskNumElts) { 3666 // Analyze the access pattern of the vector to see if we can extract 3667 // two subvectors and do the shuffle. 3668 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3669 bool CanExtract = true; 3670 for (int Idx : Mask) { 3671 unsigned Input = 0; 3672 if (Idx < 0) 3673 continue; 3674 3675 if (Idx >= (int)SrcNumElts) { 3676 Input = 1; 3677 Idx -= SrcNumElts; 3678 } 3679 3680 // If all the indices come from the same MaskNumElts sized portion of 3681 // the sources we can use extract. Also make sure the extract wouldn't 3682 // extract past the end of the source. 3683 int NewStartIdx = alignDown(Idx, MaskNumElts); 3684 if (NewStartIdx + MaskNumElts > SrcNumElts || 3685 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3686 CanExtract = false; 3687 // Make sure we always update StartIdx as we use it to track if all 3688 // elements are undef. 3689 StartIdx[Input] = NewStartIdx; 3690 } 3691 3692 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3693 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3694 return; 3695 } 3696 if (CanExtract) { 3697 // Extract appropriate subvector and generate a vector shuffle 3698 for (unsigned Input = 0; Input < 2; ++Input) { 3699 SDValue &Src = Input == 0 ? Src1 : Src2; 3700 if (StartIdx[Input] < 0) 3701 Src = DAG.getUNDEF(VT); 3702 else { 3703 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3704 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3705 } 3706 } 3707 3708 // Calculate new mask. 3709 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3710 for (int &Idx : MappedOps) { 3711 if (Idx >= (int)SrcNumElts) 3712 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3713 else if (Idx >= 0) 3714 Idx -= StartIdx[0]; 3715 } 3716 3717 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3718 return; 3719 } 3720 } 3721 3722 // We can't use either concat vectors or extract subvectors so fall back to 3723 // replacing the shuffle with extract and build vector. 3724 // to insert and build vector. 3725 EVT EltVT = VT.getVectorElementType(); 3726 SmallVector<SDValue,8> Ops; 3727 for (int Idx : Mask) { 3728 SDValue Res; 3729 3730 if (Idx < 0) { 3731 Res = DAG.getUNDEF(EltVT); 3732 } else { 3733 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3734 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3735 3736 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3737 DAG.getVectorIdxConstant(Idx, DL)); 3738 } 3739 3740 Ops.push_back(Res); 3741 } 3742 3743 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3744 } 3745 3746 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3747 ArrayRef<unsigned> Indices; 3748 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3749 Indices = IV->getIndices(); 3750 else 3751 Indices = cast<ConstantExpr>(&I)->getIndices(); 3752 3753 const Value *Op0 = I.getOperand(0); 3754 const Value *Op1 = I.getOperand(1); 3755 Type *AggTy = I.getType(); 3756 Type *ValTy = Op1->getType(); 3757 bool IntoUndef = isa<UndefValue>(Op0); 3758 bool FromUndef = isa<UndefValue>(Op1); 3759 3760 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3761 3762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3763 SmallVector<EVT, 4> AggValueVTs; 3764 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3765 SmallVector<EVT, 4> ValValueVTs; 3766 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3767 3768 unsigned NumAggValues = AggValueVTs.size(); 3769 unsigned NumValValues = ValValueVTs.size(); 3770 SmallVector<SDValue, 4> Values(NumAggValues); 3771 3772 // Ignore an insertvalue that produces an empty object 3773 if (!NumAggValues) { 3774 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3775 return; 3776 } 3777 3778 SDValue Agg = getValue(Op0); 3779 unsigned i = 0; 3780 // Copy the beginning value(s) from the original aggregate. 3781 for (; i != LinearIndex; ++i) 3782 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3783 SDValue(Agg.getNode(), Agg.getResNo() + i); 3784 // Copy values from the inserted value(s). 3785 if (NumValValues) { 3786 SDValue Val = getValue(Op1); 3787 for (; i != LinearIndex + NumValValues; ++i) 3788 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3789 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3790 } 3791 // Copy remaining value(s) from the original aggregate. 3792 for (; i != NumAggValues; ++i) 3793 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3794 SDValue(Agg.getNode(), Agg.getResNo() + i); 3795 3796 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3797 DAG.getVTList(AggValueVTs), Values)); 3798 } 3799 3800 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3801 ArrayRef<unsigned> Indices; 3802 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3803 Indices = EV->getIndices(); 3804 else 3805 Indices = cast<ConstantExpr>(&I)->getIndices(); 3806 3807 const Value *Op0 = I.getOperand(0); 3808 Type *AggTy = Op0->getType(); 3809 Type *ValTy = I.getType(); 3810 bool OutOfUndef = isa<UndefValue>(Op0); 3811 3812 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3813 3814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3815 SmallVector<EVT, 4> ValValueVTs; 3816 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3817 3818 unsigned NumValValues = ValValueVTs.size(); 3819 3820 // Ignore a extractvalue that produces an empty object 3821 if (!NumValValues) { 3822 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3823 return; 3824 } 3825 3826 SmallVector<SDValue, 4> Values(NumValValues); 3827 3828 SDValue Agg = getValue(Op0); 3829 // Copy out the selected value(s). 3830 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3831 Values[i - LinearIndex] = 3832 OutOfUndef ? 3833 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3834 SDValue(Agg.getNode(), Agg.getResNo() + i); 3835 3836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3837 DAG.getVTList(ValValueVTs), Values)); 3838 } 3839 3840 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3841 Value *Op0 = I.getOperand(0); 3842 // Note that the pointer operand may be a vector of pointers. Take the scalar 3843 // element which holds a pointer. 3844 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3845 SDValue N = getValue(Op0); 3846 SDLoc dl = getCurSDLoc(); 3847 auto &TLI = DAG.getTargetLoweringInfo(); 3848 3849 // Normalize Vector GEP - all scalar operands should be converted to the 3850 // splat vector. 3851 bool IsVectorGEP = I.getType()->isVectorTy(); 3852 ElementCount VectorElementCount = 3853 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3854 : ElementCount::getFixed(0); 3855 3856 if (IsVectorGEP && !N.getValueType().isVector()) { 3857 LLVMContext &Context = *DAG.getContext(); 3858 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3859 if (VectorElementCount.isScalable()) 3860 N = DAG.getSplatVector(VT, dl, N); 3861 else 3862 N = DAG.getSplatBuildVector(VT, dl, N); 3863 } 3864 3865 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3866 GTI != E; ++GTI) { 3867 const Value *Idx = GTI.getOperand(); 3868 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3869 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3870 if (Field) { 3871 // N = N + Offset 3872 uint64_t Offset = 3873 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3882 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3883 } 3884 } else { 3885 // IdxSize is the width of the arithmetic according to IR semantics. 3886 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3887 // (and fix up the result later). 3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3889 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3890 TypeSize ElementSize = 3891 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3892 // We intentionally mask away the high bits here; ElementSize may not 3893 // fit in IdxTy. 3894 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3895 bool ElementScalable = ElementSize.isScalable(); 3896 3897 // If this is a scalar constant or a splat vector of constants, 3898 // handle it quickly. 3899 const auto *C = dyn_cast<Constant>(Idx); 3900 if (C && isa<VectorType>(C->getType())) 3901 C = C->getSplatValue(); 3902 3903 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3904 if (CI && CI->isZero()) 3905 continue; 3906 if (CI && !ElementScalable) { 3907 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3908 LLVMContext &Context = *DAG.getContext(); 3909 SDValue OffsVal; 3910 if (IsVectorGEP) 3911 OffsVal = DAG.getConstant( 3912 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3913 else 3914 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3915 3916 // In an inbounds GEP with an offset that is nonnegative even when 3917 // interpreted as signed, assume there is no unsigned overflow. 3918 SDNodeFlags Flags; 3919 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3920 Flags.setNoUnsignedWrap(true); 3921 3922 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3923 3924 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3925 continue; 3926 } 3927 3928 // N = N + Idx * ElementMul; 3929 SDValue IdxN = getValue(Idx); 3930 3931 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3932 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3933 VectorElementCount); 3934 if (VectorElementCount.isScalable()) 3935 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3936 else 3937 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3938 } 3939 3940 // If the index is smaller or larger than intptr_t, truncate or extend 3941 // it. 3942 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3943 3944 if (ElementScalable) { 3945 EVT VScaleTy = N.getValueType().getScalarType(); 3946 SDValue VScale = DAG.getNode( 3947 ISD::VSCALE, dl, VScaleTy, 3948 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3949 if (IsVectorGEP) 3950 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3951 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3952 } else { 3953 // If this is a multiply by a power of two, turn it into a shl 3954 // immediately. This is a very common case. 3955 if (ElementMul != 1) { 3956 if (ElementMul.isPowerOf2()) { 3957 unsigned Amt = ElementMul.logBase2(); 3958 IdxN = DAG.getNode(ISD::SHL, dl, 3959 N.getValueType(), IdxN, 3960 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3961 } else { 3962 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3963 IdxN.getValueType()); 3964 IdxN = DAG.getNode(ISD::MUL, dl, 3965 N.getValueType(), IdxN, Scale); 3966 } 3967 } 3968 } 3969 3970 N = DAG.getNode(ISD::ADD, dl, 3971 N.getValueType(), N, IdxN); 3972 } 3973 } 3974 3975 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3976 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3977 if (IsVectorGEP) { 3978 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3979 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3980 } 3981 3982 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3983 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3984 3985 setValue(&I, N); 3986 } 3987 3988 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3989 // If this is a fixed sized alloca in the entry block of the function, 3990 // allocate it statically on the stack. 3991 if (FuncInfo.StaticAllocaMap.count(&I)) 3992 return; // getValue will auto-populate this. 3993 3994 SDLoc dl = getCurSDLoc(); 3995 Type *Ty = I.getAllocatedType(); 3996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3997 auto &DL = DAG.getDataLayout(); 3998 TypeSize TySize = DL.getTypeAllocSize(Ty); 3999 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4000 4001 SDValue AllocSize = getValue(I.getArraySize()); 4002 4003 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4004 if (AllocSize.getValueType() != IntPtr) 4005 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4006 4007 if (TySize.isScalable()) 4008 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4009 DAG.getVScale(dl, IntPtr, 4010 APInt(IntPtr.getScalarSizeInBits(), 4011 TySize.getKnownMinValue()))); 4012 else 4013 AllocSize = 4014 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4015 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4016 4017 // Handle alignment. If the requested alignment is less than or equal to 4018 // the stack alignment, ignore it. If the size is greater than or equal to 4019 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4020 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4021 if (*Alignment <= StackAlign) 4022 Alignment = None; 4023 4024 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4025 // Round the size of the allocation up to the stack alignment size 4026 // by add SA-1 to the size. This doesn't overflow because we're computing 4027 // an address inside an alloca. 4028 SDNodeFlags Flags; 4029 Flags.setNoUnsignedWrap(true); 4030 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4031 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4032 4033 // Mask out the low bits for alignment purposes. 4034 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4035 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4036 4037 SDValue Ops[] = { 4038 getRoot(), AllocSize, 4039 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4040 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4041 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4042 setValue(&I, DSA); 4043 DAG.setRoot(DSA.getValue(1)); 4044 4045 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4046 } 4047 4048 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4049 if (I.isAtomic()) 4050 return visitAtomicLoad(I); 4051 4052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4053 const Value *SV = I.getOperand(0); 4054 if (TLI.supportSwiftError()) { 4055 // Swifterror values can come from either a function parameter with 4056 // swifterror attribute or an alloca with swifterror attribute. 4057 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4058 if (Arg->hasSwiftErrorAttr()) 4059 return visitLoadFromSwiftError(I); 4060 } 4061 4062 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4063 if (Alloca->isSwiftError()) 4064 return visitLoadFromSwiftError(I); 4065 } 4066 } 4067 4068 SDValue Ptr = getValue(SV); 4069 4070 Type *Ty = I.getType(); 4071 Align Alignment = I.getAlign(); 4072 4073 AAMDNodes AAInfo = I.getAAMetadata(); 4074 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4075 4076 SmallVector<EVT, 4> ValueVTs, MemVTs; 4077 SmallVector<uint64_t, 4> Offsets; 4078 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4079 unsigned NumValues = ValueVTs.size(); 4080 if (NumValues == 0) 4081 return; 4082 4083 bool isVolatile = I.isVolatile(); 4084 4085 SDValue Root; 4086 bool ConstantMemory = false; 4087 if (isVolatile) 4088 // Serialize volatile loads with other side effects. 4089 Root = getRoot(); 4090 else if (NumValues > MaxParallelChains) 4091 Root = getMemoryRoot(); 4092 else if (AA && 4093 AA->pointsToConstantMemory(MemoryLocation( 4094 SV, 4095 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4096 AAInfo))) { 4097 // Do not serialize (non-volatile) loads of constant memory with anything. 4098 Root = DAG.getEntryNode(); 4099 ConstantMemory = true; 4100 } else { 4101 // Do not serialize non-volatile loads against each other. 4102 Root = DAG.getRoot(); 4103 } 4104 4105 SDLoc dl = getCurSDLoc(); 4106 4107 if (isVolatile) 4108 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4109 4110 // An aggregate load cannot wrap around the address space, so offsets to its 4111 // parts don't wrap either. 4112 SDNodeFlags Flags; 4113 Flags.setNoUnsignedWrap(true); 4114 4115 SmallVector<SDValue, 4> Values(NumValues); 4116 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4117 EVT PtrVT = Ptr.getValueType(); 4118 4119 MachineMemOperand::Flags MMOFlags 4120 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4121 4122 unsigned ChainI = 0; 4123 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4124 // Serializing loads here may result in excessive register pressure, and 4125 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4126 // could recover a bit by hoisting nodes upward in the chain by recognizing 4127 // they are side-effect free or do not alias. The optimizer should really 4128 // avoid this case by converting large object/array copies to llvm.memcpy 4129 // (MaxParallelChains should always remain as failsafe). 4130 if (ChainI == MaxParallelChains) { 4131 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4132 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4133 makeArrayRef(Chains.data(), ChainI)); 4134 Root = Chain; 4135 ChainI = 0; 4136 } 4137 SDValue A = DAG.getNode(ISD::ADD, dl, 4138 PtrVT, Ptr, 4139 DAG.getConstant(Offsets[i], dl, PtrVT), 4140 Flags); 4141 4142 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4143 MachinePointerInfo(SV, Offsets[i]), Alignment, 4144 MMOFlags, AAInfo, Ranges); 4145 Chains[ChainI] = L.getValue(1); 4146 4147 if (MemVTs[i] != ValueVTs[i]) 4148 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4149 4150 Values[i] = L; 4151 } 4152 4153 if (!ConstantMemory) { 4154 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4155 makeArrayRef(Chains.data(), ChainI)); 4156 if (isVolatile) 4157 DAG.setRoot(Chain); 4158 else 4159 PendingLoads.push_back(Chain); 4160 } 4161 4162 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4163 DAG.getVTList(ValueVTs), Values)); 4164 } 4165 4166 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4167 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4168 "call visitStoreToSwiftError when backend supports swifterror"); 4169 4170 SmallVector<EVT, 4> ValueVTs; 4171 SmallVector<uint64_t, 4> Offsets; 4172 const Value *SrcV = I.getOperand(0); 4173 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4174 SrcV->getType(), ValueVTs, &Offsets); 4175 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4176 "expect a single EVT for swifterror"); 4177 4178 SDValue Src = getValue(SrcV); 4179 // Create a virtual register, then update the virtual register. 4180 Register VReg = 4181 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4182 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4183 // Chain can be getRoot or getControlRoot. 4184 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4185 SDValue(Src.getNode(), Src.getResNo())); 4186 DAG.setRoot(CopyNode); 4187 } 4188 4189 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4190 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4191 "call visitLoadFromSwiftError when backend supports swifterror"); 4192 4193 assert(!I.isVolatile() && 4194 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4195 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4196 "Support volatile, non temporal, invariant for load_from_swift_error"); 4197 4198 const Value *SV = I.getOperand(0); 4199 Type *Ty = I.getType(); 4200 assert( 4201 (!AA || 4202 !AA->pointsToConstantMemory(MemoryLocation( 4203 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4204 I.getAAMetadata()))) && 4205 "load_from_swift_error should not be constant memory"); 4206 4207 SmallVector<EVT, 4> ValueVTs; 4208 SmallVector<uint64_t, 4> Offsets; 4209 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4210 ValueVTs, &Offsets); 4211 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4212 "expect a single EVT for swifterror"); 4213 4214 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4215 SDValue L = DAG.getCopyFromReg( 4216 getRoot(), getCurSDLoc(), 4217 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4218 4219 setValue(&I, L); 4220 } 4221 4222 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4223 if (I.isAtomic()) 4224 return visitAtomicStore(I); 4225 4226 const Value *SrcV = I.getOperand(0); 4227 const Value *PtrV = I.getOperand(1); 4228 4229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4230 if (TLI.supportSwiftError()) { 4231 // Swifterror values can come from either a function parameter with 4232 // swifterror attribute or an alloca with swifterror attribute. 4233 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4234 if (Arg->hasSwiftErrorAttr()) 4235 return visitStoreToSwiftError(I); 4236 } 4237 4238 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4239 if (Alloca->isSwiftError()) 4240 return visitStoreToSwiftError(I); 4241 } 4242 } 4243 4244 SmallVector<EVT, 4> ValueVTs, MemVTs; 4245 SmallVector<uint64_t, 4> Offsets; 4246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4247 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4248 unsigned NumValues = ValueVTs.size(); 4249 if (NumValues == 0) 4250 return; 4251 4252 // Get the lowered operands. Note that we do this after 4253 // checking if NumResults is zero, because with zero results 4254 // the operands won't have values in the map. 4255 SDValue Src = getValue(SrcV); 4256 SDValue Ptr = getValue(PtrV); 4257 4258 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4259 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4260 SDLoc dl = getCurSDLoc(); 4261 Align Alignment = I.getAlign(); 4262 AAMDNodes AAInfo = I.getAAMetadata(); 4263 4264 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4265 4266 // An aggregate load cannot wrap around the address space, so offsets to its 4267 // parts don't wrap either. 4268 SDNodeFlags Flags; 4269 Flags.setNoUnsignedWrap(true); 4270 4271 unsigned ChainI = 0; 4272 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4273 // See visitLoad comments. 4274 if (ChainI == MaxParallelChains) { 4275 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4276 makeArrayRef(Chains.data(), ChainI)); 4277 Root = Chain; 4278 ChainI = 0; 4279 } 4280 SDValue Add = 4281 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4282 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4283 if (MemVTs[i] != ValueVTs[i]) 4284 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4285 SDValue St = 4286 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4287 Alignment, MMOFlags, AAInfo); 4288 Chains[ChainI] = St; 4289 } 4290 4291 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4292 makeArrayRef(Chains.data(), ChainI)); 4293 DAG.setRoot(StoreNode); 4294 } 4295 4296 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4297 bool IsCompressing) { 4298 SDLoc sdl = getCurSDLoc(); 4299 4300 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4301 MaybeAlign &Alignment) { 4302 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4303 Src0 = I.getArgOperand(0); 4304 Ptr = I.getArgOperand(1); 4305 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4306 Mask = I.getArgOperand(3); 4307 }; 4308 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4309 MaybeAlign &Alignment) { 4310 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4311 Src0 = I.getArgOperand(0); 4312 Ptr = I.getArgOperand(1); 4313 Mask = I.getArgOperand(2); 4314 Alignment = None; 4315 }; 4316 4317 Value *PtrOperand, *MaskOperand, *Src0Operand; 4318 MaybeAlign Alignment; 4319 if (IsCompressing) 4320 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4321 else 4322 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4323 4324 SDValue Ptr = getValue(PtrOperand); 4325 SDValue Src0 = getValue(Src0Operand); 4326 SDValue Mask = getValue(MaskOperand); 4327 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4328 4329 EVT VT = Src0.getValueType(); 4330 if (!Alignment) 4331 Alignment = DAG.getEVTAlign(VT); 4332 4333 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4334 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4335 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4336 SDValue StoreNode = 4337 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4338 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4339 DAG.setRoot(StoreNode); 4340 setValue(&I, StoreNode); 4341 } 4342 4343 // Get a uniform base for the Gather/Scatter intrinsic. 4344 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4345 // We try to represent it as a base pointer + vector of indices. 4346 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4347 // The first operand of the GEP may be a single pointer or a vector of pointers 4348 // Example: 4349 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4350 // or 4351 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4352 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4353 // 4354 // When the first GEP operand is a single pointer - it is the uniform base we 4355 // are looking for. If first operand of the GEP is a splat vector - we 4356 // extract the splat value and use it as a uniform base. 4357 // In all other cases the function returns 'false'. 4358 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4359 ISD::MemIndexType &IndexType, SDValue &Scale, 4360 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4361 SelectionDAG& DAG = SDB->DAG; 4362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4363 const DataLayout &DL = DAG.getDataLayout(); 4364 4365 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4366 4367 // Handle splat constant pointer. 4368 if (auto *C = dyn_cast<Constant>(Ptr)) { 4369 C = C->getSplatValue(); 4370 if (!C) 4371 return false; 4372 4373 Base = SDB->getValue(C); 4374 4375 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4376 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4377 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4378 IndexType = ISD::SIGNED_SCALED; 4379 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4380 return true; 4381 } 4382 4383 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4384 if (!GEP || GEP->getParent() != CurBB) 4385 return false; 4386 4387 if (GEP->getNumOperands() != 2) 4388 return false; 4389 4390 const Value *BasePtr = GEP->getPointerOperand(); 4391 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4392 4393 // Make sure the base is scalar and the index is a vector. 4394 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4395 return false; 4396 4397 Base = SDB->getValue(BasePtr); 4398 Index = SDB->getValue(IndexVal); 4399 IndexType = ISD::SIGNED_SCALED; 4400 Scale = DAG.getTargetConstant( 4401 DL.getTypeAllocSize(GEP->getResultElementType()), 4402 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4403 return true; 4404 } 4405 4406 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4407 SDLoc sdl = getCurSDLoc(); 4408 4409 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4410 const Value *Ptr = I.getArgOperand(1); 4411 SDValue Src0 = getValue(I.getArgOperand(0)); 4412 SDValue Mask = getValue(I.getArgOperand(3)); 4413 EVT VT = Src0.getValueType(); 4414 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4415 ->getMaybeAlignValue() 4416 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4418 4419 SDValue Base; 4420 SDValue Index; 4421 ISD::MemIndexType IndexType; 4422 SDValue Scale; 4423 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4424 I.getParent()); 4425 4426 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4427 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4428 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4429 // TODO: Make MachineMemOperands aware of scalable 4430 // vectors. 4431 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4432 if (!UniformBase) { 4433 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4434 Index = getValue(Ptr); 4435 IndexType = ISD::SIGNED_UNSCALED; 4436 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4437 } 4438 4439 EVT IdxVT = Index.getValueType(); 4440 EVT EltTy = IdxVT.getVectorElementType(); 4441 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4442 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4443 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4444 } 4445 4446 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4447 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4448 Ops, MMO, IndexType, false); 4449 DAG.setRoot(Scatter); 4450 setValue(&I, Scatter); 4451 } 4452 4453 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4454 SDLoc sdl = getCurSDLoc(); 4455 4456 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4457 MaybeAlign &Alignment) { 4458 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4459 Ptr = I.getArgOperand(0); 4460 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4461 Mask = I.getArgOperand(2); 4462 Src0 = I.getArgOperand(3); 4463 }; 4464 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4465 MaybeAlign &Alignment) { 4466 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4467 Ptr = I.getArgOperand(0); 4468 Alignment = None; 4469 Mask = I.getArgOperand(1); 4470 Src0 = I.getArgOperand(2); 4471 }; 4472 4473 Value *PtrOperand, *MaskOperand, *Src0Operand; 4474 MaybeAlign Alignment; 4475 if (IsExpanding) 4476 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4477 else 4478 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4479 4480 SDValue Ptr = getValue(PtrOperand); 4481 SDValue Src0 = getValue(Src0Operand); 4482 SDValue Mask = getValue(MaskOperand); 4483 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4484 4485 EVT VT = Src0.getValueType(); 4486 if (!Alignment) 4487 Alignment = DAG.getEVTAlign(VT); 4488 4489 AAMDNodes AAInfo = I.getAAMetadata(); 4490 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4491 4492 // Do not serialize masked loads of constant memory with anything. 4493 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4494 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4495 4496 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4497 4498 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4499 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4500 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4501 4502 SDValue Load = 4503 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4504 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4505 if (AddToChain) 4506 PendingLoads.push_back(Load.getValue(1)); 4507 setValue(&I, Load); 4508 } 4509 4510 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4511 SDLoc sdl = getCurSDLoc(); 4512 4513 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4514 const Value *Ptr = I.getArgOperand(0); 4515 SDValue Src0 = getValue(I.getArgOperand(3)); 4516 SDValue Mask = getValue(I.getArgOperand(2)); 4517 4518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4519 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4520 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4521 ->getMaybeAlignValue() 4522 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4523 4524 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4525 4526 SDValue Root = DAG.getRoot(); 4527 SDValue Base; 4528 SDValue Index; 4529 ISD::MemIndexType IndexType; 4530 SDValue Scale; 4531 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4532 I.getParent()); 4533 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4534 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4535 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4536 // TODO: Make MachineMemOperands aware of scalable 4537 // vectors. 4538 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4539 4540 if (!UniformBase) { 4541 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4542 Index = getValue(Ptr); 4543 IndexType = ISD::SIGNED_UNSCALED; 4544 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4545 } 4546 4547 EVT IdxVT = Index.getValueType(); 4548 EVT EltTy = IdxVT.getVectorElementType(); 4549 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4550 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4551 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4552 } 4553 4554 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4555 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4556 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4557 4558 PendingLoads.push_back(Gather.getValue(1)); 4559 setValue(&I, Gather); 4560 } 4561 4562 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4563 SDLoc dl = getCurSDLoc(); 4564 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4565 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4566 SyncScope::ID SSID = I.getSyncScopeID(); 4567 4568 SDValue InChain = getRoot(); 4569 4570 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4571 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4572 4573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4574 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4575 4576 MachineFunction &MF = DAG.getMachineFunction(); 4577 MachineMemOperand *MMO = MF.getMachineMemOperand( 4578 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4579 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4580 FailureOrdering); 4581 4582 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4583 dl, MemVT, VTs, InChain, 4584 getValue(I.getPointerOperand()), 4585 getValue(I.getCompareOperand()), 4586 getValue(I.getNewValOperand()), MMO); 4587 4588 SDValue OutChain = L.getValue(2); 4589 4590 setValue(&I, L); 4591 DAG.setRoot(OutChain); 4592 } 4593 4594 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4595 SDLoc dl = getCurSDLoc(); 4596 ISD::NodeType NT; 4597 switch (I.getOperation()) { 4598 default: llvm_unreachable("Unknown atomicrmw operation"); 4599 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4600 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4601 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4602 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4603 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4604 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4605 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4606 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4607 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4608 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4609 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4610 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4611 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4612 } 4613 AtomicOrdering Ordering = I.getOrdering(); 4614 SyncScope::ID SSID = I.getSyncScopeID(); 4615 4616 SDValue InChain = getRoot(); 4617 4618 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4621 4622 MachineFunction &MF = DAG.getMachineFunction(); 4623 MachineMemOperand *MMO = MF.getMachineMemOperand( 4624 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4625 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4626 4627 SDValue L = 4628 DAG.getAtomic(NT, dl, MemVT, InChain, 4629 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4630 MMO); 4631 4632 SDValue OutChain = L.getValue(1); 4633 4634 setValue(&I, L); 4635 DAG.setRoot(OutChain); 4636 } 4637 4638 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4639 SDLoc dl = getCurSDLoc(); 4640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4641 SDValue Ops[3]; 4642 Ops[0] = getRoot(); 4643 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4644 TLI.getFenceOperandTy(DAG.getDataLayout())); 4645 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4646 TLI.getFenceOperandTy(DAG.getDataLayout())); 4647 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4648 } 4649 4650 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4651 SDLoc dl = getCurSDLoc(); 4652 AtomicOrdering Order = I.getOrdering(); 4653 SyncScope::ID SSID = I.getSyncScopeID(); 4654 4655 SDValue InChain = getRoot(); 4656 4657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4658 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4659 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4660 4661 if (!TLI.supportsUnalignedAtomics() && 4662 I.getAlignment() < MemVT.getSizeInBits() / 8) 4663 report_fatal_error("Cannot generate unaligned atomic load"); 4664 4665 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4666 4667 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4668 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4669 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4670 4671 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4672 4673 SDValue Ptr = getValue(I.getPointerOperand()); 4674 4675 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4676 // TODO: Once this is better exercised by tests, it should be merged with 4677 // the normal path for loads to prevent future divergence. 4678 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4679 if (MemVT != VT) 4680 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4681 4682 setValue(&I, L); 4683 SDValue OutChain = L.getValue(1); 4684 if (!I.isUnordered()) 4685 DAG.setRoot(OutChain); 4686 else 4687 PendingLoads.push_back(OutChain); 4688 return; 4689 } 4690 4691 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4692 Ptr, MMO); 4693 4694 SDValue OutChain = L.getValue(1); 4695 if (MemVT != VT) 4696 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4697 4698 setValue(&I, L); 4699 DAG.setRoot(OutChain); 4700 } 4701 4702 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4703 SDLoc dl = getCurSDLoc(); 4704 4705 AtomicOrdering Ordering = I.getOrdering(); 4706 SyncScope::ID SSID = I.getSyncScopeID(); 4707 4708 SDValue InChain = getRoot(); 4709 4710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4711 EVT MemVT = 4712 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4713 4714 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4715 report_fatal_error("Cannot generate unaligned atomic store"); 4716 4717 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4718 4719 MachineFunction &MF = DAG.getMachineFunction(); 4720 MachineMemOperand *MMO = MF.getMachineMemOperand( 4721 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4722 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4723 4724 SDValue Val = getValue(I.getValueOperand()); 4725 if (Val.getValueType() != MemVT) 4726 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4727 SDValue Ptr = getValue(I.getPointerOperand()); 4728 4729 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4730 // TODO: Once this is better exercised by tests, it should be merged with 4731 // the normal path for stores to prevent future divergence. 4732 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4733 DAG.setRoot(S); 4734 return; 4735 } 4736 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4737 Ptr, Val, MMO); 4738 4739 4740 DAG.setRoot(OutChain); 4741 } 4742 4743 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4744 /// node. 4745 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4746 unsigned Intrinsic) { 4747 // Ignore the callsite's attributes. A specific call site may be marked with 4748 // readnone, but the lowering code will expect the chain based on the 4749 // definition. 4750 const Function *F = I.getCalledFunction(); 4751 bool HasChain = !F->doesNotAccessMemory(); 4752 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4753 4754 // Build the operand list. 4755 SmallVector<SDValue, 8> Ops; 4756 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4757 if (OnlyLoad) { 4758 // We don't need to serialize loads against other loads. 4759 Ops.push_back(DAG.getRoot()); 4760 } else { 4761 Ops.push_back(getRoot()); 4762 } 4763 } 4764 4765 // Info is set by getTgtMemInstrinsic 4766 TargetLowering::IntrinsicInfo Info; 4767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4768 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4769 DAG.getMachineFunction(), 4770 Intrinsic); 4771 4772 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4773 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4774 Info.opc == ISD::INTRINSIC_W_CHAIN) 4775 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4776 TLI.getPointerTy(DAG.getDataLayout()))); 4777 4778 // Add all operands of the call to the operand list. 4779 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4780 const Value *Arg = I.getArgOperand(i); 4781 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4782 Ops.push_back(getValue(Arg)); 4783 continue; 4784 } 4785 4786 // Use TargetConstant instead of a regular constant for immarg. 4787 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4788 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4789 assert(CI->getBitWidth() <= 64 && 4790 "large intrinsic immediates not handled"); 4791 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4792 } else { 4793 Ops.push_back( 4794 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4795 } 4796 } 4797 4798 SmallVector<EVT, 4> ValueVTs; 4799 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4800 4801 if (HasChain) 4802 ValueVTs.push_back(MVT::Other); 4803 4804 SDVTList VTs = DAG.getVTList(ValueVTs); 4805 4806 // Propagate fast-math-flags from IR to node(s). 4807 SDNodeFlags Flags; 4808 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4809 Flags.copyFMF(*FPMO); 4810 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4811 4812 // Create the node. 4813 SDValue Result; 4814 if (IsTgtIntrinsic) { 4815 // This is target intrinsic that touches memory 4816 Result = 4817 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4818 MachinePointerInfo(Info.ptrVal, Info.offset), 4819 Info.align, Info.flags, Info.size, 4820 I.getAAMetadata()); 4821 } else if (!HasChain) { 4822 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4823 } else if (!I.getType()->isVoidTy()) { 4824 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4825 } else { 4826 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4827 } 4828 4829 if (HasChain) { 4830 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4831 if (OnlyLoad) 4832 PendingLoads.push_back(Chain); 4833 else 4834 DAG.setRoot(Chain); 4835 } 4836 4837 if (!I.getType()->isVoidTy()) { 4838 if (!isa<VectorType>(I.getType())) 4839 Result = lowerRangeToAssertZExt(DAG, I, Result); 4840 4841 MaybeAlign Alignment = I.getRetAlign(); 4842 if (!Alignment) 4843 Alignment = F->getAttributes().getRetAlignment(); 4844 // Insert `assertalign` node if there's an alignment. 4845 if (InsertAssertAlign && Alignment) { 4846 Result = 4847 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4848 } 4849 4850 setValue(&I, Result); 4851 } 4852 } 4853 4854 /// GetSignificand - Get the significand and build it into a floating-point 4855 /// number with exponent of 1: 4856 /// 4857 /// Op = (Op & 0x007fffff) | 0x3f800000; 4858 /// 4859 /// where Op is the hexadecimal representation of floating point value. 4860 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4861 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4862 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4863 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4864 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4865 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4866 } 4867 4868 /// GetExponent - Get the exponent: 4869 /// 4870 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4871 /// 4872 /// where Op is the hexadecimal representation of floating point value. 4873 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4874 const TargetLowering &TLI, const SDLoc &dl) { 4875 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4876 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4877 SDValue t1 = DAG.getNode( 4878 ISD::SRL, dl, MVT::i32, t0, 4879 DAG.getConstant(23, dl, 4880 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4881 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4882 DAG.getConstant(127, dl, MVT::i32)); 4883 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4884 } 4885 4886 /// getF32Constant - Get 32-bit floating point constant. 4887 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4888 const SDLoc &dl) { 4889 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4890 MVT::f32); 4891 } 4892 4893 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4894 SelectionDAG &DAG) { 4895 // TODO: What fast-math-flags should be set on the floating-point nodes? 4896 4897 // IntegerPartOfX = ((int32_t)(t0); 4898 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4899 4900 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4901 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4902 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4903 4904 // IntegerPartOfX <<= 23; 4905 IntegerPartOfX = 4906 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4907 DAG.getConstant(23, dl, 4908 DAG.getTargetLoweringInfo().getShiftAmountTy( 4909 MVT::i32, DAG.getDataLayout()))); 4910 4911 SDValue TwoToFractionalPartOfX; 4912 if (LimitFloatPrecision <= 6) { 4913 // For floating-point precision of 6: 4914 // 4915 // TwoToFractionalPartOfX = 4916 // 0.997535578f + 4917 // (0.735607626f + 0.252464424f * x) * x; 4918 // 4919 // error 0.0144103317, which is 6 bits 4920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4921 getF32Constant(DAG, 0x3e814304, dl)); 4922 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4923 getF32Constant(DAG, 0x3f3c50c8, dl)); 4924 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4925 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4926 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4927 } else if (LimitFloatPrecision <= 12) { 4928 // For floating-point precision of 12: 4929 // 4930 // TwoToFractionalPartOfX = 4931 // 0.999892986f + 4932 // (0.696457318f + 4933 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4934 // 4935 // error 0.000107046256, which is 13 to 14 bits 4936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4937 getF32Constant(DAG, 0x3da235e3, dl)); 4938 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4939 getF32Constant(DAG, 0x3e65b8f3, dl)); 4940 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4941 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4942 getF32Constant(DAG, 0x3f324b07, dl)); 4943 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4944 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4945 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4946 } else { // LimitFloatPrecision <= 18 4947 // For floating-point precision of 18: 4948 // 4949 // TwoToFractionalPartOfX = 4950 // 0.999999982f + 4951 // (0.693148872f + 4952 // (0.240227044f + 4953 // (0.554906021e-1f + 4954 // (0.961591928e-2f + 4955 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4956 // error 2.47208000*10^(-7), which is better than 18 bits 4957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4958 getF32Constant(DAG, 0x3924b03e, dl)); 4959 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4960 getF32Constant(DAG, 0x3ab24b87, dl)); 4961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4963 getF32Constant(DAG, 0x3c1d8c17, dl)); 4964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4965 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4966 getF32Constant(DAG, 0x3d634a1d, dl)); 4967 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4968 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4969 getF32Constant(DAG, 0x3e75fe14, dl)); 4970 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4971 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4972 getF32Constant(DAG, 0x3f317234, dl)); 4973 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4974 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4975 getF32Constant(DAG, 0x3f800000, dl)); 4976 } 4977 4978 // Add the exponent into the result in integer domain. 4979 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4980 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4981 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4982 } 4983 4984 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4985 /// limited-precision mode. 4986 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4987 const TargetLowering &TLI, SDNodeFlags Flags) { 4988 if (Op.getValueType() == MVT::f32 && 4989 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4990 4991 // Put the exponent in the right bit position for later addition to the 4992 // final result: 4993 // 4994 // t0 = Op * log2(e) 4995 4996 // TODO: What fast-math-flags should be set here? 4997 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4998 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4999 return getLimitedPrecisionExp2(t0, dl, DAG); 5000 } 5001 5002 // No special expansion. 5003 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5004 } 5005 5006 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5007 /// limited-precision mode. 5008 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5009 const TargetLowering &TLI, SDNodeFlags Flags) { 5010 // TODO: What fast-math-flags should be set on the floating-point nodes? 5011 5012 if (Op.getValueType() == MVT::f32 && 5013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5014 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5015 5016 // Scale the exponent by log(2). 5017 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5018 SDValue LogOfExponent = 5019 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5020 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5021 5022 // Get the significand and build it into a floating-point number with 5023 // exponent of 1. 5024 SDValue X = GetSignificand(DAG, Op1, dl); 5025 5026 SDValue LogOfMantissa; 5027 if (LimitFloatPrecision <= 6) { 5028 // For floating-point precision of 6: 5029 // 5030 // LogofMantissa = 5031 // -1.1609546f + 5032 // (1.4034025f - 0.23903021f * x) * x; 5033 // 5034 // error 0.0034276066, which is better than 8 bits 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5036 getF32Constant(DAG, 0xbe74c456, dl)); 5037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5038 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5040 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5041 getF32Constant(DAG, 0x3f949a29, dl)); 5042 } else if (LimitFloatPrecision <= 12) { 5043 // For floating-point precision of 12: 5044 // 5045 // LogOfMantissa = 5046 // -1.7417939f + 5047 // (2.8212026f + 5048 // (-1.4699568f + 5049 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5050 // 5051 // error 0.000061011436, which is 14 bits 5052 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5053 getF32Constant(DAG, 0xbd67b6d6, dl)); 5054 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5055 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5056 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5057 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5058 getF32Constant(DAG, 0x3fbc278b, dl)); 5059 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5060 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5061 getF32Constant(DAG, 0x40348e95, dl)); 5062 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5063 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5064 getF32Constant(DAG, 0x3fdef31a, dl)); 5065 } else { // LimitFloatPrecision <= 18 5066 // For floating-point precision of 18: 5067 // 5068 // LogOfMantissa = 5069 // -2.1072184f + 5070 // (4.2372794f + 5071 // (-3.7029485f + 5072 // (2.2781945f + 5073 // (-0.87823314f + 5074 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5075 // 5076 // error 0.0000023660568, which is better than 18 bits 5077 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5078 getF32Constant(DAG, 0xbc91e5ac, dl)); 5079 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5080 getF32Constant(DAG, 0x3e4350aa, dl)); 5081 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5082 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5083 getF32Constant(DAG, 0x3f60d3e3, dl)); 5084 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5085 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5086 getF32Constant(DAG, 0x4011cdf0, dl)); 5087 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5088 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5089 getF32Constant(DAG, 0x406cfd1c, dl)); 5090 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5091 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5092 getF32Constant(DAG, 0x408797cb, dl)); 5093 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5094 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5095 getF32Constant(DAG, 0x4006dcab, dl)); 5096 } 5097 5098 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5099 } 5100 5101 // No special expansion. 5102 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5103 } 5104 5105 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5106 /// limited-precision mode. 5107 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5108 const TargetLowering &TLI, SDNodeFlags Flags) { 5109 // TODO: What fast-math-flags should be set on the floating-point nodes? 5110 5111 if (Op.getValueType() == MVT::f32 && 5112 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5113 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5114 5115 // Get the exponent. 5116 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5117 5118 // Get the significand and build it into a floating-point number with 5119 // exponent of 1. 5120 SDValue X = GetSignificand(DAG, Op1, dl); 5121 5122 // Different possible minimax approximations of significand in 5123 // floating-point for various degrees of accuracy over [1,2]. 5124 SDValue Log2ofMantissa; 5125 if (LimitFloatPrecision <= 6) { 5126 // For floating-point precision of 6: 5127 // 5128 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5129 // 5130 // error 0.0049451742, which is more than 7 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0xbeb08fe0, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x40019463, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x3fd6633d, dl)); 5138 } else if (LimitFloatPrecision <= 12) { 5139 // For floating-point precision of 12: 5140 // 5141 // Log2ofMantissa = 5142 // -2.51285454f + 5143 // (4.07009056f + 5144 // (-2.12067489f + 5145 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5146 // 5147 // error 0.0000876136000, which is better than 13 bits 5148 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5149 getF32Constant(DAG, 0xbda7262e, dl)); 5150 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5151 getF32Constant(DAG, 0x3f25280b, dl)); 5152 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5153 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5154 getF32Constant(DAG, 0x4007b923, dl)); 5155 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5156 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5157 getF32Constant(DAG, 0x40823e2f, dl)); 5158 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5159 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5160 getF32Constant(DAG, 0x4020d29c, dl)); 5161 } else { // LimitFloatPrecision <= 18 5162 // For floating-point precision of 18: 5163 // 5164 // Log2ofMantissa = 5165 // -3.0400495f + 5166 // (6.1129976f + 5167 // (-5.3420409f + 5168 // (3.2865683f + 5169 // (-1.2669343f + 5170 // (0.27515199f - 5171 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5172 // 5173 // error 0.0000018516, which is better than 18 bits 5174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5175 getF32Constant(DAG, 0xbcd2769e, dl)); 5176 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5177 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5179 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5180 getF32Constant(DAG, 0x3fa22ae7, dl)); 5181 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5182 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5183 getF32Constant(DAG, 0x40525723, dl)); 5184 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5185 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5186 getF32Constant(DAG, 0x40aaf200, dl)); 5187 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5188 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5189 getF32Constant(DAG, 0x40c39dad, dl)); 5190 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5191 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5192 getF32Constant(DAG, 0x4042902c, dl)); 5193 } 5194 5195 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5196 } 5197 5198 // No special expansion. 5199 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5200 } 5201 5202 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5203 /// limited-precision mode. 5204 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5205 const TargetLowering &TLI, SDNodeFlags Flags) { 5206 // TODO: What fast-math-flags should be set on the floating-point nodes? 5207 5208 if (Op.getValueType() == MVT::f32 && 5209 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5210 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5211 5212 // Scale the exponent by log10(2) [0.30102999f]. 5213 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5214 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5215 getF32Constant(DAG, 0x3e9a209a, dl)); 5216 5217 // Get the significand and build it into a floating-point number with 5218 // exponent of 1. 5219 SDValue X = GetSignificand(DAG, Op1, dl); 5220 5221 SDValue Log10ofMantissa; 5222 if (LimitFloatPrecision <= 6) { 5223 // For floating-point precision of 6: 5224 // 5225 // Log10ofMantissa = 5226 // -0.50419619f + 5227 // (0.60948995f - 0.10380950f * x) * x; 5228 // 5229 // error 0.0014886165, which is 6 bits 5230 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5231 getF32Constant(DAG, 0xbdd49a13, dl)); 5232 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5233 getF32Constant(DAG, 0x3f1c0789, dl)); 5234 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5235 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5236 getF32Constant(DAG, 0x3f011300, dl)); 5237 } else if (LimitFloatPrecision <= 12) { 5238 // For floating-point precision of 12: 5239 // 5240 // Log10ofMantissa = 5241 // -0.64831180f + 5242 // (0.91751397f + 5243 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5244 // 5245 // error 0.00019228036, which is better than 12 bits 5246 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5247 getF32Constant(DAG, 0x3d431f31, dl)); 5248 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5249 getF32Constant(DAG, 0x3ea21fb2, dl)); 5250 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5251 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5252 getF32Constant(DAG, 0x3f6ae232, dl)); 5253 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5254 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5255 getF32Constant(DAG, 0x3f25f7c3, dl)); 5256 } else { // LimitFloatPrecision <= 18 5257 // For floating-point precision of 18: 5258 // 5259 // Log10ofMantissa = 5260 // -0.84299375f + 5261 // (1.5327582f + 5262 // (-1.0688956f + 5263 // (0.49102474f + 5264 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5265 // 5266 // error 0.0000037995730, which is better than 18 bits 5267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5268 getF32Constant(DAG, 0x3c5d51ce, dl)); 5269 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5270 getF32Constant(DAG, 0x3e00685a, dl)); 5271 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5273 getF32Constant(DAG, 0x3efb6798, dl)); 5274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5275 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5276 getF32Constant(DAG, 0x3f88d192, dl)); 5277 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5278 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5279 getF32Constant(DAG, 0x3fc4316c, dl)); 5280 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5281 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5282 getF32Constant(DAG, 0x3f57ce70, dl)); 5283 } 5284 5285 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5286 } 5287 5288 // No special expansion. 5289 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5290 } 5291 5292 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5293 /// limited-precision mode. 5294 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5295 const TargetLowering &TLI, SDNodeFlags Flags) { 5296 if (Op.getValueType() == MVT::f32 && 5297 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5298 return getLimitedPrecisionExp2(Op, dl, DAG); 5299 5300 // No special expansion. 5301 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5302 } 5303 5304 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5305 /// limited-precision mode with x == 10.0f. 5306 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5307 SelectionDAG &DAG, const TargetLowering &TLI, 5308 SDNodeFlags Flags) { 5309 bool IsExp10 = false; 5310 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5311 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5312 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5313 APFloat Ten(10.0f); 5314 IsExp10 = LHSC->isExactlyValue(Ten); 5315 } 5316 } 5317 5318 // TODO: What fast-math-flags should be set on the FMUL node? 5319 if (IsExp10) { 5320 // Put the exponent in the right bit position for later addition to the 5321 // final result: 5322 // 5323 // #define LOG2OF10 3.3219281f 5324 // t0 = Op * LOG2OF10; 5325 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5326 getF32Constant(DAG, 0x40549a78, dl)); 5327 return getLimitedPrecisionExp2(t0, dl, DAG); 5328 } 5329 5330 // No special expansion. 5331 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5332 } 5333 5334 /// ExpandPowI - Expand a llvm.powi intrinsic. 5335 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5336 SelectionDAG &DAG) { 5337 // If RHS is a constant, we can expand this out to a multiplication tree, 5338 // otherwise we end up lowering to a call to __powidf2 (for example). When 5339 // optimizing for size, we only want to do this if the expansion would produce 5340 // a small number of multiplies, otherwise we do the full expansion. 5341 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5342 // Get the exponent as a positive value. 5343 unsigned Val = RHSC->getSExtValue(); 5344 if ((int)Val < 0) Val = -Val; 5345 5346 // powi(x, 0) -> 1.0 5347 if (Val == 0) 5348 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5349 5350 bool OptForSize = DAG.shouldOptForSize(); 5351 if (!OptForSize || 5352 // If optimizing for size, don't insert too many multiplies. 5353 // This inserts up to 5 multiplies. 5354 countPopulation(Val) + Log2_32(Val) < 7) { 5355 // We use the simple binary decomposition method to generate the multiply 5356 // sequence. There are more optimal ways to do this (for example, 5357 // powi(x,15) generates one more multiply than it should), but this has 5358 // the benefit of being both really simple and much better than a libcall. 5359 SDValue Res; // Logically starts equal to 1.0 5360 SDValue CurSquare = LHS; 5361 // TODO: Intrinsics should have fast-math-flags that propagate to these 5362 // nodes. 5363 while (Val) { 5364 if (Val & 1) { 5365 if (Res.getNode()) 5366 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5367 else 5368 Res = CurSquare; // 1.0*CurSquare. 5369 } 5370 5371 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5372 CurSquare, CurSquare); 5373 Val >>= 1; 5374 } 5375 5376 // If the original was negative, invert the result, producing 1/(x*x*x). 5377 if (RHSC->getSExtValue() < 0) 5378 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5379 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5380 return Res; 5381 } 5382 } 5383 5384 // Otherwise, expand to a libcall. 5385 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5386 } 5387 5388 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5389 SDValue LHS, SDValue RHS, SDValue Scale, 5390 SelectionDAG &DAG, const TargetLowering &TLI) { 5391 EVT VT = LHS.getValueType(); 5392 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5393 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5394 LLVMContext &Ctx = *DAG.getContext(); 5395 5396 // If the type is legal but the operation isn't, this node might survive all 5397 // the way to operation legalization. If we end up there and we do not have 5398 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5399 // node. 5400 5401 // Coax the legalizer into expanding the node during type legalization instead 5402 // by bumping the size by one bit. This will force it to Promote, enabling the 5403 // early expansion and avoiding the need to expand later. 5404 5405 // We don't have to do this if Scale is 0; that can always be expanded, unless 5406 // it's a saturating signed operation. Those can experience true integer 5407 // division overflow, a case which we must avoid. 5408 5409 // FIXME: We wouldn't have to do this (or any of the early 5410 // expansion/promotion) if it was possible to expand a libcall of an 5411 // illegal type during operation legalization. But it's not, so things 5412 // get a bit hacky. 5413 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5414 if ((ScaleInt > 0 || (Saturating && Signed)) && 5415 (TLI.isTypeLegal(VT) || 5416 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5417 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5418 Opcode, VT, ScaleInt); 5419 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5420 EVT PromVT; 5421 if (VT.isScalarInteger()) 5422 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5423 else if (VT.isVector()) { 5424 PromVT = VT.getVectorElementType(); 5425 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5426 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5427 } else 5428 llvm_unreachable("Wrong VT for DIVFIX?"); 5429 if (Signed) { 5430 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5431 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5432 } else { 5433 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5434 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5435 } 5436 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5437 // For saturating operations, we need to shift up the LHS to get the 5438 // proper saturation width, and then shift down again afterwards. 5439 if (Saturating) 5440 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5441 DAG.getConstant(1, DL, ShiftTy)); 5442 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5443 if (Saturating) 5444 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5445 DAG.getConstant(1, DL, ShiftTy)); 5446 return DAG.getZExtOrTrunc(Res, DL, VT); 5447 } 5448 } 5449 5450 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5451 } 5452 5453 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5454 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5455 static void 5456 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5457 const SDValue &N) { 5458 switch (N.getOpcode()) { 5459 case ISD::CopyFromReg: { 5460 SDValue Op = N.getOperand(1); 5461 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5462 Op.getValueType().getSizeInBits()); 5463 return; 5464 } 5465 case ISD::BITCAST: 5466 case ISD::AssertZext: 5467 case ISD::AssertSext: 5468 case ISD::TRUNCATE: 5469 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5470 return; 5471 case ISD::BUILD_PAIR: 5472 case ISD::BUILD_VECTOR: 5473 case ISD::CONCAT_VECTORS: 5474 for (SDValue Op : N->op_values()) 5475 getUnderlyingArgRegs(Regs, Op); 5476 return; 5477 default: 5478 return; 5479 } 5480 } 5481 5482 /// If the DbgValueInst is a dbg_value of a function argument, create the 5483 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5484 /// instruction selection, they will be inserted to the entry BB. 5485 /// We don't currently support this for variadic dbg_values, as they shouldn't 5486 /// appear for function arguments or in the prologue. 5487 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5488 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5489 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5490 const Argument *Arg = dyn_cast<Argument>(V); 5491 if (!Arg) 5492 return false; 5493 5494 MachineFunction &MF = DAG.getMachineFunction(); 5495 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5496 5497 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5498 // we've been asked to pursue. 5499 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5500 bool Indirect) { 5501 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5502 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5503 // pointing at the VReg, which will be patched up later. 5504 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5505 auto MIB = BuildMI(MF, DL, Inst); 5506 MIB.addReg(Reg); 5507 MIB.addImm(0); 5508 MIB.addMetadata(Variable); 5509 auto *NewDIExpr = FragExpr; 5510 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5511 // the DIExpression. 5512 if (Indirect) 5513 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5514 MIB.addMetadata(NewDIExpr); 5515 return MIB; 5516 } else { 5517 // Create a completely standard DBG_VALUE. 5518 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5519 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5520 } 5521 }; 5522 5523 if (!IsDbgDeclare) { 5524 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5525 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5526 // the entry block. 5527 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5528 if (!IsInEntryBlock) 5529 return false; 5530 5531 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5532 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5533 // variable that also is a param. 5534 // 5535 // Although, if we are at the top of the entry block already, we can still 5536 // emit using ArgDbgValue. This might catch some situations when the 5537 // dbg.value refers to an argument that isn't used in the entry block, so 5538 // any CopyToReg node would be optimized out and the only way to express 5539 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5540 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5541 // we should only emit as ArgDbgValue if the Variable is an argument to the 5542 // current function, and the dbg.value intrinsic is found in the entry 5543 // block. 5544 bool VariableIsFunctionInputArg = Variable->isParameter() && 5545 !DL->getInlinedAt(); 5546 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5547 if (!IsInPrologue && !VariableIsFunctionInputArg) 5548 return false; 5549 5550 // Here we assume that a function argument on IR level only can be used to 5551 // describe one input parameter on source level. If we for example have 5552 // source code like this 5553 // 5554 // struct A { long x, y; }; 5555 // void foo(struct A a, long b) { 5556 // ... 5557 // b = a.x; 5558 // ... 5559 // } 5560 // 5561 // and IR like this 5562 // 5563 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5564 // entry: 5565 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5566 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5567 // call void @llvm.dbg.value(metadata i32 %b, "b", 5568 // ... 5569 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5570 // ... 5571 // 5572 // then the last dbg.value is describing a parameter "b" using a value that 5573 // is an argument. But since we already has used %a1 to describe a parameter 5574 // we should not handle that last dbg.value here (that would result in an 5575 // incorrect hoisting of the DBG_VALUE to the function entry). 5576 // Notice that we allow one dbg.value per IR level argument, to accommodate 5577 // for the situation with fragments above. 5578 if (VariableIsFunctionInputArg) { 5579 unsigned ArgNo = Arg->getArgNo(); 5580 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5581 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5582 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5583 return false; 5584 FuncInfo.DescribedArgs.set(ArgNo); 5585 } 5586 } 5587 5588 bool IsIndirect = false; 5589 Optional<MachineOperand> Op; 5590 // Some arguments' frame index is recorded during argument lowering. 5591 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5592 if (FI != std::numeric_limits<int>::max()) 5593 Op = MachineOperand::CreateFI(FI); 5594 5595 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5596 if (!Op && N.getNode()) { 5597 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5598 Register Reg; 5599 if (ArgRegsAndSizes.size() == 1) 5600 Reg = ArgRegsAndSizes.front().first; 5601 5602 if (Reg && Reg.isVirtual()) { 5603 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5604 Register PR = RegInfo.getLiveInPhysReg(Reg); 5605 if (PR) 5606 Reg = PR; 5607 } 5608 if (Reg) { 5609 Op = MachineOperand::CreateReg(Reg, false); 5610 IsIndirect = IsDbgDeclare; 5611 } 5612 } 5613 5614 if (!Op && N.getNode()) { 5615 // Check if frame index is available. 5616 SDValue LCandidate = peekThroughBitcasts(N); 5617 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5618 if (FrameIndexSDNode *FINode = 5619 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5620 Op = MachineOperand::CreateFI(FINode->getIndex()); 5621 } 5622 5623 if (!Op) { 5624 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5625 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5626 SplitRegs) { 5627 unsigned Offset = 0; 5628 for (const auto &RegAndSize : SplitRegs) { 5629 // If the expression is already a fragment, the current register 5630 // offset+size might extend beyond the fragment. In this case, only 5631 // the register bits that are inside the fragment are relevant. 5632 int RegFragmentSizeInBits = RegAndSize.second; 5633 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5634 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5635 // The register is entirely outside the expression fragment, 5636 // so is irrelevant for debug info. 5637 if (Offset >= ExprFragmentSizeInBits) 5638 break; 5639 // The register is partially outside the expression fragment, only 5640 // the low bits within the fragment are relevant for debug info. 5641 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5642 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5643 } 5644 } 5645 5646 auto FragmentExpr = DIExpression::createFragmentExpression( 5647 Expr, Offset, RegFragmentSizeInBits); 5648 Offset += RegAndSize.second; 5649 // If a valid fragment expression cannot be created, the variable's 5650 // correct value cannot be determined and so it is set as Undef. 5651 if (!FragmentExpr) { 5652 SDDbgValue *SDV = DAG.getConstantDbgValue( 5653 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5654 DAG.AddDbgValue(SDV, false); 5655 continue; 5656 } 5657 MachineInstr *NewMI = 5658 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5659 FuncInfo.ArgDbgValues.push_back(NewMI); 5660 } 5661 }; 5662 5663 // Check if ValueMap has reg number. 5664 DenseMap<const Value *, Register>::const_iterator 5665 VMI = FuncInfo.ValueMap.find(V); 5666 if (VMI != FuncInfo.ValueMap.end()) { 5667 const auto &TLI = DAG.getTargetLoweringInfo(); 5668 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5669 V->getType(), None); 5670 if (RFV.occupiesMultipleRegs()) { 5671 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5672 return true; 5673 } 5674 5675 Op = MachineOperand::CreateReg(VMI->second, false); 5676 IsIndirect = IsDbgDeclare; 5677 } else if (ArgRegsAndSizes.size() > 1) { 5678 // This was split due to the calling convention, and no virtual register 5679 // mapping exists for the value. 5680 splitMultiRegDbgValue(ArgRegsAndSizes); 5681 return true; 5682 } 5683 } 5684 5685 if (!Op) 5686 return false; 5687 5688 assert(Variable->isValidLocationForIntrinsic(DL) && 5689 "Expected inlined-at fields to agree"); 5690 MachineInstr *NewMI = nullptr; 5691 5692 if (Op->isReg()) 5693 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5694 else 5695 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5696 Variable, Expr); 5697 5698 FuncInfo.ArgDbgValues.push_back(NewMI); 5699 return true; 5700 } 5701 5702 /// Return the appropriate SDDbgValue based on N. 5703 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5704 DILocalVariable *Variable, 5705 DIExpression *Expr, 5706 const DebugLoc &dl, 5707 unsigned DbgSDNodeOrder) { 5708 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5709 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5710 // stack slot locations. 5711 // 5712 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5713 // debug values here after optimization: 5714 // 5715 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5716 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5717 // 5718 // Both describe the direct values of their associated variables. 5719 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5720 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5721 } 5722 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5723 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5724 } 5725 5726 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5727 switch (Intrinsic) { 5728 case Intrinsic::smul_fix: 5729 return ISD::SMULFIX; 5730 case Intrinsic::umul_fix: 5731 return ISD::UMULFIX; 5732 case Intrinsic::smul_fix_sat: 5733 return ISD::SMULFIXSAT; 5734 case Intrinsic::umul_fix_sat: 5735 return ISD::UMULFIXSAT; 5736 case Intrinsic::sdiv_fix: 5737 return ISD::SDIVFIX; 5738 case Intrinsic::udiv_fix: 5739 return ISD::UDIVFIX; 5740 case Intrinsic::sdiv_fix_sat: 5741 return ISD::SDIVFIXSAT; 5742 case Intrinsic::udiv_fix_sat: 5743 return ISD::UDIVFIXSAT; 5744 default: 5745 llvm_unreachable("Unhandled fixed point intrinsic"); 5746 } 5747 } 5748 5749 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5750 const char *FunctionName) { 5751 assert(FunctionName && "FunctionName must not be nullptr"); 5752 SDValue Callee = DAG.getExternalSymbol( 5753 FunctionName, 5754 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5755 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5756 } 5757 5758 /// Given a @llvm.call.preallocated.setup, return the corresponding 5759 /// preallocated call. 5760 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5761 assert(cast<CallBase>(PreallocatedSetup) 5762 ->getCalledFunction() 5763 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5764 "expected call_preallocated_setup Value"); 5765 for (auto *U : PreallocatedSetup->users()) { 5766 auto *UseCall = cast<CallBase>(U); 5767 const Function *Fn = UseCall->getCalledFunction(); 5768 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5769 return UseCall; 5770 } 5771 } 5772 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5773 } 5774 5775 /// Lower the call to the specified intrinsic function. 5776 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5777 unsigned Intrinsic) { 5778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5779 SDLoc sdl = getCurSDLoc(); 5780 DebugLoc dl = getCurDebugLoc(); 5781 SDValue Res; 5782 5783 SDNodeFlags Flags; 5784 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5785 Flags.copyFMF(*FPOp); 5786 5787 switch (Intrinsic) { 5788 default: 5789 // By default, turn this into a target intrinsic node. 5790 visitTargetIntrinsic(I, Intrinsic); 5791 return; 5792 case Intrinsic::vscale: { 5793 match(&I, m_VScale(DAG.getDataLayout())); 5794 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5795 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5796 return; 5797 } 5798 case Intrinsic::vastart: visitVAStart(I); return; 5799 case Intrinsic::vaend: visitVAEnd(I); return; 5800 case Intrinsic::vacopy: visitVACopy(I); return; 5801 case Intrinsic::returnaddress: 5802 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5803 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5804 getValue(I.getArgOperand(0)))); 5805 return; 5806 case Intrinsic::addressofreturnaddress: 5807 setValue(&I, 5808 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5809 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5810 return; 5811 case Intrinsic::sponentry: 5812 setValue(&I, 5813 DAG.getNode(ISD::SPONENTRY, sdl, 5814 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5815 return; 5816 case Intrinsic::frameaddress: 5817 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5818 TLI.getFrameIndexTy(DAG.getDataLayout()), 5819 getValue(I.getArgOperand(0)))); 5820 return; 5821 case Intrinsic::read_volatile_register: 5822 case Intrinsic::read_register: { 5823 Value *Reg = I.getArgOperand(0); 5824 SDValue Chain = getRoot(); 5825 SDValue RegName = 5826 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5827 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5828 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5829 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5830 setValue(&I, Res); 5831 DAG.setRoot(Res.getValue(1)); 5832 return; 5833 } 5834 case Intrinsic::write_register: { 5835 Value *Reg = I.getArgOperand(0); 5836 Value *RegValue = I.getArgOperand(1); 5837 SDValue Chain = getRoot(); 5838 SDValue RegName = 5839 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5840 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5841 RegName, getValue(RegValue))); 5842 return; 5843 } 5844 case Intrinsic::memcpy: { 5845 const auto &MCI = cast<MemCpyInst>(I); 5846 SDValue Op1 = getValue(I.getArgOperand(0)); 5847 SDValue Op2 = getValue(I.getArgOperand(1)); 5848 SDValue Op3 = getValue(I.getArgOperand(2)); 5849 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5850 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5851 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5852 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5853 bool isVol = MCI.isVolatile(); 5854 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5855 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5856 // node. 5857 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5858 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5859 /* AlwaysInline */ false, isTC, 5860 MachinePointerInfo(I.getArgOperand(0)), 5861 MachinePointerInfo(I.getArgOperand(1)), 5862 I.getAAMetadata()); 5863 updateDAGForMaybeTailCall(MC); 5864 return; 5865 } 5866 case Intrinsic::memcpy_inline: { 5867 const auto &MCI = cast<MemCpyInlineInst>(I); 5868 SDValue Dst = getValue(I.getArgOperand(0)); 5869 SDValue Src = getValue(I.getArgOperand(1)); 5870 SDValue Size = getValue(I.getArgOperand(2)); 5871 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5872 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5873 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5874 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5875 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5876 bool isVol = MCI.isVolatile(); 5877 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5878 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5879 // node. 5880 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5881 /* AlwaysInline */ true, isTC, 5882 MachinePointerInfo(I.getArgOperand(0)), 5883 MachinePointerInfo(I.getArgOperand(1)), 5884 I.getAAMetadata()); 5885 updateDAGForMaybeTailCall(MC); 5886 return; 5887 } 5888 case Intrinsic::memset: { 5889 const auto &MSI = cast<MemSetInst>(I); 5890 SDValue Op1 = getValue(I.getArgOperand(0)); 5891 SDValue Op2 = getValue(I.getArgOperand(1)); 5892 SDValue Op3 = getValue(I.getArgOperand(2)); 5893 // @llvm.memset defines 0 and 1 to both mean no alignment. 5894 Align Alignment = MSI.getDestAlign().valueOrOne(); 5895 bool isVol = MSI.isVolatile(); 5896 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5897 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5898 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5899 MachinePointerInfo(I.getArgOperand(0)), 5900 I.getAAMetadata()); 5901 updateDAGForMaybeTailCall(MS); 5902 return; 5903 } 5904 case Intrinsic::memmove: { 5905 const auto &MMI = cast<MemMoveInst>(I); 5906 SDValue Op1 = getValue(I.getArgOperand(0)); 5907 SDValue Op2 = getValue(I.getArgOperand(1)); 5908 SDValue Op3 = getValue(I.getArgOperand(2)); 5909 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5910 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5911 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5912 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5913 bool isVol = MMI.isVolatile(); 5914 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5915 // FIXME: Support passing different dest/src alignments to the memmove DAG 5916 // node. 5917 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5918 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5919 isTC, MachinePointerInfo(I.getArgOperand(0)), 5920 MachinePointerInfo(I.getArgOperand(1)), 5921 I.getAAMetadata()); 5922 updateDAGForMaybeTailCall(MM); 5923 return; 5924 } 5925 case Intrinsic::memcpy_element_unordered_atomic: { 5926 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5927 SDValue Dst = getValue(MI.getRawDest()); 5928 SDValue Src = getValue(MI.getRawSource()); 5929 SDValue Length = getValue(MI.getLength()); 5930 5931 unsigned DstAlign = MI.getDestAlignment(); 5932 unsigned SrcAlign = MI.getSourceAlignment(); 5933 Type *LengthTy = MI.getLength()->getType(); 5934 unsigned ElemSz = MI.getElementSizeInBytes(); 5935 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5936 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5937 SrcAlign, Length, LengthTy, ElemSz, isTC, 5938 MachinePointerInfo(MI.getRawDest()), 5939 MachinePointerInfo(MI.getRawSource())); 5940 updateDAGForMaybeTailCall(MC); 5941 return; 5942 } 5943 case Intrinsic::memmove_element_unordered_atomic: { 5944 auto &MI = cast<AtomicMemMoveInst>(I); 5945 SDValue Dst = getValue(MI.getRawDest()); 5946 SDValue Src = getValue(MI.getRawSource()); 5947 SDValue Length = getValue(MI.getLength()); 5948 5949 unsigned DstAlign = MI.getDestAlignment(); 5950 unsigned SrcAlign = MI.getSourceAlignment(); 5951 Type *LengthTy = MI.getLength()->getType(); 5952 unsigned ElemSz = MI.getElementSizeInBytes(); 5953 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5954 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5955 SrcAlign, Length, LengthTy, ElemSz, isTC, 5956 MachinePointerInfo(MI.getRawDest()), 5957 MachinePointerInfo(MI.getRawSource())); 5958 updateDAGForMaybeTailCall(MC); 5959 return; 5960 } 5961 case Intrinsic::memset_element_unordered_atomic: { 5962 auto &MI = cast<AtomicMemSetInst>(I); 5963 SDValue Dst = getValue(MI.getRawDest()); 5964 SDValue Val = getValue(MI.getValue()); 5965 SDValue Length = getValue(MI.getLength()); 5966 5967 unsigned DstAlign = MI.getDestAlignment(); 5968 Type *LengthTy = MI.getLength()->getType(); 5969 unsigned ElemSz = MI.getElementSizeInBytes(); 5970 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5971 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5972 LengthTy, ElemSz, isTC, 5973 MachinePointerInfo(MI.getRawDest())); 5974 updateDAGForMaybeTailCall(MC); 5975 return; 5976 } 5977 case Intrinsic::call_preallocated_setup: { 5978 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5979 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5980 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5981 getRoot(), SrcValue); 5982 setValue(&I, Res); 5983 DAG.setRoot(Res); 5984 return; 5985 } 5986 case Intrinsic::call_preallocated_arg: { 5987 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5988 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5989 SDValue Ops[3]; 5990 Ops[0] = getRoot(); 5991 Ops[1] = SrcValue; 5992 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5993 MVT::i32); // arg index 5994 SDValue Res = DAG.getNode( 5995 ISD::PREALLOCATED_ARG, sdl, 5996 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5997 setValue(&I, Res); 5998 DAG.setRoot(Res.getValue(1)); 5999 return; 6000 } 6001 case Intrinsic::dbg_addr: 6002 case Intrinsic::dbg_declare: { 6003 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6004 // they are non-variadic. 6005 const auto &DI = cast<DbgVariableIntrinsic>(I); 6006 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6007 DILocalVariable *Variable = DI.getVariable(); 6008 DIExpression *Expression = DI.getExpression(); 6009 dropDanglingDebugInfo(Variable, Expression); 6010 assert(Variable && "Missing variable"); 6011 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6012 << "\n"); 6013 // Check if address has undef value. 6014 const Value *Address = DI.getVariableLocationOp(0); 6015 if (!Address || isa<UndefValue>(Address) || 6016 (Address->use_empty() && !isa<Argument>(Address))) { 6017 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6018 << " (bad/undef/unused-arg address)\n"); 6019 return; 6020 } 6021 6022 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6023 6024 // Check if this variable can be described by a frame index, typically 6025 // either as a static alloca or a byval parameter. 6026 int FI = std::numeric_limits<int>::max(); 6027 if (const auto *AI = 6028 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6029 if (AI->isStaticAlloca()) { 6030 auto I = FuncInfo.StaticAllocaMap.find(AI); 6031 if (I != FuncInfo.StaticAllocaMap.end()) 6032 FI = I->second; 6033 } 6034 } else if (const auto *Arg = dyn_cast<Argument>( 6035 Address->stripInBoundsConstantOffsets())) { 6036 FI = FuncInfo.getArgumentFrameIndex(Arg); 6037 } 6038 6039 // llvm.dbg.addr is control dependent and always generates indirect 6040 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6041 // the MachineFunction variable table. 6042 if (FI != std::numeric_limits<int>::max()) { 6043 if (Intrinsic == Intrinsic::dbg_addr) { 6044 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6045 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6046 dl, SDNodeOrder); 6047 DAG.AddDbgValue(SDV, isParameter); 6048 } else { 6049 LLVM_DEBUG(dbgs() << "Skipping " << DI 6050 << " (variable info stashed in MF side table)\n"); 6051 } 6052 return; 6053 } 6054 6055 SDValue &N = NodeMap[Address]; 6056 if (!N.getNode() && isa<Argument>(Address)) 6057 // Check unused arguments map. 6058 N = UnusedArgNodeMap[Address]; 6059 SDDbgValue *SDV; 6060 if (N.getNode()) { 6061 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6062 Address = BCI->getOperand(0); 6063 // Parameters are handled specially. 6064 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6065 if (isParameter && FINode) { 6066 // Byval parameter. We have a frame index at this point. 6067 SDV = 6068 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6069 /*IsIndirect*/ true, dl, SDNodeOrder); 6070 } else if (isa<Argument>(Address)) { 6071 // Address is an argument, so try to emit its dbg value using 6072 // virtual register info from the FuncInfo.ValueMap. 6073 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6074 return; 6075 } else { 6076 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6077 true, dl, SDNodeOrder); 6078 } 6079 DAG.AddDbgValue(SDV, isParameter); 6080 } else { 6081 // If Address is an argument then try to emit its dbg value using 6082 // virtual register info from the FuncInfo.ValueMap. 6083 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6084 N)) { 6085 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6086 << " (could not emit func-arg dbg_value)\n"); 6087 } 6088 } 6089 return; 6090 } 6091 case Intrinsic::dbg_label: { 6092 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6093 DILabel *Label = DI.getLabel(); 6094 assert(Label && "Missing label"); 6095 6096 SDDbgLabel *SDV; 6097 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6098 DAG.AddDbgLabel(SDV); 6099 return; 6100 } 6101 case Intrinsic::dbg_value: { 6102 const DbgValueInst &DI = cast<DbgValueInst>(I); 6103 assert(DI.getVariable() && "Missing variable"); 6104 6105 DILocalVariable *Variable = DI.getVariable(); 6106 DIExpression *Expression = DI.getExpression(); 6107 dropDanglingDebugInfo(Variable, Expression); 6108 SmallVector<Value *, 4> Values(DI.getValues()); 6109 if (Values.empty()) 6110 return; 6111 6112 if (llvm::is_contained(Values, nullptr)) 6113 return; 6114 6115 bool IsVariadic = DI.hasArgList(); 6116 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6117 SDNodeOrder, IsVariadic)) 6118 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6119 return; 6120 } 6121 6122 case Intrinsic::eh_typeid_for: { 6123 // Find the type id for the given typeinfo. 6124 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6125 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6126 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6127 setValue(&I, Res); 6128 return; 6129 } 6130 6131 case Intrinsic::eh_return_i32: 6132 case Intrinsic::eh_return_i64: 6133 DAG.getMachineFunction().setCallsEHReturn(true); 6134 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6135 MVT::Other, 6136 getControlRoot(), 6137 getValue(I.getArgOperand(0)), 6138 getValue(I.getArgOperand(1)))); 6139 return; 6140 case Intrinsic::eh_unwind_init: 6141 DAG.getMachineFunction().setCallsUnwindInit(true); 6142 return; 6143 case Intrinsic::eh_dwarf_cfa: 6144 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6145 TLI.getPointerTy(DAG.getDataLayout()), 6146 getValue(I.getArgOperand(0)))); 6147 return; 6148 case Intrinsic::eh_sjlj_callsite: { 6149 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6150 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6151 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6152 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6153 6154 MMI.setCurrentCallSite(CI->getZExtValue()); 6155 return; 6156 } 6157 case Intrinsic::eh_sjlj_functioncontext: { 6158 // Get and store the index of the function context. 6159 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6160 AllocaInst *FnCtx = 6161 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6162 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6163 MFI.setFunctionContextIndex(FI); 6164 return; 6165 } 6166 case Intrinsic::eh_sjlj_setjmp: { 6167 SDValue Ops[2]; 6168 Ops[0] = getRoot(); 6169 Ops[1] = getValue(I.getArgOperand(0)); 6170 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6171 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6172 setValue(&I, Op.getValue(0)); 6173 DAG.setRoot(Op.getValue(1)); 6174 return; 6175 } 6176 case Intrinsic::eh_sjlj_longjmp: 6177 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6178 getRoot(), getValue(I.getArgOperand(0)))); 6179 return; 6180 case Intrinsic::eh_sjlj_setup_dispatch: 6181 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6182 getRoot())); 6183 return; 6184 case Intrinsic::masked_gather: 6185 visitMaskedGather(I); 6186 return; 6187 case Intrinsic::masked_load: 6188 visitMaskedLoad(I); 6189 return; 6190 case Intrinsic::masked_scatter: 6191 visitMaskedScatter(I); 6192 return; 6193 case Intrinsic::masked_store: 6194 visitMaskedStore(I); 6195 return; 6196 case Intrinsic::masked_expandload: 6197 visitMaskedLoad(I, true /* IsExpanding */); 6198 return; 6199 case Intrinsic::masked_compressstore: 6200 visitMaskedStore(I, true /* IsCompressing */); 6201 return; 6202 case Intrinsic::powi: 6203 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6204 getValue(I.getArgOperand(1)), DAG)); 6205 return; 6206 case Intrinsic::log: 6207 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6208 return; 6209 case Intrinsic::log2: 6210 setValue(&I, 6211 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6212 return; 6213 case Intrinsic::log10: 6214 setValue(&I, 6215 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6216 return; 6217 case Intrinsic::exp: 6218 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6219 return; 6220 case Intrinsic::exp2: 6221 setValue(&I, 6222 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6223 return; 6224 case Intrinsic::pow: 6225 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6226 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6227 return; 6228 case Intrinsic::sqrt: 6229 case Intrinsic::fabs: 6230 case Intrinsic::sin: 6231 case Intrinsic::cos: 6232 case Intrinsic::floor: 6233 case Intrinsic::ceil: 6234 case Intrinsic::trunc: 6235 case Intrinsic::rint: 6236 case Intrinsic::nearbyint: 6237 case Intrinsic::round: 6238 case Intrinsic::roundeven: 6239 case Intrinsic::canonicalize: { 6240 unsigned Opcode; 6241 switch (Intrinsic) { 6242 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6243 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6244 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6245 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6246 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6247 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6248 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6249 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6250 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6251 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6252 case Intrinsic::round: Opcode = ISD::FROUND; break; 6253 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6254 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6255 } 6256 6257 setValue(&I, DAG.getNode(Opcode, sdl, 6258 getValue(I.getArgOperand(0)).getValueType(), 6259 getValue(I.getArgOperand(0)), Flags)); 6260 return; 6261 } 6262 case Intrinsic::lround: 6263 case Intrinsic::llround: 6264 case Intrinsic::lrint: 6265 case Intrinsic::llrint: { 6266 unsigned Opcode; 6267 switch (Intrinsic) { 6268 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6269 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6270 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6271 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6272 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6273 } 6274 6275 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6276 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6277 getValue(I.getArgOperand(0)))); 6278 return; 6279 } 6280 case Intrinsic::minnum: 6281 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6282 getValue(I.getArgOperand(0)).getValueType(), 6283 getValue(I.getArgOperand(0)), 6284 getValue(I.getArgOperand(1)), Flags)); 6285 return; 6286 case Intrinsic::maxnum: 6287 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6288 getValue(I.getArgOperand(0)).getValueType(), 6289 getValue(I.getArgOperand(0)), 6290 getValue(I.getArgOperand(1)), Flags)); 6291 return; 6292 case Intrinsic::minimum: 6293 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6294 getValue(I.getArgOperand(0)).getValueType(), 6295 getValue(I.getArgOperand(0)), 6296 getValue(I.getArgOperand(1)), Flags)); 6297 return; 6298 case Intrinsic::maximum: 6299 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6300 getValue(I.getArgOperand(0)).getValueType(), 6301 getValue(I.getArgOperand(0)), 6302 getValue(I.getArgOperand(1)), Flags)); 6303 return; 6304 case Intrinsic::copysign: 6305 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6306 getValue(I.getArgOperand(0)).getValueType(), 6307 getValue(I.getArgOperand(0)), 6308 getValue(I.getArgOperand(1)), Flags)); 6309 return; 6310 case Intrinsic::arithmetic_fence: { 6311 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6312 getValue(I.getArgOperand(0)).getValueType(), 6313 getValue(I.getArgOperand(0)), Flags)); 6314 return; 6315 } 6316 case Intrinsic::fma: 6317 setValue(&I, DAG.getNode( 6318 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6319 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6320 getValue(I.getArgOperand(2)), Flags)); 6321 return; 6322 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6323 case Intrinsic::INTRINSIC: 6324 #include "llvm/IR/ConstrainedOps.def" 6325 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6326 return; 6327 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6328 #include "llvm/IR/VPIntrinsics.def" 6329 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6330 return; 6331 case Intrinsic::fptrunc_round: { 6332 // Get the last argument, the metadata and convert it to an integer in the 6333 // call 6334 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6335 Optional<RoundingMode> RoundMode = 6336 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6337 6338 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6339 6340 // Propagate fast-math-flags from IR to node(s). 6341 SDNodeFlags Flags; 6342 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6343 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6344 6345 SDValue Result; 6346 Result = DAG.getNode( 6347 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6348 DAG.getTargetConstant((int)RoundMode.getValue(), sdl, 6349 TLI.getPointerTy(DAG.getDataLayout()))); 6350 setValue(&I, Result); 6351 6352 return; 6353 } 6354 case Intrinsic::fmuladd: { 6355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6356 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6357 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6358 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6359 getValue(I.getArgOperand(0)).getValueType(), 6360 getValue(I.getArgOperand(0)), 6361 getValue(I.getArgOperand(1)), 6362 getValue(I.getArgOperand(2)), Flags)); 6363 } else { 6364 // TODO: Intrinsic calls should have fast-math-flags. 6365 SDValue Mul = DAG.getNode( 6366 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6367 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6368 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6369 getValue(I.getArgOperand(0)).getValueType(), 6370 Mul, getValue(I.getArgOperand(2)), Flags); 6371 setValue(&I, Add); 6372 } 6373 return; 6374 } 6375 case Intrinsic::convert_to_fp16: 6376 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6377 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6378 getValue(I.getArgOperand(0)), 6379 DAG.getTargetConstant(0, sdl, 6380 MVT::i32)))); 6381 return; 6382 case Intrinsic::convert_from_fp16: 6383 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6384 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6385 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6386 getValue(I.getArgOperand(0))))); 6387 return; 6388 case Intrinsic::fptosi_sat: { 6389 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6391 getValue(I.getArgOperand(0)), 6392 DAG.getValueType(VT.getScalarType()))); 6393 return; 6394 } 6395 case Intrinsic::fptoui_sat: { 6396 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6397 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6398 getValue(I.getArgOperand(0)), 6399 DAG.getValueType(VT.getScalarType()))); 6400 return; 6401 } 6402 case Intrinsic::set_rounding: 6403 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6404 {getRoot(), getValue(I.getArgOperand(0))}); 6405 setValue(&I, Res); 6406 DAG.setRoot(Res.getValue(0)); 6407 return; 6408 case Intrinsic::pcmarker: { 6409 SDValue Tmp = getValue(I.getArgOperand(0)); 6410 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6411 return; 6412 } 6413 case Intrinsic::readcyclecounter: { 6414 SDValue Op = getRoot(); 6415 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6416 DAG.getVTList(MVT::i64, MVT::Other), Op); 6417 setValue(&I, Res); 6418 DAG.setRoot(Res.getValue(1)); 6419 return; 6420 } 6421 case Intrinsic::bitreverse: 6422 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6423 getValue(I.getArgOperand(0)).getValueType(), 6424 getValue(I.getArgOperand(0)))); 6425 return; 6426 case Intrinsic::bswap: 6427 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6428 getValue(I.getArgOperand(0)).getValueType(), 6429 getValue(I.getArgOperand(0)))); 6430 return; 6431 case Intrinsic::cttz: { 6432 SDValue Arg = getValue(I.getArgOperand(0)); 6433 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6434 EVT Ty = Arg.getValueType(); 6435 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6436 sdl, Ty, Arg)); 6437 return; 6438 } 6439 case Intrinsic::ctlz: { 6440 SDValue Arg = getValue(I.getArgOperand(0)); 6441 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6442 EVT Ty = Arg.getValueType(); 6443 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6444 sdl, Ty, Arg)); 6445 return; 6446 } 6447 case Intrinsic::ctpop: { 6448 SDValue Arg = getValue(I.getArgOperand(0)); 6449 EVT Ty = Arg.getValueType(); 6450 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6451 return; 6452 } 6453 case Intrinsic::fshl: 6454 case Intrinsic::fshr: { 6455 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6456 SDValue X = getValue(I.getArgOperand(0)); 6457 SDValue Y = getValue(I.getArgOperand(1)); 6458 SDValue Z = getValue(I.getArgOperand(2)); 6459 EVT VT = X.getValueType(); 6460 6461 if (X == Y) { 6462 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6463 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6464 } else { 6465 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6466 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6467 } 6468 return; 6469 } 6470 case Intrinsic::sadd_sat: { 6471 SDValue Op1 = getValue(I.getArgOperand(0)); 6472 SDValue Op2 = getValue(I.getArgOperand(1)); 6473 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6474 return; 6475 } 6476 case Intrinsic::uadd_sat: { 6477 SDValue Op1 = getValue(I.getArgOperand(0)); 6478 SDValue Op2 = getValue(I.getArgOperand(1)); 6479 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6480 return; 6481 } 6482 case Intrinsic::ssub_sat: { 6483 SDValue Op1 = getValue(I.getArgOperand(0)); 6484 SDValue Op2 = getValue(I.getArgOperand(1)); 6485 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6486 return; 6487 } 6488 case Intrinsic::usub_sat: { 6489 SDValue Op1 = getValue(I.getArgOperand(0)); 6490 SDValue Op2 = getValue(I.getArgOperand(1)); 6491 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6492 return; 6493 } 6494 case Intrinsic::sshl_sat: { 6495 SDValue Op1 = getValue(I.getArgOperand(0)); 6496 SDValue Op2 = getValue(I.getArgOperand(1)); 6497 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6498 return; 6499 } 6500 case Intrinsic::ushl_sat: { 6501 SDValue Op1 = getValue(I.getArgOperand(0)); 6502 SDValue Op2 = getValue(I.getArgOperand(1)); 6503 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6504 return; 6505 } 6506 case Intrinsic::smul_fix: 6507 case Intrinsic::umul_fix: 6508 case Intrinsic::smul_fix_sat: 6509 case Intrinsic::umul_fix_sat: { 6510 SDValue Op1 = getValue(I.getArgOperand(0)); 6511 SDValue Op2 = getValue(I.getArgOperand(1)); 6512 SDValue Op3 = getValue(I.getArgOperand(2)); 6513 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6514 Op1.getValueType(), Op1, Op2, Op3)); 6515 return; 6516 } 6517 case Intrinsic::sdiv_fix: 6518 case Intrinsic::udiv_fix: 6519 case Intrinsic::sdiv_fix_sat: 6520 case Intrinsic::udiv_fix_sat: { 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 SDValue Op3 = getValue(I.getArgOperand(2)); 6524 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6525 Op1, Op2, Op3, DAG, TLI)); 6526 return; 6527 } 6528 case Intrinsic::smax: { 6529 SDValue Op1 = getValue(I.getArgOperand(0)); 6530 SDValue Op2 = getValue(I.getArgOperand(1)); 6531 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6532 return; 6533 } 6534 case Intrinsic::smin: { 6535 SDValue Op1 = getValue(I.getArgOperand(0)); 6536 SDValue Op2 = getValue(I.getArgOperand(1)); 6537 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6538 return; 6539 } 6540 case Intrinsic::umax: { 6541 SDValue Op1 = getValue(I.getArgOperand(0)); 6542 SDValue Op2 = getValue(I.getArgOperand(1)); 6543 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6544 return; 6545 } 6546 case Intrinsic::umin: { 6547 SDValue Op1 = getValue(I.getArgOperand(0)); 6548 SDValue Op2 = getValue(I.getArgOperand(1)); 6549 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6550 return; 6551 } 6552 case Intrinsic::abs: { 6553 // TODO: Preserve "int min is poison" arg in SDAG? 6554 SDValue Op1 = getValue(I.getArgOperand(0)); 6555 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6556 return; 6557 } 6558 case Intrinsic::stacksave: { 6559 SDValue Op = getRoot(); 6560 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6561 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6562 setValue(&I, Res); 6563 DAG.setRoot(Res.getValue(1)); 6564 return; 6565 } 6566 case Intrinsic::stackrestore: 6567 Res = getValue(I.getArgOperand(0)); 6568 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6569 return; 6570 case Intrinsic::get_dynamic_area_offset: { 6571 SDValue Op = getRoot(); 6572 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6573 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6574 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6575 // target. 6576 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6577 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6578 " intrinsic!"); 6579 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6580 Op); 6581 DAG.setRoot(Op); 6582 setValue(&I, Res); 6583 return; 6584 } 6585 case Intrinsic::stackguard: { 6586 MachineFunction &MF = DAG.getMachineFunction(); 6587 const Module &M = *MF.getFunction().getParent(); 6588 SDValue Chain = getRoot(); 6589 if (TLI.useLoadStackGuardNode()) { 6590 Res = getLoadStackGuard(DAG, sdl, Chain); 6591 } else { 6592 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6593 const Value *Global = TLI.getSDagStackGuard(M); 6594 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6595 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6596 MachinePointerInfo(Global, 0), Align, 6597 MachineMemOperand::MOVolatile); 6598 } 6599 if (TLI.useStackGuardXorFP()) 6600 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6601 DAG.setRoot(Chain); 6602 setValue(&I, Res); 6603 return; 6604 } 6605 case Intrinsic::stackprotector: { 6606 // Emit code into the DAG to store the stack guard onto the stack. 6607 MachineFunction &MF = DAG.getMachineFunction(); 6608 MachineFrameInfo &MFI = MF.getFrameInfo(); 6609 SDValue Src, Chain = getRoot(); 6610 6611 if (TLI.useLoadStackGuardNode()) 6612 Src = getLoadStackGuard(DAG, sdl, Chain); 6613 else 6614 Src = getValue(I.getArgOperand(0)); // The guard's value. 6615 6616 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6617 6618 int FI = FuncInfo.StaticAllocaMap[Slot]; 6619 MFI.setStackProtectorIndex(FI); 6620 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6621 6622 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6623 6624 // Store the stack protector onto the stack. 6625 Res = DAG.getStore( 6626 Chain, sdl, Src, FIN, 6627 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6628 MaybeAlign(), MachineMemOperand::MOVolatile); 6629 setValue(&I, Res); 6630 DAG.setRoot(Res); 6631 return; 6632 } 6633 case Intrinsic::objectsize: 6634 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6635 6636 case Intrinsic::is_constant: 6637 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6638 6639 case Intrinsic::annotation: 6640 case Intrinsic::ptr_annotation: 6641 case Intrinsic::launder_invariant_group: 6642 case Intrinsic::strip_invariant_group: 6643 // Drop the intrinsic, but forward the value 6644 setValue(&I, getValue(I.getOperand(0))); 6645 return; 6646 6647 case Intrinsic::assume: 6648 case Intrinsic::experimental_noalias_scope_decl: 6649 case Intrinsic::var_annotation: 6650 case Intrinsic::sideeffect: 6651 // Discard annotate attributes, noalias scope declarations, assumptions, and 6652 // artificial side-effects. 6653 return; 6654 6655 case Intrinsic::codeview_annotation: { 6656 // Emit a label associated with this metadata. 6657 MachineFunction &MF = DAG.getMachineFunction(); 6658 MCSymbol *Label = 6659 MF.getMMI().getContext().createTempSymbol("annotation", true); 6660 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6661 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6662 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6663 DAG.setRoot(Res); 6664 return; 6665 } 6666 6667 case Intrinsic::init_trampoline: { 6668 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6669 6670 SDValue Ops[6]; 6671 Ops[0] = getRoot(); 6672 Ops[1] = getValue(I.getArgOperand(0)); 6673 Ops[2] = getValue(I.getArgOperand(1)); 6674 Ops[3] = getValue(I.getArgOperand(2)); 6675 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6676 Ops[5] = DAG.getSrcValue(F); 6677 6678 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6679 6680 DAG.setRoot(Res); 6681 return; 6682 } 6683 case Intrinsic::adjust_trampoline: 6684 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6685 TLI.getPointerTy(DAG.getDataLayout()), 6686 getValue(I.getArgOperand(0)))); 6687 return; 6688 case Intrinsic::gcroot: { 6689 assert(DAG.getMachineFunction().getFunction().hasGC() && 6690 "only valid in functions with gc specified, enforced by Verifier"); 6691 assert(GFI && "implied by previous"); 6692 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6693 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6694 6695 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6696 GFI->addStackRoot(FI->getIndex(), TypeMap); 6697 return; 6698 } 6699 case Intrinsic::gcread: 6700 case Intrinsic::gcwrite: 6701 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6702 case Intrinsic::flt_rounds: 6703 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6704 setValue(&I, Res); 6705 DAG.setRoot(Res.getValue(1)); 6706 return; 6707 6708 case Intrinsic::expect: 6709 // Just replace __builtin_expect(exp, c) with EXP. 6710 setValue(&I, getValue(I.getArgOperand(0))); 6711 return; 6712 6713 case Intrinsic::ubsantrap: 6714 case Intrinsic::debugtrap: 6715 case Intrinsic::trap: { 6716 StringRef TrapFuncName = 6717 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6718 if (TrapFuncName.empty()) { 6719 switch (Intrinsic) { 6720 case Intrinsic::trap: 6721 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6722 break; 6723 case Intrinsic::debugtrap: 6724 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6725 break; 6726 case Intrinsic::ubsantrap: 6727 DAG.setRoot(DAG.getNode( 6728 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6729 DAG.getTargetConstant( 6730 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6731 MVT::i32))); 6732 break; 6733 default: llvm_unreachable("unknown trap intrinsic"); 6734 } 6735 return; 6736 } 6737 TargetLowering::ArgListTy Args; 6738 if (Intrinsic == Intrinsic::ubsantrap) { 6739 Args.push_back(TargetLoweringBase::ArgListEntry()); 6740 Args[0].Val = I.getArgOperand(0); 6741 Args[0].Node = getValue(Args[0].Val); 6742 Args[0].Ty = Args[0].Val->getType(); 6743 } 6744 6745 TargetLowering::CallLoweringInfo CLI(DAG); 6746 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6747 CallingConv::C, I.getType(), 6748 DAG.getExternalSymbol(TrapFuncName.data(), 6749 TLI.getPointerTy(DAG.getDataLayout())), 6750 std::move(Args)); 6751 6752 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6753 DAG.setRoot(Result.second); 6754 return; 6755 } 6756 6757 case Intrinsic::uadd_with_overflow: 6758 case Intrinsic::sadd_with_overflow: 6759 case Intrinsic::usub_with_overflow: 6760 case Intrinsic::ssub_with_overflow: 6761 case Intrinsic::umul_with_overflow: 6762 case Intrinsic::smul_with_overflow: { 6763 ISD::NodeType Op; 6764 switch (Intrinsic) { 6765 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6766 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6767 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6768 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6769 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6770 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6771 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6772 } 6773 SDValue Op1 = getValue(I.getArgOperand(0)); 6774 SDValue Op2 = getValue(I.getArgOperand(1)); 6775 6776 EVT ResultVT = Op1.getValueType(); 6777 EVT OverflowVT = MVT::i1; 6778 if (ResultVT.isVector()) 6779 OverflowVT = EVT::getVectorVT( 6780 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6781 6782 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6783 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6784 return; 6785 } 6786 case Intrinsic::prefetch: { 6787 SDValue Ops[5]; 6788 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6789 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6790 Ops[0] = DAG.getRoot(); 6791 Ops[1] = getValue(I.getArgOperand(0)); 6792 Ops[2] = getValue(I.getArgOperand(1)); 6793 Ops[3] = getValue(I.getArgOperand(2)); 6794 Ops[4] = getValue(I.getArgOperand(3)); 6795 SDValue Result = DAG.getMemIntrinsicNode( 6796 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6797 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6798 /* align */ None, Flags); 6799 6800 // Chain the prefetch in parallell with any pending loads, to stay out of 6801 // the way of later optimizations. 6802 PendingLoads.push_back(Result); 6803 Result = getRoot(); 6804 DAG.setRoot(Result); 6805 return; 6806 } 6807 case Intrinsic::lifetime_start: 6808 case Intrinsic::lifetime_end: { 6809 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6810 // Stack coloring is not enabled in O0, discard region information. 6811 if (TM.getOptLevel() == CodeGenOpt::None) 6812 return; 6813 6814 const int64_t ObjectSize = 6815 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6816 Value *const ObjectPtr = I.getArgOperand(1); 6817 SmallVector<const Value *, 4> Allocas; 6818 getUnderlyingObjects(ObjectPtr, Allocas); 6819 6820 for (const Value *Alloca : Allocas) { 6821 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6822 6823 // Could not find an Alloca. 6824 if (!LifetimeObject) 6825 continue; 6826 6827 // First check that the Alloca is static, otherwise it won't have a 6828 // valid frame index. 6829 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6830 if (SI == FuncInfo.StaticAllocaMap.end()) 6831 return; 6832 6833 const int FrameIndex = SI->second; 6834 int64_t Offset; 6835 if (GetPointerBaseWithConstantOffset( 6836 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6837 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6838 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6839 Offset); 6840 DAG.setRoot(Res); 6841 } 6842 return; 6843 } 6844 case Intrinsic::pseudoprobe: { 6845 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6846 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6847 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6848 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6849 DAG.setRoot(Res); 6850 return; 6851 } 6852 case Intrinsic::invariant_start: 6853 // Discard region information. 6854 setValue(&I, 6855 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6856 return; 6857 case Intrinsic::invariant_end: 6858 // Discard region information. 6859 return; 6860 case Intrinsic::clear_cache: 6861 /// FunctionName may be null. 6862 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6863 lowerCallToExternalSymbol(I, FunctionName); 6864 return; 6865 case Intrinsic::donothing: 6866 case Intrinsic::seh_try_begin: 6867 case Intrinsic::seh_scope_begin: 6868 case Intrinsic::seh_try_end: 6869 case Intrinsic::seh_scope_end: 6870 // ignore 6871 return; 6872 case Intrinsic::experimental_stackmap: 6873 visitStackmap(I); 6874 return; 6875 case Intrinsic::experimental_patchpoint_void: 6876 case Intrinsic::experimental_patchpoint_i64: 6877 visitPatchpoint(I); 6878 return; 6879 case Intrinsic::experimental_gc_statepoint: 6880 LowerStatepoint(cast<GCStatepointInst>(I)); 6881 return; 6882 case Intrinsic::experimental_gc_result: 6883 visitGCResult(cast<GCResultInst>(I)); 6884 return; 6885 case Intrinsic::experimental_gc_relocate: 6886 visitGCRelocate(cast<GCRelocateInst>(I)); 6887 return; 6888 case Intrinsic::instrprof_cover: 6889 llvm_unreachable("instrprof failed to lower a cover"); 6890 case Intrinsic::instrprof_increment: 6891 llvm_unreachable("instrprof failed to lower an increment"); 6892 case Intrinsic::instrprof_value_profile: 6893 llvm_unreachable("instrprof failed to lower a value profiling call"); 6894 case Intrinsic::localescape: { 6895 MachineFunction &MF = DAG.getMachineFunction(); 6896 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6897 6898 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6899 // is the same on all targets. 6900 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6901 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6902 if (isa<ConstantPointerNull>(Arg)) 6903 continue; // Skip null pointers. They represent a hole in index space. 6904 AllocaInst *Slot = cast<AllocaInst>(Arg); 6905 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6906 "can only escape static allocas"); 6907 int FI = FuncInfo.StaticAllocaMap[Slot]; 6908 MCSymbol *FrameAllocSym = 6909 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6910 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6912 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6913 .addSym(FrameAllocSym) 6914 .addFrameIndex(FI); 6915 } 6916 6917 return; 6918 } 6919 6920 case Intrinsic::localrecover: { 6921 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6922 MachineFunction &MF = DAG.getMachineFunction(); 6923 6924 // Get the symbol that defines the frame offset. 6925 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6926 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6927 unsigned IdxVal = 6928 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6929 MCSymbol *FrameAllocSym = 6930 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6931 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6932 6933 Value *FP = I.getArgOperand(1); 6934 SDValue FPVal = getValue(FP); 6935 EVT PtrVT = FPVal.getValueType(); 6936 6937 // Create a MCSymbol for the label to avoid any target lowering 6938 // that would make this PC relative. 6939 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6940 SDValue OffsetVal = 6941 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6942 6943 // Add the offset to the FP. 6944 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6945 setValue(&I, Add); 6946 6947 return; 6948 } 6949 6950 case Intrinsic::eh_exceptionpointer: 6951 case Intrinsic::eh_exceptioncode: { 6952 // Get the exception pointer vreg, copy from it, and resize it to fit. 6953 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6954 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6955 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6956 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6957 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6958 if (Intrinsic == Intrinsic::eh_exceptioncode) 6959 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6960 setValue(&I, N); 6961 return; 6962 } 6963 case Intrinsic::xray_customevent: { 6964 // Here we want to make sure that the intrinsic behaves as if it has a 6965 // specific calling convention, and only for x86_64. 6966 // FIXME: Support other platforms later. 6967 const auto &Triple = DAG.getTarget().getTargetTriple(); 6968 if (Triple.getArch() != Triple::x86_64) 6969 return; 6970 6971 SmallVector<SDValue, 8> Ops; 6972 6973 // We want to say that we always want the arguments in registers. 6974 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6975 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6976 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6977 SDValue Chain = getRoot(); 6978 Ops.push_back(LogEntryVal); 6979 Ops.push_back(StrSizeVal); 6980 Ops.push_back(Chain); 6981 6982 // We need to enforce the calling convention for the callsite, so that 6983 // argument ordering is enforced correctly, and that register allocation can 6984 // see that some registers may be assumed clobbered and have to preserve 6985 // them across calls to the intrinsic. 6986 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6987 sdl, NodeTys, Ops); 6988 SDValue patchableNode = SDValue(MN, 0); 6989 DAG.setRoot(patchableNode); 6990 setValue(&I, patchableNode); 6991 return; 6992 } 6993 case Intrinsic::xray_typedevent: { 6994 // Here we want to make sure that the intrinsic behaves as if it has a 6995 // specific calling convention, and only for x86_64. 6996 // FIXME: Support other platforms later. 6997 const auto &Triple = DAG.getTarget().getTargetTriple(); 6998 if (Triple.getArch() != Triple::x86_64) 6999 return; 7000 7001 SmallVector<SDValue, 8> Ops; 7002 7003 // We want to say that we always want the arguments in registers. 7004 // It's unclear to me how manipulating the selection DAG here forces callers 7005 // to provide arguments in registers instead of on the stack. 7006 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7007 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7008 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7009 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7010 SDValue Chain = getRoot(); 7011 Ops.push_back(LogTypeId); 7012 Ops.push_back(LogEntryVal); 7013 Ops.push_back(StrSizeVal); 7014 Ops.push_back(Chain); 7015 7016 // We need to enforce the calling convention for the callsite, so that 7017 // argument ordering is enforced correctly, and that register allocation can 7018 // see that some registers may be assumed clobbered and have to preserve 7019 // them across calls to the intrinsic. 7020 MachineSDNode *MN = DAG.getMachineNode( 7021 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7022 SDValue patchableNode = SDValue(MN, 0); 7023 DAG.setRoot(patchableNode); 7024 setValue(&I, patchableNode); 7025 return; 7026 } 7027 case Intrinsic::experimental_deoptimize: 7028 LowerDeoptimizeCall(&I); 7029 return; 7030 case Intrinsic::experimental_stepvector: 7031 visitStepVector(I); 7032 return; 7033 case Intrinsic::vector_reduce_fadd: 7034 case Intrinsic::vector_reduce_fmul: 7035 case Intrinsic::vector_reduce_add: 7036 case Intrinsic::vector_reduce_mul: 7037 case Intrinsic::vector_reduce_and: 7038 case Intrinsic::vector_reduce_or: 7039 case Intrinsic::vector_reduce_xor: 7040 case Intrinsic::vector_reduce_smax: 7041 case Intrinsic::vector_reduce_smin: 7042 case Intrinsic::vector_reduce_umax: 7043 case Intrinsic::vector_reduce_umin: 7044 case Intrinsic::vector_reduce_fmax: 7045 case Intrinsic::vector_reduce_fmin: 7046 visitVectorReduce(I, Intrinsic); 7047 return; 7048 7049 case Intrinsic::icall_branch_funnel: { 7050 SmallVector<SDValue, 16> Ops; 7051 Ops.push_back(getValue(I.getArgOperand(0))); 7052 7053 int64_t Offset; 7054 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7055 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7056 if (!Base) 7057 report_fatal_error( 7058 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7059 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7060 7061 struct BranchFunnelTarget { 7062 int64_t Offset; 7063 SDValue Target; 7064 }; 7065 SmallVector<BranchFunnelTarget, 8> Targets; 7066 7067 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7068 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7069 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7070 if (ElemBase != Base) 7071 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7072 "to the same GlobalValue"); 7073 7074 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7075 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7076 if (!GA) 7077 report_fatal_error( 7078 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7079 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7080 GA->getGlobal(), sdl, Val.getValueType(), 7081 GA->getOffset())}); 7082 } 7083 llvm::sort(Targets, 7084 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7085 return T1.Offset < T2.Offset; 7086 }); 7087 7088 for (auto &T : Targets) { 7089 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7090 Ops.push_back(T.Target); 7091 } 7092 7093 Ops.push_back(DAG.getRoot()); // Chain 7094 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7095 MVT::Other, Ops), 7096 0); 7097 DAG.setRoot(N); 7098 setValue(&I, N); 7099 HasTailCall = true; 7100 return; 7101 } 7102 7103 case Intrinsic::wasm_landingpad_index: 7104 // Information this intrinsic contained has been transferred to 7105 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7106 // delete it now. 7107 return; 7108 7109 case Intrinsic::aarch64_settag: 7110 case Intrinsic::aarch64_settag_zero: { 7111 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7112 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7113 SDValue Val = TSI.EmitTargetCodeForSetTag( 7114 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7115 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7116 ZeroMemory); 7117 DAG.setRoot(Val); 7118 setValue(&I, Val); 7119 return; 7120 } 7121 case Intrinsic::ptrmask: { 7122 SDValue Ptr = getValue(I.getOperand(0)); 7123 SDValue Const = getValue(I.getOperand(1)); 7124 7125 EVT PtrVT = Ptr.getValueType(); 7126 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7127 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7128 return; 7129 } 7130 case Intrinsic::get_active_lane_mask: { 7131 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7132 SDValue Index = getValue(I.getOperand(0)); 7133 EVT ElementVT = Index.getValueType(); 7134 7135 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7136 visitTargetIntrinsic(I, Intrinsic); 7137 return; 7138 } 7139 7140 SDValue TripCount = getValue(I.getOperand(1)); 7141 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7142 7143 SDValue VectorIndex, VectorTripCount; 7144 if (VecTy.isScalableVector()) { 7145 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7146 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7147 } else { 7148 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7149 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7150 } 7151 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7152 SDValue VectorInduction = DAG.getNode( 7153 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7154 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7155 VectorTripCount, ISD::CondCode::SETULT); 7156 setValue(&I, SetCC); 7157 return; 7158 } 7159 case Intrinsic::experimental_vector_insert: { 7160 SDValue Vec = getValue(I.getOperand(0)); 7161 SDValue SubVec = getValue(I.getOperand(1)); 7162 SDValue Index = getValue(I.getOperand(2)); 7163 7164 // The intrinsic's index type is i64, but the SDNode requires an index type 7165 // suitable for the target. Convert the index as required. 7166 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7167 if (Index.getValueType() != VectorIdxTy) 7168 Index = DAG.getVectorIdxConstant( 7169 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7170 7171 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7172 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7173 Index)); 7174 return; 7175 } 7176 case Intrinsic::experimental_vector_extract: { 7177 SDValue Vec = getValue(I.getOperand(0)); 7178 SDValue Index = getValue(I.getOperand(1)); 7179 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7180 7181 // The intrinsic's index type is i64, but the SDNode requires an index type 7182 // suitable for the target. Convert the index as required. 7183 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7184 if (Index.getValueType() != VectorIdxTy) 7185 Index = DAG.getVectorIdxConstant( 7186 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7187 7188 setValue(&I, 7189 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7190 return; 7191 } 7192 case Intrinsic::experimental_vector_reverse: 7193 visitVectorReverse(I); 7194 return; 7195 case Intrinsic::experimental_vector_splice: 7196 visitVectorSplice(I); 7197 return; 7198 } 7199 } 7200 7201 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7202 const ConstrainedFPIntrinsic &FPI) { 7203 SDLoc sdl = getCurSDLoc(); 7204 7205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7206 SmallVector<EVT, 4> ValueVTs; 7207 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7208 ValueVTs.push_back(MVT::Other); // Out chain 7209 7210 // We do not need to serialize constrained FP intrinsics against 7211 // each other or against (nonvolatile) loads, so they can be 7212 // chained like loads. 7213 SDValue Chain = DAG.getRoot(); 7214 SmallVector<SDValue, 4> Opers; 7215 Opers.push_back(Chain); 7216 if (FPI.isUnaryOp()) { 7217 Opers.push_back(getValue(FPI.getArgOperand(0))); 7218 } else if (FPI.isTernaryOp()) { 7219 Opers.push_back(getValue(FPI.getArgOperand(0))); 7220 Opers.push_back(getValue(FPI.getArgOperand(1))); 7221 Opers.push_back(getValue(FPI.getArgOperand(2))); 7222 } else { 7223 Opers.push_back(getValue(FPI.getArgOperand(0))); 7224 Opers.push_back(getValue(FPI.getArgOperand(1))); 7225 } 7226 7227 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7228 assert(Result.getNode()->getNumValues() == 2); 7229 7230 // Push node to the appropriate list so that future instructions can be 7231 // chained up correctly. 7232 SDValue OutChain = Result.getValue(1); 7233 switch (EB) { 7234 case fp::ExceptionBehavior::ebIgnore: 7235 // The only reason why ebIgnore nodes still need to be chained is that 7236 // they might depend on the current rounding mode, and therefore must 7237 // not be moved across instruction that may change that mode. 7238 LLVM_FALLTHROUGH; 7239 case fp::ExceptionBehavior::ebMayTrap: 7240 // These must not be moved across calls or instructions that may change 7241 // floating-point exception masks. 7242 PendingConstrainedFP.push_back(OutChain); 7243 break; 7244 case fp::ExceptionBehavior::ebStrict: 7245 // These must not be moved across calls or instructions that may change 7246 // floating-point exception masks or read floating-point exception flags. 7247 // In addition, they cannot be optimized out even if unused. 7248 PendingConstrainedFPStrict.push_back(OutChain); 7249 break; 7250 } 7251 }; 7252 7253 SDVTList VTs = DAG.getVTList(ValueVTs); 7254 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7255 7256 SDNodeFlags Flags; 7257 if (EB == fp::ExceptionBehavior::ebIgnore) 7258 Flags.setNoFPExcept(true); 7259 7260 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7261 Flags.copyFMF(*FPOp); 7262 7263 unsigned Opcode; 7264 switch (FPI.getIntrinsicID()) { 7265 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7266 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7267 case Intrinsic::INTRINSIC: \ 7268 Opcode = ISD::STRICT_##DAGN; \ 7269 break; 7270 #include "llvm/IR/ConstrainedOps.def" 7271 case Intrinsic::experimental_constrained_fmuladd: { 7272 Opcode = ISD::STRICT_FMA; 7273 // Break fmuladd into fmul and fadd. 7274 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7275 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7276 ValueVTs[0])) { 7277 Opers.pop_back(); 7278 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7279 pushOutChain(Mul, EB); 7280 Opcode = ISD::STRICT_FADD; 7281 Opers.clear(); 7282 Opers.push_back(Mul.getValue(1)); 7283 Opers.push_back(Mul.getValue(0)); 7284 Opers.push_back(getValue(FPI.getArgOperand(2))); 7285 } 7286 break; 7287 } 7288 } 7289 7290 // A few strict DAG nodes carry additional operands that are not 7291 // set up by the default code above. 7292 switch (Opcode) { 7293 default: break; 7294 case ISD::STRICT_FP_ROUND: 7295 Opers.push_back( 7296 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7297 break; 7298 case ISD::STRICT_FSETCC: 7299 case ISD::STRICT_FSETCCS: { 7300 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7301 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7302 if (TM.Options.NoNaNsFPMath) 7303 Condition = getFCmpCodeWithoutNaN(Condition); 7304 Opers.push_back(DAG.getCondCode(Condition)); 7305 break; 7306 } 7307 } 7308 7309 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7310 pushOutChain(Result, EB); 7311 7312 SDValue FPResult = Result.getValue(0); 7313 setValue(&FPI, FPResult); 7314 } 7315 7316 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7317 Optional<unsigned> ResOPC; 7318 switch (VPIntrin.getIntrinsicID()) { 7319 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7320 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7321 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7322 #include "llvm/IR/VPIntrinsics.def" 7323 } 7324 7325 if (!ResOPC.hasValue()) 7326 llvm_unreachable( 7327 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7328 7329 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7330 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7331 if (VPIntrin.getFastMathFlags().allowReassoc()) 7332 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7333 : ISD::VP_REDUCE_FMUL; 7334 } 7335 7336 return ResOPC.getValue(); 7337 } 7338 7339 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7340 SmallVector<SDValue, 7> &OpValues, 7341 bool IsGather) { 7342 SDLoc DL = getCurSDLoc(); 7343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7344 Value *PtrOperand = VPIntrin.getArgOperand(0); 7345 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7346 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7347 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7348 SDValue LD; 7349 bool AddToChain = true; 7350 if (!IsGather) { 7351 // Do not serialize variable-length loads of constant memory with 7352 // anything. 7353 if (!Alignment) 7354 Alignment = DAG.getEVTAlign(VT); 7355 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7356 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7357 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7358 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7359 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7360 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7361 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7362 MMO, false /*IsExpanding */); 7363 } else { 7364 if (!Alignment) 7365 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7366 unsigned AS = 7367 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7368 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7369 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7370 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7371 SDValue Base, Index, Scale; 7372 ISD::MemIndexType IndexType; 7373 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7374 this, VPIntrin.getParent()); 7375 if (!UniformBase) { 7376 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7377 Index = getValue(PtrOperand); 7378 IndexType = ISD::SIGNED_UNSCALED; 7379 Scale = 7380 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7381 } 7382 EVT IdxVT = Index.getValueType(); 7383 EVT EltTy = IdxVT.getVectorElementType(); 7384 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7385 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7386 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7387 } 7388 LD = DAG.getGatherVP( 7389 DAG.getVTList(VT, MVT::Other), VT, DL, 7390 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7391 IndexType); 7392 } 7393 if (AddToChain) 7394 PendingLoads.push_back(LD.getValue(1)); 7395 setValue(&VPIntrin, LD); 7396 } 7397 7398 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7399 SmallVector<SDValue, 7> &OpValues, 7400 bool IsScatter) { 7401 SDLoc DL = getCurSDLoc(); 7402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7403 Value *PtrOperand = VPIntrin.getArgOperand(1); 7404 EVT VT = OpValues[0].getValueType(); 7405 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7406 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7407 SDValue ST; 7408 if (!IsScatter) { 7409 if (!Alignment) 7410 Alignment = DAG.getEVTAlign(VT); 7411 SDValue Ptr = OpValues[1]; 7412 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7413 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7414 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7415 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7416 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7417 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7418 /* IsTruncating */ false, /*IsCompressing*/ false); 7419 } else { 7420 if (!Alignment) 7421 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7422 unsigned AS = 7423 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7424 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7425 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7426 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7427 SDValue Base, Index, Scale; 7428 ISD::MemIndexType IndexType; 7429 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7430 this, VPIntrin.getParent()); 7431 if (!UniformBase) { 7432 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7433 Index = getValue(PtrOperand); 7434 IndexType = ISD::SIGNED_UNSCALED; 7435 Scale = 7436 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7437 } 7438 EVT IdxVT = Index.getValueType(); 7439 EVT EltTy = IdxVT.getVectorElementType(); 7440 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7441 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7442 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7443 } 7444 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7445 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7446 OpValues[2], OpValues[3]}, 7447 MMO, IndexType); 7448 } 7449 DAG.setRoot(ST); 7450 setValue(&VPIntrin, ST); 7451 } 7452 7453 void SelectionDAGBuilder::visitVPStridedLoad( 7454 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7455 SDLoc DL = getCurSDLoc(); 7456 Value *PtrOperand = VPIntrin.getArgOperand(0); 7457 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7458 if (!Alignment) 7459 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7460 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7461 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7462 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7463 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7464 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7465 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7466 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7467 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7468 7469 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7470 OpValues[2], OpValues[3], MMO, 7471 false /*IsExpanding*/); 7472 7473 if (AddToChain) 7474 PendingLoads.push_back(LD.getValue(1)); 7475 setValue(&VPIntrin, LD); 7476 } 7477 7478 void SelectionDAGBuilder::visitVPStridedStore( 7479 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7480 SDLoc DL = getCurSDLoc(); 7481 Value *PtrOperand = VPIntrin.getArgOperand(1); 7482 EVT VT = OpValues[0].getValueType(); 7483 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7484 if (!Alignment) 7485 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7486 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7487 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7488 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7489 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7490 7491 SDValue ST = DAG.getStridedStoreVP( 7492 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7493 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7494 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7495 /*IsCompressing*/ false); 7496 7497 DAG.setRoot(ST); 7498 setValue(&VPIntrin, ST); 7499 } 7500 7501 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7502 const VPIntrinsic &VPIntrin) { 7503 SDLoc DL = getCurSDLoc(); 7504 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7505 7506 SmallVector<EVT, 4> ValueVTs; 7507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7508 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7509 SDVTList VTs = DAG.getVTList(ValueVTs); 7510 7511 auto EVLParamPos = 7512 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7513 7514 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7515 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7516 "Unexpected target EVL type"); 7517 7518 // Request operands. 7519 SmallVector<SDValue, 7> OpValues; 7520 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7521 auto Op = getValue(VPIntrin.getArgOperand(I)); 7522 if (I == EVLParamPos) 7523 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7524 OpValues.push_back(Op); 7525 } 7526 7527 switch (Opcode) { 7528 default: { 7529 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7530 setValue(&VPIntrin, Result); 7531 break; 7532 } 7533 case ISD::VP_LOAD: 7534 case ISD::VP_GATHER: 7535 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7536 Opcode == ISD::VP_GATHER); 7537 break; 7538 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7539 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7540 break; 7541 case ISD::VP_STORE: 7542 case ISD::VP_SCATTER: 7543 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7544 break; 7545 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7546 visitVPStridedStore(VPIntrin, OpValues); 7547 break; 7548 } 7549 } 7550 7551 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7552 const BasicBlock *EHPadBB, 7553 MCSymbol *&BeginLabel) { 7554 MachineFunction &MF = DAG.getMachineFunction(); 7555 MachineModuleInfo &MMI = MF.getMMI(); 7556 7557 // Insert a label before the invoke call to mark the try range. This can be 7558 // used to detect deletion of the invoke via the MachineModuleInfo. 7559 BeginLabel = MMI.getContext().createTempSymbol(); 7560 7561 // For SjLj, keep track of which landing pads go with which invokes 7562 // so as to maintain the ordering of pads in the LSDA. 7563 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7564 if (CallSiteIndex) { 7565 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7566 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7567 7568 // Now that the call site is handled, stop tracking it. 7569 MMI.setCurrentCallSite(0); 7570 } 7571 7572 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7573 } 7574 7575 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7576 const BasicBlock *EHPadBB, 7577 MCSymbol *BeginLabel) { 7578 assert(BeginLabel && "BeginLabel should've been set"); 7579 7580 MachineFunction &MF = DAG.getMachineFunction(); 7581 MachineModuleInfo &MMI = MF.getMMI(); 7582 7583 // Insert a label at the end of the invoke call to mark the try range. This 7584 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7585 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7586 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7587 7588 // Inform MachineModuleInfo of range. 7589 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7590 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7591 // actually use outlined funclets and their LSDA info style. 7592 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7593 assert(II && "II should've been set"); 7594 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7595 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7596 } else if (!isScopedEHPersonality(Pers)) { 7597 assert(EHPadBB); 7598 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7599 } 7600 7601 return Chain; 7602 } 7603 7604 std::pair<SDValue, SDValue> 7605 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7606 const BasicBlock *EHPadBB) { 7607 MCSymbol *BeginLabel = nullptr; 7608 7609 if (EHPadBB) { 7610 // Both PendingLoads and PendingExports must be flushed here; 7611 // this call might not return. 7612 (void)getRoot(); 7613 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7614 CLI.setChain(getRoot()); 7615 } 7616 7617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7618 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7619 7620 assert((CLI.IsTailCall || Result.second.getNode()) && 7621 "Non-null chain expected with non-tail call!"); 7622 assert((Result.second.getNode() || !Result.first.getNode()) && 7623 "Null value expected with tail call!"); 7624 7625 if (!Result.second.getNode()) { 7626 // As a special case, a null chain means that a tail call has been emitted 7627 // and the DAG root is already updated. 7628 HasTailCall = true; 7629 7630 // Since there's no actual continuation from this block, nothing can be 7631 // relying on us setting vregs for them. 7632 PendingExports.clear(); 7633 } else { 7634 DAG.setRoot(Result.second); 7635 } 7636 7637 if (EHPadBB) { 7638 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7639 BeginLabel)); 7640 } 7641 7642 return Result; 7643 } 7644 7645 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7646 bool isTailCall, 7647 bool isMustTailCall, 7648 const BasicBlock *EHPadBB) { 7649 auto &DL = DAG.getDataLayout(); 7650 FunctionType *FTy = CB.getFunctionType(); 7651 Type *RetTy = CB.getType(); 7652 7653 TargetLowering::ArgListTy Args; 7654 Args.reserve(CB.arg_size()); 7655 7656 const Value *SwiftErrorVal = nullptr; 7657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7658 7659 if (isTailCall) { 7660 // Avoid emitting tail calls in functions with the disable-tail-calls 7661 // attribute. 7662 auto *Caller = CB.getParent()->getParent(); 7663 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7664 "true" && !isMustTailCall) 7665 isTailCall = false; 7666 7667 // We can't tail call inside a function with a swifterror argument. Lowering 7668 // does not support this yet. It would have to move into the swifterror 7669 // register before the call. 7670 if (TLI.supportSwiftError() && 7671 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7672 isTailCall = false; 7673 } 7674 7675 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7676 TargetLowering::ArgListEntry Entry; 7677 const Value *V = *I; 7678 7679 // Skip empty types 7680 if (V->getType()->isEmptyTy()) 7681 continue; 7682 7683 SDValue ArgNode = getValue(V); 7684 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7685 7686 Entry.setAttributes(&CB, I - CB.arg_begin()); 7687 7688 // Use swifterror virtual register as input to the call. 7689 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7690 SwiftErrorVal = V; 7691 // We find the virtual register for the actual swifterror argument. 7692 // Instead of using the Value, we use the virtual register instead. 7693 Entry.Node = 7694 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7695 EVT(TLI.getPointerTy(DL))); 7696 } 7697 7698 Args.push_back(Entry); 7699 7700 // If we have an explicit sret argument that is an Instruction, (i.e., it 7701 // might point to function-local memory), we can't meaningfully tail-call. 7702 if (Entry.IsSRet && isa<Instruction>(V)) 7703 isTailCall = false; 7704 } 7705 7706 // If call site has a cfguardtarget operand bundle, create and add an 7707 // additional ArgListEntry. 7708 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7709 TargetLowering::ArgListEntry Entry; 7710 Value *V = Bundle->Inputs[0]; 7711 SDValue ArgNode = getValue(V); 7712 Entry.Node = ArgNode; 7713 Entry.Ty = V->getType(); 7714 Entry.IsCFGuardTarget = true; 7715 Args.push_back(Entry); 7716 } 7717 7718 // Check if target-independent constraints permit a tail call here. 7719 // Target-dependent constraints are checked within TLI->LowerCallTo. 7720 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7721 isTailCall = false; 7722 7723 // Disable tail calls if there is an swifterror argument. Targets have not 7724 // been updated to support tail calls. 7725 if (TLI.supportSwiftError() && SwiftErrorVal) 7726 isTailCall = false; 7727 7728 TargetLowering::CallLoweringInfo CLI(DAG); 7729 CLI.setDebugLoc(getCurSDLoc()) 7730 .setChain(getRoot()) 7731 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7732 .setTailCall(isTailCall) 7733 .setConvergent(CB.isConvergent()) 7734 .setIsPreallocated( 7735 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7736 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7737 7738 if (Result.first.getNode()) { 7739 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7740 setValue(&CB, Result.first); 7741 } 7742 7743 // The last element of CLI.InVals has the SDValue for swifterror return. 7744 // Here we copy it to a virtual register and update SwiftErrorMap for 7745 // book-keeping. 7746 if (SwiftErrorVal && TLI.supportSwiftError()) { 7747 // Get the last element of InVals. 7748 SDValue Src = CLI.InVals.back(); 7749 Register VReg = 7750 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7751 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7752 DAG.setRoot(CopyNode); 7753 } 7754 } 7755 7756 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7757 SelectionDAGBuilder &Builder) { 7758 // Check to see if this load can be trivially constant folded, e.g. if the 7759 // input is from a string literal. 7760 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7761 // Cast pointer to the type we really want to load. 7762 Type *LoadTy = 7763 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7764 if (LoadVT.isVector()) 7765 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7766 7767 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7768 PointerType::getUnqual(LoadTy)); 7769 7770 if (const Constant *LoadCst = 7771 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7772 LoadTy, Builder.DAG.getDataLayout())) 7773 return Builder.getValue(LoadCst); 7774 } 7775 7776 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7777 // still constant memory, the input chain can be the entry node. 7778 SDValue Root; 7779 bool ConstantMemory = false; 7780 7781 // Do not serialize (non-volatile) loads of constant memory with anything. 7782 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7783 Root = Builder.DAG.getEntryNode(); 7784 ConstantMemory = true; 7785 } else { 7786 // Do not serialize non-volatile loads against each other. 7787 Root = Builder.DAG.getRoot(); 7788 } 7789 7790 SDValue Ptr = Builder.getValue(PtrVal); 7791 SDValue LoadVal = 7792 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7793 MachinePointerInfo(PtrVal), Align(1)); 7794 7795 if (!ConstantMemory) 7796 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7797 return LoadVal; 7798 } 7799 7800 /// Record the value for an instruction that produces an integer result, 7801 /// converting the type where necessary. 7802 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7803 SDValue Value, 7804 bool IsSigned) { 7805 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7806 I.getType(), true); 7807 if (IsSigned) 7808 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7809 else 7810 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7811 setValue(&I, Value); 7812 } 7813 7814 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7815 /// true and lower it. Otherwise return false, and it will be lowered like a 7816 /// normal call. 7817 /// The caller already checked that \p I calls the appropriate LibFunc with a 7818 /// correct prototype. 7819 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7820 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7821 const Value *Size = I.getArgOperand(2); 7822 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7823 if (CSize && CSize->getZExtValue() == 0) { 7824 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7825 I.getType(), true); 7826 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7827 return true; 7828 } 7829 7830 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7831 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7832 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7833 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7834 if (Res.first.getNode()) { 7835 processIntegerCallValue(I, Res.first, true); 7836 PendingLoads.push_back(Res.second); 7837 return true; 7838 } 7839 7840 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7841 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7842 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7843 return false; 7844 7845 // If the target has a fast compare for the given size, it will return a 7846 // preferred load type for that size. Require that the load VT is legal and 7847 // that the target supports unaligned loads of that type. Otherwise, return 7848 // INVALID. 7849 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7851 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7852 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7853 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7854 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7855 // TODO: Check alignment of src and dest ptrs. 7856 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7857 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7858 if (!TLI.isTypeLegal(LVT) || 7859 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7860 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7861 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7862 } 7863 7864 return LVT; 7865 }; 7866 7867 // This turns into unaligned loads. We only do this if the target natively 7868 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7869 // we'll only produce a small number of byte loads. 7870 MVT LoadVT; 7871 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7872 switch (NumBitsToCompare) { 7873 default: 7874 return false; 7875 case 16: 7876 LoadVT = MVT::i16; 7877 break; 7878 case 32: 7879 LoadVT = MVT::i32; 7880 break; 7881 case 64: 7882 case 128: 7883 case 256: 7884 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7885 break; 7886 } 7887 7888 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7889 return false; 7890 7891 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7892 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7893 7894 // Bitcast to a wide integer type if the loads are vectors. 7895 if (LoadVT.isVector()) { 7896 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7897 LoadL = DAG.getBitcast(CmpVT, LoadL); 7898 LoadR = DAG.getBitcast(CmpVT, LoadR); 7899 } 7900 7901 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7902 processIntegerCallValue(I, Cmp, false); 7903 return true; 7904 } 7905 7906 /// See if we can lower a memchr call into an optimized form. If so, return 7907 /// true and lower it. Otherwise return false, and it will be lowered like a 7908 /// normal call. 7909 /// The caller already checked that \p I calls the appropriate LibFunc with a 7910 /// correct prototype. 7911 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7912 const Value *Src = I.getArgOperand(0); 7913 const Value *Char = I.getArgOperand(1); 7914 const Value *Length = I.getArgOperand(2); 7915 7916 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7917 std::pair<SDValue, SDValue> Res = 7918 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7919 getValue(Src), getValue(Char), getValue(Length), 7920 MachinePointerInfo(Src)); 7921 if (Res.first.getNode()) { 7922 setValue(&I, Res.first); 7923 PendingLoads.push_back(Res.second); 7924 return true; 7925 } 7926 7927 return false; 7928 } 7929 7930 /// See if we can lower a mempcpy call into an optimized form. If so, return 7931 /// true and lower it. Otherwise return false, and it will be lowered like a 7932 /// normal call. 7933 /// The caller already checked that \p I calls the appropriate LibFunc with a 7934 /// correct prototype. 7935 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7936 SDValue Dst = getValue(I.getArgOperand(0)); 7937 SDValue Src = getValue(I.getArgOperand(1)); 7938 SDValue Size = getValue(I.getArgOperand(2)); 7939 7940 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7941 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7942 // DAG::getMemcpy needs Alignment to be defined. 7943 Align Alignment = std::min(DstAlign, SrcAlign); 7944 7945 bool isVol = false; 7946 SDLoc sdl = getCurSDLoc(); 7947 7948 // In the mempcpy context we need to pass in a false value for isTailCall 7949 // because the return pointer needs to be adjusted by the size of 7950 // the copied memory. 7951 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7952 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7953 /*isTailCall=*/false, 7954 MachinePointerInfo(I.getArgOperand(0)), 7955 MachinePointerInfo(I.getArgOperand(1)), 7956 I.getAAMetadata()); 7957 assert(MC.getNode() != nullptr && 7958 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7959 DAG.setRoot(MC); 7960 7961 // Check if Size needs to be truncated or extended. 7962 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7963 7964 // Adjust return pointer to point just past the last dst byte. 7965 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7966 Dst, Size); 7967 setValue(&I, DstPlusSize); 7968 return true; 7969 } 7970 7971 /// See if we can lower a strcpy call into an optimized form. If so, return 7972 /// true and lower it, otherwise return false and it will be lowered like a 7973 /// normal call. 7974 /// The caller already checked that \p I calls the appropriate LibFunc with a 7975 /// correct prototype. 7976 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7977 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7978 7979 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7980 std::pair<SDValue, SDValue> Res = 7981 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7982 getValue(Arg0), getValue(Arg1), 7983 MachinePointerInfo(Arg0), 7984 MachinePointerInfo(Arg1), isStpcpy); 7985 if (Res.first.getNode()) { 7986 setValue(&I, Res.first); 7987 DAG.setRoot(Res.second); 7988 return true; 7989 } 7990 7991 return false; 7992 } 7993 7994 /// See if we can lower a strcmp call into an optimized form. If so, return 7995 /// true and lower it, otherwise return false and it will be lowered like a 7996 /// normal call. 7997 /// The caller already checked that \p I calls the appropriate LibFunc with a 7998 /// correct prototype. 7999 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8000 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8001 8002 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8003 std::pair<SDValue, SDValue> Res = 8004 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8005 getValue(Arg0), getValue(Arg1), 8006 MachinePointerInfo(Arg0), 8007 MachinePointerInfo(Arg1)); 8008 if (Res.first.getNode()) { 8009 processIntegerCallValue(I, Res.first, true); 8010 PendingLoads.push_back(Res.second); 8011 return true; 8012 } 8013 8014 return false; 8015 } 8016 8017 /// See if we can lower a strlen call into an optimized form. If so, return 8018 /// true and lower it, otherwise return false and it will be lowered like a 8019 /// normal call. 8020 /// The caller already checked that \p I calls the appropriate LibFunc with a 8021 /// correct prototype. 8022 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8023 const Value *Arg0 = I.getArgOperand(0); 8024 8025 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8026 std::pair<SDValue, SDValue> Res = 8027 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8028 getValue(Arg0), MachinePointerInfo(Arg0)); 8029 if (Res.first.getNode()) { 8030 processIntegerCallValue(I, Res.first, false); 8031 PendingLoads.push_back(Res.second); 8032 return true; 8033 } 8034 8035 return false; 8036 } 8037 8038 /// See if we can lower a strnlen call into an optimized form. If so, return 8039 /// true and lower it, otherwise return false and it will be lowered like a 8040 /// normal call. 8041 /// The caller already checked that \p I calls the appropriate LibFunc with a 8042 /// correct prototype. 8043 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8044 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8045 8046 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8047 std::pair<SDValue, SDValue> Res = 8048 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8049 getValue(Arg0), getValue(Arg1), 8050 MachinePointerInfo(Arg0)); 8051 if (Res.first.getNode()) { 8052 processIntegerCallValue(I, Res.first, false); 8053 PendingLoads.push_back(Res.second); 8054 return true; 8055 } 8056 8057 return false; 8058 } 8059 8060 /// See if we can lower a unary floating-point operation into an SDNode with 8061 /// the specified Opcode. If so, return true and lower it, otherwise return 8062 /// false and it will be lowered like a normal call. 8063 /// The caller already checked that \p I calls the appropriate LibFunc with a 8064 /// correct prototype. 8065 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8066 unsigned Opcode) { 8067 // We already checked this call's prototype; verify it doesn't modify errno. 8068 if (!I.onlyReadsMemory()) 8069 return false; 8070 8071 SDNodeFlags Flags; 8072 Flags.copyFMF(cast<FPMathOperator>(I)); 8073 8074 SDValue Tmp = getValue(I.getArgOperand(0)); 8075 setValue(&I, 8076 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8077 return true; 8078 } 8079 8080 /// See if we can lower a binary floating-point operation into an SDNode with 8081 /// the specified Opcode. If so, return true and lower it. Otherwise return 8082 /// false, and it will be lowered like a normal call. 8083 /// The caller already checked that \p I calls the appropriate LibFunc with a 8084 /// correct prototype. 8085 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8086 unsigned Opcode) { 8087 // We already checked this call's prototype; verify it doesn't modify errno. 8088 if (!I.onlyReadsMemory()) 8089 return false; 8090 8091 SDNodeFlags Flags; 8092 Flags.copyFMF(cast<FPMathOperator>(I)); 8093 8094 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8095 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8096 EVT VT = Tmp0.getValueType(); 8097 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8098 return true; 8099 } 8100 8101 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8102 // Handle inline assembly differently. 8103 if (I.isInlineAsm()) { 8104 visitInlineAsm(I); 8105 return; 8106 } 8107 8108 if (Function *F = I.getCalledFunction()) { 8109 diagnoseDontCall(I); 8110 8111 if (F->isDeclaration()) { 8112 // Is this an LLVM intrinsic or a target-specific intrinsic? 8113 unsigned IID = F->getIntrinsicID(); 8114 if (!IID) 8115 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8116 IID = II->getIntrinsicID(F); 8117 8118 if (IID) { 8119 visitIntrinsicCall(I, IID); 8120 return; 8121 } 8122 } 8123 8124 // Check for well-known libc/libm calls. If the function is internal, it 8125 // can't be a library call. Don't do the check if marked as nobuiltin for 8126 // some reason or the call site requires strict floating point semantics. 8127 LibFunc Func; 8128 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8129 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8130 LibInfo->hasOptimizedCodeGen(Func)) { 8131 switch (Func) { 8132 default: break; 8133 case LibFunc_bcmp: 8134 if (visitMemCmpBCmpCall(I)) 8135 return; 8136 break; 8137 case LibFunc_copysign: 8138 case LibFunc_copysignf: 8139 case LibFunc_copysignl: 8140 // We already checked this call's prototype; verify it doesn't modify 8141 // errno. 8142 if (I.onlyReadsMemory()) { 8143 SDValue LHS = getValue(I.getArgOperand(0)); 8144 SDValue RHS = getValue(I.getArgOperand(1)); 8145 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8146 LHS.getValueType(), LHS, RHS)); 8147 return; 8148 } 8149 break; 8150 case LibFunc_fabs: 8151 case LibFunc_fabsf: 8152 case LibFunc_fabsl: 8153 if (visitUnaryFloatCall(I, ISD::FABS)) 8154 return; 8155 break; 8156 case LibFunc_fmin: 8157 case LibFunc_fminf: 8158 case LibFunc_fminl: 8159 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8160 return; 8161 break; 8162 case LibFunc_fmax: 8163 case LibFunc_fmaxf: 8164 case LibFunc_fmaxl: 8165 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8166 return; 8167 break; 8168 case LibFunc_sin: 8169 case LibFunc_sinf: 8170 case LibFunc_sinl: 8171 if (visitUnaryFloatCall(I, ISD::FSIN)) 8172 return; 8173 break; 8174 case LibFunc_cos: 8175 case LibFunc_cosf: 8176 case LibFunc_cosl: 8177 if (visitUnaryFloatCall(I, ISD::FCOS)) 8178 return; 8179 break; 8180 case LibFunc_sqrt: 8181 case LibFunc_sqrtf: 8182 case LibFunc_sqrtl: 8183 case LibFunc_sqrt_finite: 8184 case LibFunc_sqrtf_finite: 8185 case LibFunc_sqrtl_finite: 8186 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8187 return; 8188 break; 8189 case LibFunc_floor: 8190 case LibFunc_floorf: 8191 case LibFunc_floorl: 8192 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8193 return; 8194 break; 8195 case LibFunc_nearbyint: 8196 case LibFunc_nearbyintf: 8197 case LibFunc_nearbyintl: 8198 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8199 return; 8200 break; 8201 case LibFunc_ceil: 8202 case LibFunc_ceilf: 8203 case LibFunc_ceill: 8204 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8205 return; 8206 break; 8207 case LibFunc_rint: 8208 case LibFunc_rintf: 8209 case LibFunc_rintl: 8210 if (visitUnaryFloatCall(I, ISD::FRINT)) 8211 return; 8212 break; 8213 case LibFunc_round: 8214 case LibFunc_roundf: 8215 case LibFunc_roundl: 8216 if (visitUnaryFloatCall(I, ISD::FROUND)) 8217 return; 8218 break; 8219 case LibFunc_trunc: 8220 case LibFunc_truncf: 8221 case LibFunc_truncl: 8222 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8223 return; 8224 break; 8225 case LibFunc_log2: 8226 case LibFunc_log2f: 8227 case LibFunc_log2l: 8228 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8229 return; 8230 break; 8231 case LibFunc_exp2: 8232 case LibFunc_exp2f: 8233 case LibFunc_exp2l: 8234 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8235 return; 8236 break; 8237 case LibFunc_memcmp: 8238 if (visitMemCmpBCmpCall(I)) 8239 return; 8240 break; 8241 case LibFunc_mempcpy: 8242 if (visitMemPCpyCall(I)) 8243 return; 8244 break; 8245 case LibFunc_memchr: 8246 if (visitMemChrCall(I)) 8247 return; 8248 break; 8249 case LibFunc_strcpy: 8250 if (visitStrCpyCall(I, false)) 8251 return; 8252 break; 8253 case LibFunc_stpcpy: 8254 if (visitStrCpyCall(I, true)) 8255 return; 8256 break; 8257 case LibFunc_strcmp: 8258 if (visitStrCmpCall(I)) 8259 return; 8260 break; 8261 case LibFunc_strlen: 8262 if (visitStrLenCall(I)) 8263 return; 8264 break; 8265 case LibFunc_strnlen: 8266 if (visitStrNLenCall(I)) 8267 return; 8268 break; 8269 } 8270 } 8271 } 8272 8273 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8274 // have to do anything here to lower funclet bundles. 8275 // CFGuardTarget bundles are lowered in LowerCallTo. 8276 assert(!I.hasOperandBundlesOtherThan( 8277 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8278 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8279 LLVMContext::OB_clang_arc_attachedcall}) && 8280 "Cannot lower calls with arbitrary operand bundles!"); 8281 8282 SDValue Callee = getValue(I.getCalledOperand()); 8283 8284 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8285 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8286 else 8287 // Check if we can potentially perform a tail call. More detailed checking 8288 // is be done within LowerCallTo, after more information about the call is 8289 // known. 8290 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8291 } 8292 8293 namespace { 8294 8295 /// AsmOperandInfo - This contains information for each constraint that we are 8296 /// lowering. 8297 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8298 public: 8299 /// CallOperand - If this is the result output operand or a clobber 8300 /// this is null, otherwise it is the incoming operand to the CallInst. 8301 /// This gets modified as the asm is processed. 8302 SDValue CallOperand; 8303 8304 /// AssignedRegs - If this is a register or register class operand, this 8305 /// contains the set of register corresponding to the operand. 8306 RegsForValue AssignedRegs; 8307 8308 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8309 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8310 } 8311 8312 /// Whether or not this operand accesses memory 8313 bool hasMemory(const TargetLowering &TLI) const { 8314 // Indirect operand accesses access memory. 8315 if (isIndirect) 8316 return true; 8317 8318 for (const auto &Code : Codes) 8319 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8320 return true; 8321 8322 return false; 8323 } 8324 8325 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8326 /// corresponds to. If there is no Value* for this operand, it returns 8327 /// MVT::Other. 8328 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8329 const DataLayout &DL, 8330 llvm::Type *ParamElemType) const { 8331 if (!CallOperandVal) return MVT::Other; 8332 8333 if (isa<BasicBlock>(CallOperandVal)) 8334 return TLI.getProgramPointerTy(DL); 8335 8336 llvm::Type *OpTy = CallOperandVal->getType(); 8337 8338 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8339 // If this is an indirect operand, the operand is a pointer to the 8340 // accessed type. 8341 if (isIndirect) { 8342 OpTy = ParamElemType; 8343 assert(OpTy && "Indirect operand must have elementtype attribute"); 8344 } 8345 8346 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8347 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8348 if (STy->getNumElements() == 1) 8349 OpTy = STy->getElementType(0); 8350 8351 // If OpTy is not a single value, it may be a struct/union that we 8352 // can tile with integers. 8353 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8354 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8355 switch (BitSize) { 8356 default: break; 8357 case 1: 8358 case 8: 8359 case 16: 8360 case 32: 8361 case 64: 8362 case 128: 8363 OpTy = IntegerType::get(Context, BitSize); 8364 break; 8365 } 8366 } 8367 8368 return TLI.getAsmOperandValueType(DL, OpTy, true); 8369 } 8370 }; 8371 8372 8373 } // end anonymous namespace 8374 8375 /// Make sure that the output operand \p OpInfo and its corresponding input 8376 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8377 /// out). 8378 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8379 SDISelAsmOperandInfo &MatchingOpInfo, 8380 SelectionDAG &DAG) { 8381 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8382 return; 8383 8384 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8385 const auto &TLI = DAG.getTargetLoweringInfo(); 8386 8387 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8388 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8389 OpInfo.ConstraintVT); 8390 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8391 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8392 MatchingOpInfo.ConstraintVT); 8393 if ((OpInfo.ConstraintVT.isInteger() != 8394 MatchingOpInfo.ConstraintVT.isInteger()) || 8395 (MatchRC.second != InputRC.second)) { 8396 // FIXME: error out in a more elegant fashion 8397 report_fatal_error("Unsupported asm: input constraint" 8398 " with a matching output constraint of" 8399 " incompatible type!"); 8400 } 8401 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8402 } 8403 8404 /// Get a direct memory input to behave well as an indirect operand. 8405 /// This may introduce stores, hence the need for a \p Chain. 8406 /// \return The (possibly updated) chain. 8407 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8408 SDISelAsmOperandInfo &OpInfo, 8409 SelectionDAG &DAG) { 8410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8411 8412 // If we don't have an indirect input, put it in the constpool if we can, 8413 // otherwise spill it to a stack slot. 8414 // TODO: This isn't quite right. We need to handle these according to 8415 // the addressing mode that the constraint wants. Also, this may take 8416 // an additional register for the computation and we don't want that 8417 // either. 8418 8419 // If the operand is a float, integer, or vector constant, spill to a 8420 // constant pool entry to get its address. 8421 const Value *OpVal = OpInfo.CallOperandVal; 8422 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8423 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8424 OpInfo.CallOperand = DAG.getConstantPool( 8425 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8426 return Chain; 8427 } 8428 8429 // Otherwise, create a stack slot and emit a store to it before the asm. 8430 Type *Ty = OpVal->getType(); 8431 auto &DL = DAG.getDataLayout(); 8432 uint64_t TySize = DL.getTypeAllocSize(Ty); 8433 MachineFunction &MF = DAG.getMachineFunction(); 8434 int SSFI = MF.getFrameInfo().CreateStackObject( 8435 TySize, DL.getPrefTypeAlign(Ty), false); 8436 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8437 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8438 MachinePointerInfo::getFixedStack(MF, SSFI), 8439 TLI.getMemValueType(DL, Ty)); 8440 OpInfo.CallOperand = StackSlot; 8441 8442 return Chain; 8443 } 8444 8445 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8446 /// specified operand. We prefer to assign virtual registers, to allow the 8447 /// register allocator to handle the assignment process. However, if the asm 8448 /// uses features that we can't model on machineinstrs, we have SDISel do the 8449 /// allocation. This produces generally horrible, but correct, code. 8450 /// 8451 /// OpInfo describes the operand 8452 /// RefOpInfo describes the matching operand if any, the operand otherwise 8453 static llvm::Optional<unsigned> 8454 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8455 SDISelAsmOperandInfo &OpInfo, 8456 SDISelAsmOperandInfo &RefOpInfo) { 8457 LLVMContext &Context = *DAG.getContext(); 8458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8459 8460 MachineFunction &MF = DAG.getMachineFunction(); 8461 SmallVector<unsigned, 4> Regs; 8462 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8463 8464 // No work to do for memory operations. 8465 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8466 return None; 8467 8468 // If this is a constraint for a single physreg, or a constraint for a 8469 // register class, find it. 8470 unsigned AssignedReg; 8471 const TargetRegisterClass *RC; 8472 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8473 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8474 // RC is unset only on failure. Return immediately. 8475 if (!RC) 8476 return None; 8477 8478 // Get the actual register value type. This is important, because the user 8479 // may have asked for (e.g.) the AX register in i32 type. We need to 8480 // remember that AX is actually i16 to get the right extension. 8481 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8482 8483 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8484 // If this is an FP operand in an integer register (or visa versa), or more 8485 // generally if the operand value disagrees with the register class we plan 8486 // to stick it in, fix the operand type. 8487 // 8488 // If this is an input value, the bitcast to the new type is done now. 8489 // Bitcast for output value is done at the end of visitInlineAsm(). 8490 if ((OpInfo.Type == InlineAsm::isOutput || 8491 OpInfo.Type == InlineAsm::isInput) && 8492 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8493 // Try to convert to the first EVT that the reg class contains. If the 8494 // types are identical size, use a bitcast to convert (e.g. two differing 8495 // vector types). Note: output bitcast is done at the end of 8496 // visitInlineAsm(). 8497 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8498 // Exclude indirect inputs while they are unsupported because the code 8499 // to perform the load is missing and thus OpInfo.CallOperand still 8500 // refers to the input address rather than the pointed-to value. 8501 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8502 OpInfo.CallOperand = 8503 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8504 OpInfo.ConstraintVT = RegVT; 8505 // If the operand is an FP value and we want it in integer registers, 8506 // use the corresponding integer type. This turns an f64 value into 8507 // i64, which can be passed with two i32 values on a 32-bit machine. 8508 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8509 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8510 if (OpInfo.Type == InlineAsm::isInput) 8511 OpInfo.CallOperand = 8512 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8513 OpInfo.ConstraintVT = VT; 8514 } 8515 } 8516 } 8517 8518 // No need to allocate a matching input constraint since the constraint it's 8519 // matching to has already been allocated. 8520 if (OpInfo.isMatchingInputConstraint()) 8521 return None; 8522 8523 EVT ValueVT = OpInfo.ConstraintVT; 8524 if (OpInfo.ConstraintVT == MVT::Other) 8525 ValueVT = RegVT; 8526 8527 // Initialize NumRegs. 8528 unsigned NumRegs = 1; 8529 if (OpInfo.ConstraintVT != MVT::Other) 8530 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8531 8532 // If this is a constraint for a specific physical register, like {r17}, 8533 // assign it now. 8534 8535 // If this associated to a specific register, initialize iterator to correct 8536 // place. If virtual, make sure we have enough registers 8537 8538 // Initialize iterator if necessary 8539 TargetRegisterClass::iterator I = RC->begin(); 8540 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8541 8542 // Do not check for single registers. 8543 if (AssignedReg) { 8544 I = std::find(I, RC->end(), AssignedReg); 8545 if (I == RC->end()) { 8546 // RC does not contain the selected register, which indicates a 8547 // mismatch between the register and the required type/bitwidth. 8548 return {AssignedReg}; 8549 } 8550 } 8551 8552 for (; NumRegs; --NumRegs, ++I) { 8553 assert(I != RC->end() && "Ran out of registers to allocate!"); 8554 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8555 Regs.push_back(R); 8556 } 8557 8558 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8559 return None; 8560 } 8561 8562 static unsigned 8563 findMatchingInlineAsmOperand(unsigned OperandNo, 8564 const std::vector<SDValue> &AsmNodeOperands) { 8565 // Scan until we find the definition we already emitted of this operand. 8566 unsigned CurOp = InlineAsm::Op_FirstOperand; 8567 for (; OperandNo; --OperandNo) { 8568 // Advance to the next operand. 8569 unsigned OpFlag = 8570 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8571 assert((InlineAsm::isRegDefKind(OpFlag) || 8572 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8573 InlineAsm::isMemKind(OpFlag)) && 8574 "Skipped past definitions?"); 8575 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8576 } 8577 return CurOp; 8578 } 8579 8580 namespace { 8581 8582 class ExtraFlags { 8583 unsigned Flags = 0; 8584 8585 public: 8586 explicit ExtraFlags(const CallBase &Call) { 8587 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8588 if (IA->hasSideEffects()) 8589 Flags |= InlineAsm::Extra_HasSideEffects; 8590 if (IA->isAlignStack()) 8591 Flags |= InlineAsm::Extra_IsAlignStack; 8592 if (Call.isConvergent()) 8593 Flags |= InlineAsm::Extra_IsConvergent; 8594 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8595 } 8596 8597 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8598 // Ideally, we would only check against memory constraints. However, the 8599 // meaning of an Other constraint can be target-specific and we can't easily 8600 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8601 // for Other constraints as well. 8602 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8603 OpInfo.ConstraintType == TargetLowering::C_Other) { 8604 if (OpInfo.Type == InlineAsm::isInput) 8605 Flags |= InlineAsm::Extra_MayLoad; 8606 else if (OpInfo.Type == InlineAsm::isOutput) 8607 Flags |= InlineAsm::Extra_MayStore; 8608 else if (OpInfo.Type == InlineAsm::isClobber) 8609 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8610 } 8611 } 8612 8613 unsigned get() const { return Flags; } 8614 }; 8615 8616 } // end anonymous namespace 8617 8618 /// visitInlineAsm - Handle a call to an InlineAsm object. 8619 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8620 const BasicBlock *EHPadBB) { 8621 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8622 8623 /// ConstraintOperands - Information about all of the constraints. 8624 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8625 8626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8627 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8628 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8629 8630 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8631 // AsmDialect, MayLoad, MayStore). 8632 bool HasSideEffect = IA->hasSideEffects(); 8633 ExtraFlags ExtraInfo(Call); 8634 8635 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8636 unsigned ResNo = 0; // ResNo - The result number of the next output. 8637 for (auto &T : TargetConstraints) { 8638 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8639 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8640 8641 // Compute the value type for each operand. 8642 if (OpInfo.hasArg()) { 8643 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8644 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8645 Type *ParamElemTy = Call.getParamElementType(ArgNo); 8646 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8647 DAG.getDataLayout(), ParamElemTy); 8648 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8649 ArgNo++; 8650 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8651 // The return value of the call is this value. As such, there is no 8652 // corresponding argument. 8653 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8654 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8655 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8656 DAG.getDataLayout(), STy->getElementType(ResNo)); 8657 } else { 8658 assert(ResNo == 0 && "Asm only has one result!"); 8659 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8660 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8661 } 8662 ++ResNo; 8663 } else { 8664 OpInfo.ConstraintVT = MVT::Other; 8665 } 8666 8667 if (!HasSideEffect) 8668 HasSideEffect = OpInfo.hasMemory(TLI); 8669 8670 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8671 // FIXME: Could we compute this on OpInfo rather than T? 8672 8673 // Compute the constraint code and ConstraintType to use. 8674 TLI.ComputeConstraintToUse(T, SDValue()); 8675 8676 if (T.ConstraintType == TargetLowering::C_Immediate && 8677 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8678 // We've delayed emitting a diagnostic like the "n" constraint because 8679 // inlining could cause an integer showing up. 8680 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8681 "' expects an integer constant " 8682 "expression"); 8683 8684 ExtraInfo.update(T); 8685 } 8686 8687 // We won't need to flush pending loads if this asm doesn't touch 8688 // memory and is nonvolatile. 8689 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8690 8691 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8692 if (EmitEHLabels) { 8693 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8694 } 8695 bool IsCallBr = isa<CallBrInst>(Call); 8696 8697 if (IsCallBr || EmitEHLabels) { 8698 // If this is a callbr or invoke we need to flush pending exports since 8699 // inlineasm_br and invoke are terminators. 8700 // We need to do this before nodes are glued to the inlineasm_br node. 8701 Chain = getControlRoot(); 8702 } 8703 8704 MCSymbol *BeginLabel = nullptr; 8705 if (EmitEHLabels) { 8706 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8707 } 8708 8709 // Second pass over the constraints: compute which constraint option to use. 8710 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8711 // If this is an output operand with a matching input operand, look up the 8712 // matching input. If their types mismatch, e.g. one is an integer, the 8713 // other is floating point, or their sizes are different, flag it as an 8714 // error. 8715 if (OpInfo.hasMatchingInput()) { 8716 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8717 patchMatchingInput(OpInfo, Input, DAG); 8718 } 8719 8720 // Compute the constraint code and ConstraintType to use. 8721 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8722 8723 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8724 OpInfo.Type == InlineAsm::isClobber) 8725 continue; 8726 8727 // If this is a memory input, and if the operand is not indirect, do what we 8728 // need to provide an address for the memory input. 8729 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8730 !OpInfo.isIndirect) { 8731 assert((OpInfo.isMultipleAlternative || 8732 (OpInfo.Type == InlineAsm::isInput)) && 8733 "Can only indirectify direct input operands!"); 8734 8735 // Memory operands really want the address of the value. 8736 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8737 8738 // There is no longer a Value* corresponding to this operand. 8739 OpInfo.CallOperandVal = nullptr; 8740 8741 // It is now an indirect operand. 8742 OpInfo.isIndirect = true; 8743 } 8744 8745 } 8746 8747 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8748 std::vector<SDValue> AsmNodeOperands; 8749 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8750 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8751 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8752 8753 // If we have a !srcloc metadata node associated with it, we want to attach 8754 // this to the ultimately generated inline asm machineinstr. To do this, we 8755 // pass in the third operand as this (potentially null) inline asm MDNode. 8756 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8757 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8758 8759 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8760 // bits as operand 3. 8761 AsmNodeOperands.push_back(DAG.getTargetConstant( 8762 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8763 8764 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8765 // this, assign virtual and physical registers for inputs and otput. 8766 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8767 // Assign Registers. 8768 SDISelAsmOperandInfo &RefOpInfo = 8769 OpInfo.isMatchingInputConstraint() 8770 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8771 : OpInfo; 8772 const auto RegError = 8773 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8774 if (RegError.hasValue()) { 8775 const MachineFunction &MF = DAG.getMachineFunction(); 8776 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8777 const char *RegName = TRI.getName(RegError.getValue()); 8778 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8779 "' allocated for constraint '" + 8780 Twine(OpInfo.ConstraintCode) + 8781 "' does not match required type"); 8782 return; 8783 } 8784 8785 auto DetectWriteToReservedRegister = [&]() { 8786 const MachineFunction &MF = DAG.getMachineFunction(); 8787 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8788 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8789 if (Register::isPhysicalRegister(Reg) && 8790 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8791 const char *RegName = TRI.getName(Reg); 8792 emitInlineAsmError(Call, "write to reserved register '" + 8793 Twine(RegName) + "'"); 8794 return true; 8795 } 8796 } 8797 return false; 8798 }; 8799 8800 switch (OpInfo.Type) { 8801 case InlineAsm::isOutput: 8802 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8803 unsigned ConstraintID = 8804 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8805 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8806 "Failed to convert memory constraint code to constraint id."); 8807 8808 // Add information to the INLINEASM node to know about this output. 8809 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8810 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8811 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8812 MVT::i32)); 8813 AsmNodeOperands.push_back(OpInfo.CallOperand); 8814 } else { 8815 // Otherwise, this outputs to a register (directly for C_Register / 8816 // C_RegisterClass, and a target-defined fashion for 8817 // C_Immediate/C_Other). Find a register that we can use. 8818 if (OpInfo.AssignedRegs.Regs.empty()) { 8819 emitInlineAsmError( 8820 Call, "couldn't allocate output register for constraint '" + 8821 Twine(OpInfo.ConstraintCode) + "'"); 8822 return; 8823 } 8824 8825 if (DetectWriteToReservedRegister()) 8826 return; 8827 8828 // Add information to the INLINEASM node to know that this register is 8829 // set. 8830 OpInfo.AssignedRegs.AddInlineAsmOperands( 8831 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8832 : InlineAsm::Kind_RegDef, 8833 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8834 } 8835 break; 8836 8837 case InlineAsm::isInput: { 8838 SDValue InOperandVal = OpInfo.CallOperand; 8839 8840 if (OpInfo.isMatchingInputConstraint()) { 8841 // If this is required to match an output register we have already set, 8842 // just use its register. 8843 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8844 AsmNodeOperands); 8845 unsigned OpFlag = 8846 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8847 if (InlineAsm::isRegDefKind(OpFlag) || 8848 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8849 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8850 if (OpInfo.isIndirect) { 8851 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8852 emitInlineAsmError(Call, "inline asm not supported yet: " 8853 "don't know how to handle tied " 8854 "indirect register inputs"); 8855 return; 8856 } 8857 8858 SmallVector<unsigned, 4> Regs; 8859 MachineFunction &MF = DAG.getMachineFunction(); 8860 MachineRegisterInfo &MRI = MF.getRegInfo(); 8861 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8862 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8863 Register TiedReg = R->getReg(); 8864 MVT RegVT = R->getSimpleValueType(0); 8865 const TargetRegisterClass *RC = 8866 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8867 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8868 : TRI.getMinimalPhysRegClass(TiedReg); 8869 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8870 for (unsigned i = 0; i != NumRegs; ++i) 8871 Regs.push_back(MRI.createVirtualRegister(RC)); 8872 8873 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8874 8875 SDLoc dl = getCurSDLoc(); 8876 // Use the produced MatchedRegs object to 8877 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8878 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8879 true, OpInfo.getMatchedOperand(), dl, 8880 DAG, AsmNodeOperands); 8881 break; 8882 } 8883 8884 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8885 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8886 "Unexpected number of operands"); 8887 // Add information to the INLINEASM node to know about this input. 8888 // See InlineAsm.h isUseOperandTiedToDef. 8889 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8890 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8891 OpInfo.getMatchedOperand()); 8892 AsmNodeOperands.push_back(DAG.getTargetConstant( 8893 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8894 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8895 break; 8896 } 8897 8898 // Treat indirect 'X' constraint as memory. 8899 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8900 OpInfo.isIndirect) 8901 OpInfo.ConstraintType = TargetLowering::C_Memory; 8902 8903 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8904 OpInfo.ConstraintType == TargetLowering::C_Other) { 8905 std::vector<SDValue> Ops; 8906 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8907 Ops, DAG); 8908 if (Ops.empty()) { 8909 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8910 if (isa<ConstantSDNode>(InOperandVal)) { 8911 emitInlineAsmError(Call, "value out of range for constraint '" + 8912 Twine(OpInfo.ConstraintCode) + "'"); 8913 return; 8914 } 8915 8916 emitInlineAsmError(Call, 8917 "invalid operand for inline asm constraint '" + 8918 Twine(OpInfo.ConstraintCode) + "'"); 8919 return; 8920 } 8921 8922 // Add information to the INLINEASM node to know about this input. 8923 unsigned ResOpType = 8924 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8925 AsmNodeOperands.push_back(DAG.getTargetConstant( 8926 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8927 llvm::append_range(AsmNodeOperands, Ops); 8928 break; 8929 } 8930 8931 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8932 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8933 assert(InOperandVal.getValueType() == 8934 TLI.getPointerTy(DAG.getDataLayout()) && 8935 "Memory operands expect pointer values"); 8936 8937 unsigned ConstraintID = 8938 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8939 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8940 "Failed to convert memory constraint code to constraint id."); 8941 8942 // Add information to the INLINEASM node to know about this input. 8943 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8944 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8945 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8946 getCurSDLoc(), 8947 MVT::i32)); 8948 AsmNodeOperands.push_back(InOperandVal); 8949 break; 8950 } 8951 8952 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8953 OpInfo.ConstraintType == TargetLowering::C_Register) && 8954 "Unknown constraint type!"); 8955 8956 // TODO: Support this. 8957 if (OpInfo.isIndirect) { 8958 emitInlineAsmError( 8959 Call, "Don't know how to handle indirect register inputs yet " 8960 "for constraint '" + 8961 Twine(OpInfo.ConstraintCode) + "'"); 8962 return; 8963 } 8964 8965 // Copy the input into the appropriate registers. 8966 if (OpInfo.AssignedRegs.Regs.empty()) { 8967 emitInlineAsmError(Call, 8968 "couldn't allocate input reg for constraint '" + 8969 Twine(OpInfo.ConstraintCode) + "'"); 8970 return; 8971 } 8972 8973 if (DetectWriteToReservedRegister()) 8974 return; 8975 8976 SDLoc dl = getCurSDLoc(); 8977 8978 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8979 &Call); 8980 8981 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8982 dl, DAG, AsmNodeOperands); 8983 break; 8984 } 8985 case InlineAsm::isClobber: 8986 // Add the clobbered value to the operand list, so that the register 8987 // allocator is aware that the physreg got clobbered. 8988 if (!OpInfo.AssignedRegs.Regs.empty()) 8989 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8990 false, 0, getCurSDLoc(), DAG, 8991 AsmNodeOperands); 8992 break; 8993 } 8994 } 8995 8996 // Finish up input operands. Set the input chain and add the flag last. 8997 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8998 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8999 9000 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9001 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9002 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9003 Flag = Chain.getValue(1); 9004 9005 // Do additional work to generate outputs. 9006 9007 SmallVector<EVT, 1> ResultVTs; 9008 SmallVector<SDValue, 1> ResultValues; 9009 SmallVector<SDValue, 8> OutChains; 9010 9011 llvm::Type *CallResultType = Call.getType(); 9012 ArrayRef<Type *> ResultTypes; 9013 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9014 ResultTypes = StructResult->elements(); 9015 else if (!CallResultType->isVoidTy()) 9016 ResultTypes = makeArrayRef(CallResultType); 9017 9018 auto CurResultType = ResultTypes.begin(); 9019 auto handleRegAssign = [&](SDValue V) { 9020 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9021 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9022 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9023 ++CurResultType; 9024 // If the type of the inline asm call site return value is different but has 9025 // same size as the type of the asm output bitcast it. One example of this 9026 // is for vectors with different width / number of elements. This can 9027 // happen for register classes that can contain multiple different value 9028 // types. The preg or vreg allocated may not have the same VT as was 9029 // expected. 9030 // 9031 // This can also happen for a return value that disagrees with the register 9032 // class it is put in, eg. a double in a general-purpose register on a 9033 // 32-bit machine. 9034 if (ResultVT != V.getValueType() && 9035 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9036 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9037 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9038 V.getValueType().isInteger()) { 9039 // If a result value was tied to an input value, the computed result 9040 // may have a wider width than the expected result. Extract the 9041 // relevant portion. 9042 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9043 } 9044 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9045 ResultVTs.push_back(ResultVT); 9046 ResultValues.push_back(V); 9047 }; 9048 9049 // Deal with output operands. 9050 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9051 if (OpInfo.Type == InlineAsm::isOutput) { 9052 SDValue Val; 9053 // Skip trivial output operands. 9054 if (OpInfo.AssignedRegs.Regs.empty()) 9055 continue; 9056 9057 switch (OpInfo.ConstraintType) { 9058 case TargetLowering::C_Register: 9059 case TargetLowering::C_RegisterClass: 9060 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9061 Chain, &Flag, &Call); 9062 break; 9063 case TargetLowering::C_Immediate: 9064 case TargetLowering::C_Other: 9065 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9066 OpInfo, DAG); 9067 break; 9068 case TargetLowering::C_Memory: 9069 break; // Already handled. 9070 case TargetLowering::C_Unknown: 9071 assert(false && "Unexpected unknown constraint"); 9072 } 9073 9074 // Indirect output manifest as stores. Record output chains. 9075 if (OpInfo.isIndirect) { 9076 const Value *Ptr = OpInfo.CallOperandVal; 9077 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9078 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9079 MachinePointerInfo(Ptr)); 9080 OutChains.push_back(Store); 9081 } else { 9082 // generate CopyFromRegs to associated registers. 9083 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9084 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9085 for (const SDValue &V : Val->op_values()) 9086 handleRegAssign(V); 9087 } else 9088 handleRegAssign(Val); 9089 } 9090 } 9091 } 9092 9093 // Set results. 9094 if (!ResultValues.empty()) { 9095 assert(CurResultType == ResultTypes.end() && 9096 "Mismatch in number of ResultTypes"); 9097 assert(ResultValues.size() == ResultTypes.size() && 9098 "Mismatch in number of output operands in asm result"); 9099 9100 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9101 DAG.getVTList(ResultVTs), ResultValues); 9102 setValue(&Call, V); 9103 } 9104 9105 // Collect store chains. 9106 if (!OutChains.empty()) 9107 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9108 9109 if (EmitEHLabels) { 9110 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9111 } 9112 9113 // Only Update Root if inline assembly has a memory effect. 9114 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9115 EmitEHLabels) 9116 DAG.setRoot(Chain); 9117 } 9118 9119 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9120 const Twine &Message) { 9121 LLVMContext &Ctx = *DAG.getContext(); 9122 Ctx.emitError(&Call, Message); 9123 9124 // Make sure we leave the DAG in a valid state 9125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9126 SmallVector<EVT, 1> ValueVTs; 9127 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9128 9129 if (ValueVTs.empty()) 9130 return; 9131 9132 SmallVector<SDValue, 1> Ops; 9133 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9134 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9135 9136 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9137 } 9138 9139 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9140 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9141 MVT::Other, getRoot(), 9142 getValue(I.getArgOperand(0)), 9143 DAG.getSrcValue(I.getArgOperand(0)))); 9144 } 9145 9146 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9148 const DataLayout &DL = DAG.getDataLayout(); 9149 SDValue V = DAG.getVAArg( 9150 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9151 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9152 DL.getABITypeAlign(I.getType()).value()); 9153 DAG.setRoot(V.getValue(1)); 9154 9155 if (I.getType()->isPointerTy()) 9156 V = DAG.getPtrExtOrTrunc( 9157 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9158 setValue(&I, V); 9159 } 9160 9161 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9162 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9163 MVT::Other, getRoot(), 9164 getValue(I.getArgOperand(0)), 9165 DAG.getSrcValue(I.getArgOperand(0)))); 9166 } 9167 9168 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9169 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9170 MVT::Other, getRoot(), 9171 getValue(I.getArgOperand(0)), 9172 getValue(I.getArgOperand(1)), 9173 DAG.getSrcValue(I.getArgOperand(0)), 9174 DAG.getSrcValue(I.getArgOperand(1)))); 9175 } 9176 9177 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9178 const Instruction &I, 9179 SDValue Op) { 9180 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9181 if (!Range) 9182 return Op; 9183 9184 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9185 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9186 return Op; 9187 9188 APInt Lo = CR.getUnsignedMin(); 9189 if (!Lo.isMinValue()) 9190 return Op; 9191 9192 APInt Hi = CR.getUnsignedMax(); 9193 unsigned Bits = std::max(Hi.getActiveBits(), 9194 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9195 9196 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9197 9198 SDLoc SL = getCurSDLoc(); 9199 9200 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9201 DAG.getValueType(SmallVT)); 9202 unsigned NumVals = Op.getNode()->getNumValues(); 9203 if (NumVals == 1) 9204 return ZExt; 9205 9206 SmallVector<SDValue, 4> Ops; 9207 9208 Ops.push_back(ZExt); 9209 for (unsigned I = 1; I != NumVals; ++I) 9210 Ops.push_back(Op.getValue(I)); 9211 9212 return DAG.getMergeValues(Ops, SL); 9213 } 9214 9215 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9216 /// the call being lowered. 9217 /// 9218 /// This is a helper for lowering intrinsics that follow a target calling 9219 /// convention or require stack pointer adjustment. Only a subset of the 9220 /// intrinsic's operands need to participate in the calling convention. 9221 void SelectionDAGBuilder::populateCallLoweringInfo( 9222 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9223 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9224 bool IsPatchPoint) { 9225 TargetLowering::ArgListTy Args; 9226 Args.reserve(NumArgs); 9227 9228 // Populate the argument list. 9229 // Attributes for args start at offset 1, after the return attribute. 9230 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9231 ArgI != ArgE; ++ArgI) { 9232 const Value *V = Call->getOperand(ArgI); 9233 9234 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9235 9236 TargetLowering::ArgListEntry Entry; 9237 Entry.Node = getValue(V); 9238 Entry.Ty = V->getType(); 9239 Entry.setAttributes(Call, ArgI); 9240 Args.push_back(Entry); 9241 } 9242 9243 CLI.setDebugLoc(getCurSDLoc()) 9244 .setChain(getRoot()) 9245 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9246 .setDiscardResult(Call->use_empty()) 9247 .setIsPatchPoint(IsPatchPoint) 9248 .setIsPreallocated( 9249 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9250 } 9251 9252 /// Add a stack map intrinsic call's live variable operands to a stackmap 9253 /// or patchpoint target node's operand list. 9254 /// 9255 /// Constants are converted to TargetConstants purely as an optimization to 9256 /// avoid constant materialization and register allocation. 9257 /// 9258 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9259 /// generate addess computation nodes, and so FinalizeISel can convert the 9260 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9261 /// address materialization and register allocation, but may also be required 9262 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9263 /// alloca in the entry block, then the runtime may assume that the alloca's 9264 /// StackMap location can be read immediately after compilation and that the 9265 /// location is valid at any point during execution (this is similar to the 9266 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9267 /// only available in a register, then the runtime would need to trap when 9268 /// execution reaches the StackMap in order to read the alloca's location. 9269 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9270 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9271 SelectionDAGBuilder &Builder) { 9272 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9273 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9274 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9275 Ops.push_back( 9276 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9277 Ops.push_back( 9278 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9279 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9280 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9281 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9282 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9283 } else 9284 Ops.push_back(OpVal); 9285 } 9286 } 9287 9288 /// Lower llvm.experimental.stackmap directly to its target opcode. 9289 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9290 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9291 // [live variables...]) 9292 9293 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9294 9295 SDValue Chain, InFlag, Callee, NullPtr; 9296 SmallVector<SDValue, 32> Ops; 9297 9298 SDLoc DL = getCurSDLoc(); 9299 Callee = getValue(CI.getCalledOperand()); 9300 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9301 9302 // The stackmap intrinsic only records the live variables (the arguments 9303 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9304 // intrinsic, this won't be lowered to a function call. This means we don't 9305 // have to worry about calling conventions and target specific lowering code. 9306 // Instead we perform the call lowering right here. 9307 // 9308 // chain, flag = CALLSEQ_START(chain, 0, 0) 9309 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9310 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9311 // 9312 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9313 InFlag = Chain.getValue(1); 9314 9315 // Add the <id> and <numBytes> constants. 9316 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9317 Ops.push_back(DAG.getTargetConstant( 9318 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9319 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9320 Ops.push_back(DAG.getTargetConstant( 9321 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9322 MVT::i32)); 9323 9324 // Push live variables for the stack map. 9325 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9326 9327 // We are not pushing any register mask info here on the operands list, 9328 // because the stackmap doesn't clobber anything. 9329 9330 // Push the chain and the glue flag. 9331 Ops.push_back(Chain); 9332 Ops.push_back(InFlag); 9333 9334 // Create the STACKMAP node. 9335 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9336 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9337 Chain = SDValue(SM, 0); 9338 InFlag = Chain.getValue(1); 9339 9340 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9341 9342 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9343 9344 // Set the root to the target-lowered call chain. 9345 DAG.setRoot(Chain); 9346 9347 // Inform the Frame Information that we have a stackmap in this function. 9348 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9349 } 9350 9351 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9352 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9353 const BasicBlock *EHPadBB) { 9354 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9355 // i32 <numBytes>, 9356 // i8* <target>, 9357 // i32 <numArgs>, 9358 // [Args...], 9359 // [live variables...]) 9360 9361 CallingConv::ID CC = CB.getCallingConv(); 9362 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9363 bool HasDef = !CB.getType()->isVoidTy(); 9364 SDLoc dl = getCurSDLoc(); 9365 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9366 9367 // Handle immediate and symbolic callees. 9368 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9369 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9370 /*isTarget=*/true); 9371 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9372 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9373 SDLoc(SymbolicCallee), 9374 SymbolicCallee->getValueType(0)); 9375 9376 // Get the real number of arguments participating in the call <numArgs> 9377 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9378 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9379 9380 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9381 // Intrinsics include all meta-operands up to but not including CC. 9382 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9383 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9384 "Not enough arguments provided to the patchpoint intrinsic"); 9385 9386 // For AnyRegCC the arguments are lowered later on manually. 9387 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9388 Type *ReturnTy = 9389 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9390 9391 TargetLowering::CallLoweringInfo CLI(DAG); 9392 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9393 ReturnTy, true); 9394 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9395 9396 SDNode *CallEnd = Result.second.getNode(); 9397 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9398 CallEnd = CallEnd->getOperand(0).getNode(); 9399 9400 /// Get a call instruction from the call sequence chain. 9401 /// Tail calls are not allowed. 9402 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9403 "Expected a callseq node."); 9404 SDNode *Call = CallEnd->getOperand(0).getNode(); 9405 bool HasGlue = Call->getGluedNode(); 9406 9407 // Replace the target specific call node with the patchable intrinsic. 9408 SmallVector<SDValue, 8> Ops; 9409 9410 // Add the <id> and <numBytes> constants. 9411 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9412 Ops.push_back(DAG.getTargetConstant( 9413 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9414 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9415 Ops.push_back(DAG.getTargetConstant( 9416 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9417 MVT::i32)); 9418 9419 // Add the callee. 9420 Ops.push_back(Callee); 9421 9422 // Adjust <numArgs> to account for any arguments that have been passed on the 9423 // stack instead. 9424 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9425 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9426 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9427 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9428 9429 // Add the calling convention 9430 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9431 9432 // Add the arguments we omitted previously. The register allocator should 9433 // place these in any free register. 9434 if (IsAnyRegCC) 9435 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9436 Ops.push_back(getValue(CB.getArgOperand(i))); 9437 9438 // Push the arguments from the call instruction up to the register mask. 9439 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9440 Ops.append(Call->op_begin() + 2, e); 9441 9442 // Push live variables for the stack map. 9443 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9444 9445 // Push the register mask info. 9446 if (HasGlue) 9447 Ops.push_back(*(Call->op_end()-2)); 9448 else 9449 Ops.push_back(*(Call->op_end()-1)); 9450 9451 // Push the chain (this is originally the first operand of the call, but 9452 // becomes now the last or second to last operand). 9453 Ops.push_back(*(Call->op_begin())); 9454 9455 // Push the glue flag (last operand). 9456 if (HasGlue) 9457 Ops.push_back(*(Call->op_end()-1)); 9458 9459 SDVTList NodeTys; 9460 if (IsAnyRegCC && HasDef) { 9461 // Create the return types based on the intrinsic definition 9462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9463 SmallVector<EVT, 3> ValueVTs; 9464 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9465 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9466 9467 // There is always a chain and a glue type at the end 9468 ValueVTs.push_back(MVT::Other); 9469 ValueVTs.push_back(MVT::Glue); 9470 NodeTys = DAG.getVTList(ValueVTs); 9471 } else 9472 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9473 9474 // Replace the target specific call node with a PATCHPOINT node. 9475 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9476 dl, NodeTys, Ops); 9477 9478 // Update the NodeMap. 9479 if (HasDef) { 9480 if (IsAnyRegCC) 9481 setValue(&CB, SDValue(MN, 0)); 9482 else 9483 setValue(&CB, Result.first); 9484 } 9485 9486 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9487 // call sequence. Furthermore the location of the chain and glue can change 9488 // when the AnyReg calling convention is used and the intrinsic returns a 9489 // value. 9490 if (IsAnyRegCC && HasDef) { 9491 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9492 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9493 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9494 } else 9495 DAG.ReplaceAllUsesWith(Call, MN); 9496 DAG.DeleteNode(Call); 9497 9498 // Inform the Frame Information that we have a patchpoint in this function. 9499 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9500 } 9501 9502 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9503 unsigned Intrinsic) { 9504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9505 SDValue Op1 = getValue(I.getArgOperand(0)); 9506 SDValue Op2; 9507 if (I.arg_size() > 1) 9508 Op2 = getValue(I.getArgOperand(1)); 9509 SDLoc dl = getCurSDLoc(); 9510 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9511 SDValue Res; 9512 SDNodeFlags SDFlags; 9513 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9514 SDFlags.copyFMF(*FPMO); 9515 9516 switch (Intrinsic) { 9517 case Intrinsic::vector_reduce_fadd: 9518 if (SDFlags.hasAllowReassociation()) 9519 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9520 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9521 SDFlags); 9522 else 9523 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9524 break; 9525 case Intrinsic::vector_reduce_fmul: 9526 if (SDFlags.hasAllowReassociation()) 9527 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9528 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9529 SDFlags); 9530 else 9531 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9532 break; 9533 case Intrinsic::vector_reduce_add: 9534 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9535 break; 9536 case Intrinsic::vector_reduce_mul: 9537 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9538 break; 9539 case Intrinsic::vector_reduce_and: 9540 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9541 break; 9542 case Intrinsic::vector_reduce_or: 9543 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9544 break; 9545 case Intrinsic::vector_reduce_xor: 9546 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9547 break; 9548 case Intrinsic::vector_reduce_smax: 9549 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9550 break; 9551 case Intrinsic::vector_reduce_smin: 9552 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9553 break; 9554 case Intrinsic::vector_reduce_umax: 9555 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9556 break; 9557 case Intrinsic::vector_reduce_umin: 9558 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9559 break; 9560 case Intrinsic::vector_reduce_fmax: 9561 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9562 break; 9563 case Intrinsic::vector_reduce_fmin: 9564 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9565 break; 9566 default: 9567 llvm_unreachable("Unhandled vector reduce intrinsic"); 9568 } 9569 setValue(&I, Res); 9570 } 9571 9572 /// Returns an AttributeList representing the attributes applied to the return 9573 /// value of the given call. 9574 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9575 SmallVector<Attribute::AttrKind, 2> Attrs; 9576 if (CLI.RetSExt) 9577 Attrs.push_back(Attribute::SExt); 9578 if (CLI.RetZExt) 9579 Attrs.push_back(Attribute::ZExt); 9580 if (CLI.IsInReg) 9581 Attrs.push_back(Attribute::InReg); 9582 9583 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9584 Attrs); 9585 } 9586 9587 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9588 /// implementation, which just calls LowerCall. 9589 /// FIXME: When all targets are 9590 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9591 std::pair<SDValue, SDValue> 9592 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9593 // Handle the incoming return values from the call. 9594 CLI.Ins.clear(); 9595 Type *OrigRetTy = CLI.RetTy; 9596 SmallVector<EVT, 4> RetTys; 9597 SmallVector<uint64_t, 4> Offsets; 9598 auto &DL = CLI.DAG.getDataLayout(); 9599 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9600 9601 if (CLI.IsPostTypeLegalization) { 9602 // If we are lowering a libcall after legalization, split the return type. 9603 SmallVector<EVT, 4> OldRetTys; 9604 SmallVector<uint64_t, 4> OldOffsets; 9605 RetTys.swap(OldRetTys); 9606 Offsets.swap(OldOffsets); 9607 9608 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9609 EVT RetVT = OldRetTys[i]; 9610 uint64_t Offset = OldOffsets[i]; 9611 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9612 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9613 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9614 RetTys.append(NumRegs, RegisterVT); 9615 for (unsigned j = 0; j != NumRegs; ++j) 9616 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9617 } 9618 } 9619 9620 SmallVector<ISD::OutputArg, 4> Outs; 9621 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9622 9623 bool CanLowerReturn = 9624 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9625 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9626 9627 SDValue DemoteStackSlot; 9628 int DemoteStackIdx = -100; 9629 if (!CanLowerReturn) { 9630 // FIXME: equivalent assert? 9631 // assert(!CS.hasInAllocaArgument() && 9632 // "sret demotion is incompatible with inalloca"); 9633 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9634 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9635 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9636 DemoteStackIdx = 9637 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9638 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9639 DL.getAllocaAddrSpace()); 9640 9641 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9642 ArgListEntry Entry; 9643 Entry.Node = DemoteStackSlot; 9644 Entry.Ty = StackSlotPtrType; 9645 Entry.IsSExt = false; 9646 Entry.IsZExt = false; 9647 Entry.IsInReg = false; 9648 Entry.IsSRet = true; 9649 Entry.IsNest = false; 9650 Entry.IsByVal = false; 9651 Entry.IsByRef = false; 9652 Entry.IsReturned = false; 9653 Entry.IsSwiftSelf = false; 9654 Entry.IsSwiftAsync = false; 9655 Entry.IsSwiftError = false; 9656 Entry.IsCFGuardTarget = false; 9657 Entry.Alignment = Alignment; 9658 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9659 CLI.NumFixedArgs += 1; 9660 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9661 9662 // sret demotion isn't compatible with tail-calls, since the sret argument 9663 // points into the callers stack frame. 9664 CLI.IsTailCall = false; 9665 } else { 9666 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9667 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9668 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9669 ISD::ArgFlagsTy Flags; 9670 if (NeedsRegBlock) { 9671 Flags.setInConsecutiveRegs(); 9672 if (I == RetTys.size() - 1) 9673 Flags.setInConsecutiveRegsLast(); 9674 } 9675 EVT VT = RetTys[I]; 9676 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9677 CLI.CallConv, VT); 9678 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9679 CLI.CallConv, VT); 9680 for (unsigned i = 0; i != NumRegs; ++i) { 9681 ISD::InputArg MyFlags; 9682 MyFlags.Flags = Flags; 9683 MyFlags.VT = RegisterVT; 9684 MyFlags.ArgVT = VT; 9685 MyFlags.Used = CLI.IsReturnValueUsed; 9686 if (CLI.RetTy->isPointerTy()) { 9687 MyFlags.Flags.setPointer(); 9688 MyFlags.Flags.setPointerAddrSpace( 9689 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9690 } 9691 if (CLI.RetSExt) 9692 MyFlags.Flags.setSExt(); 9693 if (CLI.RetZExt) 9694 MyFlags.Flags.setZExt(); 9695 if (CLI.IsInReg) 9696 MyFlags.Flags.setInReg(); 9697 CLI.Ins.push_back(MyFlags); 9698 } 9699 } 9700 } 9701 9702 // We push in swifterror return as the last element of CLI.Ins. 9703 ArgListTy &Args = CLI.getArgs(); 9704 if (supportSwiftError()) { 9705 for (const ArgListEntry &Arg : Args) { 9706 if (Arg.IsSwiftError) { 9707 ISD::InputArg MyFlags; 9708 MyFlags.VT = getPointerTy(DL); 9709 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9710 MyFlags.Flags.setSwiftError(); 9711 CLI.Ins.push_back(MyFlags); 9712 } 9713 } 9714 } 9715 9716 // Handle all of the outgoing arguments. 9717 CLI.Outs.clear(); 9718 CLI.OutVals.clear(); 9719 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9720 SmallVector<EVT, 4> ValueVTs; 9721 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9722 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9723 Type *FinalType = Args[i].Ty; 9724 if (Args[i].IsByVal) 9725 FinalType = Args[i].IndirectType; 9726 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9727 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9728 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9729 ++Value) { 9730 EVT VT = ValueVTs[Value]; 9731 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9732 SDValue Op = SDValue(Args[i].Node.getNode(), 9733 Args[i].Node.getResNo() + Value); 9734 ISD::ArgFlagsTy Flags; 9735 9736 // Certain targets (such as MIPS), may have a different ABI alignment 9737 // for a type depending on the context. Give the target a chance to 9738 // specify the alignment it wants. 9739 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9740 Flags.setOrigAlign(OriginalAlignment); 9741 9742 if (Args[i].Ty->isPointerTy()) { 9743 Flags.setPointer(); 9744 Flags.setPointerAddrSpace( 9745 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9746 } 9747 if (Args[i].IsZExt) 9748 Flags.setZExt(); 9749 if (Args[i].IsSExt) 9750 Flags.setSExt(); 9751 if (Args[i].IsInReg) { 9752 // If we are using vectorcall calling convention, a structure that is 9753 // passed InReg - is surely an HVA 9754 if (CLI.CallConv == CallingConv::X86_VectorCall && 9755 isa<StructType>(FinalType)) { 9756 // The first value of a structure is marked 9757 if (0 == Value) 9758 Flags.setHvaStart(); 9759 Flags.setHva(); 9760 } 9761 // Set InReg Flag 9762 Flags.setInReg(); 9763 } 9764 if (Args[i].IsSRet) 9765 Flags.setSRet(); 9766 if (Args[i].IsSwiftSelf) 9767 Flags.setSwiftSelf(); 9768 if (Args[i].IsSwiftAsync) 9769 Flags.setSwiftAsync(); 9770 if (Args[i].IsSwiftError) 9771 Flags.setSwiftError(); 9772 if (Args[i].IsCFGuardTarget) 9773 Flags.setCFGuardTarget(); 9774 if (Args[i].IsByVal) 9775 Flags.setByVal(); 9776 if (Args[i].IsByRef) 9777 Flags.setByRef(); 9778 if (Args[i].IsPreallocated) { 9779 Flags.setPreallocated(); 9780 // Set the byval flag for CCAssignFn callbacks that don't know about 9781 // preallocated. This way we can know how many bytes we should've 9782 // allocated and how many bytes a callee cleanup function will pop. If 9783 // we port preallocated to more targets, we'll have to add custom 9784 // preallocated handling in the various CC lowering callbacks. 9785 Flags.setByVal(); 9786 } 9787 if (Args[i].IsInAlloca) { 9788 Flags.setInAlloca(); 9789 // Set the byval flag for CCAssignFn callbacks that don't know about 9790 // inalloca. This way we can know how many bytes we should've allocated 9791 // and how many bytes a callee cleanup function will pop. If we port 9792 // inalloca to more targets, we'll have to add custom inalloca handling 9793 // in the various CC lowering callbacks. 9794 Flags.setByVal(); 9795 } 9796 Align MemAlign; 9797 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9798 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9799 Flags.setByValSize(FrameSize); 9800 9801 // info is not there but there are cases it cannot get right. 9802 if (auto MA = Args[i].Alignment) 9803 MemAlign = *MA; 9804 else 9805 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9806 } else if (auto MA = Args[i].Alignment) { 9807 MemAlign = *MA; 9808 } else { 9809 MemAlign = OriginalAlignment; 9810 } 9811 Flags.setMemAlign(MemAlign); 9812 if (Args[i].IsNest) 9813 Flags.setNest(); 9814 if (NeedsRegBlock) 9815 Flags.setInConsecutiveRegs(); 9816 9817 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9818 CLI.CallConv, VT); 9819 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9820 CLI.CallConv, VT); 9821 SmallVector<SDValue, 4> Parts(NumParts); 9822 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9823 9824 if (Args[i].IsSExt) 9825 ExtendKind = ISD::SIGN_EXTEND; 9826 else if (Args[i].IsZExt) 9827 ExtendKind = ISD::ZERO_EXTEND; 9828 9829 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9830 // for now. 9831 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9832 CanLowerReturn) { 9833 assert((CLI.RetTy == Args[i].Ty || 9834 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9835 CLI.RetTy->getPointerAddressSpace() == 9836 Args[i].Ty->getPointerAddressSpace())) && 9837 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9838 // Before passing 'returned' to the target lowering code, ensure that 9839 // either the register MVT and the actual EVT are the same size or that 9840 // the return value and argument are extended in the same way; in these 9841 // cases it's safe to pass the argument register value unchanged as the 9842 // return register value (although it's at the target's option whether 9843 // to do so) 9844 // TODO: allow code generation to take advantage of partially preserved 9845 // registers rather than clobbering the entire register when the 9846 // parameter extension method is not compatible with the return 9847 // extension method 9848 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9849 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9850 CLI.RetZExt == Args[i].IsZExt)) 9851 Flags.setReturned(); 9852 } 9853 9854 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9855 CLI.CallConv, ExtendKind); 9856 9857 for (unsigned j = 0; j != NumParts; ++j) { 9858 // if it isn't first piece, alignment must be 1 9859 // For scalable vectors the scalable part is currently handled 9860 // by individual targets, so we just use the known minimum size here. 9861 ISD::OutputArg MyFlags( 9862 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9863 i < CLI.NumFixedArgs, i, 9864 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9865 if (NumParts > 1 && j == 0) 9866 MyFlags.Flags.setSplit(); 9867 else if (j != 0) { 9868 MyFlags.Flags.setOrigAlign(Align(1)); 9869 if (j == NumParts - 1) 9870 MyFlags.Flags.setSplitEnd(); 9871 } 9872 9873 CLI.Outs.push_back(MyFlags); 9874 CLI.OutVals.push_back(Parts[j]); 9875 } 9876 9877 if (NeedsRegBlock && Value == NumValues - 1) 9878 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9879 } 9880 } 9881 9882 SmallVector<SDValue, 4> InVals; 9883 CLI.Chain = LowerCall(CLI, InVals); 9884 9885 // Update CLI.InVals to use outside of this function. 9886 CLI.InVals = InVals; 9887 9888 // Verify that the target's LowerCall behaved as expected. 9889 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9890 "LowerCall didn't return a valid chain!"); 9891 assert((!CLI.IsTailCall || InVals.empty()) && 9892 "LowerCall emitted a return value for a tail call!"); 9893 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9894 "LowerCall didn't emit the correct number of values!"); 9895 9896 // For a tail call, the return value is merely live-out and there aren't 9897 // any nodes in the DAG representing it. Return a special value to 9898 // indicate that a tail call has been emitted and no more Instructions 9899 // should be processed in the current block. 9900 if (CLI.IsTailCall) { 9901 CLI.DAG.setRoot(CLI.Chain); 9902 return std::make_pair(SDValue(), SDValue()); 9903 } 9904 9905 #ifndef NDEBUG 9906 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9907 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9908 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9909 "LowerCall emitted a value with the wrong type!"); 9910 } 9911 #endif 9912 9913 SmallVector<SDValue, 4> ReturnValues; 9914 if (!CanLowerReturn) { 9915 // The instruction result is the result of loading from the 9916 // hidden sret parameter. 9917 SmallVector<EVT, 1> PVTs; 9918 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9919 9920 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9921 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9922 EVT PtrVT = PVTs[0]; 9923 9924 unsigned NumValues = RetTys.size(); 9925 ReturnValues.resize(NumValues); 9926 SmallVector<SDValue, 4> Chains(NumValues); 9927 9928 // An aggregate return value cannot wrap around the address space, so 9929 // offsets to its parts don't wrap either. 9930 SDNodeFlags Flags; 9931 Flags.setNoUnsignedWrap(true); 9932 9933 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9934 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9935 for (unsigned i = 0; i < NumValues; ++i) { 9936 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9937 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9938 PtrVT), Flags); 9939 SDValue L = CLI.DAG.getLoad( 9940 RetTys[i], CLI.DL, CLI.Chain, Add, 9941 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9942 DemoteStackIdx, Offsets[i]), 9943 HiddenSRetAlign); 9944 ReturnValues[i] = L; 9945 Chains[i] = L.getValue(1); 9946 } 9947 9948 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9949 } else { 9950 // Collect the legal value parts into potentially illegal values 9951 // that correspond to the original function's return values. 9952 Optional<ISD::NodeType> AssertOp; 9953 if (CLI.RetSExt) 9954 AssertOp = ISD::AssertSext; 9955 else if (CLI.RetZExt) 9956 AssertOp = ISD::AssertZext; 9957 unsigned CurReg = 0; 9958 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9959 EVT VT = RetTys[I]; 9960 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9961 CLI.CallConv, VT); 9962 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9963 CLI.CallConv, VT); 9964 9965 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9966 NumRegs, RegisterVT, VT, nullptr, 9967 CLI.CallConv, AssertOp)); 9968 CurReg += NumRegs; 9969 } 9970 9971 // For a function returning void, there is no return value. We can't create 9972 // such a node, so we just return a null return value in that case. In 9973 // that case, nothing will actually look at the value. 9974 if (ReturnValues.empty()) 9975 return std::make_pair(SDValue(), CLI.Chain); 9976 } 9977 9978 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9979 CLI.DAG.getVTList(RetTys), ReturnValues); 9980 return std::make_pair(Res, CLI.Chain); 9981 } 9982 9983 /// Places new result values for the node in Results (their number 9984 /// and types must exactly match those of the original return values of 9985 /// the node), or leaves Results empty, which indicates that the node is not 9986 /// to be custom lowered after all. 9987 void TargetLowering::LowerOperationWrapper(SDNode *N, 9988 SmallVectorImpl<SDValue> &Results, 9989 SelectionDAG &DAG) const { 9990 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9991 9992 if (!Res.getNode()) 9993 return; 9994 9995 // If the original node has one result, take the return value from 9996 // LowerOperation as is. It might not be result number 0. 9997 if (N->getNumValues() == 1) { 9998 Results.push_back(Res); 9999 return; 10000 } 10001 10002 // If the original node has multiple results, then the return node should 10003 // have the same number of results. 10004 assert((N->getNumValues() == Res->getNumValues()) && 10005 "Lowering returned the wrong number of results!"); 10006 10007 // Places new result values base on N result number. 10008 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10009 Results.push_back(Res.getValue(I)); 10010 } 10011 10012 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10013 llvm_unreachable("LowerOperation not implemented for this target!"); 10014 } 10015 10016 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10017 unsigned Reg, 10018 ISD::NodeType ExtendType) { 10019 SDValue Op = getNonRegisterValue(V); 10020 assert((Op.getOpcode() != ISD::CopyFromReg || 10021 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10022 "Copy from a reg to the same reg!"); 10023 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10024 10025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10026 // If this is an InlineAsm we have to match the registers required, not the 10027 // notional registers required by the type. 10028 10029 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10030 None); // This is not an ABI copy. 10031 SDValue Chain = DAG.getEntryNode(); 10032 10033 if (ExtendType == ISD::ANY_EXTEND) { 10034 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10035 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10036 ExtendType = PreferredExtendIt->second; 10037 } 10038 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10039 PendingExports.push_back(Chain); 10040 } 10041 10042 #include "llvm/CodeGen/SelectionDAGISel.h" 10043 10044 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10045 /// entry block, return true. This includes arguments used by switches, since 10046 /// the switch may expand into multiple basic blocks. 10047 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10048 // With FastISel active, we may be splitting blocks, so force creation 10049 // of virtual registers for all non-dead arguments. 10050 if (FastISel) 10051 return A->use_empty(); 10052 10053 const BasicBlock &Entry = A->getParent()->front(); 10054 for (const User *U : A->users()) 10055 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10056 return false; // Use not in entry block. 10057 10058 return true; 10059 } 10060 10061 using ArgCopyElisionMapTy = 10062 DenseMap<const Argument *, 10063 std::pair<const AllocaInst *, const StoreInst *>>; 10064 10065 /// Scan the entry block of the function in FuncInfo for arguments that look 10066 /// like copies into a local alloca. Record any copied arguments in 10067 /// ArgCopyElisionCandidates. 10068 static void 10069 findArgumentCopyElisionCandidates(const DataLayout &DL, 10070 FunctionLoweringInfo *FuncInfo, 10071 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10072 // Record the state of every static alloca used in the entry block. Argument 10073 // allocas are all used in the entry block, so we need approximately as many 10074 // entries as we have arguments. 10075 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10076 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10077 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10078 StaticAllocas.reserve(NumArgs * 2); 10079 10080 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10081 if (!V) 10082 return nullptr; 10083 V = V->stripPointerCasts(); 10084 const auto *AI = dyn_cast<AllocaInst>(V); 10085 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10086 return nullptr; 10087 auto Iter = StaticAllocas.insert({AI, Unknown}); 10088 return &Iter.first->second; 10089 }; 10090 10091 // Look for stores of arguments to static allocas. Look through bitcasts and 10092 // GEPs to handle type coercions, as long as the alloca is fully initialized 10093 // by the store. Any non-store use of an alloca escapes it and any subsequent 10094 // unanalyzed store might write it. 10095 // FIXME: Handle structs initialized with multiple stores. 10096 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10097 // Look for stores, and handle non-store uses conservatively. 10098 const auto *SI = dyn_cast<StoreInst>(&I); 10099 if (!SI) { 10100 // We will look through cast uses, so ignore them completely. 10101 if (I.isCast()) 10102 continue; 10103 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10104 // to allocas. 10105 if (I.isDebugOrPseudoInst()) 10106 continue; 10107 // This is an unknown instruction. Assume it escapes or writes to all 10108 // static alloca operands. 10109 for (const Use &U : I.operands()) { 10110 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10111 *Info = StaticAllocaInfo::Clobbered; 10112 } 10113 continue; 10114 } 10115 10116 // If the stored value is a static alloca, mark it as escaped. 10117 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10118 *Info = StaticAllocaInfo::Clobbered; 10119 10120 // Check if the destination is a static alloca. 10121 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10122 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10123 if (!Info) 10124 continue; 10125 const AllocaInst *AI = cast<AllocaInst>(Dst); 10126 10127 // Skip allocas that have been initialized or clobbered. 10128 if (*Info != StaticAllocaInfo::Unknown) 10129 continue; 10130 10131 // Check if the stored value is an argument, and that this store fully 10132 // initializes the alloca. 10133 // If the argument type has padding bits we can't directly forward a pointer 10134 // as the upper bits may contain garbage. 10135 // Don't elide copies from the same argument twice. 10136 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10137 const auto *Arg = dyn_cast<Argument>(Val); 10138 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10139 Arg->getType()->isEmptyTy() || 10140 DL.getTypeStoreSize(Arg->getType()) != 10141 DL.getTypeAllocSize(AI->getAllocatedType()) || 10142 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10143 ArgCopyElisionCandidates.count(Arg)) { 10144 *Info = StaticAllocaInfo::Clobbered; 10145 continue; 10146 } 10147 10148 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10149 << '\n'); 10150 10151 // Mark this alloca and store for argument copy elision. 10152 *Info = StaticAllocaInfo::Elidable; 10153 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10154 10155 // Stop scanning if we've seen all arguments. This will happen early in -O0 10156 // builds, which is useful, because -O0 builds have large entry blocks and 10157 // many allocas. 10158 if (ArgCopyElisionCandidates.size() == NumArgs) 10159 break; 10160 } 10161 } 10162 10163 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10164 /// ArgVal is a load from a suitable fixed stack object. 10165 static void tryToElideArgumentCopy( 10166 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10167 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10168 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10169 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10170 SDValue ArgVal, bool &ArgHasUses) { 10171 // Check if this is a load from a fixed stack object. 10172 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10173 if (!LNode) 10174 return; 10175 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10176 if (!FINode) 10177 return; 10178 10179 // Check that the fixed stack object is the right size and alignment. 10180 // Look at the alignment that the user wrote on the alloca instead of looking 10181 // at the stack object. 10182 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10183 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10184 const AllocaInst *AI = ArgCopyIter->second.first; 10185 int FixedIndex = FINode->getIndex(); 10186 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10187 int OldIndex = AllocaIndex; 10188 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10189 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10190 LLVM_DEBUG( 10191 dbgs() << " argument copy elision failed due to bad fixed stack " 10192 "object size\n"); 10193 return; 10194 } 10195 Align RequiredAlignment = AI->getAlign(); 10196 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10197 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10198 "greater than stack argument alignment (" 10199 << DebugStr(RequiredAlignment) << " vs " 10200 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10201 return; 10202 } 10203 10204 // Perform the elision. Delete the old stack object and replace its only use 10205 // in the variable info map. Mark the stack object as mutable. 10206 LLVM_DEBUG({ 10207 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10208 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10209 << '\n'; 10210 }); 10211 MFI.RemoveStackObject(OldIndex); 10212 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10213 AllocaIndex = FixedIndex; 10214 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10215 Chains.push_back(ArgVal.getValue(1)); 10216 10217 // Avoid emitting code for the store implementing the copy. 10218 const StoreInst *SI = ArgCopyIter->second.second; 10219 ElidedArgCopyInstrs.insert(SI); 10220 10221 // Check for uses of the argument again so that we can avoid exporting ArgVal 10222 // if it is't used by anything other than the store. 10223 for (const Value *U : Arg.users()) { 10224 if (U != SI) { 10225 ArgHasUses = true; 10226 break; 10227 } 10228 } 10229 } 10230 10231 void SelectionDAGISel::LowerArguments(const Function &F) { 10232 SelectionDAG &DAG = SDB->DAG; 10233 SDLoc dl = SDB->getCurSDLoc(); 10234 const DataLayout &DL = DAG.getDataLayout(); 10235 SmallVector<ISD::InputArg, 16> Ins; 10236 10237 // In Naked functions we aren't going to save any registers. 10238 if (F.hasFnAttribute(Attribute::Naked)) 10239 return; 10240 10241 if (!FuncInfo->CanLowerReturn) { 10242 // Put in an sret pointer parameter before all the other parameters. 10243 SmallVector<EVT, 1> ValueVTs; 10244 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10245 F.getReturnType()->getPointerTo( 10246 DAG.getDataLayout().getAllocaAddrSpace()), 10247 ValueVTs); 10248 10249 // NOTE: Assuming that a pointer will never break down to more than one VT 10250 // or one register. 10251 ISD::ArgFlagsTy Flags; 10252 Flags.setSRet(); 10253 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10254 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10255 ISD::InputArg::NoArgIndex, 0); 10256 Ins.push_back(RetArg); 10257 } 10258 10259 // Look for stores of arguments to static allocas. Mark such arguments with a 10260 // flag to ask the target to give us the memory location of that argument if 10261 // available. 10262 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10263 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10264 ArgCopyElisionCandidates); 10265 10266 // Set up the incoming argument description vector. 10267 for (const Argument &Arg : F.args()) { 10268 unsigned ArgNo = Arg.getArgNo(); 10269 SmallVector<EVT, 4> ValueVTs; 10270 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10271 bool isArgValueUsed = !Arg.use_empty(); 10272 unsigned PartBase = 0; 10273 Type *FinalType = Arg.getType(); 10274 if (Arg.hasAttribute(Attribute::ByVal)) 10275 FinalType = Arg.getParamByValType(); 10276 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10277 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10278 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10279 Value != NumValues; ++Value) { 10280 EVT VT = ValueVTs[Value]; 10281 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10282 ISD::ArgFlagsTy Flags; 10283 10284 10285 if (Arg.getType()->isPointerTy()) { 10286 Flags.setPointer(); 10287 Flags.setPointerAddrSpace( 10288 cast<PointerType>(Arg.getType())->getAddressSpace()); 10289 } 10290 if (Arg.hasAttribute(Attribute::ZExt)) 10291 Flags.setZExt(); 10292 if (Arg.hasAttribute(Attribute::SExt)) 10293 Flags.setSExt(); 10294 if (Arg.hasAttribute(Attribute::InReg)) { 10295 // If we are using vectorcall calling convention, a structure that is 10296 // passed InReg - is surely an HVA 10297 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10298 isa<StructType>(Arg.getType())) { 10299 // The first value of a structure is marked 10300 if (0 == Value) 10301 Flags.setHvaStart(); 10302 Flags.setHva(); 10303 } 10304 // Set InReg Flag 10305 Flags.setInReg(); 10306 } 10307 if (Arg.hasAttribute(Attribute::StructRet)) 10308 Flags.setSRet(); 10309 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10310 Flags.setSwiftSelf(); 10311 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10312 Flags.setSwiftAsync(); 10313 if (Arg.hasAttribute(Attribute::SwiftError)) 10314 Flags.setSwiftError(); 10315 if (Arg.hasAttribute(Attribute::ByVal)) 10316 Flags.setByVal(); 10317 if (Arg.hasAttribute(Attribute::ByRef)) 10318 Flags.setByRef(); 10319 if (Arg.hasAttribute(Attribute::InAlloca)) { 10320 Flags.setInAlloca(); 10321 // Set the byval flag for CCAssignFn callbacks that don't know about 10322 // inalloca. This way we can know how many bytes we should've allocated 10323 // and how many bytes a callee cleanup function will pop. If we port 10324 // inalloca to more targets, we'll have to add custom inalloca handling 10325 // in the various CC lowering callbacks. 10326 Flags.setByVal(); 10327 } 10328 if (Arg.hasAttribute(Attribute::Preallocated)) { 10329 Flags.setPreallocated(); 10330 // Set the byval flag for CCAssignFn callbacks that don't know about 10331 // preallocated. This way we can know how many bytes we should've 10332 // allocated and how many bytes a callee cleanup function will pop. If 10333 // we port preallocated to more targets, we'll have to add custom 10334 // preallocated handling in the various CC lowering callbacks. 10335 Flags.setByVal(); 10336 } 10337 10338 // Certain targets (such as MIPS), may have a different ABI alignment 10339 // for a type depending on the context. Give the target a chance to 10340 // specify the alignment it wants. 10341 const Align OriginalAlignment( 10342 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10343 Flags.setOrigAlign(OriginalAlignment); 10344 10345 Align MemAlign; 10346 Type *ArgMemTy = nullptr; 10347 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10348 Flags.isByRef()) { 10349 if (!ArgMemTy) 10350 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10351 10352 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10353 10354 // For in-memory arguments, size and alignment should be passed from FE. 10355 // BE will guess if this info is not there but there are cases it cannot 10356 // get right. 10357 if (auto ParamAlign = Arg.getParamStackAlign()) 10358 MemAlign = *ParamAlign; 10359 else if ((ParamAlign = Arg.getParamAlign())) 10360 MemAlign = *ParamAlign; 10361 else 10362 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10363 if (Flags.isByRef()) 10364 Flags.setByRefSize(MemSize); 10365 else 10366 Flags.setByValSize(MemSize); 10367 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10368 MemAlign = *ParamAlign; 10369 } else { 10370 MemAlign = OriginalAlignment; 10371 } 10372 Flags.setMemAlign(MemAlign); 10373 10374 if (Arg.hasAttribute(Attribute::Nest)) 10375 Flags.setNest(); 10376 if (NeedsRegBlock) 10377 Flags.setInConsecutiveRegs(); 10378 if (ArgCopyElisionCandidates.count(&Arg)) 10379 Flags.setCopyElisionCandidate(); 10380 if (Arg.hasAttribute(Attribute::Returned)) 10381 Flags.setReturned(); 10382 10383 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10384 *CurDAG->getContext(), F.getCallingConv(), VT); 10385 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10386 *CurDAG->getContext(), F.getCallingConv(), VT); 10387 for (unsigned i = 0; i != NumRegs; ++i) { 10388 // For scalable vectors, use the minimum size; individual targets 10389 // are responsible for handling scalable vector arguments and 10390 // return values. 10391 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10392 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10393 if (NumRegs > 1 && i == 0) 10394 MyFlags.Flags.setSplit(); 10395 // if it isn't first piece, alignment must be 1 10396 else if (i > 0) { 10397 MyFlags.Flags.setOrigAlign(Align(1)); 10398 if (i == NumRegs - 1) 10399 MyFlags.Flags.setSplitEnd(); 10400 } 10401 Ins.push_back(MyFlags); 10402 } 10403 if (NeedsRegBlock && Value == NumValues - 1) 10404 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10405 PartBase += VT.getStoreSize().getKnownMinSize(); 10406 } 10407 } 10408 10409 // Call the target to set up the argument values. 10410 SmallVector<SDValue, 8> InVals; 10411 SDValue NewRoot = TLI->LowerFormalArguments( 10412 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10413 10414 // Verify that the target's LowerFormalArguments behaved as expected. 10415 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10416 "LowerFormalArguments didn't return a valid chain!"); 10417 assert(InVals.size() == Ins.size() && 10418 "LowerFormalArguments didn't emit the correct number of values!"); 10419 LLVM_DEBUG({ 10420 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10421 assert(InVals[i].getNode() && 10422 "LowerFormalArguments emitted a null value!"); 10423 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10424 "LowerFormalArguments emitted a value with the wrong type!"); 10425 } 10426 }); 10427 10428 // Update the DAG with the new chain value resulting from argument lowering. 10429 DAG.setRoot(NewRoot); 10430 10431 // Set up the argument values. 10432 unsigned i = 0; 10433 if (!FuncInfo->CanLowerReturn) { 10434 // Create a virtual register for the sret pointer, and put in a copy 10435 // from the sret argument into it. 10436 SmallVector<EVT, 1> ValueVTs; 10437 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10438 F.getReturnType()->getPointerTo( 10439 DAG.getDataLayout().getAllocaAddrSpace()), 10440 ValueVTs); 10441 MVT VT = ValueVTs[0].getSimpleVT(); 10442 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10443 Optional<ISD::NodeType> AssertOp = None; 10444 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10445 nullptr, F.getCallingConv(), AssertOp); 10446 10447 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10448 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10449 Register SRetReg = 10450 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10451 FuncInfo->DemoteRegister = SRetReg; 10452 NewRoot = 10453 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10454 DAG.setRoot(NewRoot); 10455 10456 // i indexes lowered arguments. Bump it past the hidden sret argument. 10457 ++i; 10458 } 10459 10460 SmallVector<SDValue, 4> Chains; 10461 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10462 for (const Argument &Arg : F.args()) { 10463 SmallVector<SDValue, 4> ArgValues; 10464 SmallVector<EVT, 4> ValueVTs; 10465 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10466 unsigned NumValues = ValueVTs.size(); 10467 if (NumValues == 0) 10468 continue; 10469 10470 bool ArgHasUses = !Arg.use_empty(); 10471 10472 // Elide the copying store if the target loaded this argument from a 10473 // suitable fixed stack object. 10474 if (Ins[i].Flags.isCopyElisionCandidate()) { 10475 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10476 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10477 InVals[i], ArgHasUses); 10478 } 10479 10480 // If this argument is unused then remember its value. It is used to generate 10481 // debugging information. 10482 bool isSwiftErrorArg = 10483 TLI->supportSwiftError() && 10484 Arg.hasAttribute(Attribute::SwiftError); 10485 if (!ArgHasUses && !isSwiftErrorArg) { 10486 SDB->setUnusedArgValue(&Arg, InVals[i]); 10487 10488 // Also remember any frame index for use in FastISel. 10489 if (FrameIndexSDNode *FI = 10490 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10491 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10492 } 10493 10494 for (unsigned Val = 0; Val != NumValues; ++Val) { 10495 EVT VT = ValueVTs[Val]; 10496 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10497 F.getCallingConv(), VT); 10498 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10499 *CurDAG->getContext(), F.getCallingConv(), VT); 10500 10501 // Even an apparent 'unused' swifterror argument needs to be returned. So 10502 // we do generate a copy for it that can be used on return from the 10503 // function. 10504 if (ArgHasUses || isSwiftErrorArg) { 10505 Optional<ISD::NodeType> AssertOp; 10506 if (Arg.hasAttribute(Attribute::SExt)) 10507 AssertOp = ISD::AssertSext; 10508 else if (Arg.hasAttribute(Attribute::ZExt)) 10509 AssertOp = ISD::AssertZext; 10510 10511 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10512 PartVT, VT, nullptr, 10513 F.getCallingConv(), AssertOp)); 10514 } 10515 10516 i += NumParts; 10517 } 10518 10519 // We don't need to do anything else for unused arguments. 10520 if (ArgValues.empty()) 10521 continue; 10522 10523 // Note down frame index. 10524 if (FrameIndexSDNode *FI = 10525 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10526 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10527 10528 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10529 SDB->getCurSDLoc()); 10530 10531 SDB->setValue(&Arg, Res); 10532 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10533 // We want to associate the argument with the frame index, among 10534 // involved operands, that correspond to the lowest address. The 10535 // getCopyFromParts function, called earlier, is swapping the order of 10536 // the operands to BUILD_PAIR depending on endianness. The result of 10537 // that swapping is that the least significant bits of the argument will 10538 // be in the first operand of the BUILD_PAIR node, and the most 10539 // significant bits will be in the second operand. 10540 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10541 if (LoadSDNode *LNode = 10542 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10543 if (FrameIndexSDNode *FI = 10544 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10545 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10546 } 10547 10548 // Analyses past this point are naive and don't expect an assertion. 10549 if (Res.getOpcode() == ISD::AssertZext) 10550 Res = Res.getOperand(0); 10551 10552 // Update the SwiftErrorVRegDefMap. 10553 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10554 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10555 if (Register::isVirtualRegister(Reg)) 10556 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10557 Reg); 10558 } 10559 10560 // If this argument is live outside of the entry block, insert a copy from 10561 // wherever we got it to the vreg that other BB's will reference it as. 10562 if (Res.getOpcode() == ISD::CopyFromReg) { 10563 // If we can, though, try to skip creating an unnecessary vreg. 10564 // FIXME: This isn't very clean... it would be nice to make this more 10565 // general. 10566 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10567 if (Register::isVirtualRegister(Reg)) { 10568 FuncInfo->ValueMap[&Arg] = Reg; 10569 continue; 10570 } 10571 } 10572 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10573 FuncInfo->InitializeRegForValue(&Arg); 10574 SDB->CopyToExportRegsIfNeeded(&Arg); 10575 } 10576 } 10577 10578 if (!Chains.empty()) { 10579 Chains.push_back(NewRoot); 10580 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10581 } 10582 10583 DAG.setRoot(NewRoot); 10584 10585 assert(i == InVals.size() && "Argument register count mismatch!"); 10586 10587 // If any argument copy elisions occurred and we have debug info, update the 10588 // stale frame indices used in the dbg.declare variable info table. 10589 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10590 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10591 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10592 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10593 if (I != ArgCopyElisionFrameIndexMap.end()) 10594 VI.Slot = I->second; 10595 } 10596 } 10597 10598 // Finally, if the target has anything special to do, allow it to do so. 10599 emitFunctionEntryCode(); 10600 } 10601 10602 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10603 /// ensure constants are generated when needed. Remember the virtual registers 10604 /// that need to be added to the Machine PHI nodes as input. We cannot just 10605 /// directly add them, because expansion might result in multiple MBB's for one 10606 /// BB. As such, the start of the BB might correspond to a different MBB than 10607 /// the end. 10608 void 10609 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10610 const Instruction *TI = LLVMBB->getTerminator(); 10611 10612 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10613 10614 // Check PHI nodes in successors that expect a value to be available from this 10615 // block. 10616 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10617 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10618 if (!isa<PHINode>(SuccBB->begin())) continue; 10619 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10620 10621 // If this terminator has multiple identical successors (common for 10622 // switches), only handle each succ once. 10623 if (!SuccsHandled.insert(SuccMBB).second) 10624 continue; 10625 10626 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10627 10628 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10629 // nodes and Machine PHI nodes, but the incoming operands have not been 10630 // emitted yet. 10631 for (const PHINode &PN : SuccBB->phis()) { 10632 // Ignore dead phi's. 10633 if (PN.use_empty()) 10634 continue; 10635 10636 // Skip empty types 10637 if (PN.getType()->isEmptyTy()) 10638 continue; 10639 10640 unsigned Reg; 10641 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10642 10643 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10644 unsigned &RegOut = ConstantsOut[C]; 10645 if (RegOut == 0) { 10646 RegOut = FuncInfo.CreateRegs(C); 10647 // We need to zero extend ConstantInt phi operands to match 10648 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10649 ISD::NodeType ExtendType = 10650 isa<ConstantInt>(PHIOp) ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND; 10651 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10652 } 10653 Reg = RegOut; 10654 } else { 10655 DenseMap<const Value *, Register>::iterator I = 10656 FuncInfo.ValueMap.find(PHIOp); 10657 if (I != FuncInfo.ValueMap.end()) 10658 Reg = I->second; 10659 else { 10660 assert(isa<AllocaInst>(PHIOp) && 10661 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10662 "Didn't codegen value into a register!??"); 10663 Reg = FuncInfo.CreateRegs(PHIOp); 10664 CopyValueToVirtualRegister(PHIOp, Reg); 10665 } 10666 } 10667 10668 // Remember that this register needs to added to the machine PHI node as 10669 // the input for this MBB. 10670 SmallVector<EVT, 4> ValueVTs; 10671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10672 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10673 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10674 EVT VT = ValueVTs[vti]; 10675 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10676 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10677 FuncInfo.PHINodesToUpdate.push_back( 10678 std::make_pair(&*MBBI++, Reg + i)); 10679 Reg += NumRegisters; 10680 } 10681 } 10682 } 10683 10684 ConstantsOut.clear(); 10685 } 10686 10687 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10688 MachineFunction::iterator I(MBB); 10689 if (++I == FuncInfo.MF->end()) 10690 return nullptr; 10691 return &*I; 10692 } 10693 10694 /// During lowering new call nodes can be created (such as memset, etc.). 10695 /// Those will become new roots of the current DAG, but complications arise 10696 /// when they are tail calls. In such cases, the call lowering will update 10697 /// the root, but the builder still needs to know that a tail call has been 10698 /// lowered in order to avoid generating an additional return. 10699 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10700 // If the node is null, we do have a tail call. 10701 if (MaybeTC.getNode() != nullptr) 10702 DAG.setRoot(MaybeTC); 10703 else 10704 HasTailCall = true; 10705 } 10706 10707 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10708 MachineBasicBlock *SwitchMBB, 10709 MachineBasicBlock *DefaultMBB) { 10710 MachineFunction *CurMF = FuncInfo.MF; 10711 MachineBasicBlock *NextMBB = nullptr; 10712 MachineFunction::iterator BBI(W.MBB); 10713 if (++BBI != FuncInfo.MF->end()) 10714 NextMBB = &*BBI; 10715 10716 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10717 10718 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10719 10720 if (Size == 2 && W.MBB == SwitchMBB) { 10721 // If any two of the cases has the same destination, and if one value 10722 // is the same as the other, but has one bit unset that the other has set, 10723 // use bit manipulation to do two compares at once. For example: 10724 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10725 // TODO: This could be extended to merge any 2 cases in switches with 3 10726 // cases. 10727 // TODO: Handle cases where W.CaseBB != SwitchBB. 10728 CaseCluster &Small = *W.FirstCluster; 10729 CaseCluster &Big = *W.LastCluster; 10730 10731 if (Small.Low == Small.High && Big.Low == Big.High && 10732 Small.MBB == Big.MBB) { 10733 const APInt &SmallValue = Small.Low->getValue(); 10734 const APInt &BigValue = Big.Low->getValue(); 10735 10736 // Check that there is only one bit different. 10737 APInt CommonBit = BigValue ^ SmallValue; 10738 if (CommonBit.isPowerOf2()) { 10739 SDValue CondLHS = getValue(Cond); 10740 EVT VT = CondLHS.getValueType(); 10741 SDLoc DL = getCurSDLoc(); 10742 10743 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10744 DAG.getConstant(CommonBit, DL, VT)); 10745 SDValue Cond = DAG.getSetCC( 10746 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10747 ISD::SETEQ); 10748 10749 // Update successor info. 10750 // Both Small and Big will jump to Small.BB, so we sum up the 10751 // probabilities. 10752 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10753 if (BPI) 10754 addSuccessorWithProb( 10755 SwitchMBB, DefaultMBB, 10756 // The default destination is the first successor in IR. 10757 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10758 else 10759 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10760 10761 // Insert the true branch. 10762 SDValue BrCond = 10763 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10764 DAG.getBasicBlock(Small.MBB)); 10765 // Insert the false branch. 10766 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10767 DAG.getBasicBlock(DefaultMBB)); 10768 10769 DAG.setRoot(BrCond); 10770 return; 10771 } 10772 } 10773 } 10774 10775 if (TM.getOptLevel() != CodeGenOpt::None) { 10776 // Here, we order cases by probability so the most likely case will be 10777 // checked first. However, two clusters can have the same probability in 10778 // which case their relative ordering is non-deterministic. So we use Low 10779 // as a tie-breaker as clusters are guaranteed to never overlap. 10780 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10781 [](const CaseCluster &a, const CaseCluster &b) { 10782 return a.Prob != b.Prob ? 10783 a.Prob > b.Prob : 10784 a.Low->getValue().slt(b.Low->getValue()); 10785 }); 10786 10787 // Rearrange the case blocks so that the last one falls through if possible 10788 // without changing the order of probabilities. 10789 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10790 --I; 10791 if (I->Prob > W.LastCluster->Prob) 10792 break; 10793 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10794 std::swap(*I, *W.LastCluster); 10795 break; 10796 } 10797 } 10798 } 10799 10800 // Compute total probability. 10801 BranchProbability DefaultProb = W.DefaultProb; 10802 BranchProbability UnhandledProbs = DefaultProb; 10803 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10804 UnhandledProbs += I->Prob; 10805 10806 MachineBasicBlock *CurMBB = W.MBB; 10807 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10808 bool FallthroughUnreachable = false; 10809 MachineBasicBlock *Fallthrough; 10810 if (I == W.LastCluster) { 10811 // For the last cluster, fall through to the default destination. 10812 Fallthrough = DefaultMBB; 10813 FallthroughUnreachable = isa<UnreachableInst>( 10814 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10815 } else { 10816 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10817 CurMF->insert(BBI, Fallthrough); 10818 // Put Cond in a virtual register to make it available from the new blocks. 10819 ExportFromCurrentBlock(Cond); 10820 } 10821 UnhandledProbs -= I->Prob; 10822 10823 switch (I->Kind) { 10824 case CC_JumpTable: { 10825 // FIXME: Optimize away range check based on pivot comparisons. 10826 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10827 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10828 10829 // The jump block hasn't been inserted yet; insert it here. 10830 MachineBasicBlock *JumpMBB = JT->MBB; 10831 CurMF->insert(BBI, JumpMBB); 10832 10833 auto JumpProb = I->Prob; 10834 auto FallthroughProb = UnhandledProbs; 10835 10836 // If the default statement is a target of the jump table, we evenly 10837 // distribute the default probability to successors of CurMBB. Also 10838 // update the probability on the edge from JumpMBB to Fallthrough. 10839 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10840 SE = JumpMBB->succ_end(); 10841 SI != SE; ++SI) { 10842 if (*SI == DefaultMBB) { 10843 JumpProb += DefaultProb / 2; 10844 FallthroughProb -= DefaultProb / 2; 10845 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10846 JumpMBB->normalizeSuccProbs(); 10847 break; 10848 } 10849 } 10850 10851 if (FallthroughUnreachable) 10852 JTH->FallthroughUnreachable = true; 10853 10854 if (!JTH->FallthroughUnreachable) 10855 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10856 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10857 CurMBB->normalizeSuccProbs(); 10858 10859 // The jump table header will be inserted in our current block, do the 10860 // range check, and fall through to our fallthrough block. 10861 JTH->HeaderBB = CurMBB; 10862 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10863 10864 // If we're in the right place, emit the jump table header right now. 10865 if (CurMBB == SwitchMBB) { 10866 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10867 JTH->Emitted = true; 10868 } 10869 break; 10870 } 10871 case CC_BitTests: { 10872 // FIXME: Optimize away range check based on pivot comparisons. 10873 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10874 10875 // The bit test blocks haven't been inserted yet; insert them here. 10876 for (BitTestCase &BTC : BTB->Cases) 10877 CurMF->insert(BBI, BTC.ThisBB); 10878 10879 // Fill in fields of the BitTestBlock. 10880 BTB->Parent = CurMBB; 10881 BTB->Default = Fallthrough; 10882 10883 BTB->DefaultProb = UnhandledProbs; 10884 // If the cases in bit test don't form a contiguous range, we evenly 10885 // distribute the probability on the edge to Fallthrough to two 10886 // successors of CurMBB. 10887 if (!BTB->ContiguousRange) { 10888 BTB->Prob += DefaultProb / 2; 10889 BTB->DefaultProb -= DefaultProb / 2; 10890 } 10891 10892 if (FallthroughUnreachable) 10893 BTB->FallthroughUnreachable = true; 10894 10895 // If we're in the right place, emit the bit test header right now. 10896 if (CurMBB == SwitchMBB) { 10897 visitBitTestHeader(*BTB, SwitchMBB); 10898 BTB->Emitted = true; 10899 } 10900 break; 10901 } 10902 case CC_Range: { 10903 const Value *RHS, *LHS, *MHS; 10904 ISD::CondCode CC; 10905 if (I->Low == I->High) { 10906 // Check Cond == I->Low. 10907 CC = ISD::SETEQ; 10908 LHS = Cond; 10909 RHS=I->Low; 10910 MHS = nullptr; 10911 } else { 10912 // Check I->Low <= Cond <= I->High. 10913 CC = ISD::SETLE; 10914 LHS = I->Low; 10915 MHS = Cond; 10916 RHS = I->High; 10917 } 10918 10919 // If Fallthrough is unreachable, fold away the comparison. 10920 if (FallthroughUnreachable) 10921 CC = ISD::SETTRUE; 10922 10923 // The false probability is the sum of all unhandled cases. 10924 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10925 getCurSDLoc(), I->Prob, UnhandledProbs); 10926 10927 if (CurMBB == SwitchMBB) 10928 visitSwitchCase(CB, SwitchMBB); 10929 else 10930 SL->SwitchCases.push_back(CB); 10931 10932 break; 10933 } 10934 } 10935 CurMBB = Fallthrough; 10936 } 10937 } 10938 10939 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10940 CaseClusterIt First, 10941 CaseClusterIt Last) { 10942 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10943 if (X.Prob != CC.Prob) 10944 return X.Prob > CC.Prob; 10945 10946 // Ties are broken by comparing the case value. 10947 return X.Low->getValue().slt(CC.Low->getValue()); 10948 }); 10949 } 10950 10951 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10952 const SwitchWorkListItem &W, 10953 Value *Cond, 10954 MachineBasicBlock *SwitchMBB) { 10955 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10956 "Clusters not sorted?"); 10957 10958 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10959 10960 // Balance the tree based on branch probabilities to create a near-optimal (in 10961 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10962 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10963 CaseClusterIt LastLeft = W.FirstCluster; 10964 CaseClusterIt FirstRight = W.LastCluster; 10965 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10966 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10967 10968 // Move LastLeft and FirstRight towards each other from opposite directions to 10969 // find a partitioning of the clusters which balances the probability on both 10970 // sides. If LeftProb and RightProb are equal, alternate which side is 10971 // taken to ensure 0-probability nodes are distributed evenly. 10972 unsigned I = 0; 10973 while (LastLeft + 1 < FirstRight) { 10974 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10975 LeftProb += (++LastLeft)->Prob; 10976 else 10977 RightProb += (--FirstRight)->Prob; 10978 I++; 10979 } 10980 10981 while (true) { 10982 // Our binary search tree differs from a typical BST in that ours can have up 10983 // to three values in each leaf. The pivot selection above doesn't take that 10984 // into account, which means the tree might require more nodes and be less 10985 // efficient. We compensate for this here. 10986 10987 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10988 unsigned NumRight = W.LastCluster - FirstRight + 1; 10989 10990 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10991 // If one side has less than 3 clusters, and the other has more than 3, 10992 // consider taking a cluster from the other side. 10993 10994 if (NumLeft < NumRight) { 10995 // Consider moving the first cluster on the right to the left side. 10996 CaseCluster &CC = *FirstRight; 10997 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10998 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10999 if (LeftSideRank <= RightSideRank) { 11000 // Moving the cluster to the left does not demote it. 11001 ++LastLeft; 11002 ++FirstRight; 11003 continue; 11004 } 11005 } else { 11006 assert(NumRight < NumLeft); 11007 // Consider moving the last element on the left to the right side. 11008 CaseCluster &CC = *LastLeft; 11009 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11010 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11011 if (RightSideRank <= LeftSideRank) { 11012 // Moving the cluster to the right does not demot it. 11013 --LastLeft; 11014 --FirstRight; 11015 continue; 11016 } 11017 } 11018 } 11019 break; 11020 } 11021 11022 assert(LastLeft + 1 == FirstRight); 11023 assert(LastLeft >= W.FirstCluster); 11024 assert(FirstRight <= W.LastCluster); 11025 11026 // Use the first element on the right as pivot since we will make less-than 11027 // comparisons against it. 11028 CaseClusterIt PivotCluster = FirstRight; 11029 assert(PivotCluster > W.FirstCluster); 11030 assert(PivotCluster <= W.LastCluster); 11031 11032 CaseClusterIt FirstLeft = W.FirstCluster; 11033 CaseClusterIt LastRight = W.LastCluster; 11034 11035 const ConstantInt *Pivot = PivotCluster->Low; 11036 11037 // New blocks will be inserted immediately after the current one. 11038 MachineFunction::iterator BBI(W.MBB); 11039 ++BBI; 11040 11041 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11042 // we can branch to its destination directly if it's squeezed exactly in 11043 // between the known lower bound and Pivot - 1. 11044 MachineBasicBlock *LeftMBB; 11045 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11046 FirstLeft->Low == W.GE && 11047 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11048 LeftMBB = FirstLeft->MBB; 11049 } else { 11050 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11051 FuncInfo.MF->insert(BBI, LeftMBB); 11052 WorkList.push_back( 11053 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11054 // Put Cond in a virtual register to make it available from the new blocks. 11055 ExportFromCurrentBlock(Cond); 11056 } 11057 11058 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11059 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11060 // directly if RHS.High equals the current upper bound. 11061 MachineBasicBlock *RightMBB; 11062 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11063 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11064 RightMBB = FirstRight->MBB; 11065 } else { 11066 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11067 FuncInfo.MF->insert(BBI, RightMBB); 11068 WorkList.push_back( 11069 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11070 // Put Cond in a virtual register to make it available from the new blocks. 11071 ExportFromCurrentBlock(Cond); 11072 } 11073 11074 // Create the CaseBlock record that will be used to lower the branch. 11075 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11076 getCurSDLoc(), LeftProb, RightProb); 11077 11078 if (W.MBB == SwitchMBB) 11079 visitSwitchCase(CB, SwitchMBB); 11080 else 11081 SL->SwitchCases.push_back(CB); 11082 } 11083 11084 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11085 // from the swith statement. 11086 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11087 BranchProbability PeeledCaseProb) { 11088 if (PeeledCaseProb == BranchProbability::getOne()) 11089 return BranchProbability::getZero(); 11090 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11091 11092 uint32_t Numerator = CaseProb.getNumerator(); 11093 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11094 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11095 } 11096 11097 // Try to peel the top probability case if it exceeds the threshold. 11098 // Return current MachineBasicBlock for the switch statement if the peeling 11099 // does not occur. 11100 // If the peeling is performed, return the newly created MachineBasicBlock 11101 // for the peeled switch statement. Also update Clusters to remove the peeled 11102 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11103 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11104 const SwitchInst &SI, CaseClusterVector &Clusters, 11105 BranchProbability &PeeledCaseProb) { 11106 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11107 // Don't perform if there is only one cluster or optimizing for size. 11108 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11109 TM.getOptLevel() == CodeGenOpt::None || 11110 SwitchMBB->getParent()->getFunction().hasMinSize()) 11111 return SwitchMBB; 11112 11113 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11114 unsigned PeeledCaseIndex = 0; 11115 bool SwitchPeeled = false; 11116 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11117 CaseCluster &CC = Clusters[Index]; 11118 if (CC.Prob < TopCaseProb) 11119 continue; 11120 TopCaseProb = CC.Prob; 11121 PeeledCaseIndex = Index; 11122 SwitchPeeled = true; 11123 } 11124 if (!SwitchPeeled) 11125 return SwitchMBB; 11126 11127 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11128 << TopCaseProb << "\n"); 11129 11130 // Record the MBB for the peeled switch statement. 11131 MachineFunction::iterator BBI(SwitchMBB); 11132 ++BBI; 11133 MachineBasicBlock *PeeledSwitchMBB = 11134 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11135 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11136 11137 ExportFromCurrentBlock(SI.getCondition()); 11138 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11139 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11140 nullptr, nullptr, TopCaseProb.getCompl()}; 11141 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11142 11143 Clusters.erase(PeeledCaseIt); 11144 for (CaseCluster &CC : Clusters) { 11145 LLVM_DEBUG( 11146 dbgs() << "Scale the probablity for one cluster, before scaling: " 11147 << CC.Prob << "\n"); 11148 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11149 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11150 } 11151 PeeledCaseProb = TopCaseProb; 11152 return PeeledSwitchMBB; 11153 } 11154 11155 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11156 // Extract cases from the switch. 11157 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11158 CaseClusterVector Clusters; 11159 Clusters.reserve(SI.getNumCases()); 11160 for (auto I : SI.cases()) { 11161 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11162 const ConstantInt *CaseVal = I.getCaseValue(); 11163 BranchProbability Prob = 11164 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11165 : BranchProbability(1, SI.getNumCases() + 1); 11166 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11167 } 11168 11169 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11170 11171 // Cluster adjacent cases with the same destination. We do this at all 11172 // optimization levels because it's cheap to do and will make codegen faster 11173 // if there are many clusters. 11174 sortAndRangeify(Clusters); 11175 11176 // The branch probablity of the peeled case. 11177 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11178 MachineBasicBlock *PeeledSwitchMBB = 11179 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11180 11181 // If there is only the default destination, jump there directly. 11182 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11183 if (Clusters.empty()) { 11184 assert(PeeledSwitchMBB == SwitchMBB); 11185 SwitchMBB->addSuccessor(DefaultMBB); 11186 if (DefaultMBB != NextBlock(SwitchMBB)) { 11187 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11188 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11189 } 11190 return; 11191 } 11192 11193 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11194 SL->findBitTestClusters(Clusters, &SI); 11195 11196 LLVM_DEBUG({ 11197 dbgs() << "Case clusters: "; 11198 for (const CaseCluster &C : Clusters) { 11199 if (C.Kind == CC_JumpTable) 11200 dbgs() << "JT:"; 11201 if (C.Kind == CC_BitTests) 11202 dbgs() << "BT:"; 11203 11204 C.Low->getValue().print(dbgs(), true); 11205 if (C.Low != C.High) { 11206 dbgs() << '-'; 11207 C.High->getValue().print(dbgs(), true); 11208 } 11209 dbgs() << ' '; 11210 } 11211 dbgs() << '\n'; 11212 }); 11213 11214 assert(!Clusters.empty()); 11215 SwitchWorkList WorkList; 11216 CaseClusterIt First = Clusters.begin(); 11217 CaseClusterIt Last = Clusters.end() - 1; 11218 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11219 // Scale the branchprobability for DefaultMBB if the peel occurs and 11220 // DefaultMBB is not replaced. 11221 if (PeeledCaseProb != BranchProbability::getZero() && 11222 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11223 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11224 WorkList.push_back( 11225 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11226 11227 while (!WorkList.empty()) { 11228 SwitchWorkListItem W = WorkList.pop_back_val(); 11229 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11230 11231 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11232 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11233 // For optimized builds, lower large range as a balanced binary tree. 11234 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11235 continue; 11236 } 11237 11238 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11239 } 11240 } 11241 11242 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11244 auto DL = getCurSDLoc(); 11245 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11246 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11247 } 11248 11249 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11251 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11252 11253 SDLoc DL = getCurSDLoc(); 11254 SDValue V = getValue(I.getOperand(0)); 11255 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11256 11257 if (VT.isScalableVector()) { 11258 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11259 return; 11260 } 11261 11262 // Use VECTOR_SHUFFLE for the fixed-length vector 11263 // to maintain existing behavior. 11264 SmallVector<int, 8> Mask; 11265 unsigned NumElts = VT.getVectorMinNumElements(); 11266 for (unsigned i = 0; i != NumElts; ++i) 11267 Mask.push_back(NumElts - 1 - i); 11268 11269 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11270 } 11271 11272 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11273 SmallVector<EVT, 4> ValueVTs; 11274 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11275 ValueVTs); 11276 unsigned NumValues = ValueVTs.size(); 11277 if (NumValues == 0) return; 11278 11279 SmallVector<SDValue, 4> Values(NumValues); 11280 SDValue Op = getValue(I.getOperand(0)); 11281 11282 for (unsigned i = 0; i != NumValues; ++i) 11283 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11284 SDValue(Op.getNode(), Op.getResNo() + i)); 11285 11286 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11287 DAG.getVTList(ValueVTs), Values)); 11288 } 11289 11290 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11292 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11293 11294 SDLoc DL = getCurSDLoc(); 11295 SDValue V1 = getValue(I.getOperand(0)); 11296 SDValue V2 = getValue(I.getOperand(1)); 11297 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11298 11299 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11300 if (VT.isScalableVector()) { 11301 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11302 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11303 DAG.getConstant(Imm, DL, IdxVT))); 11304 return; 11305 } 11306 11307 unsigned NumElts = VT.getVectorNumElements(); 11308 11309 uint64_t Idx = (NumElts + Imm) % NumElts; 11310 11311 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11312 SmallVector<int, 8> Mask; 11313 for (unsigned i = 0; i < NumElts; ++i) 11314 Mask.push_back(Idx + i); 11315 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11316 } 11317