xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 492812f613280034b7c514d74113750814a3de76)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <limits>
107 #include <optional>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       SDValue InChain,
158                                       std::optional<CallingConv::ID> CC);
159 
160 /// getCopyFromParts - Create a value that contains the specified legal parts
161 /// combined into the value they represent.  If the parts combine to a type
162 /// larger than ValueVT then AssertOp can be used to specify whether the extra
163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164 /// (ISD::AssertSext).
165 static SDValue
166 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168                  SDValue InChain,
169                  std::optional<CallingConv::ID> CC = std::nullopt,
170                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171   // Let the target assemble the parts if it wants to
172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174                                                    PartVT, ValueVT, CC))
175     return Val;
176 
177   if (ValueVT.isVector())
178     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179                                   InChain, CC);
180 
181   assert(NumParts > 0 && "No parts to assemble!");
182   SDValue Val = Parts[0];
183 
184   if (NumParts > 1) {
185     // Assemble the value from multiple parts.
186     if (ValueVT.isInteger()) {
187       unsigned PartBits = PartVT.getSizeInBits();
188       unsigned ValueBits = ValueVT.getSizeInBits();
189 
190       // Assemble the power of 2 part.
191       unsigned RoundParts = llvm::bit_floor(NumParts);
192       unsigned RoundBits = PartBits * RoundParts;
193       EVT RoundVT = RoundBits == ValueBits ?
194         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195       SDValue Lo, Hi;
196 
197       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 
199       if (RoundParts > 2) {
200         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201                               InChain);
202         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203                               PartVT, HalfVT, V, InChain);
204       } else {
205         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207       }
208 
209       if (DAG.getDataLayout().isBigEndian())
210         std::swap(Lo, Hi);
211 
212       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 
214       if (RoundParts < NumParts) {
215         // Assemble the trailing non-power-of-2 part.
216         unsigned OddParts = NumParts - RoundParts;
217         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219                               OddVT, V, InChain, CC);
220 
221         // Combine the round and odd parts.
222         Lo = Val;
223         if (DAG.getDataLayout().isBigEndian())
224           std::swap(Lo, Hi);
225         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                          TLI.getShiftAmountTy(
230                                              TotalVT, DAG.getDataLayout())));
231         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
232         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233       }
234     } else if (PartVT.isFloatingPoint()) {
235       // FP split into multiple FP parts (for ppcf128)
236       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
237              "Unexpected split");
238       SDValue Lo, Hi;
239       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
240       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
241       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
242         std::swap(Lo, Hi);
243       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
244     } else {
245       // FP split into integer parts (soft fp)
246       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
247              !PartVT.isVector() && "Unexpected split");
248       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
249       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
250                              InChain, CC);
251     }
252   }
253 
254   // There is now one part, held in Val.  Correct it to match ValueVT.
255   // PartEVT is the type of the register class that holds the value.
256   // ValueVT is the type of the inline asm operation.
257   EVT PartEVT = Val.getValueType();
258 
259   if (PartEVT == ValueVT)
260     return Val;
261 
262   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
263       ValueVT.bitsLT(PartEVT)) {
264     // For an FP value in an integer part, we need to truncate to the right
265     // width first.
266     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
267     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
268   }
269 
270   // Handle types that have the same size.
271   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
272     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
273 
274   // Handle types with different sizes.
275   if (PartEVT.isInteger() && ValueVT.isInteger()) {
276     if (ValueVT.bitsLT(PartEVT)) {
277       // For a truncate, see if we have any information to
278       // indicate whether the truncated bits will always be
279       // zero or sign-extension.
280       if (AssertOp)
281         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
282                           DAG.getValueType(ValueVT));
283       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
284     }
285     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
286   }
287 
288   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
289     // FP_ROUND's are always exact here.
290     if (ValueVT.bitsLT(Val.getValueType())) {
291 
292       SDValue NoChange =
293           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
294 
295       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
296               llvm::Attribute::StrictFP)) {
297         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
298                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
299                            NoChange);
300       }
301 
302       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
303     }
304 
305     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
306   }
307 
308   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
309   // then truncating.
310   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
311       ValueVT.bitsLT(PartEVT)) {
312     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
313     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
314   }
315 
316   report_fatal_error("Unknown mismatch in getCopyFromParts!");
317 }
318 
319 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
320                                               const Twine &ErrMsg) {
321   const Instruction *I = dyn_cast_or_null<Instruction>(V);
322   if (!V)
323     return Ctx.emitError(ErrMsg);
324 
325   const char *AsmError = ", possible invalid constraint for vector type";
326   if (const CallInst *CI = dyn_cast<CallInst>(I))
327     if (CI->isInlineAsm())
328       return Ctx.emitError(I, ErrMsg + AsmError);
329 
330   return Ctx.emitError(I, ErrMsg);
331 }
332 
333 /// getCopyFromPartsVector - Create a value that contains the specified legal
334 /// parts combined into the value they represent.  If the parts combine to a
335 /// type larger than ValueVT then AssertOp can be used to specify whether the
336 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337 /// ValueVT (ISD::AssertSext).
338 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
339                                       const SDValue *Parts, unsigned NumParts,
340                                       MVT PartVT, EVT ValueVT, const Value *V,
341                                       SDValue InChain,
342                                       std::optional<CallingConv::ID> CallConv) {
343   assert(ValueVT.isVector() && "Not a vector value");
344   assert(NumParts > 0 && "No parts to assemble!");
345   const bool IsABIRegCopy = CallConv.has_value();
346 
347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348   SDValue Val = Parts[0];
349 
350   // Handle a multi-element vector.
351   if (NumParts > 1) {
352     EVT IntermediateVT;
353     MVT RegisterVT;
354     unsigned NumIntermediates;
355     unsigned NumRegs;
356 
357     if (IsABIRegCopy) {
358       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
359           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360           NumIntermediates, RegisterVT);
361     } else {
362       NumRegs =
363           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364                                      NumIntermediates, RegisterVT);
365     }
366 
367     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368     NumParts = NumRegs; // Silence a compiler warning.
369     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370     assert(RegisterVT.getSizeInBits() ==
371            Parts[0].getSimpleValueType().getSizeInBits() &&
372            "Part type sizes don't match!");
373 
374     // Assemble the parts into intermediate operands.
375     SmallVector<SDValue, 8> Ops(NumIntermediates);
376     if (NumIntermediates == NumParts) {
377       // If the register was not expanded, truncate or copy the value,
378       // as appropriate.
379       for (unsigned i = 0; i != NumParts; ++i)
380         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381                                   V, InChain, CallConv);
382     } else if (NumParts > 0) {
383       // If the intermediate type was expanded, build the intermediate
384       // operands from the parts.
385       assert(NumParts % NumIntermediates == 0 &&
386              "Must expand into a divisible number of parts!");
387       unsigned Factor = NumParts / NumIntermediates;
388       for (unsigned i = 0; i != NumIntermediates; ++i)
389         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390                                   IntermediateVT, V, InChain, CallConv);
391     }
392 
393     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394     // intermediate operands.
395     EVT BuiltVectorTy =
396         IntermediateVT.isVector()
397             ? EVT::getVectorVT(
398                   *DAG.getContext(), IntermediateVT.getScalarType(),
399                   IntermediateVT.getVectorElementCount() * NumParts)
400             : EVT::getVectorVT(*DAG.getContext(),
401                                IntermediateVT.getScalarType(),
402                                NumIntermediates);
403     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
404                                                 : ISD::BUILD_VECTOR,
405                       DL, BuiltVectorTy, Ops);
406   }
407 
408   // There is now one part, held in Val.  Correct it to match ValueVT.
409   EVT PartEVT = Val.getValueType();
410 
411   if (PartEVT == ValueVT)
412     return Val;
413 
414   if (PartEVT.isVector()) {
415     // Vector/Vector bitcast.
416     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418 
419     // If the parts vector has more elements than the value vector, then we
420     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421     // Extract the elements we want.
422     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
423       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
424               ValueVT.getVectorElementCount().getKnownMinValue()) &&
425              (PartEVT.getVectorElementCount().isScalable() ==
426               ValueVT.getVectorElementCount().isScalable()) &&
427              "Cannot narrow, it would be a lossy transformation");
428       PartEVT =
429           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
430                            ValueVT.getVectorElementCount());
431       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432                         DAG.getVectorIdxConstant(0, DL));
433       if (PartEVT == ValueVT)
434         return Val;
435       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437 
438       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441     }
442 
443     // Promoted vector extract
444     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445   }
446 
447   // Trivial bitcast if the types are the same size and the destination
448   // vector type is legal.
449   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450       TLI.isTypeLegal(ValueVT))
451     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452 
453   if (ValueVT.getVectorNumElements() != 1) {
454      // Certain ABIs require that vectors are passed as integers. For vectors
455      // are the same size, this is an obvious bitcast.
456      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458      } else if (ValueVT.bitsLT(PartEVT)) {
459        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461        // Drop the extra bits.
462        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463        return DAG.getBitcast(ValueVT, Val);
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474     unsigned ValueSize = ValueSVT.getSizeInBits();
475     if (ValueSize == PartEVT.getSizeInBits()) {
476       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478       // It's possible a scalar floating point type gets softened to integer and
479       // then promoted to a larger integer. If PartEVT is the larger integer
480       // we need to truncate it and then bitcast to the FP type.
481       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484       Val = DAG.getBitcast(ValueSVT, Val);
485     } else {
486       Val = ValueVT.isFloatingPoint()
487                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489     }
490   }
491 
492   return DAG.getBuildVector(ValueVT, DL, Val);
493 }
494 
495 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496                                  SDValue Val, SDValue *Parts, unsigned NumParts,
497                                  MVT PartVT, const Value *V,
498                                  std::optional<CallingConv::ID> CallConv);
499 
500 /// getCopyToParts - Create a series of nodes that contain the specified value
501 /// split into legal parts.  If the parts contain more bits than Val, then, for
502 /// integers, ExtendKind can be used to specify how to generate the extra bits.
503 static void
504 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
505                unsigned NumParts, MVT PartVT, const Value *V,
506                std::optional<CallingConv::ID> CallConv = std::nullopt,
507                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508   // Let the target split the parts if it wants to
509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511                                       CallConv))
512     return;
513   EVT ValueVT = Val.getValueType();
514 
515   // Handle the vector case separately.
516   if (ValueVT.isVector())
517     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518                                 CallConv);
519 
520   unsigned OrigNumParts = NumParts;
521   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
522          "Copying to an illegal type!");
523 
524   if (NumParts == 0)
525     return;
526 
527   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528   EVT PartEVT = PartVT;
529   if (PartEVT == ValueVT) {
530     assert(NumParts == 1 && "No-op copy with multiple parts!");
531     Parts[0] = Val;
532     return;
533   }
534 
535   unsigned PartBits = PartVT.getSizeInBits();
536   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537     // If the parts cover more bits than the value has, promote the value.
538     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539       assert(NumParts == 1 && "Do not know what to promote to!");
540       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541     } else {
542       if (ValueVT.isFloatingPoint()) {
543         // FP values need to be bitcast, then extended if they are being put
544         // into a larger container.
545         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
546         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547       }
548       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549              ValueVT.isInteger() &&
550              "Unknown mismatch!");
551       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553       if (PartVT == MVT::x86mmx)
554         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555     }
556   } else if (PartBits == ValueVT.getSizeInBits()) {
557     // Different types of the same size.
558     assert(NumParts == 1 && PartEVT != ValueVT);
559     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561     // If the parts cover less bits than value has, truncate the value.
562     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563            ValueVT.isInteger() &&
564            "Unknown mismatch!");
565     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567     if (PartVT == MVT::x86mmx)
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569   }
570 
571   // The value may have changed - recompute ValueVT.
572   ValueVT = Val.getValueType();
573   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574          "Failed to tile the value with PartVT!");
575 
576   if (NumParts == 1) {
577     if (PartEVT != ValueVT) {
578       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
579                                         "scalar-to-vector conversion failed");
580       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581     }
582 
583     Parts[0] = Val;
584     return;
585   }
586 
587   // Expand the value into multiple parts.
588   if (NumParts & (NumParts - 1)) {
589     // The number of parts is not a power of 2.  Split off and copy the tail.
590     assert(PartVT.isInteger() && ValueVT.isInteger() &&
591            "Do not know what to expand to!");
592     unsigned RoundParts = llvm::bit_floor(NumParts);
593     unsigned RoundBits = RoundParts * PartBits;
594     unsigned OddParts = NumParts - RoundParts;
595     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597 
598     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599                    CallConv);
600 
601     if (DAG.getDataLayout().isBigEndian())
602       // The odd parts were reversed by getCopyToParts - unreverse them.
603       std::reverse(Parts + RoundParts, Parts + NumParts);
604 
605     NumParts = RoundParts;
606     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608   }
609 
610   // The number of parts is a power of 2.  Repeatedly bisect the value using
611   // EXTRACT_ELEMENT.
612   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613                          EVT::getIntegerVT(*DAG.getContext(),
614                                            ValueVT.getSizeInBits()),
615                          Val);
616 
617   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618     for (unsigned i = 0; i < NumParts; i += StepSize) {
619       unsigned ThisBits = StepSize * PartBits / 2;
620       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621       SDValue &Part0 = Parts[i];
622       SDValue &Part1 = Parts[i+StepSize/2];
623 
624       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628 
629       if (ThisBits == PartBits && ThisVT != PartVT) {
630         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632       }
633     }
634   }
635 
636   if (DAG.getDataLayout().isBigEndian())
637     std::reverse(Parts, Parts + OrigNumParts);
638 }
639 
640 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
641                                      const SDLoc &DL, EVT PartVT) {
642   if (!PartVT.isVector())
643     return SDValue();
644 
645   EVT ValueVT = Val.getValueType();
646   EVT PartEVT = PartVT.getVectorElementType();
647   EVT ValueEVT = ValueVT.getVectorElementType();
648   ElementCount PartNumElts = PartVT.getVectorElementCount();
649   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650 
651   // We only support widening vectors with equivalent element types and
652   // fixed/scalable properties. If a target needs to widen a fixed-length type
653   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655       PartNumElts.isScalable() != ValueNumElts.isScalable())
656     return SDValue();
657 
658   // Have a try for bf16 because some targets share its ABI with fp16.
659   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
660     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
661            "Cannot widen to illegal type");
662     Val = DAG.getNode(ISD::BITCAST, DL,
663                       ValueVT.changeVectorElementType(MVT::f16), Val);
664   } else if (PartEVT != ValueEVT) {
665     return SDValue();
666   }
667 
668   // Widening a scalable vector to another scalable vector is done by inserting
669   // the vector into a larger undef one.
670   if (PartNumElts.isScalable())
671     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
672                        Val, DAG.getVectorIdxConstant(0, DL));
673 
674   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
675   // undef elements.
676   SmallVector<SDValue, 16> Ops;
677   DAG.ExtractVectorElements(Val, Ops);
678   SDValue EltUndef = DAG.getUNDEF(PartEVT);
679   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
680 
681   // FIXME: Use CONCAT for 2x -> 4x.
682   return DAG.getBuildVector(PartVT, DL, Ops);
683 }
684 
685 /// getCopyToPartsVector - Create a series of nodes that contain the specified
686 /// value split into legal parts.
687 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
688                                  SDValue Val, SDValue *Parts, unsigned NumParts,
689                                  MVT PartVT, const Value *V,
690                                  std::optional<CallingConv::ID> CallConv) {
691   EVT ValueVT = Val.getValueType();
692   assert(ValueVT.isVector() && "Not a vector");
693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
694   const bool IsABIRegCopy = CallConv.has_value();
695 
696   if (NumParts == 1) {
697     EVT PartEVT = PartVT;
698     if (PartEVT == ValueVT) {
699       // Nothing to do.
700     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
701       // Bitconvert vector->vector case.
702       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
703     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
704       Val = Widened;
705     } else if (PartVT.isVector() &&
706                PartEVT.getVectorElementType().bitsGE(
707                    ValueVT.getVectorElementType()) &&
708                PartEVT.getVectorElementCount() ==
709                    ValueVT.getVectorElementCount()) {
710 
711       // Promoted vector extract
712       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
713     } else if (PartEVT.isVector() &&
714                PartEVT.getVectorElementType() !=
715                    ValueVT.getVectorElementType() &&
716                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
717                    TargetLowering::TypeWidenVector) {
718       // Combination of widening and promotion.
719       EVT WidenVT =
720           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
721                            PartVT.getVectorElementCount());
722       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
723       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
724     } else {
725       // Don't extract an integer from a float vector. This can happen if the
726       // FP type gets softened to integer and then promoted. The promotion
727       // prevents it from being picked up by the earlier bitcast case.
728       if (ValueVT.getVectorElementCount().isScalar() &&
729           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
730         // If we reach this condition and PartVT is FP, this means that
731         // ValueVT is also FP and both have a different size, otherwise we
732         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
733         // would be invalid since that would mean the smaller FP type has to
734         // be extended to the larger one.
735         if (PartVT.isFloatingPoint()) {
736           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
737           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
738         } else
739           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
740                             DAG.getVectorIdxConstant(0, DL));
741       } else {
742         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
743         assert(PartVT.getFixedSizeInBits() > ValueSize &&
744                "lossy conversion of vector to scalar type");
745         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
746         Val = DAG.getBitcast(IntermediateType, Val);
747         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
748       }
749     }
750 
751     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
752     Parts[0] = Val;
753     return;
754   }
755 
756   // Handle a multi-element vector.
757   EVT IntermediateVT;
758   MVT RegisterVT;
759   unsigned NumIntermediates;
760   unsigned NumRegs;
761   if (IsABIRegCopy) {
762     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
763         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
764         RegisterVT);
765   } else {
766     NumRegs =
767         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
768                                    NumIntermediates, RegisterVT);
769   }
770 
771   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
772   NumParts = NumRegs; // Silence a compiler warning.
773   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
774 
775   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
776          "Mixing scalable and fixed vectors when copying in parts");
777 
778   std::optional<ElementCount> DestEltCnt;
779 
780   if (IntermediateVT.isVector())
781     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
782   else
783     DestEltCnt = ElementCount::getFixed(NumIntermediates);
784 
785   EVT BuiltVectorTy = EVT::getVectorVT(
786       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
787 
788   if (ValueVT == BuiltVectorTy) {
789     // Nothing to do.
790   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
791     // Bitconvert vector->vector case.
792     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
793   } else {
794     if (BuiltVectorTy.getVectorElementType().bitsGT(
795             ValueVT.getVectorElementType())) {
796       // Integer promotion.
797       ValueVT = EVT::getVectorVT(*DAG.getContext(),
798                                  BuiltVectorTy.getVectorElementType(),
799                                  ValueVT.getVectorElementCount());
800       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
801     }
802 
803     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
804       Val = Widened;
805     }
806   }
807 
808   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
809 
810   // Split the vector into intermediate operands.
811   SmallVector<SDValue, 8> Ops(NumIntermediates);
812   for (unsigned i = 0; i != NumIntermediates; ++i) {
813     if (IntermediateVT.isVector()) {
814       // This does something sensible for scalable vectors - see the
815       // definition of EXTRACT_SUBVECTOR for further details.
816       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
817       Ops[i] =
818           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
819                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
820     } else {
821       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
822                            DAG.getVectorIdxConstant(i, DL));
823     }
824   }
825 
826   // Split the intermediate operands into legal parts.
827   if (NumParts == NumIntermediates) {
828     // If the register was not expanded, promote or copy the value,
829     // as appropriate.
830     for (unsigned i = 0; i != NumParts; ++i)
831       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
832   } else if (NumParts > 0) {
833     // If the intermediate type was expanded, split each the value into
834     // legal parts.
835     assert(NumIntermediates != 0 && "division by zero");
836     assert(NumParts % NumIntermediates == 0 &&
837            "Must expand into a divisible number of parts!");
838     unsigned Factor = NumParts / NumIntermediates;
839     for (unsigned i = 0; i != NumIntermediates; ++i)
840       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
841                      CallConv);
842   }
843 }
844 
845 RegsForValue::RegsForValue(const SmallVector<Register, 4> &regs, MVT regvt,
846                            EVT valuevt, std::optional<CallingConv::ID> CC)
847     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
848       RegCount(1, regs.size()), CallConv(CC) {}
849 
850 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
851                            const DataLayout &DL, Register Reg, Type *Ty,
852                            std::optional<CallingConv::ID> CC) {
853   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
854 
855   CallConv = CC;
856 
857   for (EVT ValueVT : ValueVTs) {
858     unsigned NumRegs =
859         isABIMangled()
860             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
861             : TLI.getNumRegisters(Context, ValueVT);
862     MVT RegisterVT =
863         isABIMangled()
864             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
865             : TLI.getRegisterType(Context, ValueVT);
866     for (unsigned i = 0; i != NumRegs; ++i)
867       Regs.push_back(Reg + i);
868     RegVTs.push_back(RegisterVT);
869     RegCount.push_back(NumRegs);
870     Reg = Reg.id() + NumRegs;
871   }
872 }
873 
874 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
875                                       FunctionLoweringInfo &FuncInfo,
876                                       const SDLoc &dl, SDValue &Chain,
877                                       SDValue *Glue, const Value *V) const {
878   // A Value with type {} or [0 x %t] needs no registers.
879   if (ValueVTs.empty())
880     return SDValue();
881 
882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
883 
884   // Assemble the legal parts into the final values.
885   SmallVector<SDValue, 4> Values(ValueVTs.size());
886   SmallVector<SDValue, 8> Parts;
887   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
888     // Copy the legal parts from the registers.
889     EVT ValueVT = ValueVTs[Value];
890     unsigned NumRegs = RegCount[Value];
891     MVT RegisterVT = isABIMangled()
892                          ? TLI.getRegisterTypeForCallingConv(
893                                *DAG.getContext(), *CallConv, RegVTs[Value])
894                          : RegVTs[Value];
895 
896     Parts.resize(NumRegs);
897     for (unsigned i = 0; i != NumRegs; ++i) {
898       SDValue P;
899       if (!Glue) {
900         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
901       } else {
902         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
903         *Glue = P.getValue(2);
904       }
905 
906       Chain = P.getValue(1);
907       Parts[i] = P;
908 
909       // If the source register was virtual and if we know something about it,
910       // add an assert node.
911       if (!Register::isVirtualRegister(Regs[Part + i]) ||
912           !RegisterVT.isInteger())
913         continue;
914 
915       const FunctionLoweringInfo::LiveOutInfo *LOI =
916         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
917       if (!LOI)
918         continue;
919 
920       unsigned RegSize = RegisterVT.getScalarSizeInBits();
921       unsigned NumSignBits = LOI->NumSignBits;
922       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
923 
924       if (NumZeroBits == RegSize) {
925         // The current value is a zero.
926         // Explicitly express that as it would be easier for
927         // optimizations to kick in.
928         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
929         continue;
930       }
931 
932       // FIXME: We capture more information than the dag can represent.  For
933       // now, just use the tightest assertzext/assertsext possible.
934       bool isSExt;
935       EVT FromVT(MVT::Other);
936       if (NumZeroBits) {
937         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
938         isSExt = false;
939       } else if (NumSignBits > 1) {
940         FromVT =
941             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
942         isSExt = true;
943       } else {
944         continue;
945       }
946       // Add an assertion node.
947       assert(FromVT != MVT::Other);
948       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
949                              RegisterVT, P, DAG.getValueType(FromVT));
950     }
951 
952     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
953                                      RegisterVT, ValueVT, V, Chain, CallConv);
954     Part += NumRegs;
955     Parts.clear();
956   }
957 
958   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
959 }
960 
961 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
962                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
963                                  const Value *V,
964                                  ISD::NodeType PreferredExtendType) const {
965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
966   ISD::NodeType ExtendKind = PreferredExtendType;
967 
968   // Get the list of the values's legal parts.
969   unsigned NumRegs = Regs.size();
970   SmallVector<SDValue, 8> Parts(NumRegs);
971   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
972     unsigned NumParts = RegCount[Value];
973 
974     MVT RegisterVT = isABIMangled()
975                          ? TLI.getRegisterTypeForCallingConv(
976                                *DAG.getContext(), *CallConv, RegVTs[Value])
977                          : RegVTs[Value];
978 
979     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
980       ExtendKind = ISD::ZERO_EXTEND;
981 
982     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
983                    NumParts, RegisterVT, V, CallConv, ExtendKind);
984     Part += NumParts;
985   }
986 
987   // Copy the parts into the registers.
988   SmallVector<SDValue, 8> Chains(NumRegs);
989   for (unsigned i = 0; i != NumRegs; ++i) {
990     SDValue Part;
991     if (!Glue) {
992       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
993     } else {
994       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
995       *Glue = Part.getValue(1);
996     }
997 
998     Chains[i] = Part.getValue(0);
999   }
1000 
1001   if (NumRegs == 1 || Glue)
1002     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1003     // flagged to it. That is the CopyToReg nodes and the user are considered
1004     // a single scheduling unit. If we create a TokenFactor and return it as
1005     // chain, then the TokenFactor is both a predecessor (operand) of the
1006     // user as well as a successor (the TF operands are flagged to the user).
1007     // c1, f1 = CopyToReg
1008     // c2, f2 = CopyToReg
1009     // c3     = TokenFactor c1, c2
1010     // ...
1011     //        = op c3, ..., f2
1012     Chain = Chains[NumRegs-1];
1013   else
1014     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1015 }
1016 
1017 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1018                                         unsigned MatchingIdx, const SDLoc &dl,
1019                                         SelectionDAG &DAG,
1020                                         std::vector<SDValue> &Ops) const {
1021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1022 
1023   InlineAsm::Flag Flag(Code, Regs.size());
1024   if (HasMatching)
1025     Flag.setMatchingOp(MatchingIdx);
1026   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1027     // Put the register class of the virtual registers in the flag word.  That
1028     // way, later passes can recompute register class constraints for inline
1029     // assembly as well as normal instructions.
1030     // Don't do this for tied operands that can use the regclass information
1031     // from the def.
1032     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1033     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1034     Flag.setRegClass(RC->getID());
1035   }
1036 
1037   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1038   Ops.push_back(Res);
1039 
1040   if (Code == InlineAsm::Kind::Clobber) {
1041     // Clobbers should always have a 1:1 mapping with registers, and may
1042     // reference registers that have illegal (e.g. vector) types. Hence, we
1043     // shouldn't try to apply any sort of splitting logic to them.
1044     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1045            "No 1:1 mapping from clobbers to regs?");
1046     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1047     (void)SP;
1048     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1049       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1050       assert(
1051           (Regs[I] != SP ||
1052            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1053           "If we clobbered the stack pointer, MFI should know about it.");
1054     }
1055     return;
1056   }
1057 
1058   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1059     MVT RegisterVT = RegVTs[Value];
1060     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1061                                            RegisterVT);
1062     for (unsigned i = 0; i != NumRegs; ++i) {
1063       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1064       unsigned TheReg = Regs[Reg++];
1065       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1066     }
1067   }
1068 }
1069 
1070 SmallVector<std::pair<Register, TypeSize>, 4>
1071 RegsForValue::getRegsAndSizes() const {
1072   SmallVector<std::pair<Register, TypeSize>, 4> OutVec;
1073   unsigned I = 0;
1074   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1075     unsigned RegCount = std::get<0>(CountAndVT);
1076     MVT RegisterVT = std::get<1>(CountAndVT);
1077     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1078     for (unsigned E = I + RegCount; I != E; ++I)
1079       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1080   }
1081   return OutVec;
1082 }
1083 
1084 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1085                                AssumptionCache *ac,
1086                                const TargetLibraryInfo *li) {
1087   AA = aa;
1088   AC = ac;
1089   GFI = gfi;
1090   LibInfo = li;
1091   Context = DAG.getContext();
1092   LPadToCallSiteMap.clear();
1093   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1094   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1095       *DAG.getMachineFunction().getFunction().getParent());
1096 }
1097 
1098 void SelectionDAGBuilder::clear() {
1099   NodeMap.clear();
1100   UnusedArgNodeMap.clear();
1101   PendingLoads.clear();
1102   PendingExports.clear();
1103   PendingConstrainedFP.clear();
1104   PendingConstrainedFPStrict.clear();
1105   CurInst = nullptr;
1106   HasTailCall = false;
1107   SDNodeOrder = LowestSDNodeOrder;
1108   StatepointLowering.clear();
1109 }
1110 
1111 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1112   DanglingDebugInfoMap.clear();
1113 }
1114 
1115 // Update DAG root to include dependencies on Pending chains.
1116 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1117   SDValue Root = DAG.getRoot();
1118 
1119   if (Pending.empty())
1120     return Root;
1121 
1122   // Add current root to PendingChains, unless we already indirectly
1123   // depend on it.
1124   if (Root.getOpcode() != ISD::EntryToken) {
1125     unsigned i = 0, e = Pending.size();
1126     for (; i != e; ++i) {
1127       assert(Pending[i].getNode()->getNumOperands() > 1);
1128       if (Pending[i].getNode()->getOperand(0) == Root)
1129         break;  // Don't add the root if we already indirectly depend on it.
1130     }
1131 
1132     if (i == e)
1133       Pending.push_back(Root);
1134   }
1135 
1136   if (Pending.size() == 1)
1137     Root = Pending[0];
1138   else
1139     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1140 
1141   DAG.setRoot(Root);
1142   Pending.clear();
1143   return Root;
1144 }
1145 
1146 SDValue SelectionDAGBuilder::getMemoryRoot() {
1147   return updateRoot(PendingLoads);
1148 }
1149 
1150 SDValue SelectionDAGBuilder::getRoot() {
1151   // Chain up all pending constrained intrinsics together with all
1152   // pending loads, by simply appending them to PendingLoads and
1153   // then calling getMemoryRoot().
1154   PendingLoads.reserve(PendingLoads.size() +
1155                        PendingConstrainedFP.size() +
1156                        PendingConstrainedFPStrict.size());
1157   PendingLoads.append(PendingConstrainedFP.begin(),
1158                       PendingConstrainedFP.end());
1159   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1160                       PendingConstrainedFPStrict.end());
1161   PendingConstrainedFP.clear();
1162   PendingConstrainedFPStrict.clear();
1163   return getMemoryRoot();
1164 }
1165 
1166 SDValue SelectionDAGBuilder::getControlRoot() {
1167   // We need to emit pending fpexcept.strict constrained intrinsics,
1168   // so append them to the PendingExports list.
1169   PendingExports.append(PendingConstrainedFPStrict.begin(),
1170                         PendingConstrainedFPStrict.end());
1171   PendingConstrainedFPStrict.clear();
1172   return updateRoot(PendingExports);
1173 }
1174 
1175 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1176                                              DILocalVariable *Variable,
1177                                              DIExpression *Expression,
1178                                              DebugLoc DL) {
1179   assert(Variable && "Missing variable");
1180 
1181   // Check if address has undef value.
1182   if (!Address || isa<UndefValue>(Address) ||
1183       (Address->use_empty() && !isa<Argument>(Address))) {
1184     LLVM_DEBUG(
1185         dbgs()
1186         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1187     return;
1188   }
1189 
1190   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1191 
1192   SDValue &N = NodeMap[Address];
1193   if (!N.getNode() && isa<Argument>(Address))
1194     // Check unused arguments map.
1195     N = UnusedArgNodeMap[Address];
1196   SDDbgValue *SDV;
1197   if (N.getNode()) {
1198     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1199       Address = BCI->getOperand(0);
1200     // Parameters are handled specially.
1201     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1202     if (IsParameter && FINode) {
1203       // Byval parameter. We have a frame index at this point.
1204       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1205                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1206     } else if (isa<Argument>(Address)) {
1207       // Address is an argument, so try to emit its dbg value using
1208       // virtual register info from the FuncInfo.ValueMap.
1209       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1210                                FuncArgumentDbgValueKind::Declare, N);
1211       return;
1212     } else {
1213       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1214                             true, DL, SDNodeOrder);
1215     }
1216     DAG.AddDbgValue(SDV, IsParameter);
1217   } else {
1218     // If Address is an argument then try to emit its dbg value using
1219     // virtual register info from the FuncInfo.ValueMap.
1220     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1221                                   FuncArgumentDbgValueKind::Declare, N)) {
1222       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1223                         << " (could not emit func-arg dbg_value)\n");
1224     }
1225   }
1226   return;
1227 }
1228 
1229 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1230   // Add SDDbgValue nodes for any var locs here. Do so before updating
1231   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1232   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1233     // Add SDDbgValue nodes for any var locs here. Do so before updating
1234     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1236          It != End; ++It) {
1237       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1238       dropDanglingDebugInfo(Var, It->Expr);
1239       if (It->Values.isKillLocation(It->Expr)) {
1240         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1241         continue;
1242       }
1243       SmallVector<Value *> Values(It->Values.location_ops());
1244       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1245                             It->Values.hasArgList())) {
1246         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1247         addDanglingDebugInfo(Vals,
1248                              FnVarLocs->getDILocalVariable(It->VariableID),
1249                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1250       }
1251     }
1252   }
1253 
1254   // We must skip DbgVariableRecords if they've already been processed above as
1255   // we have just emitted the debug values resulting from assignment tracking
1256   // analysis, making any existing DbgVariableRecords redundant (and probably
1257   // less correct). We still need to process DbgLabelRecords. This does sink
1258   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1259   // be important as it does so deterministcally and ordering between
1260   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1261   // printing).
1262   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1263   // Is there is any debug-info attached to this instruction, in the form of
1264   // DbgRecord non-instruction debug-info records.
1265   for (DbgRecord &DR : I.getDbgRecordRange()) {
1266     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1267       assert(DLR->getLabel() && "Missing label");
1268       SDDbgLabel *SDV =
1269           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1270       DAG.AddDbgLabel(SDV);
1271       continue;
1272     }
1273 
1274     if (SkipDbgVariableRecords)
1275       continue;
1276     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1277     DILocalVariable *Variable = DVR.getVariable();
1278     DIExpression *Expression = DVR.getExpression();
1279     dropDanglingDebugInfo(Variable, Expression);
1280 
1281     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1282       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1283         continue;
1284       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1285                         << "\n");
1286       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1287                          DVR.getDebugLoc());
1288       continue;
1289     }
1290 
1291     // A DbgVariableRecord with no locations is a kill location.
1292     SmallVector<Value *, 4> Values(DVR.location_ops());
1293     if (Values.empty()) {
1294       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1295                            SDNodeOrder);
1296       continue;
1297     }
1298 
1299     // A DbgVariableRecord with an undef or absent location is also a kill
1300     // location.
1301     if (llvm::any_of(Values,
1302                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1303       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1304                            SDNodeOrder);
1305       continue;
1306     }
1307 
1308     bool IsVariadic = DVR.hasArgList();
1309     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1310                           SDNodeOrder, IsVariadic)) {
1311       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1312                            DVR.getDebugLoc(), SDNodeOrder);
1313     }
1314   }
1315 }
1316 
1317 void SelectionDAGBuilder::visit(const Instruction &I) {
1318   visitDbgInfo(I);
1319 
1320   // Set up outgoing PHI node register values before emitting the terminator.
1321   if (I.isTerminator()) {
1322     HandlePHINodesInSuccessorBlocks(I.getParent());
1323   }
1324 
1325   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1326   if (!isa<DbgInfoIntrinsic>(I))
1327     ++SDNodeOrder;
1328 
1329   CurInst = &I;
1330 
1331   // Set inserted listener only if required.
1332   bool NodeInserted = false;
1333   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1334   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1335   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1336   if (PCSectionsMD || MMRA) {
1337     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1338         DAG, [&](SDNode *) { NodeInserted = true; });
1339   }
1340 
1341   visit(I.getOpcode(), I);
1342 
1343   if (!I.isTerminator() && !HasTailCall &&
1344       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1345     CopyToExportRegsIfNeeded(&I);
1346 
1347   // Handle metadata.
1348   if (PCSectionsMD || MMRA) {
1349     auto It = NodeMap.find(&I);
1350     if (It != NodeMap.end()) {
1351       if (PCSectionsMD)
1352         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1353       if (MMRA)
1354         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1355     } else if (NodeInserted) {
1356       // This should not happen; if it does, don't let it go unnoticed so we can
1357       // fix it. Relevant visit*() function is probably missing a setValue().
1358       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1359              << I.getModule()->getName() << "]\n";
1360       LLVM_DEBUG(I.dump());
1361       assert(false);
1362     }
1363   }
1364 
1365   CurInst = nullptr;
1366 }
1367 
1368 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1369   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1370 }
1371 
1372 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1373   // Note: this doesn't use InstVisitor, because it has to work with
1374   // ConstantExpr's in addition to instructions.
1375   switch (Opcode) {
1376   default: llvm_unreachable("Unknown instruction type encountered!");
1377     // Build the switch statement using the Instruction.def file.
1378 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1379     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1380 #include "llvm/IR/Instruction.def"
1381   }
1382 }
1383 
1384 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1385                                             DILocalVariable *Variable,
1386                                             DebugLoc DL, unsigned Order,
1387                                             SmallVectorImpl<Value *> &Values,
1388                                             DIExpression *Expression) {
1389   // For variadic dbg_values we will now insert an undef.
1390   // FIXME: We can potentially recover these!
1391   SmallVector<SDDbgOperand, 2> Locs;
1392   for (const Value *V : Values) {
1393     auto *Undef = UndefValue::get(V->getType());
1394     Locs.push_back(SDDbgOperand::fromConst(Undef));
1395   }
1396   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1397                                         /*IsIndirect=*/false, DL, Order,
1398                                         /*IsVariadic=*/true);
1399   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1400   return true;
1401 }
1402 
1403 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1404                                                DILocalVariable *Var,
1405                                                DIExpression *Expr,
1406                                                bool IsVariadic, DebugLoc DL,
1407                                                unsigned Order) {
1408   if (IsVariadic) {
1409     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1410     return;
1411   }
1412   // TODO: Dangling debug info will eventually either be resolved or produce
1413   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1414   // between the original dbg.value location and its resolved DBG_VALUE,
1415   // which we should ideally fill with an extra Undef DBG_VALUE.
1416   assert(Values.size() == 1);
1417   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1418 }
1419 
1420 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1421                                                 const DIExpression *Expr) {
1422   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1423     DIVariable *DanglingVariable = DDI.getVariable();
1424     DIExpression *DanglingExpr = DDI.getExpression();
1425     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1426       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1427                         << printDDI(nullptr, DDI) << "\n");
1428       return true;
1429     }
1430     return false;
1431   };
1432 
1433   for (auto &DDIMI : DanglingDebugInfoMap) {
1434     DanglingDebugInfoVector &DDIV = DDIMI.second;
1435 
1436     // If debug info is to be dropped, run it through final checks to see
1437     // whether it can be salvaged.
1438     for (auto &DDI : DDIV)
1439       if (isMatchingDbgValue(DDI))
1440         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1441 
1442     erase_if(DDIV, isMatchingDbgValue);
1443   }
1444 }
1445 
1446 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1447 // generate the debug data structures now that we've seen its definition.
1448 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1449                                                    SDValue Val) {
1450   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1451   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1452     return;
1453 
1454   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1455   for (auto &DDI : DDIV) {
1456     DebugLoc DL = DDI.getDebugLoc();
1457     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1458     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1459     DILocalVariable *Variable = DDI.getVariable();
1460     DIExpression *Expr = DDI.getExpression();
1461     assert(Variable->isValidLocationForIntrinsic(DL) &&
1462            "Expected inlined-at fields to agree");
1463     SDDbgValue *SDV;
1464     if (Val.getNode()) {
1465       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1466       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1467       // we couldn't resolve it directly when examining the DbgValue intrinsic
1468       // in the first place we should not be more successful here). Unless we
1469       // have some test case that prove this to be correct we should avoid
1470       // calling EmitFuncArgumentDbgValue here.
1471       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1472                                     FuncArgumentDbgValueKind::Value, Val)) {
1473         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1474                           << printDDI(V, DDI) << "\n");
1475         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1476         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1477         // inserted after the definition of Val when emitting the instructions
1478         // after ISel. An alternative could be to teach
1479         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1480         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1481                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1482                    << ValSDNodeOrder << "\n");
1483         SDV = getDbgValue(Val, Variable, Expr, DL,
1484                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1485         DAG.AddDbgValue(SDV, false);
1486       } else
1487         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1488                           << printDDI(V, DDI)
1489                           << " in EmitFuncArgumentDbgValue\n");
1490     } else {
1491       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1492                         << "\n");
1493       auto Undef = UndefValue::get(V->getType());
1494       auto SDV =
1495           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1496       DAG.AddDbgValue(SDV, false);
1497     }
1498   }
1499   DDIV.clear();
1500 }
1501 
1502 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1503                                                     DanglingDebugInfo &DDI) {
1504   // TODO: For the variadic implementation, instead of only checking the fail
1505   // state of `handleDebugValue`, we need know specifically which values were
1506   // invalid, so that we attempt to salvage only those values when processing
1507   // a DIArgList.
1508   const Value *OrigV = V;
1509   DILocalVariable *Var = DDI.getVariable();
1510   DIExpression *Expr = DDI.getExpression();
1511   DebugLoc DL = DDI.getDebugLoc();
1512   unsigned SDOrder = DDI.getSDNodeOrder();
1513 
1514   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1515   // that DW_OP_stack_value is desired.
1516   bool StackValue = true;
1517 
1518   // Can this Value can be encoded without any further work?
1519   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1520     return;
1521 
1522   // Attempt to salvage back through as many instructions as possible. Bail if
1523   // a non-instruction is seen, such as a constant expression or global
1524   // variable. FIXME: Further work could recover those too.
1525   while (isa<Instruction>(V)) {
1526     const Instruction &VAsInst = *cast<const Instruction>(V);
1527     // Temporary "0", awaiting real implementation.
1528     SmallVector<uint64_t, 16> Ops;
1529     SmallVector<Value *, 4> AdditionalValues;
1530     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1531                              Expr->getNumLocationOperands(), Ops,
1532                              AdditionalValues);
1533     // If we cannot salvage any further, and haven't yet found a suitable debug
1534     // expression, bail out.
1535     if (!V)
1536       break;
1537 
1538     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1539     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1540     // here for variadic dbg_values, remove that condition.
1541     if (!AdditionalValues.empty())
1542       break;
1543 
1544     // New value and expr now represent this debuginfo.
1545     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1546 
1547     // Some kind of simplification occurred: check whether the operand of the
1548     // salvaged debug expression can be encoded in this DAG.
1549     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1550       LLVM_DEBUG(
1551           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1552                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1553       return;
1554     }
1555   }
1556 
1557   // This was the final opportunity to salvage this debug information, and it
1558   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1559   // any earlier variable location.
1560   assert(OrigV && "V shouldn't be null");
1561   auto *Undef = UndefValue::get(OrigV->getType());
1562   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1563   DAG.AddDbgValue(SDV, false);
1564   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1565                     << printDDI(OrigV, DDI) << "\n");
1566 }
1567 
1568 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1569                                                DIExpression *Expr,
1570                                                DebugLoc DbgLoc,
1571                                                unsigned Order) {
1572   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1573   DIExpression *NewExpr =
1574       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1575   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1576                    /*IsVariadic*/ false);
1577 }
1578 
1579 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1580                                            DILocalVariable *Var,
1581                                            DIExpression *Expr, DebugLoc DbgLoc,
1582                                            unsigned Order, bool IsVariadic) {
1583   if (Values.empty())
1584     return true;
1585 
1586   // Filter EntryValue locations out early.
1587   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1588     return true;
1589 
1590   SmallVector<SDDbgOperand> LocationOps;
1591   SmallVector<SDNode *> Dependencies;
1592   for (const Value *V : Values) {
1593     // Constant value.
1594     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1595         isa<ConstantPointerNull>(V)) {
1596       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1597       continue;
1598     }
1599 
1600     // Look through IntToPtr constants.
1601     if (auto *CE = dyn_cast<ConstantExpr>(V))
1602       if (CE->getOpcode() == Instruction::IntToPtr) {
1603         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1604         continue;
1605       }
1606 
1607     // If the Value is a frame index, we can create a FrameIndex debug value
1608     // without relying on the DAG at all.
1609     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1610       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1611       if (SI != FuncInfo.StaticAllocaMap.end()) {
1612         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1613         continue;
1614       }
1615     }
1616 
1617     // Do not use getValue() in here; we don't want to generate code at
1618     // this point if it hasn't been done yet.
1619     SDValue N = NodeMap[V];
1620     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1621       N = UnusedArgNodeMap[V];
1622 
1623     if (N.getNode()) {
1624       // Only emit func arg dbg value for non-variadic dbg.values for now.
1625       if (!IsVariadic &&
1626           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1627                                    FuncArgumentDbgValueKind::Value, N))
1628         return true;
1629       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1630         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1631         // describe stack slot locations.
1632         //
1633         // Consider "int x = 0; int *px = &x;". There are two kinds of
1634         // interesting debug values here after optimization:
1635         //
1636         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1637         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1638         //
1639         // Both describe the direct values of their associated variables.
1640         Dependencies.push_back(N.getNode());
1641         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1642         continue;
1643       }
1644       LocationOps.emplace_back(
1645           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1646       continue;
1647     }
1648 
1649     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1650     // Special rules apply for the first dbg.values of parameter variables in a
1651     // function. Identify them by the fact they reference Argument Values, that
1652     // they're parameters, and they are parameters of the current function. We
1653     // need to let them dangle until they get an SDNode.
1654     bool IsParamOfFunc =
1655         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1656     if (IsParamOfFunc)
1657       return false;
1658 
1659     // The value is not used in this block yet (or it would have an SDNode).
1660     // We still want the value to appear for the user if possible -- if it has
1661     // an associated VReg, we can refer to that instead.
1662     auto VMI = FuncInfo.ValueMap.find(V);
1663     if (VMI != FuncInfo.ValueMap.end()) {
1664       unsigned Reg = VMI->second;
1665       // If this is a PHI node, it may be split up into several MI PHI nodes
1666       // (in FunctionLoweringInfo::set).
1667       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1668                        V->getType(), std::nullopt);
1669       if (RFV.occupiesMultipleRegs()) {
1670         // FIXME: We could potentially support variadic dbg_values here.
1671         if (IsVariadic)
1672           return false;
1673         unsigned Offset = 0;
1674         unsigned BitsToDescribe = 0;
1675         if (auto VarSize = Var->getSizeInBits())
1676           BitsToDescribe = *VarSize;
1677         if (auto Fragment = Expr->getFragmentInfo())
1678           BitsToDescribe = Fragment->SizeInBits;
1679         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1680           // Bail out if all bits are described already.
1681           if (Offset >= BitsToDescribe)
1682             break;
1683           // TODO: handle scalable vectors.
1684           unsigned RegisterSize = RegAndSize.second;
1685           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1686                                       ? BitsToDescribe - Offset
1687                                       : RegisterSize;
1688           auto FragmentExpr = DIExpression::createFragmentExpression(
1689               Expr, Offset, FragmentSize);
1690           if (!FragmentExpr)
1691             continue;
1692           SDDbgValue *SDV = DAG.getVRegDbgValue(
1693               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1694           DAG.AddDbgValue(SDV, false);
1695           Offset += RegisterSize;
1696         }
1697         return true;
1698       }
1699       // We can use simple vreg locations for variadic dbg_values as well.
1700       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1701       continue;
1702     }
1703     // We failed to create a SDDbgOperand for V.
1704     return false;
1705   }
1706 
1707   // We have created a SDDbgOperand for each Value in Values.
1708   assert(!LocationOps.empty());
1709   SDDbgValue *SDV =
1710       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1711                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1712   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1713   return true;
1714 }
1715 
1716 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1717   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1718   for (auto &Pair : DanglingDebugInfoMap)
1719     for (auto &DDI : Pair.second)
1720       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1721   clearDanglingDebugInfo();
1722 }
1723 
1724 /// getCopyFromRegs - If there was virtual register allocated for the value V
1725 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1726 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1727   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1728   SDValue Result;
1729 
1730   if (It != FuncInfo.ValueMap.end()) {
1731     Register InReg = It->second;
1732 
1733     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1734                      DAG.getDataLayout(), InReg, Ty,
1735                      std::nullopt); // This is not an ABI copy.
1736     SDValue Chain = DAG.getEntryNode();
1737     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1738                                  V);
1739     resolveDanglingDebugInfo(V, Result);
1740   }
1741 
1742   return Result;
1743 }
1744 
1745 /// getValue - Return an SDValue for the given Value.
1746 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1747   // If we already have an SDValue for this value, use it. It's important
1748   // to do this first, so that we don't create a CopyFromReg if we already
1749   // have a regular SDValue.
1750   SDValue &N = NodeMap[V];
1751   if (N.getNode()) return N;
1752 
1753   // If there's a virtual register allocated and initialized for this
1754   // value, use it.
1755   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1756     return copyFromReg;
1757 
1758   // Otherwise create a new SDValue and remember it.
1759   SDValue Val = getValueImpl(V);
1760   NodeMap[V] = Val;
1761   resolveDanglingDebugInfo(V, Val);
1762   return Val;
1763 }
1764 
1765 /// getNonRegisterValue - Return an SDValue for the given Value, but
1766 /// don't look in FuncInfo.ValueMap for a virtual register.
1767 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1768   // If we already have an SDValue for this value, use it.
1769   SDValue &N = NodeMap[V];
1770   if (N.getNode()) {
1771     if (isIntOrFPConstant(N)) {
1772       // Remove the debug location from the node as the node is about to be used
1773       // in a location which may differ from the original debug location.  This
1774       // is relevant to Constant and ConstantFP nodes because they can appear
1775       // as constant expressions inside PHI nodes.
1776       N->setDebugLoc(DebugLoc());
1777     }
1778     return N;
1779   }
1780 
1781   // Otherwise create a new SDValue and remember it.
1782   SDValue Val = getValueImpl(V);
1783   NodeMap[V] = Val;
1784   resolveDanglingDebugInfo(V, Val);
1785   return Val;
1786 }
1787 
1788 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1789 /// Create an SDValue for the given value.
1790 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1792 
1793   if (const Constant *C = dyn_cast<Constant>(V)) {
1794     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1795 
1796     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1797       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1798 
1799     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1800       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1801 
1802     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1803       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1804                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1805                          getValue(CPA->getAddrDiscriminator()),
1806                          getValue(CPA->getDiscriminator()));
1807     }
1808 
1809     if (isa<ConstantPointerNull>(C)) {
1810       unsigned AS = V->getType()->getPointerAddressSpace();
1811       return DAG.getConstant(0, getCurSDLoc(),
1812                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1813     }
1814 
1815     if (match(C, m_VScale()))
1816       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1817 
1818     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1819       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1820 
1821     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1822       return DAG.getUNDEF(VT);
1823 
1824     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1825       visit(CE->getOpcode(), *CE);
1826       SDValue N1 = NodeMap[V];
1827       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1828       return N1;
1829     }
1830 
1831     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1832       SmallVector<SDValue, 4> Constants;
1833       for (const Use &U : C->operands()) {
1834         SDNode *Val = getValue(U).getNode();
1835         // If the operand is an empty aggregate, there are no values.
1836         if (!Val) continue;
1837         // Add each leaf value from the operand to the Constants list
1838         // to form a flattened list of all the values.
1839         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1840           Constants.push_back(SDValue(Val, i));
1841       }
1842 
1843       return DAG.getMergeValues(Constants, getCurSDLoc());
1844     }
1845 
1846     if (const ConstantDataSequential *CDS =
1847           dyn_cast<ConstantDataSequential>(C)) {
1848       SmallVector<SDValue, 4> Ops;
1849       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1850         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1851         // Add each leaf value from the operand to the Constants list
1852         // to form a flattened list of all the values.
1853         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1854           Ops.push_back(SDValue(Val, i));
1855       }
1856 
1857       if (isa<ArrayType>(CDS->getType()))
1858         return DAG.getMergeValues(Ops, getCurSDLoc());
1859       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1860     }
1861 
1862     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1863       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1864              "Unknown struct or array constant!");
1865 
1866       SmallVector<EVT, 4> ValueVTs;
1867       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1868       unsigned NumElts = ValueVTs.size();
1869       if (NumElts == 0)
1870         return SDValue(); // empty struct
1871       SmallVector<SDValue, 4> Constants(NumElts);
1872       for (unsigned i = 0; i != NumElts; ++i) {
1873         EVT EltVT = ValueVTs[i];
1874         if (isa<UndefValue>(C))
1875           Constants[i] = DAG.getUNDEF(EltVT);
1876         else if (EltVT.isFloatingPoint())
1877           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1878         else
1879           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1880       }
1881 
1882       return DAG.getMergeValues(Constants, getCurSDLoc());
1883     }
1884 
1885     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1886       return DAG.getBlockAddress(BA, VT);
1887 
1888     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1889       return getValue(Equiv->getGlobalValue());
1890 
1891     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1892       return getValue(NC->getGlobalValue());
1893 
1894     if (VT == MVT::aarch64svcount) {
1895       assert(C->isNullValue() && "Can only zero this target type!");
1896       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1897                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1898     }
1899 
1900     VectorType *VecTy = cast<VectorType>(V->getType());
1901 
1902     // Now that we know the number and type of the elements, get that number of
1903     // elements into the Ops array based on what kind of constant it is.
1904     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1905       SmallVector<SDValue, 16> Ops;
1906       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1907       for (unsigned i = 0; i != NumElements; ++i)
1908         Ops.push_back(getValue(CV->getOperand(i)));
1909 
1910       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1911     }
1912 
1913     if (isa<ConstantAggregateZero>(C)) {
1914       EVT EltVT =
1915           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1916 
1917       SDValue Op;
1918       if (EltVT.isFloatingPoint())
1919         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1920       else
1921         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1922 
1923       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1924     }
1925 
1926     llvm_unreachable("Unknown vector constant");
1927   }
1928 
1929   // If this is a static alloca, generate it as the frameindex instead of
1930   // computation.
1931   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1932     DenseMap<const AllocaInst*, int>::iterator SI =
1933       FuncInfo.StaticAllocaMap.find(AI);
1934     if (SI != FuncInfo.StaticAllocaMap.end())
1935       return DAG.getFrameIndex(
1936           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1937   }
1938 
1939   // If this is an instruction which fast-isel has deferred, select it now.
1940   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1941     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1942 
1943     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1944                      Inst->getType(), std::nullopt);
1945     SDValue Chain = DAG.getEntryNode();
1946     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1947   }
1948 
1949   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1950     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1951 
1952   if (const auto *BB = dyn_cast<BasicBlock>(V))
1953     return DAG.getBasicBlock(FuncInfo.getMBB(BB));
1954 
1955   llvm_unreachable("Can't get register for value!");
1956 }
1957 
1958 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1959   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1960   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1961   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1962   bool IsSEH = isAsynchronousEHPersonality(Pers);
1963   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1964   if (!IsSEH)
1965     CatchPadMBB->setIsEHScopeEntry();
1966   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1967   if (IsMSVCCXX || IsCoreCLR)
1968     CatchPadMBB->setIsEHFuncletEntry();
1969 }
1970 
1971 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1972   // Update machine-CFG edge.
1973   MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
1974   FuncInfo.MBB->addSuccessor(TargetMBB);
1975   TargetMBB->setIsEHCatchretTarget(true);
1976   DAG.getMachineFunction().setHasEHCatchret(true);
1977 
1978   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1979   bool IsSEH = isAsynchronousEHPersonality(Pers);
1980   if (IsSEH) {
1981     // If this is not a fall-through branch or optimizations are switched off,
1982     // emit the branch.
1983     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1984         TM.getOptLevel() == CodeGenOptLevel::None)
1985       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1986                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1987     return;
1988   }
1989 
1990   // Figure out the funclet membership for the catchret's successor.
1991   // This will be used by the FuncletLayout pass to determine how to order the
1992   // BB's.
1993   // A 'catchret' returns to the outer scope's color.
1994   Value *ParentPad = I.getCatchSwitchParentPad();
1995   const BasicBlock *SuccessorColor;
1996   if (isa<ConstantTokenNone>(ParentPad))
1997     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1998   else
1999     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2000   assert(SuccessorColor && "No parent funclet for catchret!");
2001   MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2002   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2003 
2004   // Create the terminator node.
2005   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2006                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2007                             DAG.getBasicBlock(SuccessorColorMBB));
2008   DAG.setRoot(Ret);
2009 }
2010 
2011 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2012   // Don't emit any special code for the cleanuppad instruction. It just marks
2013   // the start of an EH scope/funclet.
2014   FuncInfo.MBB->setIsEHScopeEntry();
2015   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2016   if (Pers != EHPersonality::Wasm_CXX) {
2017     FuncInfo.MBB->setIsEHFuncletEntry();
2018     FuncInfo.MBB->setIsCleanupFuncletEntry();
2019   }
2020 }
2021 
2022 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2023 // not match, it is OK to add only the first unwind destination catchpad to the
2024 // successors, because there will be at least one invoke instruction within the
2025 // catch scope that points to the next unwind destination, if one exists, so
2026 // CFGSort cannot mess up with BB sorting order.
2027 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2028 // call within them, and catchpads only consisting of 'catch (...)' have a
2029 // '__cxa_end_catch' call within them, both of which generate invokes in case
2030 // the next unwind destination exists, i.e., the next unwind destination is not
2031 // the caller.)
2032 //
2033 // Having at most one EH pad successor is also simpler and helps later
2034 // transformations.
2035 //
2036 // For example,
2037 // current:
2038 //   invoke void @foo to ... unwind label %catch.dispatch
2039 // catch.dispatch:
2040 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2041 // catch.start:
2042 //   ...
2043 //   ... in this BB or some other child BB dominated by this BB there will be an
2044 //   invoke that points to 'next' BB as an unwind destination
2045 //
2046 // next: ; We don't need to add this to 'current' BB's successor
2047 //   ...
2048 static void findWasmUnwindDestinations(
2049     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2050     BranchProbability Prob,
2051     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2052         &UnwindDests) {
2053   while (EHPadBB) {
2054     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2055     if (isa<CleanupPadInst>(Pad)) {
2056       // Stop on cleanup pads.
2057       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2058       UnwindDests.back().first->setIsEHScopeEntry();
2059       break;
2060     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2061       // Add the catchpad handlers to the possible destinations. We don't
2062       // continue to the unwind destination of the catchswitch for wasm.
2063       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2064         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2065         UnwindDests.back().first->setIsEHScopeEntry();
2066       }
2067       break;
2068     } else {
2069       continue;
2070     }
2071   }
2072 }
2073 
2074 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2075 /// many places it could ultimately go. In the IR, we have a single unwind
2076 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2077 /// This function skips over imaginary basic blocks that hold catchswitch
2078 /// instructions, and finds all the "real" machine
2079 /// basic block destinations. As those destinations may not be successors of
2080 /// EHPadBB, here we also calculate the edge probability to those destinations.
2081 /// The passed-in Prob is the edge probability to EHPadBB.
2082 static void findUnwindDestinations(
2083     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2084     BranchProbability Prob,
2085     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2086         &UnwindDests) {
2087   EHPersonality Personality =
2088     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2089   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2090   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2091   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2092   bool IsSEH = isAsynchronousEHPersonality(Personality);
2093 
2094   if (IsWasmCXX) {
2095     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2096     assert(UnwindDests.size() <= 1 &&
2097            "There should be at most one unwind destination for wasm");
2098     return;
2099   }
2100 
2101   while (EHPadBB) {
2102     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2103     BasicBlock *NewEHPadBB = nullptr;
2104     if (isa<LandingPadInst>(Pad)) {
2105       // Stop on landingpads. They are not funclets.
2106       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2107       break;
2108     } else if (isa<CleanupPadInst>(Pad)) {
2109       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2110       // personalities.
2111       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2112       UnwindDests.back().first->setIsEHScopeEntry();
2113       UnwindDests.back().first->setIsEHFuncletEntry();
2114       break;
2115     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2116       // Add the catchpad handlers to the possible destinations.
2117       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2118         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2119         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2120         if (IsMSVCCXX || IsCoreCLR)
2121           UnwindDests.back().first->setIsEHFuncletEntry();
2122         if (!IsSEH)
2123           UnwindDests.back().first->setIsEHScopeEntry();
2124       }
2125       NewEHPadBB = CatchSwitch->getUnwindDest();
2126     } else {
2127       continue;
2128     }
2129 
2130     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2131     if (BPI && NewEHPadBB)
2132       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2133     EHPadBB = NewEHPadBB;
2134   }
2135 }
2136 
2137 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2138   // Update successor info.
2139   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2140   auto UnwindDest = I.getUnwindDest();
2141   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2142   BranchProbability UnwindDestProb =
2143       (BPI && UnwindDest)
2144           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2145           : BranchProbability::getZero();
2146   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2147   for (auto &UnwindDest : UnwindDests) {
2148     UnwindDest.first->setIsEHPad();
2149     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2150   }
2151   FuncInfo.MBB->normalizeSuccProbs();
2152 
2153   // Create the terminator node.
2154   MachineBasicBlock *CleanupPadMBB =
2155       FuncInfo.getMBB(I.getCleanupPad()->getParent());
2156   SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2157                             getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2158   DAG.setRoot(Ret);
2159 }
2160 
2161 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2162   report_fatal_error("visitCatchSwitch not yet implemented!");
2163 }
2164 
2165 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2167   auto &DL = DAG.getDataLayout();
2168   SDValue Chain = getControlRoot();
2169   SmallVector<ISD::OutputArg, 8> Outs;
2170   SmallVector<SDValue, 8> OutVals;
2171 
2172   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2173   // lower
2174   //
2175   //   %val = call <ty> @llvm.experimental.deoptimize()
2176   //   ret <ty> %val
2177   //
2178   // differently.
2179   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2180     LowerDeoptimizingReturn();
2181     return;
2182   }
2183 
2184   if (!FuncInfo.CanLowerReturn) {
2185     Register DemoteReg = FuncInfo.DemoteRegister;
2186     const Function *F = I.getParent()->getParent();
2187 
2188     // Emit a store of the return value through the virtual register.
2189     // Leave Outs empty so that LowerReturn won't try to load return
2190     // registers the usual way.
2191     SmallVector<EVT, 1> PtrValueVTs;
2192     ComputeValueVTs(TLI, DL,
2193                     PointerType::get(F->getContext(),
2194                                      DAG.getDataLayout().getAllocaAddrSpace()),
2195                     PtrValueVTs);
2196 
2197     SDValue RetPtr =
2198         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2199     SDValue RetOp = getValue(I.getOperand(0));
2200 
2201     SmallVector<EVT, 4> ValueVTs, MemVTs;
2202     SmallVector<uint64_t, 4> Offsets;
2203     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2204                     &Offsets, 0);
2205     unsigned NumValues = ValueVTs.size();
2206 
2207     SmallVector<SDValue, 4> Chains(NumValues);
2208     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2209     for (unsigned i = 0; i != NumValues; ++i) {
2210       // An aggregate return value cannot wrap around the address space, so
2211       // offsets to its parts don't wrap either.
2212       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2213                                            TypeSize::getFixed(Offsets[i]));
2214 
2215       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2216       if (MemVTs[i] != ValueVTs[i])
2217         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2218       Chains[i] = DAG.getStore(
2219           Chain, getCurSDLoc(), Val,
2220           // FIXME: better loc info would be nice.
2221           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2222           commonAlignment(BaseAlign, Offsets[i]));
2223     }
2224 
2225     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2226                         MVT::Other, Chains);
2227   } else if (I.getNumOperands() != 0) {
2228     SmallVector<EVT, 4> ValueVTs;
2229     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2230     unsigned NumValues = ValueVTs.size();
2231     if (NumValues) {
2232       SDValue RetOp = getValue(I.getOperand(0));
2233 
2234       const Function *F = I.getParent()->getParent();
2235 
2236       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2237           I.getOperand(0)->getType(), F->getCallingConv(),
2238           /*IsVarArg*/ false, DL);
2239 
2240       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2241       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2242         ExtendKind = ISD::SIGN_EXTEND;
2243       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2244         ExtendKind = ISD::ZERO_EXTEND;
2245 
2246       LLVMContext &Context = F->getContext();
2247       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2248 
2249       for (unsigned j = 0; j != NumValues; ++j) {
2250         EVT VT = ValueVTs[j];
2251 
2252         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2253           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2254 
2255         CallingConv::ID CC = F->getCallingConv();
2256 
2257         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2258         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2259         SmallVector<SDValue, 4> Parts(NumParts);
2260         getCopyToParts(DAG, getCurSDLoc(),
2261                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2262                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2263 
2264         // 'inreg' on function refers to return value
2265         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2266         if (RetInReg)
2267           Flags.setInReg();
2268 
2269         if (I.getOperand(0)->getType()->isPointerTy()) {
2270           Flags.setPointer();
2271           Flags.setPointerAddrSpace(
2272               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2273         }
2274 
2275         if (NeedsRegBlock) {
2276           Flags.setInConsecutiveRegs();
2277           if (j == NumValues - 1)
2278             Flags.setInConsecutiveRegsLast();
2279         }
2280 
2281         // Propagate extension type if any
2282         if (ExtendKind == ISD::SIGN_EXTEND)
2283           Flags.setSExt();
2284         else if (ExtendKind == ISD::ZERO_EXTEND)
2285           Flags.setZExt();
2286         else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2287           Flags.setNoExt();
2288 
2289         for (unsigned i = 0; i < NumParts; ++i) {
2290           Outs.push_back(ISD::OutputArg(Flags,
2291                                         Parts[i].getValueType().getSimpleVT(),
2292                                         VT, /*isfixed=*/true, 0, 0));
2293           OutVals.push_back(Parts[i]);
2294         }
2295       }
2296     }
2297   }
2298 
2299   // Push in swifterror virtual register as the last element of Outs. This makes
2300   // sure swifterror virtual register will be returned in the swifterror
2301   // physical register.
2302   const Function *F = I.getParent()->getParent();
2303   if (TLI.supportSwiftError() &&
2304       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2305     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2306     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2307     Flags.setSwiftError();
2308     Outs.push_back(ISD::OutputArg(
2309         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2310         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2311     // Create SDNode for the swifterror virtual register.
2312     OutVals.push_back(
2313         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2314                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2315                         EVT(TLI.getPointerTy(DL))));
2316   }
2317 
2318   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2319   CallingConv::ID CallConv =
2320     DAG.getMachineFunction().getFunction().getCallingConv();
2321   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2322       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2323 
2324   // Verify that the target's LowerReturn behaved as expected.
2325   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2326          "LowerReturn didn't return a valid chain!");
2327 
2328   // Update the DAG with the new chain value resulting from return lowering.
2329   DAG.setRoot(Chain);
2330 }
2331 
2332 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2333 /// created for it, emit nodes to copy the value into the virtual
2334 /// registers.
2335 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2336   // Skip empty types
2337   if (V->getType()->isEmptyTy())
2338     return;
2339 
2340   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2341   if (VMI != FuncInfo.ValueMap.end()) {
2342     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2343            "Unused value assigned virtual registers!");
2344     CopyValueToVirtualRegister(V, VMI->second);
2345   }
2346 }
2347 
2348 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2349 /// the current basic block, add it to ValueMap now so that we'll get a
2350 /// CopyTo/FromReg.
2351 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2352   // No need to export constants.
2353   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2354 
2355   // Already exported?
2356   if (FuncInfo.isExportedInst(V)) return;
2357 
2358   Register Reg = FuncInfo.InitializeRegForValue(V);
2359   CopyValueToVirtualRegister(V, Reg);
2360 }
2361 
2362 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2363                                                      const BasicBlock *FromBB) {
2364   // The operands of the setcc have to be in this block.  We don't know
2365   // how to export them from some other block.
2366   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2367     // Can export from current BB.
2368     if (VI->getParent() == FromBB)
2369       return true;
2370 
2371     // Is already exported, noop.
2372     return FuncInfo.isExportedInst(V);
2373   }
2374 
2375   // If this is an argument, we can export it if the BB is the entry block or
2376   // if it is already exported.
2377   if (isa<Argument>(V)) {
2378     if (FromBB->isEntryBlock())
2379       return true;
2380 
2381     // Otherwise, can only export this if it is already exported.
2382     return FuncInfo.isExportedInst(V);
2383   }
2384 
2385   // Otherwise, constants can always be exported.
2386   return true;
2387 }
2388 
2389 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2390 BranchProbability
2391 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2392                                         const MachineBasicBlock *Dst) const {
2393   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2394   const BasicBlock *SrcBB = Src->getBasicBlock();
2395   const BasicBlock *DstBB = Dst->getBasicBlock();
2396   if (!BPI) {
2397     // If BPI is not available, set the default probability as 1 / N, where N is
2398     // the number of successors.
2399     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2400     return BranchProbability(1, SuccSize);
2401   }
2402   return BPI->getEdgeProbability(SrcBB, DstBB);
2403 }
2404 
2405 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2406                                                MachineBasicBlock *Dst,
2407                                                BranchProbability Prob) {
2408   if (!FuncInfo.BPI)
2409     Src->addSuccessorWithoutProb(Dst);
2410   else {
2411     if (Prob.isUnknown())
2412       Prob = getEdgeProbability(Src, Dst);
2413     Src->addSuccessor(Dst, Prob);
2414   }
2415 }
2416 
2417 static bool InBlock(const Value *V, const BasicBlock *BB) {
2418   if (const Instruction *I = dyn_cast<Instruction>(V))
2419     return I->getParent() == BB;
2420   return true;
2421 }
2422 
2423 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2424 /// This function emits a branch and is used at the leaves of an OR or an
2425 /// AND operator tree.
2426 void
2427 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2428                                                   MachineBasicBlock *TBB,
2429                                                   MachineBasicBlock *FBB,
2430                                                   MachineBasicBlock *CurBB,
2431                                                   MachineBasicBlock *SwitchBB,
2432                                                   BranchProbability TProb,
2433                                                   BranchProbability FProb,
2434                                                   bool InvertCond) {
2435   const BasicBlock *BB = CurBB->getBasicBlock();
2436 
2437   // If the leaf of the tree is a comparison, merge the condition into
2438   // the caseblock.
2439   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2440     // The operands of the cmp have to be in this block.  We don't know
2441     // how to export them from some other block.  If this is the first block
2442     // of the sequence, no exporting is needed.
2443     if (CurBB == SwitchBB ||
2444         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2445          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2446       ISD::CondCode Condition;
2447       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2448         ICmpInst::Predicate Pred =
2449             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2450         Condition = getICmpCondCode(Pred);
2451       } else {
2452         const FCmpInst *FC = cast<FCmpInst>(Cond);
2453         FCmpInst::Predicate Pred =
2454             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2455         Condition = getFCmpCondCode(Pred);
2456         if (TM.Options.NoNaNsFPMath)
2457           Condition = getFCmpCodeWithoutNaN(Condition);
2458       }
2459 
2460       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2461                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2462       SL->SwitchCases.push_back(CB);
2463       return;
2464     }
2465   }
2466 
2467   // Create a CaseBlock record representing this branch.
2468   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2469   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2470                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2471   SL->SwitchCases.push_back(CB);
2472 }
2473 
2474 // Collect dependencies on V recursively. This is used for the cost analysis in
2475 // `shouldKeepJumpConditionsTogether`.
2476 static bool collectInstructionDeps(
2477     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2478     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2479     unsigned Depth = 0) {
2480   // Return false if we have an incomplete count.
2481   if (Depth >= SelectionDAG::MaxRecursionDepth)
2482     return false;
2483 
2484   auto *I = dyn_cast<Instruction>(V);
2485   if (I == nullptr)
2486     return true;
2487 
2488   if (Necessary != nullptr) {
2489     // This instruction is necessary for the other side of the condition so
2490     // don't count it.
2491     if (Necessary->contains(I))
2492       return true;
2493   }
2494 
2495   // Already added this dep.
2496   if (!Deps->try_emplace(I, false).second)
2497     return true;
2498 
2499   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2500     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2501                                 Depth + 1))
2502       return false;
2503   return true;
2504 }
2505 
2506 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2507     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2508     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2509     TargetLoweringBase::CondMergingParams Params) const {
2510   if (I.getNumSuccessors() != 2)
2511     return false;
2512 
2513   if (!I.isConditional())
2514     return false;
2515 
2516   if (Params.BaseCost < 0)
2517     return false;
2518 
2519   // Baseline cost.
2520   InstructionCost CostThresh = Params.BaseCost;
2521 
2522   BranchProbabilityInfo *BPI = nullptr;
2523   if (Params.LikelyBias || Params.UnlikelyBias)
2524     BPI = FuncInfo.BPI;
2525   if (BPI != nullptr) {
2526     // See if we are either likely to get an early out or compute both lhs/rhs
2527     // of the condition.
2528     BasicBlock *IfFalse = I.getSuccessor(0);
2529     BasicBlock *IfTrue = I.getSuccessor(1);
2530 
2531     std::optional<bool> Likely;
2532     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2533       Likely = true;
2534     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2535       Likely = false;
2536 
2537     if (Likely) {
2538       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2539         // Its likely we will have to compute both lhs and rhs of condition
2540         CostThresh += Params.LikelyBias;
2541       else {
2542         if (Params.UnlikelyBias < 0)
2543           return false;
2544         // Its likely we will get an early out.
2545         CostThresh -= Params.UnlikelyBias;
2546       }
2547     }
2548   }
2549 
2550   if (CostThresh <= 0)
2551     return false;
2552 
2553   // Collect "all" instructions that lhs condition is dependent on.
2554   // Use map for stable iteration (to avoid non-determanism of iteration of
2555   // SmallPtrSet). The `bool` value is just a dummy.
2556   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2557   collectInstructionDeps(&LhsDeps, Lhs);
2558   // Collect "all" instructions that rhs condition is dependent on AND are
2559   // dependencies of lhs. This gives us an estimate on which instructions we
2560   // stand to save by splitting the condition.
2561   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2562     return false;
2563   // Add the compare instruction itself unless its a dependency on the LHS.
2564   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2565     if (!LhsDeps.contains(RhsI))
2566       RhsDeps.try_emplace(RhsI, false);
2567 
2568   const auto &TLI = DAG.getTargetLoweringInfo();
2569   const auto &TTI =
2570       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2571 
2572   InstructionCost CostOfIncluding = 0;
2573   // See if this instruction will need to computed independently of whether RHS
2574   // is.
2575   Value *BrCond = I.getCondition();
2576   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2577     for (const auto *U : Ins->users()) {
2578       // If user is independent of RHS calculation we don't need to count it.
2579       if (auto *UIns = dyn_cast<Instruction>(U))
2580         if (UIns != BrCond && !RhsDeps.contains(UIns))
2581           return false;
2582     }
2583     return true;
2584   };
2585 
2586   // Prune instructions from RHS Deps that are dependencies of unrelated
2587   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2588   // arbitrary and just meant to cap the how much time we spend in the pruning
2589   // loop. Its highly unlikely to come into affect.
2590   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2591   // Stop after a certain point. No incorrectness from including too many
2592   // instructions.
2593   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2594     const Instruction *ToDrop = nullptr;
2595     for (const auto &InsPair : RhsDeps) {
2596       if (!ShouldCountInsn(InsPair.first)) {
2597         ToDrop = InsPair.first;
2598         break;
2599       }
2600     }
2601     if (ToDrop == nullptr)
2602       break;
2603     RhsDeps.erase(ToDrop);
2604   }
2605 
2606   for (const auto &InsPair : RhsDeps) {
2607     // Finally accumulate latency that we can only attribute to computing the
2608     // RHS condition. Use latency because we are essentially trying to calculate
2609     // the cost of the dependency chain.
2610     // Possible TODO: We could try to estimate ILP and make this more precise.
2611     CostOfIncluding +=
2612         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2613 
2614     if (CostOfIncluding > CostThresh)
2615       return false;
2616   }
2617   return true;
2618 }
2619 
2620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2621                                                MachineBasicBlock *TBB,
2622                                                MachineBasicBlock *FBB,
2623                                                MachineBasicBlock *CurBB,
2624                                                MachineBasicBlock *SwitchBB,
2625                                                Instruction::BinaryOps Opc,
2626                                                BranchProbability TProb,
2627                                                BranchProbability FProb,
2628                                                bool InvertCond) {
2629   // Skip over not part of the tree and remember to invert op and operands at
2630   // next level.
2631   Value *NotCond;
2632   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2633       InBlock(NotCond, CurBB->getBasicBlock())) {
2634     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2635                          !InvertCond);
2636     return;
2637   }
2638 
2639   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2640   const Value *BOpOp0, *BOpOp1;
2641   // Compute the effective opcode for Cond, taking into account whether it needs
2642   // to be inverted, e.g.
2643   //   and (not (or A, B)), C
2644   // gets lowered as
2645   //   and (and (not A, not B), C)
2646   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2647   if (BOp) {
2648     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2649                ? Instruction::And
2650                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2651                       ? Instruction::Or
2652                       : (Instruction::BinaryOps)0);
2653     if (InvertCond) {
2654       if (BOpc == Instruction::And)
2655         BOpc = Instruction::Or;
2656       else if (BOpc == Instruction::Or)
2657         BOpc = Instruction::And;
2658     }
2659   }
2660 
2661   // If this node is not part of the or/and tree, emit it as a branch.
2662   // Note that all nodes in the tree should have same opcode.
2663   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2664   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2665       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2666       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2667     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2668                                  TProb, FProb, InvertCond);
2669     return;
2670   }
2671 
2672   //  Create TmpBB after CurBB.
2673   MachineFunction::iterator BBI(CurBB);
2674   MachineFunction &MF = DAG.getMachineFunction();
2675   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2676   CurBB->getParent()->insert(++BBI, TmpBB);
2677 
2678   if (Opc == Instruction::Or) {
2679     // Codegen X | Y as:
2680     // BB1:
2681     //   jmp_if_X TBB
2682     //   jmp TmpBB
2683     // TmpBB:
2684     //   jmp_if_Y TBB
2685     //   jmp FBB
2686     //
2687 
2688     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2689     // The requirement is that
2690     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2691     //     = TrueProb for original BB.
2692     // Assuming the original probabilities are A and B, one choice is to set
2693     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2694     // A/(1+B) and 2B/(1+B). This choice assumes that
2695     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2696     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2697     // TmpBB, but the math is more complicated.
2698 
2699     auto NewTrueProb = TProb / 2;
2700     auto NewFalseProb = TProb / 2 + FProb;
2701     // Emit the LHS condition.
2702     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2703                          NewFalseProb, InvertCond);
2704 
2705     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2706     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2707     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2708     // Emit the RHS condition into TmpBB.
2709     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2710                          Probs[1], InvertCond);
2711   } else {
2712     assert(Opc == Instruction::And && "Unknown merge op!");
2713     // Codegen X & Y as:
2714     // BB1:
2715     //   jmp_if_X TmpBB
2716     //   jmp FBB
2717     // TmpBB:
2718     //   jmp_if_Y TBB
2719     //   jmp FBB
2720     //
2721     //  This requires creation of TmpBB after CurBB.
2722 
2723     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2724     // The requirement is that
2725     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2726     //     = FalseProb for original BB.
2727     // Assuming the original probabilities are A and B, one choice is to set
2728     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2729     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2730     // TrueProb for BB1 * FalseProb for TmpBB.
2731 
2732     auto NewTrueProb = TProb + FProb / 2;
2733     auto NewFalseProb = FProb / 2;
2734     // Emit the LHS condition.
2735     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2736                          NewFalseProb, InvertCond);
2737 
2738     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2739     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2740     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2741     // Emit the RHS condition into TmpBB.
2742     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2743                          Probs[1], InvertCond);
2744   }
2745 }
2746 
2747 /// If the set of cases should be emitted as a series of branches, return true.
2748 /// If we should emit this as a bunch of and/or'd together conditions, return
2749 /// false.
2750 bool
2751 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2752   if (Cases.size() != 2) return true;
2753 
2754   // If this is two comparisons of the same values or'd or and'd together, they
2755   // will get folded into a single comparison, so don't emit two blocks.
2756   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2757        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2758       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2759        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2760     return false;
2761   }
2762 
2763   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2764   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2765   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2766       Cases[0].CC == Cases[1].CC &&
2767       isa<Constant>(Cases[0].CmpRHS) &&
2768       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2769     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2770       return false;
2771     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2772       return false;
2773   }
2774 
2775   return true;
2776 }
2777 
2778 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2779   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2780 
2781   // Update machine-CFG edges.
2782   MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2783 
2784   if (I.isUnconditional()) {
2785     // Update machine-CFG edges.
2786     BrMBB->addSuccessor(Succ0MBB);
2787 
2788     // If this is not a fall-through branch or optimizations are switched off,
2789     // emit the branch.
2790     if (Succ0MBB != NextBlock(BrMBB) ||
2791         TM.getOptLevel() == CodeGenOptLevel::None) {
2792       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2793                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2794       setValue(&I, Br);
2795       DAG.setRoot(Br);
2796     }
2797 
2798     return;
2799   }
2800 
2801   // If this condition is one of the special cases we handle, do special stuff
2802   // now.
2803   const Value *CondVal = I.getCondition();
2804   MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2805 
2806   // If this is a series of conditions that are or'd or and'd together, emit
2807   // this as a sequence of branches instead of setcc's with and/or operations.
2808   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2809   // unpredictable branches, and vector extracts because those jumps are likely
2810   // expensive for any target), this should improve performance.
2811   // For example, instead of something like:
2812   //     cmp A, B
2813   //     C = seteq
2814   //     cmp D, E
2815   //     F = setle
2816   //     or C, F
2817   //     jnz foo
2818   // Emit:
2819   //     cmp A, B
2820   //     je foo
2821   //     cmp D, E
2822   //     jle foo
2823   bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2824   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2825   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2826       BOp->hasOneUse() && !IsUnpredictable) {
2827     Value *Vec;
2828     const Value *BOp0, *BOp1;
2829     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2830     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2831       Opcode = Instruction::And;
2832     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2833       Opcode = Instruction::Or;
2834 
2835     if (Opcode &&
2836         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2837           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2838         !shouldKeepJumpConditionsTogether(
2839             FuncInfo, I, Opcode, BOp0, BOp1,
2840             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2841                 Opcode, BOp0, BOp1))) {
2842       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2843                            getEdgeProbability(BrMBB, Succ0MBB),
2844                            getEdgeProbability(BrMBB, Succ1MBB),
2845                            /*InvertCond=*/false);
2846       // If the compares in later blocks need to use values not currently
2847       // exported from this block, export them now.  This block should always
2848       // be the first entry.
2849       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2850 
2851       // Allow some cases to be rejected.
2852       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2853         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2854           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2855           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2856         }
2857 
2858         // Emit the branch for this block.
2859         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2860         SL->SwitchCases.erase(SL->SwitchCases.begin());
2861         return;
2862       }
2863 
2864       // Okay, we decided not to do this, remove any inserted MBB's and clear
2865       // SwitchCases.
2866       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2867         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2868 
2869       SL->SwitchCases.clear();
2870     }
2871   }
2872 
2873   // Create a CaseBlock record representing this branch.
2874   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2875                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2876                BranchProbability::getUnknown(), BranchProbability::getUnknown(),
2877                IsUnpredictable);
2878 
2879   // Use visitSwitchCase to actually insert the fast branch sequence for this
2880   // cond branch.
2881   visitSwitchCase(CB, BrMBB);
2882 }
2883 
2884 /// visitSwitchCase - Emits the necessary code to represent a single node in
2885 /// the binary search tree resulting from lowering a switch instruction.
2886 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2887                                           MachineBasicBlock *SwitchBB) {
2888   SDValue Cond;
2889   SDValue CondLHS = getValue(CB.CmpLHS);
2890   SDLoc dl = CB.DL;
2891 
2892   if (CB.CC == ISD::SETTRUE) {
2893     // Branch or fall through to TrueBB.
2894     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2895     SwitchBB->normalizeSuccProbs();
2896     if (CB.TrueBB != NextBlock(SwitchBB)) {
2897       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2898                               DAG.getBasicBlock(CB.TrueBB)));
2899     }
2900     return;
2901   }
2902 
2903   auto &TLI = DAG.getTargetLoweringInfo();
2904   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2905 
2906   // Build the setcc now.
2907   if (!CB.CmpMHS) {
2908     // Fold "(X == true)" to X and "(X == false)" to !X to
2909     // handle common cases produced by branch lowering.
2910     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2911         CB.CC == ISD::SETEQ)
2912       Cond = CondLHS;
2913     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2914              CB.CC == ISD::SETEQ) {
2915       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2916       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2917     } else {
2918       SDValue CondRHS = getValue(CB.CmpRHS);
2919 
2920       // If a pointer's DAG type is larger than its memory type then the DAG
2921       // values are zero-extended. This breaks signed comparisons so truncate
2922       // back to the underlying type before doing the compare.
2923       if (CondLHS.getValueType() != MemVT) {
2924         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2925         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2926       }
2927       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2928     }
2929   } else {
2930     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2931 
2932     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2933     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2934 
2935     SDValue CmpOp = getValue(CB.CmpMHS);
2936     EVT VT = CmpOp.getValueType();
2937 
2938     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2939       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2940                           ISD::SETLE);
2941     } else {
2942       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2943                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2944       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2945                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2946     }
2947   }
2948 
2949   // Update successor info
2950   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2951   // TrueBB and FalseBB are always different unless the incoming IR is
2952   // degenerate. This only happens when running llc on weird IR.
2953   if (CB.TrueBB != CB.FalseBB)
2954     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2955   SwitchBB->normalizeSuccProbs();
2956 
2957   // If the lhs block is the next block, invert the condition so that we can
2958   // fall through to the lhs instead of the rhs block.
2959   if (CB.TrueBB == NextBlock(SwitchBB)) {
2960     std::swap(CB.TrueBB, CB.FalseBB);
2961     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2962     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2963   }
2964 
2965   SDNodeFlags Flags;
2966   Flags.setUnpredictable(CB.IsUnpredictable);
2967   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2968                                Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2969 
2970   setValue(CurInst, BrCond);
2971 
2972   // Insert the false branch. Do this even if it's a fall through branch,
2973   // this makes it easier to do DAG optimizations which require inverting
2974   // the branch condition.
2975   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2976                        DAG.getBasicBlock(CB.FalseBB));
2977 
2978   DAG.setRoot(BrCond);
2979 }
2980 
2981 /// visitJumpTable - Emit JumpTable node in the current MBB
2982 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2983   // Emit the code for the jump table
2984   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2985   assert(JT.Reg && "Should lower JT Header first!");
2986   EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
2987   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2988   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2989   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2990                                     Index.getValue(1), Table, Index);
2991   DAG.setRoot(BrJumpTable);
2992 }
2993 
2994 /// visitJumpTableHeader - This function emits necessary code to produce index
2995 /// in the JumpTable from switch case.
2996 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2997                                                JumpTableHeader &JTH,
2998                                                MachineBasicBlock *SwitchBB) {
2999   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3000   const SDLoc &dl = *JT.SL;
3001 
3002   // Subtract the lowest switch case value from the value being switched on.
3003   SDValue SwitchOp = getValue(JTH.SValue);
3004   EVT VT = SwitchOp.getValueType();
3005   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3006                             DAG.getConstant(JTH.First, dl, VT));
3007 
3008   // The SDNode we just created, which holds the value being switched on minus
3009   // the smallest case value, needs to be copied to a virtual register so it
3010   // can be used as an index into the jump table in a subsequent basic block.
3011   // This value may be smaller or larger than the target's pointer type, and
3012   // therefore require extension or truncating.
3013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3014   SwitchOp =
3015       DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3016 
3017   Register JumpTableReg =
3018       FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3019   SDValue CopyTo =
3020       DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3021   JT.Reg = JumpTableReg;
3022 
3023   if (!JTH.FallthroughUnreachable) {
3024     // Emit the range check for the jump table, and branch to the default block
3025     // for the switch statement if the value being switched on exceeds the
3026     // largest case in the switch.
3027     SDValue CMP = DAG.getSetCC(
3028         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3029                                    Sub.getValueType()),
3030         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3031 
3032     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3033                                  MVT::Other, CopyTo, CMP,
3034                                  DAG.getBasicBlock(JT.Default));
3035 
3036     // Avoid emitting unnecessary branches to the next block.
3037     if (JT.MBB != NextBlock(SwitchBB))
3038       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3039                            DAG.getBasicBlock(JT.MBB));
3040 
3041     DAG.setRoot(BrCond);
3042   } else {
3043     // Avoid emitting unnecessary branches to the next block.
3044     if (JT.MBB != NextBlock(SwitchBB))
3045       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3046                               DAG.getBasicBlock(JT.MBB)));
3047     else
3048       DAG.setRoot(CopyTo);
3049   }
3050 }
3051 
3052 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3053 /// variable if there exists one.
3054 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3055                                  SDValue &Chain) {
3056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3057   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3058   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3059   MachineFunction &MF = DAG.getMachineFunction();
3060   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3061   MachineSDNode *Node =
3062       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3063   if (Global) {
3064     MachinePointerInfo MPInfo(Global);
3065     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3066                  MachineMemOperand::MODereferenceable;
3067     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3068         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3069         DAG.getEVTAlign(PtrTy));
3070     DAG.setNodeMemRefs(Node, {MemRef});
3071   }
3072   if (PtrTy != PtrMemTy)
3073     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3074   return SDValue(Node, 0);
3075 }
3076 
3077 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3078 /// tail spliced into a stack protector check success bb.
3079 ///
3080 /// For a high level explanation of how this fits into the stack protector
3081 /// generation see the comment on the declaration of class
3082 /// StackProtectorDescriptor.
3083 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3084                                                   MachineBasicBlock *ParentBB) {
3085 
3086   // First create the loads to the guard/stack slot for the comparison.
3087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3089   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3090 
3091   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3092   int FI = MFI.getStackProtectorIndex();
3093 
3094   SDValue Guard;
3095   SDLoc dl = getCurSDLoc();
3096   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3097   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3098   Align Align =
3099       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3100 
3101   // Generate code to load the content of the guard slot.
3102   SDValue GuardVal = DAG.getLoad(
3103       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3104       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3105       MachineMemOperand::MOVolatile);
3106 
3107   if (TLI.useStackGuardXorFP())
3108     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3109 
3110   // Retrieve guard check function, nullptr if instrumentation is inlined.
3111   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3112     // The target provides a guard check function to validate the guard value.
3113     // Generate a call to that function with the content of the guard slot as
3114     // argument.
3115     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3116     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3117 
3118     TargetLowering::ArgListTy Args;
3119     TargetLowering::ArgListEntry Entry;
3120     Entry.Node = GuardVal;
3121     Entry.Ty = FnTy->getParamType(0);
3122     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3123       Entry.IsInReg = true;
3124     Args.push_back(Entry);
3125 
3126     TargetLowering::CallLoweringInfo CLI(DAG);
3127     CLI.setDebugLoc(getCurSDLoc())
3128         .setChain(DAG.getEntryNode())
3129         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3130                    getValue(GuardCheckFn), std::move(Args));
3131 
3132     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3133     DAG.setRoot(Result.second);
3134     return;
3135   }
3136 
3137   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3138   // Otherwise, emit a volatile load to retrieve the stack guard value.
3139   SDValue Chain = DAG.getEntryNode();
3140   if (TLI.useLoadStackGuardNode(M)) {
3141     Guard = getLoadStackGuard(DAG, dl, Chain);
3142   } else {
3143     const Value *IRGuard = TLI.getSDagStackGuard(M);
3144     SDValue GuardPtr = getValue(IRGuard);
3145 
3146     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3147                         MachinePointerInfo(IRGuard, 0), Align,
3148                         MachineMemOperand::MOVolatile);
3149   }
3150 
3151   // Perform the comparison via a getsetcc.
3152   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3153                                                         *DAG.getContext(),
3154                                                         Guard.getValueType()),
3155                              Guard, GuardVal, ISD::SETNE);
3156 
3157   // If the guard/stackslot do not equal, branch to failure MBB.
3158   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3159                                MVT::Other, GuardVal.getOperand(0),
3160                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3161   // Otherwise branch to success MBB.
3162   SDValue Br = DAG.getNode(ISD::BR, dl,
3163                            MVT::Other, BrCond,
3164                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3165 
3166   DAG.setRoot(Br);
3167 }
3168 
3169 /// Codegen the failure basic block for a stack protector check.
3170 ///
3171 /// A failure stack protector machine basic block consists simply of a call to
3172 /// __stack_chk_fail().
3173 ///
3174 /// For a high level explanation of how this fits into the stack protector
3175 /// generation see the comment on the declaration of class
3176 /// StackProtectorDescriptor.
3177 void
3178 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3179   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3180   TargetLowering::MakeLibCallOptions CallOptions;
3181   CallOptions.setDiscardResult(true);
3182   SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
3183                                   MVT::isVoid, {}, CallOptions, getCurSDLoc())
3184                       .second;
3185 
3186   // Emit a trap instruction if we are required to do so.
3187   const TargetOptions &TargetOpts = DAG.getTarget().Options;
3188   if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3189     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3190 
3191   DAG.setRoot(Chain);
3192 }
3193 
3194 /// visitBitTestHeader - This function emits necessary code to produce value
3195 /// suitable for "bit tests"
3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3197                                              MachineBasicBlock *SwitchBB) {
3198   SDLoc dl = getCurSDLoc();
3199 
3200   // Subtract the minimum value.
3201   SDValue SwitchOp = getValue(B.SValue);
3202   EVT VT = SwitchOp.getValueType();
3203   SDValue RangeSub =
3204       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3205 
3206   // Determine the type of the test operands.
3207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3208   bool UsePtrType = false;
3209   if (!TLI.isTypeLegal(VT)) {
3210     UsePtrType = true;
3211   } else {
3212     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3213       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3214         // Switch table case range are encoded into series of masks.
3215         // Just use pointer type, it's guaranteed to fit.
3216         UsePtrType = true;
3217         break;
3218       }
3219   }
3220   SDValue Sub = RangeSub;
3221   if (UsePtrType) {
3222     VT = TLI.getPointerTy(DAG.getDataLayout());
3223     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3224   }
3225 
3226   B.RegVT = VT.getSimpleVT();
3227   B.Reg = FuncInfo.CreateReg(B.RegVT);
3228   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3229 
3230   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3231 
3232   if (!B.FallthroughUnreachable)
3233     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3234   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3235   SwitchBB->normalizeSuccProbs();
3236 
3237   SDValue Root = CopyTo;
3238   if (!B.FallthroughUnreachable) {
3239     // Conditional branch to the default block.
3240     SDValue RangeCmp = DAG.getSetCC(dl,
3241         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3242                                RangeSub.getValueType()),
3243         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3244         ISD::SETUGT);
3245 
3246     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3247                        DAG.getBasicBlock(B.Default));
3248   }
3249 
3250   // Avoid emitting unnecessary branches to the next block.
3251   if (MBB != NextBlock(SwitchBB))
3252     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3253 
3254   DAG.setRoot(Root);
3255 }
3256 
3257 /// visitBitTestCase - this function produces one "bit test"
3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3259                                            MachineBasicBlock *NextMBB,
3260                                            BranchProbability BranchProbToNext,
3261                                            Register Reg, BitTestCase &B,
3262                                            MachineBasicBlock *SwitchBB) {
3263   SDLoc dl = getCurSDLoc();
3264   MVT VT = BB.RegVT;
3265   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3266   SDValue Cmp;
3267   unsigned PopCount = llvm::popcount(B.Mask);
3268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3269   if (PopCount == 1) {
3270     // Testing for a single bit; just compare the shift count with what it
3271     // would need to be to shift a 1 bit in that position.
3272     Cmp = DAG.getSetCC(
3273         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3274         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3275         ISD::SETEQ);
3276   } else if (PopCount == BB.Range) {
3277     // There is only one zero bit in the range, test for it directly.
3278     Cmp = DAG.getSetCC(
3279         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3280         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3281   } else {
3282     // Make desired shift
3283     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3284                                     DAG.getConstant(1, dl, VT), ShiftOp);
3285 
3286     // Emit bit tests and jumps
3287     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3288                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3289     Cmp = DAG.getSetCC(
3290         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3291         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3292   }
3293 
3294   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3295   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3296   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3297   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3298   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3299   // one as they are relative probabilities (and thus work more like weights),
3300   // and hence we need to normalize them to let the sum of them become one.
3301   SwitchBB->normalizeSuccProbs();
3302 
3303   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3304                               MVT::Other, getControlRoot(),
3305                               Cmp, DAG.getBasicBlock(B.TargetBB));
3306 
3307   // Avoid emitting unnecessary branches to the next block.
3308   if (NextMBB != NextBlock(SwitchBB))
3309     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3310                         DAG.getBasicBlock(NextMBB));
3311 
3312   DAG.setRoot(BrAnd);
3313 }
3314 
3315 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3316   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3317 
3318   // Retrieve successors. Look through artificial IR level blocks like
3319   // catchswitch for successors.
3320   MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3321   const BasicBlock *EHPadBB = I.getSuccessor(1);
3322   MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3323 
3324   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3325   // have to do anything here to lower funclet bundles.
3326   assert(!I.hasOperandBundlesOtherThan(
3327              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3328               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3329               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3330               LLVMContext::OB_clang_arc_attachedcall}) &&
3331          "Cannot lower invokes with arbitrary operand bundles yet!");
3332 
3333   const Value *Callee(I.getCalledOperand());
3334   const Function *Fn = dyn_cast<Function>(Callee);
3335   if (isa<InlineAsm>(Callee))
3336     visitInlineAsm(I, EHPadBB);
3337   else if (Fn && Fn->isIntrinsic()) {
3338     switch (Fn->getIntrinsicID()) {
3339     default:
3340       llvm_unreachable("Cannot invoke this intrinsic");
3341     case Intrinsic::donothing:
3342       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3343     case Intrinsic::seh_try_begin:
3344     case Intrinsic::seh_scope_begin:
3345     case Intrinsic::seh_try_end:
3346     case Intrinsic::seh_scope_end:
3347       if (EHPadMBB)
3348           // a block referenced by EH table
3349           // so dtor-funclet not removed by opts
3350           EHPadMBB->setMachineBlockAddressTaken();
3351       break;
3352     case Intrinsic::experimental_patchpoint_void:
3353     case Intrinsic::experimental_patchpoint:
3354       visitPatchpoint(I, EHPadBB);
3355       break;
3356     case Intrinsic::experimental_gc_statepoint:
3357       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3358       break;
3359     case Intrinsic::wasm_rethrow: {
3360       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3361       // special because it can be invoked, so we manually lower it to a DAG
3362       // node here.
3363       SmallVector<SDValue, 8> Ops;
3364       Ops.push_back(getControlRoot()); // inchain for the terminator node
3365       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3366       Ops.push_back(
3367           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3368                                 TLI.getPointerTy(DAG.getDataLayout())));
3369       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3370       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3371       break;
3372     }
3373     }
3374   } else if (I.hasDeoptState()) {
3375     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3376     // Eventually we will support lowering the @llvm.experimental.deoptimize
3377     // intrinsic, and right now there are no plans to support other intrinsics
3378     // with deopt state.
3379     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3380   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3381     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3382   } else {
3383     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3384   }
3385 
3386   // If the value of the invoke is used outside of its defining block, make it
3387   // available as a virtual register.
3388   // We already took care of the exported value for the statepoint instruction
3389   // during call to the LowerStatepoint.
3390   if (!isa<GCStatepointInst>(I)) {
3391     CopyToExportRegsIfNeeded(&I);
3392   }
3393 
3394   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3395   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3396   BranchProbability EHPadBBProb =
3397       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3398           : BranchProbability::getZero();
3399   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3400 
3401   // Update successor info.
3402   addSuccessorWithProb(InvokeMBB, Return);
3403   for (auto &UnwindDest : UnwindDests) {
3404     UnwindDest.first->setIsEHPad();
3405     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3406   }
3407   InvokeMBB->normalizeSuccProbs();
3408 
3409   // Drop into normal successor.
3410   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3411                           DAG.getBasicBlock(Return)));
3412 }
3413 
3414 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3415   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3416 
3417   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3418   // have to do anything here to lower funclet bundles.
3419   assert(!I.hasOperandBundlesOtherThan(
3420              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3421          "Cannot lower callbrs with arbitrary operand bundles yet!");
3422 
3423   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3424   visitInlineAsm(I);
3425   CopyToExportRegsIfNeeded(&I);
3426 
3427   // Retrieve successors.
3428   SmallPtrSet<BasicBlock *, 8> Dests;
3429   Dests.insert(I.getDefaultDest());
3430   MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3431 
3432   // Update successor info.
3433   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3434   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3435     BasicBlock *Dest = I.getIndirectDest(i);
3436     MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3437     Target->setIsInlineAsmBrIndirectTarget();
3438     Target->setMachineBlockAddressTaken();
3439     Target->setLabelMustBeEmitted();
3440     // Don't add duplicate machine successors.
3441     if (Dests.insert(Dest).second)
3442       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3443   }
3444   CallBrMBB->normalizeSuccProbs();
3445 
3446   // Drop into default successor.
3447   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3448                           MVT::Other, getControlRoot(),
3449                           DAG.getBasicBlock(Return)));
3450 }
3451 
3452 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3453   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3454 }
3455 
3456 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3457   assert(FuncInfo.MBB->isEHPad() &&
3458          "Call to landingpad not in landing pad!");
3459 
3460   // If there aren't registers to copy the values into (e.g., during SjLj
3461   // exceptions), then don't bother to create these DAG nodes.
3462   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3463   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3464   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3465       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3466     return;
3467 
3468   // If landingpad's return type is token type, we don't create DAG nodes
3469   // for its exception pointer and selector value. The extraction of exception
3470   // pointer or selector value from token type landingpads is not currently
3471   // supported.
3472   if (LP.getType()->isTokenTy())
3473     return;
3474 
3475   SmallVector<EVT, 2> ValueVTs;
3476   SDLoc dl = getCurSDLoc();
3477   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3478   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3479 
3480   // Get the two live-in registers as SDValues. The physregs have already been
3481   // copied into virtual registers.
3482   SDValue Ops[2];
3483   if (FuncInfo.ExceptionPointerVirtReg) {
3484     Ops[0] = DAG.getZExtOrTrunc(
3485         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3486                            FuncInfo.ExceptionPointerVirtReg,
3487                            TLI.getPointerTy(DAG.getDataLayout())),
3488         dl, ValueVTs[0]);
3489   } else {
3490     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3491   }
3492   Ops[1] = DAG.getZExtOrTrunc(
3493       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3494                          FuncInfo.ExceptionSelectorVirtReg,
3495                          TLI.getPointerTy(DAG.getDataLayout())),
3496       dl, ValueVTs[1]);
3497 
3498   // Merge into one.
3499   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3500                             DAG.getVTList(ValueVTs), Ops);
3501   setValue(&LP, Res);
3502 }
3503 
3504 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3505                                            MachineBasicBlock *Last) {
3506   // Update JTCases.
3507   for (JumpTableBlock &JTB : SL->JTCases)
3508     if (JTB.first.HeaderBB == First)
3509       JTB.first.HeaderBB = Last;
3510 
3511   // Update BitTestCases.
3512   for (BitTestBlock &BTB : SL->BitTestCases)
3513     if (BTB.Parent == First)
3514       BTB.Parent = Last;
3515 }
3516 
3517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3518   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3519 
3520   // Update machine-CFG edges with unique successors.
3521   SmallSet<BasicBlock*, 32> Done;
3522   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3523     BasicBlock *BB = I.getSuccessor(i);
3524     bool Inserted = Done.insert(BB).second;
3525     if (!Inserted)
3526         continue;
3527 
3528     MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3529     addSuccessorWithProb(IndirectBrMBB, Succ);
3530   }
3531   IndirectBrMBB->normalizeSuccProbs();
3532 
3533   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3534                           MVT::Other, getControlRoot(),
3535                           getValue(I.getAddress())));
3536 }
3537 
3538 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3539   if (!DAG.getTarget().Options.TrapUnreachable)
3540     return;
3541 
3542   // We may be able to ignore unreachable behind a noreturn call.
3543   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3544       Call && Call->doesNotReturn()) {
3545     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3546       return;
3547     // Do not emit an additional trap instruction.
3548     if (Call->isNonContinuableTrap())
3549       return;
3550   }
3551 
3552   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3553 }
3554 
3555 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3556   SDNodeFlags Flags;
3557   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3558     Flags.copyFMF(*FPOp);
3559 
3560   SDValue Op = getValue(I.getOperand(0));
3561   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3562                                     Op, Flags);
3563   setValue(&I, UnNodeValue);
3564 }
3565 
3566 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3567   SDNodeFlags Flags;
3568   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3569     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3570     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3571   }
3572   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3573     Flags.setExact(ExactOp->isExact());
3574   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3575     Flags.setDisjoint(DisjointOp->isDisjoint());
3576   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3577     Flags.copyFMF(*FPOp);
3578 
3579   SDValue Op1 = getValue(I.getOperand(0));
3580   SDValue Op2 = getValue(I.getOperand(1));
3581   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3582                                      Op1, Op2, Flags);
3583   setValue(&I, BinNodeValue);
3584 }
3585 
3586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3587   SDValue Op1 = getValue(I.getOperand(0));
3588   SDValue Op2 = getValue(I.getOperand(1));
3589 
3590   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3591       Op1.getValueType(), DAG.getDataLayout());
3592 
3593   // Coerce the shift amount to the right type if we can. This exposes the
3594   // truncate or zext to optimization early.
3595   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3596     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3597            "Unexpected shift type");
3598     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3599   }
3600 
3601   bool nuw = false;
3602   bool nsw = false;
3603   bool exact = false;
3604 
3605   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3606 
3607     if (const OverflowingBinaryOperator *OFBinOp =
3608             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3609       nuw = OFBinOp->hasNoUnsignedWrap();
3610       nsw = OFBinOp->hasNoSignedWrap();
3611     }
3612     if (const PossiblyExactOperator *ExactOp =
3613             dyn_cast<const PossiblyExactOperator>(&I))
3614       exact = ExactOp->isExact();
3615   }
3616   SDNodeFlags Flags;
3617   Flags.setExact(exact);
3618   Flags.setNoSignedWrap(nsw);
3619   Flags.setNoUnsignedWrap(nuw);
3620   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3621                             Flags);
3622   setValue(&I, Res);
3623 }
3624 
3625 void SelectionDAGBuilder::visitSDiv(const User &I) {
3626   SDValue Op1 = getValue(I.getOperand(0));
3627   SDValue Op2 = getValue(I.getOperand(1));
3628 
3629   SDNodeFlags Flags;
3630   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3631                  cast<PossiblyExactOperator>(&I)->isExact());
3632   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3633                            Op2, Flags));
3634 }
3635 
3636 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3637   ICmpInst::Predicate predicate = I.getPredicate();
3638   SDValue Op1 = getValue(I.getOperand(0));
3639   SDValue Op2 = getValue(I.getOperand(1));
3640   ISD::CondCode Opcode = getICmpCondCode(predicate);
3641 
3642   auto &TLI = DAG.getTargetLoweringInfo();
3643   EVT MemVT =
3644       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3645 
3646   // If a pointer's DAG type is larger than its memory type then the DAG values
3647   // are zero-extended. This breaks signed comparisons so truncate back to the
3648   // underlying type before doing the compare.
3649   if (Op1.getValueType() != MemVT) {
3650     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3651     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3652   }
3653 
3654   SDNodeFlags Flags;
3655   Flags.setSameSign(I.hasSameSign());
3656   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3657 
3658   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3659                                                         I.getType());
3660   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3661 }
3662 
3663 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3664   FCmpInst::Predicate predicate = I.getPredicate();
3665   SDValue Op1 = getValue(I.getOperand(0));
3666   SDValue Op2 = getValue(I.getOperand(1));
3667 
3668   ISD::CondCode Condition = getFCmpCondCode(predicate);
3669   auto *FPMO = cast<FPMathOperator>(&I);
3670   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3671     Condition = getFCmpCodeWithoutNaN(Condition);
3672 
3673   SDNodeFlags Flags;
3674   Flags.copyFMF(*FPMO);
3675   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3676 
3677   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3678                                                         I.getType());
3679   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3680 }
3681 
3682 // Check if the condition of the select has one use or two users that are both
3683 // selects with the same condition.
3684 static bool hasOnlySelectUsers(const Value *Cond) {
3685   return llvm::all_of(Cond->users(), [](const Value *V) {
3686     return isa<SelectInst>(V);
3687   });
3688 }
3689 
3690 void SelectionDAGBuilder::visitSelect(const User &I) {
3691   SmallVector<EVT, 4> ValueVTs;
3692   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3693                   ValueVTs);
3694   unsigned NumValues = ValueVTs.size();
3695   if (NumValues == 0) return;
3696 
3697   SmallVector<SDValue, 4> Values(NumValues);
3698   SDValue Cond     = getValue(I.getOperand(0));
3699   SDValue LHSVal   = getValue(I.getOperand(1));
3700   SDValue RHSVal   = getValue(I.getOperand(2));
3701   SmallVector<SDValue, 1> BaseOps(1, Cond);
3702   ISD::NodeType OpCode =
3703       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3704 
3705   bool IsUnaryAbs = false;
3706   bool Negate = false;
3707 
3708   SDNodeFlags Flags;
3709   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3710     Flags.copyFMF(*FPOp);
3711 
3712   Flags.setUnpredictable(
3713       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3714 
3715   // Min/max matching is only viable if all output VTs are the same.
3716   if (all_equal(ValueVTs)) {
3717     EVT VT = ValueVTs[0];
3718     LLVMContext &Ctx = *DAG.getContext();
3719     auto &TLI = DAG.getTargetLoweringInfo();
3720 
3721     // We care about the legality of the operation after it has been type
3722     // legalized.
3723     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3724       VT = TLI.getTypeToTransformTo(Ctx, VT);
3725 
3726     // If the vselect is legal, assume we want to leave this as a vector setcc +
3727     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3728     // min/max is legal on the scalar type.
3729     bool UseScalarMinMax = VT.isVector() &&
3730       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3731 
3732     // ValueTracking's select pattern matching does not account for -0.0,
3733     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3734     // -0.0 is less than +0.0.
3735     const Value *LHS, *RHS;
3736     auto SPR = matchSelectPattern(&I, LHS, RHS);
3737     ISD::NodeType Opc = ISD::DELETED_NODE;
3738     switch (SPR.Flavor) {
3739     case SPF_UMAX:    Opc = ISD::UMAX; break;
3740     case SPF_UMIN:    Opc = ISD::UMIN; break;
3741     case SPF_SMAX:    Opc = ISD::SMAX; break;
3742     case SPF_SMIN:    Opc = ISD::SMIN; break;
3743     case SPF_FMINNUM:
3744       switch (SPR.NaNBehavior) {
3745       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3746       case SPNB_RETURNS_NAN: break;
3747       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3748       case SPNB_RETURNS_ANY:
3749         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3750             (UseScalarMinMax &&
3751              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3752           Opc = ISD::FMINNUM;
3753         break;
3754       }
3755       break;
3756     case SPF_FMAXNUM:
3757       switch (SPR.NaNBehavior) {
3758       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3759       case SPNB_RETURNS_NAN: break;
3760       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3761       case SPNB_RETURNS_ANY:
3762         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3763             (UseScalarMinMax &&
3764              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3765           Opc = ISD::FMAXNUM;
3766         break;
3767       }
3768       break;
3769     case SPF_NABS:
3770       Negate = true;
3771       [[fallthrough]];
3772     case SPF_ABS:
3773       IsUnaryAbs = true;
3774       Opc = ISD::ABS;
3775       break;
3776     default: break;
3777     }
3778 
3779     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3780         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3781          (UseScalarMinMax &&
3782           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3783         // If the underlying comparison instruction is used by any other
3784         // instruction, the consumed instructions won't be destroyed, so it is
3785         // not profitable to convert to a min/max.
3786         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3787       OpCode = Opc;
3788       LHSVal = getValue(LHS);
3789       RHSVal = getValue(RHS);
3790       BaseOps.clear();
3791     }
3792 
3793     if (IsUnaryAbs) {
3794       OpCode = Opc;
3795       LHSVal = getValue(LHS);
3796       BaseOps.clear();
3797     }
3798   }
3799 
3800   if (IsUnaryAbs) {
3801     for (unsigned i = 0; i != NumValues; ++i) {
3802       SDLoc dl = getCurSDLoc();
3803       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3804       Values[i] =
3805           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3806       if (Negate)
3807         Values[i] = DAG.getNegative(Values[i], dl, VT);
3808     }
3809   } else {
3810     for (unsigned i = 0; i != NumValues; ++i) {
3811       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3812       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3813       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3814       Values[i] = DAG.getNode(
3815           OpCode, getCurSDLoc(),
3816           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3817     }
3818   }
3819 
3820   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3821                            DAG.getVTList(ValueVTs), Values));
3822 }
3823 
3824 void SelectionDAGBuilder::visitTrunc(const User &I) {
3825   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3826   SDValue N = getValue(I.getOperand(0));
3827   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3828                                                         I.getType());
3829   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3830 }
3831 
3832 void SelectionDAGBuilder::visitZExt(const User &I) {
3833   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3834   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3835   SDValue N = getValue(I.getOperand(0));
3836   auto &TLI = DAG.getTargetLoweringInfo();
3837   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3838 
3839   SDNodeFlags Flags;
3840   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3841     Flags.setNonNeg(PNI->hasNonNeg());
3842 
3843   // Eagerly use nonneg information to canonicalize towards sign_extend if
3844   // that is the target's preference.
3845   // TODO: Let the target do this later.
3846   if (Flags.hasNonNeg() &&
3847       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3848     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3849     return;
3850   }
3851 
3852   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3853 }
3854 
3855 void SelectionDAGBuilder::visitSExt(const User &I) {
3856   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3857   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3858   SDValue N = getValue(I.getOperand(0));
3859   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3860                                                         I.getType());
3861   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3862 }
3863 
3864 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3865   // FPTrunc is never a no-op cast, no need to check
3866   SDValue N = getValue(I.getOperand(0));
3867   SDLoc dl = getCurSDLoc();
3868   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3869   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3870   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3871                            DAG.getTargetConstant(
3872                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3873 }
3874 
3875 void SelectionDAGBuilder::visitFPExt(const User &I) {
3876   // FPExt is never a no-op cast, no need to check
3877   SDValue N = getValue(I.getOperand(0));
3878   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3879                                                         I.getType());
3880   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3881 }
3882 
3883 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3884   // FPToUI is never a no-op cast, no need to check
3885   SDValue N = getValue(I.getOperand(0));
3886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3887                                                         I.getType());
3888   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3889 }
3890 
3891 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3892   // FPToSI is never a no-op cast, no need to check
3893   SDValue N = getValue(I.getOperand(0));
3894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3895                                                         I.getType());
3896   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3897 }
3898 
3899 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3900   // UIToFP is never a no-op cast, no need to check
3901   SDValue N = getValue(I.getOperand(0));
3902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3903                                                         I.getType());
3904   SDNodeFlags Flags;
3905   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3906     Flags.setNonNeg(PNI->hasNonNeg());
3907 
3908   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3909 }
3910 
3911 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3912   // SIToFP is never a no-op cast, no need to check
3913   SDValue N = getValue(I.getOperand(0));
3914   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3915                                                         I.getType());
3916   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3917 }
3918 
3919 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3920   // What to do depends on the size of the integer and the size of the pointer.
3921   // We can either truncate, zero extend, or no-op, accordingly.
3922   SDValue N = getValue(I.getOperand(0));
3923   auto &TLI = DAG.getTargetLoweringInfo();
3924   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3925                                                         I.getType());
3926   EVT PtrMemVT =
3927       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3928   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3929   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3930   setValue(&I, N);
3931 }
3932 
3933 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3934   // What to do depends on the size of the integer and the size of the pointer.
3935   // We can either truncate, zero extend, or no-op, accordingly.
3936   SDValue N = getValue(I.getOperand(0));
3937   auto &TLI = DAG.getTargetLoweringInfo();
3938   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3939   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3940   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3941   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3942   setValue(&I, N);
3943 }
3944 
3945 void SelectionDAGBuilder::visitBitCast(const User &I) {
3946   SDValue N = getValue(I.getOperand(0));
3947   SDLoc dl = getCurSDLoc();
3948   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3949                                                         I.getType());
3950 
3951   // BitCast assures us that source and destination are the same size so this is
3952   // either a BITCAST or a no-op.
3953   if (DestVT != N.getValueType())
3954     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3955                              DestVT, N)); // convert types.
3956   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3957   // might fold any kind of constant expression to an integer constant and that
3958   // is not what we are looking for. Only recognize a bitcast of a genuine
3959   // constant integer as an opaque constant.
3960   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3961     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3962                                  /*isOpaque*/true));
3963   else
3964     setValue(&I, N);            // noop cast.
3965 }
3966 
3967 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969   const Value *SV = I.getOperand(0);
3970   SDValue N = getValue(SV);
3971   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3972 
3973   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3974   unsigned DestAS = I.getType()->getPointerAddressSpace();
3975 
3976   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3977     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3978 
3979   setValue(&I, N);
3980 }
3981 
3982 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3984   SDValue InVec = getValue(I.getOperand(0));
3985   SDValue InVal = getValue(I.getOperand(1));
3986   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3987                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3988   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3989                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3990                            InVec, InVal, InIdx));
3991 }
3992 
3993 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3994   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3995   SDValue InVec = getValue(I.getOperand(0));
3996   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3997                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3998   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3999                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
4000                            InVec, InIdx));
4001 }
4002 
4003 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4004   SDValue Src1 = getValue(I.getOperand(0));
4005   SDValue Src2 = getValue(I.getOperand(1));
4006   ArrayRef<int> Mask;
4007   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4008     Mask = SVI->getShuffleMask();
4009   else
4010     Mask = cast<ConstantExpr>(I).getShuffleMask();
4011   SDLoc DL = getCurSDLoc();
4012   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4013   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4014   EVT SrcVT = Src1.getValueType();
4015 
4016   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4017       VT.isScalableVector()) {
4018     // Canonical splat form of first element of first input vector.
4019     SDValue FirstElt =
4020         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4021                     DAG.getVectorIdxConstant(0, DL));
4022     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4023     return;
4024   }
4025 
4026   // For now, we only handle splats for scalable vectors.
4027   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4028   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4029   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4030 
4031   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4032   unsigned MaskNumElts = Mask.size();
4033 
4034   if (SrcNumElts == MaskNumElts) {
4035     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4036     return;
4037   }
4038 
4039   // Normalize the shuffle vector since mask and vector length don't match.
4040   if (SrcNumElts < MaskNumElts) {
4041     // Mask is longer than the source vectors. We can use concatenate vector to
4042     // make the mask and vectors lengths match.
4043 
4044     if (MaskNumElts % SrcNumElts == 0) {
4045       // Mask length is a multiple of the source vector length.
4046       // Check if the shuffle is some kind of concatenation of the input
4047       // vectors.
4048       unsigned NumConcat = MaskNumElts / SrcNumElts;
4049       bool IsConcat = true;
4050       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4051       for (unsigned i = 0; i != MaskNumElts; ++i) {
4052         int Idx = Mask[i];
4053         if (Idx < 0)
4054           continue;
4055         // Ensure the indices in each SrcVT sized piece are sequential and that
4056         // the same source is used for the whole piece.
4057         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4058             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4059              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4060           IsConcat = false;
4061           break;
4062         }
4063         // Remember which source this index came from.
4064         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4065       }
4066 
4067       // The shuffle is concatenating multiple vectors together. Just emit
4068       // a CONCAT_VECTORS operation.
4069       if (IsConcat) {
4070         SmallVector<SDValue, 8> ConcatOps;
4071         for (auto Src : ConcatSrcs) {
4072           if (Src < 0)
4073             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4074           else if (Src == 0)
4075             ConcatOps.push_back(Src1);
4076           else
4077             ConcatOps.push_back(Src2);
4078         }
4079         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4080         return;
4081       }
4082     }
4083 
4084     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4085     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4086     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4087                                     PaddedMaskNumElts);
4088 
4089     // Pad both vectors with undefs to make them the same length as the mask.
4090     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4091 
4092     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4093     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4094     MOps1[0] = Src1;
4095     MOps2[0] = Src2;
4096 
4097     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4098     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4099 
4100     // Readjust mask for new input vector length.
4101     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4102     for (unsigned i = 0; i != MaskNumElts; ++i) {
4103       int Idx = Mask[i];
4104       if (Idx >= (int)SrcNumElts)
4105         Idx -= SrcNumElts - PaddedMaskNumElts;
4106       MappedOps[i] = Idx;
4107     }
4108 
4109     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4110 
4111     // If the concatenated vector was padded, extract a subvector with the
4112     // correct number of elements.
4113     if (MaskNumElts != PaddedMaskNumElts)
4114       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4115                            DAG.getVectorIdxConstant(0, DL));
4116 
4117     setValue(&I, Result);
4118     return;
4119   }
4120 
4121   assert(SrcNumElts > MaskNumElts);
4122 
4123   // Analyze the access pattern of the vector to see if we can extract
4124   // two subvectors and do the shuffle.
4125   int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4126   bool CanExtract = true;
4127   for (int Idx : Mask) {
4128     unsigned Input = 0;
4129     if (Idx < 0)
4130       continue;
4131 
4132     if (Idx >= (int)SrcNumElts) {
4133       Input = 1;
4134       Idx -= SrcNumElts;
4135     }
4136 
4137     // If all the indices come from the same MaskNumElts sized portion of
4138     // the sources we can use extract. Also make sure the extract wouldn't
4139     // extract past the end of the source.
4140     int NewStartIdx = alignDown(Idx, MaskNumElts);
4141     if (NewStartIdx + MaskNumElts > SrcNumElts ||
4142         (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4143       CanExtract = false;
4144     // Make sure we always update StartIdx as we use it to track if all
4145     // elements are undef.
4146     StartIdx[Input] = NewStartIdx;
4147   }
4148 
4149   if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4150     setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4151     return;
4152   }
4153   if (CanExtract) {
4154     // Extract appropriate subvector and generate a vector shuffle
4155     for (unsigned Input = 0; Input < 2; ++Input) {
4156       SDValue &Src = Input == 0 ? Src1 : Src2;
4157       if (StartIdx[Input] < 0)
4158         Src = DAG.getUNDEF(VT);
4159       else {
4160         Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4161                           DAG.getVectorIdxConstant(StartIdx[Input], DL));
4162       }
4163     }
4164 
4165     // Calculate new mask.
4166     SmallVector<int, 8> MappedOps(Mask);
4167     for (int &Idx : MappedOps) {
4168       if (Idx >= (int)SrcNumElts)
4169         Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4170       else if (Idx >= 0)
4171         Idx -= StartIdx[0];
4172     }
4173 
4174     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4175     return;
4176   }
4177 
4178   // We can't use either concat vectors or extract subvectors so fall back to
4179   // replacing the shuffle with extract and build vector.
4180   // to insert and build vector.
4181   EVT EltVT = VT.getVectorElementType();
4182   SmallVector<SDValue,8> Ops;
4183   for (int Idx : Mask) {
4184     SDValue Res;
4185 
4186     if (Idx < 0) {
4187       Res = DAG.getUNDEF(EltVT);
4188     } else {
4189       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4190       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4191 
4192       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4193                         DAG.getVectorIdxConstant(Idx, DL));
4194     }
4195 
4196     Ops.push_back(Res);
4197   }
4198 
4199   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4200 }
4201 
4202 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4203   ArrayRef<unsigned> Indices = I.getIndices();
4204   const Value *Op0 = I.getOperand(0);
4205   const Value *Op1 = I.getOperand(1);
4206   Type *AggTy = I.getType();
4207   Type *ValTy = Op1->getType();
4208   bool IntoUndef = isa<UndefValue>(Op0);
4209   bool FromUndef = isa<UndefValue>(Op1);
4210 
4211   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4212 
4213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4214   SmallVector<EVT, 4> AggValueVTs;
4215   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4216   SmallVector<EVT, 4> ValValueVTs;
4217   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4218 
4219   unsigned NumAggValues = AggValueVTs.size();
4220   unsigned NumValValues = ValValueVTs.size();
4221   SmallVector<SDValue, 4> Values(NumAggValues);
4222 
4223   // Ignore an insertvalue that produces an empty object
4224   if (!NumAggValues) {
4225     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4226     return;
4227   }
4228 
4229   SDValue Agg = getValue(Op0);
4230   unsigned i = 0;
4231   // Copy the beginning value(s) from the original aggregate.
4232   for (; i != LinearIndex; ++i)
4233     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4234                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4235   // Copy values from the inserted value(s).
4236   if (NumValValues) {
4237     SDValue Val = getValue(Op1);
4238     for (; i != LinearIndex + NumValValues; ++i)
4239       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4240                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4241   }
4242   // Copy remaining value(s) from the original aggregate.
4243   for (; i != NumAggValues; ++i)
4244     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4245                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4246 
4247   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4248                            DAG.getVTList(AggValueVTs), Values));
4249 }
4250 
4251 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4252   ArrayRef<unsigned> Indices = I.getIndices();
4253   const Value *Op0 = I.getOperand(0);
4254   Type *AggTy = Op0->getType();
4255   Type *ValTy = I.getType();
4256   bool OutOfUndef = isa<UndefValue>(Op0);
4257 
4258   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4259 
4260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4261   SmallVector<EVT, 4> ValValueVTs;
4262   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4263 
4264   unsigned NumValValues = ValValueVTs.size();
4265 
4266   // Ignore a extractvalue that produces an empty object
4267   if (!NumValValues) {
4268     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4269     return;
4270   }
4271 
4272   SmallVector<SDValue, 4> Values(NumValValues);
4273 
4274   SDValue Agg = getValue(Op0);
4275   // Copy out the selected value(s).
4276   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4277     Values[i - LinearIndex] =
4278       OutOfUndef ?
4279         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4280         SDValue(Agg.getNode(), Agg.getResNo() + i);
4281 
4282   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4283                            DAG.getVTList(ValValueVTs), Values));
4284 }
4285 
4286 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4287   Value *Op0 = I.getOperand(0);
4288   // Note that the pointer operand may be a vector of pointers. Take the scalar
4289   // element which holds a pointer.
4290   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4291   SDValue N = getValue(Op0);
4292   SDLoc dl = getCurSDLoc();
4293   auto &TLI = DAG.getTargetLoweringInfo();
4294   GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4295 
4296   // Normalize Vector GEP - all scalar operands should be converted to the
4297   // splat vector.
4298   bool IsVectorGEP = I.getType()->isVectorTy();
4299   ElementCount VectorElementCount =
4300       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4301                   : ElementCount::getFixed(0);
4302 
4303   if (IsVectorGEP && !N.getValueType().isVector()) {
4304     LLVMContext &Context = *DAG.getContext();
4305     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4306     N = DAG.getSplat(VT, dl, N);
4307   }
4308 
4309   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4310        GTI != E; ++GTI) {
4311     const Value *Idx = GTI.getOperand();
4312     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4313       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4314       if (Field) {
4315         // N = N + Offset
4316         uint64_t Offset =
4317             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4318 
4319         // In an inbounds GEP with an offset that is nonnegative even when
4320         // interpreted as signed, assume there is no unsigned overflow.
4321         SDNodeFlags Flags;
4322         if (NW.hasNoUnsignedWrap() ||
4323             (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4324           Flags |= SDNodeFlags::NoUnsignedWrap;
4325 
4326         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4327                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4328       }
4329     } else {
4330       // IdxSize is the width of the arithmetic according to IR semantics.
4331       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4332       // (and fix up the result later).
4333       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4334       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4335       TypeSize ElementSize =
4336           GTI.getSequentialElementStride(DAG.getDataLayout());
4337       // We intentionally mask away the high bits here; ElementSize may not
4338       // fit in IdxTy.
4339       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4340                        /*isSigned=*/false, /*implicitTrunc=*/true);
4341       bool ElementScalable = ElementSize.isScalable();
4342 
4343       // If this is a scalar constant or a splat vector of constants,
4344       // handle it quickly.
4345       const auto *C = dyn_cast<Constant>(Idx);
4346       if (C && isa<VectorType>(C->getType()))
4347         C = C->getSplatValue();
4348 
4349       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4350       if (CI && CI->isZero())
4351         continue;
4352       if (CI && !ElementScalable) {
4353         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4354         LLVMContext &Context = *DAG.getContext();
4355         SDValue OffsVal;
4356         if (IsVectorGEP)
4357           OffsVal = DAG.getConstant(
4358               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4359         else
4360           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4361 
4362         // In an inbounds GEP with an offset that is nonnegative even when
4363         // interpreted as signed, assume there is no unsigned overflow.
4364         SDNodeFlags Flags;
4365         if (NW.hasNoUnsignedWrap() ||
4366             (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4367           Flags.setNoUnsignedWrap(true);
4368 
4369         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4370 
4371         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4372         continue;
4373       }
4374 
4375       // N = N + Idx * ElementMul;
4376       SDValue IdxN = getValue(Idx);
4377 
4378       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4379         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4380                                   VectorElementCount);
4381         IdxN = DAG.getSplat(VT, dl, IdxN);
4382       }
4383 
4384       // If the index is smaller or larger than intptr_t, truncate or extend
4385       // it.
4386       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4387 
4388       SDNodeFlags ScaleFlags;
4389       // The multiplication of an index by the type size does not wrap the
4390       // pointer index type in a signed sense (mul nsw).
4391       ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap());
4392 
4393       // The multiplication of an index by the type size does not wrap the
4394       // pointer index type in an unsigned sense (mul nuw).
4395       ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4396 
4397       if (ElementScalable) {
4398         EVT VScaleTy = N.getValueType().getScalarType();
4399         SDValue VScale = DAG.getNode(
4400             ISD::VSCALE, dl, VScaleTy,
4401             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4402         if (IsVectorGEP)
4403           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4404         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4405                            ScaleFlags);
4406       } else {
4407         // If this is a multiply by a power of two, turn it into a shl
4408         // immediately.  This is a very common case.
4409         if (ElementMul != 1) {
4410           if (ElementMul.isPowerOf2()) {
4411             unsigned Amt = ElementMul.logBase2();
4412             IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN,
4413                                DAG.getConstant(Amt, dl, IdxN.getValueType()),
4414                                ScaleFlags);
4415           } else {
4416             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4417                                             IdxN.getValueType());
4418             IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4419                                ScaleFlags);
4420           }
4421         }
4422       }
4423 
4424       // The successive addition of the current address, truncated to the
4425       // pointer index type and interpreted as an unsigned number, and each
4426       // offset, also interpreted as an unsigned number, does not wrap the
4427       // pointer index type (add nuw).
4428       SDNodeFlags AddFlags;
4429       AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4430 
4431       N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags);
4432     }
4433   }
4434 
4435   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4436   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4437   if (IsVectorGEP) {
4438     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4439     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4440   }
4441 
4442   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4443     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4444 
4445   setValue(&I, N);
4446 }
4447 
4448 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4449   // If this is a fixed sized alloca in the entry block of the function,
4450   // allocate it statically on the stack.
4451   if (FuncInfo.StaticAllocaMap.count(&I))
4452     return;   // getValue will auto-populate this.
4453 
4454   SDLoc dl = getCurSDLoc();
4455   Type *Ty = I.getAllocatedType();
4456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4457   auto &DL = DAG.getDataLayout();
4458   TypeSize TySize = DL.getTypeAllocSize(Ty);
4459   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4460 
4461   SDValue AllocSize = getValue(I.getArraySize());
4462 
4463   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4464   if (AllocSize.getValueType() != IntPtr)
4465     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4466 
4467   if (TySize.isScalable())
4468     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4469                             DAG.getVScale(dl, IntPtr,
4470                                           APInt(IntPtr.getScalarSizeInBits(),
4471                                                 TySize.getKnownMinValue())));
4472   else {
4473     SDValue TySizeValue =
4474         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4475     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4476                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4477   }
4478 
4479   // Handle alignment.  If the requested alignment is less than or equal to
4480   // the stack alignment, ignore it.  If the size is greater than or equal to
4481   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4482   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4483   if (*Alignment <= StackAlign)
4484     Alignment = std::nullopt;
4485 
4486   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4487   // Round the size of the allocation up to the stack alignment size
4488   // by add SA-1 to the size. This doesn't overflow because we're computing
4489   // an address inside an alloca.
4490   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4491                           DAG.getConstant(StackAlignMask, dl, IntPtr),
4492                           SDNodeFlags::NoUnsignedWrap);
4493 
4494   // Mask out the low bits for alignment purposes.
4495   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4496                           DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4497 
4498   SDValue Ops[] = {
4499       getRoot(), AllocSize,
4500       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4501   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4502   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4503   setValue(&I, DSA);
4504   DAG.setRoot(DSA.getValue(1));
4505 
4506   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4507 }
4508 
4509 static const MDNode *getRangeMetadata(const Instruction &I) {
4510   // If !noundef is not present, then !range violation results in a poison
4511   // value rather than immediate undefined behavior. In theory, transferring
4512   // these annotations to SDAG is fine, but in practice there are key SDAG
4513   // transforms that are known not to be poison-safe, such as folding logical
4514   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4515   // also present.
4516   if (!I.hasMetadata(LLVMContext::MD_noundef))
4517     return nullptr;
4518   return I.getMetadata(LLVMContext::MD_range);
4519 }
4520 
4521 static std::optional<ConstantRange> getRange(const Instruction &I) {
4522   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4523     // see comment in getRangeMetadata about this check
4524     if (CB->hasRetAttr(Attribute::NoUndef))
4525       return CB->getRange();
4526   }
4527   if (const MDNode *Range = getRangeMetadata(I))
4528     return getConstantRangeFromMetadata(*Range);
4529   return std::nullopt;
4530 }
4531 
4532 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4533   if (I.isAtomic())
4534     return visitAtomicLoad(I);
4535 
4536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4537   const Value *SV = I.getOperand(0);
4538   if (TLI.supportSwiftError()) {
4539     // Swifterror values can come from either a function parameter with
4540     // swifterror attribute or an alloca with swifterror attribute.
4541     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4542       if (Arg->hasSwiftErrorAttr())
4543         return visitLoadFromSwiftError(I);
4544     }
4545 
4546     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4547       if (Alloca->isSwiftError())
4548         return visitLoadFromSwiftError(I);
4549     }
4550   }
4551 
4552   SDValue Ptr = getValue(SV);
4553 
4554   Type *Ty = I.getType();
4555   SmallVector<EVT, 4> ValueVTs, MemVTs;
4556   SmallVector<TypeSize, 4> Offsets;
4557   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4558   unsigned NumValues = ValueVTs.size();
4559   if (NumValues == 0)
4560     return;
4561 
4562   Align Alignment = I.getAlign();
4563   AAMDNodes AAInfo = I.getAAMetadata();
4564   const MDNode *Ranges = getRangeMetadata(I);
4565   bool isVolatile = I.isVolatile();
4566   MachineMemOperand::Flags MMOFlags =
4567       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4568 
4569   SDValue Root;
4570   bool ConstantMemory = false;
4571   if (isVolatile)
4572     // Serialize volatile loads with other side effects.
4573     Root = getRoot();
4574   else if (NumValues > MaxParallelChains)
4575     Root = getMemoryRoot();
4576   else if (AA &&
4577            AA->pointsToConstantMemory(MemoryLocation(
4578                SV,
4579                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4580                AAInfo))) {
4581     // Do not serialize (non-volatile) loads of constant memory with anything.
4582     Root = DAG.getEntryNode();
4583     ConstantMemory = true;
4584     MMOFlags |= MachineMemOperand::MOInvariant;
4585   } else {
4586     // Do not serialize non-volatile loads against each other.
4587     Root = DAG.getRoot();
4588   }
4589 
4590   SDLoc dl = getCurSDLoc();
4591 
4592   if (isVolatile)
4593     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4594 
4595   SmallVector<SDValue, 4> Values(NumValues);
4596   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4597 
4598   unsigned ChainI = 0;
4599   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4600     // Serializing loads here may result in excessive register pressure, and
4601     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4602     // could recover a bit by hoisting nodes upward in the chain by recognizing
4603     // they are side-effect free or do not alias. The optimizer should really
4604     // avoid this case by converting large object/array copies to llvm.memcpy
4605     // (MaxParallelChains should always remain as failsafe).
4606     if (ChainI == MaxParallelChains) {
4607       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4608       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4609                                   ArrayRef(Chains.data(), ChainI));
4610       Root = Chain;
4611       ChainI = 0;
4612     }
4613 
4614     // TODO: MachinePointerInfo only supports a fixed length offset.
4615     MachinePointerInfo PtrInfo =
4616         !Offsets[i].isScalable() || Offsets[i].isZero()
4617             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4618             : MachinePointerInfo();
4619 
4620     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4621     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4622                             MMOFlags, AAInfo, Ranges);
4623     Chains[ChainI] = L.getValue(1);
4624 
4625     if (MemVTs[i] != ValueVTs[i])
4626       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4627 
4628     Values[i] = L;
4629   }
4630 
4631   if (!ConstantMemory) {
4632     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4633                                 ArrayRef(Chains.data(), ChainI));
4634     if (isVolatile)
4635       DAG.setRoot(Chain);
4636     else
4637       PendingLoads.push_back(Chain);
4638   }
4639 
4640   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4641                            DAG.getVTList(ValueVTs), Values));
4642 }
4643 
4644 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4645   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4646          "call visitStoreToSwiftError when backend supports swifterror");
4647 
4648   SmallVector<EVT, 4> ValueVTs;
4649   SmallVector<uint64_t, 4> Offsets;
4650   const Value *SrcV = I.getOperand(0);
4651   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4652                   SrcV->getType(), ValueVTs, &Offsets, 0);
4653   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4654          "expect a single EVT for swifterror");
4655 
4656   SDValue Src = getValue(SrcV);
4657   // Create a virtual register, then update the virtual register.
4658   Register VReg =
4659       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4660   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4661   // Chain can be getRoot or getControlRoot.
4662   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4663                                       SDValue(Src.getNode(), Src.getResNo()));
4664   DAG.setRoot(CopyNode);
4665 }
4666 
4667 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4668   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4669          "call visitLoadFromSwiftError when backend supports swifterror");
4670 
4671   assert(!I.isVolatile() &&
4672          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4673          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4674          "Support volatile, non temporal, invariant for load_from_swift_error");
4675 
4676   const Value *SV = I.getOperand(0);
4677   Type *Ty = I.getType();
4678   assert(
4679       (!AA ||
4680        !AA->pointsToConstantMemory(MemoryLocation(
4681            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4682            I.getAAMetadata()))) &&
4683       "load_from_swift_error should not be constant memory");
4684 
4685   SmallVector<EVT, 4> ValueVTs;
4686   SmallVector<uint64_t, 4> Offsets;
4687   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4688                   ValueVTs, &Offsets, 0);
4689   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4690          "expect a single EVT for swifterror");
4691 
4692   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4693   SDValue L = DAG.getCopyFromReg(
4694       getRoot(), getCurSDLoc(),
4695       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4696 
4697   setValue(&I, L);
4698 }
4699 
4700 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4701   if (I.isAtomic())
4702     return visitAtomicStore(I);
4703 
4704   const Value *SrcV = I.getOperand(0);
4705   const Value *PtrV = I.getOperand(1);
4706 
4707   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4708   if (TLI.supportSwiftError()) {
4709     // Swifterror values can come from either a function parameter with
4710     // swifterror attribute or an alloca with swifterror attribute.
4711     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4712       if (Arg->hasSwiftErrorAttr())
4713         return visitStoreToSwiftError(I);
4714     }
4715 
4716     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4717       if (Alloca->isSwiftError())
4718         return visitStoreToSwiftError(I);
4719     }
4720   }
4721 
4722   SmallVector<EVT, 4> ValueVTs, MemVTs;
4723   SmallVector<TypeSize, 4> Offsets;
4724   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4725                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4726   unsigned NumValues = ValueVTs.size();
4727   if (NumValues == 0)
4728     return;
4729 
4730   // Get the lowered operands. Note that we do this after
4731   // checking if NumResults is zero, because with zero results
4732   // the operands won't have values in the map.
4733   SDValue Src = getValue(SrcV);
4734   SDValue Ptr = getValue(PtrV);
4735 
4736   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4737   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4738   SDLoc dl = getCurSDLoc();
4739   Align Alignment = I.getAlign();
4740   AAMDNodes AAInfo = I.getAAMetadata();
4741 
4742   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4743 
4744   unsigned ChainI = 0;
4745   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4746     // See visitLoad comments.
4747     if (ChainI == MaxParallelChains) {
4748       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4749                                   ArrayRef(Chains.data(), ChainI));
4750       Root = Chain;
4751       ChainI = 0;
4752     }
4753 
4754     // TODO: MachinePointerInfo only supports a fixed length offset.
4755     MachinePointerInfo PtrInfo =
4756         !Offsets[i].isScalable() || Offsets[i].isZero()
4757             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4758             : MachinePointerInfo();
4759 
4760     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4761     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4762     if (MemVTs[i] != ValueVTs[i])
4763       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4764     SDValue St =
4765         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4766     Chains[ChainI] = St;
4767   }
4768 
4769   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4770                                   ArrayRef(Chains.data(), ChainI));
4771   setValue(&I, StoreNode);
4772   DAG.setRoot(StoreNode);
4773 }
4774 
4775 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4776                                            bool IsCompressing) {
4777   SDLoc sdl = getCurSDLoc();
4778 
4779   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4780                                Align &Alignment) {
4781     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4782     Src0 = I.getArgOperand(0);
4783     Ptr = I.getArgOperand(1);
4784     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4785     Mask = I.getArgOperand(3);
4786   };
4787   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4788                                     Align &Alignment) {
4789     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4790     Src0 = I.getArgOperand(0);
4791     Ptr = I.getArgOperand(1);
4792     Mask = I.getArgOperand(2);
4793     Alignment = I.getParamAlign(1).valueOrOne();
4794   };
4795 
4796   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4797   Align Alignment;
4798   if (IsCompressing)
4799     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4800   else
4801     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4802 
4803   SDValue Ptr = getValue(PtrOperand);
4804   SDValue Src0 = getValue(Src0Operand);
4805   SDValue Mask = getValue(MaskOperand);
4806   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4807 
4808   EVT VT = Src0.getValueType();
4809 
4810   auto MMOFlags = MachineMemOperand::MOStore;
4811   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4812     MMOFlags |= MachineMemOperand::MONonTemporal;
4813 
4814   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4815       MachinePointerInfo(PtrOperand), MMOFlags,
4816       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4817 
4818   const auto &TLI = DAG.getTargetLoweringInfo();
4819   const auto &TTI =
4820       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4821   SDValue StoreNode =
4822       !IsCompressing &&
4823               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4824           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4825                                  Mask)
4826           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4827                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4828                                IsCompressing);
4829   DAG.setRoot(StoreNode);
4830   setValue(&I, StoreNode);
4831 }
4832 
4833 // Get a uniform base for the Gather/Scatter intrinsic.
4834 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4835 // We try to represent it as a base pointer + vector of indices.
4836 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4837 // The first operand of the GEP may be a single pointer or a vector of pointers
4838 // Example:
4839 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4840 //  or
4841 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4842 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4843 //
4844 // When the first GEP operand is a single pointer - it is the uniform base we
4845 // are looking for. If first operand of the GEP is a splat vector - we
4846 // extract the splat value and use it as a uniform base.
4847 // In all other cases the function returns 'false'.
4848 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4849                            ISD::MemIndexType &IndexType, SDValue &Scale,
4850                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4851                            uint64_t ElemSize) {
4852   SelectionDAG& DAG = SDB->DAG;
4853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4854   const DataLayout &DL = DAG.getDataLayout();
4855 
4856   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4857 
4858   // Handle splat constant pointer.
4859   if (auto *C = dyn_cast<Constant>(Ptr)) {
4860     C = C->getSplatValue();
4861     if (!C)
4862       return false;
4863 
4864     Base = SDB->getValue(C);
4865 
4866     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4867     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4868     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4869     IndexType = ISD::SIGNED_SCALED;
4870     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4871     return true;
4872   }
4873 
4874   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4875   if (!GEP || GEP->getParent() != CurBB)
4876     return false;
4877 
4878   if (GEP->getNumOperands() != 2)
4879     return false;
4880 
4881   const Value *BasePtr = GEP->getPointerOperand();
4882   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4883 
4884   // Make sure the base is scalar and the index is a vector.
4885   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4886     return false;
4887 
4888   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4889   if (ScaleVal.isScalable())
4890     return false;
4891 
4892   // Target may not support the required addressing mode.
4893   if (ScaleVal != 1 &&
4894       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4895     return false;
4896 
4897   Base = SDB->getValue(BasePtr);
4898   Index = SDB->getValue(IndexVal);
4899   IndexType = ISD::SIGNED_SCALED;
4900 
4901   Scale =
4902       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4903   return true;
4904 }
4905 
4906 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4907   SDLoc sdl = getCurSDLoc();
4908 
4909   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4910   const Value *Ptr = I.getArgOperand(1);
4911   SDValue Src0 = getValue(I.getArgOperand(0));
4912   SDValue Mask = getValue(I.getArgOperand(3));
4913   EVT VT = Src0.getValueType();
4914   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4915                         ->getMaybeAlignValue()
4916                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4918 
4919   SDValue Base;
4920   SDValue Index;
4921   ISD::MemIndexType IndexType;
4922   SDValue Scale;
4923   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4924                                     I.getParent(), VT.getScalarStoreSize());
4925 
4926   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4927   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4928       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4929       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4930   if (!UniformBase) {
4931     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4932     Index = getValue(Ptr);
4933     IndexType = ISD::SIGNED_SCALED;
4934     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4935   }
4936 
4937   EVT IdxVT = Index.getValueType();
4938   EVT EltTy = IdxVT.getVectorElementType();
4939   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4940     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4941     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4942   }
4943 
4944   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4945   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4946                                          Ops, MMO, IndexType, false);
4947   DAG.setRoot(Scatter);
4948   setValue(&I, Scatter);
4949 }
4950 
4951 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4952   SDLoc sdl = getCurSDLoc();
4953 
4954   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4955                               Align &Alignment) {
4956     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4957     Ptr = I.getArgOperand(0);
4958     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4959     Mask = I.getArgOperand(2);
4960     Src0 = I.getArgOperand(3);
4961   };
4962   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4963                                  Align &Alignment) {
4964     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4965     Ptr = I.getArgOperand(0);
4966     Alignment = I.getParamAlign(0).valueOrOne();
4967     Mask = I.getArgOperand(1);
4968     Src0 = I.getArgOperand(2);
4969   };
4970 
4971   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4972   Align Alignment;
4973   if (IsExpanding)
4974     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4975   else
4976     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4977 
4978   SDValue Ptr = getValue(PtrOperand);
4979   SDValue Src0 = getValue(Src0Operand);
4980   SDValue Mask = getValue(MaskOperand);
4981   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4982 
4983   EVT VT = Src0.getValueType();
4984   AAMDNodes AAInfo = I.getAAMetadata();
4985   const MDNode *Ranges = getRangeMetadata(I);
4986 
4987   // Do not serialize masked loads of constant memory with anything.
4988   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4989   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4990 
4991   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4992 
4993   auto MMOFlags = MachineMemOperand::MOLoad;
4994   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4995     MMOFlags |= MachineMemOperand::MONonTemporal;
4996 
4997   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4998       MachinePointerInfo(PtrOperand), MMOFlags,
4999       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5000 
5001   const auto &TLI = DAG.getTargetLoweringInfo();
5002   const auto &TTI =
5003       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
5004   // The Load/Res may point to different values and both of them are output
5005   // variables.
5006   SDValue Load;
5007   SDValue Res;
5008   if (!IsExpanding &&
5009       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
5010     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5011   else
5012     Res = Load =
5013         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5014                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5015   if (AddToChain)
5016     PendingLoads.push_back(Load.getValue(1));
5017   setValue(&I, Res);
5018 }
5019 
5020 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5021   SDLoc sdl = getCurSDLoc();
5022 
5023   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5024   const Value *Ptr = I.getArgOperand(0);
5025   SDValue Src0 = getValue(I.getArgOperand(3));
5026   SDValue Mask = getValue(I.getArgOperand(2));
5027 
5028   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5029   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5030   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5031                         ->getMaybeAlignValue()
5032                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5033 
5034   const MDNode *Ranges = getRangeMetadata(I);
5035 
5036   SDValue Root = DAG.getRoot();
5037   SDValue Base;
5038   SDValue Index;
5039   ISD::MemIndexType IndexType;
5040   SDValue Scale;
5041   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5042                                     I.getParent(), VT.getScalarStoreSize());
5043   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5044   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5045       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5046       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5047       Ranges);
5048 
5049   if (!UniformBase) {
5050     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5051     Index = getValue(Ptr);
5052     IndexType = ISD::SIGNED_SCALED;
5053     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5054   }
5055 
5056   EVT IdxVT = Index.getValueType();
5057   EVT EltTy = IdxVT.getVectorElementType();
5058   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5059     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5060     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5061   }
5062 
5063   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5064   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5065                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5066 
5067   PendingLoads.push_back(Gather.getValue(1));
5068   setValue(&I, Gather);
5069 }
5070 
5071 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5072   SDLoc dl = getCurSDLoc();
5073   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5074   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5075   SyncScope::ID SSID = I.getSyncScopeID();
5076 
5077   SDValue InChain = getRoot();
5078 
5079   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5080   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5081 
5082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5083   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5084 
5085   MachineFunction &MF = DAG.getMachineFunction();
5086   MachineMemOperand *MMO = MF.getMachineMemOperand(
5087       MachinePointerInfo(I.getPointerOperand()), Flags,
5088       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5089       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5090 
5091   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5092                                    dl, MemVT, VTs, InChain,
5093                                    getValue(I.getPointerOperand()),
5094                                    getValue(I.getCompareOperand()),
5095                                    getValue(I.getNewValOperand()), MMO);
5096 
5097   SDValue OutChain = L.getValue(2);
5098 
5099   setValue(&I, L);
5100   DAG.setRoot(OutChain);
5101 }
5102 
5103 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5104   SDLoc dl = getCurSDLoc();
5105   ISD::NodeType NT;
5106   switch (I.getOperation()) {
5107   default: llvm_unreachable("Unknown atomicrmw operation");
5108   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5109   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5110   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5111   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5112   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5113   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5114   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5115   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5116   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5117   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5118   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5119   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5120   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5121   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5122   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5123   case AtomicRMWInst::UIncWrap:
5124     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5125     break;
5126   case AtomicRMWInst::UDecWrap:
5127     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5128     break;
5129   case AtomicRMWInst::USubCond:
5130     NT = ISD::ATOMIC_LOAD_USUB_COND;
5131     break;
5132   case AtomicRMWInst::USubSat:
5133     NT = ISD::ATOMIC_LOAD_USUB_SAT;
5134     break;
5135   }
5136   AtomicOrdering Ordering = I.getOrdering();
5137   SyncScope::ID SSID = I.getSyncScopeID();
5138 
5139   SDValue InChain = getRoot();
5140 
5141   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5143   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5144 
5145   MachineFunction &MF = DAG.getMachineFunction();
5146   MachineMemOperand *MMO = MF.getMachineMemOperand(
5147       MachinePointerInfo(I.getPointerOperand()), Flags,
5148       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5149       AAMDNodes(), nullptr, SSID, Ordering);
5150 
5151   SDValue L =
5152     DAG.getAtomic(NT, dl, MemVT, InChain,
5153                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5154                   MMO);
5155 
5156   SDValue OutChain = L.getValue(1);
5157 
5158   setValue(&I, L);
5159   DAG.setRoot(OutChain);
5160 }
5161 
5162 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5163   SDLoc dl = getCurSDLoc();
5164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5165   SDValue Ops[3];
5166   Ops[0] = getRoot();
5167   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5168                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5169   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5170                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5171   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5172   setValue(&I, N);
5173   DAG.setRoot(N);
5174 }
5175 
5176 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5177   SDLoc dl = getCurSDLoc();
5178   AtomicOrdering Order = I.getOrdering();
5179   SyncScope::ID SSID = I.getSyncScopeID();
5180 
5181   SDValue InChain = getRoot();
5182 
5183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5184   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5185   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5186 
5187   if (!TLI.supportsUnalignedAtomics() &&
5188       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5189     report_fatal_error("Cannot generate unaligned atomic load");
5190 
5191   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5192 
5193   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5194       MachinePointerInfo(I.getPointerOperand()), Flags,
5195       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5196       nullptr, SSID, Order);
5197 
5198   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5199 
5200   SDValue Ptr = getValue(I.getPointerOperand());
5201   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5202                             Ptr, MMO);
5203 
5204   SDValue OutChain = L.getValue(1);
5205   if (MemVT != VT)
5206     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5207 
5208   setValue(&I, L);
5209   DAG.setRoot(OutChain);
5210 }
5211 
5212 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5213   SDLoc dl = getCurSDLoc();
5214 
5215   AtomicOrdering Ordering = I.getOrdering();
5216   SyncScope::ID SSID = I.getSyncScopeID();
5217 
5218   SDValue InChain = getRoot();
5219 
5220   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5221   EVT MemVT =
5222       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5223 
5224   if (!TLI.supportsUnalignedAtomics() &&
5225       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5226     report_fatal_error("Cannot generate unaligned atomic store");
5227 
5228   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5229 
5230   MachineFunction &MF = DAG.getMachineFunction();
5231   MachineMemOperand *MMO = MF.getMachineMemOperand(
5232       MachinePointerInfo(I.getPointerOperand()), Flags,
5233       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5234       nullptr, SSID, Ordering);
5235 
5236   SDValue Val = getValue(I.getValueOperand());
5237   if (Val.getValueType() != MemVT)
5238     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5239   SDValue Ptr = getValue(I.getPointerOperand());
5240 
5241   SDValue OutChain =
5242       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5243 
5244   setValue(&I, OutChain);
5245   DAG.setRoot(OutChain);
5246 }
5247 
5248 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5249 /// node.
5250 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5251                                                unsigned Intrinsic) {
5252   // Ignore the callsite's attributes. A specific call site may be marked with
5253   // readnone, but the lowering code will expect the chain based on the
5254   // definition.
5255   const Function *F = I.getCalledFunction();
5256   bool HasChain = !F->doesNotAccessMemory();
5257   bool OnlyLoad =
5258       HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5259 
5260   // Build the operand list.
5261   SmallVector<SDValue, 8> Ops;
5262   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5263     if (OnlyLoad) {
5264       // We don't need to serialize loads against other loads.
5265       Ops.push_back(DAG.getRoot());
5266     } else {
5267       Ops.push_back(getRoot());
5268     }
5269   }
5270 
5271   // Info is set by getTgtMemIntrinsic
5272   TargetLowering::IntrinsicInfo Info;
5273   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5274   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5275                                                DAG.getMachineFunction(),
5276                                                Intrinsic);
5277 
5278   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5279   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5280       Info.opc == ISD::INTRINSIC_W_CHAIN)
5281     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5282                                         TLI.getPointerTy(DAG.getDataLayout())));
5283 
5284   // Add all operands of the call to the operand list.
5285   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5286     const Value *Arg = I.getArgOperand(i);
5287     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5288       Ops.push_back(getValue(Arg));
5289       continue;
5290     }
5291 
5292     // Use TargetConstant instead of a regular constant for immarg.
5293     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5294     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5295       assert(CI->getBitWidth() <= 64 &&
5296              "large intrinsic immediates not handled");
5297       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5298     } else {
5299       Ops.push_back(
5300           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5301     }
5302   }
5303 
5304   SmallVector<EVT, 4> ValueVTs;
5305   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5306 
5307   if (HasChain)
5308     ValueVTs.push_back(MVT::Other);
5309 
5310   SDVTList VTs = DAG.getVTList(ValueVTs);
5311 
5312   // Propagate fast-math-flags from IR to node(s).
5313   SDNodeFlags Flags;
5314   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5315     Flags.copyFMF(*FPMO);
5316   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5317 
5318   // Create the node.
5319   SDValue Result;
5320 
5321   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5322     auto *Token = Bundle->Inputs[0].get();
5323     SDValue ConvControlToken = getValue(Token);
5324     assert(Ops.back().getValueType() != MVT::Glue &&
5325            "Did not expected another glue node here.");
5326     ConvControlToken =
5327         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5328     Ops.push_back(ConvControlToken);
5329   }
5330 
5331   // In some cases, custom collection of operands from CallInst I may be needed.
5332   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5333   if (IsTgtIntrinsic) {
5334     // This is target intrinsic that touches memory
5335     //
5336     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5337     //       didn't yield anything useful.
5338     MachinePointerInfo MPI;
5339     if (Info.ptrVal)
5340       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5341     else if (Info.fallbackAddressSpace)
5342       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5343     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5344                                      Info.memVT, MPI, Info.align, Info.flags,
5345                                      Info.size, I.getAAMetadata());
5346   } else if (!HasChain) {
5347     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5348   } else if (!I.getType()->isVoidTy()) {
5349     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5350   } else {
5351     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5352   }
5353 
5354   if (HasChain) {
5355     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5356     if (OnlyLoad)
5357       PendingLoads.push_back(Chain);
5358     else
5359       DAG.setRoot(Chain);
5360   }
5361 
5362   if (!I.getType()->isVoidTy()) {
5363     if (!isa<VectorType>(I.getType()))
5364       Result = lowerRangeToAssertZExt(DAG, I, Result);
5365 
5366     MaybeAlign Alignment = I.getRetAlign();
5367 
5368     // Insert `assertalign` node if there's an alignment.
5369     if (InsertAssertAlign && Alignment) {
5370       Result =
5371           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5372     }
5373   }
5374 
5375   setValue(&I, Result);
5376 }
5377 
5378 /// GetSignificand - Get the significand and build it into a floating-point
5379 /// number with exponent of 1:
5380 ///
5381 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5382 ///
5383 /// where Op is the hexadecimal representation of floating point value.
5384 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5385   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5386                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5387   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5388                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5389   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5390 }
5391 
5392 /// GetExponent - Get the exponent:
5393 ///
5394 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5395 ///
5396 /// where Op is the hexadecimal representation of floating point value.
5397 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5398                            const TargetLowering &TLI, const SDLoc &dl) {
5399   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5400                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5401   SDValue t1 = DAG.getNode(
5402       ISD::SRL, dl, MVT::i32, t0,
5403       DAG.getConstant(23, dl,
5404                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5405   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5406                            DAG.getConstant(127, dl, MVT::i32));
5407   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5408 }
5409 
5410 /// getF32Constant - Get 32-bit floating point constant.
5411 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5412                               const SDLoc &dl) {
5413   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5414                            MVT::f32);
5415 }
5416 
5417 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5418                                        SelectionDAG &DAG) {
5419   // TODO: What fast-math-flags should be set on the floating-point nodes?
5420 
5421   //   IntegerPartOfX = ((int32_t)(t0);
5422   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5423 
5424   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5425   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5426   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5427 
5428   //   IntegerPartOfX <<= 23;
5429   IntegerPartOfX =
5430       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5431                   DAG.getConstant(23, dl,
5432                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5433                                       MVT::i32, DAG.getDataLayout())));
5434 
5435   SDValue TwoToFractionalPartOfX;
5436   if (LimitFloatPrecision <= 6) {
5437     // For floating-point precision of 6:
5438     //
5439     //   TwoToFractionalPartOfX =
5440     //     0.997535578f +
5441     //       (0.735607626f + 0.252464424f * x) * x;
5442     //
5443     // error 0.0144103317, which is 6 bits
5444     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5445                              getF32Constant(DAG, 0x3e814304, dl));
5446     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5447                              getF32Constant(DAG, 0x3f3c50c8, dl));
5448     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5449     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5450                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5451   } else if (LimitFloatPrecision <= 12) {
5452     // For floating-point precision of 12:
5453     //
5454     //   TwoToFractionalPartOfX =
5455     //     0.999892986f +
5456     //       (0.696457318f +
5457     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5458     //
5459     // error 0.000107046256, which is 13 to 14 bits
5460     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5461                              getF32Constant(DAG, 0x3da235e3, dl));
5462     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5463                              getF32Constant(DAG, 0x3e65b8f3, dl));
5464     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5465     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5466                              getF32Constant(DAG, 0x3f324b07, dl));
5467     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5468     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5469                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5470   } else { // LimitFloatPrecision <= 18
5471     // For floating-point precision of 18:
5472     //
5473     //   TwoToFractionalPartOfX =
5474     //     0.999999982f +
5475     //       (0.693148872f +
5476     //         (0.240227044f +
5477     //           (0.554906021e-1f +
5478     //             (0.961591928e-2f +
5479     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5480     // error 2.47208000*10^(-7), which is better than 18 bits
5481     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5482                              getF32Constant(DAG, 0x3924b03e, dl));
5483     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5484                              getF32Constant(DAG, 0x3ab24b87, dl));
5485     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5486     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5487                              getF32Constant(DAG, 0x3c1d8c17, dl));
5488     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5489     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5490                              getF32Constant(DAG, 0x3d634a1d, dl));
5491     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5492     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5493                              getF32Constant(DAG, 0x3e75fe14, dl));
5494     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5495     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5496                               getF32Constant(DAG, 0x3f317234, dl));
5497     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5498     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5499                                          getF32Constant(DAG, 0x3f800000, dl));
5500   }
5501 
5502   // Add the exponent into the result in integer domain.
5503   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5504   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5505                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5506 }
5507 
5508 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5509 /// limited-precision mode.
5510 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5511                          const TargetLowering &TLI, SDNodeFlags Flags) {
5512   if (Op.getValueType() == MVT::f32 &&
5513       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5514 
5515     // Put the exponent in the right bit position for later addition to the
5516     // final result:
5517     //
5518     // t0 = Op * log2(e)
5519 
5520     // TODO: What fast-math-flags should be set here?
5521     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5522                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5523     return getLimitedPrecisionExp2(t0, dl, DAG);
5524   }
5525 
5526   // No special expansion.
5527   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5528 }
5529 
5530 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5531 /// limited-precision mode.
5532 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5533                          const TargetLowering &TLI, SDNodeFlags Flags) {
5534   // TODO: What fast-math-flags should be set on the floating-point nodes?
5535 
5536   if (Op.getValueType() == MVT::f32 &&
5537       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5538     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5539 
5540     // Scale the exponent by log(2).
5541     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5542     SDValue LogOfExponent =
5543         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5544                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5545 
5546     // Get the significand and build it into a floating-point number with
5547     // exponent of 1.
5548     SDValue X = GetSignificand(DAG, Op1, dl);
5549 
5550     SDValue LogOfMantissa;
5551     if (LimitFloatPrecision <= 6) {
5552       // For floating-point precision of 6:
5553       //
5554       //   LogofMantissa =
5555       //     -1.1609546f +
5556       //       (1.4034025f - 0.23903021f * x) * x;
5557       //
5558       // error 0.0034276066, which is better than 8 bits
5559       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5560                                getF32Constant(DAG, 0xbe74c456, dl));
5561       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5562                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5563       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5564       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5565                                   getF32Constant(DAG, 0x3f949a29, dl));
5566     } else if (LimitFloatPrecision <= 12) {
5567       // For floating-point precision of 12:
5568       //
5569       //   LogOfMantissa =
5570       //     -1.7417939f +
5571       //       (2.8212026f +
5572       //         (-1.4699568f +
5573       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5574       //
5575       // error 0.000061011436, which is 14 bits
5576       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5577                                getF32Constant(DAG, 0xbd67b6d6, dl));
5578       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5579                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5580       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5581       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5582                                getF32Constant(DAG, 0x3fbc278b, dl));
5583       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5584       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5585                                getF32Constant(DAG, 0x40348e95, dl));
5586       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5587       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5588                                   getF32Constant(DAG, 0x3fdef31a, dl));
5589     } else { // LimitFloatPrecision <= 18
5590       // For floating-point precision of 18:
5591       //
5592       //   LogOfMantissa =
5593       //     -2.1072184f +
5594       //       (4.2372794f +
5595       //         (-3.7029485f +
5596       //           (2.2781945f +
5597       //             (-0.87823314f +
5598       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5599       //
5600       // error 0.0000023660568, which is better than 18 bits
5601       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5602                                getF32Constant(DAG, 0xbc91e5ac, dl));
5603       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5604                                getF32Constant(DAG, 0x3e4350aa, dl));
5605       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5606       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5607                                getF32Constant(DAG, 0x3f60d3e3, dl));
5608       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5609       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5610                                getF32Constant(DAG, 0x4011cdf0, dl));
5611       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5612       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5613                                getF32Constant(DAG, 0x406cfd1c, dl));
5614       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5615       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5616                                getF32Constant(DAG, 0x408797cb, dl));
5617       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5618       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5619                                   getF32Constant(DAG, 0x4006dcab, dl));
5620     }
5621 
5622     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5623   }
5624 
5625   // No special expansion.
5626   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5627 }
5628 
5629 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5630 /// limited-precision mode.
5631 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5632                           const TargetLowering &TLI, SDNodeFlags Flags) {
5633   // TODO: What fast-math-flags should be set on the floating-point nodes?
5634 
5635   if (Op.getValueType() == MVT::f32 &&
5636       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5637     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5638 
5639     // Get the exponent.
5640     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5641 
5642     // Get the significand and build it into a floating-point number with
5643     // exponent of 1.
5644     SDValue X = GetSignificand(DAG, Op1, dl);
5645 
5646     // Different possible minimax approximations of significand in
5647     // floating-point for various degrees of accuracy over [1,2].
5648     SDValue Log2ofMantissa;
5649     if (LimitFloatPrecision <= 6) {
5650       // For floating-point precision of 6:
5651       //
5652       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5653       //
5654       // error 0.0049451742, which is more than 7 bits
5655       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5656                                getF32Constant(DAG, 0xbeb08fe0, dl));
5657       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5658                                getF32Constant(DAG, 0x40019463, dl));
5659       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5660       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5661                                    getF32Constant(DAG, 0x3fd6633d, dl));
5662     } else if (LimitFloatPrecision <= 12) {
5663       // For floating-point precision of 12:
5664       //
5665       //   Log2ofMantissa =
5666       //     -2.51285454f +
5667       //       (4.07009056f +
5668       //         (-2.12067489f +
5669       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5670       //
5671       // error 0.0000876136000, which is better than 13 bits
5672       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5673                                getF32Constant(DAG, 0xbda7262e, dl));
5674       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5675                                getF32Constant(DAG, 0x3f25280b, dl));
5676       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5677       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5678                                getF32Constant(DAG, 0x4007b923, dl));
5679       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5680       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5681                                getF32Constant(DAG, 0x40823e2f, dl));
5682       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5683       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5684                                    getF32Constant(DAG, 0x4020d29c, dl));
5685     } else { // LimitFloatPrecision <= 18
5686       // For floating-point precision of 18:
5687       //
5688       //   Log2ofMantissa =
5689       //     -3.0400495f +
5690       //       (6.1129976f +
5691       //         (-5.3420409f +
5692       //           (3.2865683f +
5693       //             (-1.2669343f +
5694       //               (0.27515199f -
5695       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5696       //
5697       // error 0.0000018516, which is better than 18 bits
5698       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5699                                getF32Constant(DAG, 0xbcd2769e, dl));
5700       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5701                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5702       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5703       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5704                                getF32Constant(DAG, 0x3fa22ae7, dl));
5705       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5706       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5707                                getF32Constant(DAG, 0x40525723, dl));
5708       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5709       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5710                                getF32Constant(DAG, 0x40aaf200, dl));
5711       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5712       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5713                                getF32Constant(DAG, 0x40c39dad, dl));
5714       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5715       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5716                                    getF32Constant(DAG, 0x4042902c, dl));
5717     }
5718 
5719     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5720   }
5721 
5722   // No special expansion.
5723   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5724 }
5725 
5726 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5727 /// limited-precision mode.
5728 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5729                            const TargetLowering &TLI, SDNodeFlags Flags) {
5730   // TODO: What fast-math-flags should be set on the floating-point nodes?
5731 
5732   if (Op.getValueType() == MVT::f32 &&
5733       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5734     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5735 
5736     // Scale the exponent by log10(2) [0.30102999f].
5737     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5738     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5739                                         getF32Constant(DAG, 0x3e9a209a, dl));
5740 
5741     // Get the significand and build it into a floating-point number with
5742     // exponent of 1.
5743     SDValue X = GetSignificand(DAG, Op1, dl);
5744 
5745     SDValue Log10ofMantissa;
5746     if (LimitFloatPrecision <= 6) {
5747       // For floating-point precision of 6:
5748       //
5749       //   Log10ofMantissa =
5750       //     -0.50419619f +
5751       //       (0.60948995f - 0.10380950f * x) * x;
5752       //
5753       // error 0.0014886165, which is 6 bits
5754       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5755                                getF32Constant(DAG, 0xbdd49a13, dl));
5756       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5757                                getF32Constant(DAG, 0x3f1c0789, dl));
5758       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5759       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5760                                     getF32Constant(DAG, 0x3f011300, dl));
5761     } else if (LimitFloatPrecision <= 12) {
5762       // For floating-point precision of 12:
5763       //
5764       //   Log10ofMantissa =
5765       //     -0.64831180f +
5766       //       (0.91751397f +
5767       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5768       //
5769       // error 0.00019228036, which is better than 12 bits
5770       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5771                                getF32Constant(DAG, 0x3d431f31, dl));
5772       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5773                                getF32Constant(DAG, 0x3ea21fb2, dl));
5774       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5775       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5776                                getF32Constant(DAG, 0x3f6ae232, dl));
5777       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5778       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5779                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5780     } else { // LimitFloatPrecision <= 18
5781       // For floating-point precision of 18:
5782       //
5783       //   Log10ofMantissa =
5784       //     -0.84299375f +
5785       //       (1.5327582f +
5786       //         (-1.0688956f +
5787       //           (0.49102474f +
5788       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5789       //
5790       // error 0.0000037995730, which is better than 18 bits
5791       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5792                                getF32Constant(DAG, 0x3c5d51ce, dl));
5793       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5794                                getF32Constant(DAG, 0x3e00685a, dl));
5795       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5796       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5797                                getF32Constant(DAG, 0x3efb6798, dl));
5798       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5799       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5800                                getF32Constant(DAG, 0x3f88d192, dl));
5801       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5802       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5803                                getF32Constant(DAG, 0x3fc4316c, dl));
5804       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5805       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5806                                     getF32Constant(DAG, 0x3f57ce70, dl));
5807     }
5808 
5809     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5810   }
5811 
5812   // No special expansion.
5813   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5814 }
5815 
5816 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5817 /// limited-precision mode.
5818 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5819                           const TargetLowering &TLI, SDNodeFlags Flags) {
5820   if (Op.getValueType() == MVT::f32 &&
5821       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5822     return getLimitedPrecisionExp2(Op, dl, DAG);
5823 
5824   // No special expansion.
5825   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5826 }
5827 
5828 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5829 /// limited-precision mode with x == 10.0f.
5830 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5831                          SelectionDAG &DAG, const TargetLowering &TLI,
5832                          SDNodeFlags Flags) {
5833   bool IsExp10 = false;
5834   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5835       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5836     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5837       APFloat Ten(10.0f);
5838       IsExp10 = LHSC->isExactlyValue(Ten);
5839     }
5840   }
5841 
5842   // TODO: What fast-math-flags should be set on the FMUL node?
5843   if (IsExp10) {
5844     // Put the exponent in the right bit position for later addition to the
5845     // final result:
5846     //
5847     //   #define LOG2OF10 3.3219281f
5848     //   t0 = Op * LOG2OF10;
5849     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5850                              getF32Constant(DAG, 0x40549a78, dl));
5851     return getLimitedPrecisionExp2(t0, dl, DAG);
5852   }
5853 
5854   // No special expansion.
5855   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5856 }
5857 
5858 /// ExpandPowI - Expand a llvm.powi intrinsic.
5859 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5860                           SelectionDAG &DAG) {
5861   // If RHS is a constant, we can expand this out to a multiplication tree if
5862   // it's beneficial on the target, otherwise we end up lowering to a call to
5863   // __powidf2 (for example).
5864   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5865     unsigned Val = RHSC->getSExtValue();
5866 
5867     // powi(x, 0) -> 1.0
5868     if (Val == 0)
5869       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5870 
5871     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5872             Val, DAG.shouldOptForSize())) {
5873       // Get the exponent as a positive value.
5874       if ((int)Val < 0)
5875         Val = -Val;
5876       // We use the simple binary decomposition method to generate the multiply
5877       // sequence.  There are more optimal ways to do this (for example,
5878       // powi(x,15) generates one more multiply than it should), but this has
5879       // the benefit of being both really simple and much better than a libcall.
5880       SDValue Res; // Logically starts equal to 1.0
5881       SDValue CurSquare = LHS;
5882       // TODO: Intrinsics should have fast-math-flags that propagate to these
5883       // nodes.
5884       while (Val) {
5885         if (Val & 1) {
5886           if (Res.getNode())
5887             Res =
5888                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5889           else
5890             Res = CurSquare; // 1.0*CurSquare.
5891         }
5892 
5893         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5894                                 CurSquare, CurSquare);
5895         Val >>= 1;
5896       }
5897 
5898       // If the original was negative, invert the result, producing 1/(x*x*x).
5899       if (RHSC->getSExtValue() < 0)
5900         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5901                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5902       return Res;
5903     }
5904   }
5905 
5906   // Otherwise, expand to a libcall.
5907   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5908 }
5909 
5910 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5911                             SDValue LHS, SDValue RHS, SDValue Scale,
5912                             SelectionDAG &DAG, const TargetLowering &TLI) {
5913   EVT VT = LHS.getValueType();
5914   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5915   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5916   LLVMContext &Ctx = *DAG.getContext();
5917 
5918   // If the type is legal but the operation isn't, this node might survive all
5919   // the way to operation legalization. If we end up there and we do not have
5920   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5921   // node.
5922 
5923   // Coax the legalizer into expanding the node during type legalization instead
5924   // by bumping the size by one bit. This will force it to Promote, enabling the
5925   // early expansion and avoiding the need to expand later.
5926 
5927   // We don't have to do this if Scale is 0; that can always be expanded, unless
5928   // it's a saturating signed operation. Those can experience true integer
5929   // division overflow, a case which we must avoid.
5930 
5931   // FIXME: We wouldn't have to do this (or any of the early
5932   // expansion/promotion) if it was possible to expand a libcall of an
5933   // illegal type during operation legalization. But it's not, so things
5934   // get a bit hacky.
5935   unsigned ScaleInt = Scale->getAsZExtVal();
5936   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5937       (TLI.isTypeLegal(VT) ||
5938        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5939     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5940         Opcode, VT, ScaleInt);
5941     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5942       EVT PromVT;
5943       if (VT.isScalarInteger())
5944         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5945       else if (VT.isVector()) {
5946         PromVT = VT.getVectorElementType();
5947         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5948         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5949       } else
5950         llvm_unreachable("Wrong VT for DIVFIX?");
5951       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5952       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5953       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5954       // For saturating operations, we need to shift up the LHS to get the
5955       // proper saturation width, and then shift down again afterwards.
5956       if (Saturating)
5957         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5958                           DAG.getConstant(1, DL, ShiftTy));
5959       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5960       if (Saturating)
5961         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5962                           DAG.getConstant(1, DL, ShiftTy));
5963       return DAG.getZExtOrTrunc(Res, DL, VT);
5964     }
5965   }
5966 
5967   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5968 }
5969 
5970 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5971 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5972 static void
5973 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
5974                      const SDValue &N) {
5975   switch (N.getOpcode()) {
5976   case ISD::CopyFromReg: {
5977     SDValue Op = N.getOperand(1);
5978     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5979                       Op.getValueType().getSizeInBits());
5980     return;
5981   }
5982   case ISD::BITCAST:
5983   case ISD::AssertZext:
5984   case ISD::AssertSext:
5985   case ISD::TRUNCATE:
5986     getUnderlyingArgRegs(Regs, N.getOperand(0));
5987     return;
5988   case ISD::BUILD_PAIR:
5989   case ISD::BUILD_VECTOR:
5990   case ISD::CONCAT_VECTORS:
5991     for (SDValue Op : N->op_values())
5992       getUnderlyingArgRegs(Regs, Op);
5993     return;
5994   default:
5995     return;
5996   }
5997 }
5998 
5999 /// If the DbgValueInst is a dbg_value of a function argument, create the
6000 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
6001 /// instruction selection, they will be inserted to the entry BB.
6002 /// We don't currently support this for variadic dbg_values, as they shouldn't
6003 /// appear for function arguments or in the prologue.
6004 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6005     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6006     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6007   const Argument *Arg = dyn_cast<Argument>(V);
6008   if (!Arg)
6009     return false;
6010 
6011   MachineFunction &MF = DAG.getMachineFunction();
6012   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6013 
6014   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6015   // we've been asked to pursue.
6016   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6017                               bool Indirect) {
6018     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6019       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6020       // pointing at the VReg, which will be patched up later.
6021       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6022       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
6023           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6024           /* isKill */ false, /* isDead */ false,
6025           /* isUndef */ false, /* isEarlyClobber */ false,
6026           /* SubReg */ 0, /* isDebug */ true)});
6027 
6028       auto *NewDIExpr = FragExpr;
6029       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6030       // the DIExpression.
6031       if (Indirect)
6032         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6033       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6034       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6035       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6036     } else {
6037       // Create a completely standard DBG_VALUE.
6038       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6039       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6040     }
6041   };
6042 
6043   if (Kind == FuncArgumentDbgValueKind::Value) {
6044     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6045     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6046     // the entry block.
6047     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6048     if (!IsInEntryBlock)
6049       return false;
6050 
6051     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6052     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6053     // variable that also is a param.
6054     //
6055     // Although, if we are at the top of the entry block already, we can still
6056     // emit using ArgDbgValue. This might catch some situations when the
6057     // dbg.value refers to an argument that isn't used in the entry block, so
6058     // any CopyToReg node would be optimized out and the only way to express
6059     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6060     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6061     // we should only emit as ArgDbgValue if the Variable is an argument to the
6062     // current function, and the dbg.value intrinsic is found in the entry
6063     // block.
6064     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6065         !DL->getInlinedAt();
6066     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6067     if (!IsInPrologue && !VariableIsFunctionInputArg)
6068       return false;
6069 
6070     // Here we assume that a function argument on IR level only can be used to
6071     // describe one input parameter on source level. If we for example have
6072     // source code like this
6073     //
6074     //    struct A { long x, y; };
6075     //    void foo(struct A a, long b) {
6076     //      ...
6077     //      b = a.x;
6078     //      ...
6079     //    }
6080     //
6081     // and IR like this
6082     //
6083     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6084     //  entry:
6085     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6086     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6087     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6088     //    ...
6089     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6090     //    ...
6091     //
6092     // then the last dbg.value is describing a parameter "b" using a value that
6093     // is an argument. But since we already has used %a1 to describe a parameter
6094     // we should not handle that last dbg.value here (that would result in an
6095     // incorrect hoisting of the DBG_VALUE to the function entry).
6096     // Notice that we allow one dbg.value per IR level argument, to accommodate
6097     // for the situation with fragments above.
6098     // If there is no node for the value being handled, we return true to skip
6099     // the normal generation of debug info, as it would kill existing debug
6100     // info for the parameter in case of duplicates.
6101     if (VariableIsFunctionInputArg) {
6102       unsigned ArgNo = Arg->getArgNo();
6103       if (ArgNo >= FuncInfo.DescribedArgs.size())
6104         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6105       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6106         return !NodeMap[V].getNode();
6107       FuncInfo.DescribedArgs.set(ArgNo);
6108     }
6109   }
6110 
6111   bool IsIndirect = false;
6112   std::optional<MachineOperand> Op;
6113   // Some arguments' frame index is recorded during argument lowering.
6114   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6115   if (FI != std::numeric_limits<int>::max())
6116     Op = MachineOperand::CreateFI(FI);
6117 
6118   SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes;
6119   if (!Op && N.getNode()) {
6120     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6121     Register Reg;
6122     if (ArgRegsAndSizes.size() == 1)
6123       Reg = ArgRegsAndSizes.front().first;
6124 
6125     if (Reg && Reg.isVirtual()) {
6126       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6127       Register PR = RegInfo.getLiveInPhysReg(Reg);
6128       if (PR)
6129         Reg = PR;
6130     }
6131     if (Reg) {
6132       Op = MachineOperand::CreateReg(Reg, false);
6133       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6134     }
6135   }
6136 
6137   if (!Op && N.getNode()) {
6138     // Check if frame index is available.
6139     SDValue LCandidate = peekThroughBitcasts(N);
6140     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6141       if (FrameIndexSDNode *FINode =
6142           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6143         Op = MachineOperand::CreateFI(FINode->getIndex());
6144   }
6145 
6146   if (!Op) {
6147     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6148     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>>
6149                                          SplitRegs) {
6150       unsigned Offset = 0;
6151       for (const auto &RegAndSize : SplitRegs) {
6152         // If the expression is already a fragment, the current register
6153         // offset+size might extend beyond the fragment. In this case, only
6154         // the register bits that are inside the fragment are relevant.
6155         int RegFragmentSizeInBits = RegAndSize.second;
6156         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6157           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6158           // The register is entirely outside the expression fragment,
6159           // so is irrelevant for debug info.
6160           if (Offset >= ExprFragmentSizeInBits)
6161             break;
6162           // The register is partially outside the expression fragment, only
6163           // the low bits within the fragment are relevant for debug info.
6164           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6165             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6166           }
6167         }
6168 
6169         auto FragmentExpr = DIExpression::createFragmentExpression(
6170             Expr, Offset, RegFragmentSizeInBits);
6171         Offset += RegAndSize.second;
6172         // If a valid fragment expression cannot be created, the variable's
6173         // correct value cannot be determined and so it is set as Undef.
6174         if (!FragmentExpr) {
6175           SDDbgValue *SDV = DAG.getConstantDbgValue(
6176               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6177           DAG.AddDbgValue(SDV, false);
6178           continue;
6179         }
6180         MachineInstr *NewMI =
6181             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6182                              Kind != FuncArgumentDbgValueKind::Value);
6183         FuncInfo.ArgDbgValues.push_back(NewMI);
6184       }
6185     };
6186 
6187     // Check if ValueMap has reg number.
6188     DenseMap<const Value *, Register>::const_iterator
6189       VMI = FuncInfo.ValueMap.find(V);
6190     if (VMI != FuncInfo.ValueMap.end()) {
6191       const auto &TLI = DAG.getTargetLoweringInfo();
6192       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6193                        V->getType(), std::nullopt);
6194       if (RFV.occupiesMultipleRegs()) {
6195         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6196         return true;
6197       }
6198 
6199       Op = MachineOperand::CreateReg(VMI->second, false);
6200       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6201     } else if (ArgRegsAndSizes.size() > 1) {
6202       // This was split due to the calling convention, and no virtual register
6203       // mapping exists for the value.
6204       splitMultiRegDbgValue(ArgRegsAndSizes);
6205       return true;
6206     }
6207   }
6208 
6209   if (!Op)
6210     return false;
6211 
6212   assert(Variable->isValidLocationForIntrinsic(DL) &&
6213          "Expected inlined-at fields to agree");
6214   MachineInstr *NewMI = nullptr;
6215 
6216   if (Op->isReg())
6217     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6218   else
6219     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6220                     Variable, Expr);
6221 
6222   // Otherwise, use ArgDbgValues.
6223   FuncInfo.ArgDbgValues.push_back(NewMI);
6224   return true;
6225 }
6226 
6227 /// Return the appropriate SDDbgValue based on N.
6228 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6229                                              DILocalVariable *Variable,
6230                                              DIExpression *Expr,
6231                                              const DebugLoc &dl,
6232                                              unsigned DbgSDNodeOrder) {
6233   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6234     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6235     // stack slot locations.
6236     //
6237     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6238     // debug values here after optimization:
6239     //
6240     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6241     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6242     //
6243     // Both describe the direct values of their associated variables.
6244     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6245                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6246   }
6247   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6248                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6249 }
6250 
6251 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6252   switch (Intrinsic) {
6253   case Intrinsic::smul_fix:
6254     return ISD::SMULFIX;
6255   case Intrinsic::umul_fix:
6256     return ISD::UMULFIX;
6257   case Intrinsic::smul_fix_sat:
6258     return ISD::SMULFIXSAT;
6259   case Intrinsic::umul_fix_sat:
6260     return ISD::UMULFIXSAT;
6261   case Intrinsic::sdiv_fix:
6262     return ISD::SDIVFIX;
6263   case Intrinsic::udiv_fix:
6264     return ISD::UDIVFIX;
6265   case Intrinsic::sdiv_fix_sat:
6266     return ISD::SDIVFIXSAT;
6267   case Intrinsic::udiv_fix_sat:
6268     return ISD::UDIVFIXSAT;
6269   default:
6270     llvm_unreachable("Unhandled fixed point intrinsic");
6271   }
6272 }
6273 
6274 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6275                                            const char *FunctionName) {
6276   assert(FunctionName && "FunctionName must not be nullptr");
6277   SDValue Callee = DAG.getExternalSymbol(
6278       FunctionName,
6279       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6280   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6281 }
6282 
6283 /// Given a @llvm.call.preallocated.setup, return the corresponding
6284 /// preallocated call.
6285 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6286   assert(cast<CallBase>(PreallocatedSetup)
6287                  ->getCalledFunction()
6288                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6289          "expected call_preallocated_setup Value");
6290   for (const auto *U : PreallocatedSetup->users()) {
6291     auto *UseCall = cast<CallBase>(U);
6292     const Function *Fn = UseCall->getCalledFunction();
6293     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6294       return UseCall;
6295     }
6296   }
6297   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6298 }
6299 
6300 /// If DI is a debug value with an EntryValue expression, lower it using the
6301 /// corresponding physical register of the associated Argument value
6302 /// (guaranteed to exist by the verifier).
6303 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6304     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6305     DIExpression *Expr, DebugLoc DbgLoc) {
6306   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6307     return false;
6308 
6309   // These properties are guaranteed by the verifier.
6310   const Argument *Arg = cast<Argument>(Values[0]);
6311   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6312 
6313   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6314   if (ArgIt == FuncInfo.ValueMap.end()) {
6315     LLVM_DEBUG(
6316         dbgs() << "Dropping dbg.value: expression is entry_value but "
6317                   "couldn't find an associated register for the Argument\n");
6318     return true;
6319   }
6320   Register ArgVReg = ArgIt->getSecond();
6321 
6322   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6323     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6324       SDDbgValue *SDV = DAG.getVRegDbgValue(
6325           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6326       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6327       return true;
6328     }
6329   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6330                        "couldn't find a physical register\n");
6331   return true;
6332 }
6333 
6334 /// Lower the call to the specified intrinsic function.
6335 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6336                                                   unsigned Intrinsic) {
6337   SDLoc sdl = getCurSDLoc();
6338   switch (Intrinsic) {
6339   case Intrinsic::experimental_convergence_anchor:
6340     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6341     break;
6342   case Intrinsic::experimental_convergence_entry:
6343     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6344     break;
6345   case Intrinsic::experimental_convergence_loop: {
6346     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6347     auto *Token = Bundle->Inputs[0].get();
6348     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6349                              getValue(Token)));
6350     break;
6351   }
6352   }
6353 }
6354 
6355 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6356                                                unsigned IntrinsicID) {
6357   // For now, we're only lowering an 'add' histogram.
6358   // We can add others later, e.g. saturating adds, min/max.
6359   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6360          "Tried to lower unsupported histogram type");
6361   SDLoc sdl = getCurSDLoc();
6362   Value *Ptr = I.getOperand(0);
6363   SDValue Inc = getValue(I.getOperand(1));
6364   SDValue Mask = getValue(I.getOperand(2));
6365 
6366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6367   DataLayout TargetDL = DAG.getDataLayout();
6368   EVT VT = Inc.getValueType();
6369   Align Alignment = DAG.getEVTAlign(VT);
6370 
6371   const MDNode *Ranges = getRangeMetadata(I);
6372 
6373   SDValue Root = DAG.getRoot();
6374   SDValue Base;
6375   SDValue Index;
6376   ISD::MemIndexType IndexType;
6377   SDValue Scale;
6378   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6379                                     I.getParent(), VT.getScalarStoreSize());
6380 
6381   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6382 
6383   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6384       MachinePointerInfo(AS),
6385       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6386       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6387 
6388   if (!UniformBase) {
6389     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6390     Index = getValue(Ptr);
6391     IndexType = ISD::SIGNED_SCALED;
6392     Scale =
6393         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6394   }
6395 
6396   EVT IdxVT = Index.getValueType();
6397   EVT EltTy = IdxVT.getVectorElementType();
6398   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6399     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6400     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6401   }
6402 
6403   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6404 
6405   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6406   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6407                                              Ops, MMO, IndexType);
6408 
6409   setValue(&I, Histogram);
6410   DAG.setRoot(Histogram);
6411 }
6412 
6413 /// Lower the call to the specified intrinsic function.
6414 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6415                                              unsigned Intrinsic) {
6416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6417   SDLoc sdl = getCurSDLoc();
6418   DebugLoc dl = getCurDebugLoc();
6419   SDValue Res;
6420 
6421   SDNodeFlags Flags;
6422   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6423     Flags.copyFMF(*FPOp);
6424 
6425   switch (Intrinsic) {
6426   default:
6427     // By default, turn this into a target intrinsic node.
6428     visitTargetIntrinsic(I, Intrinsic);
6429     return;
6430   case Intrinsic::vscale: {
6431     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6432     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6433     return;
6434   }
6435   case Intrinsic::vastart:  visitVAStart(I); return;
6436   case Intrinsic::vaend:    visitVAEnd(I); return;
6437   case Intrinsic::vacopy:   visitVACopy(I); return;
6438   case Intrinsic::returnaddress:
6439     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6440                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6441                              getValue(I.getArgOperand(0))));
6442     return;
6443   case Intrinsic::addressofreturnaddress:
6444     setValue(&I,
6445              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6446                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6447     return;
6448   case Intrinsic::sponentry:
6449     setValue(&I,
6450              DAG.getNode(ISD::SPONENTRY, sdl,
6451                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6452     return;
6453   case Intrinsic::frameaddress:
6454     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6455                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6456                              getValue(I.getArgOperand(0))));
6457     return;
6458   case Intrinsic::read_volatile_register:
6459   case Intrinsic::read_register: {
6460     Value *Reg = I.getArgOperand(0);
6461     SDValue Chain = getRoot();
6462     SDValue RegName =
6463         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6464     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6465     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6466       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6467     setValue(&I, Res);
6468     DAG.setRoot(Res.getValue(1));
6469     return;
6470   }
6471   case Intrinsic::write_register: {
6472     Value *Reg = I.getArgOperand(0);
6473     Value *RegValue = I.getArgOperand(1);
6474     SDValue Chain = getRoot();
6475     SDValue RegName =
6476         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6477     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6478                             RegName, getValue(RegValue)));
6479     return;
6480   }
6481   case Intrinsic::memcpy: {
6482     const auto &MCI = cast<MemCpyInst>(I);
6483     SDValue Op1 = getValue(I.getArgOperand(0));
6484     SDValue Op2 = getValue(I.getArgOperand(1));
6485     SDValue Op3 = getValue(I.getArgOperand(2));
6486     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6487     Align DstAlign = MCI.getDestAlign().valueOrOne();
6488     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6489     Align Alignment = std::min(DstAlign, SrcAlign);
6490     bool isVol = MCI.isVolatile();
6491     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6492     // node.
6493     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6494     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6495                                /* AlwaysInline */ false, &I, std::nullopt,
6496                                MachinePointerInfo(I.getArgOperand(0)),
6497                                MachinePointerInfo(I.getArgOperand(1)),
6498                                I.getAAMetadata(), AA);
6499     updateDAGForMaybeTailCall(MC);
6500     return;
6501   }
6502   case Intrinsic::memcpy_inline: {
6503     const auto &MCI = cast<MemCpyInlineInst>(I);
6504     SDValue Dst = getValue(I.getArgOperand(0));
6505     SDValue Src = getValue(I.getArgOperand(1));
6506     SDValue Size = getValue(I.getArgOperand(2));
6507     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6508     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6509     Align DstAlign = MCI.getDestAlign().valueOrOne();
6510     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6511     Align Alignment = std::min(DstAlign, SrcAlign);
6512     bool isVol = MCI.isVolatile();
6513     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6514     // node.
6515     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6516                                /* AlwaysInline */ true, &I, std::nullopt,
6517                                MachinePointerInfo(I.getArgOperand(0)),
6518                                MachinePointerInfo(I.getArgOperand(1)),
6519                                I.getAAMetadata(), AA);
6520     updateDAGForMaybeTailCall(MC);
6521     return;
6522   }
6523   case Intrinsic::memset: {
6524     const auto &MSI = cast<MemSetInst>(I);
6525     SDValue Op1 = getValue(I.getArgOperand(0));
6526     SDValue Op2 = getValue(I.getArgOperand(1));
6527     SDValue Op3 = getValue(I.getArgOperand(2));
6528     // @llvm.memset defines 0 and 1 to both mean no alignment.
6529     Align Alignment = MSI.getDestAlign().valueOrOne();
6530     bool isVol = MSI.isVolatile();
6531     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6532     SDValue MS = DAG.getMemset(
6533         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6534         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6535     updateDAGForMaybeTailCall(MS);
6536     return;
6537   }
6538   case Intrinsic::memset_inline: {
6539     const auto &MSII = cast<MemSetInlineInst>(I);
6540     SDValue Dst = getValue(I.getArgOperand(0));
6541     SDValue Value = getValue(I.getArgOperand(1));
6542     SDValue Size = getValue(I.getArgOperand(2));
6543     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6544     // @llvm.memset defines 0 and 1 to both mean no alignment.
6545     Align DstAlign = MSII.getDestAlign().valueOrOne();
6546     bool isVol = MSII.isVolatile();
6547     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6548     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6549                                /* AlwaysInline */ true, &I,
6550                                MachinePointerInfo(I.getArgOperand(0)),
6551                                I.getAAMetadata());
6552     updateDAGForMaybeTailCall(MC);
6553     return;
6554   }
6555   case Intrinsic::memmove: {
6556     const auto &MMI = cast<MemMoveInst>(I);
6557     SDValue Op1 = getValue(I.getArgOperand(0));
6558     SDValue Op2 = getValue(I.getArgOperand(1));
6559     SDValue Op3 = getValue(I.getArgOperand(2));
6560     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6561     Align DstAlign = MMI.getDestAlign().valueOrOne();
6562     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6563     Align Alignment = std::min(DstAlign, SrcAlign);
6564     bool isVol = MMI.isVolatile();
6565     // FIXME: Support passing different dest/src alignments to the memmove DAG
6566     // node.
6567     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6568     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6569                                 /* OverrideTailCall */ std::nullopt,
6570                                 MachinePointerInfo(I.getArgOperand(0)),
6571                                 MachinePointerInfo(I.getArgOperand(1)),
6572                                 I.getAAMetadata(), AA);
6573     updateDAGForMaybeTailCall(MM);
6574     return;
6575   }
6576   case Intrinsic::memcpy_element_unordered_atomic: {
6577     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6578     SDValue Dst = getValue(MI.getRawDest());
6579     SDValue Src = getValue(MI.getRawSource());
6580     SDValue Length = getValue(MI.getLength());
6581 
6582     Type *LengthTy = MI.getLength()->getType();
6583     unsigned ElemSz = MI.getElementSizeInBytes();
6584     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6585     SDValue MC =
6586         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6587                             isTC, MachinePointerInfo(MI.getRawDest()),
6588                             MachinePointerInfo(MI.getRawSource()));
6589     updateDAGForMaybeTailCall(MC);
6590     return;
6591   }
6592   case Intrinsic::memmove_element_unordered_atomic: {
6593     auto &MI = cast<AtomicMemMoveInst>(I);
6594     SDValue Dst = getValue(MI.getRawDest());
6595     SDValue Src = getValue(MI.getRawSource());
6596     SDValue Length = getValue(MI.getLength());
6597 
6598     Type *LengthTy = MI.getLength()->getType();
6599     unsigned ElemSz = MI.getElementSizeInBytes();
6600     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6601     SDValue MC =
6602         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6603                              isTC, MachinePointerInfo(MI.getRawDest()),
6604                              MachinePointerInfo(MI.getRawSource()));
6605     updateDAGForMaybeTailCall(MC);
6606     return;
6607   }
6608   case Intrinsic::memset_element_unordered_atomic: {
6609     auto &MI = cast<AtomicMemSetInst>(I);
6610     SDValue Dst = getValue(MI.getRawDest());
6611     SDValue Val = getValue(MI.getValue());
6612     SDValue Length = getValue(MI.getLength());
6613 
6614     Type *LengthTy = MI.getLength()->getType();
6615     unsigned ElemSz = MI.getElementSizeInBytes();
6616     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6617     SDValue MC =
6618         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6619                             isTC, MachinePointerInfo(MI.getRawDest()));
6620     updateDAGForMaybeTailCall(MC);
6621     return;
6622   }
6623   case Intrinsic::call_preallocated_setup: {
6624     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6625     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6626     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6627                               getRoot(), SrcValue);
6628     setValue(&I, Res);
6629     DAG.setRoot(Res);
6630     return;
6631   }
6632   case Intrinsic::call_preallocated_arg: {
6633     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6634     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6635     SDValue Ops[3];
6636     Ops[0] = getRoot();
6637     Ops[1] = SrcValue;
6638     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6639                                    MVT::i32); // arg index
6640     SDValue Res = DAG.getNode(
6641         ISD::PREALLOCATED_ARG, sdl,
6642         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6643     setValue(&I, Res);
6644     DAG.setRoot(Res.getValue(1));
6645     return;
6646   }
6647   case Intrinsic::dbg_declare: {
6648     const auto &DI = cast<DbgDeclareInst>(I);
6649     // Debug intrinsics are handled separately in assignment tracking mode.
6650     // Some intrinsics are handled right after Argument lowering.
6651     if (AssignmentTrackingEnabled ||
6652         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6653       return;
6654     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6655     DILocalVariable *Variable = DI.getVariable();
6656     DIExpression *Expression = DI.getExpression();
6657     dropDanglingDebugInfo(Variable, Expression);
6658     // Assume dbg.declare can not currently use DIArgList, i.e.
6659     // it is non-variadic.
6660     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6661     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6662                        DI.getDebugLoc());
6663     return;
6664   }
6665   case Intrinsic::dbg_label: {
6666     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6667     DILabel *Label = DI.getLabel();
6668     assert(Label && "Missing label");
6669 
6670     SDDbgLabel *SDV;
6671     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6672     DAG.AddDbgLabel(SDV);
6673     return;
6674   }
6675   case Intrinsic::dbg_assign: {
6676     // Debug intrinsics are handled separately in assignment tracking mode.
6677     if (AssignmentTrackingEnabled)
6678       return;
6679     // If assignment tracking hasn't been enabled then fall through and treat
6680     // the dbg.assign as a dbg.value.
6681     [[fallthrough]];
6682   }
6683   case Intrinsic::dbg_value: {
6684     // Debug intrinsics are handled separately in assignment tracking mode.
6685     if (AssignmentTrackingEnabled)
6686       return;
6687     const DbgValueInst &DI = cast<DbgValueInst>(I);
6688     assert(DI.getVariable() && "Missing variable");
6689 
6690     DILocalVariable *Variable = DI.getVariable();
6691     DIExpression *Expression = DI.getExpression();
6692     dropDanglingDebugInfo(Variable, Expression);
6693 
6694     if (DI.isKillLocation()) {
6695       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6696       return;
6697     }
6698 
6699     SmallVector<Value *, 4> Values(DI.getValues());
6700     if (Values.empty())
6701       return;
6702 
6703     bool IsVariadic = DI.hasArgList();
6704     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6705                           SDNodeOrder, IsVariadic))
6706       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6707                            DI.getDebugLoc(), SDNodeOrder);
6708     return;
6709   }
6710 
6711   case Intrinsic::eh_typeid_for: {
6712     // Find the type id for the given typeinfo.
6713     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6714     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6715     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6716     setValue(&I, Res);
6717     return;
6718   }
6719 
6720   case Intrinsic::eh_return_i32:
6721   case Intrinsic::eh_return_i64:
6722     DAG.getMachineFunction().setCallsEHReturn(true);
6723     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6724                             MVT::Other,
6725                             getControlRoot(),
6726                             getValue(I.getArgOperand(0)),
6727                             getValue(I.getArgOperand(1))));
6728     return;
6729   case Intrinsic::eh_unwind_init:
6730     DAG.getMachineFunction().setCallsUnwindInit(true);
6731     return;
6732   case Intrinsic::eh_dwarf_cfa:
6733     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6734                              TLI.getPointerTy(DAG.getDataLayout()),
6735                              getValue(I.getArgOperand(0))));
6736     return;
6737   case Intrinsic::eh_sjlj_callsite: {
6738     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6739     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6740 
6741     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6742     return;
6743   }
6744   case Intrinsic::eh_sjlj_functioncontext: {
6745     // Get and store the index of the function context.
6746     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6747     AllocaInst *FnCtx =
6748       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6749     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6750     MFI.setFunctionContextIndex(FI);
6751     return;
6752   }
6753   case Intrinsic::eh_sjlj_setjmp: {
6754     SDValue Ops[2];
6755     Ops[0] = getRoot();
6756     Ops[1] = getValue(I.getArgOperand(0));
6757     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6758                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6759     setValue(&I, Op.getValue(0));
6760     DAG.setRoot(Op.getValue(1));
6761     return;
6762   }
6763   case Intrinsic::eh_sjlj_longjmp:
6764     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6765                             getRoot(), getValue(I.getArgOperand(0))));
6766     return;
6767   case Intrinsic::eh_sjlj_setup_dispatch:
6768     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6769                             getRoot()));
6770     return;
6771   case Intrinsic::masked_gather:
6772     visitMaskedGather(I);
6773     return;
6774   case Intrinsic::masked_load:
6775     visitMaskedLoad(I);
6776     return;
6777   case Intrinsic::masked_scatter:
6778     visitMaskedScatter(I);
6779     return;
6780   case Intrinsic::masked_store:
6781     visitMaskedStore(I);
6782     return;
6783   case Intrinsic::masked_expandload:
6784     visitMaskedLoad(I, true /* IsExpanding */);
6785     return;
6786   case Intrinsic::masked_compressstore:
6787     visitMaskedStore(I, true /* IsCompressing */);
6788     return;
6789   case Intrinsic::powi:
6790     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6791                             getValue(I.getArgOperand(1)), DAG));
6792     return;
6793   case Intrinsic::log:
6794     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6795     return;
6796   case Intrinsic::log2:
6797     setValue(&I,
6798              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6799     return;
6800   case Intrinsic::log10:
6801     setValue(&I,
6802              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6803     return;
6804   case Intrinsic::exp:
6805     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6806     return;
6807   case Intrinsic::exp2:
6808     setValue(&I,
6809              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6810     return;
6811   case Intrinsic::pow:
6812     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6813                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6814     return;
6815   case Intrinsic::sqrt:
6816   case Intrinsic::fabs:
6817   case Intrinsic::sin:
6818   case Intrinsic::cos:
6819   case Intrinsic::tan:
6820   case Intrinsic::asin:
6821   case Intrinsic::acos:
6822   case Intrinsic::atan:
6823   case Intrinsic::sinh:
6824   case Intrinsic::cosh:
6825   case Intrinsic::tanh:
6826   case Intrinsic::exp10:
6827   case Intrinsic::floor:
6828   case Intrinsic::ceil:
6829   case Intrinsic::trunc:
6830   case Intrinsic::rint:
6831   case Intrinsic::nearbyint:
6832   case Intrinsic::round:
6833   case Intrinsic::roundeven:
6834   case Intrinsic::canonicalize: {
6835     unsigned Opcode;
6836     // clang-format off
6837     switch (Intrinsic) {
6838     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6839     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6840     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6841     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6842     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6843     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6844     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6845     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6846     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6847     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6848     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6849     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6850     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6851     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6852     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6853     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6854     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6855     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6856     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6857     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6858     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6859     }
6860     // clang-format on
6861 
6862     setValue(&I, DAG.getNode(Opcode, sdl,
6863                              getValue(I.getArgOperand(0)).getValueType(),
6864                              getValue(I.getArgOperand(0)), Flags));
6865     return;
6866   }
6867   case Intrinsic::atan2:
6868     setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6869                              getValue(I.getArgOperand(0)).getValueType(),
6870                              getValue(I.getArgOperand(0)),
6871                              getValue(I.getArgOperand(1)), Flags));
6872     return;
6873   case Intrinsic::lround:
6874   case Intrinsic::llround:
6875   case Intrinsic::lrint:
6876   case Intrinsic::llrint: {
6877     unsigned Opcode;
6878     // clang-format off
6879     switch (Intrinsic) {
6880     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6881     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6882     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6883     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6884     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6885     }
6886     // clang-format on
6887 
6888     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6889     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6890                              getValue(I.getArgOperand(0))));
6891     return;
6892   }
6893   case Intrinsic::minnum:
6894     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6895                              getValue(I.getArgOperand(0)).getValueType(),
6896                              getValue(I.getArgOperand(0)),
6897                              getValue(I.getArgOperand(1)), Flags));
6898     return;
6899   case Intrinsic::maxnum:
6900     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6901                              getValue(I.getArgOperand(0)).getValueType(),
6902                              getValue(I.getArgOperand(0)),
6903                              getValue(I.getArgOperand(1)), Flags));
6904     return;
6905   case Intrinsic::minimum:
6906     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6907                              getValue(I.getArgOperand(0)).getValueType(),
6908                              getValue(I.getArgOperand(0)),
6909                              getValue(I.getArgOperand(1)), Flags));
6910     return;
6911   case Intrinsic::maximum:
6912     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6913                              getValue(I.getArgOperand(0)).getValueType(),
6914                              getValue(I.getArgOperand(0)),
6915                              getValue(I.getArgOperand(1)), Flags));
6916     return;
6917   case Intrinsic::minimumnum:
6918     setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6919                              getValue(I.getArgOperand(0)).getValueType(),
6920                              getValue(I.getArgOperand(0)),
6921                              getValue(I.getArgOperand(1)), Flags));
6922     return;
6923   case Intrinsic::maximumnum:
6924     setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6925                              getValue(I.getArgOperand(0)).getValueType(),
6926                              getValue(I.getArgOperand(0)),
6927                              getValue(I.getArgOperand(1)), Flags));
6928     return;
6929   case Intrinsic::copysign:
6930     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6931                              getValue(I.getArgOperand(0)).getValueType(),
6932                              getValue(I.getArgOperand(0)),
6933                              getValue(I.getArgOperand(1)), Flags));
6934     return;
6935   case Intrinsic::ldexp:
6936     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6937                              getValue(I.getArgOperand(0)).getValueType(),
6938                              getValue(I.getArgOperand(0)),
6939                              getValue(I.getArgOperand(1)), Flags));
6940     return;
6941   case Intrinsic::sincos:
6942   case Intrinsic::frexp: {
6943     unsigned Opcode;
6944     switch (Intrinsic) {
6945     default:
6946       llvm_unreachable("unexpected intrinsic");
6947     case Intrinsic::sincos:
6948       Opcode = ISD::FSINCOS;
6949       break;
6950     case Intrinsic::frexp:
6951       Opcode = ISD::FFREXP;
6952       break;
6953     }
6954     SmallVector<EVT, 2> ValueVTs;
6955     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6956     SDVTList VTs = DAG.getVTList(ValueVTs);
6957     setValue(
6958         &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
6959     return;
6960   }
6961   case Intrinsic::arithmetic_fence: {
6962     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6963                              getValue(I.getArgOperand(0)).getValueType(),
6964                              getValue(I.getArgOperand(0)), Flags));
6965     return;
6966   }
6967   case Intrinsic::fma:
6968     setValue(&I, DAG.getNode(
6969                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6970                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6971                      getValue(I.getArgOperand(2)), Flags));
6972     return;
6973 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6974   case Intrinsic::INTRINSIC:
6975 #include "llvm/IR/ConstrainedOps.def"
6976     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6977     return;
6978 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6979 #include "llvm/IR/VPIntrinsics.def"
6980     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6981     return;
6982   case Intrinsic::fptrunc_round: {
6983     // Get the last argument, the metadata and convert it to an integer in the
6984     // call
6985     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6986     std::optional<RoundingMode> RoundMode =
6987         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6988 
6989     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6990 
6991     // Propagate fast-math-flags from IR to node(s).
6992     SDNodeFlags Flags;
6993     Flags.copyFMF(*cast<FPMathOperator>(&I));
6994     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6995 
6996     SDValue Result;
6997     Result = DAG.getNode(
6998         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6999         DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7000     setValue(&I, Result);
7001 
7002     return;
7003   }
7004   case Intrinsic::fmuladd: {
7005     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7006     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7007         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7008       setValue(&I, DAG.getNode(ISD::FMA, sdl,
7009                                getValue(I.getArgOperand(0)).getValueType(),
7010                                getValue(I.getArgOperand(0)),
7011                                getValue(I.getArgOperand(1)),
7012                                getValue(I.getArgOperand(2)), Flags));
7013     } else {
7014       // TODO: Intrinsic calls should have fast-math-flags.
7015       SDValue Mul = DAG.getNode(
7016           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7017           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7018       SDValue Add = DAG.getNode(ISD::FADD, sdl,
7019                                 getValue(I.getArgOperand(0)).getValueType(),
7020                                 Mul, getValue(I.getArgOperand(2)), Flags);
7021       setValue(&I, Add);
7022     }
7023     return;
7024   }
7025   case Intrinsic::convert_to_fp16:
7026     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7027                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7028                                          getValue(I.getArgOperand(0)),
7029                                          DAG.getTargetConstant(0, sdl,
7030                                                                MVT::i32))));
7031     return;
7032   case Intrinsic::convert_from_fp16:
7033     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7034                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
7035                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7036                                          getValue(I.getArgOperand(0)))));
7037     return;
7038   case Intrinsic::fptosi_sat: {
7039     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7040     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7041                              getValue(I.getArgOperand(0)),
7042                              DAG.getValueType(VT.getScalarType())));
7043     return;
7044   }
7045   case Intrinsic::fptoui_sat: {
7046     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7047     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7048                              getValue(I.getArgOperand(0)),
7049                              DAG.getValueType(VT.getScalarType())));
7050     return;
7051   }
7052   case Intrinsic::set_rounding:
7053     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7054                       {getRoot(), getValue(I.getArgOperand(0))});
7055     setValue(&I, Res);
7056     DAG.setRoot(Res.getValue(0));
7057     return;
7058   case Intrinsic::is_fpclass: {
7059     const DataLayout DLayout = DAG.getDataLayout();
7060     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7061     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7062     FPClassTest Test = static_cast<FPClassTest>(
7063         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7064     MachineFunction &MF = DAG.getMachineFunction();
7065     const Function &F = MF.getFunction();
7066     SDValue Op = getValue(I.getArgOperand(0));
7067     SDNodeFlags Flags;
7068     Flags.setNoFPExcept(
7069         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7070     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7071     // expansion can use illegal types. Making expansion early allows
7072     // legalizing these types prior to selection.
7073     if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7074         !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7075       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7076       setValue(&I, Result);
7077       return;
7078     }
7079 
7080     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7081     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7082     setValue(&I, V);
7083     return;
7084   }
7085   case Intrinsic::get_fpenv: {
7086     const DataLayout DLayout = DAG.getDataLayout();
7087     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7088     Align TempAlign = DAG.getEVTAlign(EnvVT);
7089     SDValue Chain = getRoot();
7090     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7091     // and temporary storage in stack.
7092     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7093       Res = DAG.getNode(
7094           ISD::GET_FPENV, sdl,
7095           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7096                         MVT::Other),
7097           Chain);
7098     } else {
7099       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7100       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7101       auto MPI =
7102           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7103       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7104           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7105           TempAlign);
7106       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7107       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7108     }
7109     setValue(&I, Res);
7110     DAG.setRoot(Res.getValue(1));
7111     return;
7112   }
7113   case Intrinsic::set_fpenv: {
7114     const DataLayout DLayout = DAG.getDataLayout();
7115     SDValue Env = getValue(I.getArgOperand(0));
7116     EVT EnvVT = Env.getValueType();
7117     Align TempAlign = DAG.getEVTAlign(EnvVT);
7118     SDValue Chain = getRoot();
7119     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7120     // environment from memory.
7121     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7122       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7123     } else {
7124       // Allocate space in stack, copy environment bits into it and use this
7125       // memory in SET_FPENV_MEM.
7126       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7127       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7128       auto MPI =
7129           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7130       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7131                            MachineMemOperand::MOStore);
7132       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7133           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7134           TempAlign);
7135       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7136     }
7137     DAG.setRoot(Chain);
7138     return;
7139   }
7140   case Intrinsic::reset_fpenv:
7141     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7142     return;
7143   case Intrinsic::get_fpmode:
7144     Res = DAG.getNode(
7145         ISD::GET_FPMODE, sdl,
7146         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7147                       MVT::Other),
7148         DAG.getRoot());
7149     setValue(&I, Res);
7150     DAG.setRoot(Res.getValue(1));
7151     return;
7152   case Intrinsic::set_fpmode:
7153     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7154                       getValue(I.getArgOperand(0)));
7155     DAG.setRoot(Res);
7156     return;
7157   case Intrinsic::reset_fpmode: {
7158     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7159     DAG.setRoot(Res);
7160     return;
7161   }
7162   case Intrinsic::pcmarker: {
7163     SDValue Tmp = getValue(I.getArgOperand(0));
7164     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7165     return;
7166   }
7167   case Intrinsic::readcyclecounter: {
7168     SDValue Op = getRoot();
7169     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7170                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7171     setValue(&I, Res);
7172     DAG.setRoot(Res.getValue(1));
7173     return;
7174   }
7175   case Intrinsic::readsteadycounter: {
7176     SDValue Op = getRoot();
7177     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7178                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7179     setValue(&I, Res);
7180     DAG.setRoot(Res.getValue(1));
7181     return;
7182   }
7183   case Intrinsic::bitreverse:
7184     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7185                              getValue(I.getArgOperand(0)).getValueType(),
7186                              getValue(I.getArgOperand(0))));
7187     return;
7188   case Intrinsic::bswap:
7189     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7190                              getValue(I.getArgOperand(0)).getValueType(),
7191                              getValue(I.getArgOperand(0))));
7192     return;
7193   case Intrinsic::cttz: {
7194     SDValue Arg = getValue(I.getArgOperand(0));
7195     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7196     EVT Ty = Arg.getValueType();
7197     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7198                              sdl, Ty, Arg));
7199     return;
7200   }
7201   case Intrinsic::ctlz: {
7202     SDValue Arg = getValue(I.getArgOperand(0));
7203     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7204     EVT Ty = Arg.getValueType();
7205     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7206                              sdl, Ty, Arg));
7207     return;
7208   }
7209   case Intrinsic::ctpop: {
7210     SDValue Arg = getValue(I.getArgOperand(0));
7211     EVT Ty = Arg.getValueType();
7212     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7213     return;
7214   }
7215   case Intrinsic::fshl:
7216   case Intrinsic::fshr: {
7217     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7218     SDValue X = getValue(I.getArgOperand(0));
7219     SDValue Y = getValue(I.getArgOperand(1));
7220     SDValue Z = getValue(I.getArgOperand(2));
7221     EVT VT = X.getValueType();
7222 
7223     if (X == Y) {
7224       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7225       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7226     } else {
7227       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7228       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7229     }
7230     return;
7231   }
7232   case Intrinsic::sadd_sat: {
7233     SDValue Op1 = getValue(I.getArgOperand(0));
7234     SDValue Op2 = getValue(I.getArgOperand(1));
7235     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7236     return;
7237   }
7238   case Intrinsic::uadd_sat: {
7239     SDValue Op1 = getValue(I.getArgOperand(0));
7240     SDValue Op2 = getValue(I.getArgOperand(1));
7241     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7242     return;
7243   }
7244   case Intrinsic::ssub_sat: {
7245     SDValue Op1 = getValue(I.getArgOperand(0));
7246     SDValue Op2 = getValue(I.getArgOperand(1));
7247     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7248     return;
7249   }
7250   case Intrinsic::usub_sat: {
7251     SDValue Op1 = getValue(I.getArgOperand(0));
7252     SDValue Op2 = getValue(I.getArgOperand(1));
7253     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7254     return;
7255   }
7256   case Intrinsic::sshl_sat: {
7257     SDValue Op1 = getValue(I.getArgOperand(0));
7258     SDValue Op2 = getValue(I.getArgOperand(1));
7259     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7260     return;
7261   }
7262   case Intrinsic::ushl_sat: {
7263     SDValue Op1 = getValue(I.getArgOperand(0));
7264     SDValue Op2 = getValue(I.getArgOperand(1));
7265     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7266     return;
7267   }
7268   case Intrinsic::smul_fix:
7269   case Intrinsic::umul_fix:
7270   case Intrinsic::smul_fix_sat:
7271   case Intrinsic::umul_fix_sat: {
7272     SDValue Op1 = getValue(I.getArgOperand(0));
7273     SDValue Op2 = getValue(I.getArgOperand(1));
7274     SDValue Op3 = getValue(I.getArgOperand(2));
7275     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7276                              Op1.getValueType(), Op1, Op2, Op3));
7277     return;
7278   }
7279   case Intrinsic::sdiv_fix:
7280   case Intrinsic::udiv_fix:
7281   case Intrinsic::sdiv_fix_sat:
7282   case Intrinsic::udiv_fix_sat: {
7283     SDValue Op1 = getValue(I.getArgOperand(0));
7284     SDValue Op2 = getValue(I.getArgOperand(1));
7285     SDValue Op3 = getValue(I.getArgOperand(2));
7286     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7287                               Op1, Op2, Op3, DAG, TLI));
7288     return;
7289   }
7290   case Intrinsic::smax: {
7291     SDValue Op1 = getValue(I.getArgOperand(0));
7292     SDValue Op2 = getValue(I.getArgOperand(1));
7293     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7294     return;
7295   }
7296   case Intrinsic::smin: {
7297     SDValue Op1 = getValue(I.getArgOperand(0));
7298     SDValue Op2 = getValue(I.getArgOperand(1));
7299     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7300     return;
7301   }
7302   case Intrinsic::umax: {
7303     SDValue Op1 = getValue(I.getArgOperand(0));
7304     SDValue Op2 = getValue(I.getArgOperand(1));
7305     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7306     return;
7307   }
7308   case Intrinsic::umin: {
7309     SDValue Op1 = getValue(I.getArgOperand(0));
7310     SDValue Op2 = getValue(I.getArgOperand(1));
7311     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7312     return;
7313   }
7314   case Intrinsic::abs: {
7315     // TODO: Preserve "int min is poison" arg in SDAG?
7316     SDValue Op1 = getValue(I.getArgOperand(0));
7317     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7318     return;
7319   }
7320   case Intrinsic::scmp: {
7321     SDValue Op1 = getValue(I.getArgOperand(0));
7322     SDValue Op2 = getValue(I.getArgOperand(1));
7323     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7324     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7325     break;
7326   }
7327   case Intrinsic::ucmp: {
7328     SDValue Op1 = getValue(I.getArgOperand(0));
7329     SDValue Op2 = getValue(I.getArgOperand(1));
7330     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7331     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7332     break;
7333   }
7334   case Intrinsic::stacksave: {
7335     SDValue Op = getRoot();
7336     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7337     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7338     setValue(&I, Res);
7339     DAG.setRoot(Res.getValue(1));
7340     return;
7341   }
7342   case Intrinsic::stackrestore:
7343     Res = getValue(I.getArgOperand(0));
7344     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7345     return;
7346   case Intrinsic::get_dynamic_area_offset: {
7347     SDValue Op = getRoot();
7348     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7349     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7350     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7351     // target.
7352     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7353       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7354                          " intrinsic!");
7355     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7356                       Op);
7357     DAG.setRoot(Op);
7358     setValue(&I, Res);
7359     return;
7360   }
7361   case Intrinsic::stackguard: {
7362     MachineFunction &MF = DAG.getMachineFunction();
7363     const Module &M = *MF.getFunction().getParent();
7364     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7365     SDValue Chain = getRoot();
7366     if (TLI.useLoadStackGuardNode(M)) {
7367       Res = getLoadStackGuard(DAG, sdl, Chain);
7368       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7369     } else {
7370       const Value *Global = TLI.getSDagStackGuard(M);
7371       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7372       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7373                         MachinePointerInfo(Global, 0), Align,
7374                         MachineMemOperand::MOVolatile);
7375     }
7376     if (TLI.useStackGuardXorFP())
7377       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7378     DAG.setRoot(Chain);
7379     setValue(&I, Res);
7380     return;
7381   }
7382   case Intrinsic::stackprotector: {
7383     // Emit code into the DAG to store the stack guard onto the stack.
7384     MachineFunction &MF = DAG.getMachineFunction();
7385     MachineFrameInfo &MFI = MF.getFrameInfo();
7386     const Module &M = *MF.getFunction().getParent();
7387     SDValue Src, Chain = getRoot();
7388 
7389     if (TLI.useLoadStackGuardNode(M))
7390       Src = getLoadStackGuard(DAG, sdl, Chain);
7391     else
7392       Src = getValue(I.getArgOperand(0));   // The guard's value.
7393 
7394     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7395 
7396     int FI = FuncInfo.StaticAllocaMap[Slot];
7397     MFI.setStackProtectorIndex(FI);
7398     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7399 
7400     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7401 
7402     // Store the stack protector onto the stack.
7403     Res = DAG.getStore(
7404         Chain, sdl, Src, FIN,
7405         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7406         MaybeAlign(), MachineMemOperand::MOVolatile);
7407     setValue(&I, Res);
7408     DAG.setRoot(Res);
7409     return;
7410   }
7411   case Intrinsic::objectsize:
7412     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7413 
7414   case Intrinsic::is_constant:
7415     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7416 
7417   case Intrinsic::annotation:
7418   case Intrinsic::ptr_annotation:
7419   case Intrinsic::launder_invariant_group:
7420   case Intrinsic::strip_invariant_group:
7421     // Drop the intrinsic, but forward the value
7422     setValue(&I, getValue(I.getOperand(0)));
7423     return;
7424 
7425   case Intrinsic::assume:
7426   case Intrinsic::experimental_noalias_scope_decl:
7427   case Intrinsic::var_annotation:
7428   case Intrinsic::sideeffect:
7429     // Discard annotate attributes, noalias scope declarations, assumptions, and
7430     // artificial side-effects.
7431     return;
7432 
7433   case Intrinsic::codeview_annotation: {
7434     // Emit a label associated with this metadata.
7435     MachineFunction &MF = DAG.getMachineFunction();
7436     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7437     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7438     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7439     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7440     DAG.setRoot(Res);
7441     return;
7442   }
7443 
7444   case Intrinsic::init_trampoline: {
7445     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7446 
7447     SDValue Ops[6];
7448     Ops[0] = getRoot();
7449     Ops[1] = getValue(I.getArgOperand(0));
7450     Ops[2] = getValue(I.getArgOperand(1));
7451     Ops[3] = getValue(I.getArgOperand(2));
7452     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7453     Ops[5] = DAG.getSrcValue(F);
7454 
7455     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7456 
7457     DAG.setRoot(Res);
7458     return;
7459   }
7460   case Intrinsic::adjust_trampoline:
7461     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7462                              TLI.getPointerTy(DAG.getDataLayout()),
7463                              getValue(I.getArgOperand(0))));
7464     return;
7465   case Intrinsic::gcroot: {
7466     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7467            "only valid in functions with gc specified, enforced by Verifier");
7468     assert(GFI && "implied by previous");
7469     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7470     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7471 
7472     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7473     GFI->addStackRoot(FI->getIndex(), TypeMap);
7474     return;
7475   }
7476   case Intrinsic::gcread:
7477   case Intrinsic::gcwrite:
7478     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7479   case Intrinsic::get_rounding:
7480     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7481     setValue(&I, Res);
7482     DAG.setRoot(Res.getValue(1));
7483     return;
7484 
7485   case Intrinsic::expect:
7486     // Just replace __builtin_expect(exp, c) with EXP.
7487     setValue(&I, getValue(I.getArgOperand(0)));
7488     return;
7489 
7490   case Intrinsic::ubsantrap:
7491   case Intrinsic::debugtrap:
7492   case Intrinsic::trap: {
7493     StringRef TrapFuncName =
7494         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7495     if (TrapFuncName.empty()) {
7496       switch (Intrinsic) {
7497       case Intrinsic::trap:
7498         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7499         break;
7500       case Intrinsic::debugtrap:
7501         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7502         break;
7503       case Intrinsic::ubsantrap:
7504         DAG.setRoot(DAG.getNode(
7505             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7506             DAG.getTargetConstant(
7507                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7508                 MVT::i32)));
7509         break;
7510       default: llvm_unreachable("unknown trap intrinsic");
7511       }
7512       DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7513                              I.hasFnAttr(Attribute::NoMerge));
7514       return;
7515     }
7516     TargetLowering::ArgListTy Args;
7517     if (Intrinsic == Intrinsic::ubsantrap) {
7518       Args.push_back(TargetLoweringBase::ArgListEntry());
7519       Args[0].Val = I.getArgOperand(0);
7520       Args[0].Node = getValue(Args[0].Val);
7521       Args[0].Ty = Args[0].Val->getType();
7522     }
7523 
7524     TargetLowering::CallLoweringInfo CLI(DAG);
7525     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7526         CallingConv::C, I.getType(),
7527         DAG.getExternalSymbol(TrapFuncName.data(),
7528                               TLI.getPointerTy(DAG.getDataLayout())),
7529         std::move(Args));
7530     CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7531     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7532     DAG.setRoot(Result.second);
7533     return;
7534   }
7535 
7536   case Intrinsic::allow_runtime_check:
7537   case Intrinsic::allow_ubsan_check:
7538     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7539     return;
7540 
7541   case Intrinsic::uadd_with_overflow:
7542   case Intrinsic::sadd_with_overflow:
7543   case Intrinsic::usub_with_overflow:
7544   case Intrinsic::ssub_with_overflow:
7545   case Intrinsic::umul_with_overflow:
7546   case Intrinsic::smul_with_overflow: {
7547     ISD::NodeType Op;
7548     switch (Intrinsic) {
7549     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7550     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7551     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7552     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7553     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7554     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7555     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7556     }
7557     SDValue Op1 = getValue(I.getArgOperand(0));
7558     SDValue Op2 = getValue(I.getArgOperand(1));
7559 
7560     EVT ResultVT = Op1.getValueType();
7561     EVT OverflowVT = MVT::i1;
7562     if (ResultVT.isVector())
7563       OverflowVT = EVT::getVectorVT(
7564           *Context, OverflowVT, ResultVT.getVectorElementCount());
7565 
7566     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7567     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7568     return;
7569   }
7570   case Intrinsic::prefetch: {
7571     SDValue Ops[5];
7572     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7573     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7574     Ops[0] = DAG.getRoot();
7575     Ops[1] = getValue(I.getArgOperand(0));
7576     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7577                                    MVT::i32);
7578     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7579                                    MVT::i32);
7580     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7581                                    MVT::i32);
7582     SDValue Result = DAG.getMemIntrinsicNode(
7583         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7584         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7585         /* align */ std::nullopt, Flags);
7586 
7587     // Chain the prefetch in parallel with any pending loads, to stay out of
7588     // the way of later optimizations.
7589     PendingLoads.push_back(Result);
7590     Result = getRoot();
7591     DAG.setRoot(Result);
7592     return;
7593   }
7594   case Intrinsic::lifetime_start:
7595   case Intrinsic::lifetime_end: {
7596     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7597     // Stack coloring is not enabled in O0, discard region information.
7598     if (TM.getOptLevel() == CodeGenOptLevel::None)
7599       return;
7600 
7601     const int64_t ObjectSize =
7602         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7603     Value *const ObjectPtr = I.getArgOperand(1);
7604     SmallVector<const Value *, 4> Allocas;
7605     getUnderlyingObjects(ObjectPtr, Allocas);
7606 
7607     for (const Value *Alloca : Allocas) {
7608       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7609 
7610       // Could not find an Alloca.
7611       if (!LifetimeObject)
7612         continue;
7613 
7614       // First check that the Alloca is static, otherwise it won't have a
7615       // valid frame index.
7616       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7617       if (SI == FuncInfo.StaticAllocaMap.end())
7618         return;
7619 
7620       const int FrameIndex = SI->second;
7621       int64_t Offset;
7622       if (GetPointerBaseWithConstantOffset(
7623               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7624         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7625       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7626                                 Offset);
7627       DAG.setRoot(Res);
7628     }
7629     return;
7630   }
7631   case Intrinsic::pseudoprobe: {
7632     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7633     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7634     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7635     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7636     DAG.setRoot(Res);
7637     return;
7638   }
7639   case Intrinsic::invariant_start:
7640     // Discard region information.
7641     setValue(&I,
7642              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7643     return;
7644   case Intrinsic::invariant_end:
7645     // Discard region information.
7646     return;
7647   case Intrinsic::clear_cache: {
7648     SDValue InputChain = DAG.getRoot();
7649     SDValue StartVal = getValue(I.getArgOperand(0));
7650     SDValue EndVal = getValue(I.getArgOperand(1));
7651     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7652                       {InputChain, StartVal, EndVal});
7653     setValue(&I, Res);
7654     DAG.setRoot(Res);
7655     return;
7656   }
7657   case Intrinsic::donothing:
7658   case Intrinsic::seh_try_begin:
7659   case Intrinsic::seh_scope_begin:
7660   case Intrinsic::seh_try_end:
7661   case Intrinsic::seh_scope_end:
7662     // ignore
7663     return;
7664   case Intrinsic::experimental_stackmap:
7665     visitStackmap(I);
7666     return;
7667   case Intrinsic::experimental_patchpoint_void:
7668   case Intrinsic::experimental_patchpoint:
7669     visitPatchpoint(I);
7670     return;
7671   case Intrinsic::experimental_gc_statepoint:
7672     LowerStatepoint(cast<GCStatepointInst>(I));
7673     return;
7674   case Intrinsic::experimental_gc_result:
7675     visitGCResult(cast<GCResultInst>(I));
7676     return;
7677   case Intrinsic::experimental_gc_relocate:
7678     visitGCRelocate(cast<GCRelocateInst>(I));
7679     return;
7680   case Intrinsic::instrprof_cover:
7681     llvm_unreachable("instrprof failed to lower a cover");
7682   case Intrinsic::instrprof_increment:
7683     llvm_unreachable("instrprof failed to lower an increment");
7684   case Intrinsic::instrprof_timestamp:
7685     llvm_unreachable("instrprof failed to lower a timestamp");
7686   case Intrinsic::instrprof_value_profile:
7687     llvm_unreachable("instrprof failed to lower a value profiling call");
7688   case Intrinsic::instrprof_mcdc_parameters:
7689     llvm_unreachable("instrprof failed to lower mcdc parameters");
7690   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7691     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7692   case Intrinsic::localescape: {
7693     MachineFunction &MF = DAG.getMachineFunction();
7694     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7695 
7696     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7697     // is the same on all targets.
7698     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7699       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7700       if (isa<ConstantPointerNull>(Arg))
7701         continue; // Skip null pointers. They represent a hole in index space.
7702       AllocaInst *Slot = cast<AllocaInst>(Arg);
7703       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7704              "can only escape static allocas");
7705       int FI = FuncInfo.StaticAllocaMap[Slot];
7706       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7707           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7708       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7709               TII->get(TargetOpcode::LOCAL_ESCAPE))
7710           .addSym(FrameAllocSym)
7711           .addFrameIndex(FI);
7712     }
7713 
7714     return;
7715   }
7716 
7717   case Intrinsic::localrecover: {
7718     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7719     MachineFunction &MF = DAG.getMachineFunction();
7720 
7721     // Get the symbol that defines the frame offset.
7722     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7723     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7724     unsigned IdxVal =
7725         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7726     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7727         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7728 
7729     Value *FP = I.getArgOperand(1);
7730     SDValue FPVal = getValue(FP);
7731     EVT PtrVT = FPVal.getValueType();
7732 
7733     // Create a MCSymbol for the label to avoid any target lowering
7734     // that would make this PC relative.
7735     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7736     SDValue OffsetVal =
7737         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7738 
7739     // Add the offset to the FP.
7740     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7741     setValue(&I, Add);
7742 
7743     return;
7744   }
7745 
7746   case Intrinsic::fake_use: {
7747     Value *V = I.getArgOperand(0);
7748     SDValue Ops[2];
7749     // For Values not declared or previously used in this basic block, the
7750     // NodeMap will not have an entry, and `getValue` will assert if V has no
7751     // valid register value.
7752     auto FakeUseValue = [&]() -> SDValue {
7753       SDValue &N = NodeMap[V];
7754       if (N.getNode())
7755         return N;
7756 
7757       // If there's a virtual register allocated and initialized for this
7758       // value, use it.
7759       if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7760         return copyFromReg;
7761       // FIXME: Do we want to preserve constants? It seems pointless.
7762       if (isa<Constant>(V))
7763         return getValue(V);
7764       return SDValue();
7765     }();
7766     if (!FakeUseValue || FakeUseValue.isUndef())
7767       return;
7768     Ops[0] = getRoot();
7769     Ops[1] = FakeUseValue;
7770     // Also, do not translate a fake use with an undef operand, or any other
7771     // empty SDValues.
7772     if (!Ops[1] || Ops[1].isUndef())
7773       return;
7774     DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7775     return;
7776   }
7777 
7778   case Intrinsic::eh_exceptionpointer:
7779   case Intrinsic::eh_exceptioncode: {
7780     // Get the exception pointer vreg, copy from it, and resize it to fit.
7781     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7782     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7783     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7784     Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7785     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7786     if (Intrinsic == Intrinsic::eh_exceptioncode)
7787       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7788     setValue(&I, N);
7789     return;
7790   }
7791   case Intrinsic::xray_customevent: {
7792     // Here we want to make sure that the intrinsic behaves as if it has a
7793     // specific calling convention.
7794     const auto &Triple = DAG.getTarget().getTargetTriple();
7795     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7796       return;
7797 
7798     SmallVector<SDValue, 8> Ops;
7799 
7800     // We want to say that we always want the arguments in registers.
7801     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7802     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7803     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7804     SDValue Chain = getRoot();
7805     Ops.push_back(LogEntryVal);
7806     Ops.push_back(StrSizeVal);
7807     Ops.push_back(Chain);
7808 
7809     // We need to enforce the calling convention for the callsite, so that
7810     // argument ordering is enforced correctly, and that register allocation can
7811     // see that some registers may be assumed clobbered and have to preserve
7812     // them across calls to the intrinsic.
7813     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7814                                            sdl, NodeTys, Ops);
7815     SDValue patchableNode = SDValue(MN, 0);
7816     DAG.setRoot(patchableNode);
7817     setValue(&I, patchableNode);
7818     return;
7819   }
7820   case Intrinsic::xray_typedevent: {
7821     // Here we want to make sure that the intrinsic behaves as if it has a
7822     // specific calling convention.
7823     const auto &Triple = DAG.getTarget().getTargetTriple();
7824     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7825       return;
7826 
7827     SmallVector<SDValue, 8> Ops;
7828 
7829     // We want to say that we always want the arguments in registers.
7830     // It's unclear to me how manipulating the selection DAG here forces callers
7831     // to provide arguments in registers instead of on the stack.
7832     SDValue LogTypeId = getValue(I.getArgOperand(0));
7833     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7834     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7835     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7836     SDValue Chain = getRoot();
7837     Ops.push_back(LogTypeId);
7838     Ops.push_back(LogEntryVal);
7839     Ops.push_back(StrSizeVal);
7840     Ops.push_back(Chain);
7841 
7842     // We need to enforce the calling convention for the callsite, so that
7843     // argument ordering is enforced correctly, and that register allocation can
7844     // see that some registers may be assumed clobbered and have to preserve
7845     // them across calls to the intrinsic.
7846     MachineSDNode *MN = DAG.getMachineNode(
7847         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7848     SDValue patchableNode = SDValue(MN, 0);
7849     DAG.setRoot(patchableNode);
7850     setValue(&I, patchableNode);
7851     return;
7852   }
7853   case Intrinsic::experimental_deoptimize:
7854     LowerDeoptimizeCall(&I);
7855     return;
7856   case Intrinsic::stepvector:
7857     visitStepVector(I);
7858     return;
7859   case Intrinsic::vector_reduce_fadd:
7860   case Intrinsic::vector_reduce_fmul:
7861   case Intrinsic::vector_reduce_add:
7862   case Intrinsic::vector_reduce_mul:
7863   case Intrinsic::vector_reduce_and:
7864   case Intrinsic::vector_reduce_or:
7865   case Intrinsic::vector_reduce_xor:
7866   case Intrinsic::vector_reduce_smax:
7867   case Intrinsic::vector_reduce_smin:
7868   case Intrinsic::vector_reduce_umax:
7869   case Intrinsic::vector_reduce_umin:
7870   case Intrinsic::vector_reduce_fmax:
7871   case Intrinsic::vector_reduce_fmin:
7872   case Intrinsic::vector_reduce_fmaximum:
7873   case Intrinsic::vector_reduce_fminimum:
7874     visitVectorReduce(I, Intrinsic);
7875     return;
7876 
7877   case Intrinsic::icall_branch_funnel: {
7878     SmallVector<SDValue, 16> Ops;
7879     Ops.push_back(getValue(I.getArgOperand(0)));
7880 
7881     int64_t Offset;
7882     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7883         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7884     if (!Base)
7885       report_fatal_error(
7886           "llvm.icall.branch.funnel operand must be a GlobalValue");
7887     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7888 
7889     struct BranchFunnelTarget {
7890       int64_t Offset;
7891       SDValue Target;
7892     };
7893     SmallVector<BranchFunnelTarget, 8> Targets;
7894 
7895     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7896       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7897           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7898       if (ElemBase != Base)
7899         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7900                            "to the same GlobalValue");
7901 
7902       SDValue Val = getValue(I.getArgOperand(Op + 1));
7903       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7904       if (!GA)
7905         report_fatal_error(
7906             "llvm.icall.branch.funnel operand must be a GlobalValue");
7907       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7908                                      GA->getGlobal(), sdl, Val.getValueType(),
7909                                      GA->getOffset())});
7910     }
7911     llvm::sort(Targets,
7912                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7913                  return T1.Offset < T2.Offset;
7914                });
7915 
7916     for (auto &T : Targets) {
7917       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7918       Ops.push_back(T.Target);
7919     }
7920 
7921     Ops.push_back(DAG.getRoot()); // Chain
7922     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7923                                  MVT::Other, Ops),
7924               0);
7925     DAG.setRoot(N);
7926     setValue(&I, N);
7927     HasTailCall = true;
7928     return;
7929   }
7930 
7931   case Intrinsic::wasm_landingpad_index:
7932     // Information this intrinsic contained has been transferred to
7933     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7934     // delete it now.
7935     return;
7936 
7937   case Intrinsic::aarch64_settag:
7938   case Intrinsic::aarch64_settag_zero: {
7939     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7940     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7941     SDValue Val = TSI.EmitTargetCodeForSetTag(
7942         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7943         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7944         ZeroMemory);
7945     DAG.setRoot(Val);
7946     setValue(&I, Val);
7947     return;
7948   }
7949   case Intrinsic::amdgcn_cs_chain: {
7950     assert(I.arg_size() == 5 && "Additional args not supported yet");
7951     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7952            "Non-zero flags not supported yet");
7953 
7954     // At this point we don't care if it's amdgpu_cs_chain or
7955     // amdgpu_cs_chain_preserve.
7956     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7957 
7958     Type *RetTy = I.getType();
7959     assert(RetTy->isVoidTy() && "Should not return");
7960 
7961     SDValue Callee = getValue(I.getOperand(0));
7962 
7963     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7964     // We'll also tack the value of the EXEC mask at the end.
7965     TargetLowering::ArgListTy Args;
7966     Args.reserve(3);
7967 
7968     for (unsigned Idx : {2, 3, 1}) {
7969       TargetLowering::ArgListEntry Arg;
7970       Arg.Node = getValue(I.getOperand(Idx));
7971       Arg.Ty = I.getOperand(Idx)->getType();
7972       Arg.setAttributes(&I, Idx);
7973       Args.push_back(Arg);
7974     }
7975 
7976     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7977     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7978     Args[2].IsInReg = true; // EXEC should be inreg
7979 
7980     TargetLowering::CallLoweringInfo CLI(DAG);
7981     CLI.setDebugLoc(getCurSDLoc())
7982         .setChain(getRoot())
7983         .setCallee(CC, RetTy, Callee, std::move(Args))
7984         .setNoReturn(true)
7985         .setTailCall(true)
7986         .setConvergent(I.isConvergent());
7987     CLI.CB = &I;
7988     std::pair<SDValue, SDValue> Result =
7989         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7990     (void)Result;
7991     assert(!Result.first.getNode() && !Result.second.getNode() &&
7992            "Should've lowered as tail call");
7993 
7994     HasTailCall = true;
7995     return;
7996   }
7997   case Intrinsic::ptrmask: {
7998     SDValue Ptr = getValue(I.getOperand(0));
7999     SDValue Mask = getValue(I.getOperand(1));
8000 
8001     // On arm64_32, pointers are 32 bits when stored in memory, but
8002     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
8003     // match the index type, but the pointer is 64 bits, so the the mask must be
8004     // zero-extended up to 64 bits to match the pointer.
8005     EVT PtrVT =
8006         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8007     EVT MemVT =
8008         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8009     assert(PtrVT == Ptr.getValueType());
8010     assert(MemVT == Mask.getValueType());
8011     if (MemVT != PtrVT)
8012       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8013 
8014     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8015     return;
8016   }
8017   case Intrinsic::threadlocal_address: {
8018     setValue(&I, getValue(I.getOperand(0)));
8019     return;
8020   }
8021   case Intrinsic::get_active_lane_mask: {
8022     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8023     SDValue Index = getValue(I.getOperand(0));
8024     EVT ElementVT = Index.getValueType();
8025 
8026     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8027       visitTargetIntrinsic(I, Intrinsic);
8028       return;
8029     }
8030 
8031     SDValue TripCount = getValue(I.getOperand(1));
8032     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8033                                  CCVT.getVectorElementCount());
8034 
8035     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8036     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8037     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8038     SDValue VectorInduction = DAG.getNode(
8039         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8040     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8041                                  VectorTripCount, ISD::CondCode::SETULT);
8042     setValue(&I, SetCC);
8043     return;
8044   }
8045   case Intrinsic::experimental_get_vector_length: {
8046     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8047            "Expected positive VF");
8048     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8049     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8050 
8051     SDValue Count = getValue(I.getOperand(0));
8052     EVT CountVT = Count.getValueType();
8053 
8054     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8055       visitTargetIntrinsic(I, Intrinsic);
8056       return;
8057     }
8058 
8059     // Expand to a umin between the trip count and the maximum elements the type
8060     // can hold.
8061     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8062 
8063     // Extend the trip count to at least the result VT.
8064     if (CountVT.bitsLT(VT)) {
8065       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8066       CountVT = VT;
8067     }
8068 
8069     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8070                                          ElementCount::get(VF, IsScalable));
8071 
8072     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8073     // Clip to the result type if needed.
8074     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8075 
8076     setValue(&I, Trunc);
8077     return;
8078   }
8079   case Intrinsic::experimental_vector_partial_reduce_add: {
8080 
8081     if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) {
8082       visitTargetIntrinsic(I, Intrinsic);
8083       return;
8084     }
8085 
8086     setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()),
8087                                          getValue(I.getOperand(0)),
8088                                          getValue(I.getOperand(1))));
8089     return;
8090   }
8091   case Intrinsic::experimental_cttz_elts: {
8092     auto DL = getCurSDLoc();
8093     SDValue Op = getValue(I.getOperand(0));
8094     EVT OpVT = Op.getValueType();
8095 
8096     if (!TLI.shouldExpandCttzElements(OpVT)) {
8097       visitTargetIntrinsic(I, Intrinsic);
8098       return;
8099     }
8100 
8101     if (OpVT.getScalarType() != MVT::i1) {
8102       // Compare the input vector elements to zero & use to count trailing zeros
8103       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8104       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8105                               OpVT.getVectorElementCount());
8106       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8107     }
8108 
8109     // If the zero-is-poison flag is set, we can assume the upper limit
8110     // of the result is VF-1.
8111     bool ZeroIsPoison =
8112         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8113     ConstantRange VScaleRange(1, true); // Dummy value.
8114     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8115       VScaleRange = getVScaleRange(I.getCaller(), 64);
8116     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8117         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8118 
8119     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8120 
8121     // Create the new vector type & get the vector length
8122     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8123                                  OpVT.getVectorElementCount());
8124 
8125     SDValue VL =
8126         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8127 
8128     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8129     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8130     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8131     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8132     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8133     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8134     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8135 
8136     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8137     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8138 
8139     setValue(&I, Ret);
8140     return;
8141   }
8142   case Intrinsic::vector_insert: {
8143     SDValue Vec = getValue(I.getOperand(0));
8144     SDValue SubVec = getValue(I.getOperand(1));
8145     SDValue Index = getValue(I.getOperand(2));
8146 
8147     // The intrinsic's index type is i64, but the SDNode requires an index type
8148     // suitable for the target. Convert the index as required.
8149     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8150     if (Index.getValueType() != VectorIdxTy)
8151       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8152 
8153     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8154     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8155                              Index));
8156     return;
8157   }
8158   case Intrinsic::vector_extract: {
8159     SDValue Vec = getValue(I.getOperand(0));
8160     SDValue Index = getValue(I.getOperand(1));
8161     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8162 
8163     // The intrinsic's index type is i64, but the SDNode requires an index type
8164     // suitable for the target. Convert the index as required.
8165     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8166     if (Index.getValueType() != VectorIdxTy)
8167       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8168 
8169     setValue(&I,
8170              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8171     return;
8172   }
8173   case Intrinsic::vector_reverse:
8174     visitVectorReverse(I);
8175     return;
8176   case Intrinsic::vector_splice:
8177     visitVectorSplice(I);
8178     return;
8179   case Intrinsic::callbr_landingpad:
8180     visitCallBrLandingPad(I);
8181     return;
8182   case Intrinsic::vector_interleave2:
8183     visitVectorInterleave(I);
8184     return;
8185   case Intrinsic::vector_deinterleave2:
8186     visitVectorDeinterleave(I);
8187     return;
8188   case Intrinsic::experimental_vector_compress:
8189     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8190                              getValue(I.getArgOperand(0)).getValueType(),
8191                              getValue(I.getArgOperand(0)),
8192                              getValue(I.getArgOperand(1)),
8193                              getValue(I.getArgOperand(2)), Flags));
8194     return;
8195   case Intrinsic::experimental_convergence_anchor:
8196   case Intrinsic::experimental_convergence_entry:
8197   case Intrinsic::experimental_convergence_loop:
8198     visitConvergenceControl(I, Intrinsic);
8199     return;
8200   case Intrinsic::experimental_vector_histogram_add: {
8201     visitVectorHistogram(I, Intrinsic);
8202     return;
8203   }
8204   }
8205 }
8206 
8207 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8208     const ConstrainedFPIntrinsic &FPI) {
8209   SDLoc sdl = getCurSDLoc();
8210 
8211   // We do not need to serialize constrained FP intrinsics against
8212   // each other or against (nonvolatile) loads, so they can be
8213   // chained like loads.
8214   SDValue Chain = DAG.getRoot();
8215   SmallVector<SDValue, 4> Opers;
8216   Opers.push_back(Chain);
8217   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8218     Opers.push_back(getValue(FPI.getArgOperand(I)));
8219 
8220   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8221     assert(Result.getNode()->getNumValues() == 2);
8222 
8223     // Push node to the appropriate list so that future instructions can be
8224     // chained up correctly.
8225     SDValue OutChain = Result.getValue(1);
8226     switch (EB) {
8227     case fp::ExceptionBehavior::ebIgnore:
8228       // The only reason why ebIgnore nodes still need to be chained is that
8229       // they might depend on the current rounding mode, and therefore must
8230       // not be moved across instruction that may change that mode.
8231       [[fallthrough]];
8232     case fp::ExceptionBehavior::ebMayTrap:
8233       // These must not be moved across calls or instructions that may change
8234       // floating-point exception masks.
8235       PendingConstrainedFP.push_back(OutChain);
8236       break;
8237     case fp::ExceptionBehavior::ebStrict:
8238       // These must not be moved across calls or instructions that may change
8239       // floating-point exception masks or read floating-point exception flags.
8240       // In addition, they cannot be optimized out even if unused.
8241       PendingConstrainedFPStrict.push_back(OutChain);
8242       break;
8243     }
8244   };
8245 
8246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8247   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8248   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8249   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8250 
8251   SDNodeFlags Flags;
8252   if (EB == fp::ExceptionBehavior::ebIgnore)
8253     Flags.setNoFPExcept(true);
8254 
8255   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8256     Flags.copyFMF(*FPOp);
8257 
8258   unsigned Opcode;
8259   switch (FPI.getIntrinsicID()) {
8260   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8261 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8262   case Intrinsic::INTRINSIC:                                                   \
8263     Opcode = ISD::STRICT_##DAGN;                                               \
8264     break;
8265 #include "llvm/IR/ConstrainedOps.def"
8266   case Intrinsic::experimental_constrained_fmuladd: {
8267     Opcode = ISD::STRICT_FMA;
8268     // Break fmuladd into fmul and fadd.
8269     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8270         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8271       Opers.pop_back();
8272       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8273       pushOutChain(Mul, EB);
8274       Opcode = ISD::STRICT_FADD;
8275       Opers.clear();
8276       Opers.push_back(Mul.getValue(1));
8277       Opers.push_back(Mul.getValue(0));
8278       Opers.push_back(getValue(FPI.getArgOperand(2)));
8279     }
8280     break;
8281   }
8282   }
8283 
8284   // A few strict DAG nodes carry additional operands that are not
8285   // set up by the default code above.
8286   switch (Opcode) {
8287   default: break;
8288   case ISD::STRICT_FP_ROUND:
8289     Opers.push_back(
8290         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8291     break;
8292   case ISD::STRICT_FSETCC:
8293   case ISD::STRICT_FSETCCS: {
8294     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8295     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8296     if (TM.Options.NoNaNsFPMath)
8297       Condition = getFCmpCodeWithoutNaN(Condition);
8298     Opers.push_back(DAG.getCondCode(Condition));
8299     break;
8300   }
8301   }
8302 
8303   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8304   pushOutChain(Result, EB);
8305 
8306   SDValue FPResult = Result.getValue(0);
8307   setValue(&FPI, FPResult);
8308 }
8309 
8310 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8311   std::optional<unsigned> ResOPC;
8312   switch (VPIntrin.getIntrinsicID()) {
8313   case Intrinsic::vp_ctlz: {
8314     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8315     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8316     break;
8317   }
8318   case Intrinsic::vp_cttz: {
8319     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8320     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8321     break;
8322   }
8323   case Intrinsic::vp_cttz_elts: {
8324     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8325     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8326     break;
8327   }
8328 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8329   case Intrinsic::VPID:                                                        \
8330     ResOPC = ISD::VPSD;                                                        \
8331     break;
8332 #include "llvm/IR/VPIntrinsics.def"
8333   }
8334 
8335   if (!ResOPC)
8336     llvm_unreachable(
8337         "Inconsistency: no SDNode available for this VPIntrinsic!");
8338 
8339   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8340       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8341     if (VPIntrin.getFastMathFlags().allowReassoc())
8342       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8343                                                 : ISD::VP_REDUCE_FMUL;
8344   }
8345 
8346   return *ResOPC;
8347 }
8348 
8349 void SelectionDAGBuilder::visitVPLoad(
8350     const VPIntrinsic &VPIntrin, EVT VT,
8351     const SmallVectorImpl<SDValue> &OpValues) {
8352   SDLoc DL = getCurSDLoc();
8353   Value *PtrOperand = VPIntrin.getArgOperand(0);
8354   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8355   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8356   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8357   SDValue LD;
8358   // Do not serialize variable-length loads of constant memory with
8359   // anything.
8360   if (!Alignment)
8361     Alignment = DAG.getEVTAlign(VT);
8362   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8363   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8364   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8365   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8366       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8367       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8368   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8369                      MMO, false /*IsExpanding */);
8370   if (AddToChain)
8371     PendingLoads.push_back(LD.getValue(1));
8372   setValue(&VPIntrin, LD);
8373 }
8374 
8375 void SelectionDAGBuilder::visitVPGather(
8376     const VPIntrinsic &VPIntrin, EVT VT,
8377     const SmallVectorImpl<SDValue> &OpValues) {
8378   SDLoc DL = getCurSDLoc();
8379   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8380   Value *PtrOperand = VPIntrin.getArgOperand(0);
8381   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8382   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8383   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8384   SDValue LD;
8385   if (!Alignment)
8386     Alignment = DAG.getEVTAlign(VT.getScalarType());
8387   unsigned AS =
8388     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8389   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8390       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8391       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8392   SDValue Base, Index, Scale;
8393   ISD::MemIndexType IndexType;
8394   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8395                                     this, VPIntrin.getParent(),
8396                                     VT.getScalarStoreSize());
8397   if (!UniformBase) {
8398     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8399     Index = getValue(PtrOperand);
8400     IndexType = ISD::SIGNED_SCALED;
8401     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8402   }
8403   EVT IdxVT = Index.getValueType();
8404   EVT EltTy = IdxVT.getVectorElementType();
8405   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8406     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8407     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8408   }
8409   LD = DAG.getGatherVP(
8410       DAG.getVTList(VT, MVT::Other), VT, DL,
8411       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8412       IndexType);
8413   PendingLoads.push_back(LD.getValue(1));
8414   setValue(&VPIntrin, LD);
8415 }
8416 
8417 void SelectionDAGBuilder::visitVPStore(
8418     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8419   SDLoc DL = getCurSDLoc();
8420   Value *PtrOperand = VPIntrin.getArgOperand(1);
8421   EVT VT = OpValues[0].getValueType();
8422   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8423   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8424   SDValue ST;
8425   if (!Alignment)
8426     Alignment = DAG.getEVTAlign(VT);
8427   SDValue Ptr = OpValues[1];
8428   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8429   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8430       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8431       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8432   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8433                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8434                       /* IsTruncating */ false, /*IsCompressing*/ false);
8435   DAG.setRoot(ST);
8436   setValue(&VPIntrin, ST);
8437 }
8438 
8439 void SelectionDAGBuilder::visitVPScatter(
8440     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8441   SDLoc DL = getCurSDLoc();
8442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8443   Value *PtrOperand = VPIntrin.getArgOperand(1);
8444   EVT VT = OpValues[0].getValueType();
8445   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8446   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8447   SDValue ST;
8448   if (!Alignment)
8449     Alignment = DAG.getEVTAlign(VT.getScalarType());
8450   unsigned AS =
8451       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8452   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8453       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8454       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8455   SDValue Base, Index, Scale;
8456   ISD::MemIndexType IndexType;
8457   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8458                                     this, VPIntrin.getParent(),
8459                                     VT.getScalarStoreSize());
8460   if (!UniformBase) {
8461     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8462     Index = getValue(PtrOperand);
8463     IndexType = ISD::SIGNED_SCALED;
8464     Scale =
8465       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8466   }
8467   EVT IdxVT = Index.getValueType();
8468   EVT EltTy = IdxVT.getVectorElementType();
8469   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8470     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8471     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8472   }
8473   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8474                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8475                          OpValues[2], OpValues[3]},
8476                         MMO, IndexType);
8477   DAG.setRoot(ST);
8478   setValue(&VPIntrin, ST);
8479 }
8480 
8481 void SelectionDAGBuilder::visitVPStridedLoad(
8482     const VPIntrinsic &VPIntrin, EVT VT,
8483     const SmallVectorImpl<SDValue> &OpValues) {
8484   SDLoc DL = getCurSDLoc();
8485   Value *PtrOperand = VPIntrin.getArgOperand(0);
8486   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8487   if (!Alignment)
8488     Alignment = DAG.getEVTAlign(VT.getScalarType());
8489   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8490   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8491   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8492   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8493   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8494   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8495   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8496       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8497       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8498 
8499   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8500                                     OpValues[2], OpValues[3], MMO,
8501                                     false /*IsExpanding*/);
8502 
8503   if (AddToChain)
8504     PendingLoads.push_back(LD.getValue(1));
8505   setValue(&VPIntrin, LD);
8506 }
8507 
8508 void SelectionDAGBuilder::visitVPStridedStore(
8509     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8510   SDLoc DL = getCurSDLoc();
8511   Value *PtrOperand = VPIntrin.getArgOperand(1);
8512   EVT VT = OpValues[0].getValueType();
8513   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8514   if (!Alignment)
8515     Alignment = DAG.getEVTAlign(VT.getScalarType());
8516   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8517   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8518   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8519       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8520       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8521 
8522   SDValue ST = DAG.getStridedStoreVP(
8523       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8524       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8525       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8526       /*IsCompressing*/ false);
8527 
8528   DAG.setRoot(ST);
8529   setValue(&VPIntrin, ST);
8530 }
8531 
8532 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8534   SDLoc DL = getCurSDLoc();
8535 
8536   ISD::CondCode Condition;
8537   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8538   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8539   if (IsFP) {
8540     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8541     // flags, but calls that don't return floating-point types can't be
8542     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8543     Condition = getFCmpCondCode(CondCode);
8544     if (TM.Options.NoNaNsFPMath)
8545       Condition = getFCmpCodeWithoutNaN(Condition);
8546   } else {
8547     Condition = getICmpCondCode(CondCode);
8548   }
8549 
8550   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8551   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8552   // #2 is the condition code
8553   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8554   SDValue EVL = getValue(VPIntrin.getOperand(4));
8555   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8556   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8557          "Unexpected target EVL type");
8558   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8559 
8560   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8561                                                         VPIntrin.getType());
8562   setValue(&VPIntrin,
8563            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8564 }
8565 
8566 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8567     const VPIntrinsic &VPIntrin) {
8568   SDLoc DL = getCurSDLoc();
8569   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8570 
8571   auto IID = VPIntrin.getIntrinsicID();
8572 
8573   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8574     return visitVPCmp(*CmpI);
8575 
8576   SmallVector<EVT, 4> ValueVTs;
8577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8578   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8579   SDVTList VTs = DAG.getVTList(ValueVTs);
8580 
8581   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8582 
8583   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8584   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8585          "Unexpected target EVL type");
8586 
8587   // Request operands.
8588   SmallVector<SDValue, 7> OpValues;
8589   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8590     auto Op = getValue(VPIntrin.getArgOperand(I));
8591     if (I == EVLParamPos)
8592       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8593     OpValues.push_back(Op);
8594   }
8595 
8596   switch (Opcode) {
8597   default: {
8598     SDNodeFlags SDFlags;
8599     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8600       SDFlags.copyFMF(*FPMO);
8601     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8602     setValue(&VPIntrin, Result);
8603     break;
8604   }
8605   case ISD::VP_LOAD:
8606     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8607     break;
8608   case ISD::VP_GATHER:
8609     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8610     break;
8611   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8612     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8613     break;
8614   case ISD::VP_STORE:
8615     visitVPStore(VPIntrin, OpValues);
8616     break;
8617   case ISD::VP_SCATTER:
8618     visitVPScatter(VPIntrin, OpValues);
8619     break;
8620   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8621     visitVPStridedStore(VPIntrin, OpValues);
8622     break;
8623   case ISD::VP_FMULADD: {
8624     assert(OpValues.size() == 5 && "Unexpected number of operands");
8625     SDNodeFlags SDFlags;
8626     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8627       SDFlags.copyFMF(*FPMO);
8628     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8629         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8630       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8631     } else {
8632       SDValue Mul = DAG.getNode(
8633           ISD::VP_FMUL, DL, VTs,
8634           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8635       SDValue Add =
8636           DAG.getNode(ISD::VP_FADD, DL, VTs,
8637                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8638       setValue(&VPIntrin, Add);
8639     }
8640     break;
8641   }
8642   case ISD::VP_IS_FPCLASS: {
8643     const DataLayout DLayout = DAG.getDataLayout();
8644     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8645     auto Constant = OpValues[1]->getAsZExtVal();
8646     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8647     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8648                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8649     setValue(&VPIntrin, V);
8650     return;
8651   }
8652   case ISD::VP_INTTOPTR: {
8653     SDValue N = OpValues[0];
8654     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8655     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8656     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8657                                OpValues[2]);
8658     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8659                              OpValues[2]);
8660     setValue(&VPIntrin, N);
8661     break;
8662   }
8663   case ISD::VP_PTRTOINT: {
8664     SDValue N = OpValues[0];
8665     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8666                                                           VPIntrin.getType());
8667     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8668                                        VPIntrin.getOperand(0)->getType());
8669     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8670                                OpValues[2]);
8671     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8672                              OpValues[2]);
8673     setValue(&VPIntrin, N);
8674     break;
8675   }
8676   case ISD::VP_ABS:
8677   case ISD::VP_CTLZ:
8678   case ISD::VP_CTLZ_ZERO_UNDEF:
8679   case ISD::VP_CTTZ:
8680   case ISD::VP_CTTZ_ZERO_UNDEF:
8681   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8682   case ISD::VP_CTTZ_ELTS: {
8683     SDValue Result =
8684         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8685     setValue(&VPIntrin, Result);
8686     break;
8687   }
8688   }
8689 }
8690 
8691 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8692                                           const BasicBlock *EHPadBB,
8693                                           MCSymbol *&BeginLabel) {
8694   MachineFunction &MF = DAG.getMachineFunction();
8695 
8696   // Insert a label before the invoke call to mark the try range.  This can be
8697   // used to detect deletion of the invoke via the MachineModuleInfo.
8698   BeginLabel = MF.getContext().createTempSymbol();
8699 
8700   // For SjLj, keep track of which landing pads go with which invokes
8701   // so as to maintain the ordering of pads in the LSDA.
8702   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8703   if (CallSiteIndex) {
8704     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8705     LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8706 
8707     // Now that the call site is handled, stop tracking it.
8708     FuncInfo.setCurrentCallSite(0);
8709   }
8710 
8711   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8712 }
8713 
8714 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8715                                         const BasicBlock *EHPadBB,
8716                                         MCSymbol *BeginLabel) {
8717   assert(BeginLabel && "BeginLabel should've been set");
8718 
8719   MachineFunction &MF = DAG.getMachineFunction();
8720 
8721   // Insert a label at the end of the invoke call to mark the try range.  This
8722   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8723   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8724   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8725 
8726   // Inform MachineModuleInfo of range.
8727   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8728   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8729   // actually use outlined funclets and their LSDA info style.
8730   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8731     assert(II && "II should've been set");
8732     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8733     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8734   } else if (!isScopedEHPersonality(Pers)) {
8735     assert(EHPadBB);
8736     MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8737   }
8738 
8739   return Chain;
8740 }
8741 
8742 std::pair<SDValue, SDValue>
8743 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8744                                     const BasicBlock *EHPadBB) {
8745   MCSymbol *BeginLabel = nullptr;
8746 
8747   if (EHPadBB) {
8748     // Both PendingLoads and PendingExports must be flushed here;
8749     // this call might not return.
8750     (void)getRoot();
8751     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8752     CLI.setChain(getRoot());
8753   }
8754 
8755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8756   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8757 
8758   assert((CLI.IsTailCall || Result.second.getNode()) &&
8759          "Non-null chain expected with non-tail call!");
8760   assert((Result.second.getNode() || !Result.first.getNode()) &&
8761          "Null value expected with tail call!");
8762 
8763   if (!Result.second.getNode()) {
8764     // As a special case, a null chain means that a tail call has been emitted
8765     // and the DAG root is already updated.
8766     HasTailCall = true;
8767 
8768     // Since there's no actual continuation from this block, nothing can be
8769     // relying on us setting vregs for them.
8770     PendingExports.clear();
8771   } else {
8772     DAG.setRoot(Result.second);
8773   }
8774 
8775   if (EHPadBB) {
8776     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8777                            BeginLabel));
8778     Result.second = getRoot();
8779   }
8780 
8781   return Result;
8782 }
8783 
8784 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8785                                       bool isTailCall, bool isMustTailCall,
8786                                       const BasicBlock *EHPadBB,
8787                                       const TargetLowering::PtrAuthInfo *PAI) {
8788   auto &DL = DAG.getDataLayout();
8789   FunctionType *FTy = CB.getFunctionType();
8790   Type *RetTy = CB.getType();
8791 
8792   TargetLowering::ArgListTy Args;
8793   Args.reserve(CB.arg_size());
8794 
8795   const Value *SwiftErrorVal = nullptr;
8796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8797 
8798   if (isTailCall) {
8799     // Avoid emitting tail calls in functions with the disable-tail-calls
8800     // attribute.
8801     auto *Caller = CB.getParent()->getParent();
8802     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8803         "true" && !isMustTailCall)
8804       isTailCall = false;
8805 
8806     // We can't tail call inside a function with a swifterror argument. Lowering
8807     // does not support this yet. It would have to move into the swifterror
8808     // register before the call.
8809     if (TLI.supportSwiftError() &&
8810         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8811       isTailCall = false;
8812   }
8813 
8814   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8815     TargetLowering::ArgListEntry Entry;
8816     const Value *V = *I;
8817 
8818     // Skip empty types
8819     if (V->getType()->isEmptyTy())
8820       continue;
8821 
8822     SDValue ArgNode = getValue(V);
8823     Entry.Node = ArgNode; Entry.Ty = V->getType();
8824 
8825     Entry.setAttributes(&CB, I - CB.arg_begin());
8826 
8827     // Use swifterror virtual register as input to the call.
8828     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8829       SwiftErrorVal = V;
8830       // We find the virtual register for the actual swifterror argument.
8831       // Instead of using the Value, we use the virtual register instead.
8832       Entry.Node =
8833           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8834                           EVT(TLI.getPointerTy(DL)));
8835     }
8836 
8837     Args.push_back(Entry);
8838 
8839     // If we have an explicit sret argument that is an Instruction, (i.e., it
8840     // might point to function-local memory), we can't meaningfully tail-call.
8841     if (Entry.IsSRet && isa<Instruction>(V))
8842       isTailCall = false;
8843   }
8844 
8845   // If call site has a cfguardtarget operand bundle, create and add an
8846   // additional ArgListEntry.
8847   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8848     TargetLowering::ArgListEntry Entry;
8849     Value *V = Bundle->Inputs[0];
8850     SDValue ArgNode = getValue(V);
8851     Entry.Node = ArgNode;
8852     Entry.Ty = V->getType();
8853     Entry.IsCFGuardTarget = true;
8854     Args.push_back(Entry);
8855   }
8856 
8857   // Check if target-independent constraints permit a tail call here.
8858   // Target-dependent constraints are checked within TLI->LowerCallTo.
8859   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8860     isTailCall = false;
8861 
8862   // Disable tail calls if there is an swifterror argument. Targets have not
8863   // been updated to support tail calls.
8864   if (TLI.supportSwiftError() && SwiftErrorVal)
8865     isTailCall = false;
8866 
8867   ConstantInt *CFIType = nullptr;
8868   if (CB.isIndirectCall()) {
8869     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8870       if (!TLI.supportKCFIBundles())
8871         report_fatal_error(
8872             "Target doesn't support calls with kcfi operand bundles.");
8873       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8874       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8875     }
8876   }
8877 
8878   SDValue ConvControlToken;
8879   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8880     auto *Token = Bundle->Inputs[0].get();
8881     ConvControlToken = getValue(Token);
8882   }
8883 
8884   TargetLowering::CallLoweringInfo CLI(DAG);
8885   CLI.setDebugLoc(getCurSDLoc())
8886       .setChain(getRoot())
8887       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8888       .setTailCall(isTailCall)
8889       .setConvergent(CB.isConvergent())
8890       .setIsPreallocated(
8891           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8892       .setCFIType(CFIType)
8893       .setConvergenceControlToken(ConvControlToken);
8894 
8895   // Set the pointer authentication info if we have it.
8896   if (PAI) {
8897     if (!TLI.supportPtrAuthBundles())
8898       report_fatal_error(
8899           "This target doesn't support calls with ptrauth operand bundles.");
8900     CLI.setPtrAuth(*PAI);
8901   }
8902 
8903   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8904 
8905   if (Result.first.getNode()) {
8906     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8907     setValue(&CB, Result.first);
8908   }
8909 
8910   // The last element of CLI.InVals has the SDValue for swifterror return.
8911   // Here we copy it to a virtual register and update SwiftErrorMap for
8912   // book-keeping.
8913   if (SwiftErrorVal && TLI.supportSwiftError()) {
8914     // Get the last element of InVals.
8915     SDValue Src = CLI.InVals.back();
8916     Register VReg =
8917         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8918     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8919     DAG.setRoot(CopyNode);
8920   }
8921 }
8922 
8923 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8924                              SelectionDAGBuilder &Builder) {
8925   // Check to see if this load can be trivially constant folded, e.g. if the
8926   // input is from a string literal.
8927   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8928     // Cast pointer to the type we really want to load.
8929     Type *LoadTy =
8930         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8931     if (LoadVT.isVector())
8932       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8933 
8934     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8935                                          PointerType::getUnqual(LoadTy));
8936 
8937     if (const Constant *LoadCst =
8938             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8939                                          LoadTy, Builder.DAG.getDataLayout()))
8940       return Builder.getValue(LoadCst);
8941   }
8942 
8943   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8944   // still constant memory, the input chain can be the entry node.
8945   SDValue Root;
8946   bool ConstantMemory = false;
8947 
8948   // Do not serialize (non-volatile) loads of constant memory with anything.
8949   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8950     Root = Builder.DAG.getEntryNode();
8951     ConstantMemory = true;
8952   } else {
8953     // Do not serialize non-volatile loads against each other.
8954     Root = Builder.DAG.getRoot();
8955   }
8956 
8957   SDValue Ptr = Builder.getValue(PtrVal);
8958   SDValue LoadVal =
8959       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8960                           MachinePointerInfo(PtrVal), Align(1));
8961 
8962   if (!ConstantMemory)
8963     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8964   return LoadVal;
8965 }
8966 
8967 /// Record the value for an instruction that produces an integer result,
8968 /// converting the type where necessary.
8969 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8970                                                   SDValue Value,
8971                                                   bool IsSigned) {
8972   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8973                                                     I.getType(), true);
8974   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8975   setValue(&I, Value);
8976 }
8977 
8978 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8979 /// true and lower it. Otherwise return false, and it will be lowered like a
8980 /// normal call.
8981 /// The caller already checked that \p I calls the appropriate LibFunc with a
8982 /// correct prototype.
8983 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8984   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8985   const Value *Size = I.getArgOperand(2);
8986   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8987   if (CSize && CSize->getZExtValue() == 0) {
8988     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8989                                                           I.getType(), true);
8990     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8991     return true;
8992   }
8993 
8994   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8995   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8996       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8997       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8998   if (Res.first.getNode()) {
8999     processIntegerCallValue(I, Res.first, true);
9000     PendingLoads.push_back(Res.second);
9001     return true;
9002   }
9003 
9004   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
9005   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
9006   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9007     return false;
9008 
9009   // If the target has a fast compare for the given size, it will return a
9010   // preferred load type for that size. Require that the load VT is legal and
9011   // that the target supports unaligned loads of that type. Otherwise, return
9012   // INVALID.
9013   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9014     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9015     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9016     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9017       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9018       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9019       // TODO: Check alignment of src and dest ptrs.
9020       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9021       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9022       if (!TLI.isTypeLegal(LVT) ||
9023           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9024           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9025         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
9026     }
9027 
9028     return LVT;
9029   };
9030 
9031   // This turns into unaligned loads. We only do this if the target natively
9032   // supports the MVT we'll be loading or if it is small enough (<= 4) that
9033   // we'll only produce a small number of byte loads.
9034   MVT LoadVT;
9035   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9036   switch (NumBitsToCompare) {
9037   default:
9038     return false;
9039   case 16:
9040     LoadVT = MVT::i16;
9041     break;
9042   case 32:
9043     LoadVT = MVT::i32;
9044     break;
9045   case 64:
9046   case 128:
9047   case 256:
9048     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9049     break;
9050   }
9051 
9052   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9053     return false;
9054 
9055   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9056   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9057 
9058   // Bitcast to a wide integer type if the loads are vectors.
9059   if (LoadVT.isVector()) {
9060     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9061     LoadL = DAG.getBitcast(CmpVT, LoadL);
9062     LoadR = DAG.getBitcast(CmpVT, LoadR);
9063   }
9064 
9065   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9066   processIntegerCallValue(I, Cmp, false);
9067   return true;
9068 }
9069 
9070 /// See if we can lower a memchr call into an optimized form. If so, return
9071 /// true and lower it. Otherwise return false, and it will be lowered like a
9072 /// normal call.
9073 /// The caller already checked that \p I calls the appropriate LibFunc with a
9074 /// correct prototype.
9075 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9076   const Value *Src = I.getArgOperand(0);
9077   const Value *Char = I.getArgOperand(1);
9078   const Value *Length = I.getArgOperand(2);
9079 
9080   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9081   std::pair<SDValue, SDValue> Res =
9082     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9083                                 getValue(Src), getValue(Char), getValue(Length),
9084                                 MachinePointerInfo(Src));
9085   if (Res.first.getNode()) {
9086     setValue(&I, Res.first);
9087     PendingLoads.push_back(Res.second);
9088     return true;
9089   }
9090 
9091   return false;
9092 }
9093 
9094 /// See if we can lower a mempcpy call into an optimized form. If so, return
9095 /// true and lower it. Otherwise return false, and it will be lowered like a
9096 /// normal call.
9097 /// The caller already checked that \p I calls the appropriate LibFunc with a
9098 /// correct prototype.
9099 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9100   SDValue Dst = getValue(I.getArgOperand(0));
9101   SDValue Src = getValue(I.getArgOperand(1));
9102   SDValue Size = getValue(I.getArgOperand(2));
9103 
9104   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9105   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9106   // DAG::getMemcpy needs Alignment to be defined.
9107   Align Alignment = std::min(DstAlign, SrcAlign);
9108 
9109   SDLoc sdl = getCurSDLoc();
9110 
9111   // In the mempcpy context we need to pass in a false value for isTailCall
9112   // because the return pointer needs to be adjusted by the size of
9113   // the copied memory.
9114   SDValue Root = getMemoryRoot();
9115   SDValue MC = DAG.getMemcpy(
9116       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9117       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9118       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9119   assert(MC.getNode() != nullptr &&
9120          "** memcpy should not be lowered as TailCall in mempcpy context **");
9121   DAG.setRoot(MC);
9122 
9123   // Check if Size needs to be truncated or extended.
9124   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9125 
9126   // Adjust return pointer to point just past the last dst byte.
9127   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9128                                     Dst, Size);
9129   setValue(&I, DstPlusSize);
9130   return true;
9131 }
9132 
9133 /// See if we can lower a strcpy call into an optimized form.  If so, return
9134 /// true and lower it, otherwise return false and it will be lowered like a
9135 /// normal call.
9136 /// The caller already checked that \p I calls the appropriate LibFunc with a
9137 /// correct prototype.
9138 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9139   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9140 
9141   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9142   std::pair<SDValue, SDValue> Res =
9143     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9144                                 getValue(Arg0), getValue(Arg1),
9145                                 MachinePointerInfo(Arg0),
9146                                 MachinePointerInfo(Arg1), isStpcpy);
9147   if (Res.first.getNode()) {
9148     setValue(&I, Res.first);
9149     DAG.setRoot(Res.second);
9150     return true;
9151   }
9152 
9153   return false;
9154 }
9155 
9156 /// See if we can lower a strcmp call into an optimized form.  If so, return
9157 /// true and lower it, otherwise return false and it will be lowered like a
9158 /// normal call.
9159 /// The caller already checked that \p I calls the appropriate LibFunc with a
9160 /// correct prototype.
9161 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9162   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9163 
9164   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9165   std::pair<SDValue, SDValue> Res =
9166     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9167                                 getValue(Arg0), getValue(Arg1),
9168                                 MachinePointerInfo(Arg0),
9169                                 MachinePointerInfo(Arg1));
9170   if (Res.first.getNode()) {
9171     processIntegerCallValue(I, Res.first, true);
9172     PendingLoads.push_back(Res.second);
9173     return true;
9174   }
9175 
9176   return false;
9177 }
9178 
9179 /// See if we can lower a strlen call into an optimized form.  If so, return
9180 /// true and lower it, otherwise return false and it will be lowered like a
9181 /// normal call.
9182 /// The caller already checked that \p I calls the appropriate LibFunc with a
9183 /// correct prototype.
9184 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9185   const Value *Arg0 = I.getArgOperand(0);
9186 
9187   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9188   std::pair<SDValue, SDValue> Res =
9189     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9190                                 getValue(Arg0), MachinePointerInfo(Arg0));
9191   if (Res.first.getNode()) {
9192     processIntegerCallValue(I, Res.first, false);
9193     PendingLoads.push_back(Res.second);
9194     return true;
9195   }
9196 
9197   return false;
9198 }
9199 
9200 /// See if we can lower a strnlen call into an optimized form.  If so, return
9201 /// true and lower it, otherwise return false and it will be lowered like a
9202 /// normal call.
9203 /// The caller already checked that \p I calls the appropriate LibFunc with a
9204 /// correct prototype.
9205 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9206   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9207 
9208   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9209   std::pair<SDValue, SDValue> Res =
9210     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9211                                  getValue(Arg0), getValue(Arg1),
9212                                  MachinePointerInfo(Arg0));
9213   if (Res.first.getNode()) {
9214     processIntegerCallValue(I, Res.first, false);
9215     PendingLoads.push_back(Res.second);
9216     return true;
9217   }
9218 
9219   return false;
9220 }
9221 
9222 /// See if we can lower a unary floating-point operation into an SDNode with
9223 /// the specified Opcode.  If so, return true and lower it, otherwise return
9224 /// false and it will be lowered like a normal call.
9225 /// The caller already checked that \p I calls the appropriate LibFunc with a
9226 /// correct prototype.
9227 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9228                                               unsigned Opcode) {
9229   // We already checked this call's prototype; verify it doesn't modify errno.
9230   if (!I.onlyReadsMemory())
9231     return false;
9232 
9233   SDNodeFlags Flags;
9234   Flags.copyFMF(cast<FPMathOperator>(I));
9235 
9236   SDValue Tmp = getValue(I.getArgOperand(0));
9237   setValue(&I,
9238            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9239   return true;
9240 }
9241 
9242 /// See if we can lower a binary floating-point operation into an SDNode with
9243 /// the specified Opcode. If so, return true and lower it. Otherwise return
9244 /// false, and it will be lowered like a normal call.
9245 /// The caller already checked that \p I calls the appropriate LibFunc with a
9246 /// correct prototype.
9247 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9248                                                unsigned Opcode) {
9249   // We already checked this call's prototype; verify it doesn't modify errno.
9250   if (!I.onlyReadsMemory())
9251     return false;
9252 
9253   SDNodeFlags Flags;
9254   Flags.copyFMF(cast<FPMathOperator>(I));
9255 
9256   SDValue Tmp0 = getValue(I.getArgOperand(0));
9257   SDValue Tmp1 = getValue(I.getArgOperand(1));
9258   EVT VT = Tmp0.getValueType();
9259   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9260   return true;
9261 }
9262 
9263 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9264   // Handle inline assembly differently.
9265   if (I.isInlineAsm()) {
9266     visitInlineAsm(I);
9267     return;
9268   }
9269 
9270   diagnoseDontCall(I);
9271 
9272   if (Function *F = I.getCalledFunction()) {
9273     if (F->isDeclaration()) {
9274       // Is this an LLVM intrinsic or a target-specific intrinsic?
9275       unsigned IID = F->getIntrinsicID();
9276       if (!IID)
9277         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9278           IID = II->getIntrinsicID(F);
9279 
9280       if (IID) {
9281         visitIntrinsicCall(I, IID);
9282         return;
9283       }
9284     }
9285 
9286     // Check for well-known libc/libm calls.  If the function is internal, it
9287     // can't be a library call.  Don't do the check if marked as nobuiltin for
9288     // some reason or the call site requires strict floating point semantics.
9289     LibFunc Func;
9290     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9291         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9292         LibInfo->hasOptimizedCodeGen(Func)) {
9293       switch (Func) {
9294       default: break;
9295       case LibFunc_bcmp:
9296         if (visitMemCmpBCmpCall(I))
9297           return;
9298         break;
9299       case LibFunc_copysign:
9300       case LibFunc_copysignf:
9301       case LibFunc_copysignl:
9302         // We already checked this call's prototype; verify it doesn't modify
9303         // errno.
9304         if (I.onlyReadsMemory()) {
9305           SDValue LHS = getValue(I.getArgOperand(0));
9306           SDValue RHS = getValue(I.getArgOperand(1));
9307           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9308                                    LHS.getValueType(), LHS, RHS));
9309           return;
9310         }
9311         break;
9312       case LibFunc_fabs:
9313       case LibFunc_fabsf:
9314       case LibFunc_fabsl:
9315         if (visitUnaryFloatCall(I, ISD::FABS))
9316           return;
9317         break;
9318       case LibFunc_fmin:
9319       case LibFunc_fminf:
9320       case LibFunc_fminl:
9321         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9322           return;
9323         break;
9324       case LibFunc_fmax:
9325       case LibFunc_fmaxf:
9326       case LibFunc_fmaxl:
9327         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9328           return;
9329         break;
9330       case LibFunc_fminimum_num:
9331       case LibFunc_fminimum_numf:
9332       case LibFunc_fminimum_numl:
9333         if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9334           return;
9335         break;
9336       case LibFunc_fmaximum_num:
9337       case LibFunc_fmaximum_numf:
9338       case LibFunc_fmaximum_numl:
9339         if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9340           return;
9341         break;
9342       case LibFunc_sin:
9343       case LibFunc_sinf:
9344       case LibFunc_sinl:
9345         if (visitUnaryFloatCall(I, ISD::FSIN))
9346           return;
9347         break;
9348       case LibFunc_cos:
9349       case LibFunc_cosf:
9350       case LibFunc_cosl:
9351         if (visitUnaryFloatCall(I, ISD::FCOS))
9352           return;
9353         break;
9354       case LibFunc_tan:
9355       case LibFunc_tanf:
9356       case LibFunc_tanl:
9357         if (visitUnaryFloatCall(I, ISD::FTAN))
9358           return;
9359         break;
9360       case LibFunc_asin:
9361       case LibFunc_asinf:
9362       case LibFunc_asinl:
9363         if (visitUnaryFloatCall(I, ISD::FASIN))
9364           return;
9365         break;
9366       case LibFunc_acos:
9367       case LibFunc_acosf:
9368       case LibFunc_acosl:
9369         if (visitUnaryFloatCall(I, ISD::FACOS))
9370           return;
9371         break;
9372       case LibFunc_atan:
9373       case LibFunc_atanf:
9374       case LibFunc_atanl:
9375         if (visitUnaryFloatCall(I, ISD::FATAN))
9376           return;
9377         break;
9378       case LibFunc_atan2:
9379       case LibFunc_atan2f:
9380       case LibFunc_atan2l:
9381         if (visitBinaryFloatCall(I, ISD::FATAN2))
9382           return;
9383         break;
9384       case LibFunc_sinh:
9385       case LibFunc_sinhf:
9386       case LibFunc_sinhl:
9387         if (visitUnaryFloatCall(I, ISD::FSINH))
9388           return;
9389         break;
9390       case LibFunc_cosh:
9391       case LibFunc_coshf:
9392       case LibFunc_coshl:
9393         if (visitUnaryFloatCall(I, ISD::FCOSH))
9394           return;
9395         break;
9396       case LibFunc_tanh:
9397       case LibFunc_tanhf:
9398       case LibFunc_tanhl:
9399         if (visitUnaryFloatCall(I, ISD::FTANH))
9400           return;
9401         break;
9402       case LibFunc_sqrt:
9403       case LibFunc_sqrtf:
9404       case LibFunc_sqrtl:
9405       case LibFunc_sqrt_finite:
9406       case LibFunc_sqrtf_finite:
9407       case LibFunc_sqrtl_finite:
9408         if (visitUnaryFloatCall(I, ISD::FSQRT))
9409           return;
9410         break;
9411       case LibFunc_floor:
9412       case LibFunc_floorf:
9413       case LibFunc_floorl:
9414         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9415           return;
9416         break;
9417       case LibFunc_nearbyint:
9418       case LibFunc_nearbyintf:
9419       case LibFunc_nearbyintl:
9420         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9421           return;
9422         break;
9423       case LibFunc_ceil:
9424       case LibFunc_ceilf:
9425       case LibFunc_ceill:
9426         if (visitUnaryFloatCall(I, ISD::FCEIL))
9427           return;
9428         break;
9429       case LibFunc_rint:
9430       case LibFunc_rintf:
9431       case LibFunc_rintl:
9432         if (visitUnaryFloatCall(I, ISD::FRINT))
9433           return;
9434         break;
9435       case LibFunc_round:
9436       case LibFunc_roundf:
9437       case LibFunc_roundl:
9438         if (visitUnaryFloatCall(I, ISD::FROUND))
9439           return;
9440         break;
9441       case LibFunc_trunc:
9442       case LibFunc_truncf:
9443       case LibFunc_truncl:
9444         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9445           return;
9446         break;
9447       case LibFunc_log2:
9448       case LibFunc_log2f:
9449       case LibFunc_log2l:
9450         if (visitUnaryFloatCall(I, ISD::FLOG2))
9451           return;
9452         break;
9453       case LibFunc_exp2:
9454       case LibFunc_exp2f:
9455       case LibFunc_exp2l:
9456         if (visitUnaryFloatCall(I, ISD::FEXP2))
9457           return;
9458         break;
9459       case LibFunc_exp10:
9460       case LibFunc_exp10f:
9461       case LibFunc_exp10l:
9462         if (visitUnaryFloatCall(I, ISD::FEXP10))
9463           return;
9464         break;
9465       case LibFunc_ldexp:
9466       case LibFunc_ldexpf:
9467       case LibFunc_ldexpl:
9468         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9469           return;
9470         break;
9471       case LibFunc_memcmp:
9472         if (visitMemCmpBCmpCall(I))
9473           return;
9474         break;
9475       case LibFunc_mempcpy:
9476         if (visitMemPCpyCall(I))
9477           return;
9478         break;
9479       case LibFunc_memchr:
9480         if (visitMemChrCall(I))
9481           return;
9482         break;
9483       case LibFunc_strcpy:
9484         if (visitStrCpyCall(I, false))
9485           return;
9486         break;
9487       case LibFunc_stpcpy:
9488         if (visitStrCpyCall(I, true))
9489           return;
9490         break;
9491       case LibFunc_strcmp:
9492         if (visitStrCmpCall(I))
9493           return;
9494         break;
9495       case LibFunc_strlen:
9496         if (visitStrLenCall(I))
9497           return;
9498         break;
9499       case LibFunc_strnlen:
9500         if (visitStrNLenCall(I))
9501           return;
9502         break;
9503       }
9504     }
9505   }
9506 
9507   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9508     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9509     return;
9510   }
9511 
9512   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9513   // have to do anything here to lower funclet bundles.
9514   // CFGuardTarget bundles are lowered in LowerCallTo.
9515   assert(!I.hasOperandBundlesOtherThan(
9516              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9517               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9518               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9519               LLVMContext::OB_convergencectrl}) &&
9520          "Cannot lower calls with arbitrary operand bundles!");
9521 
9522   SDValue Callee = getValue(I.getCalledOperand());
9523 
9524   if (I.hasDeoptState())
9525     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9526   else
9527     // Check if we can potentially perform a tail call. More detailed checking
9528     // is be done within LowerCallTo, after more information about the call is
9529     // known.
9530     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9531 }
9532 
9533 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9534     const CallBase &CB, const BasicBlock *EHPadBB) {
9535   auto PAB = CB.getOperandBundle("ptrauth");
9536   const Value *CalleeV = CB.getCalledOperand();
9537 
9538   // Gather the call ptrauth data from the operand bundle:
9539   //   [ i32 <key>, i64 <discriminator> ]
9540   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9541   const Value *Discriminator = PAB->Inputs[1];
9542 
9543   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9544   assert(Discriminator->getType()->isIntegerTy(64) &&
9545          "Invalid ptrauth discriminator");
9546 
9547   // Look through ptrauth constants to find the raw callee.
9548   // Do a direct unauthenticated call if we found it and everything matches.
9549   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9550     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9551                                          DAG.getDataLayout()))
9552       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9553                          CB.isMustTailCall(), EHPadBB);
9554 
9555   // Functions should never be ptrauth-called directly.
9556   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9557 
9558   // Otherwise, do an authenticated indirect call.
9559   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9560                                      getValue(Discriminator)};
9561 
9562   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9563               EHPadBB, &PAI);
9564 }
9565 
9566 namespace {
9567 
9568 /// AsmOperandInfo - This contains information for each constraint that we are
9569 /// lowering.
9570 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9571 public:
9572   /// CallOperand - If this is the result output operand or a clobber
9573   /// this is null, otherwise it is the incoming operand to the CallInst.
9574   /// This gets modified as the asm is processed.
9575   SDValue CallOperand;
9576 
9577   /// AssignedRegs - If this is a register or register class operand, this
9578   /// contains the set of register corresponding to the operand.
9579   RegsForValue AssignedRegs;
9580 
9581   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9582     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9583   }
9584 
9585   /// Whether or not this operand accesses memory
9586   bool hasMemory(const TargetLowering &TLI) const {
9587     // Indirect operand accesses access memory.
9588     if (isIndirect)
9589       return true;
9590 
9591     for (const auto &Code : Codes)
9592       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9593         return true;
9594 
9595     return false;
9596   }
9597 };
9598 
9599 
9600 } // end anonymous namespace
9601 
9602 /// Make sure that the output operand \p OpInfo and its corresponding input
9603 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9604 /// out).
9605 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9606                                SDISelAsmOperandInfo &MatchingOpInfo,
9607                                SelectionDAG &DAG) {
9608   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9609     return;
9610 
9611   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9612   const auto &TLI = DAG.getTargetLoweringInfo();
9613 
9614   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9615       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9616                                        OpInfo.ConstraintVT);
9617   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9618       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9619                                        MatchingOpInfo.ConstraintVT);
9620   const bool OutOpIsIntOrFP =
9621       OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9622   const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9623                              MatchingOpInfo.ConstraintVT.isFloatingPoint();
9624   if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9625     // FIXME: error out in a more elegant fashion
9626     report_fatal_error("Unsupported asm: input constraint"
9627                        " with a matching output constraint of"
9628                        " incompatible type!");
9629   }
9630   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9631 }
9632 
9633 /// Get a direct memory input to behave well as an indirect operand.
9634 /// This may introduce stores, hence the need for a \p Chain.
9635 /// \return The (possibly updated) chain.
9636 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9637                                         SDISelAsmOperandInfo &OpInfo,
9638                                         SelectionDAG &DAG) {
9639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9640 
9641   // If we don't have an indirect input, put it in the constpool if we can,
9642   // otherwise spill it to a stack slot.
9643   // TODO: This isn't quite right. We need to handle these according to
9644   // the addressing mode that the constraint wants. Also, this may take
9645   // an additional register for the computation and we don't want that
9646   // either.
9647 
9648   // If the operand is a float, integer, or vector constant, spill to a
9649   // constant pool entry to get its address.
9650   const Value *OpVal = OpInfo.CallOperandVal;
9651   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9652       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9653     OpInfo.CallOperand = DAG.getConstantPool(
9654         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9655     return Chain;
9656   }
9657 
9658   // Otherwise, create a stack slot and emit a store to it before the asm.
9659   Type *Ty = OpVal->getType();
9660   auto &DL = DAG.getDataLayout();
9661   TypeSize TySize = DL.getTypeAllocSize(Ty);
9662   MachineFunction &MF = DAG.getMachineFunction();
9663   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9664   int StackID = 0;
9665   if (TySize.isScalable())
9666     StackID = TFI->getStackIDForScalableVectors();
9667   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9668                                                  DL.getPrefTypeAlign(Ty), false,
9669                                                  nullptr, StackID);
9670   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9671   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9672                             MachinePointerInfo::getFixedStack(MF, SSFI),
9673                             TLI.getMemValueType(DL, Ty));
9674   OpInfo.CallOperand = StackSlot;
9675 
9676   return Chain;
9677 }
9678 
9679 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9680 /// specified operand.  We prefer to assign virtual registers, to allow the
9681 /// register allocator to handle the assignment process.  However, if the asm
9682 /// uses features that we can't model on machineinstrs, we have SDISel do the
9683 /// allocation.  This produces generally horrible, but correct, code.
9684 ///
9685 ///   OpInfo describes the operand
9686 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9687 static std::optional<unsigned>
9688 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9689                      SDISelAsmOperandInfo &OpInfo,
9690                      SDISelAsmOperandInfo &RefOpInfo) {
9691   LLVMContext &Context = *DAG.getContext();
9692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9693 
9694   MachineFunction &MF = DAG.getMachineFunction();
9695   SmallVector<Register, 4> Regs;
9696   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9697 
9698   // No work to do for memory/address operands.
9699   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9700       OpInfo.ConstraintType == TargetLowering::C_Address)
9701     return std::nullopt;
9702 
9703   // If this is a constraint for a single physreg, or a constraint for a
9704   // register class, find it.
9705   unsigned AssignedReg;
9706   const TargetRegisterClass *RC;
9707   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9708       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9709   // RC is unset only on failure. Return immediately.
9710   if (!RC)
9711     return std::nullopt;
9712 
9713   // Get the actual register value type.  This is important, because the user
9714   // may have asked for (e.g.) the AX register in i32 type.  We need to
9715   // remember that AX is actually i16 to get the right extension.
9716   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9717 
9718   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9719     // If this is an FP operand in an integer register (or visa versa), or more
9720     // generally if the operand value disagrees with the register class we plan
9721     // to stick it in, fix the operand type.
9722     //
9723     // If this is an input value, the bitcast to the new type is done now.
9724     // Bitcast for output value is done at the end of visitInlineAsm().
9725     if ((OpInfo.Type == InlineAsm::isOutput ||
9726          OpInfo.Type == InlineAsm::isInput) &&
9727         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9728       // Try to convert to the first EVT that the reg class contains.  If the
9729       // types are identical size, use a bitcast to convert (e.g. two differing
9730       // vector types).  Note: output bitcast is done at the end of
9731       // visitInlineAsm().
9732       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9733         // Exclude indirect inputs while they are unsupported because the code
9734         // to perform the load is missing and thus OpInfo.CallOperand still
9735         // refers to the input address rather than the pointed-to value.
9736         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9737           OpInfo.CallOperand =
9738               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9739         OpInfo.ConstraintVT = RegVT;
9740         // If the operand is an FP value and we want it in integer registers,
9741         // use the corresponding integer type. This turns an f64 value into
9742         // i64, which can be passed with two i32 values on a 32-bit machine.
9743       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9744         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9745         if (OpInfo.Type == InlineAsm::isInput)
9746           OpInfo.CallOperand =
9747               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9748         OpInfo.ConstraintVT = VT;
9749       }
9750     }
9751   }
9752 
9753   // No need to allocate a matching input constraint since the constraint it's
9754   // matching to has already been allocated.
9755   if (OpInfo.isMatchingInputConstraint())
9756     return std::nullopt;
9757 
9758   EVT ValueVT = OpInfo.ConstraintVT;
9759   if (OpInfo.ConstraintVT == MVT::Other)
9760     ValueVT = RegVT;
9761 
9762   // Initialize NumRegs.
9763   unsigned NumRegs = 1;
9764   if (OpInfo.ConstraintVT != MVT::Other)
9765     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9766 
9767   // If this is a constraint for a specific physical register, like {r17},
9768   // assign it now.
9769 
9770   // If this associated to a specific register, initialize iterator to correct
9771   // place. If virtual, make sure we have enough registers
9772 
9773   // Initialize iterator if necessary
9774   TargetRegisterClass::iterator I = RC->begin();
9775   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9776 
9777   // Do not check for single registers.
9778   if (AssignedReg) {
9779     I = std::find(I, RC->end(), AssignedReg);
9780     if (I == RC->end()) {
9781       // RC does not contain the selected register, which indicates a
9782       // mismatch between the register and the required type/bitwidth.
9783       return {AssignedReg};
9784     }
9785   }
9786 
9787   for (; NumRegs; --NumRegs, ++I) {
9788     assert(I != RC->end() && "Ran out of registers to allocate!");
9789     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9790     Regs.push_back(R);
9791   }
9792 
9793   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9794   return std::nullopt;
9795 }
9796 
9797 static unsigned
9798 findMatchingInlineAsmOperand(unsigned OperandNo,
9799                              const std::vector<SDValue> &AsmNodeOperands) {
9800   // Scan until we find the definition we already emitted of this operand.
9801   unsigned CurOp = InlineAsm::Op_FirstOperand;
9802   for (; OperandNo; --OperandNo) {
9803     // Advance to the next operand.
9804     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9805     const InlineAsm::Flag F(OpFlag);
9806     assert(
9807         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9808         "Skipped past definitions?");
9809     CurOp += F.getNumOperandRegisters() + 1;
9810   }
9811   return CurOp;
9812 }
9813 
9814 namespace {
9815 
9816 class ExtraFlags {
9817   unsigned Flags = 0;
9818 
9819 public:
9820   explicit ExtraFlags(const CallBase &Call) {
9821     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9822     if (IA->hasSideEffects())
9823       Flags |= InlineAsm::Extra_HasSideEffects;
9824     if (IA->isAlignStack())
9825       Flags |= InlineAsm::Extra_IsAlignStack;
9826     if (Call.isConvergent())
9827       Flags |= InlineAsm::Extra_IsConvergent;
9828     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9829   }
9830 
9831   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9832     // Ideally, we would only check against memory constraints.  However, the
9833     // meaning of an Other constraint can be target-specific and we can't easily
9834     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9835     // for Other constraints as well.
9836     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9837         OpInfo.ConstraintType == TargetLowering::C_Other) {
9838       if (OpInfo.Type == InlineAsm::isInput)
9839         Flags |= InlineAsm::Extra_MayLoad;
9840       else if (OpInfo.Type == InlineAsm::isOutput)
9841         Flags |= InlineAsm::Extra_MayStore;
9842       else if (OpInfo.Type == InlineAsm::isClobber)
9843         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9844     }
9845   }
9846 
9847   unsigned get() const { return Flags; }
9848 };
9849 
9850 } // end anonymous namespace
9851 
9852 static bool isFunction(SDValue Op) {
9853   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9854     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9855       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9856 
9857       // In normal "call dllimport func" instruction (non-inlineasm) it force
9858       // indirect access by specifing call opcode. And usually specially print
9859       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9860       // not do in this way now. (In fact, this is similar with "Data Access"
9861       // action). So here we ignore dllimport function.
9862       if (Fn && !Fn->hasDLLImportStorageClass())
9863         return true;
9864     }
9865   }
9866   return false;
9867 }
9868 
9869 /// visitInlineAsm - Handle a call to an InlineAsm object.
9870 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9871                                          const BasicBlock *EHPadBB) {
9872   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9873 
9874   /// ConstraintOperands - Information about all of the constraints.
9875   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9876 
9877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9878   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9879       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9880 
9881   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9882   // AsmDialect, MayLoad, MayStore).
9883   bool HasSideEffect = IA->hasSideEffects();
9884   ExtraFlags ExtraInfo(Call);
9885 
9886   for (auto &T : TargetConstraints) {
9887     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9888     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9889 
9890     if (OpInfo.CallOperandVal)
9891       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9892 
9893     if (!HasSideEffect)
9894       HasSideEffect = OpInfo.hasMemory(TLI);
9895 
9896     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9897     // FIXME: Could we compute this on OpInfo rather than T?
9898 
9899     // Compute the constraint code and ConstraintType to use.
9900     TLI.ComputeConstraintToUse(T, SDValue());
9901 
9902     if (T.ConstraintType == TargetLowering::C_Immediate &&
9903         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9904       // We've delayed emitting a diagnostic like the "n" constraint because
9905       // inlining could cause an integer showing up.
9906       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9907                                           "' expects an integer constant "
9908                                           "expression");
9909 
9910     ExtraInfo.update(T);
9911   }
9912 
9913   // We won't need to flush pending loads if this asm doesn't touch
9914   // memory and is nonvolatile.
9915   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9916 
9917   bool EmitEHLabels = isa<InvokeInst>(Call);
9918   if (EmitEHLabels) {
9919     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9920   }
9921   bool IsCallBr = isa<CallBrInst>(Call);
9922 
9923   if (IsCallBr || EmitEHLabels) {
9924     // If this is a callbr or invoke we need to flush pending exports since
9925     // inlineasm_br and invoke are terminators.
9926     // We need to do this before nodes are glued to the inlineasm_br node.
9927     Chain = getControlRoot();
9928   }
9929 
9930   MCSymbol *BeginLabel = nullptr;
9931   if (EmitEHLabels) {
9932     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9933   }
9934 
9935   int OpNo = -1;
9936   SmallVector<StringRef> AsmStrs;
9937   IA->collectAsmStrs(AsmStrs);
9938 
9939   // Second pass over the constraints: compute which constraint option to use.
9940   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9941     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9942       OpNo++;
9943 
9944     // If this is an output operand with a matching input operand, look up the
9945     // matching input. If their types mismatch, e.g. one is an integer, the
9946     // other is floating point, or their sizes are different, flag it as an
9947     // error.
9948     if (OpInfo.hasMatchingInput()) {
9949       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9950       patchMatchingInput(OpInfo, Input, DAG);
9951     }
9952 
9953     // Compute the constraint code and ConstraintType to use.
9954     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9955 
9956     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9957          OpInfo.Type == InlineAsm::isClobber) ||
9958         OpInfo.ConstraintType == TargetLowering::C_Address)
9959       continue;
9960 
9961     // In Linux PIC model, there are 4 cases about value/label addressing:
9962     //
9963     // 1: Function call or Label jmp inside the module.
9964     // 2: Data access (such as global variable, static variable) inside module.
9965     // 3: Function call or Label jmp outside the module.
9966     // 4: Data access (such as global variable) outside the module.
9967     //
9968     // Due to current llvm inline asm architecture designed to not "recognize"
9969     // the asm code, there are quite troubles for us to treat mem addressing
9970     // differently for same value/adress used in different instuctions.
9971     // For example, in pic model, call a func may in plt way or direclty
9972     // pc-related, but lea/mov a function adress may use got.
9973     //
9974     // Here we try to "recognize" function call for the case 1 and case 3 in
9975     // inline asm. And try to adjust the constraint for them.
9976     //
9977     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9978     // label, so here we don't handle jmp function label now, but we need to
9979     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9980     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9981         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9982         TM.getCodeModel() != CodeModel::Large) {
9983       OpInfo.isIndirect = false;
9984       OpInfo.ConstraintType = TargetLowering::C_Address;
9985     }
9986 
9987     // If this is a memory input, and if the operand is not indirect, do what we
9988     // need to provide an address for the memory input.
9989     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9990         !OpInfo.isIndirect) {
9991       assert((OpInfo.isMultipleAlternative ||
9992               (OpInfo.Type == InlineAsm::isInput)) &&
9993              "Can only indirectify direct input operands!");
9994 
9995       // Memory operands really want the address of the value.
9996       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9997 
9998       // There is no longer a Value* corresponding to this operand.
9999       OpInfo.CallOperandVal = nullptr;
10000 
10001       // It is now an indirect operand.
10002       OpInfo.isIndirect = true;
10003     }
10004 
10005   }
10006 
10007   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10008   std::vector<SDValue> AsmNodeOperands;
10009   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
10010   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10011       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10012 
10013   // If we have a !srcloc metadata node associated with it, we want to attach
10014   // this to the ultimately generated inline asm machineinstr.  To do this, we
10015   // pass in the third operand as this (potentially null) inline asm MDNode.
10016   const MDNode *SrcLoc = Call.getMetadata("srcloc");
10017   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10018 
10019   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10020   // bits as operand 3.
10021   AsmNodeOperands.push_back(DAG.getTargetConstant(
10022       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10023 
10024   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10025   // this, assign virtual and physical registers for inputs and otput.
10026   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10027     // Assign Registers.
10028     SDISelAsmOperandInfo &RefOpInfo =
10029         OpInfo.isMatchingInputConstraint()
10030             ? ConstraintOperands[OpInfo.getMatchedOperand()]
10031             : OpInfo;
10032     const auto RegError =
10033         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10034     if (RegError) {
10035       const MachineFunction &MF = DAG.getMachineFunction();
10036       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10037       const char *RegName = TRI.getName(*RegError);
10038       emitInlineAsmError(Call, "register '" + Twine(RegName) +
10039                                    "' allocated for constraint '" +
10040                                    Twine(OpInfo.ConstraintCode) +
10041                                    "' does not match required type");
10042       return;
10043     }
10044 
10045     auto DetectWriteToReservedRegister = [&]() {
10046       const MachineFunction &MF = DAG.getMachineFunction();
10047       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10048       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
10049         if (Register::isPhysicalRegister(Reg) &&
10050             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10051           const char *RegName = TRI.getName(Reg);
10052           emitInlineAsmError(Call, "write to reserved register '" +
10053                                        Twine(RegName) + "'");
10054           return true;
10055         }
10056       }
10057       return false;
10058     };
10059     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10060             (OpInfo.Type == InlineAsm::isInput &&
10061              !OpInfo.isMatchingInputConstraint())) &&
10062            "Only address as input operand is allowed.");
10063 
10064     switch (OpInfo.Type) {
10065     case InlineAsm::isOutput:
10066       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10067         const InlineAsm::ConstraintCode ConstraintID =
10068             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10069         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10070                "Failed to convert memory constraint code to constraint id.");
10071 
10072         // Add information to the INLINEASM node to know about this output.
10073         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10074         OpFlags.setMemConstraint(ConstraintID);
10075         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10076                                                         MVT::i32));
10077         AsmNodeOperands.push_back(OpInfo.CallOperand);
10078       } else {
10079         // Otherwise, this outputs to a register (directly for C_Register /
10080         // C_RegisterClass, and a target-defined fashion for
10081         // C_Immediate/C_Other). Find a register that we can use.
10082         if (OpInfo.AssignedRegs.Regs.empty()) {
10083           emitInlineAsmError(
10084               Call, "couldn't allocate output register for constraint '" +
10085                         Twine(OpInfo.ConstraintCode) + "'");
10086           return;
10087         }
10088 
10089         if (DetectWriteToReservedRegister())
10090           return;
10091 
10092         // Add information to the INLINEASM node to know that this register is
10093         // set.
10094         OpInfo.AssignedRegs.AddInlineAsmOperands(
10095             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10096                                   : InlineAsm::Kind::RegDef,
10097             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10098       }
10099       break;
10100 
10101     case InlineAsm::isInput:
10102     case InlineAsm::isLabel: {
10103       SDValue InOperandVal = OpInfo.CallOperand;
10104 
10105       if (OpInfo.isMatchingInputConstraint()) {
10106         // If this is required to match an output register we have already set,
10107         // just use its register.
10108         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10109                                                   AsmNodeOperands);
10110         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10111         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10112           if (OpInfo.isIndirect) {
10113             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10114             emitInlineAsmError(Call, "inline asm not supported yet: "
10115                                      "don't know how to handle tied "
10116                                      "indirect register inputs");
10117             return;
10118           }
10119 
10120           SmallVector<Register, 4> Regs;
10121           MachineFunction &MF = DAG.getMachineFunction();
10122           MachineRegisterInfo &MRI = MF.getRegInfo();
10123           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10124           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10125           Register TiedReg = R->getReg();
10126           MVT RegVT = R->getSimpleValueType(0);
10127           const TargetRegisterClass *RC =
10128               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10129               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10130                                       : TRI.getMinimalPhysRegClass(TiedReg);
10131           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10132             Regs.push_back(MRI.createVirtualRegister(RC));
10133 
10134           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10135 
10136           SDLoc dl = getCurSDLoc();
10137           // Use the produced MatchedRegs object to
10138           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10139           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10140                                            OpInfo.getMatchedOperand(), dl, DAG,
10141                                            AsmNodeOperands);
10142           break;
10143         }
10144 
10145         assert(Flag.isMemKind() && "Unknown matching constraint!");
10146         assert(Flag.getNumOperandRegisters() == 1 &&
10147                "Unexpected number of operands");
10148         // Add information to the INLINEASM node to know about this input.
10149         // See InlineAsm.h isUseOperandTiedToDef.
10150         Flag.clearMemConstraint();
10151         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10152         AsmNodeOperands.push_back(DAG.getTargetConstant(
10153             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10154         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10155         break;
10156       }
10157 
10158       // Treat indirect 'X' constraint as memory.
10159       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10160           OpInfo.isIndirect)
10161         OpInfo.ConstraintType = TargetLowering::C_Memory;
10162 
10163       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10164           OpInfo.ConstraintType == TargetLowering::C_Other) {
10165         std::vector<SDValue> Ops;
10166         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10167                                           Ops, DAG);
10168         if (Ops.empty()) {
10169           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10170             if (isa<ConstantSDNode>(InOperandVal)) {
10171               emitInlineAsmError(Call, "value out of range for constraint '" +
10172                                            Twine(OpInfo.ConstraintCode) + "'");
10173               return;
10174             }
10175 
10176           emitInlineAsmError(Call,
10177                              "invalid operand for inline asm constraint '" +
10178                                  Twine(OpInfo.ConstraintCode) + "'");
10179           return;
10180         }
10181 
10182         // Add information to the INLINEASM node to know about this input.
10183         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10184         AsmNodeOperands.push_back(DAG.getTargetConstant(
10185             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10186         llvm::append_range(AsmNodeOperands, Ops);
10187         break;
10188       }
10189 
10190       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10191         assert((OpInfo.isIndirect ||
10192                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10193                "Operand must be indirect to be a mem!");
10194         assert(InOperandVal.getValueType() ==
10195                    TLI.getPointerTy(DAG.getDataLayout()) &&
10196                "Memory operands expect pointer values");
10197 
10198         const InlineAsm::ConstraintCode ConstraintID =
10199             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10200         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10201                "Failed to convert memory constraint code to constraint id.");
10202 
10203         // Add information to the INLINEASM node to know about this input.
10204         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10205         ResOpType.setMemConstraint(ConstraintID);
10206         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10207                                                         getCurSDLoc(),
10208                                                         MVT::i32));
10209         AsmNodeOperands.push_back(InOperandVal);
10210         break;
10211       }
10212 
10213       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10214         const InlineAsm::ConstraintCode ConstraintID =
10215             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10216         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10217                "Failed to convert memory constraint code to constraint id.");
10218 
10219         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10220 
10221         SDValue AsmOp = InOperandVal;
10222         if (isFunction(InOperandVal)) {
10223           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10224           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10225           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10226                                              InOperandVal.getValueType(),
10227                                              GA->getOffset());
10228         }
10229 
10230         // Add information to the INLINEASM node to know about this input.
10231         ResOpType.setMemConstraint(ConstraintID);
10232 
10233         AsmNodeOperands.push_back(
10234             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10235 
10236         AsmNodeOperands.push_back(AsmOp);
10237         break;
10238       }
10239 
10240       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10241           OpInfo.ConstraintType != TargetLowering::C_Register) {
10242         emitInlineAsmError(Call, "unknown asm constraint '" +
10243                                      Twine(OpInfo.ConstraintCode) + "'");
10244         return;
10245       }
10246 
10247       // TODO: Support this.
10248       if (OpInfo.isIndirect) {
10249         emitInlineAsmError(
10250             Call, "Don't know how to handle indirect register inputs yet "
10251                   "for constraint '" +
10252                       Twine(OpInfo.ConstraintCode) + "'");
10253         return;
10254       }
10255 
10256       // Copy the input into the appropriate registers.
10257       if (OpInfo.AssignedRegs.Regs.empty()) {
10258         emitInlineAsmError(Call,
10259                            "couldn't allocate input reg for constraint '" +
10260                                Twine(OpInfo.ConstraintCode) + "'");
10261         return;
10262       }
10263 
10264       if (DetectWriteToReservedRegister())
10265         return;
10266 
10267       SDLoc dl = getCurSDLoc();
10268 
10269       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10270                                         &Call);
10271 
10272       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10273                                                0, dl, DAG, AsmNodeOperands);
10274       break;
10275     }
10276     case InlineAsm::isClobber:
10277       // Add the clobbered value to the operand list, so that the register
10278       // allocator is aware that the physreg got clobbered.
10279       if (!OpInfo.AssignedRegs.Regs.empty())
10280         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10281                                                  false, 0, getCurSDLoc(), DAG,
10282                                                  AsmNodeOperands);
10283       break;
10284     }
10285   }
10286 
10287   // Finish up input operands.  Set the input chain and add the flag last.
10288   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10289   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10290 
10291   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10292   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10293                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10294   Glue = Chain.getValue(1);
10295 
10296   // Do additional work to generate outputs.
10297 
10298   SmallVector<EVT, 1> ResultVTs;
10299   SmallVector<SDValue, 1> ResultValues;
10300   SmallVector<SDValue, 8> OutChains;
10301 
10302   llvm::Type *CallResultType = Call.getType();
10303   ArrayRef<Type *> ResultTypes;
10304   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10305     ResultTypes = StructResult->elements();
10306   else if (!CallResultType->isVoidTy())
10307     ResultTypes = ArrayRef(CallResultType);
10308 
10309   auto CurResultType = ResultTypes.begin();
10310   auto handleRegAssign = [&](SDValue V) {
10311     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10312     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10313     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10314     ++CurResultType;
10315     // If the type of the inline asm call site return value is different but has
10316     // same size as the type of the asm output bitcast it.  One example of this
10317     // is for vectors with different width / number of elements.  This can
10318     // happen for register classes that can contain multiple different value
10319     // types.  The preg or vreg allocated may not have the same VT as was
10320     // expected.
10321     //
10322     // This can also happen for a return value that disagrees with the register
10323     // class it is put in, eg. a double in a general-purpose register on a
10324     // 32-bit machine.
10325     if (ResultVT != V.getValueType() &&
10326         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10327       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10328     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10329              V.getValueType().isInteger()) {
10330       // If a result value was tied to an input value, the computed result
10331       // may have a wider width than the expected result.  Extract the
10332       // relevant portion.
10333       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10334     }
10335     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10336     ResultVTs.push_back(ResultVT);
10337     ResultValues.push_back(V);
10338   };
10339 
10340   // Deal with output operands.
10341   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10342     if (OpInfo.Type == InlineAsm::isOutput) {
10343       SDValue Val;
10344       // Skip trivial output operands.
10345       if (OpInfo.AssignedRegs.Regs.empty())
10346         continue;
10347 
10348       switch (OpInfo.ConstraintType) {
10349       case TargetLowering::C_Register:
10350       case TargetLowering::C_RegisterClass:
10351         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10352                                                   Chain, &Glue, &Call);
10353         break;
10354       case TargetLowering::C_Immediate:
10355       case TargetLowering::C_Other:
10356         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10357                                               OpInfo, DAG);
10358         break;
10359       case TargetLowering::C_Memory:
10360         break; // Already handled.
10361       case TargetLowering::C_Address:
10362         break; // Silence warning.
10363       case TargetLowering::C_Unknown:
10364         assert(false && "Unexpected unknown constraint");
10365       }
10366 
10367       // Indirect output manifest as stores. Record output chains.
10368       if (OpInfo.isIndirect) {
10369         const Value *Ptr = OpInfo.CallOperandVal;
10370         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10371         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10372                                      MachinePointerInfo(Ptr));
10373         OutChains.push_back(Store);
10374       } else {
10375         // generate CopyFromRegs to associated registers.
10376         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10377         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10378           for (const SDValue &V : Val->op_values())
10379             handleRegAssign(V);
10380         } else
10381           handleRegAssign(Val);
10382       }
10383     }
10384   }
10385 
10386   // Set results.
10387   if (!ResultValues.empty()) {
10388     assert(CurResultType == ResultTypes.end() &&
10389            "Mismatch in number of ResultTypes");
10390     assert(ResultValues.size() == ResultTypes.size() &&
10391            "Mismatch in number of output operands in asm result");
10392 
10393     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10394                             DAG.getVTList(ResultVTs), ResultValues);
10395     setValue(&Call, V);
10396   }
10397 
10398   // Collect store chains.
10399   if (!OutChains.empty())
10400     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10401 
10402   if (EmitEHLabels) {
10403     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10404   }
10405 
10406   // Only Update Root if inline assembly has a memory effect.
10407   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10408       EmitEHLabels)
10409     DAG.setRoot(Chain);
10410 }
10411 
10412 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10413                                              const Twine &Message) {
10414   LLVMContext &Ctx = *DAG.getContext();
10415   Ctx.emitError(&Call, Message);
10416 
10417   // Make sure we leave the DAG in a valid state
10418   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10419   SmallVector<EVT, 1> ValueVTs;
10420   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10421 
10422   if (ValueVTs.empty())
10423     return;
10424 
10425   SmallVector<SDValue, 1> Ops;
10426   for (const EVT &VT : ValueVTs)
10427     Ops.push_back(DAG.getUNDEF(VT));
10428 
10429   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10430 }
10431 
10432 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10433   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10434                           MVT::Other, getRoot(),
10435                           getValue(I.getArgOperand(0)),
10436                           DAG.getSrcValue(I.getArgOperand(0))));
10437 }
10438 
10439 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10441   const DataLayout &DL = DAG.getDataLayout();
10442   SDValue V = DAG.getVAArg(
10443       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10444       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10445       DL.getABITypeAlign(I.getType()).value());
10446   DAG.setRoot(V.getValue(1));
10447 
10448   if (I.getType()->isPointerTy())
10449     V = DAG.getPtrExtOrTrunc(
10450         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10451   setValue(&I, V);
10452 }
10453 
10454 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10455   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10456                           MVT::Other, getRoot(),
10457                           getValue(I.getArgOperand(0)),
10458                           DAG.getSrcValue(I.getArgOperand(0))));
10459 }
10460 
10461 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10462   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10463                           MVT::Other, getRoot(),
10464                           getValue(I.getArgOperand(0)),
10465                           getValue(I.getArgOperand(1)),
10466                           DAG.getSrcValue(I.getArgOperand(0)),
10467                           DAG.getSrcValue(I.getArgOperand(1))));
10468 }
10469 
10470 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10471                                                     const Instruction &I,
10472                                                     SDValue Op) {
10473   std::optional<ConstantRange> CR = getRange(I);
10474 
10475   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10476     return Op;
10477 
10478   APInt Lo = CR->getUnsignedMin();
10479   if (!Lo.isMinValue())
10480     return Op;
10481 
10482   APInt Hi = CR->getUnsignedMax();
10483   unsigned Bits = std::max(Hi.getActiveBits(),
10484                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10485 
10486   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10487 
10488   SDLoc SL = getCurSDLoc();
10489 
10490   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10491                              DAG.getValueType(SmallVT));
10492   unsigned NumVals = Op.getNode()->getNumValues();
10493   if (NumVals == 1)
10494     return ZExt;
10495 
10496   SmallVector<SDValue, 4> Ops;
10497 
10498   Ops.push_back(ZExt);
10499   for (unsigned I = 1; I != NumVals; ++I)
10500     Ops.push_back(Op.getValue(I));
10501 
10502   return DAG.getMergeValues(Ops, SL);
10503 }
10504 
10505 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10506 /// the call being lowered.
10507 ///
10508 /// This is a helper for lowering intrinsics that follow a target calling
10509 /// convention or require stack pointer adjustment. Only a subset of the
10510 /// intrinsic's operands need to participate in the calling convention.
10511 void SelectionDAGBuilder::populateCallLoweringInfo(
10512     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10513     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10514     AttributeSet RetAttrs, bool IsPatchPoint) {
10515   TargetLowering::ArgListTy Args;
10516   Args.reserve(NumArgs);
10517 
10518   // Populate the argument list.
10519   // Attributes for args start at offset 1, after the return attribute.
10520   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10521        ArgI != ArgE; ++ArgI) {
10522     const Value *V = Call->getOperand(ArgI);
10523 
10524     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10525 
10526     TargetLowering::ArgListEntry Entry;
10527     Entry.Node = getValue(V);
10528     Entry.Ty = V->getType();
10529     Entry.setAttributes(Call, ArgI);
10530     Args.push_back(Entry);
10531   }
10532 
10533   CLI.setDebugLoc(getCurSDLoc())
10534       .setChain(getRoot())
10535       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10536                  RetAttrs)
10537       .setDiscardResult(Call->use_empty())
10538       .setIsPatchPoint(IsPatchPoint)
10539       .setIsPreallocated(
10540           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10541 }
10542 
10543 /// Add a stack map intrinsic call's live variable operands to a stackmap
10544 /// or patchpoint target node's operand list.
10545 ///
10546 /// Constants are converted to TargetConstants purely as an optimization to
10547 /// avoid constant materialization and register allocation.
10548 ///
10549 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10550 /// generate addess computation nodes, and so FinalizeISel can convert the
10551 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10552 /// address materialization and register allocation, but may also be required
10553 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10554 /// alloca in the entry block, then the runtime may assume that the alloca's
10555 /// StackMap location can be read immediately after compilation and that the
10556 /// location is valid at any point during execution (this is similar to the
10557 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10558 /// only available in a register, then the runtime would need to trap when
10559 /// execution reaches the StackMap in order to read the alloca's location.
10560 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10561                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10562                                 SelectionDAGBuilder &Builder) {
10563   SelectionDAG &DAG = Builder.DAG;
10564   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10565     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10566 
10567     // Things on the stack are pointer-typed, meaning that they are already
10568     // legal and can be emitted directly to target nodes.
10569     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10570       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10571     } else {
10572       // Otherwise emit a target independent node to be legalised.
10573       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10574     }
10575   }
10576 }
10577 
10578 /// Lower llvm.experimental.stackmap.
10579 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10580   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10581   //                                  [live variables...])
10582 
10583   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10584 
10585   SDValue Chain, InGlue, Callee;
10586   SmallVector<SDValue, 32> Ops;
10587 
10588   SDLoc DL = getCurSDLoc();
10589   Callee = getValue(CI.getCalledOperand());
10590 
10591   // The stackmap intrinsic only records the live variables (the arguments
10592   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10593   // intrinsic, this won't be lowered to a function call. This means we don't
10594   // have to worry about calling conventions and target specific lowering code.
10595   // Instead we perform the call lowering right here.
10596   //
10597   // chain, flag = CALLSEQ_START(chain, 0, 0)
10598   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10599   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10600   //
10601   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10602   InGlue = Chain.getValue(1);
10603 
10604   // Add the STACKMAP operands, starting with DAG house-keeping.
10605   Ops.push_back(Chain);
10606   Ops.push_back(InGlue);
10607 
10608   // Add the <id>, <numShadowBytes> operands.
10609   //
10610   // These do not require legalisation, and can be emitted directly to target
10611   // constant nodes.
10612   SDValue ID = getValue(CI.getArgOperand(0));
10613   assert(ID.getValueType() == MVT::i64);
10614   SDValue IDConst =
10615       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10616   Ops.push_back(IDConst);
10617 
10618   SDValue Shad = getValue(CI.getArgOperand(1));
10619   assert(Shad.getValueType() == MVT::i32);
10620   SDValue ShadConst =
10621       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10622   Ops.push_back(ShadConst);
10623 
10624   // Add the live variables.
10625   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10626 
10627   // Create the STACKMAP node.
10628   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10629   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10630   InGlue = Chain.getValue(1);
10631 
10632   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10633 
10634   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10635 
10636   // Set the root to the target-lowered call chain.
10637   DAG.setRoot(Chain);
10638 
10639   // Inform the Frame Information that we have a stackmap in this function.
10640   FuncInfo.MF->getFrameInfo().setHasStackMap();
10641 }
10642 
10643 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10644 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10645                                           const BasicBlock *EHPadBB) {
10646   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10647   //                                         i32 <numBytes>,
10648   //                                         i8* <target>,
10649   //                                         i32 <numArgs>,
10650   //                                         [Args...],
10651   //                                         [live variables...])
10652 
10653   CallingConv::ID CC = CB.getCallingConv();
10654   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10655   bool HasDef = !CB.getType()->isVoidTy();
10656   SDLoc dl = getCurSDLoc();
10657   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10658 
10659   // Handle immediate and symbolic callees.
10660   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10661     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10662                                    /*isTarget=*/true);
10663   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10664     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10665                                          SDLoc(SymbolicCallee),
10666                                          SymbolicCallee->getValueType(0));
10667 
10668   // Get the real number of arguments participating in the call <numArgs>
10669   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10670   unsigned NumArgs = NArgVal->getAsZExtVal();
10671 
10672   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10673   // Intrinsics include all meta-operands up to but not including CC.
10674   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10675   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10676          "Not enough arguments provided to the patchpoint intrinsic");
10677 
10678   // For AnyRegCC the arguments are lowered later on manually.
10679   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10680   Type *ReturnTy =
10681       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10682 
10683   TargetLowering::CallLoweringInfo CLI(DAG);
10684   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10685                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10686   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10687 
10688   SDNode *CallEnd = Result.second.getNode();
10689   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10690     CallEnd = CallEnd->getOperand(0).getNode();
10691   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10692     CallEnd = CallEnd->getOperand(0).getNode();
10693 
10694   /// Get a call instruction from the call sequence chain.
10695   /// Tail calls are not allowed.
10696   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10697          "Expected a callseq node.");
10698   SDNode *Call = CallEnd->getOperand(0).getNode();
10699   bool HasGlue = Call->getGluedNode();
10700 
10701   // Replace the target specific call node with the patchable intrinsic.
10702   SmallVector<SDValue, 8> Ops;
10703 
10704   // Push the chain.
10705   Ops.push_back(*(Call->op_begin()));
10706 
10707   // Optionally, push the glue (if any).
10708   if (HasGlue)
10709     Ops.push_back(*(Call->op_end() - 1));
10710 
10711   // Push the register mask info.
10712   if (HasGlue)
10713     Ops.push_back(*(Call->op_end() - 2));
10714   else
10715     Ops.push_back(*(Call->op_end() - 1));
10716 
10717   // Add the <id> and <numBytes> constants.
10718   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10719   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10720   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10721   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10722 
10723   // Add the callee.
10724   Ops.push_back(Callee);
10725 
10726   // Adjust <numArgs> to account for any arguments that have been passed on the
10727   // stack instead.
10728   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10729   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10730   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10731   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10732 
10733   // Add the calling convention
10734   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10735 
10736   // Add the arguments we omitted previously. The register allocator should
10737   // place these in any free register.
10738   if (IsAnyRegCC)
10739     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10740       Ops.push_back(getValue(CB.getArgOperand(i)));
10741 
10742   // Push the arguments from the call instruction.
10743   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10744   Ops.append(Call->op_begin() + 2, e);
10745 
10746   // Push live variables for the stack map.
10747   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10748 
10749   SDVTList NodeTys;
10750   if (IsAnyRegCC && HasDef) {
10751     // Create the return types based on the intrinsic definition
10752     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10753     SmallVector<EVT, 3> ValueVTs;
10754     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10755     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10756 
10757     // There is always a chain and a glue type at the end
10758     ValueVTs.push_back(MVT::Other);
10759     ValueVTs.push_back(MVT::Glue);
10760     NodeTys = DAG.getVTList(ValueVTs);
10761   } else
10762     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10763 
10764   // Replace the target specific call node with a PATCHPOINT node.
10765   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10766 
10767   // Update the NodeMap.
10768   if (HasDef) {
10769     if (IsAnyRegCC)
10770       setValue(&CB, SDValue(PPV.getNode(), 0));
10771     else
10772       setValue(&CB, Result.first);
10773   }
10774 
10775   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10776   // call sequence. Furthermore the location of the chain and glue can change
10777   // when the AnyReg calling convention is used and the intrinsic returns a
10778   // value.
10779   if (IsAnyRegCC && HasDef) {
10780     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10781     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10782     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10783   } else
10784     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10785   DAG.DeleteNode(Call);
10786 
10787   // Inform the Frame Information that we have a patchpoint in this function.
10788   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10789 }
10790 
10791 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10792                                             unsigned Intrinsic) {
10793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10794   SDValue Op1 = getValue(I.getArgOperand(0));
10795   SDValue Op2;
10796   if (I.arg_size() > 1)
10797     Op2 = getValue(I.getArgOperand(1));
10798   SDLoc dl = getCurSDLoc();
10799   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10800   SDValue Res;
10801   SDNodeFlags SDFlags;
10802   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10803     SDFlags.copyFMF(*FPMO);
10804 
10805   switch (Intrinsic) {
10806   case Intrinsic::vector_reduce_fadd:
10807     if (SDFlags.hasAllowReassociation())
10808       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10809                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10810                         SDFlags);
10811     else
10812       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10813     break;
10814   case Intrinsic::vector_reduce_fmul:
10815     if (SDFlags.hasAllowReassociation())
10816       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10817                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10818                         SDFlags);
10819     else
10820       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10821     break;
10822   case Intrinsic::vector_reduce_add:
10823     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10824     break;
10825   case Intrinsic::vector_reduce_mul:
10826     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10827     break;
10828   case Intrinsic::vector_reduce_and:
10829     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10830     break;
10831   case Intrinsic::vector_reduce_or:
10832     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10833     break;
10834   case Intrinsic::vector_reduce_xor:
10835     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10836     break;
10837   case Intrinsic::vector_reduce_smax:
10838     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10839     break;
10840   case Intrinsic::vector_reduce_smin:
10841     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10842     break;
10843   case Intrinsic::vector_reduce_umax:
10844     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10845     break;
10846   case Intrinsic::vector_reduce_umin:
10847     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10848     break;
10849   case Intrinsic::vector_reduce_fmax:
10850     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10851     break;
10852   case Intrinsic::vector_reduce_fmin:
10853     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10854     break;
10855   case Intrinsic::vector_reduce_fmaximum:
10856     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10857     break;
10858   case Intrinsic::vector_reduce_fminimum:
10859     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10860     break;
10861   default:
10862     llvm_unreachable("Unhandled vector reduce intrinsic");
10863   }
10864   setValue(&I, Res);
10865 }
10866 
10867 /// Returns an AttributeList representing the attributes applied to the return
10868 /// value of the given call.
10869 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10870   SmallVector<Attribute::AttrKind, 2> Attrs;
10871   if (CLI.RetSExt)
10872     Attrs.push_back(Attribute::SExt);
10873   if (CLI.RetZExt)
10874     Attrs.push_back(Attribute::ZExt);
10875   if (CLI.IsInReg)
10876     Attrs.push_back(Attribute::InReg);
10877 
10878   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10879                             Attrs);
10880 }
10881 
10882 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10883 /// implementation, which just calls LowerCall.
10884 /// FIXME: When all targets are
10885 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10886 std::pair<SDValue, SDValue>
10887 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10888   // Handle the incoming return values from the call.
10889   CLI.Ins.clear();
10890   Type *OrigRetTy = CLI.RetTy;
10891   SmallVector<EVT, 4> RetTys;
10892   SmallVector<TypeSize, 4> Offsets;
10893   auto &DL = CLI.DAG.getDataLayout();
10894   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10895 
10896   if (CLI.IsPostTypeLegalization) {
10897     // If we are lowering a libcall after legalization, split the return type.
10898     SmallVector<EVT, 4> OldRetTys;
10899     SmallVector<TypeSize, 4> OldOffsets;
10900     RetTys.swap(OldRetTys);
10901     Offsets.swap(OldOffsets);
10902 
10903     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10904       EVT RetVT = OldRetTys[i];
10905       uint64_t Offset = OldOffsets[i];
10906       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10907       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10908       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10909       RetTys.append(NumRegs, RegisterVT);
10910       for (unsigned j = 0; j != NumRegs; ++j)
10911         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10912     }
10913   }
10914 
10915   SmallVector<ISD::OutputArg, 4> Outs;
10916   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10917 
10918   bool CanLowerReturn =
10919       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10920                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10921 
10922   SDValue DemoteStackSlot;
10923   int DemoteStackIdx = -100;
10924   if (!CanLowerReturn) {
10925     // FIXME: equivalent assert?
10926     // assert(!CS.hasInAllocaArgument() &&
10927     //        "sret demotion is incompatible with inalloca");
10928     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10929     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10930     MachineFunction &MF = CLI.DAG.getMachineFunction();
10931     DemoteStackIdx =
10932         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10933     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10934                                               DL.getAllocaAddrSpace());
10935 
10936     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10937     ArgListEntry Entry;
10938     Entry.Node = DemoteStackSlot;
10939     Entry.Ty = StackSlotPtrType;
10940     Entry.IsSExt = false;
10941     Entry.IsZExt = false;
10942     Entry.IsInReg = false;
10943     Entry.IsSRet = true;
10944     Entry.IsNest = false;
10945     Entry.IsByVal = false;
10946     Entry.IsByRef = false;
10947     Entry.IsReturned = false;
10948     Entry.IsSwiftSelf = false;
10949     Entry.IsSwiftAsync = false;
10950     Entry.IsSwiftError = false;
10951     Entry.IsCFGuardTarget = false;
10952     Entry.Alignment = Alignment;
10953     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10954     CLI.NumFixedArgs += 1;
10955     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10956     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10957 
10958     // sret demotion isn't compatible with tail-calls, since the sret argument
10959     // points into the callers stack frame.
10960     CLI.IsTailCall = false;
10961   } else {
10962     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10963         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10964     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10965       ISD::ArgFlagsTy Flags;
10966       if (NeedsRegBlock) {
10967         Flags.setInConsecutiveRegs();
10968         if (I == RetTys.size() - 1)
10969           Flags.setInConsecutiveRegsLast();
10970       }
10971       EVT VT = RetTys[I];
10972       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10973                                                      CLI.CallConv, VT);
10974       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10975                                                        CLI.CallConv, VT);
10976       for (unsigned i = 0; i != NumRegs; ++i) {
10977         ISD::InputArg MyFlags;
10978         MyFlags.Flags = Flags;
10979         MyFlags.VT = RegisterVT;
10980         MyFlags.ArgVT = VT;
10981         MyFlags.Used = CLI.IsReturnValueUsed;
10982         if (CLI.RetTy->isPointerTy()) {
10983           MyFlags.Flags.setPointer();
10984           MyFlags.Flags.setPointerAddrSpace(
10985               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10986         }
10987         if (CLI.RetSExt)
10988           MyFlags.Flags.setSExt();
10989         if (CLI.RetZExt)
10990           MyFlags.Flags.setZExt();
10991         if (CLI.IsInReg)
10992           MyFlags.Flags.setInReg();
10993         CLI.Ins.push_back(MyFlags);
10994       }
10995     }
10996   }
10997 
10998   // We push in swifterror return as the last element of CLI.Ins.
10999   ArgListTy &Args = CLI.getArgs();
11000   if (supportSwiftError()) {
11001     for (const ArgListEntry &Arg : Args) {
11002       if (Arg.IsSwiftError) {
11003         ISD::InputArg MyFlags;
11004         MyFlags.VT = getPointerTy(DL);
11005         MyFlags.ArgVT = EVT(getPointerTy(DL));
11006         MyFlags.Flags.setSwiftError();
11007         CLI.Ins.push_back(MyFlags);
11008       }
11009     }
11010   }
11011 
11012   // Handle all of the outgoing arguments.
11013   CLI.Outs.clear();
11014   CLI.OutVals.clear();
11015   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11016     SmallVector<EVT, 4> ValueVTs;
11017     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
11018     // FIXME: Split arguments if CLI.IsPostTypeLegalization
11019     Type *FinalType = Args[i].Ty;
11020     if (Args[i].IsByVal)
11021       FinalType = Args[i].IndirectType;
11022     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11023         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11024     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
11025          ++Value) {
11026       EVT VT = ValueVTs[Value];
11027       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
11028       SDValue Op = SDValue(Args[i].Node.getNode(),
11029                            Args[i].Node.getResNo() + Value);
11030       ISD::ArgFlagsTy Flags;
11031 
11032       // Certain targets (such as MIPS), may have a different ABI alignment
11033       // for a type depending on the context. Give the target a chance to
11034       // specify the alignment it wants.
11035       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11036       Flags.setOrigAlign(OriginalAlignment);
11037 
11038       if (Args[i].Ty->isPointerTy()) {
11039         Flags.setPointer();
11040         Flags.setPointerAddrSpace(
11041             cast<PointerType>(Args[i].Ty)->getAddressSpace());
11042       }
11043       if (Args[i].IsZExt)
11044         Flags.setZExt();
11045       if (Args[i].IsSExt)
11046         Flags.setSExt();
11047       if (Args[i].IsNoExt)
11048         Flags.setNoExt();
11049       if (Args[i].IsInReg) {
11050         // If we are using vectorcall calling convention, a structure that is
11051         // passed InReg - is surely an HVA
11052         if (CLI.CallConv == CallingConv::X86_VectorCall &&
11053             isa<StructType>(FinalType)) {
11054           // The first value of a structure is marked
11055           if (0 == Value)
11056             Flags.setHvaStart();
11057           Flags.setHva();
11058         }
11059         // Set InReg Flag
11060         Flags.setInReg();
11061       }
11062       if (Args[i].IsSRet)
11063         Flags.setSRet();
11064       if (Args[i].IsSwiftSelf)
11065         Flags.setSwiftSelf();
11066       if (Args[i].IsSwiftAsync)
11067         Flags.setSwiftAsync();
11068       if (Args[i].IsSwiftError)
11069         Flags.setSwiftError();
11070       if (Args[i].IsCFGuardTarget)
11071         Flags.setCFGuardTarget();
11072       if (Args[i].IsByVal)
11073         Flags.setByVal();
11074       if (Args[i].IsByRef)
11075         Flags.setByRef();
11076       if (Args[i].IsPreallocated) {
11077         Flags.setPreallocated();
11078         // Set the byval flag for CCAssignFn callbacks that don't know about
11079         // preallocated.  This way we can know how many bytes we should've
11080         // allocated and how many bytes a callee cleanup function will pop.  If
11081         // we port preallocated to more targets, we'll have to add custom
11082         // preallocated handling in the various CC lowering callbacks.
11083         Flags.setByVal();
11084       }
11085       if (Args[i].IsInAlloca) {
11086         Flags.setInAlloca();
11087         // Set the byval flag for CCAssignFn callbacks that don't know about
11088         // inalloca.  This way we can know how many bytes we should've allocated
11089         // and how many bytes a callee cleanup function will pop.  If we port
11090         // inalloca to more targets, we'll have to add custom inalloca handling
11091         // in the various CC lowering callbacks.
11092         Flags.setByVal();
11093       }
11094       Align MemAlign;
11095       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11096         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11097         Flags.setByValSize(FrameSize);
11098 
11099         // info is not there but there are cases it cannot get right.
11100         if (auto MA = Args[i].Alignment)
11101           MemAlign = *MA;
11102         else
11103           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11104       } else if (auto MA = Args[i].Alignment) {
11105         MemAlign = *MA;
11106       } else {
11107         MemAlign = OriginalAlignment;
11108       }
11109       Flags.setMemAlign(MemAlign);
11110       if (Args[i].IsNest)
11111         Flags.setNest();
11112       if (NeedsRegBlock)
11113         Flags.setInConsecutiveRegs();
11114 
11115       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11116                                                  CLI.CallConv, VT);
11117       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11118                                                         CLI.CallConv, VT);
11119       SmallVector<SDValue, 4> Parts(NumParts);
11120       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11121 
11122       if (Args[i].IsSExt)
11123         ExtendKind = ISD::SIGN_EXTEND;
11124       else if (Args[i].IsZExt)
11125         ExtendKind = ISD::ZERO_EXTEND;
11126 
11127       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11128       // for now.
11129       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11130           CanLowerReturn) {
11131         assert((CLI.RetTy == Args[i].Ty ||
11132                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11133                  CLI.RetTy->getPointerAddressSpace() ==
11134                      Args[i].Ty->getPointerAddressSpace())) &&
11135                RetTys.size() == NumValues && "unexpected use of 'returned'");
11136         // Before passing 'returned' to the target lowering code, ensure that
11137         // either the register MVT and the actual EVT are the same size or that
11138         // the return value and argument are extended in the same way; in these
11139         // cases it's safe to pass the argument register value unchanged as the
11140         // return register value (although it's at the target's option whether
11141         // to do so)
11142         // TODO: allow code generation to take advantage of partially preserved
11143         // registers rather than clobbering the entire register when the
11144         // parameter extension method is not compatible with the return
11145         // extension method
11146         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11147             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11148              CLI.RetZExt == Args[i].IsZExt))
11149           Flags.setReturned();
11150       }
11151 
11152       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11153                      CLI.CallConv, ExtendKind);
11154 
11155       for (unsigned j = 0; j != NumParts; ++j) {
11156         // if it isn't first piece, alignment must be 1
11157         // For scalable vectors the scalable part is currently handled
11158         // by individual targets, so we just use the known minimum size here.
11159         ISD::OutputArg MyFlags(
11160             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11161             i < CLI.NumFixedArgs, i,
11162             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11163         if (NumParts > 1 && j == 0)
11164           MyFlags.Flags.setSplit();
11165         else if (j != 0) {
11166           MyFlags.Flags.setOrigAlign(Align(1));
11167           if (j == NumParts - 1)
11168             MyFlags.Flags.setSplitEnd();
11169         }
11170 
11171         CLI.Outs.push_back(MyFlags);
11172         CLI.OutVals.push_back(Parts[j]);
11173       }
11174 
11175       if (NeedsRegBlock && Value == NumValues - 1)
11176         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11177     }
11178   }
11179 
11180   SmallVector<SDValue, 4> InVals;
11181   CLI.Chain = LowerCall(CLI, InVals);
11182 
11183   // Update CLI.InVals to use outside of this function.
11184   CLI.InVals = InVals;
11185 
11186   // Verify that the target's LowerCall behaved as expected.
11187   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11188          "LowerCall didn't return a valid chain!");
11189   assert((!CLI.IsTailCall || InVals.empty()) &&
11190          "LowerCall emitted a return value for a tail call!");
11191   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11192          "LowerCall didn't emit the correct number of values!");
11193 
11194   // For a tail call, the return value is merely live-out and there aren't
11195   // any nodes in the DAG representing it. Return a special value to
11196   // indicate that a tail call has been emitted and no more Instructions
11197   // should be processed in the current block.
11198   if (CLI.IsTailCall) {
11199     CLI.DAG.setRoot(CLI.Chain);
11200     return std::make_pair(SDValue(), SDValue());
11201   }
11202 
11203 #ifndef NDEBUG
11204   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11205     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11206     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11207            "LowerCall emitted a value with the wrong type!");
11208   }
11209 #endif
11210 
11211   SmallVector<SDValue, 4> ReturnValues;
11212   if (!CanLowerReturn) {
11213     // The instruction result is the result of loading from the
11214     // hidden sret parameter.
11215     SmallVector<EVT, 1> PVTs;
11216     Type *PtrRetTy =
11217         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11218 
11219     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11220     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11221     EVT PtrVT = PVTs[0];
11222 
11223     unsigned NumValues = RetTys.size();
11224     ReturnValues.resize(NumValues);
11225     SmallVector<SDValue, 4> Chains(NumValues);
11226 
11227     // An aggregate return value cannot wrap around the address space, so
11228     // offsets to its parts don't wrap either.
11229     MachineFunction &MF = CLI.DAG.getMachineFunction();
11230     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11231     for (unsigned i = 0; i < NumValues; ++i) {
11232       SDValue Add =
11233           CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11234                           CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11235                           SDNodeFlags::NoUnsignedWrap);
11236       SDValue L = CLI.DAG.getLoad(
11237           RetTys[i], CLI.DL, CLI.Chain, Add,
11238           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11239                                             DemoteStackIdx, Offsets[i]),
11240           HiddenSRetAlign);
11241       ReturnValues[i] = L;
11242       Chains[i] = L.getValue(1);
11243     }
11244 
11245     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11246   } else {
11247     // Collect the legal value parts into potentially illegal values
11248     // that correspond to the original function's return values.
11249     std::optional<ISD::NodeType> AssertOp;
11250     if (CLI.RetSExt)
11251       AssertOp = ISD::AssertSext;
11252     else if (CLI.RetZExt)
11253       AssertOp = ISD::AssertZext;
11254     unsigned CurReg = 0;
11255     for (EVT VT : RetTys) {
11256       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11257                                                      CLI.CallConv, VT);
11258       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11259                                                        CLI.CallConv, VT);
11260 
11261       ReturnValues.push_back(getCopyFromParts(
11262           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11263           CLI.Chain, CLI.CallConv, AssertOp));
11264       CurReg += NumRegs;
11265     }
11266 
11267     // For a function returning void, there is no return value. We can't create
11268     // such a node, so we just return a null return value in that case. In
11269     // that case, nothing will actually look at the value.
11270     if (ReturnValues.empty())
11271       return std::make_pair(SDValue(), CLI.Chain);
11272   }
11273 
11274   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11275                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11276   return std::make_pair(Res, CLI.Chain);
11277 }
11278 
11279 /// Places new result values for the node in Results (their number
11280 /// and types must exactly match those of the original return values of
11281 /// the node), or leaves Results empty, which indicates that the node is not
11282 /// to be custom lowered after all.
11283 void TargetLowering::LowerOperationWrapper(SDNode *N,
11284                                            SmallVectorImpl<SDValue> &Results,
11285                                            SelectionDAG &DAG) const {
11286   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11287 
11288   if (!Res.getNode())
11289     return;
11290 
11291   // If the original node has one result, take the return value from
11292   // LowerOperation as is. It might not be result number 0.
11293   if (N->getNumValues() == 1) {
11294     Results.push_back(Res);
11295     return;
11296   }
11297 
11298   // If the original node has multiple results, then the return node should
11299   // have the same number of results.
11300   assert((N->getNumValues() == Res->getNumValues()) &&
11301       "Lowering returned the wrong number of results!");
11302 
11303   // Places new result values base on N result number.
11304   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11305     Results.push_back(Res.getValue(I));
11306 }
11307 
11308 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11309   llvm_unreachable("LowerOperation not implemented for this target!");
11310 }
11311 
11312 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11313                                                      unsigned Reg,
11314                                                      ISD::NodeType ExtendType) {
11315   SDValue Op = getNonRegisterValue(V);
11316   assert((Op.getOpcode() != ISD::CopyFromReg ||
11317           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11318          "Copy from a reg to the same reg!");
11319   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11320 
11321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11322   // If this is an InlineAsm we have to match the registers required, not the
11323   // notional registers required by the type.
11324 
11325   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11326                    std::nullopt); // This is not an ABI copy.
11327   SDValue Chain = DAG.getEntryNode();
11328 
11329   if (ExtendType == ISD::ANY_EXTEND) {
11330     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11331     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11332       ExtendType = PreferredExtendIt->second;
11333   }
11334   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11335   PendingExports.push_back(Chain);
11336 }
11337 
11338 #include "llvm/CodeGen/SelectionDAGISel.h"
11339 
11340 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11341 /// entry block, return true.  This includes arguments used by switches, since
11342 /// the switch may expand into multiple basic blocks.
11343 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11344   // With FastISel active, we may be splitting blocks, so force creation
11345   // of virtual registers for all non-dead arguments.
11346   if (FastISel)
11347     return A->use_empty();
11348 
11349   const BasicBlock &Entry = A->getParent()->front();
11350   for (const User *U : A->users())
11351     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11352       return false;  // Use not in entry block.
11353 
11354   return true;
11355 }
11356 
11357 using ArgCopyElisionMapTy =
11358     DenseMap<const Argument *,
11359              std::pair<const AllocaInst *, const StoreInst *>>;
11360 
11361 /// Scan the entry block of the function in FuncInfo for arguments that look
11362 /// like copies into a local alloca. Record any copied arguments in
11363 /// ArgCopyElisionCandidates.
11364 static void
11365 findArgumentCopyElisionCandidates(const DataLayout &DL,
11366                                   FunctionLoweringInfo *FuncInfo,
11367                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11368   // Record the state of every static alloca used in the entry block. Argument
11369   // allocas are all used in the entry block, so we need approximately as many
11370   // entries as we have arguments.
11371   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11372   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11373   unsigned NumArgs = FuncInfo->Fn->arg_size();
11374   StaticAllocas.reserve(NumArgs * 2);
11375 
11376   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11377     if (!V)
11378       return nullptr;
11379     V = V->stripPointerCasts();
11380     const auto *AI = dyn_cast<AllocaInst>(V);
11381     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11382       return nullptr;
11383     auto Iter = StaticAllocas.insert({AI, Unknown});
11384     return &Iter.first->second;
11385   };
11386 
11387   // Look for stores of arguments to static allocas. Look through bitcasts and
11388   // GEPs to handle type coercions, as long as the alloca is fully initialized
11389   // by the store. Any non-store use of an alloca escapes it and any subsequent
11390   // unanalyzed store might write it.
11391   // FIXME: Handle structs initialized with multiple stores.
11392   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11393     // Look for stores, and handle non-store uses conservatively.
11394     const auto *SI = dyn_cast<StoreInst>(&I);
11395     if (!SI) {
11396       // We will look through cast uses, so ignore them completely.
11397       if (I.isCast())
11398         continue;
11399       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11400       // to allocas.
11401       if (I.isDebugOrPseudoInst())
11402         continue;
11403       // This is an unknown instruction. Assume it escapes or writes to all
11404       // static alloca operands.
11405       for (const Use &U : I.operands()) {
11406         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11407           *Info = StaticAllocaInfo::Clobbered;
11408       }
11409       continue;
11410     }
11411 
11412     // If the stored value is a static alloca, mark it as escaped.
11413     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11414       *Info = StaticAllocaInfo::Clobbered;
11415 
11416     // Check if the destination is a static alloca.
11417     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11418     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11419     if (!Info)
11420       continue;
11421     const AllocaInst *AI = cast<AllocaInst>(Dst);
11422 
11423     // Skip allocas that have been initialized or clobbered.
11424     if (*Info != StaticAllocaInfo::Unknown)
11425       continue;
11426 
11427     // Check if the stored value is an argument, and that this store fully
11428     // initializes the alloca.
11429     // If the argument type has padding bits we can't directly forward a pointer
11430     // as the upper bits may contain garbage.
11431     // Don't elide copies from the same argument twice.
11432     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11433     const auto *Arg = dyn_cast<Argument>(Val);
11434     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11435         Arg->getType()->isEmptyTy() ||
11436         DL.getTypeStoreSize(Arg->getType()) !=
11437             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11438         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11439         ArgCopyElisionCandidates.count(Arg)) {
11440       *Info = StaticAllocaInfo::Clobbered;
11441       continue;
11442     }
11443 
11444     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11445                       << '\n');
11446 
11447     // Mark this alloca and store for argument copy elision.
11448     *Info = StaticAllocaInfo::Elidable;
11449     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11450 
11451     // Stop scanning if we've seen all arguments. This will happen early in -O0
11452     // builds, which is useful, because -O0 builds have large entry blocks and
11453     // many allocas.
11454     if (ArgCopyElisionCandidates.size() == NumArgs)
11455       break;
11456   }
11457 }
11458 
11459 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11460 /// ArgVal is a load from a suitable fixed stack object.
11461 static void tryToElideArgumentCopy(
11462     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11463     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11464     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11465     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11466     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11467   // Check if this is a load from a fixed stack object.
11468   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11469   if (!LNode)
11470     return;
11471   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11472   if (!FINode)
11473     return;
11474 
11475   // Check that the fixed stack object is the right size and alignment.
11476   // Look at the alignment that the user wrote on the alloca instead of looking
11477   // at the stack object.
11478   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11479   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11480   const AllocaInst *AI = ArgCopyIter->second.first;
11481   int FixedIndex = FINode->getIndex();
11482   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11483   int OldIndex = AllocaIndex;
11484   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11485   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11486     LLVM_DEBUG(
11487         dbgs() << "  argument copy elision failed due to bad fixed stack "
11488                   "object size\n");
11489     return;
11490   }
11491   Align RequiredAlignment = AI->getAlign();
11492   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11493     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11494                          "greater than stack argument alignment ("
11495                       << DebugStr(RequiredAlignment) << " vs "
11496                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11497     return;
11498   }
11499 
11500   // Perform the elision. Delete the old stack object and replace its only use
11501   // in the variable info map. Mark the stack object as mutable and aliased.
11502   LLVM_DEBUG({
11503     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11504            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11505            << '\n';
11506   });
11507   MFI.RemoveStackObject(OldIndex);
11508   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11509   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11510   AllocaIndex = FixedIndex;
11511   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11512   for (SDValue ArgVal : ArgVals)
11513     Chains.push_back(ArgVal.getValue(1));
11514 
11515   // Avoid emitting code for the store implementing the copy.
11516   const StoreInst *SI = ArgCopyIter->second.second;
11517   ElidedArgCopyInstrs.insert(SI);
11518 
11519   // Check for uses of the argument again so that we can avoid exporting ArgVal
11520   // if it is't used by anything other than the store.
11521   for (const Value *U : Arg.users()) {
11522     if (U != SI) {
11523       ArgHasUses = true;
11524       break;
11525     }
11526   }
11527 }
11528 
11529 void SelectionDAGISel::LowerArguments(const Function &F) {
11530   SelectionDAG &DAG = SDB->DAG;
11531   SDLoc dl = SDB->getCurSDLoc();
11532   const DataLayout &DL = DAG.getDataLayout();
11533   SmallVector<ISD::InputArg, 16> Ins;
11534 
11535   // In Naked functions we aren't going to save any registers.
11536   if (F.hasFnAttribute(Attribute::Naked))
11537     return;
11538 
11539   if (!FuncInfo->CanLowerReturn) {
11540     // Put in an sret pointer parameter before all the other parameters.
11541     SmallVector<EVT, 1> ValueVTs;
11542     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11543                     PointerType::get(F.getContext(),
11544                                      DAG.getDataLayout().getAllocaAddrSpace()),
11545                     ValueVTs);
11546 
11547     // NOTE: Assuming that a pointer will never break down to more than one VT
11548     // or one register.
11549     ISD::ArgFlagsTy Flags;
11550     Flags.setSRet();
11551     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11552     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11553                          ISD::InputArg::NoArgIndex, 0);
11554     Ins.push_back(RetArg);
11555   }
11556 
11557   // Look for stores of arguments to static allocas. Mark such arguments with a
11558   // flag to ask the target to give us the memory location of that argument if
11559   // available.
11560   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11561   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11562                                     ArgCopyElisionCandidates);
11563 
11564   // Set up the incoming argument description vector.
11565   for (const Argument &Arg : F.args()) {
11566     unsigned ArgNo = Arg.getArgNo();
11567     SmallVector<EVT, 4> ValueVTs;
11568     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11569     bool isArgValueUsed = !Arg.use_empty();
11570     unsigned PartBase = 0;
11571     Type *FinalType = Arg.getType();
11572     if (Arg.hasAttribute(Attribute::ByVal))
11573       FinalType = Arg.getParamByValType();
11574     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11575         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11576     for (unsigned Value = 0, NumValues = ValueVTs.size();
11577          Value != NumValues; ++Value) {
11578       EVT VT = ValueVTs[Value];
11579       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11580       ISD::ArgFlagsTy Flags;
11581 
11582 
11583       if (Arg.getType()->isPointerTy()) {
11584         Flags.setPointer();
11585         Flags.setPointerAddrSpace(
11586             cast<PointerType>(Arg.getType())->getAddressSpace());
11587       }
11588       if (Arg.hasAttribute(Attribute::ZExt))
11589         Flags.setZExt();
11590       if (Arg.hasAttribute(Attribute::SExt))
11591         Flags.setSExt();
11592       if (Arg.hasAttribute(Attribute::InReg)) {
11593         // If we are using vectorcall calling convention, a structure that is
11594         // passed InReg - is surely an HVA
11595         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11596             isa<StructType>(Arg.getType())) {
11597           // The first value of a structure is marked
11598           if (0 == Value)
11599             Flags.setHvaStart();
11600           Flags.setHva();
11601         }
11602         // Set InReg Flag
11603         Flags.setInReg();
11604       }
11605       if (Arg.hasAttribute(Attribute::StructRet))
11606         Flags.setSRet();
11607       if (Arg.hasAttribute(Attribute::SwiftSelf))
11608         Flags.setSwiftSelf();
11609       if (Arg.hasAttribute(Attribute::SwiftAsync))
11610         Flags.setSwiftAsync();
11611       if (Arg.hasAttribute(Attribute::SwiftError))
11612         Flags.setSwiftError();
11613       if (Arg.hasAttribute(Attribute::ByVal))
11614         Flags.setByVal();
11615       if (Arg.hasAttribute(Attribute::ByRef))
11616         Flags.setByRef();
11617       if (Arg.hasAttribute(Attribute::InAlloca)) {
11618         Flags.setInAlloca();
11619         // Set the byval flag for CCAssignFn callbacks that don't know about
11620         // inalloca.  This way we can know how many bytes we should've allocated
11621         // and how many bytes a callee cleanup function will pop.  If we port
11622         // inalloca to more targets, we'll have to add custom inalloca handling
11623         // in the various CC lowering callbacks.
11624         Flags.setByVal();
11625       }
11626       if (Arg.hasAttribute(Attribute::Preallocated)) {
11627         Flags.setPreallocated();
11628         // Set the byval flag for CCAssignFn callbacks that don't know about
11629         // preallocated.  This way we can know how many bytes we should've
11630         // allocated and how many bytes a callee cleanup function will pop.  If
11631         // we port preallocated to more targets, we'll have to add custom
11632         // preallocated handling in the various CC lowering callbacks.
11633         Flags.setByVal();
11634       }
11635 
11636       // Certain targets (such as MIPS), may have a different ABI alignment
11637       // for a type depending on the context. Give the target a chance to
11638       // specify the alignment it wants.
11639       const Align OriginalAlignment(
11640           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11641       Flags.setOrigAlign(OriginalAlignment);
11642 
11643       Align MemAlign;
11644       Type *ArgMemTy = nullptr;
11645       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11646           Flags.isByRef()) {
11647         if (!ArgMemTy)
11648           ArgMemTy = Arg.getPointeeInMemoryValueType();
11649 
11650         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11651 
11652         // For in-memory arguments, size and alignment should be passed from FE.
11653         // BE will guess if this info is not there but there are cases it cannot
11654         // get right.
11655         if (auto ParamAlign = Arg.getParamStackAlign())
11656           MemAlign = *ParamAlign;
11657         else if ((ParamAlign = Arg.getParamAlign()))
11658           MemAlign = *ParamAlign;
11659         else
11660           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11661         if (Flags.isByRef())
11662           Flags.setByRefSize(MemSize);
11663         else
11664           Flags.setByValSize(MemSize);
11665       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11666         MemAlign = *ParamAlign;
11667       } else {
11668         MemAlign = OriginalAlignment;
11669       }
11670       Flags.setMemAlign(MemAlign);
11671 
11672       if (Arg.hasAttribute(Attribute::Nest))
11673         Flags.setNest();
11674       if (NeedsRegBlock)
11675         Flags.setInConsecutiveRegs();
11676       if (ArgCopyElisionCandidates.count(&Arg))
11677         Flags.setCopyElisionCandidate();
11678       if (Arg.hasAttribute(Attribute::Returned))
11679         Flags.setReturned();
11680 
11681       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11682           *CurDAG->getContext(), F.getCallingConv(), VT);
11683       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11684           *CurDAG->getContext(), F.getCallingConv(), VT);
11685       for (unsigned i = 0; i != NumRegs; ++i) {
11686         // For scalable vectors, use the minimum size; individual targets
11687         // are responsible for handling scalable vector arguments and
11688         // return values.
11689         ISD::InputArg MyFlags(
11690             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11691             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11692         if (NumRegs > 1 && i == 0)
11693           MyFlags.Flags.setSplit();
11694         // if it isn't first piece, alignment must be 1
11695         else if (i > 0) {
11696           MyFlags.Flags.setOrigAlign(Align(1));
11697           if (i == NumRegs - 1)
11698             MyFlags.Flags.setSplitEnd();
11699         }
11700         Ins.push_back(MyFlags);
11701       }
11702       if (NeedsRegBlock && Value == NumValues - 1)
11703         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11704       PartBase += VT.getStoreSize().getKnownMinValue();
11705     }
11706   }
11707 
11708   // Call the target to set up the argument values.
11709   SmallVector<SDValue, 8> InVals;
11710   SDValue NewRoot = TLI->LowerFormalArguments(
11711       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11712 
11713   // Verify that the target's LowerFormalArguments behaved as expected.
11714   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11715          "LowerFormalArguments didn't return a valid chain!");
11716   assert(InVals.size() == Ins.size() &&
11717          "LowerFormalArguments didn't emit the correct number of values!");
11718   LLVM_DEBUG({
11719     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11720       assert(InVals[i].getNode() &&
11721              "LowerFormalArguments emitted a null value!");
11722       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11723              "LowerFormalArguments emitted a value with the wrong type!");
11724     }
11725   });
11726 
11727   // Update the DAG with the new chain value resulting from argument lowering.
11728   DAG.setRoot(NewRoot);
11729 
11730   // Set up the argument values.
11731   unsigned i = 0;
11732   if (!FuncInfo->CanLowerReturn) {
11733     // Create a virtual register for the sret pointer, and put in a copy
11734     // from the sret argument into it.
11735     SmallVector<EVT, 1> ValueVTs;
11736     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11737                     PointerType::get(F.getContext(),
11738                                      DAG.getDataLayout().getAllocaAddrSpace()),
11739                     ValueVTs);
11740     MVT VT = ValueVTs[0].getSimpleVT();
11741     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11742     std::optional<ISD::NodeType> AssertOp;
11743     SDValue ArgValue =
11744         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11745                          F.getCallingConv(), AssertOp);
11746 
11747     MachineFunction& MF = SDB->DAG.getMachineFunction();
11748     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11749     Register SRetReg =
11750         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11751     FuncInfo->DemoteRegister = SRetReg;
11752     NewRoot =
11753         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11754     DAG.setRoot(NewRoot);
11755 
11756     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11757     ++i;
11758   }
11759 
11760   SmallVector<SDValue, 4> Chains;
11761   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11762   for (const Argument &Arg : F.args()) {
11763     SmallVector<SDValue, 4> ArgValues;
11764     SmallVector<EVT, 4> ValueVTs;
11765     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11766     unsigned NumValues = ValueVTs.size();
11767     if (NumValues == 0)
11768       continue;
11769 
11770     bool ArgHasUses = !Arg.use_empty();
11771 
11772     // Elide the copying store if the target loaded this argument from a
11773     // suitable fixed stack object.
11774     if (Ins[i].Flags.isCopyElisionCandidate()) {
11775       unsigned NumParts = 0;
11776       for (EVT VT : ValueVTs)
11777         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11778                                                        F.getCallingConv(), VT);
11779 
11780       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11781                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11782                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11783     }
11784 
11785     // If this argument is unused then remember its value. It is used to generate
11786     // debugging information.
11787     bool isSwiftErrorArg =
11788         TLI->supportSwiftError() &&
11789         Arg.hasAttribute(Attribute::SwiftError);
11790     if (!ArgHasUses && !isSwiftErrorArg) {
11791       SDB->setUnusedArgValue(&Arg, InVals[i]);
11792 
11793       // Also remember any frame index for use in FastISel.
11794       if (FrameIndexSDNode *FI =
11795           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11796         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11797     }
11798 
11799     for (unsigned Val = 0; Val != NumValues; ++Val) {
11800       EVT VT = ValueVTs[Val];
11801       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11802                                                       F.getCallingConv(), VT);
11803       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11804           *CurDAG->getContext(), F.getCallingConv(), VT);
11805 
11806       // Even an apparent 'unused' swifterror argument needs to be returned. So
11807       // we do generate a copy for it that can be used on return from the
11808       // function.
11809       if (ArgHasUses || isSwiftErrorArg) {
11810         std::optional<ISD::NodeType> AssertOp;
11811         if (Arg.hasAttribute(Attribute::SExt))
11812           AssertOp = ISD::AssertSext;
11813         else if (Arg.hasAttribute(Attribute::ZExt))
11814           AssertOp = ISD::AssertZext;
11815 
11816         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11817                                              PartVT, VT, nullptr, NewRoot,
11818                                              F.getCallingConv(), AssertOp));
11819       }
11820 
11821       i += NumParts;
11822     }
11823 
11824     // We don't need to do anything else for unused arguments.
11825     if (ArgValues.empty())
11826       continue;
11827 
11828     // Note down frame index.
11829     if (FrameIndexSDNode *FI =
11830         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11831       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11832 
11833     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11834                                      SDB->getCurSDLoc());
11835 
11836     SDB->setValue(&Arg, Res);
11837     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11838       // We want to associate the argument with the frame index, among
11839       // involved operands, that correspond to the lowest address. The
11840       // getCopyFromParts function, called earlier, is swapping the order of
11841       // the operands to BUILD_PAIR depending on endianness. The result of
11842       // that swapping is that the least significant bits of the argument will
11843       // be in the first operand of the BUILD_PAIR node, and the most
11844       // significant bits will be in the second operand.
11845       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11846       if (LoadSDNode *LNode =
11847           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11848         if (FrameIndexSDNode *FI =
11849             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11850           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11851     }
11852 
11853     // Analyses past this point are naive and don't expect an assertion.
11854     if (Res.getOpcode() == ISD::AssertZext)
11855       Res = Res.getOperand(0);
11856 
11857     // Update the SwiftErrorVRegDefMap.
11858     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11859       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11860       if (Reg.isVirtual())
11861         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11862                                    Reg);
11863     }
11864 
11865     // If this argument is live outside of the entry block, insert a copy from
11866     // wherever we got it to the vreg that other BB's will reference it as.
11867     if (Res.getOpcode() == ISD::CopyFromReg) {
11868       // If we can, though, try to skip creating an unnecessary vreg.
11869       // FIXME: This isn't very clean... it would be nice to make this more
11870       // general.
11871       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11872       if (Reg.isVirtual()) {
11873         FuncInfo->ValueMap[&Arg] = Reg;
11874         continue;
11875       }
11876     }
11877     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11878       FuncInfo->InitializeRegForValue(&Arg);
11879       SDB->CopyToExportRegsIfNeeded(&Arg);
11880     }
11881   }
11882 
11883   if (!Chains.empty()) {
11884     Chains.push_back(NewRoot);
11885     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11886   }
11887 
11888   DAG.setRoot(NewRoot);
11889 
11890   assert(i == InVals.size() && "Argument register count mismatch!");
11891 
11892   // If any argument copy elisions occurred and we have debug info, update the
11893   // stale frame indices used in the dbg.declare variable info table.
11894   if (!ArgCopyElisionFrameIndexMap.empty()) {
11895     for (MachineFunction::VariableDbgInfo &VI :
11896          MF->getInStackSlotVariableDbgInfo()) {
11897       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11898       if (I != ArgCopyElisionFrameIndexMap.end())
11899         VI.updateStackSlot(I->second);
11900     }
11901   }
11902 
11903   // Finally, if the target has anything special to do, allow it to do so.
11904   emitFunctionEntryCode();
11905 }
11906 
11907 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11908 /// ensure constants are generated when needed.  Remember the virtual registers
11909 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11910 /// directly add them, because expansion might result in multiple MBB's for one
11911 /// BB.  As such, the start of the BB might correspond to a different MBB than
11912 /// the end.
11913 void
11914 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11916 
11917   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11918 
11919   // Check PHI nodes in successors that expect a value to be available from this
11920   // block.
11921   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11922     if (!isa<PHINode>(SuccBB->begin())) continue;
11923     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
11924 
11925     // If this terminator has multiple identical successors (common for
11926     // switches), only handle each succ once.
11927     if (!SuccsHandled.insert(SuccMBB).second)
11928       continue;
11929 
11930     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11931 
11932     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11933     // nodes and Machine PHI nodes, but the incoming operands have not been
11934     // emitted yet.
11935     for (const PHINode &PN : SuccBB->phis()) {
11936       // Ignore dead phi's.
11937       if (PN.use_empty())
11938         continue;
11939 
11940       // Skip empty types
11941       if (PN.getType()->isEmptyTy())
11942         continue;
11943 
11944       unsigned Reg;
11945       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11946 
11947       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11948         unsigned &RegOut = ConstantsOut[C];
11949         if (RegOut == 0) {
11950           RegOut = FuncInfo.CreateRegs(C);
11951           // We need to zero/sign extend ConstantInt phi operands to match
11952           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11953           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11954           if (auto *CI = dyn_cast<ConstantInt>(C))
11955             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11956                                                     : ISD::ZERO_EXTEND;
11957           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11958         }
11959         Reg = RegOut;
11960       } else {
11961         DenseMap<const Value *, Register>::iterator I =
11962           FuncInfo.ValueMap.find(PHIOp);
11963         if (I != FuncInfo.ValueMap.end())
11964           Reg = I->second;
11965         else {
11966           assert(isa<AllocaInst>(PHIOp) &&
11967                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11968                  "Didn't codegen value into a register!??");
11969           Reg = FuncInfo.CreateRegs(PHIOp);
11970           CopyValueToVirtualRegister(PHIOp, Reg);
11971         }
11972       }
11973 
11974       // Remember that this register needs to added to the machine PHI node as
11975       // the input for this MBB.
11976       SmallVector<EVT, 4> ValueVTs;
11977       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11978       for (EVT VT : ValueVTs) {
11979         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11980         for (unsigned i = 0; i != NumRegisters; ++i)
11981           FuncInfo.PHINodesToUpdate.push_back(
11982               std::make_pair(&*MBBI++, Reg + i));
11983         Reg += NumRegisters;
11984       }
11985     }
11986   }
11987 
11988   ConstantsOut.clear();
11989 }
11990 
11991 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11992   MachineFunction::iterator I(MBB);
11993   if (++I == FuncInfo.MF->end())
11994     return nullptr;
11995   return &*I;
11996 }
11997 
11998 /// During lowering new call nodes can be created (such as memset, etc.).
11999 /// Those will become new roots of the current DAG, but complications arise
12000 /// when they are tail calls. In such cases, the call lowering will update
12001 /// the root, but the builder still needs to know that a tail call has been
12002 /// lowered in order to avoid generating an additional return.
12003 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12004   // If the node is null, we do have a tail call.
12005   if (MaybeTC.getNode() != nullptr)
12006     DAG.setRoot(MaybeTC);
12007   else
12008     HasTailCall = true;
12009 }
12010 
12011 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12012                                         MachineBasicBlock *SwitchMBB,
12013                                         MachineBasicBlock *DefaultMBB) {
12014   MachineFunction *CurMF = FuncInfo.MF;
12015   MachineBasicBlock *NextMBB = nullptr;
12016   MachineFunction::iterator BBI(W.MBB);
12017   if (++BBI != FuncInfo.MF->end())
12018     NextMBB = &*BBI;
12019 
12020   unsigned Size = W.LastCluster - W.FirstCluster + 1;
12021 
12022   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12023 
12024   if (Size == 2 && W.MBB == SwitchMBB) {
12025     // If any two of the cases has the same destination, and if one value
12026     // is the same as the other, but has one bit unset that the other has set,
12027     // use bit manipulation to do two compares at once.  For example:
12028     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12029     // TODO: This could be extended to merge any 2 cases in switches with 3
12030     // cases.
12031     // TODO: Handle cases where W.CaseBB != SwitchBB.
12032     CaseCluster &Small = *W.FirstCluster;
12033     CaseCluster &Big = *W.LastCluster;
12034 
12035     if (Small.Low == Small.High && Big.Low == Big.High &&
12036         Small.MBB == Big.MBB) {
12037       const APInt &SmallValue = Small.Low->getValue();
12038       const APInt &BigValue = Big.Low->getValue();
12039 
12040       // Check that there is only one bit different.
12041       APInt CommonBit = BigValue ^ SmallValue;
12042       if (CommonBit.isPowerOf2()) {
12043         SDValue CondLHS = getValue(Cond);
12044         EVT VT = CondLHS.getValueType();
12045         SDLoc DL = getCurSDLoc();
12046 
12047         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12048                                  DAG.getConstant(CommonBit, DL, VT));
12049         SDValue Cond = DAG.getSetCC(
12050             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12051             ISD::SETEQ);
12052 
12053         // Update successor info.
12054         // Both Small and Big will jump to Small.BB, so we sum up the
12055         // probabilities.
12056         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12057         if (BPI)
12058           addSuccessorWithProb(
12059               SwitchMBB, DefaultMBB,
12060               // The default destination is the first successor in IR.
12061               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12062         else
12063           addSuccessorWithProb(SwitchMBB, DefaultMBB);
12064 
12065         // Insert the true branch.
12066         SDValue BrCond =
12067             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12068                         DAG.getBasicBlock(Small.MBB));
12069         // Insert the false branch.
12070         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12071                              DAG.getBasicBlock(DefaultMBB));
12072 
12073         DAG.setRoot(BrCond);
12074         return;
12075       }
12076     }
12077   }
12078 
12079   if (TM.getOptLevel() != CodeGenOptLevel::None) {
12080     // Here, we order cases by probability so the most likely case will be
12081     // checked first. However, two clusters can have the same probability in
12082     // which case their relative ordering is non-deterministic. So we use Low
12083     // as a tie-breaker as clusters are guaranteed to never overlap.
12084     llvm::sort(W.FirstCluster, W.LastCluster + 1,
12085                [](const CaseCluster &a, const CaseCluster &b) {
12086       return a.Prob != b.Prob ?
12087              a.Prob > b.Prob :
12088              a.Low->getValue().slt(b.Low->getValue());
12089     });
12090 
12091     // Rearrange the case blocks so that the last one falls through if possible
12092     // without changing the order of probabilities.
12093     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12094       --I;
12095       if (I->Prob > W.LastCluster->Prob)
12096         break;
12097       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12098         std::swap(*I, *W.LastCluster);
12099         break;
12100       }
12101     }
12102   }
12103 
12104   // Compute total probability.
12105   BranchProbability DefaultProb = W.DefaultProb;
12106   BranchProbability UnhandledProbs = DefaultProb;
12107   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12108     UnhandledProbs += I->Prob;
12109 
12110   MachineBasicBlock *CurMBB = W.MBB;
12111   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12112     bool FallthroughUnreachable = false;
12113     MachineBasicBlock *Fallthrough;
12114     if (I == W.LastCluster) {
12115       // For the last cluster, fall through to the default destination.
12116       Fallthrough = DefaultMBB;
12117       FallthroughUnreachable = isa<UnreachableInst>(
12118           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12119     } else {
12120       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12121       CurMF->insert(BBI, Fallthrough);
12122       // Put Cond in a virtual register to make it available from the new blocks.
12123       ExportFromCurrentBlock(Cond);
12124     }
12125     UnhandledProbs -= I->Prob;
12126 
12127     switch (I->Kind) {
12128       case CC_JumpTable: {
12129         // FIXME: Optimize away range check based on pivot comparisons.
12130         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12131         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12132 
12133         // The jump block hasn't been inserted yet; insert it here.
12134         MachineBasicBlock *JumpMBB = JT->MBB;
12135         CurMF->insert(BBI, JumpMBB);
12136 
12137         auto JumpProb = I->Prob;
12138         auto FallthroughProb = UnhandledProbs;
12139 
12140         // If the default statement is a target of the jump table, we evenly
12141         // distribute the default probability to successors of CurMBB. Also
12142         // update the probability on the edge from JumpMBB to Fallthrough.
12143         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12144                                               SE = JumpMBB->succ_end();
12145              SI != SE; ++SI) {
12146           if (*SI == DefaultMBB) {
12147             JumpProb += DefaultProb / 2;
12148             FallthroughProb -= DefaultProb / 2;
12149             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12150             JumpMBB->normalizeSuccProbs();
12151             break;
12152           }
12153         }
12154 
12155         // If the default clause is unreachable, propagate that knowledge into
12156         // JTH->FallthroughUnreachable which will use it to suppress the range
12157         // check.
12158         //
12159         // However, don't do this if we're doing branch target enforcement,
12160         // because a table branch _without_ a range check can be a tempting JOP
12161         // gadget - out-of-bounds inputs that are impossible in correct
12162         // execution become possible again if an attacker can influence the
12163         // control flow. So if an attacker doesn't already have a BTI bypass
12164         // available, we don't want them to be able to get one out of this
12165         // table branch.
12166         if (FallthroughUnreachable) {
12167           Function &CurFunc = CurMF->getFunction();
12168           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12169             JTH->FallthroughUnreachable = true;
12170         }
12171 
12172         if (!JTH->FallthroughUnreachable)
12173           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12174         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12175         CurMBB->normalizeSuccProbs();
12176 
12177         // The jump table header will be inserted in our current block, do the
12178         // range check, and fall through to our fallthrough block.
12179         JTH->HeaderBB = CurMBB;
12180         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12181 
12182         // If we're in the right place, emit the jump table header right now.
12183         if (CurMBB == SwitchMBB) {
12184           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12185           JTH->Emitted = true;
12186         }
12187         break;
12188       }
12189       case CC_BitTests: {
12190         // FIXME: Optimize away range check based on pivot comparisons.
12191         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12192 
12193         // The bit test blocks haven't been inserted yet; insert them here.
12194         for (BitTestCase &BTC : BTB->Cases)
12195           CurMF->insert(BBI, BTC.ThisBB);
12196 
12197         // Fill in fields of the BitTestBlock.
12198         BTB->Parent = CurMBB;
12199         BTB->Default = Fallthrough;
12200 
12201         BTB->DefaultProb = UnhandledProbs;
12202         // If the cases in bit test don't form a contiguous range, we evenly
12203         // distribute the probability on the edge to Fallthrough to two
12204         // successors of CurMBB.
12205         if (!BTB->ContiguousRange) {
12206           BTB->Prob += DefaultProb / 2;
12207           BTB->DefaultProb -= DefaultProb / 2;
12208         }
12209 
12210         if (FallthroughUnreachable)
12211           BTB->FallthroughUnreachable = true;
12212 
12213         // If we're in the right place, emit the bit test header right now.
12214         if (CurMBB == SwitchMBB) {
12215           visitBitTestHeader(*BTB, SwitchMBB);
12216           BTB->Emitted = true;
12217         }
12218         break;
12219       }
12220       case CC_Range: {
12221         const Value *RHS, *LHS, *MHS;
12222         ISD::CondCode CC;
12223         if (I->Low == I->High) {
12224           // Check Cond == I->Low.
12225           CC = ISD::SETEQ;
12226           LHS = Cond;
12227           RHS=I->Low;
12228           MHS = nullptr;
12229         } else {
12230           // Check I->Low <= Cond <= I->High.
12231           CC = ISD::SETLE;
12232           LHS = I->Low;
12233           MHS = Cond;
12234           RHS = I->High;
12235         }
12236 
12237         // If Fallthrough is unreachable, fold away the comparison.
12238         if (FallthroughUnreachable)
12239           CC = ISD::SETTRUE;
12240 
12241         // The false probability is the sum of all unhandled cases.
12242         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12243                      getCurSDLoc(), I->Prob, UnhandledProbs);
12244 
12245         if (CurMBB == SwitchMBB)
12246           visitSwitchCase(CB, SwitchMBB);
12247         else
12248           SL->SwitchCases.push_back(CB);
12249 
12250         break;
12251       }
12252     }
12253     CurMBB = Fallthrough;
12254   }
12255 }
12256 
12257 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12258                                         const SwitchWorkListItem &W,
12259                                         Value *Cond,
12260                                         MachineBasicBlock *SwitchMBB) {
12261   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12262          "Clusters not sorted?");
12263   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12264 
12265   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12266       SL->computeSplitWorkItemInfo(W);
12267 
12268   // Use the first element on the right as pivot since we will make less-than
12269   // comparisons against it.
12270   CaseClusterIt PivotCluster = FirstRight;
12271   assert(PivotCluster > W.FirstCluster);
12272   assert(PivotCluster <= W.LastCluster);
12273 
12274   CaseClusterIt FirstLeft = W.FirstCluster;
12275   CaseClusterIt LastRight = W.LastCluster;
12276 
12277   const ConstantInt *Pivot = PivotCluster->Low;
12278 
12279   // New blocks will be inserted immediately after the current one.
12280   MachineFunction::iterator BBI(W.MBB);
12281   ++BBI;
12282 
12283   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12284   // we can branch to its destination directly if it's squeezed exactly in
12285   // between the known lower bound and Pivot - 1.
12286   MachineBasicBlock *LeftMBB;
12287   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12288       FirstLeft->Low == W.GE &&
12289       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12290     LeftMBB = FirstLeft->MBB;
12291   } else {
12292     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12293     FuncInfo.MF->insert(BBI, LeftMBB);
12294     WorkList.push_back(
12295         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12296     // Put Cond in a virtual register to make it available from the new blocks.
12297     ExportFromCurrentBlock(Cond);
12298   }
12299 
12300   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12301   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12302   // directly if RHS.High equals the current upper bound.
12303   MachineBasicBlock *RightMBB;
12304   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12305       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12306     RightMBB = FirstRight->MBB;
12307   } else {
12308     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12309     FuncInfo.MF->insert(BBI, RightMBB);
12310     WorkList.push_back(
12311         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12312     // Put Cond in a virtual register to make it available from the new blocks.
12313     ExportFromCurrentBlock(Cond);
12314   }
12315 
12316   // Create the CaseBlock record that will be used to lower the branch.
12317   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12318                getCurSDLoc(), LeftProb, RightProb);
12319 
12320   if (W.MBB == SwitchMBB)
12321     visitSwitchCase(CB, SwitchMBB);
12322   else
12323     SL->SwitchCases.push_back(CB);
12324 }
12325 
12326 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12327 // from the swith statement.
12328 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12329                                             BranchProbability PeeledCaseProb) {
12330   if (PeeledCaseProb == BranchProbability::getOne())
12331     return BranchProbability::getZero();
12332   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12333 
12334   uint32_t Numerator = CaseProb.getNumerator();
12335   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12336   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12337 }
12338 
12339 // Try to peel the top probability case if it exceeds the threshold.
12340 // Return current MachineBasicBlock for the switch statement if the peeling
12341 // does not occur.
12342 // If the peeling is performed, return the newly created MachineBasicBlock
12343 // for the peeled switch statement. Also update Clusters to remove the peeled
12344 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12345 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12346     const SwitchInst &SI, CaseClusterVector &Clusters,
12347     BranchProbability &PeeledCaseProb) {
12348   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12349   // Don't perform if there is only one cluster or optimizing for size.
12350   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12351       TM.getOptLevel() == CodeGenOptLevel::None ||
12352       SwitchMBB->getParent()->getFunction().hasMinSize())
12353     return SwitchMBB;
12354 
12355   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12356   unsigned PeeledCaseIndex = 0;
12357   bool SwitchPeeled = false;
12358   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12359     CaseCluster &CC = Clusters[Index];
12360     if (CC.Prob < TopCaseProb)
12361       continue;
12362     TopCaseProb = CC.Prob;
12363     PeeledCaseIndex = Index;
12364     SwitchPeeled = true;
12365   }
12366   if (!SwitchPeeled)
12367     return SwitchMBB;
12368 
12369   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12370                     << TopCaseProb << "\n");
12371 
12372   // Record the MBB for the peeled switch statement.
12373   MachineFunction::iterator BBI(SwitchMBB);
12374   ++BBI;
12375   MachineBasicBlock *PeeledSwitchMBB =
12376       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12377   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12378 
12379   ExportFromCurrentBlock(SI.getCondition());
12380   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12381   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12382                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12383   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12384 
12385   Clusters.erase(PeeledCaseIt);
12386   for (CaseCluster &CC : Clusters) {
12387     LLVM_DEBUG(
12388         dbgs() << "Scale the probablity for one cluster, before scaling: "
12389                << CC.Prob << "\n");
12390     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12391     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12392   }
12393   PeeledCaseProb = TopCaseProb;
12394   return PeeledSwitchMBB;
12395 }
12396 
12397 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12398   // Extract cases from the switch.
12399   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12400   CaseClusterVector Clusters;
12401   Clusters.reserve(SI.getNumCases());
12402   for (auto I : SI.cases()) {
12403     MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12404     const ConstantInt *CaseVal = I.getCaseValue();
12405     BranchProbability Prob =
12406         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12407             : BranchProbability(1, SI.getNumCases() + 1);
12408     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12409   }
12410 
12411   MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12412 
12413   // Cluster adjacent cases with the same destination. We do this at all
12414   // optimization levels because it's cheap to do and will make codegen faster
12415   // if there are many clusters.
12416   sortAndRangeify(Clusters);
12417 
12418   // The branch probablity of the peeled case.
12419   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12420   MachineBasicBlock *PeeledSwitchMBB =
12421       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12422 
12423   // If there is only the default destination, jump there directly.
12424   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12425   if (Clusters.empty()) {
12426     assert(PeeledSwitchMBB == SwitchMBB);
12427     SwitchMBB->addSuccessor(DefaultMBB);
12428     if (DefaultMBB != NextBlock(SwitchMBB)) {
12429       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12430                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12431     }
12432     return;
12433   }
12434 
12435   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12436                      DAG.getBFI());
12437   SL->findBitTestClusters(Clusters, &SI);
12438 
12439   LLVM_DEBUG({
12440     dbgs() << "Case clusters: ";
12441     for (const CaseCluster &C : Clusters) {
12442       if (C.Kind == CC_JumpTable)
12443         dbgs() << "JT:";
12444       if (C.Kind == CC_BitTests)
12445         dbgs() << "BT:";
12446 
12447       C.Low->getValue().print(dbgs(), true);
12448       if (C.Low != C.High) {
12449         dbgs() << '-';
12450         C.High->getValue().print(dbgs(), true);
12451       }
12452       dbgs() << ' ';
12453     }
12454     dbgs() << '\n';
12455   });
12456 
12457   assert(!Clusters.empty());
12458   SwitchWorkList WorkList;
12459   CaseClusterIt First = Clusters.begin();
12460   CaseClusterIt Last = Clusters.end() - 1;
12461   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12462   // Scale the branchprobability for DefaultMBB if the peel occurs and
12463   // DefaultMBB is not replaced.
12464   if (PeeledCaseProb != BranchProbability::getZero() &&
12465       DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12466     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12467   WorkList.push_back(
12468       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12469 
12470   while (!WorkList.empty()) {
12471     SwitchWorkListItem W = WorkList.pop_back_val();
12472     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12473 
12474     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12475         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12476       // For optimized builds, lower large range as a balanced binary tree.
12477       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12478       continue;
12479     }
12480 
12481     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12482   }
12483 }
12484 
12485 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12487   auto DL = getCurSDLoc();
12488   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12489   setValue(&I, DAG.getStepVector(DL, ResultVT));
12490 }
12491 
12492 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12494   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12495 
12496   SDLoc DL = getCurSDLoc();
12497   SDValue V = getValue(I.getOperand(0));
12498   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12499 
12500   if (VT.isScalableVector()) {
12501     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12502     return;
12503   }
12504 
12505   // Use VECTOR_SHUFFLE for the fixed-length vector
12506   // to maintain existing behavior.
12507   SmallVector<int, 8> Mask;
12508   unsigned NumElts = VT.getVectorMinNumElements();
12509   for (unsigned i = 0; i != NumElts; ++i)
12510     Mask.push_back(NumElts - 1 - i);
12511 
12512   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12513 }
12514 
12515 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12516   auto DL = getCurSDLoc();
12517   SDValue InVec = getValue(I.getOperand(0));
12518   EVT OutVT =
12519       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12520 
12521   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12522 
12523   // ISD Node needs the input vectors split into two equal parts
12524   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12525                            DAG.getVectorIdxConstant(0, DL));
12526   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12527                            DAG.getVectorIdxConstant(OutNumElts, DL));
12528 
12529   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12530   // legalisation and combines.
12531   if (OutVT.isFixedLengthVector()) {
12532     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12533                                         createStrideMask(0, 2, OutNumElts));
12534     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12535                                        createStrideMask(1, 2, OutNumElts));
12536     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12537     setValue(&I, Res);
12538     return;
12539   }
12540 
12541   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12542                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12543   setValue(&I, Res);
12544 }
12545 
12546 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12547   auto DL = getCurSDLoc();
12548   EVT InVT = getValue(I.getOperand(0)).getValueType();
12549   SDValue InVec0 = getValue(I.getOperand(0));
12550   SDValue InVec1 = getValue(I.getOperand(1));
12551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12552   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12553 
12554   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12555   // legalisation and combines.
12556   if (OutVT.isFixedLengthVector()) {
12557     unsigned NumElts = InVT.getVectorMinNumElements();
12558     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12559     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12560                                       createInterleaveMask(NumElts, 2)));
12561     return;
12562   }
12563 
12564   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12565                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12566   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12567                     Res.getValue(1));
12568   setValue(&I, Res);
12569 }
12570 
12571 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12572   SmallVector<EVT, 4> ValueVTs;
12573   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12574                   ValueVTs);
12575   unsigned NumValues = ValueVTs.size();
12576   if (NumValues == 0) return;
12577 
12578   SmallVector<SDValue, 4> Values(NumValues);
12579   SDValue Op = getValue(I.getOperand(0));
12580 
12581   for (unsigned i = 0; i != NumValues; ++i)
12582     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12583                             SDValue(Op.getNode(), Op.getResNo() + i));
12584 
12585   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12586                            DAG.getVTList(ValueVTs), Values));
12587 }
12588 
12589 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12590   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12591   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12592 
12593   SDLoc DL = getCurSDLoc();
12594   SDValue V1 = getValue(I.getOperand(0));
12595   SDValue V2 = getValue(I.getOperand(1));
12596   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12597 
12598   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12599   if (VT.isScalableVector()) {
12600     setValue(
12601         &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12602                         DAG.getSignedConstant(
12603                             Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12604     return;
12605   }
12606 
12607   unsigned NumElts = VT.getVectorNumElements();
12608 
12609   uint64_t Idx = (NumElts + Imm) % NumElts;
12610 
12611   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12612   SmallVector<int, 8> Mask;
12613   for (unsigned i = 0; i < NumElts; ++i)
12614     Mask.push_back(Idx + i);
12615   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12616 }
12617 
12618 // Consider the following MIR after SelectionDAG, which produces output in
12619 // phyregs in the first case or virtregs in the second case.
12620 //
12621 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12622 // %5:gr32 = COPY $ebx
12623 // %6:gr32 = COPY $edx
12624 // %1:gr32 = COPY %6:gr32
12625 // %0:gr32 = COPY %5:gr32
12626 //
12627 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12628 // %1:gr32 = COPY %6:gr32
12629 // %0:gr32 = COPY %5:gr32
12630 //
12631 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12632 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12633 //
12634 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12635 // to a single virtreg (such as %0). The remaining outputs monotonically
12636 // increase in virtreg number from there. If a callbr has no outputs, then it
12637 // should not have a corresponding callbr landingpad; in fact, the callbr
12638 // landingpad would not even be able to refer to such a callbr.
12639 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12640   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12641   // There is definitely at least one copy.
12642   assert(MI->getOpcode() == TargetOpcode::COPY &&
12643          "start of copy chain MUST be COPY");
12644   Reg = MI->getOperand(1).getReg();
12645   MI = MRI.def_begin(Reg)->getParent();
12646   // There may be an optional second copy.
12647   if (MI->getOpcode() == TargetOpcode::COPY) {
12648     assert(Reg.isVirtual() && "expected COPY of virtual register");
12649     Reg = MI->getOperand(1).getReg();
12650     assert(Reg.isPhysical() && "expected COPY of physical register");
12651     MI = MRI.def_begin(Reg)->getParent();
12652   }
12653   // The start of the chain must be an INLINEASM_BR.
12654   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12655          "end of copy chain MUST be INLINEASM_BR");
12656   return Reg;
12657 }
12658 
12659 // We must do this walk rather than the simpler
12660 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12661 // otherwise we will end up with copies of virtregs only valid along direct
12662 // edges.
12663 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12664   SmallVector<EVT, 8> ResultVTs;
12665   SmallVector<SDValue, 8> ResultValues;
12666   const auto *CBR =
12667       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12668 
12669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12670   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12671   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12672 
12673   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12674   SDValue Chain = DAG.getRoot();
12675 
12676   // Re-parse the asm constraints string.
12677   TargetLowering::AsmOperandInfoVector TargetConstraints =
12678       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12679   for (auto &T : TargetConstraints) {
12680     SDISelAsmOperandInfo OpInfo(T);
12681     if (OpInfo.Type != InlineAsm::isOutput)
12682       continue;
12683 
12684     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12685     // individual constraint.
12686     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12687 
12688     switch (OpInfo.ConstraintType) {
12689     case TargetLowering::C_Register:
12690     case TargetLowering::C_RegisterClass: {
12691       // Fill in OpInfo.AssignedRegs.Regs.
12692       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12693 
12694       // getRegistersForValue may produce 1 to many registers based on whether
12695       // the OpInfo.ConstraintVT is legal on the target or not.
12696       for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12697         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12698         if (Register::isPhysicalRegister(OriginalDef))
12699           FuncInfo.MBB->addLiveIn(OriginalDef);
12700         // Update the assigned registers to use the original defs.
12701         Reg = OriginalDef;
12702       }
12703 
12704       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12705           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12706       ResultValues.push_back(V);
12707       ResultVTs.push_back(OpInfo.ConstraintVT);
12708       break;
12709     }
12710     case TargetLowering::C_Other: {
12711       SDValue Flag;
12712       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12713                                                   OpInfo, DAG);
12714       ++InitialDef;
12715       ResultValues.push_back(V);
12716       ResultVTs.push_back(OpInfo.ConstraintVT);
12717       break;
12718     }
12719     default:
12720       break;
12721     }
12722   }
12723   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12724                           DAG.getVTList(ResultVTs), ResultValues);
12725   setValue(&I, V);
12726 }
12727