1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 namespace { 581 /// RegsForValue - This struct represents the registers (physical or virtual) 582 /// that a particular set of values is assigned, and the type information 583 /// about the value. The most common situation is to represent one value at a 584 /// time, but struct or array values are handled element-wise as multiple 585 /// values. The splitting of aggregates is performed recursively, so that we 586 /// never have aggregate-typed registers. The values at this point do not 587 /// necessarily have legal types, so each value may require one or more 588 /// registers of some legal type. 589 /// 590 struct RegsForValue { 591 /// ValueVTs - The value types of the values, which may not be legal, and 592 /// may need be promoted or synthesized from one or more registers. 593 /// 594 SmallVector<EVT, 4> ValueVTs; 595 596 /// RegVTs - The value types of the registers. This is the same size as 597 /// ValueVTs and it records, for each value, what the type of the assigned 598 /// register or registers are. (Individual values are never synthesized 599 /// from more than one type of register.) 600 /// 601 /// With virtual registers, the contents of RegVTs is redundant with TLI's 602 /// getRegisterType member function, however when with physical registers 603 /// it is necessary to have a separate record of the types. 604 /// 605 SmallVector<MVT, 4> RegVTs; 606 607 /// Regs - This list holds the registers assigned to the values. 608 /// Each legal or promoted value requires one register, and each 609 /// expanded value requires multiple registers. 610 /// 611 SmallVector<unsigned, 4> Regs; 612 613 RegsForValue() {} 614 615 RegsForValue(const SmallVector<unsigned, 4> ®s, 616 MVT regvt, EVT valuevt) 617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 618 619 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 620 unsigned Reg, Type *Ty) { 621 ComputeValueVTs(tli, Ty, ValueVTs); 622 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT ValueVT = ValueVTs[Value]; 625 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// append - Add the specified values to this one. 635 void append(const RegsForValue &RHS) { 636 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 637 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 638 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 639 } 640 641 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 642 /// this value and returns the result as a ValueVTs value. This uses 643 /// Chain/Flag as the input and updates them for the output Chain/Flag. 644 /// If the Flag pointer is NULL, no flag is used. 645 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 646 SDLoc dl, 647 SDValue &Chain, SDValue *Flag, 648 const Value *V = nullptr) const; 649 650 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 651 /// specified value into the registers specified by this object. This uses 652 /// Chain/Flag as the input and updates them for the output Chain/Flag. 653 /// If the Flag pointer is NULL, no flag is used. 654 void 655 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 656 SDValue *Flag, const Value *V, 657 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (!Flag) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 765 } 766 767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 768 /// specified value into the registers specified by this object. This uses 769 /// Chain/Flag as the input and updates them for the output Chain/Flag. 770 /// If the Flag pointer is NULL, no flag is used. 771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 772 SDValue &Chain, SDValue *Flag, const Value *V, 773 ISD::NodeType PreferredExtendType) const { 774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 775 ISD::NodeType ExtendKind = PreferredExtendType; 776 777 // Get the list of the values's legal parts. 778 unsigned NumRegs = Regs.size(); 779 SmallVector<SDValue, 8> Parts(NumRegs); 780 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 781 EVT ValueVT = ValueVTs[Value]; 782 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 783 MVT RegisterVT = RegVTs[Value]; 784 785 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 786 ExtendKind = ISD::ZERO_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (!Flag) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 851 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 852 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 853 MVT RegisterVT = RegVTs[Value]; 854 for (unsigned i = 0; i != NumRegs; ++i) { 855 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 856 unsigned TheReg = Regs[Reg++]; 857 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 858 859 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 860 // If we clobbered the stack pointer, MFI should know about it. 861 assert(DAG.getMachineFunction().getFrameInfo()-> 862 hasInlineAsmWithSPAdjust()); 863 } 864 } 865 } 866 } 867 868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 869 const TargetLibraryInfo *li) { 870 AA = &aa; 871 GFI = gfi; 872 LibInfo = li; 873 DL = DAG.getTarget().getDataLayout(); 874 Context = DAG.getContext(); 875 LPadToCallSiteMap.clear(); 876 } 877 878 /// clear - Clear out the current SelectionDAG and the associated 879 /// state and prepare this SelectionDAGBuilder object to be used 880 /// for a new block. This doesn't clear out information about 881 /// additional blocks that are needed to complete switch lowering 882 /// or PHI node updating; that information is cleared out as it is 883 /// consumed. 884 void SelectionDAGBuilder::clear() { 885 NodeMap.clear(); 886 UnusedArgNodeMap.clear(); 887 PendingLoads.clear(); 888 PendingExports.clear(); 889 CurInst = nullptr; 890 HasTailCall = false; 891 SDNodeOrder = LowestSDNodeOrder; 892 StatepointLowering.clear(); 893 } 894 895 /// clearDanglingDebugInfo - Clear the dangling debug information 896 /// map. This function is separated from the clear so that debug 897 /// information that is dangling in a basic block can be properly 898 /// resolved in a different basic block. This allows the 899 /// SelectionDAG to resolve dangling debug information attached 900 /// to PHI nodes. 901 void SelectionDAGBuilder::clearDanglingDebugInfo() { 902 DanglingDebugInfoMap.clear(); 903 } 904 905 /// getRoot - Return the current virtual root of the Selection DAG, 906 /// flushing any PendingLoad items. This must be done before emitting 907 /// a store or any other node that may need to be ordered after any 908 /// prior load instructions. 909 /// 910 SDValue SelectionDAGBuilder::getRoot() { 911 if (PendingLoads.empty()) 912 return DAG.getRoot(); 913 914 if (PendingLoads.size() == 1) { 915 SDValue Root = PendingLoads[0]; 916 DAG.setRoot(Root); 917 PendingLoads.clear(); 918 return Root; 919 } 920 921 // Otherwise, we have to make a token factor node. 922 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 923 PendingLoads); 924 PendingLoads.clear(); 925 DAG.setRoot(Root); 926 return Root; 927 } 928 929 /// getControlRoot - Similar to getRoot, but instead of flushing all the 930 /// PendingLoad items, flush all the PendingExports items. It is necessary 931 /// to do this before emitting a terminator instruction. 932 /// 933 SDValue SelectionDAGBuilder::getControlRoot() { 934 SDValue Root = DAG.getRoot(); 935 936 if (PendingExports.empty()) 937 return Root; 938 939 // Turn all of the CopyToReg chains into one factored node. 940 if (Root.getOpcode() != ISD::EntryToken) { 941 unsigned i = 0, e = PendingExports.size(); 942 for (; i != e; ++i) { 943 assert(PendingExports[i].getNode()->getNumOperands() > 1); 944 if (PendingExports[i].getNode()->getOperand(0) == Root) 945 break; // Don't add the root if we already indirectly depend on it. 946 } 947 948 if (i == e) 949 PendingExports.push_back(Root); 950 } 951 952 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 953 PendingExports); 954 PendingExports.clear(); 955 DAG.setRoot(Root); 956 return Root; 957 } 958 959 void SelectionDAGBuilder::visit(const Instruction &I) { 960 // Set up outgoing PHI node register values before emitting the terminator. 961 if (isa<TerminatorInst>(&I)) 962 HandlePHINodesInSuccessorBlocks(I.getParent()); 963 964 ++SDNodeOrder; 965 966 CurInst = &I; 967 968 visit(I.getOpcode(), I); 969 970 if (!isa<TerminatorInst>(&I) && !HasTailCall) 971 CopyToExportRegsIfNeeded(&I); 972 973 CurInst = nullptr; 974 } 975 976 void SelectionDAGBuilder::visitPHI(const PHINode &) { 977 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 978 } 979 980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 981 // Note: this doesn't use InstVisitor, because it has to work with 982 // ConstantExpr's in addition to instructions. 983 switch (Opcode) { 984 default: llvm_unreachable("Unknown instruction type encountered!"); 985 // Build the switch statement using the Instruction.def file. 986 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 987 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 988 #include "llvm/IR/Instruction.def" 989 } 990 } 991 992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 993 // generate the debug data structures now that we've seen its definition. 994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 995 SDValue Val) { 996 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 997 if (DDI.getDI()) { 998 const DbgValueInst *DI = DDI.getDI(); 999 DebugLoc dl = DDI.getdl(); 1000 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1001 MDLocalVariable *Variable = DI->getVariable(); 1002 MDExpression *Expr = DI->getExpression(); 1003 assert(Variable->isValidLocationForIntrinsic(dl) && 1004 "Expected inlined-at fields to agree"); 1005 uint64_t Offset = DI->getOffset(); 1006 // A dbg.value for an alloca is always indirect. 1007 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1008 SDDbgValue *SDV; 1009 if (Val.getNode()) { 1010 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1011 Val)) { 1012 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1013 IsIndirect, Offset, dl, DbgSDNodeOrder); 1014 DAG.AddDbgValue(SDV, Val.getNode(), false); 1015 } 1016 } else 1017 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1018 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1019 } 1020 } 1021 1022 /// getCopyFromRegs - If there was virtual register allocated for the value V 1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1025 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1026 SDValue res; 1027 1028 if (It != FuncInfo.ValueMap.end()) { 1029 unsigned InReg = It->second; 1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1031 Ty); 1032 SDValue Chain = DAG.getEntryNode(); 1033 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1034 resolveDanglingDebugInfo(V, res); 1035 } 1036 1037 return res; 1038 } 1039 1040 /// getValue - Return an SDValue for the given Value. 1041 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1042 // If we already have an SDValue for this value, use it. It's important 1043 // to do this first, so that we don't create a CopyFromReg if we already 1044 // have a regular SDValue. 1045 SDValue &N = NodeMap[V]; 1046 if (N.getNode()) return N; 1047 1048 // If there's a virtual register allocated and initialized for this 1049 // value, use it. 1050 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1051 if (copyFromReg.getNode()) { 1052 return copyFromReg; 1053 } 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 // Return true if SDValue exists for the given Value 1063 bool SelectionDAGBuilder::findValue(const Value *V) const { 1064 return (NodeMap.find(V) != NodeMap.end()) || 1065 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1066 } 1067 1068 /// getNonRegisterValue - Return an SDValue for the given Value, but 1069 /// don't look in FuncInfo.ValueMap for a virtual register. 1070 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1071 // If we already have an SDValue for this value, use it. 1072 SDValue &N = NodeMap[V]; 1073 if (N.getNode()) return N; 1074 1075 // Otherwise create a new SDValue and remember it. 1076 SDValue Val = getValueImpl(V); 1077 NodeMap[V] = Val; 1078 resolveDanglingDebugInfo(V, Val); 1079 return Val; 1080 } 1081 1082 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1083 /// Create an SDValue for the given value. 1084 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1086 1087 if (const Constant *C = dyn_cast<Constant>(V)) { 1088 EVT VT = TLI.getValueType(V->getType(), true); 1089 1090 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1091 return DAG.getConstant(*CI, VT); 1092 1093 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1094 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1095 1096 if (isa<ConstantPointerNull>(C)) { 1097 unsigned AS = V->getType()->getPointerAddressSpace(); 1098 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1099 } 1100 1101 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1102 return DAG.getConstantFP(*CFP, VT); 1103 1104 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1105 return DAG.getUNDEF(VT); 1106 1107 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1108 visit(CE->getOpcode(), *CE); 1109 SDValue N1 = NodeMap[V]; 1110 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1111 return N1; 1112 } 1113 1114 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1115 SmallVector<SDValue, 4> Constants; 1116 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1117 OI != OE; ++OI) { 1118 SDNode *Val = getValue(*OI).getNode(); 1119 // If the operand is an empty aggregate, there are no values. 1120 if (!Val) continue; 1121 // Add each leaf value from the operand to the Constants list 1122 // to form a flattened list of all the values. 1123 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1124 Constants.push_back(SDValue(Val, i)); 1125 } 1126 1127 return DAG.getMergeValues(Constants, getCurSDLoc()); 1128 } 1129 1130 if (const ConstantDataSequential *CDS = 1131 dyn_cast<ConstantDataSequential>(C)) { 1132 SmallVector<SDValue, 4> Ops; 1133 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1134 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1135 // Add each leaf value from the operand to the Constants list 1136 // to form a flattened list of all the values. 1137 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1138 Ops.push_back(SDValue(Val, i)); 1139 } 1140 1141 if (isa<ArrayType>(CDS->getType())) 1142 return DAG.getMergeValues(Ops, getCurSDLoc()); 1143 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1144 VT, Ops); 1145 } 1146 1147 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1148 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1149 "Unknown struct or array constant!"); 1150 1151 SmallVector<EVT, 4> ValueVTs; 1152 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1153 unsigned NumElts = ValueVTs.size(); 1154 if (NumElts == 0) 1155 return SDValue(); // empty struct 1156 SmallVector<SDValue, 4> Constants(NumElts); 1157 for (unsigned i = 0; i != NumElts; ++i) { 1158 EVT EltVT = ValueVTs[i]; 1159 if (isa<UndefValue>(C)) 1160 Constants[i] = DAG.getUNDEF(EltVT); 1161 else if (EltVT.isFloatingPoint()) 1162 Constants[i] = DAG.getConstantFP(0, EltVT); 1163 else 1164 Constants[i] = DAG.getConstant(0, EltVT); 1165 } 1166 1167 return DAG.getMergeValues(Constants, getCurSDLoc()); 1168 } 1169 1170 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1171 return DAG.getBlockAddress(BA, VT); 1172 1173 VectorType *VecTy = cast<VectorType>(V->getType()); 1174 unsigned NumElements = VecTy->getNumElements(); 1175 1176 // Now that we know the number and type of the elements, get that number of 1177 // elements into the Ops array based on what kind of constant it is. 1178 SmallVector<SDValue, 16> Ops; 1179 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1180 for (unsigned i = 0; i != NumElements; ++i) 1181 Ops.push_back(getValue(CV->getOperand(i))); 1182 } else { 1183 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1184 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1185 1186 SDValue Op; 1187 if (EltVT.isFloatingPoint()) 1188 Op = DAG.getConstantFP(0, EltVT); 1189 else 1190 Op = DAG.getConstant(0, EltVT); 1191 Ops.assign(NumElements, Op); 1192 } 1193 1194 // Create a BUILD_VECTOR node. 1195 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1196 } 1197 1198 // If this is a static alloca, generate it as the frameindex instead of 1199 // computation. 1200 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1201 DenseMap<const AllocaInst*, int>::iterator SI = 1202 FuncInfo.StaticAllocaMap.find(AI); 1203 if (SI != FuncInfo.StaticAllocaMap.end()) 1204 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1205 } 1206 1207 // If this is an instruction which fast-isel has deferred, select it now. 1208 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1209 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1210 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1211 SDValue Chain = DAG.getEntryNode(); 1212 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1213 } 1214 1215 llvm_unreachable("Can't get register for value!"); 1216 } 1217 1218 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1220 SDValue Chain = getControlRoot(); 1221 SmallVector<ISD::OutputArg, 8> Outs; 1222 SmallVector<SDValue, 8> OutVals; 1223 1224 if (!FuncInfo.CanLowerReturn) { 1225 unsigned DemoteReg = FuncInfo.DemoteRegister; 1226 const Function *F = I.getParent()->getParent(); 1227 1228 // Emit a store of the return value through the virtual register. 1229 // Leave Outs empty so that LowerReturn won't try to load return 1230 // registers the usual way. 1231 SmallVector<EVT, 1> PtrValueVTs; 1232 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1233 PtrValueVTs); 1234 1235 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 1238 SmallVector<EVT, 4> ValueVTs; 1239 SmallVector<uint64_t, 4> Offsets; 1240 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1241 unsigned NumValues = ValueVTs.size(); 1242 1243 SmallVector<SDValue, 4> Chains(NumValues); 1244 for (unsigned i = 0; i != NumValues; ++i) { 1245 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1246 RetPtr.getValueType(), RetPtr, 1247 DAG.getIntPtrConstant(Offsets[i])); 1248 Chains[i] = 1249 DAG.getStore(Chain, getCurSDLoc(), 1250 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1251 // FIXME: better loc info would be nice. 1252 Add, MachinePointerInfo(), false, false, 0); 1253 } 1254 1255 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1256 MVT::Other, Chains); 1257 } else if (I.getNumOperands() != 0) { 1258 SmallVector<EVT, 4> ValueVTs; 1259 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1260 unsigned NumValues = ValueVTs.size(); 1261 if (NumValues) { 1262 SDValue RetOp = getValue(I.getOperand(0)); 1263 1264 const Function *F = I.getParent()->getParent(); 1265 1266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1267 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1268 Attribute::SExt)) 1269 ExtendKind = ISD::SIGN_EXTEND; 1270 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1271 Attribute::ZExt)) 1272 ExtendKind = ISD::ZERO_EXTEND; 1273 1274 LLVMContext &Context = F->getContext(); 1275 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1276 Attribute::InReg); 1277 1278 for (unsigned j = 0; j != NumValues; ++j) { 1279 EVT VT = ValueVTs[j]; 1280 1281 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1282 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1283 1284 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1285 MVT PartVT = TLI.getRegisterType(Context, VT); 1286 SmallVector<SDValue, 4> Parts(NumParts); 1287 getCopyToParts(DAG, getCurSDLoc(), 1288 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1289 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1290 1291 // 'inreg' on function refers to return value 1292 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1293 if (RetInReg) 1294 Flags.setInReg(); 1295 1296 // Propagate extension type if any 1297 if (ExtendKind == ISD::SIGN_EXTEND) 1298 Flags.setSExt(); 1299 else if (ExtendKind == ISD::ZERO_EXTEND) 1300 Flags.setZExt(); 1301 1302 for (unsigned i = 0; i < NumParts; ++i) { 1303 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1304 VT, /*isfixed=*/true, 0, 0)); 1305 OutVals.push_back(Parts[i]); 1306 } 1307 } 1308 } 1309 } 1310 1311 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1312 CallingConv::ID CallConv = 1313 DAG.getMachineFunction().getFunction()->getCallingConv(); 1314 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1315 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1316 1317 // Verify that the target's LowerReturn behaved as expected. 1318 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1319 "LowerReturn didn't return a valid chain!"); 1320 1321 // Update the DAG with the new chain value resulting from return lowering. 1322 DAG.setRoot(Chain); 1323 } 1324 1325 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1326 /// created for it, emit nodes to copy the value into the virtual 1327 /// registers. 1328 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1329 // Skip empty types 1330 if (V->getType()->isEmptyTy()) 1331 return; 1332 1333 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1334 if (VMI != FuncInfo.ValueMap.end()) { 1335 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1336 CopyValueToVirtualRegister(V, VMI->second); 1337 } 1338 } 1339 1340 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1341 /// the current basic block, add it to ValueMap now so that we'll get a 1342 /// CopyTo/FromReg. 1343 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1344 // No need to export constants. 1345 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1346 1347 // Already exported? 1348 if (FuncInfo.isExportedInst(V)) return; 1349 1350 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1351 CopyValueToVirtualRegister(V, Reg); 1352 } 1353 1354 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1355 const BasicBlock *FromBB) { 1356 // The operands of the setcc have to be in this block. We don't know 1357 // how to export them from some other block. 1358 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1359 // Can export from current BB. 1360 if (VI->getParent() == FromBB) 1361 return true; 1362 1363 // Is already exported, noop. 1364 return FuncInfo.isExportedInst(V); 1365 } 1366 1367 // If this is an argument, we can export it if the BB is the entry block or 1368 // if it is already exported. 1369 if (isa<Argument>(V)) { 1370 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1371 return true; 1372 1373 // Otherwise, can only export this if it is already exported. 1374 return FuncInfo.isExportedInst(V); 1375 } 1376 1377 // Otherwise, constants can always be exported. 1378 return true; 1379 } 1380 1381 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1382 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1383 const MachineBasicBlock *Dst) const { 1384 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1385 if (!BPI) 1386 return 0; 1387 const BasicBlock *SrcBB = Src->getBasicBlock(); 1388 const BasicBlock *DstBB = Dst->getBasicBlock(); 1389 return BPI->getEdgeWeight(SrcBB, DstBB); 1390 } 1391 1392 void SelectionDAGBuilder:: 1393 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1394 uint32_t Weight /* = 0 */) { 1395 if (!Weight) 1396 Weight = getEdgeWeight(Src, Dst); 1397 Src->addSuccessor(Dst, Weight); 1398 } 1399 1400 1401 static bool InBlock(const Value *V, const BasicBlock *BB) { 1402 if (const Instruction *I = dyn_cast<Instruction>(V)) 1403 return I->getParent() == BB; 1404 return true; 1405 } 1406 1407 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1408 /// This function emits a branch and is used at the leaves of an OR or an 1409 /// AND operator tree. 1410 /// 1411 void 1412 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1413 MachineBasicBlock *TBB, 1414 MachineBasicBlock *FBB, 1415 MachineBasicBlock *CurBB, 1416 MachineBasicBlock *SwitchBB, 1417 uint32_t TWeight, 1418 uint32_t FWeight) { 1419 const BasicBlock *BB = CurBB->getBasicBlock(); 1420 1421 // If the leaf of the tree is a comparison, merge the condition into 1422 // the caseblock. 1423 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1424 // The operands of the cmp have to be in this block. We don't know 1425 // how to export them from some other block. If this is the first block 1426 // of the sequence, no exporting is needed. 1427 if (CurBB == SwitchBB || 1428 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1429 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1430 ISD::CondCode Condition; 1431 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1432 Condition = getICmpCondCode(IC->getPredicate()); 1433 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1434 Condition = getFCmpCondCode(FC->getPredicate()); 1435 if (TM.Options.NoNaNsFPMath) 1436 Condition = getFCmpCodeWithoutNaN(Condition); 1437 } else { 1438 (void)Condition; // silence warning. 1439 llvm_unreachable("Unknown compare instruction"); 1440 } 1441 1442 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1443 TBB, FBB, CurBB, TWeight, FWeight); 1444 SwitchCases.push_back(CB); 1445 return; 1446 } 1447 } 1448 1449 // Create a CaseBlock record representing this branch. 1450 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1451 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1452 SwitchCases.push_back(CB); 1453 } 1454 1455 /// Scale down both weights to fit into uint32_t. 1456 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1457 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1458 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1459 NewTrue = NewTrue / Scale; 1460 NewFalse = NewFalse / Scale; 1461 } 1462 1463 /// FindMergedConditions - If Cond is an expression like 1464 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1465 MachineBasicBlock *TBB, 1466 MachineBasicBlock *FBB, 1467 MachineBasicBlock *CurBB, 1468 MachineBasicBlock *SwitchBB, 1469 unsigned Opc, uint32_t TWeight, 1470 uint32_t FWeight) { 1471 // If this node is not part of the or/and tree, emit it as a branch. 1472 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1473 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1474 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1475 BOp->getParent() != CurBB->getBasicBlock() || 1476 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1477 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1478 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1479 TWeight, FWeight); 1480 return; 1481 } 1482 1483 // Create TmpBB after CurBB. 1484 MachineFunction::iterator BBI = CurBB; 1485 MachineFunction &MF = DAG.getMachineFunction(); 1486 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1487 CurBB->getParent()->insert(++BBI, TmpBB); 1488 1489 if (Opc == Instruction::Or) { 1490 // Codegen X | Y as: 1491 // BB1: 1492 // jmp_if_X TBB 1493 // jmp TmpBB 1494 // TmpBB: 1495 // jmp_if_Y TBB 1496 // jmp FBB 1497 // 1498 1499 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1500 // The requirement is that 1501 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1502 // = TrueProb for orignal BB. 1503 // Assuming the orignal weights are A and B, one choice is to set BB1's 1504 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1505 // assumes that 1506 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1507 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1508 // TmpBB, but the math is more complicated. 1509 1510 uint64_t NewTrueWeight = TWeight; 1511 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1512 ScaleWeights(NewTrueWeight, NewFalseWeight); 1513 // Emit the LHS condition. 1514 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1515 NewTrueWeight, NewFalseWeight); 1516 1517 NewTrueWeight = TWeight; 1518 NewFalseWeight = 2 * (uint64_t)FWeight; 1519 ScaleWeights(NewTrueWeight, NewFalseWeight); 1520 // Emit the RHS condition into TmpBB. 1521 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1522 NewTrueWeight, NewFalseWeight); 1523 } else { 1524 assert(Opc == Instruction::And && "Unknown merge op!"); 1525 // Codegen X & Y as: 1526 // BB1: 1527 // jmp_if_X TmpBB 1528 // jmp FBB 1529 // TmpBB: 1530 // jmp_if_Y TBB 1531 // jmp FBB 1532 // 1533 // This requires creation of TmpBB after CurBB. 1534 1535 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1536 // The requirement is that 1537 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1538 // = FalseProb for orignal BB. 1539 // Assuming the orignal weights are A and B, one choice is to set BB1's 1540 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1541 // assumes that 1542 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1543 1544 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1545 uint64_t NewFalseWeight = FWeight; 1546 ScaleWeights(NewTrueWeight, NewFalseWeight); 1547 // Emit the LHS condition. 1548 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1549 NewTrueWeight, NewFalseWeight); 1550 1551 NewTrueWeight = 2 * (uint64_t)TWeight; 1552 NewFalseWeight = FWeight; 1553 ScaleWeights(NewTrueWeight, NewFalseWeight); 1554 // Emit the RHS condition into TmpBB. 1555 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1556 NewTrueWeight, NewFalseWeight); 1557 } 1558 } 1559 1560 /// If the set of cases should be emitted as a series of branches, return true. 1561 /// If we should emit this as a bunch of and/or'd together conditions, return 1562 /// false. 1563 bool 1564 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1565 if (Cases.size() != 2) return true; 1566 1567 // If this is two comparisons of the same values or'd or and'd together, they 1568 // will get folded into a single comparison, so don't emit two blocks. 1569 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1570 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1571 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1572 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1573 return false; 1574 } 1575 1576 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1577 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1578 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1579 Cases[0].CC == Cases[1].CC && 1580 isa<Constant>(Cases[0].CmpRHS) && 1581 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1582 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1583 return false; 1584 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1585 return false; 1586 } 1587 1588 return true; 1589 } 1590 1591 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1592 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1593 1594 // Update machine-CFG edges. 1595 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1596 1597 if (I.isUnconditional()) { 1598 // Update machine-CFG edges. 1599 BrMBB->addSuccessor(Succ0MBB); 1600 1601 // If this is not a fall-through branch or optimizations are switched off, 1602 // emit the branch. 1603 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1604 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1605 MVT::Other, getControlRoot(), 1606 DAG.getBasicBlock(Succ0MBB))); 1607 1608 return; 1609 } 1610 1611 // If this condition is one of the special cases we handle, do special stuff 1612 // now. 1613 const Value *CondVal = I.getCondition(); 1614 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1615 1616 // If this is a series of conditions that are or'd or and'd together, emit 1617 // this as a sequence of branches instead of setcc's with and/or operations. 1618 // As long as jumps are not expensive, this should improve performance. 1619 // For example, instead of something like: 1620 // cmp A, B 1621 // C = seteq 1622 // cmp D, E 1623 // F = setle 1624 // or C, F 1625 // jnz foo 1626 // Emit: 1627 // cmp A, B 1628 // je foo 1629 // cmp D, E 1630 // jle foo 1631 // 1632 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1633 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1634 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1635 BOp->getOpcode() == Instruction::Or)) { 1636 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1637 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1638 getEdgeWeight(BrMBB, Succ1MBB)); 1639 // If the compares in later blocks need to use values not currently 1640 // exported from this block, export them now. This block should always 1641 // be the first entry. 1642 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1643 1644 // Allow some cases to be rejected. 1645 if (ShouldEmitAsBranches(SwitchCases)) { 1646 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1647 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1648 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1649 } 1650 1651 // Emit the branch for this block. 1652 visitSwitchCase(SwitchCases[0], BrMBB); 1653 SwitchCases.erase(SwitchCases.begin()); 1654 return; 1655 } 1656 1657 // Okay, we decided not to do this, remove any inserted MBB's and clear 1658 // SwitchCases. 1659 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1660 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1661 1662 SwitchCases.clear(); 1663 } 1664 } 1665 1666 // Create a CaseBlock record representing this branch. 1667 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1668 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1669 1670 // Use visitSwitchCase to actually insert the fast branch sequence for this 1671 // cond branch. 1672 visitSwitchCase(CB, BrMBB); 1673 } 1674 1675 /// visitSwitchCase - Emits the necessary code to represent a single node in 1676 /// the binary search tree resulting from lowering a switch instruction. 1677 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1678 MachineBasicBlock *SwitchBB) { 1679 SDValue Cond; 1680 SDValue CondLHS = getValue(CB.CmpLHS); 1681 SDLoc dl = getCurSDLoc(); 1682 1683 // Build the setcc now. 1684 if (!CB.CmpMHS) { 1685 // Fold "(X == true)" to X and "(X == false)" to !X to 1686 // handle common cases produced by branch lowering. 1687 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1688 CB.CC == ISD::SETEQ) 1689 Cond = CondLHS; 1690 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1691 CB.CC == ISD::SETEQ) { 1692 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1693 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1694 } else 1695 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1696 } else { 1697 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1698 1699 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1700 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1701 1702 SDValue CmpOp = getValue(CB.CmpMHS); 1703 EVT VT = CmpOp.getValueType(); 1704 1705 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1706 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1707 ISD::SETLE); 1708 } else { 1709 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1710 VT, CmpOp, DAG.getConstant(Low, VT)); 1711 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1712 DAG.getConstant(High-Low, VT), ISD::SETULE); 1713 } 1714 } 1715 1716 // Update successor info 1717 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1718 // TrueBB and FalseBB are always different unless the incoming IR is 1719 // degenerate. This only happens when running llc on weird IR. 1720 if (CB.TrueBB != CB.FalseBB) 1721 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1722 1723 // If the lhs block is the next block, invert the condition so that we can 1724 // fall through to the lhs instead of the rhs block. 1725 if (CB.TrueBB == NextBlock(SwitchBB)) { 1726 std::swap(CB.TrueBB, CB.FalseBB); 1727 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1728 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1729 } 1730 1731 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1732 MVT::Other, getControlRoot(), Cond, 1733 DAG.getBasicBlock(CB.TrueBB)); 1734 1735 // Insert the false branch. Do this even if it's a fall through branch, 1736 // this makes it easier to do DAG optimizations which require inverting 1737 // the branch condition. 1738 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1739 DAG.getBasicBlock(CB.FalseBB)); 1740 1741 DAG.setRoot(BrCond); 1742 } 1743 1744 /// visitJumpTable - Emit JumpTable node in the current MBB 1745 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1746 // Emit the code for the jump table 1747 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1748 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1749 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1750 JT.Reg, PTy); 1751 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1752 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1753 MVT::Other, Index.getValue(1), 1754 Table, Index); 1755 DAG.setRoot(BrJumpTable); 1756 } 1757 1758 /// visitJumpTableHeader - This function emits necessary code to produce index 1759 /// in the JumpTable from switch case. 1760 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1761 JumpTableHeader &JTH, 1762 MachineBasicBlock *SwitchBB) { 1763 // Subtract the lowest switch case value from the value being switched on and 1764 // conditional branch to default mbb if the result is greater than the 1765 // difference between smallest and largest cases. 1766 SDValue SwitchOp = getValue(JTH.SValue); 1767 EVT VT = SwitchOp.getValueType(); 1768 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1769 DAG.getConstant(JTH.First, VT)); 1770 1771 // The SDNode we just created, which holds the value being switched on minus 1772 // the smallest case value, needs to be copied to a virtual register so it 1773 // can be used as an index into the jump table in a subsequent basic block. 1774 // This value may be smaller or larger than the target's pointer type, and 1775 // therefore require extension or truncating. 1776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1777 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1778 1779 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1780 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1781 JumpTableReg, SwitchOp); 1782 JT.Reg = JumpTableReg; 1783 1784 // Emit the range check for the jump table, and branch to the default block 1785 // for the switch statement if the value being switched on exceeds the largest 1786 // case in the switch. 1787 SDValue CMP = 1788 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1789 Sub.getValueType()), 1790 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1791 1792 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1793 MVT::Other, CopyTo, CMP, 1794 DAG.getBasicBlock(JT.Default)); 1795 1796 // Avoid emitting unnecessary branches to the next block. 1797 if (JT.MBB != NextBlock(SwitchBB)) 1798 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1799 DAG.getBasicBlock(JT.MBB)); 1800 1801 DAG.setRoot(BrCond); 1802 } 1803 1804 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1805 /// tail spliced into a stack protector check success bb. 1806 /// 1807 /// For a high level explanation of how this fits into the stack protector 1808 /// generation see the comment on the declaration of class 1809 /// StackProtectorDescriptor. 1810 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1811 MachineBasicBlock *ParentBB) { 1812 1813 // First create the loads to the guard/stack slot for the comparison. 1814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1815 EVT PtrTy = TLI.getPointerTy(); 1816 1817 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1818 int FI = MFI->getStackProtectorIndex(); 1819 1820 const Value *IRGuard = SPD.getGuard(); 1821 SDValue GuardPtr = getValue(IRGuard); 1822 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1823 1824 unsigned Align = 1825 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1826 1827 SDValue Guard; 1828 1829 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1830 // guard value from the virtual register holding the value. Otherwise, emit a 1831 // volatile load to retrieve the stack guard value. 1832 unsigned GuardReg = SPD.getGuardReg(); 1833 1834 if (GuardReg && TLI.useLoadStackGuardNode()) 1835 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1836 PtrTy); 1837 else 1838 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1839 GuardPtr, MachinePointerInfo(IRGuard, 0), 1840 true, false, false, Align); 1841 1842 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1843 StackSlotPtr, 1844 MachinePointerInfo::getFixedStack(FI), 1845 true, false, false, Align); 1846 1847 // Perform the comparison via a subtract/getsetcc. 1848 EVT VT = Guard.getValueType(); 1849 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1850 1851 SDValue Cmp = 1852 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1853 Sub.getValueType()), 1854 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1855 1856 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1857 // branch to failure MBB. 1858 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1859 MVT::Other, StackSlot.getOperand(0), 1860 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1861 // Otherwise branch to success MBB. 1862 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1863 MVT::Other, BrCond, 1864 DAG.getBasicBlock(SPD.getSuccessMBB())); 1865 1866 DAG.setRoot(Br); 1867 } 1868 1869 /// Codegen the failure basic block for a stack protector check. 1870 /// 1871 /// A failure stack protector machine basic block consists simply of a call to 1872 /// __stack_chk_fail(). 1873 /// 1874 /// For a high level explanation of how this fits into the stack protector 1875 /// generation see the comment on the declaration of class 1876 /// StackProtectorDescriptor. 1877 void 1878 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1880 SDValue Chain = 1881 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1882 nullptr, 0, false, getCurSDLoc(), false, false).second; 1883 DAG.setRoot(Chain); 1884 } 1885 1886 /// visitBitTestHeader - This function emits necessary code to produce value 1887 /// suitable for "bit tests" 1888 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1889 MachineBasicBlock *SwitchBB) { 1890 // Subtract the minimum value 1891 SDValue SwitchOp = getValue(B.SValue); 1892 EVT VT = SwitchOp.getValueType(); 1893 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1894 DAG.getConstant(B.First, VT)); 1895 1896 // Check range 1897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1898 SDValue RangeCmp = 1899 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1900 Sub.getValueType()), 1901 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1902 1903 // Determine the type of the test operands. 1904 bool UsePtrType = false; 1905 if (!TLI.isTypeLegal(VT)) 1906 UsePtrType = true; 1907 else { 1908 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1909 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1910 // Switch table case range are encoded into series of masks. 1911 // Just use pointer type, it's guaranteed to fit. 1912 UsePtrType = true; 1913 break; 1914 } 1915 } 1916 if (UsePtrType) { 1917 VT = TLI.getPointerTy(); 1918 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1919 } 1920 1921 B.RegVT = VT.getSimpleVT(); 1922 B.Reg = FuncInfo.CreateReg(B.RegVT); 1923 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1924 B.Reg, Sub); 1925 1926 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1927 1928 addSuccessorWithWeight(SwitchBB, B.Default); 1929 addSuccessorWithWeight(SwitchBB, MBB); 1930 1931 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1932 MVT::Other, CopyTo, RangeCmp, 1933 DAG.getBasicBlock(B.Default)); 1934 1935 // Avoid emitting unnecessary branches to the next block. 1936 if (MBB != NextBlock(SwitchBB)) 1937 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrRange, 1938 DAG.getBasicBlock(MBB)); 1939 1940 DAG.setRoot(BrRange); 1941 } 1942 1943 /// visitBitTestCase - this function produces one "bit test" 1944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1945 MachineBasicBlock* NextMBB, 1946 uint32_t BranchWeightToNext, 1947 unsigned Reg, 1948 BitTestCase &B, 1949 MachineBasicBlock *SwitchBB) { 1950 MVT VT = BB.RegVT; 1951 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1952 Reg, VT); 1953 SDValue Cmp; 1954 unsigned PopCount = countPopulation(B.Mask); 1955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1956 if (PopCount == 1) { 1957 // Testing for a single bit; just compare the shift count with what it 1958 // would need to be to shift a 1 bit in that position. 1959 Cmp = DAG.getSetCC( 1960 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1961 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1962 } else if (PopCount == BB.Range) { 1963 // There is only one zero bit in the range, test for it directly. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1967 } else { 1968 // Make desired shift 1969 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1970 DAG.getConstant(1, VT), ShiftOp); 1971 1972 // Emit bit tests and jumps 1973 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1974 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1975 Cmp = DAG.getSetCC(getCurSDLoc(), 1976 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1977 DAG.getConstant(0, VT), ISD::SETNE); 1978 } 1979 1980 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1981 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1982 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1983 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1984 1985 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1986 MVT::Other, getControlRoot(), 1987 Cmp, DAG.getBasicBlock(B.TargetBB)); 1988 1989 // Avoid emitting unnecessary branches to the next block. 1990 if (NextMBB != NextBlock(SwitchBB)) 1991 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1992 DAG.getBasicBlock(NextMBB)); 1993 1994 DAG.setRoot(BrAnd); 1995 } 1996 1997 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1998 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1999 2000 // Retrieve successors. 2001 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2002 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2003 2004 const Value *Callee(I.getCalledValue()); 2005 const Function *Fn = dyn_cast<Function>(Callee); 2006 if (isa<InlineAsm>(Callee)) 2007 visitInlineAsm(&I); 2008 else if (Fn && Fn->isIntrinsic()) { 2009 switch (Fn->getIntrinsicID()) { 2010 default: 2011 llvm_unreachable("Cannot invoke this intrinsic"); 2012 case Intrinsic::donothing: 2013 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2014 break; 2015 case Intrinsic::experimental_patchpoint_void: 2016 case Intrinsic::experimental_patchpoint_i64: 2017 visitPatchpoint(&I, LandingPad); 2018 break; 2019 case Intrinsic::experimental_gc_statepoint: 2020 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2021 break; 2022 } 2023 } else 2024 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2025 2026 // If the value of the invoke is used outside of its defining block, make it 2027 // available as a virtual register. 2028 // We already took care of the exported value for the statepoint instruction 2029 // during call to the LowerStatepoint. 2030 if (!isStatepoint(I)) { 2031 CopyToExportRegsIfNeeded(&I); 2032 } 2033 2034 // Update successor info 2035 addSuccessorWithWeight(InvokeMBB, Return); 2036 addSuccessorWithWeight(InvokeMBB, LandingPad); 2037 2038 // Drop into normal successor. 2039 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2040 MVT::Other, getControlRoot(), 2041 DAG.getBasicBlock(Return))); 2042 } 2043 2044 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2045 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2046 } 2047 2048 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2049 assert(FuncInfo.MBB->isLandingPad() && 2050 "Call to landingpad not in landing pad!"); 2051 2052 MachineBasicBlock *MBB = FuncInfo.MBB; 2053 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2054 AddLandingPadInfo(LP, MMI, MBB); 2055 2056 // If there aren't registers to copy the values into (e.g., during SjLj 2057 // exceptions), then don't bother to create these DAG nodes. 2058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2059 if (TLI.getExceptionPointerRegister() == 0 && 2060 TLI.getExceptionSelectorRegister() == 0) 2061 return; 2062 2063 SmallVector<EVT, 2> ValueVTs; 2064 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2065 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2066 2067 // Get the two live-in registers as SDValues. The physregs have already been 2068 // copied into virtual registers. 2069 SDValue Ops[2]; 2070 if (FuncInfo.ExceptionPointerVirtReg) { 2071 Ops[0] = DAG.getZExtOrTrunc( 2072 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2073 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2074 getCurSDLoc(), ValueVTs[0]); 2075 } else { 2076 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2077 } 2078 Ops[1] = DAG.getZExtOrTrunc( 2079 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2080 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2081 getCurSDLoc(), ValueVTs[1]); 2082 2083 // Merge into one. 2084 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2085 DAG.getVTList(ValueVTs), Ops); 2086 setValue(&LP, Res); 2087 } 2088 2089 unsigned 2090 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2091 MachineBasicBlock *LPadBB) { 2092 SDValue Chain = getControlRoot(); 2093 2094 // Get the typeid that we will dispatch on later. 2095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2096 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2097 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2098 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2099 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2100 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2101 2102 // Branch to the main landing pad block. 2103 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2104 ClauseMBB->addSuccessor(LPadBB); 2105 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2106 DAG.getBasicBlock(LPadBB))); 2107 return VReg; 2108 } 2109 2110 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2111 #ifndef NDEBUG 2112 for (const CaseCluster &CC : Clusters) 2113 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2114 #endif 2115 2116 std::sort(Clusters.begin(), Clusters.end(), 2117 [](const CaseCluster &a, const CaseCluster &b) { 2118 return a.Low->getValue().slt(b.Low->getValue()); 2119 }); 2120 2121 // Merge adjacent clusters with the same destination. 2122 const unsigned N = Clusters.size(); 2123 unsigned DstIndex = 0; 2124 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2125 CaseCluster &CC = Clusters[SrcIndex]; 2126 const ConstantInt *CaseVal = CC.Low; 2127 MachineBasicBlock *Succ = CC.MBB; 2128 2129 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2130 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2131 // If this case has the same successor and is a neighbour, merge it into 2132 // the previous cluster. 2133 Clusters[DstIndex - 1].High = CaseVal; 2134 Clusters[DstIndex - 1].Weight += CC.Weight; 2135 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2136 } else { 2137 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2138 sizeof(Clusters[SrcIndex])); 2139 } 2140 } 2141 Clusters.resize(DstIndex); 2142 } 2143 2144 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2145 MachineBasicBlock *Last) { 2146 // Update JTCases. 2147 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2148 if (JTCases[i].first.HeaderBB == First) 2149 JTCases[i].first.HeaderBB = Last; 2150 2151 // Update BitTestCases. 2152 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2153 if (BitTestCases[i].Parent == First) 2154 BitTestCases[i].Parent = Last; 2155 } 2156 2157 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2158 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2159 2160 // Update machine-CFG edges with unique successors. 2161 SmallSet<BasicBlock*, 32> Done; 2162 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2163 BasicBlock *BB = I.getSuccessor(i); 2164 bool Inserted = Done.insert(BB).second; 2165 if (!Inserted) 2166 continue; 2167 2168 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2169 addSuccessorWithWeight(IndirectBrMBB, Succ); 2170 } 2171 2172 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2173 MVT::Other, getControlRoot(), 2174 getValue(I.getAddress()))); 2175 } 2176 2177 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2178 if (DAG.getTarget().Options.TrapUnreachable) 2179 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2180 } 2181 2182 void SelectionDAGBuilder::visitFSub(const User &I) { 2183 // -0.0 - X --> fneg 2184 Type *Ty = I.getType(); 2185 if (isa<Constant>(I.getOperand(0)) && 2186 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2187 SDValue Op2 = getValue(I.getOperand(1)); 2188 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2189 Op2.getValueType(), Op2)); 2190 return; 2191 } 2192 2193 visitBinary(I, ISD::FSUB); 2194 } 2195 2196 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2197 SDValue Op1 = getValue(I.getOperand(0)); 2198 SDValue Op2 = getValue(I.getOperand(1)); 2199 2200 bool nuw = false; 2201 bool nsw = false; 2202 bool exact = false; 2203 if (const OverflowingBinaryOperator *OFBinOp = 2204 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2205 nuw = OFBinOp->hasNoUnsignedWrap(); 2206 nsw = OFBinOp->hasNoSignedWrap(); 2207 } 2208 if (const PossiblyExactOperator *ExactOp = 2209 dyn_cast<const PossiblyExactOperator>(&I)) 2210 exact = ExactOp->isExact(); 2211 2212 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2213 Op1, Op2, nuw, nsw, exact); 2214 setValue(&I, BinNodeValue); 2215 } 2216 2217 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2218 SDValue Op1 = getValue(I.getOperand(0)); 2219 SDValue Op2 = getValue(I.getOperand(1)); 2220 2221 EVT ShiftTy = 2222 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2223 2224 // Coerce the shift amount to the right type if we can. 2225 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2226 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2227 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2228 SDLoc DL = getCurSDLoc(); 2229 2230 // If the operand is smaller than the shift count type, promote it. 2231 if (ShiftSize > Op2Size) 2232 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2233 2234 // If the operand is larger than the shift count type but the shift 2235 // count type has enough bits to represent any shift value, truncate 2236 // it now. This is a common case and it exposes the truncate to 2237 // optimization early. 2238 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2239 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2240 // Otherwise we'll need to temporarily settle for some other convenient 2241 // type. Type legalization will make adjustments once the shiftee is split. 2242 else 2243 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2244 } 2245 2246 bool nuw = false; 2247 bool nsw = false; 2248 bool exact = false; 2249 2250 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2251 2252 if (const OverflowingBinaryOperator *OFBinOp = 2253 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2254 nuw = OFBinOp->hasNoUnsignedWrap(); 2255 nsw = OFBinOp->hasNoSignedWrap(); 2256 } 2257 if (const PossiblyExactOperator *ExactOp = 2258 dyn_cast<const PossiblyExactOperator>(&I)) 2259 exact = ExactOp->isExact(); 2260 } 2261 2262 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2263 nuw, nsw, exact); 2264 setValue(&I, Res); 2265 } 2266 2267 void SelectionDAGBuilder::visitSDiv(const User &I) { 2268 SDValue Op1 = getValue(I.getOperand(0)); 2269 SDValue Op2 = getValue(I.getOperand(1)); 2270 2271 // Turn exact SDivs into multiplications. 2272 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2273 // exact bit. 2274 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2275 !isa<ConstantSDNode>(Op1) && 2276 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2277 setValue(&I, DAG.getTargetLoweringInfo() 2278 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2279 else 2280 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2281 Op1, Op2)); 2282 } 2283 2284 void SelectionDAGBuilder::visitICmp(const User &I) { 2285 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2286 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2287 predicate = IC->getPredicate(); 2288 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2289 predicate = ICmpInst::Predicate(IC->getPredicate()); 2290 SDValue Op1 = getValue(I.getOperand(0)); 2291 SDValue Op2 = getValue(I.getOperand(1)); 2292 ISD::CondCode Opcode = getICmpCondCode(predicate); 2293 2294 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2295 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2296 } 2297 2298 void SelectionDAGBuilder::visitFCmp(const User &I) { 2299 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2300 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2301 predicate = FC->getPredicate(); 2302 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2303 predicate = FCmpInst::Predicate(FC->getPredicate()); 2304 SDValue Op1 = getValue(I.getOperand(0)); 2305 SDValue Op2 = getValue(I.getOperand(1)); 2306 ISD::CondCode Condition = getFCmpCondCode(predicate); 2307 if (TM.Options.NoNaNsFPMath) 2308 Condition = getFCmpCodeWithoutNaN(Condition); 2309 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2310 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2311 } 2312 2313 void SelectionDAGBuilder::visitSelect(const User &I) { 2314 SmallVector<EVT, 4> ValueVTs; 2315 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2316 unsigned NumValues = ValueVTs.size(); 2317 if (NumValues == 0) return; 2318 2319 SmallVector<SDValue, 4> Values(NumValues); 2320 SDValue Cond = getValue(I.getOperand(0)); 2321 SDValue TrueVal = getValue(I.getOperand(1)); 2322 SDValue FalseVal = getValue(I.getOperand(2)); 2323 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2324 ISD::VSELECT : ISD::SELECT; 2325 2326 for (unsigned i = 0; i != NumValues; ++i) 2327 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2328 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2329 Cond, 2330 SDValue(TrueVal.getNode(), 2331 TrueVal.getResNo() + i), 2332 SDValue(FalseVal.getNode(), 2333 FalseVal.getResNo() + i)); 2334 2335 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2336 DAG.getVTList(ValueVTs), Values)); 2337 } 2338 2339 void SelectionDAGBuilder::visitTrunc(const User &I) { 2340 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2341 SDValue N = getValue(I.getOperand(0)); 2342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2343 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitZExt(const User &I) { 2347 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2348 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2349 SDValue N = getValue(I.getOperand(0)); 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2351 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2352 } 2353 2354 void SelectionDAGBuilder::visitSExt(const User &I) { 2355 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2356 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2359 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2360 } 2361 2362 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2363 // FPTrunc is never a no-op cast, no need to check 2364 SDValue N = getValue(I.getOperand(0)); 2365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2366 EVT DestVT = TLI.getValueType(I.getType()); 2367 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2368 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2369 } 2370 2371 void SelectionDAGBuilder::visitFPExt(const User &I) { 2372 // FPExt is never a no-op cast, no need to check 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2375 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2376 } 2377 2378 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2379 // FPToUI is never a no-op cast, no need to check 2380 SDValue N = getValue(I.getOperand(0)); 2381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2382 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2383 } 2384 2385 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2386 // FPToSI is never a no-op cast, no need to check 2387 SDValue N = getValue(I.getOperand(0)); 2388 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2389 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2390 } 2391 2392 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2393 // UIToFP is never a no-op cast, no need to check 2394 SDValue N = getValue(I.getOperand(0)); 2395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2396 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2397 } 2398 2399 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2400 // SIToFP is never a no-op cast, no need to check 2401 SDValue N = getValue(I.getOperand(0)); 2402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2403 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2404 } 2405 2406 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2407 // What to do depends on the size of the integer and the size of the pointer. 2408 // We can either truncate, zero extend, or no-op, accordingly. 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2411 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2412 } 2413 2414 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2415 // What to do depends on the size of the integer and the size of the pointer. 2416 // We can either truncate, zero extend, or no-op, accordingly. 2417 SDValue N = getValue(I.getOperand(0)); 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2419 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2420 } 2421 2422 void SelectionDAGBuilder::visitBitCast(const User &I) { 2423 SDValue N = getValue(I.getOperand(0)); 2424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2425 2426 // BitCast assures us that source and destination are the same size so this is 2427 // either a BITCAST or a no-op. 2428 if (DestVT != N.getValueType()) 2429 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2430 DestVT, N)); // convert types. 2431 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2432 // might fold any kind of constant expression to an integer constant and that 2433 // is not what we are looking for. Only regcognize a bitcast of a genuine 2434 // constant integer as an opaque constant. 2435 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2436 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2437 /*isOpaque*/true)); 2438 else 2439 setValue(&I, N); // noop cast. 2440 } 2441 2442 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2444 const Value *SV = I.getOperand(0); 2445 SDValue N = getValue(SV); 2446 EVT DestVT = TLI.getValueType(I.getType()); 2447 2448 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2449 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2450 2451 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2452 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2453 2454 setValue(&I, N); 2455 } 2456 2457 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2459 SDValue InVec = getValue(I.getOperand(0)); 2460 SDValue InVal = getValue(I.getOperand(1)); 2461 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2462 getCurSDLoc(), TLI.getVectorIdxTy()); 2463 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2464 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2465 } 2466 2467 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2469 SDValue InVec = getValue(I.getOperand(0)); 2470 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2471 getCurSDLoc(), TLI.getVectorIdxTy()); 2472 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2473 TLI.getValueType(I.getType()), InVec, InIdx)); 2474 } 2475 2476 // Utility for visitShuffleVector - Return true if every element in Mask, 2477 // beginning from position Pos and ending in Pos+Size, falls within the 2478 // specified sequential range [L, L+Pos). or is undef. 2479 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2480 unsigned Pos, unsigned Size, int Low) { 2481 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2482 if (Mask[i] >= 0 && Mask[i] != Low) 2483 return false; 2484 return true; 2485 } 2486 2487 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2488 SDValue Src1 = getValue(I.getOperand(0)); 2489 SDValue Src2 = getValue(I.getOperand(1)); 2490 2491 SmallVector<int, 8> Mask; 2492 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2493 unsigned MaskNumElts = Mask.size(); 2494 2495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2496 EVT VT = TLI.getValueType(I.getType()); 2497 EVT SrcVT = Src1.getValueType(); 2498 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2499 2500 if (SrcNumElts == MaskNumElts) { 2501 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2502 &Mask[0])); 2503 return; 2504 } 2505 2506 // Normalize the shuffle vector since mask and vector length don't match. 2507 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2508 // Mask is longer than the source vectors and is a multiple of the source 2509 // vectors. We can use concatenate vector to make the mask and vectors 2510 // lengths match. 2511 if (SrcNumElts*2 == MaskNumElts) { 2512 // First check for Src1 in low and Src2 in high 2513 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2514 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2515 // The shuffle is concatenating two vectors together. 2516 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2517 VT, Src1, Src2)); 2518 return; 2519 } 2520 // Then check for Src2 in low and Src1 in high 2521 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2522 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2523 // The shuffle is concatenating two vectors together. 2524 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2525 VT, Src2, Src1)); 2526 return; 2527 } 2528 } 2529 2530 // Pad both vectors with undefs to make them the same length as the mask. 2531 unsigned NumConcat = MaskNumElts / SrcNumElts; 2532 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2533 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2534 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2535 2536 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2537 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2538 MOps1[0] = Src1; 2539 MOps2[0] = Src2; 2540 2541 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2542 getCurSDLoc(), VT, MOps1); 2543 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2544 getCurSDLoc(), VT, MOps2); 2545 2546 // Readjust mask for new input vector length. 2547 SmallVector<int, 8> MappedOps; 2548 for (unsigned i = 0; i != MaskNumElts; ++i) { 2549 int Idx = Mask[i]; 2550 if (Idx >= (int)SrcNumElts) 2551 Idx -= SrcNumElts - MaskNumElts; 2552 MappedOps.push_back(Idx); 2553 } 2554 2555 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2556 &MappedOps[0])); 2557 return; 2558 } 2559 2560 if (SrcNumElts > MaskNumElts) { 2561 // Analyze the access pattern of the vector to see if we can extract 2562 // two subvectors and do the shuffle. The analysis is done by calculating 2563 // the range of elements the mask access on both vectors. 2564 int MinRange[2] = { static_cast<int>(SrcNumElts), 2565 static_cast<int>(SrcNumElts)}; 2566 int MaxRange[2] = {-1, -1}; 2567 2568 for (unsigned i = 0; i != MaskNumElts; ++i) { 2569 int Idx = Mask[i]; 2570 unsigned Input = 0; 2571 if (Idx < 0) 2572 continue; 2573 2574 if (Idx >= (int)SrcNumElts) { 2575 Input = 1; 2576 Idx -= SrcNumElts; 2577 } 2578 if (Idx > MaxRange[Input]) 2579 MaxRange[Input] = Idx; 2580 if (Idx < MinRange[Input]) 2581 MinRange[Input] = Idx; 2582 } 2583 2584 // Check if the access is smaller than the vector size and can we find 2585 // a reasonable extract index. 2586 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2587 // Extract. 2588 int StartIdx[2]; // StartIdx to extract from 2589 for (unsigned Input = 0; Input < 2; ++Input) { 2590 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2591 RangeUse[Input] = 0; // Unused 2592 StartIdx[Input] = 0; 2593 continue; 2594 } 2595 2596 // Find a good start index that is a multiple of the mask length. Then 2597 // see if the rest of the elements are in range. 2598 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2599 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2600 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2601 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2602 } 2603 2604 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2605 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2606 return; 2607 } 2608 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2609 // Extract appropriate subvector and generate a vector shuffle 2610 for (unsigned Input = 0; Input < 2; ++Input) { 2611 SDValue &Src = Input == 0 ? Src1 : Src2; 2612 if (RangeUse[Input] == 0) 2613 Src = DAG.getUNDEF(VT); 2614 else 2615 Src = DAG.getNode( 2616 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 2617 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 2618 } 2619 2620 // Calculate new mask. 2621 SmallVector<int, 8> MappedOps; 2622 for (unsigned i = 0; i != MaskNumElts; ++i) { 2623 int Idx = Mask[i]; 2624 if (Idx >= 0) { 2625 if (Idx < (int)SrcNumElts) 2626 Idx -= StartIdx[0]; 2627 else 2628 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2629 } 2630 MappedOps.push_back(Idx); 2631 } 2632 2633 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2634 &MappedOps[0])); 2635 return; 2636 } 2637 } 2638 2639 // We can't use either concat vectors or extract subvectors so fall back to 2640 // replacing the shuffle with extract and build vector. 2641 // to insert and build vector. 2642 EVT EltVT = VT.getVectorElementType(); 2643 EVT IdxVT = TLI.getVectorIdxTy(); 2644 SmallVector<SDValue,8> Ops; 2645 for (unsigned i = 0; i != MaskNumElts; ++i) { 2646 int Idx = Mask[i]; 2647 SDValue Res; 2648 2649 if (Idx < 0) { 2650 Res = DAG.getUNDEF(EltVT); 2651 } else { 2652 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2653 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2654 2655 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2656 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 2657 } 2658 2659 Ops.push_back(Res); 2660 } 2661 2662 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 2663 } 2664 2665 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2666 const Value *Op0 = I.getOperand(0); 2667 const Value *Op1 = I.getOperand(1); 2668 Type *AggTy = I.getType(); 2669 Type *ValTy = Op1->getType(); 2670 bool IntoUndef = isa<UndefValue>(Op0); 2671 bool FromUndef = isa<UndefValue>(Op1); 2672 2673 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2674 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 SmallVector<EVT, 4> AggValueVTs; 2677 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2678 SmallVector<EVT, 4> ValValueVTs; 2679 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2680 2681 unsigned NumAggValues = AggValueVTs.size(); 2682 unsigned NumValValues = ValValueVTs.size(); 2683 SmallVector<SDValue, 4> Values(NumAggValues); 2684 2685 // Ignore an insertvalue that produces an empty object 2686 if (!NumAggValues) { 2687 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2688 return; 2689 } 2690 2691 SDValue Agg = getValue(Op0); 2692 unsigned i = 0; 2693 // Copy the beginning value(s) from the original aggregate. 2694 for (; i != LinearIndex; ++i) 2695 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2696 SDValue(Agg.getNode(), Agg.getResNo() + i); 2697 // Copy values from the inserted value(s). 2698 if (NumValValues) { 2699 SDValue Val = getValue(Op1); 2700 for (; i != LinearIndex + NumValValues; ++i) 2701 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2702 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2703 } 2704 // Copy remaining value(s) from the original aggregate. 2705 for (; i != NumAggValues; ++i) 2706 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2707 SDValue(Agg.getNode(), Agg.getResNo() + i); 2708 2709 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2710 DAG.getVTList(AggValueVTs), Values)); 2711 } 2712 2713 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2714 const Value *Op0 = I.getOperand(0); 2715 Type *AggTy = Op0->getType(); 2716 Type *ValTy = I.getType(); 2717 bool OutOfUndef = isa<UndefValue>(Op0); 2718 2719 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2720 2721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2722 SmallVector<EVT, 4> ValValueVTs; 2723 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2724 2725 unsigned NumValValues = ValValueVTs.size(); 2726 2727 // Ignore a extractvalue that produces an empty object 2728 if (!NumValValues) { 2729 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2730 return; 2731 } 2732 2733 SmallVector<SDValue, 4> Values(NumValValues); 2734 2735 SDValue Agg = getValue(Op0); 2736 // Copy out the selected value(s). 2737 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2738 Values[i - LinearIndex] = 2739 OutOfUndef ? 2740 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2741 SDValue(Agg.getNode(), Agg.getResNo() + i); 2742 2743 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2744 DAG.getVTList(ValValueVTs), Values)); 2745 } 2746 2747 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2748 Value *Op0 = I.getOperand(0); 2749 // Note that the pointer operand may be a vector of pointers. Take the scalar 2750 // element which holds a pointer. 2751 Type *Ty = Op0->getType()->getScalarType(); 2752 unsigned AS = Ty->getPointerAddressSpace(); 2753 SDValue N = getValue(Op0); 2754 2755 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2756 OI != E; ++OI) { 2757 const Value *Idx = *OI; 2758 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2759 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2760 if (Field) { 2761 // N = N + Offset 2762 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2763 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 2764 DAG.getConstant(Offset, N.getValueType())); 2765 } 2766 2767 Ty = StTy->getElementType(Field); 2768 } else { 2769 Ty = cast<SequentialType>(Ty)->getElementType(); 2770 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2771 unsigned PtrSize = PtrTy.getSizeInBits(); 2772 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2773 2774 // If this is a constant subscript, handle it quickly. 2775 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2776 if (CI->isZero()) 2777 continue; 2778 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2779 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 2780 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 2781 continue; 2782 } 2783 2784 // N = N + Idx * ElementSize; 2785 SDValue IdxN = getValue(Idx); 2786 2787 // If the index is smaller or larger than intptr_t, truncate or extend 2788 // it. 2789 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 2790 2791 // If this is a multiply by a power of two, turn it into a shl 2792 // immediately. This is a very common case. 2793 if (ElementSize != 1) { 2794 if (ElementSize.isPowerOf2()) { 2795 unsigned Amt = ElementSize.logBase2(); 2796 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 2797 N.getValueType(), IdxN, 2798 DAG.getConstant(Amt, IdxN.getValueType())); 2799 } else { 2800 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 2801 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 2802 N.getValueType(), IdxN, Scale); 2803 } 2804 } 2805 2806 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 2807 N.getValueType(), N, IdxN); 2808 } 2809 } 2810 2811 setValue(&I, N); 2812 } 2813 2814 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2815 // If this is a fixed sized alloca in the entry block of the function, 2816 // allocate it statically on the stack. 2817 if (FuncInfo.StaticAllocaMap.count(&I)) 2818 return; // getValue will auto-populate this. 2819 2820 Type *Ty = I.getAllocatedType(); 2821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2822 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2823 unsigned Align = 2824 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2825 I.getAlignment()); 2826 2827 SDValue AllocSize = getValue(I.getArraySize()); 2828 2829 EVT IntPtr = TLI.getPointerTy(); 2830 if (AllocSize.getValueType() != IntPtr) 2831 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 2832 2833 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 2834 AllocSize, 2835 DAG.getConstant(TySize, IntPtr)); 2836 2837 // Handle alignment. If the requested alignment is less than or equal to 2838 // the stack alignment, ignore it. If the size is greater than or equal to 2839 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2840 unsigned StackAlign = 2841 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2842 if (Align <= StackAlign) 2843 Align = 0; 2844 2845 // Round the size of the allocation up to the stack alignment size 2846 // by add SA-1 to the size. 2847 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 2848 AllocSize.getValueType(), AllocSize, 2849 DAG.getIntPtrConstant(StackAlign-1)); 2850 2851 // Mask out the low bits for alignment purposes. 2852 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 2853 AllocSize.getValueType(), AllocSize, 2854 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2855 2856 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2857 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2858 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 2859 setValue(&I, DSA); 2860 DAG.setRoot(DSA.getValue(1)); 2861 2862 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2863 } 2864 2865 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2866 if (I.isAtomic()) 2867 return visitAtomicLoad(I); 2868 2869 const Value *SV = I.getOperand(0); 2870 SDValue Ptr = getValue(SV); 2871 2872 Type *Ty = I.getType(); 2873 2874 bool isVolatile = I.isVolatile(); 2875 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2876 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2877 unsigned Alignment = I.getAlignment(); 2878 2879 AAMDNodes AAInfo; 2880 I.getAAMetadata(AAInfo); 2881 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2882 2883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2884 SmallVector<EVT, 4> ValueVTs; 2885 SmallVector<uint64_t, 4> Offsets; 2886 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2887 unsigned NumValues = ValueVTs.size(); 2888 if (NumValues == 0) 2889 return; 2890 2891 SDValue Root; 2892 bool ConstantMemory = false; 2893 if (isVolatile || NumValues > MaxParallelChains) 2894 // Serialize volatile loads with other side effects. 2895 Root = getRoot(); 2896 else if (AA->pointsToConstantMemory( 2897 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2898 // Do not serialize (non-volatile) loads of constant memory with anything. 2899 Root = DAG.getEntryNode(); 2900 ConstantMemory = true; 2901 } else { 2902 // Do not serialize non-volatile loads against each other. 2903 Root = DAG.getRoot(); 2904 } 2905 2906 if (isVolatile) 2907 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 2908 2909 SmallVector<SDValue, 4> Values(NumValues); 2910 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2911 NumValues)); 2912 EVT PtrVT = Ptr.getValueType(); 2913 unsigned ChainI = 0; 2914 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2915 // Serializing loads here may result in excessive register pressure, and 2916 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2917 // could recover a bit by hoisting nodes upward in the chain by recognizing 2918 // they are side-effect free or do not alias. The optimizer should really 2919 // avoid this case by converting large object/array copies to llvm.memcpy 2920 // (MaxParallelChains should always remain as failsafe). 2921 if (ChainI == MaxParallelChains) { 2922 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2923 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2924 makeArrayRef(Chains.data(), ChainI)); 2925 Root = Chain; 2926 ChainI = 0; 2927 } 2928 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 2929 PtrVT, Ptr, 2930 DAG.getConstant(Offsets[i], PtrVT)); 2931 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 2932 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2933 isNonTemporal, isInvariant, Alignment, AAInfo, 2934 Ranges); 2935 2936 Values[i] = L; 2937 Chains[ChainI] = L.getValue(1); 2938 } 2939 2940 if (!ConstantMemory) { 2941 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2942 makeArrayRef(Chains.data(), ChainI)); 2943 if (isVolatile) 2944 DAG.setRoot(Chain); 2945 else 2946 PendingLoads.push_back(Chain); 2947 } 2948 2949 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2950 DAG.getVTList(ValueVTs), Values)); 2951 } 2952 2953 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2954 if (I.isAtomic()) 2955 return visitAtomicStore(I); 2956 2957 const Value *SrcV = I.getOperand(0); 2958 const Value *PtrV = I.getOperand(1); 2959 2960 SmallVector<EVT, 4> ValueVTs; 2961 SmallVector<uint64_t, 4> Offsets; 2962 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2963 ValueVTs, &Offsets); 2964 unsigned NumValues = ValueVTs.size(); 2965 if (NumValues == 0) 2966 return; 2967 2968 // Get the lowered operands. Note that we do this after 2969 // checking if NumResults is zero, because with zero results 2970 // the operands won't have values in the map. 2971 SDValue Src = getValue(SrcV); 2972 SDValue Ptr = getValue(PtrV); 2973 2974 SDValue Root = getRoot(); 2975 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2976 NumValues)); 2977 EVT PtrVT = Ptr.getValueType(); 2978 bool isVolatile = I.isVolatile(); 2979 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2980 unsigned Alignment = I.getAlignment(); 2981 2982 AAMDNodes AAInfo; 2983 I.getAAMetadata(AAInfo); 2984 2985 unsigned ChainI = 0; 2986 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2987 // See visitLoad comments. 2988 if (ChainI == MaxParallelChains) { 2989 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2990 makeArrayRef(Chains.data(), ChainI)); 2991 Root = Chain; 2992 ChainI = 0; 2993 } 2994 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 2995 DAG.getConstant(Offsets[i], PtrVT)); 2996 SDValue St = DAG.getStore(Root, getCurSDLoc(), 2997 SDValue(Src.getNode(), Src.getResNo() + i), 2998 Add, MachinePointerInfo(PtrV, Offsets[i]), 2999 isVolatile, isNonTemporal, Alignment, AAInfo); 3000 Chains[ChainI] = St; 3001 } 3002 3003 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3004 makeArrayRef(Chains.data(), ChainI)); 3005 DAG.setRoot(StoreNode); 3006 } 3007 3008 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3009 SDLoc sdl = getCurSDLoc(); 3010 3011 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3012 Value *PtrOperand = I.getArgOperand(1); 3013 SDValue Ptr = getValue(PtrOperand); 3014 SDValue Src0 = getValue(I.getArgOperand(0)); 3015 SDValue Mask = getValue(I.getArgOperand(3)); 3016 EVT VT = Src0.getValueType(); 3017 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3018 if (!Alignment) 3019 Alignment = DAG.getEVTAlignment(VT); 3020 3021 AAMDNodes AAInfo; 3022 I.getAAMetadata(AAInfo); 3023 3024 MachineMemOperand *MMO = 3025 DAG.getMachineFunction(). 3026 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3027 MachineMemOperand::MOStore, VT.getStoreSize(), 3028 Alignment, AAInfo); 3029 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3030 MMO, false); 3031 DAG.setRoot(StoreNode); 3032 setValue(&I, StoreNode); 3033 } 3034 3035 // Gather/scatter receive a vector of pointers. 3036 // This vector of pointers may be represented as a base pointer + vector of 3037 // indices, it depends on GEP and instruction preceeding GEP 3038 // that calculates indices 3039 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3040 SelectionDAGBuilder* SDB) { 3041 3042 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3043 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3044 if (!Gep || Gep->getNumOperands() > 2) 3045 return false; 3046 ShuffleVectorInst *ShuffleInst = 3047 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3048 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3049 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3050 Instruction::InsertElement) 3051 return false; 3052 3053 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3054 3055 SelectionDAG& DAG = SDB->DAG; 3056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3057 // Check is the Ptr is inside current basic block 3058 // If not, look for the shuffle instruction 3059 if (SDB->findValue(Ptr)) 3060 Base = SDB->getValue(Ptr); 3061 else if (SDB->findValue(ShuffleInst)) { 3062 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3063 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(ShuffleNode), 3064 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3065 DAG.getConstant(0, TLI.getVectorIdxTy())); 3066 SDB->setValue(Ptr, Base); 3067 } 3068 else 3069 return false; 3070 3071 Value *IndexVal = Gep->getOperand(1); 3072 if (SDB->findValue(IndexVal)) { 3073 Index = SDB->getValue(IndexVal); 3074 3075 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3076 IndexVal = Sext->getOperand(0); 3077 if (SDB->findValue(IndexVal)) 3078 Index = SDB->getValue(IndexVal); 3079 } 3080 return true; 3081 } 3082 return false; 3083 } 3084 3085 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3086 SDLoc sdl = getCurSDLoc(); 3087 3088 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3089 Value *Ptr = I.getArgOperand(1); 3090 SDValue Src0 = getValue(I.getArgOperand(0)); 3091 SDValue Mask = getValue(I.getArgOperand(3)); 3092 EVT VT = Src0.getValueType(); 3093 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3094 if (!Alignment) 3095 Alignment = DAG.getEVTAlignment(VT); 3096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3097 3098 AAMDNodes AAInfo; 3099 I.getAAMetadata(AAInfo); 3100 3101 SDValue Base; 3102 SDValue Index; 3103 Value *BasePtr = Ptr; 3104 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3105 3106 Value *MemOpBasePtr = UniformBase ? BasePtr : NULL; 3107 MachineMemOperand *MMO = DAG.getMachineFunction(). 3108 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3109 MachineMemOperand::MOStore, VT.getStoreSize(), 3110 Alignment, AAInfo); 3111 if (!UniformBase) { 3112 Base = DAG.getTargetConstant(0, TLI.getPointerTy()); 3113 Index = getValue(Ptr); 3114 } 3115 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3116 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, Ops, MMO); 3117 DAG.setRoot(Scatter); 3118 setValue(&I, Scatter); 3119 } 3120 3121 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3122 SDLoc sdl = getCurSDLoc(); 3123 3124 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3125 Value *PtrOperand = I.getArgOperand(0); 3126 SDValue Ptr = getValue(PtrOperand); 3127 SDValue Src0 = getValue(I.getArgOperand(3)); 3128 SDValue Mask = getValue(I.getArgOperand(2)); 3129 3130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3131 EVT VT = TLI.getValueType(I.getType()); 3132 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3133 if (!Alignment) 3134 Alignment = DAG.getEVTAlignment(VT); 3135 3136 AAMDNodes AAInfo; 3137 I.getAAMetadata(AAInfo); 3138 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3139 3140 SDValue InChain = DAG.getRoot(); 3141 if (AA->pointsToConstantMemory( 3142 AliasAnalysis::Location(PtrOperand, 3143 AA->getTypeStoreSize(I.getType()), 3144 AAInfo))) { 3145 // Do not serialize (non-volatile) loads of constant memory with anything. 3146 InChain = DAG.getEntryNode(); 3147 } 3148 3149 MachineMemOperand *MMO = 3150 DAG.getMachineFunction(). 3151 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3152 MachineMemOperand::MOLoad, VT.getStoreSize(), 3153 Alignment, AAInfo, Ranges); 3154 3155 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3156 ISD::NON_EXTLOAD); 3157 SDValue OutChain = Load.getValue(1); 3158 DAG.setRoot(OutChain); 3159 setValue(&I, Load); 3160 } 3161 3162 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3163 SDLoc sdl = getCurSDLoc(); 3164 3165 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3166 Value *Ptr = I.getArgOperand(0); 3167 SDValue Src0 = getValue(I.getArgOperand(3)); 3168 SDValue Mask = getValue(I.getArgOperand(2)); 3169 3170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3171 EVT VT = TLI.getValueType(I.getType()); 3172 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3173 if (!Alignment) 3174 Alignment = DAG.getEVTAlignment(VT); 3175 3176 AAMDNodes AAInfo; 3177 I.getAAMetadata(AAInfo); 3178 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3179 3180 SDValue Root = DAG.getRoot(); 3181 SDValue Base; 3182 SDValue Index; 3183 Value *BasePtr = Ptr; 3184 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3185 bool ConstantMemory = false; 3186 if (UniformBase && AA->pointsToConstantMemory( 3187 AliasAnalysis::Location(BasePtr, 3188 AA->getTypeStoreSize(I.getType()), 3189 AAInfo))) { 3190 // Do not serialize (non-volatile) loads of constant memory with anything. 3191 Root = DAG.getEntryNode(); 3192 ConstantMemory = true; 3193 } 3194 3195 MachineMemOperand *MMO = 3196 DAG.getMachineFunction(). 3197 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : NULL), 3198 MachineMemOperand::MOLoad, VT.getStoreSize(), 3199 Alignment, AAInfo, Ranges); 3200 3201 if (!UniformBase) { 3202 Base = DAG.getTargetConstant(0, TLI.getPointerTy()); 3203 Index = getValue(Ptr); 3204 } 3205 3206 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3207 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3208 Ops, MMO); 3209 3210 SDValue OutChain = Gather.getValue(1); 3211 if (!ConstantMemory) 3212 PendingLoads.push_back(OutChain); 3213 setValue(&I, Gather); 3214 } 3215 3216 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3217 SDLoc dl = getCurSDLoc(); 3218 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3219 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3220 SynchronizationScope Scope = I.getSynchScope(); 3221 3222 SDValue InChain = getRoot(); 3223 3224 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3225 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3226 SDValue L = DAG.getAtomicCmpSwap( 3227 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3228 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3229 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3230 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3231 3232 SDValue OutChain = L.getValue(2); 3233 3234 setValue(&I, L); 3235 DAG.setRoot(OutChain); 3236 } 3237 3238 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3239 SDLoc dl = getCurSDLoc(); 3240 ISD::NodeType NT; 3241 switch (I.getOperation()) { 3242 default: llvm_unreachable("Unknown atomicrmw operation"); 3243 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3244 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3245 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3246 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3247 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3248 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3249 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3250 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3251 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3252 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3253 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3254 } 3255 AtomicOrdering Order = I.getOrdering(); 3256 SynchronizationScope Scope = I.getSynchScope(); 3257 3258 SDValue InChain = getRoot(); 3259 3260 SDValue L = 3261 DAG.getAtomic(NT, dl, 3262 getValue(I.getValOperand()).getSimpleValueType(), 3263 InChain, 3264 getValue(I.getPointerOperand()), 3265 getValue(I.getValOperand()), 3266 I.getPointerOperand(), 3267 /* Alignment=*/ 0, Order, Scope); 3268 3269 SDValue OutChain = L.getValue(1); 3270 3271 setValue(&I, L); 3272 DAG.setRoot(OutChain); 3273 } 3274 3275 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3276 SDLoc dl = getCurSDLoc(); 3277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3278 SDValue Ops[3]; 3279 Ops[0] = getRoot(); 3280 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3281 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3282 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3283 } 3284 3285 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3286 SDLoc dl = getCurSDLoc(); 3287 AtomicOrdering Order = I.getOrdering(); 3288 SynchronizationScope Scope = I.getSynchScope(); 3289 3290 SDValue InChain = getRoot(); 3291 3292 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3293 EVT VT = TLI.getValueType(I.getType()); 3294 3295 if (I.getAlignment() < VT.getSizeInBits() / 8) 3296 report_fatal_error("Cannot generate unaligned atomic load"); 3297 3298 MachineMemOperand *MMO = 3299 DAG.getMachineFunction(). 3300 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3301 MachineMemOperand::MOVolatile | 3302 MachineMemOperand::MOLoad, 3303 VT.getStoreSize(), 3304 I.getAlignment() ? I.getAlignment() : 3305 DAG.getEVTAlignment(VT)); 3306 3307 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3308 SDValue L = 3309 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3310 getValue(I.getPointerOperand()), MMO, 3311 Order, Scope); 3312 3313 SDValue OutChain = L.getValue(1); 3314 3315 setValue(&I, L); 3316 DAG.setRoot(OutChain); 3317 } 3318 3319 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3320 SDLoc dl = getCurSDLoc(); 3321 3322 AtomicOrdering Order = I.getOrdering(); 3323 SynchronizationScope Scope = I.getSynchScope(); 3324 3325 SDValue InChain = getRoot(); 3326 3327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3328 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3329 3330 if (I.getAlignment() < VT.getSizeInBits() / 8) 3331 report_fatal_error("Cannot generate unaligned atomic store"); 3332 3333 SDValue OutChain = 3334 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3335 InChain, 3336 getValue(I.getPointerOperand()), 3337 getValue(I.getValueOperand()), 3338 I.getPointerOperand(), I.getAlignment(), 3339 Order, Scope); 3340 3341 DAG.setRoot(OutChain); 3342 } 3343 3344 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3345 /// node. 3346 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3347 unsigned Intrinsic) { 3348 bool HasChain = !I.doesNotAccessMemory(); 3349 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3350 3351 // Build the operand list. 3352 SmallVector<SDValue, 8> Ops; 3353 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3354 if (OnlyLoad) { 3355 // We don't need to serialize loads against other loads. 3356 Ops.push_back(DAG.getRoot()); 3357 } else { 3358 Ops.push_back(getRoot()); 3359 } 3360 } 3361 3362 // Info is set by getTgtMemInstrinsic 3363 TargetLowering::IntrinsicInfo Info; 3364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3365 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3366 3367 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3368 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3369 Info.opc == ISD::INTRINSIC_W_CHAIN) 3370 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3371 3372 // Add all operands of the call to the operand list. 3373 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3374 SDValue Op = getValue(I.getArgOperand(i)); 3375 Ops.push_back(Op); 3376 } 3377 3378 SmallVector<EVT, 4> ValueVTs; 3379 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3380 3381 if (HasChain) 3382 ValueVTs.push_back(MVT::Other); 3383 3384 SDVTList VTs = DAG.getVTList(ValueVTs); 3385 3386 // Create the node. 3387 SDValue Result; 3388 if (IsTgtIntrinsic) { 3389 // This is target intrinsic that touches memory 3390 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3391 VTs, Ops, Info.memVT, 3392 MachinePointerInfo(Info.ptrVal, Info.offset), 3393 Info.align, Info.vol, 3394 Info.readMem, Info.writeMem, Info.size); 3395 } else if (!HasChain) { 3396 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3397 } else if (!I.getType()->isVoidTy()) { 3398 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3399 } else { 3400 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3401 } 3402 3403 if (HasChain) { 3404 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3405 if (OnlyLoad) 3406 PendingLoads.push_back(Chain); 3407 else 3408 DAG.setRoot(Chain); 3409 } 3410 3411 if (!I.getType()->isVoidTy()) { 3412 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3413 EVT VT = TLI.getValueType(PTy); 3414 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3415 } 3416 3417 setValue(&I, Result); 3418 } 3419 } 3420 3421 /// GetSignificand - Get the significand and build it into a floating-point 3422 /// number with exponent of 1: 3423 /// 3424 /// Op = (Op & 0x007fffff) | 0x3f800000; 3425 /// 3426 /// where Op is the hexadecimal representation of floating point value. 3427 static SDValue 3428 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3429 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3430 DAG.getConstant(0x007fffff, MVT::i32)); 3431 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3432 DAG.getConstant(0x3f800000, MVT::i32)); 3433 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3434 } 3435 3436 /// GetExponent - Get the exponent: 3437 /// 3438 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3439 /// 3440 /// where Op is the hexadecimal representation of floating point value. 3441 static SDValue 3442 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3443 SDLoc dl) { 3444 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3445 DAG.getConstant(0x7f800000, MVT::i32)); 3446 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3447 DAG.getConstant(23, TLI.getPointerTy())); 3448 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3449 DAG.getConstant(127, MVT::i32)); 3450 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3451 } 3452 3453 /// getF32Constant - Get 32-bit floating point constant. 3454 static SDValue 3455 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3456 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3457 MVT::f32); 3458 } 3459 3460 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3461 SelectionDAG &DAG) { 3462 // IntegerPartOfX = ((int32_t)(t0); 3463 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3464 3465 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3466 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3467 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3468 3469 // IntegerPartOfX <<= 23; 3470 IntegerPartOfX = DAG.getNode( 3471 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3472 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3473 3474 SDValue TwoToFractionalPartOfX; 3475 if (LimitFloatPrecision <= 6) { 3476 // For floating-point precision of 6: 3477 // 3478 // TwoToFractionalPartOfX = 3479 // 0.997535578f + 3480 // (0.735607626f + 0.252464424f * x) * x; 3481 // 3482 // error 0.0144103317, which is 6 bits 3483 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3484 getF32Constant(DAG, 0x3e814304)); 3485 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3486 getF32Constant(DAG, 0x3f3c50c8)); 3487 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3488 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3489 getF32Constant(DAG, 0x3f7f5e7e)); 3490 } else if (LimitFloatPrecision <= 12) { 3491 // For floating-point precision of 12: 3492 // 3493 // TwoToFractionalPartOfX = 3494 // 0.999892986f + 3495 // (0.696457318f + 3496 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3497 // 3498 // error 0.000107046256, which is 13 to 14 bits 3499 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3500 getF32Constant(DAG, 0x3da235e3)); 3501 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3502 getF32Constant(DAG, 0x3e65b8f3)); 3503 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3504 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3505 getF32Constant(DAG, 0x3f324b07)); 3506 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3507 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3508 getF32Constant(DAG, 0x3f7ff8fd)); 3509 } else { // LimitFloatPrecision <= 18 3510 // For floating-point precision of 18: 3511 // 3512 // TwoToFractionalPartOfX = 3513 // 0.999999982f + 3514 // (0.693148872f + 3515 // (0.240227044f + 3516 // (0.554906021e-1f + 3517 // (0.961591928e-2f + 3518 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3519 // error 2.47208000*10^(-7), which is better than 18 bits 3520 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3521 getF32Constant(DAG, 0x3924b03e)); 3522 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3523 getF32Constant(DAG, 0x3ab24b87)); 3524 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3525 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3526 getF32Constant(DAG, 0x3c1d8c17)); 3527 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3528 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3529 getF32Constant(DAG, 0x3d634a1d)); 3530 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3531 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3532 getF32Constant(DAG, 0x3e75fe14)); 3533 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3534 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3535 getF32Constant(DAG, 0x3f317234)); 3536 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3537 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3538 getF32Constant(DAG, 0x3f800000)); 3539 } 3540 3541 // Add the exponent into the result in integer domain. 3542 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3543 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3544 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3545 } 3546 3547 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3548 /// limited-precision mode. 3549 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3550 const TargetLowering &TLI) { 3551 if (Op.getValueType() == MVT::f32 && 3552 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3553 3554 // Put the exponent in the right bit position for later addition to the 3555 // final result: 3556 // 3557 // #define LOG2OFe 1.4426950f 3558 // t0 = Op * LOG2OFe 3559 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3560 getF32Constant(DAG, 0x3fb8aa3b)); 3561 return getLimitedPrecisionExp2(t0, dl, DAG); 3562 } 3563 3564 // No special expansion. 3565 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3566 } 3567 3568 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3569 /// limited-precision mode. 3570 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3571 const TargetLowering &TLI) { 3572 if (Op.getValueType() == MVT::f32 && 3573 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3574 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3575 3576 // Scale the exponent by log(2) [0.69314718f]. 3577 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3578 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3579 getF32Constant(DAG, 0x3f317218)); 3580 3581 // Get the significand and build it into a floating-point number with 3582 // exponent of 1. 3583 SDValue X = GetSignificand(DAG, Op1, dl); 3584 3585 SDValue LogOfMantissa; 3586 if (LimitFloatPrecision <= 6) { 3587 // For floating-point precision of 6: 3588 // 3589 // LogofMantissa = 3590 // -1.1609546f + 3591 // (1.4034025f - 0.23903021f * x) * x; 3592 // 3593 // error 0.0034276066, which is better than 8 bits 3594 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3595 getF32Constant(DAG, 0xbe74c456)); 3596 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3597 getF32Constant(DAG, 0x3fb3a2b1)); 3598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3599 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3600 getF32Constant(DAG, 0x3f949a29)); 3601 } else if (LimitFloatPrecision <= 12) { 3602 // For floating-point precision of 12: 3603 // 3604 // LogOfMantissa = 3605 // -1.7417939f + 3606 // (2.8212026f + 3607 // (-1.4699568f + 3608 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3609 // 3610 // error 0.000061011436, which is 14 bits 3611 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3612 getF32Constant(DAG, 0xbd67b6d6)); 3613 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3614 getF32Constant(DAG, 0x3ee4f4b8)); 3615 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3616 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3617 getF32Constant(DAG, 0x3fbc278b)); 3618 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3619 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3620 getF32Constant(DAG, 0x40348e95)); 3621 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3622 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3623 getF32Constant(DAG, 0x3fdef31a)); 3624 } else { // LimitFloatPrecision <= 18 3625 // For floating-point precision of 18: 3626 // 3627 // LogOfMantissa = 3628 // -2.1072184f + 3629 // (4.2372794f + 3630 // (-3.7029485f + 3631 // (2.2781945f + 3632 // (-0.87823314f + 3633 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3634 // 3635 // error 0.0000023660568, which is better than 18 bits 3636 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3637 getF32Constant(DAG, 0xbc91e5ac)); 3638 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3639 getF32Constant(DAG, 0x3e4350aa)); 3640 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3641 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3642 getF32Constant(DAG, 0x3f60d3e3)); 3643 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3644 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3645 getF32Constant(DAG, 0x4011cdf0)); 3646 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3647 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3648 getF32Constant(DAG, 0x406cfd1c)); 3649 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3650 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3651 getF32Constant(DAG, 0x408797cb)); 3652 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3653 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3654 getF32Constant(DAG, 0x4006dcab)); 3655 } 3656 3657 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3658 } 3659 3660 // No special expansion. 3661 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3662 } 3663 3664 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3665 /// limited-precision mode. 3666 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3667 const TargetLowering &TLI) { 3668 if (Op.getValueType() == MVT::f32 && 3669 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3670 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3671 3672 // Get the exponent. 3673 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3674 3675 // Get the significand and build it into a floating-point number with 3676 // exponent of 1. 3677 SDValue X = GetSignificand(DAG, Op1, dl); 3678 3679 // Different possible minimax approximations of significand in 3680 // floating-point for various degrees of accuracy over [1,2]. 3681 SDValue Log2ofMantissa; 3682 if (LimitFloatPrecision <= 6) { 3683 // For floating-point precision of 6: 3684 // 3685 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3686 // 3687 // error 0.0049451742, which is more than 7 bits 3688 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3689 getF32Constant(DAG, 0xbeb08fe0)); 3690 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3691 getF32Constant(DAG, 0x40019463)); 3692 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3693 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3694 getF32Constant(DAG, 0x3fd6633d)); 3695 } else if (LimitFloatPrecision <= 12) { 3696 // For floating-point precision of 12: 3697 // 3698 // Log2ofMantissa = 3699 // -2.51285454f + 3700 // (4.07009056f + 3701 // (-2.12067489f + 3702 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3703 // 3704 // error 0.0000876136000, which is better than 13 bits 3705 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3706 getF32Constant(DAG, 0xbda7262e)); 3707 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3708 getF32Constant(DAG, 0x3f25280b)); 3709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3710 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3711 getF32Constant(DAG, 0x4007b923)); 3712 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3713 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3714 getF32Constant(DAG, 0x40823e2f)); 3715 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3716 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3717 getF32Constant(DAG, 0x4020d29c)); 3718 } else { // LimitFloatPrecision <= 18 3719 // For floating-point precision of 18: 3720 // 3721 // Log2ofMantissa = 3722 // -3.0400495f + 3723 // (6.1129976f + 3724 // (-5.3420409f + 3725 // (3.2865683f + 3726 // (-1.2669343f + 3727 // (0.27515199f - 3728 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3729 // 3730 // error 0.0000018516, which is better than 18 bits 3731 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3732 getF32Constant(DAG, 0xbcd2769e)); 3733 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3734 getF32Constant(DAG, 0x3e8ce0b9)); 3735 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3736 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3737 getF32Constant(DAG, 0x3fa22ae7)); 3738 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3739 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3740 getF32Constant(DAG, 0x40525723)); 3741 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3742 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3743 getF32Constant(DAG, 0x40aaf200)); 3744 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3745 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3746 getF32Constant(DAG, 0x40c39dad)); 3747 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3748 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3749 getF32Constant(DAG, 0x4042902c)); 3750 } 3751 3752 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3753 } 3754 3755 // No special expansion. 3756 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3757 } 3758 3759 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3760 /// limited-precision mode. 3761 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3762 const TargetLowering &TLI) { 3763 if (Op.getValueType() == MVT::f32 && 3764 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3765 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3766 3767 // Scale the exponent by log10(2) [0.30102999f]. 3768 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3769 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3770 getF32Constant(DAG, 0x3e9a209a)); 3771 3772 // Get the significand and build it into a floating-point number with 3773 // exponent of 1. 3774 SDValue X = GetSignificand(DAG, Op1, dl); 3775 3776 SDValue Log10ofMantissa; 3777 if (LimitFloatPrecision <= 6) { 3778 // For floating-point precision of 6: 3779 // 3780 // Log10ofMantissa = 3781 // -0.50419619f + 3782 // (0.60948995f - 0.10380950f * x) * x; 3783 // 3784 // error 0.0014886165, which is 6 bits 3785 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3786 getF32Constant(DAG, 0xbdd49a13)); 3787 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3788 getF32Constant(DAG, 0x3f1c0789)); 3789 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3790 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3791 getF32Constant(DAG, 0x3f011300)); 3792 } else if (LimitFloatPrecision <= 12) { 3793 // For floating-point precision of 12: 3794 // 3795 // Log10ofMantissa = 3796 // -0.64831180f + 3797 // (0.91751397f + 3798 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3799 // 3800 // error 0.00019228036, which is better than 12 bits 3801 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3802 getF32Constant(DAG, 0x3d431f31)); 3803 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3804 getF32Constant(DAG, 0x3ea21fb2)); 3805 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3806 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3807 getF32Constant(DAG, 0x3f6ae232)); 3808 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3809 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3810 getF32Constant(DAG, 0x3f25f7c3)); 3811 } else { // LimitFloatPrecision <= 18 3812 // For floating-point precision of 18: 3813 // 3814 // Log10ofMantissa = 3815 // -0.84299375f + 3816 // (1.5327582f + 3817 // (-1.0688956f + 3818 // (0.49102474f + 3819 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3820 // 3821 // error 0.0000037995730, which is better than 18 bits 3822 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3823 getF32Constant(DAG, 0x3c5d51ce)); 3824 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3825 getF32Constant(DAG, 0x3e00685a)); 3826 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3827 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3828 getF32Constant(DAG, 0x3efb6798)); 3829 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3830 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3831 getF32Constant(DAG, 0x3f88d192)); 3832 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3833 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3834 getF32Constant(DAG, 0x3fc4316c)); 3835 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3836 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3837 getF32Constant(DAG, 0x3f57ce70)); 3838 } 3839 3840 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3841 } 3842 3843 // No special expansion. 3844 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3845 } 3846 3847 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3848 /// limited-precision mode. 3849 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3850 const TargetLowering &TLI) { 3851 if (Op.getValueType() == MVT::f32 && 3852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3853 return getLimitedPrecisionExp2(Op, dl, DAG); 3854 3855 // No special expansion. 3856 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3857 } 3858 3859 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3860 /// limited-precision mode with x == 10.0f. 3861 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3862 SelectionDAG &DAG, const TargetLowering &TLI) { 3863 bool IsExp10 = false; 3864 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3865 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3866 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3867 APFloat Ten(10.0f); 3868 IsExp10 = LHSC->isExactlyValue(Ten); 3869 } 3870 } 3871 3872 if (IsExp10) { 3873 // Put the exponent in the right bit position for later addition to the 3874 // final result: 3875 // 3876 // #define LOG2OF10 3.3219281f 3877 // t0 = Op * LOG2OF10; 3878 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3879 getF32Constant(DAG, 0x40549a78)); 3880 return getLimitedPrecisionExp2(t0, dl, DAG); 3881 } 3882 3883 // No special expansion. 3884 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3885 } 3886 3887 3888 /// ExpandPowI - Expand a llvm.powi intrinsic. 3889 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3890 SelectionDAG &DAG) { 3891 // If RHS is a constant, we can expand this out to a multiplication tree, 3892 // otherwise we end up lowering to a call to __powidf2 (for example). When 3893 // optimizing for size, we only want to do this if the expansion would produce 3894 // a small number of multiplies, otherwise we do the full expansion. 3895 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3896 // Get the exponent as a positive value. 3897 unsigned Val = RHSC->getSExtValue(); 3898 if ((int)Val < 0) Val = -Val; 3899 3900 // powi(x, 0) -> 1.0 3901 if (Val == 0) 3902 return DAG.getConstantFP(1.0, LHS.getValueType()); 3903 3904 const Function *F = DAG.getMachineFunction().getFunction(); 3905 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3906 // If optimizing for size, don't insert too many multiplies. This 3907 // inserts up to 5 multiplies. 3908 countPopulation(Val) + Log2_32(Val) < 7) { 3909 // We use the simple binary decomposition method to generate the multiply 3910 // sequence. There are more optimal ways to do this (for example, 3911 // powi(x,15) generates one more multiply than it should), but this has 3912 // the benefit of being both really simple and much better than a libcall. 3913 SDValue Res; // Logically starts equal to 1.0 3914 SDValue CurSquare = LHS; 3915 while (Val) { 3916 if (Val & 1) { 3917 if (Res.getNode()) 3918 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3919 else 3920 Res = CurSquare; // 1.0*CurSquare. 3921 } 3922 3923 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3924 CurSquare, CurSquare); 3925 Val >>= 1; 3926 } 3927 3928 // If the original was negative, invert the result, producing 1/(x*x*x). 3929 if (RHSC->getSExtValue() < 0) 3930 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3931 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3932 return Res; 3933 } 3934 } 3935 3936 // Otherwise, expand to a libcall. 3937 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3938 } 3939 3940 // getTruncatedArgReg - Find underlying register used for an truncated 3941 // argument. 3942 static unsigned getTruncatedArgReg(const SDValue &N) { 3943 if (N.getOpcode() != ISD::TRUNCATE) 3944 return 0; 3945 3946 const SDValue &Ext = N.getOperand(0); 3947 if (Ext.getOpcode() == ISD::AssertZext || 3948 Ext.getOpcode() == ISD::AssertSext) { 3949 const SDValue &CFR = Ext.getOperand(0); 3950 if (CFR.getOpcode() == ISD::CopyFromReg) 3951 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3952 if (CFR.getOpcode() == ISD::TRUNCATE) 3953 return getTruncatedArgReg(CFR); 3954 } 3955 return 0; 3956 } 3957 3958 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3959 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3960 /// At the end of instruction selection, they will be inserted to the entry BB. 3961 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3962 const Value *V, MDLocalVariable *Variable, MDExpression *Expr, 3963 MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3964 const Argument *Arg = dyn_cast<Argument>(V); 3965 if (!Arg) 3966 return false; 3967 3968 MachineFunction &MF = DAG.getMachineFunction(); 3969 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3970 3971 // Ignore inlined function arguments here. 3972 // 3973 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3974 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3975 return false; 3976 3977 Optional<MachineOperand> Op; 3978 // Some arguments' frame index is recorded during argument lowering. 3979 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3980 Op = MachineOperand::CreateFI(FI); 3981 3982 if (!Op && N.getNode()) { 3983 unsigned Reg; 3984 if (N.getOpcode() == ISD::CopyFromReg) 3985 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3986 else 3987 Reg = getTruncatedArgReg(N); 3988 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3989 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3990 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3991 if (PR) 3992 Reg = PR; 3993 } 3994 if (Reg) 3995 Op = MachineOperand::CreateReg(Reg, false); 3996 } 3997 3998 if (!Op) { 3999 // Check if ValueMap has reg number. 4000 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4001 if (VMI != FuncInfo.ValueMap.end()) 4002 Op = MachineOperand::CreateReg(VMI->second, false); 4003 } 4004 4005 if (!Op && N.getNode()) 4006 // Check if frame index is available. 4007 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4008 if (FrameIndexSDNode *FINode = 4009 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4010 Op = MachineOperand::CreateFI(FINode->getIndex()); 4011 4012 if (!Op) 4013 return false; 4014 4015 assert(Variable->isValidLocationForIntrinsic(DL) && 4016 "Expected inlined-at fields to agree"); 4017 if (Op->isReg()) 4018 FuncInfo.ArgDbgValues.push_back( 4019 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4020 Op->getReg(), Offset, Variable, Expr)); 4021 else 4022 FuncInfo.ArgDbgValues.push_back( 4023 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4024 .addOperand(*Op) 4025 .addImm(Offset) 4026 .addMetadata(Variable) 4027 .addMetadata(Expr)); 4028 4029 return true; 4030 } 4031 4032 // VisualStudio defines setjmp as _setjmp 4033 #if defined(_MSC_VER) && defined(setjmp) && \ 4034 !defined(setjmp_undefined_for_msvc) 4035 # pragma push_macro("setjmp") 4036 # undef setjmp 4037 # define setjmp_undefined_for_msvc 4038 #endif 4039 4040 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4041 /// we want to emit this as a call to a named external function, return the name 4042 /// otherwise lower it and return null. 4043 const char * 4044 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4045 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4046 SDLoc sdl = getCurSDLoc(); 4047 DebugLoc dl = getCurDebugLoc(); 4048 SDValue Res; 4049 4050 switch (Intrinsic) { 4051 default: 4052 // By default, turn this into a target intrinsic node. 4053 visitTargetIntrinsic(I, Intrinsic); 4054 return nullptr; 4055 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4056 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4057 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4058 case Intrinsic::returnaddress: 4059 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4060 getValue(I.getArgOperand(0)))); 4061 return nullptr; 4062 case Intrinsic::frameaddress: 4063 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4064 getValue(I.getArgOperand(0)))); 4065 return nullptr; 4066 case Intrinsic::read_register: { 4067 Value *Reg = I.getArgOperand(0); 4068 SDValue RegName = 4069 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4070 EVT VT = TLI.getValueType(I.getType()); 4071 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4072 return nullptr; 4073 } 4074 case Intrinsic::write_register: { 4075 Value *Reg = I.getArgOperand(0); 4076 Value *RegValue = I.getArgOperand(1); 4077 SDValue Chain = getValue(RegValue).getOperand(0); 4078 SDValue RegName = 4079 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4080 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4081 RegName, getValue(RegValue))); 4082 return nullptr; 4083 } 4084 case Intrinsic::setjmp: 4085 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4086 case Intrinsic::longjmp: 4087 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4088 case Intrinsic::memcpy: { 4089 // FIXME: this definition of "user defined address space" is x86-specific 4090 // Assert for address < 256 since we support only user defined address 4091 // spaces. 4092 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4093 < 256 && 4094 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4095 < 256 && 4096 "Unknown address space"); 4097 SDValue Op1 = getValue(I.getArgOperand(0)); 4098 SDValue Op2 = getValue(I.getArgOperand(1)); 4099 SDValue Op3 = getValue(I.getArgOperand(2)); 4100 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4101 if (!Align) 4102 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4103 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4104 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4105 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4106 false, isTC, 4107 MachinePointerInfo(I.getArgOperand(0)), 4108 MachinePointerInfo(I.getArgOperand(1))); 4109 updateDAGForMaybeTailCall(MC); 4110 return nullptr; 4111 } 4112 case Intrinsic::memset: { 4113 // FIXME: this definition of "user defined address space" is x86-specific 4114 // Assert for address < 256 since we support only user defined address 4115 // spaces. 4116 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4117 < 256 && 4118 "Unknown address space"); 4119 SDValue Op1 = getValue(I.getArgOperand(0)); 4120 SDValue Op2 = getValue(I.getArgOperand(1)); 4121 SDValue Op3 = getValue(I.getArgOperand(2)); 4122 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4123 if (!Align) 4124 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4125 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4126 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4127 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4128 isTC, MachinePointerInfo(I.getArgOperand(0))); 4129 updateDAGForMaybeTailCall(MS); 4130 return nullptr; 4131 } 4132 case Intrinsic::memmove: { 4133 // FIXME: this definition of "user defined address space" is x86-specific 4134 // Assert for address < 256 since we support only user defined address 4135 // spaces. 4136 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4137 < 256 && 4138 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4139 < 256 && 4140 "Unknown address space"); 4141 SDValue Op1 = getValue(I.getArgOperand(0)); 4142 SDValue Op2 = getValue(I.getArgOperand(1)); 4143 SDValue Op3 = getValue(I.getArgOperand(2)); 4144 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4145 if (!Align) 4146 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4147 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4148 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4149 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4150 isTC, MachinePointerInfo(I.getArgOperand(0)), 4151 MachinePointerInfo(I.getArgOperand(1))); 4152 updateDAGForMaybeTailCall(MM); 4153 return nullptr; 4154 } 4155 case Intrinsic::dbg_declare: { 4156 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4157 MDLocalVariable *Variable = DI.getVariable(); 4158 MDExpression *Expression = DI.getExpression(); 4159 const Value *Address = DI.getAddress(); 4160 assert(Variable && "Missing variable"); 4161 if (!Address) { 4162 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4163 return nullptr; 4164 } 4165 4166 // Check if address has undef value. 4167 if (isa<UndefValue>(Address) || 4168 (Address->use_empty() && !isa<Argument>(Address))) { 4169 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4170 return nullptr; 4171 } 4172 4173 SDValue &N = NodeMap[Address]; 4174 if (!N.getNode() && isa<Argument>(Address)) 4175 // Check unused arguments map. 4176 N = UnusedArgNodeMap[Address]; 4177 SDDbgValue *SDV; 4178 if (N.getNode()) { 4179 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4180 Address = BCI->getOperand(0); 4181 // Parameters are handled specially. 4182 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4183 isa<Argument>(Address); 4184 4185 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4186 4187 if (isParameter && !AI) { 4188 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4189 if (FINode) 4190 // Byval parameter. We have a frame index at this point. 4191 SDV = DAG.getFrameIndexDbgValue( 4192 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4193 else { 4194 // Address is an argument, so try to emit its dbg value using 4195 // virtual register info from the FuncInfo.ValueMap. 4196 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4197 N); 4198 return nullptr; 4199 } 4200 } else if (AI) 4201 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4202 true, 0, dl, SDNodeOrder); 4203 else { 4204 // Can't do anything with other non-AI cases yet. 4205 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4206 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4207 DEBUG(Address->dump()); 4208 return nullptr; 4209 } 4210 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4211 } else { 4212 // If Address is an argument then try to emit its dbg value using 4213 // virtual register info from the FuncInfo.ValueMap. 4214 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4215 N)) { 4216 // If variable is pinned by a alloca in dominating bb then 4217 // use StaticAllocaMap. 4218 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4219 if (AI->getParent() != DI.getParent()) { 4220 DenseMap<const AllocaInst*, int>::iterator SI = 4221 FuncInfo.StaticAllocaMap.find(AI); 4222 if (SI != FuncInfo.StaticAllocaMap.end()) { 4223 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4224 0, dl, SDNodeOrder); 4225 DAG.AddDbgValue(SDV, nullptr, false); 4226 return nullptr; 4227 } 4228 } 4229 } 4230 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4231 } 4232 } 4233 return nullptr; 4234 } 4235 case Intrinsic::dbg_value: { 4236 const DbgValueInst &DI = cast<DbgValueInst>(I); 4237 assert(DI.getVariable() && "Missing variable"); 4238 4239 MDLocalVariable *Variable = DI.getVariable(); 4240 MDExpression *Expression = DI.getExpression(); 4241 uint64_t Offset = DI.getOffset(); 4242 const Value *V = DI.getValue(); 4243 if (!V) 4244 return nullptr; 4245 4246 SDDbgValue *SDV; 4247 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4248 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4249 SDNodeOrder); 4250 DAG.AddDbgValue(SDV, nullptr, false); 4251 } else { 4252 // Do not use getValue() in here; we don't want to generate code at 4253 // this point if it hasn't been done yet. 4254 SDValue N = NodeMap[V]; 4255 if (!N.getNode() && isa<Argument>(V)) 4256 // Check unused arguments map. 4257 N = UnusedArgNodeMap[V]; 4258 if (N.getNode()) { 4259 // A dbg.value for an alloca is always indirect. 4260 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4261 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4262 IsIndirect, N)) { 4263 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4264 IsIndirect, Offset, dl, SDNodeOrder); 4265 DAG.AddDbgValue(SDV, N.getNode(), false); 4266 } 4267 } else if (!V->use_empty() ) { 4268 // Do not call getValue(V) yet, as we don't want to generate code. 4269 // Remember it for later. 4270 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4271 DanglingDebugInfoMap[V] = DDI; 4272 } else { 4273 // We may expand this to cover more cases. One case where we have no 4274 // data available is an unreferenced parameter. 4275 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4276 } 4277 } 4278 4279 // Build a debug info table entry. 4280 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4281 V = BCI->getOperand(0); 4282 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4283 // Don't handle byval struct arguments or VLAs, for example. 4284 if (!AI) { 4285 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4286 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4287 return nullptr; 4288 } 4289 DenseMap<const AllocaInst*, int>::iterator SI = 4290 FuncInfo.StaticAllocaMap.find(AI); 4291 if (SI == FuncInfo.StaticAllocaMap.end()) 4292 return nullptr; // VLAs. 4293 return nullptr; 4294 } 4295 4296 case Intrinsic::eh_typeid_for: { 4297 // Find the type id for the given typeinfo. 4298 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4299 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4300 Res = DAG.getConstant(TypeID, MVT::i32); 4301 setValue(&I, Res); 4302 return nullptr; 4303 } 4304 4305 case Intrinsic::eh_return_i32: 4306 case Intrinsic::eh_return_i64: 4307 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4308 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4309 MVT::Other, 4310 getControlRoot(), 4311 getValue(I.getArgOperand(0)), 4312 getValue(I.getArgOperand(1)))); 4313 return nullptr; 4314 case Intrinsic::eh_unwind_init: 4315 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4316 return nullptr; 4317 case Intrinsic::eh_dwarf_cfa: { 4318 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4319 TLI.getPointerTy()); 4320 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4321 CfaArg.getValueType(), 4322 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4323 CfaArg.getValueType()), 4324 CfaArg); 4325 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4326 DAG.getConstant(0, TLI.getPointerTy())); 4327 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4328 FA, Offset)); 4329 return nullptr; 4330 } 4331 case Intrinsic::eh_sjlj_callsite: { 4332 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4333 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4334 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4335 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4336 4337 MMI.setCurrentCallSite(CI->getZExtValue()); 4338 return nullptr; 4339 } 4340 case Intrinsic::eh_sjlj_functioncontext: { 4341 // Get and store the index of the function context. 4342 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4343 AllocaInst *FnCtx = 4344 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4345 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4346 MFI->setFunctionContextIndex(FI); 4347 return nullptr; 4348 } 4349 case Intrinsic::eh_sjlj_setjmp: { 4350 SDValue Ops[2]; 4351 Ops[0] = getRoot(); 4352 Ops[1] = getValue(I.getArgOperand(0)); 4353 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4354 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4355 setValue(&I, Op.getValue(0)); 4356 DAG.setRoot(Op.getValue(1)); 4357 return nullptr; 4358 } 4359 case Intrinsic::eh_sjlj_longjmp: { 4360 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4361 getRoot(), getValue(I.getArgOperand(0)))); 4362 return nullptr; 4363 } 4364 4365 case Intrinsic::masked_gather: 4366 visitMaskedGather(I); 4367 case Intrinsic::masked_load: 4368 visitMaskedLoad(I); 4369 return nullptr; 4370 case Intrinsic::masked_scatter: 4371 visitMaskedScatter(I); 4372 case Intrinsic::masked_store: 4373 visitMaskedStore(I); 4374 return nullptr; 4375 case Intrinsic::x86_mmx_pslli_w: 4376 case Intrinsic::x86_mmx_pslli_d: 4377 case Intrinsic::x86_mmx_pslli_q: 4378 case Intrinsic::x86_mmx_psrli_w: 4379 case Intrinsic::x86_mmx_psrli_d: 4380 case Intrinsic::x86_mmx_psrli_q: 4381 case Intrinsic::x86_mmx_psrai_w: 4382 case Intrinsic::x86_mmx_psrai_d: { 4383 SDValue ShAmt = getValue(I.getArgOperand(1)); 4384 if (isa<ConstantSDNode>(ShAmt)) { 4385 visitTargetIntrinsic(I, Intrinsic); 4386 return nullptr; 4387 } 4388 unsigned NewIntrinsic = 0; 4389 EVT ShAmtVT = MVT::v2i32; 4390 switch (Intrinsic) { 4391 case Intrinsic::x86_mmx_pslli_w: 4392 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4393 break; 4394 case Intrinsic::x86_mmx_pslli_d: 4395 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4396 break; 4397 case Intrinsic::x86_mmx_pslli_q: 4398 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4399 break; 4400 case Intrinsic::x86_mmx_psrli_w: 4401 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4402 break; 4403 case Intrinsic::x86_mmx_psrli_d: 4404 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4405 break; 4406 case Intrinsic::x86_mmx_psrli_q: 4407 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4408 break; 4409 case Intrinsic::x86_mmx_psrai_w: 4410 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4411 break; 4412 case Intrinsic::x86_mmx_psrai_d: 4413 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4414 break; 4415 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4416 } 4417 4418 // The vector shift intrinsics with scalars uses 32b shift amounts but 4419 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4420 // to be zero. 4421 // We must do this early because v2i32 is not a legal type. 4422 SDValue ShOps[2]; 4423 ShOps[0] = ShAmt; 4424 ShOps[1] = DAG.getConstant(0, MVT::i32); 4425 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4426 EVT DestVT = TLI.getValueType(I.getType()); 4427 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4428 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4429 DAG.getConstant(NewIntrinsic, MVT::i32), 4430 getValue(I.getArgOperand(0)), ShAmt); 4431 setValue(&I, Res); 4432 return nullptr; 4433 } 4434 case Intrinsic::convertff: 4435 case Intrinsic::convertfsi: 4436 case Intrinsic::convertfui: 4437 case Intrinsic::convertsif: 4438 case Intrinsic::convertuif: 4439 case Intrinsic::convertss: 4440 case Intrinsic::convertsu: 4441 case Intrinsic::convertus: 4442 case Intrinsic::convertuu: { 4443 ISD::CvtCode Code = ISD::CVT_INVALID; 4444 switch (Intrinsic) { 4445 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4446 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4447 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4448 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4449 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4450 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4451 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4452 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4453 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4454 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4455 } 4456 EVT DestVT = TLI.getValueType(I.getType()); 4457 const Value *Op1 = I.getArgOperand(0); 4458 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4459 DAG.getValueType(DestVT), 4460 DAG.getValueType(getValue(Op1).getValueType()), 4461 getValue(I.getArgOperand(1)), 4462 getValue(I.getArgOperand(2)), 4463 Code); 4464 setValue(&I, Res); 4465 return nullptr; 4466 } 4467 case Intrinsic::powi: 4468 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4469 getValue(I.getArgOperand(1)), DAG)); 4470 return nullptr; 4471 case Intrinsic::log: 4472 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4473 return nullptr; 4474 case Intrinsic::log2: 4475 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4476 return nullptr; 4477 case Intrinsic::log10: 4478 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4479 return nullptr; 4480 case Intrinsic::exp: 4481 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4482 return nullptr; 4483 case Intrinsic::exp2: 4484 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4485 return nullptr; 4486 case Intrinsic::pow: 4487 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4488 getValue(I.getArgOperand(1)), DAG, TLI)); 4489 return nullptr; 4490 case Intrinsic::sqrt: 4491 case Intrinsic::fabs: 4492 case Intrinsic::sin: 4493 case Intrinsic::cos: 4494 case Intrinsic::floor: 4495 case Intrinsic::ceil: 4496 case Intrinsic::trunc: 4497 case Intrinsic::rint: 4498 case Intrinsic::nearbyint: 4499 case Intrinsic::round: { 4500 unsigned Opcode; 4501 switch (Intrinsic) { 4502 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4503 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4504 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4505 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4506 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4507 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4508 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4509 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4510 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4511 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4512 case Intrinsic::round: Opcode = ISD::FROUND; break; 4513 } 4514 4515 setValue(&I, DAG.getNode(Opcode, sdl, 4516 getValue(I.getArgOperand(0)).getValueType(), 4517 getValue(I.getArgOperand(0)))); 4518 return nullptr; 4519 } 4520 case Intrinsic::minnum: 4521 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4522 getValue(I.getArgOperand(0)).getValueType(), 4523 getValue(I.getArgOperand(0)), 4524 getValue(I.getArgOperand(1)))); 4525 return nullptr; 4526 case Intrinsic::maxnum: 4527 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4528 getValue(I.getArgOperand(0)).getValueType(), 4529 getValue(I.getArgOperand(0)), 4530 getValue(I.getArgOperand(1)))); 4531 return nullptr; 4532 case Intrinsic::copysign: 4533 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4534 getValue(I.getArgOperand(0)).getValueType(), 4535 getValue(I.getArgOperand(0)), 4536 getValue(I.getArgOperand(1)))); 4537 return nullptr; 4538 case Intrinsic::fma: 4539 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4540 getValue(I.getArgOperand(0)).getValueType(), 4541 getValue(I.getArgOperand(0)), 4542 getValue(I.getArgOperand(1)), 4543 getValue(I.getArgOperand(2)))); 4544 return nullptr; 4545 case Intrinsic::fmuladd: { 4546 EVT VT = TLI.getValueType(I.getType()); 4547 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4548 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4549 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4550 getValue(I.getArgOperand(0)).getValueType(), 4551 getValue(I.getArgOperand(0)), 4552 getValue(I.getArgOperand(1)), 4553 getValue(I.getArgOperand(2)))); 4554 } else { 4555 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4556 getValue(I.getArgOperand(0)).getValueType(), 4557 getValue(I.getArgOperand(0)), 4558 getValue(I.getArgOperand(1))); 4559 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4560 getValue(I.getArgOperand(0)).getValueType(), 4561 Mul, 4562 getValue(I.getArgOperand(2))); 4563 setValue(&I, Add); 4564 } 4565 return nullptr; 4566 } 4567 case Intrinsic::convert_to_fp16: 4568 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4569 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4570 getValue(I.getArgOperand(0)), 4571 DAG.getTargetConstant(0, MVT::i32)))); 4572 return nullptr; 4573 case Intrinsic::convert_from_fp16: 4574 setValue(&I, 4575 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4576 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4577 getValue(I.getArgOperand(0))))); 4578 return nullptr; 4579 case Intrinsic::pcmarker: { 4580 SDValue Tmp = getValue(I.getArgOperand(0)); 4581 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4582 return nullptr; 4583 } 4584 case Intrinsic::readcyclecounter: { 4585 SDValue Op = getRoot(); 4586 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4587 DAG.getVTList(MVT::i64, MVT::Other), Op); 4588 setValue(&I, Res); 4589 DAG.setRoot(Res.getValue(1)); 4590 return nullptr; 4591 } 4592 case Intrinsic::bswap: 4593 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4594 getValue(I.getArgOperand(0)).getValueType(), 4595 getValue(I.getArgOperand(0)))); 4596 return nullptr; 4597 case Intrinsic::cttz: { 4598 SDValue Arg = getValue(I.getArgOperand(0)); 4599 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4600 EVT Ty = Arg.getValueType(); 4601 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4602 sdl, Ty, Arg)); 4603 return nullptr; 4604 } 4605 case Intrinsic::ctlz: { 4606 SDValue Arg = getValue(I.getArgOperand(0)); 4607 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4608 EVT Ty = Arg.getValueType(); 4609 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4610 sdl, Ty, Arg)); 4611 return nullptr; 4612 } 4613 case Intrinsic::ctpop: { 4614 SDValue Arg = getValue(I.getArgOperand(0)); 4615 EVT Ty = Arg.getValueType(); 4616 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4617 return nullptr; 4618 } 4619 case Intrinsic::stacksave: { 4620 SDValue Op = getRoot(); 4621 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4622 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4623 setValue(&I, Res); 4624 DAG.setRoot(Res.getValue(1)); 4625 return nullptr; 4626 } 4627 case Intrinsic::stackrestore: { 4628 Res = getValue(I.getArgOperand(0)); 4629 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4630 return nullptr; 4631 } 4632 case Intrinsic::stackprotector: { 4633 // Emit code into the DAG to store the stack guard onto the stack. 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 MachineFrameInfo *MFI = MF.getFrameInfo(); 4636 EVT PtrTy = TLI.getPointerTy(); 4637 SDValue Src, Chain = getRoot(); 4638 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4639 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4640 4641 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4642 // global variable __stack_chk_guard. 4643 if (!GV) 4644 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4645 if (BC->getOpcode() == Instruction::BitCast) 4646 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4647 4648 if (GV && TLI.useLoadStackGuardNode()) { 4649 // Emit a LOAD_STACK_GUARD node. 4650 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4651 sdl, PtrTy, Chain); 4652 MachinePointerInfo MPInfo(GV); 4653 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4654 unsigned Flags = MachineMemOperand::MOLoad | 4655 MachineMemOperand::MOInvariant; 4656 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4657 PtrTy.getSizeInBits() / 8, 4658 DAG.getEVTAlignment(PtrTy)); 4659 Node->setMemRefs(MemRefs, MemRefs + 1); 4660 4661 // Copy the guard value to a virtual register so that it can be 4662 // retrieved in the epilogue. 4663 Src = SDValue(Node, 0); 4664 const TargetRegisterClass *RC = 4665 TLI.getRegClassFor(Src.getSimpleValueType()); 4666 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4667 4668 SPDescriptor.setGuardReg(Reg); 4669 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4670 } else { 4671 Src = getValue(I.getArgOperand(0)); // The guard's value. 4672 } 4673 4674 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4675 4676 int FI = FuncInfo.StaticAllocaMap[Slot]; 4677 MFI->setStackProtectorIndex(FI); 4678 4679 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4680 4681 // Store the stack protector onto the stack. 4682 Res = DAG.getStore(Chain, sdl, Src, FIN, 4683 MachinePointerInfo::getFixedStack(FI), 4684 true, false, 0); 4685 setValue(&I, Res); 4686 DAG.setRoot(Res); 4687 return nullptr; 4688 } 4689 case Intrinsic::objectsize: { 4690 // If we don't know by now, we're never going to know. 4691 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4692 4693 assert(CI && "Non-constant type in __builtin_object_size?"); 4694 4695 SDValue Arg = getValue(I.getCalledValue()); 4696 EVT Ty = Arg.getValueType(); 4697 4698 if (CI->isZero()) 4699 Res = DAG.getConstant(-1ULL, Ty); 4700 else 4701 Res = DAG.getConstant(0, Ty); 4702 4703 setValue(&I, Res); 4704 return nullptr; 4705 } 4706 case Intrinsic::annotation: 4707 case Intrinsic::ptr_annotation: 4708 // Drop the intrinsic, but forward the value 4709 setValue(&I, getValue(I.getOperand(0))); 4710 return nullptr; 4711 case Intrinsic::assume: 4712 case Intrinsic::var_annotation: 4713 // Discard annotate attributes and assumptions 4714 return nullptr; 4715 4716 case Intrinsic::init_trampoline: { 4717 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4718 4719 SDValue Ops[6]; 4720 Ops[0] = getRoot(); 4721 Ops[1] = getValue(I.getArgOperand(0)); 4722 Ops[2] = getValue(I.getArgOperand(1)); 4723 Ops[3] = getValue(I.getArgOperand(2)); 4724 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4725 Ops[5] = DAG.getSrcValue(F); 4726 4727 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4728 4729 DAG.setRoot(Res); 4730 return nullptr; 4731 } 4732 case Intrinsic::adjust_trampoline: { 4733 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4734 TLI.getPointerTy(), 4735 getValue(I.getArgOperand(0)))); 4736 return nullptr; 4737 } 4738 case Intrinsic::gcroot: 4739 if (GFI) { 4740 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4741 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4742 4743 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4744 GFI->addStackRoot(FI->getIndex(), TypeMap); 4745 } 4746 return nullptr; 4747 case Intrinsic::gcread: 4748 case Intrinsic::gcwrite: 4749 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4750 case Intrinsic::flt_rounds: 4751 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4752 return nullptr; 4753 4754 case Intrinsic::expect: { 4755 // Just replace __builtin_expect(exp, c) with EXP. 4756 setValue(&I, getValue(I.getArgOperand(0))); 4757 return nullptr; 4758 } 4759 4760 case Intrinsic::debugtrap: 4761 case Intrinsic::trap: { 4762 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4763 if (TrapFuncName.empty()) { 4764 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4765 ISD::TRAP : ISD::DEBUGTRAP; 4766 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4767 return nullptr; 4768 } 4769 TargetLowering::ArgListTy Args; 4770 4771 TargetLowering::CallLoweringInfo CLI(DAG); 4772 CLI.setDebugLoc(sdl).setChain(getRoot()) 4773 .setCallee(CallingConv::C, I.getType(), 4774 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4775 std::move(Args), 0); 4776 4777 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4778 DAG.setRoot(Result.second); 4779 return nullptr; 4780 } 4781 4782 case Intrinsic::uadd_with_overflow: 4783 case Intrinsic::sadd_with_overflow: 4784 case Intrinsic::usub_with_overflow: 4785 case Intrinsic::ssub_with_overflow: 4786 case Intrinsic::umul_with_overflow: 4787 case Intrinsic::smul_with_overflow: { 4788 ISD::NodeType Op; 4789 switch (Intrinsic) { 4790 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4791 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4792 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4793 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4794 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4795 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4796 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4797 } 4798 SDValue Op1 = getValue(I.getArgOperand(0)); 4799 SDValue Op2 = getValue(I.getArgOperand(1)); 4800 4801 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4802 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4803 return nullptr; 4804 } 4805 case Intrinsic::prefetch: { 4806 SDValue Ops[5]; 4807 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4808 Ops[0] = getRoot(); 4809 Ops[1] = getValue(I.getArgOperand(0)); 4810 Ops[2] = getValue(I.getArgOperand(1)); 4811 Ops[3] = getValue(I.getArgOperand(2)); 4812 Ops[4] = getValue(I.getArgOperand(3)); 4813 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4814 DAG.getVTList(MVT::Other), Ops, 4815 EVT::getIntegerVT(*Context, 8), 4816 MachinePointerInfo(I.getArgOperand(0)), 4817 0, /* align */ 4818 false, /* volatile */ 4819 rw==0, /* read */ 4820 rw==1)); /* write */ 4821 return nullptr; 4822 } 4823 case Intrinsic::lifetime_start: 4824 case Intrinsic::lifetime_end: { 4825 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4826 // Stack coloring is not enabled in O0, discard region information. 4827 if (TM.getOptLevel() == CodeGenOpt::None) 4828 return nullptr; 4829 4830 SmallVector<Value *, 4> Allocas; 4831 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4832 4833 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4834 E = Allocas.end(); Object != E; ++Object) { 4835 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4836 4837 // Could not find an Alloca. 4838 if (!LifetimeObject) 4839 continue; 4840 4841 // First check that the Alloca is static, otherwise it won't have a 4842 // valid frame index. 4843 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4844 if (SI == FuncInfo.StaticAllocaMap.end()) 4845 return nullptr; 4846 4847 int FI = SI->second; 4848 4849 SDValue Ops[2]; 4850 Ops[0] = getRoot(); 4851 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4852 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4853 4854 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4855 DAG.setRoot(Res); 4856 } 4857 return nullptr; 4858 } 4859 case Intrinsic::invariant_start: 4860 // Discard region information. 4861 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4862 return nullptr; 4863 case Intrinsic::invariant_end: 4864 // Discard region information. 4865 return nullptr; 4866 case Intrinsic::stackprotectorcheck: { 4867 // Do not actually emit anything for this basic block. Instead we initialize 4868 // the stack protector descriptor and export the guard variable so we can 4869 // access it in FinishBasicBlock. 4870 const BasicBlock *BB = I.getParent(); 4871 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4872 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4873 4874 // Flush our exports since we are going to process a terminator. 4875 (void)getControlRoot(); 4876 return nullptr; 4877 } 4878 case Intrinsic::clear_cache: 4879 return TLI.getClearCacheBuiltinName(); 4880 case Intrinsic::eh_actions: 4881 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4882 return nullptr; 4883 case Intrinsic::donothing: 4884 // ignore 4885 return nullptr; 4886 case Intrinsic::experimental_stackmap: { 4887 visitStackmap(I); 4888 return nullptr; 4889 } 4890 case Intrinsic::experimental_patchpoint_void: 4891 case Intrinsic::experimental_patchpoint_i64: { 4892 visitPatchpoint(&I); 4893 return nullptr; 4894 } 4895 case Intrinsic::experimental_gc_statepoint: { 4896 visitStatepoint(I); 4897 return nullptr; 4898 } 4899 case Intrinsic::experimental_gc_result_int: 4900 case Intrinsic::experimental_gc_result_float: 4901 case Intrinsic::experimental_gc_result_ptr: 4902 case Intrinsic::experimental_gc_result: { 4903 visitGCResult(I); 4904 return nullptr; 4905 } 4906 case Intrinsic::experimental_gc_relocate: { 4907 visitGCRelocate(I); 4908 return nullptr; 4909 } 4910 case Intrinsic::instrprof_increment: 4911 llvm_unreachable("instrprof failed to lower an increment"); 4912 4913 case Intrinsic::frameescape: { 4914 MachineFunction &MF = DAG.getMachineFunction(); 4915 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4916 4917 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4918 // is the same on all targets. 4919 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4920 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4921 if (isa<ConstantPointerNull>(Arg)) 4922 continue; // Skip null pointers. They represent a hole in index space. 4923 AllocaInst *Slot = cast<AllocaInst>(Arg); 4924 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4925 "can only escape static allocas"); 4926 int FI = FuncInfo.StaticAllocaMap[Slot]; 4927 MCSymbol *FrameAllocSym = 4928 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4929 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4931 TII->get(TargetOpcode::FRAME_ALLOC)) 4932 .addSym(FrameAllocSym) 4933 .addFrameIndex(FI); 4934 } 4935 4936 return nullptr; 4937 } 4938 4939 case Intrinsic::framerecover: { 4940 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4941 MachineFunction &MF = DAG.getMachineFunction(); 4942 MVT PtrVT = TLI.getPointerTy(0); 4943 4944 // Get the symbol that defines the frame offset. 4945 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4946 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4947 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4948 MCSymbol *FrameAllocSym = 4949 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4950 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4951 4952 // Create a TargetExternalSymbol for the label to avoid any target lowering 4953 // that would make this PC relative. 4954 StringRef Name = FrameAllocSym->getName(); 4955 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4956 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4957 SDValue OffsetVal = 4958 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4959 4960 // Add the offset to the FP. 4961 Value *FP = I.getArgOperand(1); 4962 SDValue FPVal = getValue(FP); 4963 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4964 setValue(&I, Add); 4965 4966 return nullptr; 4967 } 4968 case Intrinsic::eh_begincatch: 4969 case Intrinsic::eh_endcatch: 4970 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4971 case Intrinsic::eh_exceptioncode: { 4972 unsigned Reg = TLI.getExceptionPointerRegister(); 4973 assert(Reg && "cannot get exception code on this platform"); 4974 MVT PtrVT = TLI.getPointerTy(); 4975 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4976 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4977 SDValue N = 4978 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4979 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4980 setValue(&I, N); 4981 return nullptr; 4982 } 4983 } 4984 } 4985 4986 std::pair<SDValue, SDValue> 4987 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4988 MachineBasicBlock *LandingPad) { 4989 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4990 MCSymbol *BeginLabel = nullptr; 4991 4992 if (LandingPad) { 4993 // Insert a label before the invoke call to mark the try range. This can be 4994 // used to detect deletion of the invoke via the MachineModuleInfo. 4995 BeginLabel = MMI.getContext().CreateTempSymbol(); 4996 4997 // For SjLj, keep track of which landing pads go with which invokes 4998 // so as to maintain the ordering of pads in the LSDA. 4999 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5000 if (CallSiteIndex) { 5001 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5002 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5003 5004 // Now that the call site is handled, stop tracking it. 5005 MMI.setCurrentCallSite(0); 5006 } 5007 5008 // Both PendingLoads and PendingExports must be flushed here; 5009 // this call might not return. 5010 (void)getRoot(); 5011 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5012 5013 CLI.setChain(getRoot()); 5014 } 5015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5016 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5017 5018 assert((CLI.IsTailCall || Result.second.getNode()) && 5019 "Non-null chain expected with non-tail call!"); 5020 assert((Result.second.getNode() || !Result.first.getNode()) && 5021 "Null value expected with tail call!"); 5022 5023 if (!Result.second.getNode()) { 5024 // As a special case, a null chain means that a tail call has been emitted 5025 // and the DAG root is already updated. 5026 HasTailCall = true; 5027 5028 // Since there's no actual continuation from this block, nothing can be 5029 // relying on us setting vregs for them. 5030 PendingExports.clear(); 5031 } else { 5032 DAG.setRoot(Result.second); 5033 } 5034 5035 if (LandingPad) { 5036 // Insert a label at the end of the invoke call to mark the try range. This 5037 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5038 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5039 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5040 5041 // Inform MachineModuleInfo of range. 5042 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5043 } 5044 5045 return Result; 5046 } 5047 5048 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5049 bool isTailCall, 5050 MachineBasicBlock *LandingPad) { 5051 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5052 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5053 Type *RetTy = FTy->getReturnType(); 5054 5055 TargetLowering::ArgListTy Args; 5056 TargetLowering::ArgListEntry Entry; 5057 Args.reserve(CS.arg_size()); 5058 5059 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5060 i != e; ++i) { 5061 const Value *V = *i; 5062 5063 // Skip empty types 5064 if (V->getType()->isEmptyTy()) 5065 continue; 5066 5067 SDValue ArgNode = getValue(V); 5068 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5069 5070 // Skip the first return-type Attribute to get to params. 5071 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5072 Args.push_back(Entry); 5073 5074 // If we have an explicit sret argument that is an Instruction, (i.e., it 5075 // might point to function-local memory), we can't meaningfully tail-call. 5076 if (Entry.isSRet && isa<Instruction>(V)) 5077 isTailCall = false; 5078 } 5079 5080 // Check if target-independent constraints permit a tail call here. 5081 // Target-dependent constraints are checked within TLI->LowerCallTo. 5082 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5083 isTailCall = false; 5084 5085 TargetLowering::CallLoweringInfo CLI(DAG); 5086 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5087 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5088 .setTailCall(isTailCall); 5089 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5090 5091 if (Result.first.getNode()) 5092 setValue(CS.getInstruction(), Result.first); 5093 } 5094 5095 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5096 /// value is equal or not-equal to zero. 5097 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5098 for (const User *U : V->users()) { 5099 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5100 if (IC->isEquality()) 5101 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5102 if (C->isNullValue()) 5103 continue; 5104 // Unknown instruction. 5105 return false; 5106 } 5107 return true; 5108 } 5109 5110 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5111 Type *LoadTy, 5112 SelectionDAGBuilder &Builder) { 5113 5114 // Check to see if this load can be trivially constant folded, e.g. if the 5115 // input is from a string literal. 5116 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5117 // Cast pointer to the type we really want to load. 5118 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5119 PointerType::getUnqual(LoadTy)); 5120 5121 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5122 const_cast<Constant *>(LoadInput), *Builder.DL)) 5123 return Builder.getValue(LoadCst); 5124 } 5125 5126 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5127 // still constant memory, the input chain can be the entry node. 5128 SDValue Root; 5129 bool ConstantMemory = false; 5130 5131 // Do not serialize (non-volatile) loads of constant memory with anything. 5132 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5133 Root = Builder.DAG.getEntryNode(); 5134 ConstantMemory = true; 5135 } else { 5136 // Do not serialize non-volatile loads against each other. 5137 Root = Builder.DAG.getRoot(); 5138 } 5139 5140 SDValue Ptr = Builder.getValue(PtrVal); 5141 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5142 Ptr, MachinePointerInfo(PtrVal), 5143 false /*volatile*/, 5144 false /*nontemporal*/, 5145 false /*isinvariant*/, 1 /* align=1 */); 5146 5147 if (!ConstantMemory) 5148 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5149 return LoadVal; 5150 } 5151 5152 /// processIntegerCallValue - Record the value for an instruction that 5153 /// produces an integer result, converting the type where necessary. 5154 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5155 SDValue Value, 5156 bool IsSigned) { 5157 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5158 if (IsSigned) 5159 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5160 else 5161 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5162 setValue(&I, Value); 5163 } 5164 5165 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5166 /// If so, return true and lower it, otherwise return false and it will be 5167 /// lowered like a normal call. 5168 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5169 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5170 if (I.getNumArgOperands() != 3) 5171 return false; 5172 5173 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5174 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5175 !I.getArgOperand(2)->getType()->isIntegerTy() || 5176 !I.getType()->isIntegerTy()) 5177 return false; 5178 5179 const Value *Size = I.getArgOperand(2); 5180 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5181 if (CSize && CSize->getZExtValue() == 0) { 5182 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5183 setValue(&I, DAG.getConstant(0, CallVT)); 5184 return true; 5185 } 5186 5187 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5188 std::pair<SDValue, SDValue> Res = 5189 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5190 getValue(LHS), getValue(RHS), getValue(Size), 5191 MachinePointerInfo(LHS), 5192 MachinePointerInfo(RHS)); 5193 if (Res.first.getNode()) { 5194 processIntegerCallValue(I, Res.first, true); 5195 PendingLoads.push_back(Res.second); 5196 return true; 5197 } 5198 5199 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5200 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5201 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5202 bool ActuallyDoIt = true; 5203 MVT LoadVT; 5204 Type *LoadTy; 5205 switch (CSize->getZExtValue()) { 5206 default: 5207 LoadVT = MVT::Other; 5208 LoadTy = nullptr; 5209 ActuallyDoIt = false; 5210 break; 5211 case 2: 5212 LoadVT = MVT::i16; 5213 LoadTy = Type::getInt16Ty(CSize->getContext()); 5214 break; 5215 case 4: 5216 LoadVT = MVT::i32; 5217 LoadTy = Type::getInt32Ty(CSize->getContext()); 5218 break; 5219 case 8: 5220 LoadVT = MVT::i64; 5221 LoadTy = Type::getInt64Ty(CSize->getContext()); 5222 break; 5223 /* 5224 case 16: 5225 LoadVT = MVT::v4i32; 5226 LoadTy = Type::getInt32Ty(CSize->getContext()); 5227 LoadTy = VectorType::get(LoadTy, 4); 5228 break; 5229 */ 5230 } 5231 5232 // This turns into unaligned loads. We only do this if the target natively 5233 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5234 // we'll only produce a small number of byte loads. 5235 5236 // Require that we can find a legal MVT, and only do this if the target 5237 // supports unaligned loads of that type. Expanding into byte loads would 5238 // bloat the code. 5239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5240 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5241 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5242 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5243 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5244 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5245 // TODO: Check alignment of src and dest ptrs. 5246 if (!TLI.isTypeLegal(LoadVT) || 5247 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5248 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5249 ActuallyDoIt = false; 5250 } 5251 5252 if (ActuallyDoIt) { 5253 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5254 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5255 5256 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5257 ISD::SETNE); 5258 processIntegerCallValue(I, Res, false); 5259 return true; 5260 } 5261 } 5262 5263 5264 return false; 5265 } 5266 5267 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5268 /// form. If so, return true and lower it, otherwise return false and it 5269 /// will be lowered like a normal call. 5270 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5271 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5272 if (I.getNumArgOperands() != 3) 5273 return false; 5274 5275 const Value *Src = I.getArgOperand(0); 5276 const Value *Char = I.getArgOperand(1); 5277 const Value *Length = I.getArgOperand(2); 5278 if (!Src->getType()->isPointerTy() || 5279 !Char->getType()->isIntegerTy() || 5280 !Length->getType()->isIntegerTy() || 5281 !I.getType()->isPointerTy()) 5282 return false; 5283 5284 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5285 std::pair<SDValue, SDValue> Res = 5286 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5287 getValue(Src), getValue(Char), getValue(Length), 5288 MachinePointerInfo(Src)); 5289 if (Res.first.getNode()) { 5290 setValue(&I, Res.first); 5291 PendingLoads.push_back(Res.second); 5292 return true; 5293 } 5294 5295 return false; 5296 } 5297 5298 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5299 /// optimized form. If so, return true and lower it, otherwise return false 5300 /// and it will be lowered like a normal call. 5301 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5302 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5303 if (I.getNumArgOperands() != 2) 5304 return false; 5305 5306 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5307 if (!Arg0->getType()->isPointerTy() || 5308 !Arg1->getType()->isPointerTy() || 5309 !I.getType()->isPointerTy()) 5310 return false; 5311 5312 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5313 std::pair<SDValue, SDValue> Res = 5314 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5315 getValue(Arg0), getValue(Arg1), 5316 MachinePointerInfo(Arg0), 5317 MachinePointerInfo(Arg1), isStpcpy); 5318 if (Res.first.getNode()) { 5319 setValue(&I, Res.first); 5320 DAG.setRoot(Res.second); 5321 return true; 5322 } 5323 5324 return false; 5325 } 5326 5327 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5328 /// If so, return true and lower it, otherwise return false and it will be 5329 /// lowered like a normal call. 5330 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5331 // Verify that the prototype makes sense. int strcmp(void*,void*) 5332 if (I.getNumArgOperands() != 2) 5333 return false; 5334 5335 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5336 if (!Arg0->getType()->isPointerTy() || 5337 !Arg1->getType()->isPointerTy() || 5338 !I.getType()->isIntegerTy()) 5339 return false; 5340 5341 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5342 std::pair<SDValue, SDValue> Res = 5343 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5344 getValue(Arg0), getValue(Arg1), 5345 MachinePointerInfo(Arg0), 5346 MachinePointerInfo(Arg1)); 5347 if (Res.first.getNode()) { 5348 processIntegerCallValue(I, Res.first, true); 5349 PendingLoads.push_back(Res.second); 5350 return true; 5351 } 5352 5353 return false; 5354 } 5355 5356 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5357 /// form. If so, return true and lower it, otherwise return false and it 5358 /// will be lowered like a normal call. 5359 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5360 // Verify that the prototype makes sense. size_t strlen(char *) 5361 if (I.getNumArgOperands() != 1) 5362 return false; 5363 5364 const Value *Arg0 = I.getArgOperand(0); 5365 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5366 return false; 5367 5368 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5369 std::pair<SDValue, SDValue> Res = 5370 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5371 getValue(Arg0), MachinePointerInfo(Arg0)); 5372 if (Res.first.getNode()) { 5373 processIntegerCallValue(I, Res.first, false); 5374 PendingLoads.push_back(Res.second); 5375 return true; 5376 } 5377 5378 return false; 5379 } 5380 5381 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5382 /// form. If so, return true and lower it, otherwise return false and it 5383 /// will be lowered like a normal call. 5384 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5385 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5386 if (I.getNumArgOperands() != 2) 5387 return false; 5388 5389 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5390 if (!Arg0->getType()->isPointerTy() || 5391 !Arg1->getType()->isIntegerTy() || 5392 !I.getType()->isIntegerTy()) 5393 return false; 5394 5395 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5396 std::pair<SDValue, SDValue> Res = 5397 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5398 getValue(Arg0), getValue(Arg1), 5399 MachinePointerInfo(Arg0)); 5400 if (Res.first.getNode()) { 5401 processIntegerCallValue(I, Res.first, false); 5402 PendingLoads.push_back(Res.second); 5403 return true; 5404 } 5405 5406 return false; 5407 } 5408 5409 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5410 /// operation (as expected), translate it to an SDNode with the specified opcode 5411 /// and return true. 5412 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5413 unsigned Opcode) { 5414 // Sanity check that it really is a unary floating-point call. 5415 if (I.getNumArgOperands() != 1 || 5416 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5417 I.getType() != I.getArgOperand(0)->getType() || 5418 !I.onlyReadsMemory()) 5419 return false; 5420 5421 SDValue Tmp = getValue(I.getArgOperand(0)); 5422 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5423 return true; 5424 } 5425 5426 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5427 /// operation (as expected), translate it to an SDNode with the specified opcode 5428 /// and return true. 5429 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5430 unsigned Opcode) { 5431 // Sanity check that it really is a binary floating-point call. 5432 if (I.getNumArgOperands() != 2 || 5433 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5434 I.getType() != I.getArgOperand(0)->getType() || 5435 I.getType() != I.getArgOperand(1)->getType() || 5436 !I.onlyReadsMemory()) 5437 return false; 5438 5439 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5440 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5441 EVT VT = Tmp0.getValueType(); 5442 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5443 return true; 5444 } 5445 5446 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5447 // Handle inline assembly differently. 5448 if (isa<InlineAsm>(I.getCalledValue())) { 5449 visitInlineAsm(&I); 5450 return; 5451 } 5452 5453 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5454 ComputeUsesVAFloatArgument(I, &MMI); 5455 5456 const char *RenameFn = nullptr; 5457 if (Function *F = I.getCalledFunction()) { 5458 if (F->isDeclaration()) { 5459 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5460 if (unsigned IID = II->getIntrinsicID(F)) { 5461 RenameFn = visitIntrinsicCall(I, IID); 5462 if (!RenameFn) 5463 return; 5464 } 5465 } 5466 if (unsigned IID = F->getIntrinsicID()) { 5467 RenameFn = visitIntrinsicCall(I, IID); 5468 if (!RenameFn) 5469 return; 5470 } 5471 } 5472 5473 // Check for well-known libc/libm calls. If the function is internal, it 5474 // can't be a library call. 5475 LibFunc::Func Func; 5476 if (!F->hasLocalLinkage() && F->hasName() && 5477 LibInfo->getLibFunc(F->getName(), Func) && 5478 LibInfo->hasOptimizedCodeGen(Func)) { 5479 switch (Func) { 5480 default: break; 5481 case LibFunc::copysign: 5482 case LibFunc::copysignf: 5483 case LibFunc::copysignl: 5484 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5485 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5486 I.getType() == I.getArgOperand(0)->getType() && 5487 I.getType() == I.getArgOperand(1)->getType() && 5488 I.onlyReadsMemory()) { 5489 SDValue LHS = getValue(I.getArgOperand(0)); 5490 SDValue RHS = getValue(I.getArgOperand(1)); 5491 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5492 LHS.getValueType(), LHS, RHS)); 5493 return; 5494 } 5495 break; 5496 case LibFunc::fabs: 5497 case LibFunc::fabsf: 5498 case LibFunc::fabsl: 5499 if (visitUnaryFloatCall(I, ISD::FABS)) 5500 return; 5501 break; 5502 case LibFunc::fmin: 5503 case LibFunc::fminf: 5504 case LibFunc::fminl: 5505 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5506 return; 5507 break; 5508 case LibFunc::fmax: 5509 case LibFunc::fmaxf: 5510 case LibFunc::fmaxl: 5511 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5512 return; 5513 break; 5514 case LibFunc::sin: 5515 case LibFunc::sinf: 5516 case LibFunc::sinl: 5517 if (visitUnaryFloatCall(I, ISD::FSIN)) 5518 return; 5519 break; 5520 case LibFunc::cos: 5521 case LibFunc::cosf: 5522 case LibFunc::cosl: 5523 if (visitUnaryFloatCall(I, ISD::FCOS)) 5524 return; 5525 break; 5526 case LibFunc::sqrt: 5527 case LibFunc::sqrtf: 5528 case LibFunc::sqrtl: 5529 case LibFunc::sqrt_finite: 5530 case LibFunc::sqrtf_finite: 5531 case LibFunc::sqrtl_finite: 5532 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5533 return; 5534 break; 5535 case LibFunc::floor: 5536 case LibFunc::floorf: 5537 case LibFunc::floorl: 5538 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5539 return; 5540 break; 5541 case LibFunc::nearbyint: 5542 case LibFunc::nearbyintf: 5543 case LibFunc::nearbyintl: 5544 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5545 return; 5546 break; 5547 case LibFunc::ceil: 5548 case LibFunc::ceilf: 5549 case LibFunc::ceill: 5550 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5551 return; 5552 break; 5553 case LibFunc::rint: 5554 case LibFunc::rintf: 5555 case LibFunc::rintl: 5556 if (visitUnaryFloatCall(I, ISD::FRINT)) 5557 return; 5558 break; 5559 case LibFunc::round: 5560 case LibFunc::roundf: 5561 case LibFunc::roundl: 5562 if (visitUnaryFloatCall(I, ISD::FROUND)) 5563 return; 5564 break; 5565 case LibFunc::trunc: 5566 case LibFunc::truncf: 5567 case LibFunc::truncl: 5568 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5569 return; 5570 break; 5571 case LibFunc::log2: 5572 case LibFunc::log2f: 5573 case LibFunc::log2l: 5574 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5575 return; 5576 break; 5577 case LibFunc::exp2: 5578 case LibFunc::exp2f: 5579 case LibFunc::exp2l: 5580 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5581 return; 5582 break; 5583 case LibFunc::memcmp: 5584 if (visitMemCmpCall(I)) 5585 return; 5586 break; 5587 case LibFunc::memchr: 5588 if (visitMemChrCall(I)) 5589 return; 5590 break; 5591 case LibFunc::strcpy: 5592 if (visitStrCpyCall(I, false)) 5593 return; 5594 break; 5595 case LibFunc::stpcpy: 5596 if (visitStrCpyCall(I, true)) 5597 return; 5598 break; 5599 case LibFunc::strcmp: 5600 if (visitStrCmpCall(I)) 5601 return; 5602 break; 5603 case LibFunc::strlen: 5604 if (visitStrLenCall(I)) 5605 return; 5606 break; 5607 case LibFunc::strnlen: 5608 if (visitStrNLenCall(I)) 5609 return; 5610 break; 5611 } 5612 } 5613 } 5614 5615 SDValue Callee; 5616 if (!RenameFn) 5617 Callee = getValue(I.getCalledValue()); 5618 else 5619 Callee = DAG.getExternalSymbol(RenameFn, 5620 DAG.getTargetLoweringInfo().getPointerTy()); 5621 5622 // Check if we can potentially perform a tail call. More detailed checking is 5623 // be done within LowerCallTo, after more information about the call is known. 5624 LowerCallTo(&I, Callee, I.isTailCall()); 5625 } 5626 5627 namespace { 5628 5629 /// AsmOperandInfo - This contains information for each constraint that we are 5630 /// lowering. 5631 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5632 public: 5633 /// CallOperand - If this is the result output operand or a clobber 5634 /// this is null, otherwise it is the incoming operand to the CallInst. 5635 /// This gets modified as the asm is processed. 5636 SDValue CallOperand; 5637 5638 /// AssignedRegs - If this is a register or register class operand, this 5639 /// contains the set of register corresponding to the operand. 5640 RegsForValue AssignedRegs; 5641 5642 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5643 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5644 } 5645 5646 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5647 /// corresponds to. If there is no Value* for this operand, it returns 5648 /// MVT::Other. 5649 EVT getCallOperandValEVT(LLVMContext &Context, 5650 const TargetLowering &TLI, 5651 const DataLayout *DL) const { 5652 if (!CallOperandVal) return MVT::Other; 5653 5654 if (isa<BasicBlock>(CallOperandVal)) 5655 return TLI.getPointerTy(); 5656 5657 llvm::Type *OpTy = CallOperandVal->getType(); 5658 5659 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5660 // If this is an indirect operand, the operand is a pointer to the 5661 // accessed type. 5662 if (isIndirect) { 5663 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5664 if (!PtrTy) 5665 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5666 OpTy = PtrTy->getElementType(); 5667 } 5668 5669 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5670 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5671 if (STy->getNumElements() == 1) 5672 OpTy = STy->getElementType(0); 5673 5674 // If OpTy is not a single value, it may be a struct/union that we 5675 // can tile with integers. 5676 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5677 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5678 switch (BitSize) { 5679 default: break; 5680 case 1: 5681 case 8: 5682 case 16: 5683 case 32: 5684 case 64: 5685 case 128: 5686 OpTy = IntegerType::get(Context, BitSize); 5687 break; 5688 } 5689 } 5690 5691 return TLI.getValueType(OpTy, true); 5692 } 5693 }; 5694 5695 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5696 5697 } // end anonymous namespace 5698 5699 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5700 /// specified operand. We prefer to assign virtual registers, to allow the 5701 /// register allocator to handle the assignment process. However, if the asm 5702 /// uses features that we can't model on machineinstrs, we have SDISel do the 5703 /// allocation. This produces generally horrible, but correct, code. 5704 /// 5705 /// OpInfo describes the operand. 5706 /// 5707 static void GetRegistersForValue(SelectionDAG &DAG, 5708 const TargetLowering &TLI, 5709 SDLoc DL, 5710 SDISelAsmOperandInfo &OpInfo) { 5711 LLVMContext &Context = *DAG.getContext(); 5712 5713 MachineFunction &MF = DAG.getMachineFunction(); 5714 SmallVector<unsigned, 4> Regs; 5715 5716 // If this is a constraint for a single physreg, or a constraint for a 5717 // register class, find it. 5718 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5719 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5720 OpInfo.ConstraintCode, 5721 OpInfo.ConstraintVT); 5722 5723 unsigned NumRegs = 1; 5724 if (OpInfo.ConstraintVT != MVT::Other) { 5725 // If this is a FP input in an integer register (or visa versa) insert a bit 5726 // cast of the input value. More generally, handle any case where the input 5727 // value disagrees with the register class we plan to stick this in. 5728 if (OpInfo.Type == InlineAsm::isInput && 5729 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5730 // Try to convert to the first EVT that the reg class contains. If the 5731 // types are identical size, use a bitcast to convert (e.g. two differing 5732 // vector types). 5733 MVT RegVT = *PhysReg.second->vt_begin(); 5734 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5735 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5736 RegVT, OpInfo.CallOperand); 5737 OpInfo.ConstraintVT = RegVT; 5738 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5739 // If the input is a FP value and we want it in FP registers, do a 5740 // bitcast to the corresponding integer type. This turns an f64 value 5741 // into i64, which can be passed with two i32 values on a 32-bit 5742 // machine. 5743 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5744 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5745 RegVT, OpInfo.CallOperand); 5746 OpInfo.ConstraintVT = RegVT; 5747 } 5748 } 5749 5750 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5751 } 5752 5753 MVT RegVT; 5754 EVT ValueVT = OpInfo.ConstraintVT; 5755 5756 // If this is a constraint for a specific physical register, like {r17}, 5757 // assign it now. 5758 if (unsigned AssignedReg = PhysReg.first) { 5759 const TargetRegisterClass *RC = PhysReg.second; 5760 if (OpInfo.ConstraintVT == MVT::Other) 5761 ValueVT = *RC->vt_begin(); 5762 5763 // Get the actual register value type. This is important, because the user 5764 // may have asked for (e.g.) the AX register in i32 type. We need to 5765 // remember that AX is actually i16 to get the right extension. 5766 RegVT = *RC->vt_begin(); 5767 5768 // This is a explicit reference to a physical register. 5769 Regs.push_back(AssignedReg); 5770 5771 // If this is an expanded reference, add the rest of the regs to Regs. 5772 if (NumRegs != 1) { 5773 TargetRegisterClass::iterator I = RC->begin(); 5774 for (; *I != AssignedReg; ++I) 5775 assert(I != RC->end() && "Didn't find reg!"); 5776 5777 // Already added the first reg. 5778 --NumRegs; ++I; 5779 for (; NumRegs; --NumRegs, ++I) { 5780 assert(I != RC->end() && "Ran out of registers to allocate!"); 5781 Regs.push_back(*I); 5782 } 5783 } 5784 5785 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5786 return; 5787 } 5788 5789 // Otherwise, if this was a reference to an LLVM register class, create vregs 5790 // for this reference. 5791 if (const TargetRegisterClass *RC = PhysReg.second) { 5792 RegVT = *RC->vt_begin(); 5793 if (OpInfo.ConstraintVT == MVT::Other) 5794 ValueVT = RegVT; 5795 5796 // Create the appropriate number of virtual registers. 5797 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5798 for (; NumRegs; --NumRegs) 5799 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5800 5801 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5802 return; 5803 } 5804 5805 // Otherwise, we couldn't allocate enough registers for this. 5806 } 5807 5808 /// visitInlineAsm - Handle a call to an InlineAsm object. 5809 /// 5810 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5811 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5812 5813 /// ConstraintOperands - Information about all of the constraints. 5814 SDISelAsmOperandInfoVector ConstraintOperands; 5815 5816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5817 TargetLowering::AsmOperandInfoVector TargetConstraints = 5818 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5819 5820 bool hasMemory = false; 5821 5822 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5823 unsigned ResNo = 0; // ResNo - The result number of the next output. 5824 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5825 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5826 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5827 5828 MVT OpVT = MVT::Other; 5829 5830 // Compute the value type for each operand. 5831 switch (OpInfo.Type) { 5832 case InlineAsm::isOutput: 5833 // Indirect outputs just consume an argument. 5834 if (OpInfo.isIndirect) { 5835 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5836 break; 5837 } 5838 5839 // The return value of the call is this value. As such, there is no 5840 // corresponding argument. 5841 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5842 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5843 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5844 } else { 5845 assert(ResNo == 0 && "Asm only has one result!"); 5846 OpVT = TLI.getSimpleValueType(CS.getType()); 5847 } 5848 ++ResNo; 5849 break; 5850 case InlineAsm::isInput: 5851 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5852 break; 5853 case InlineAsm::isClobber: 5854 // Nothing to do. 5855 break; 5856 } 5857 5858 // If this is an input or an indirect output, process the call argument. 5859 // BasicBlocks are labels, currently appearing only in asm's. 5860 if (OpInfo.CallOperandVal) { 5861 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5862 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5863 } else { 5864 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5865 } 5866 5867 OpVT = 5868 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5869 } 5870 5871 OpInfo.ConstraintVT = OpVT; 5872 5873 // Indirect operand accesses access memory. 5874 if (OpInfo.isIndirect) 5875 hasMemory = true; 5876 else { 5877 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5878 TargetLowering::ConstraintType 5879 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5880 if (CType == TargetLowering::C_Memory) { 5881 hasMemory = true; 5882 break; 5883 } 5884 } 5885 } 5886 } 5887 5888 SDValue Chain, Flag; 5889 5890 // We won't need to flush pending loads if this asm doesn't touch 5891 // memory and is nonvolatile. 5892 if (hasMemory || IA->hasSideEffects()) 5893 Chain = getRoot(); 5894 else 5895 Chain = DAG.getRoot(); 5896 5897 // Second pass over the constraints: compute which constraint option to use 5898 // and assign registers to constraints that want a specific physreg. 5899 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5900 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5901 5902 // If this is an output operand with a matching input operand, look up the 5903 // matching input. If their types mismatch, e.g. one is an integer, the 5904 // other is floating point, or their sizes are different, flag it as an 5905 // error. 5906 if (OpInfo.hasMatchingInput()) { 5907 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5908 5909 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5910 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5911 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5912 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5913 OpInfo.ConstraintVT); 5914 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5915 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5916 Input.ConstraintVT); 5917 if ((OpInfo.ConstraintVT.isInteger() != 5918 Input.ConstraintVT.isInteger()) || 5919 (MatchRC.second != InputRC.second)) { 5920 report_fatal_error("Unsupported asm: input constraint" 5921 " with a matching output constraint of" 5922 " incompatible type!"); 5923 } 5924 Input.ConstraintVT = OpInfo.ConstraintVT; 5925 } 5926 } 5927 5928 // Compute the constraint code and ConstraintType to use. 5929 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5930 5931 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5932 OpInfo.Type == InlineAsm::isClobber) 5933 continue; 5934 5935 // If this is a memory input, and if the operand is not indirect, do what we 5936 // need to to provide an address for the memory input. 5937 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5938 !OpInfo.isIndirect) { 5939 assert((OpInfo.isMultipleAlternative || 5940 (OpInfo.Type == InlineAsm::isInput)) && 5941 "Can only indirectify direct input operands!"); 5942 5943 // Memory operands really want the address of the value. If we don't have 5944 // an indirect input, put it in the constpool if we can, otherwise spill 5945 // it to a stack slot. 5946 // TODO: This isn't quite right. We need to handle these according to 5947 // the addressing mode that the constraint wants. Also, this may take 5948 // an additional register for the computation and we don't want that 5949 // either. 5950 5951 // If the operand is a float, integer, or vector constant, spill to a 5952 // constant pool entry to get its address. 5953 const Value *OpVal = OpInfo.CallOperandVal; 5954 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5955 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5956 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5957 TLI.getPointerTy()); 5958 } else { 5959 // Otherwise, create a stack slot and emit a store to it before the 5960 // asm. 5961 Type *Ty = OpVal->getType(); 5962 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5963 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5964 MachineFunction &MF = DAG.getMachineFunction(); 5965 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5966 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5967 Chain = DAG.getStore(Chain, getCurSDLoc(), 5968 OpInfo.CallOperand, StackSlot, 5969 MachinePointerInfo::getFixedStack(SSFI), 5970 false, false, 0); 5971 OpInfo.CallOperand = StackSlot; 5972 } 5973 5974 // There is no longer a Value* corresponding to this operand. 5975 OpInfo.CallOperandVal = nullptr; 5976 5977 // It is now an indirect operand. 5978 OpInfo.isIndirect = true; 5979 } 5980 5981 // If this constraint is for a specific register, allocate it before 5982 // anything else. 5983 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5984 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5985 } 5986 5987 // Second pass - Loop over all of the operands, assigning virtual or physregs 5988 // to register class operands. 5989 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5990 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5991 5992 // C_Register operands have already been allocated, Other/Memory don't need 5993 // to be. 5994 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5995 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5996 } 5997 5998 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5999 std::vector<SDValue> AsmNodeOperands; 6000 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6001 AsmNodeOperands.push_back( 6002 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6003 TLI.getPointerTy())); 6004 6005 // If we have a !srcloc metadata node associated with it, we want to attach 6006 // this to the ultimately generated inline asm machineinstr. To do this, we 6007 // pass in the third operand as this (potentially null) inline asm MDNode. 6008 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6009 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6010 6011 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6012 // bits as operand 3. 6013 unsigned ExtraInfo = 0; 6014 if (IA->hasSideEffects()) 6015 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6016 if (IA->isAlignStack()) 6017 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6018 // Set the asm dialect. 6019 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6020 6021 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6022 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6023 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6024 6025 // Compute the constraint code and ConstraintType to use. 6026 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6027 6028 // Ideally, we would only check against memory constraints. However, the 6029 // meaning of an other constraint can be target-specific and we can't easily 6030 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6031 // for other constriants as well. 6032 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6033 OpInfo.ConstraintType == TargetLowering::C_Other) { 6034 if (OpInfo.Type == InlineAsm::isInput) 6035 ExtraInfo |= InlineAsm::Extra_MayLoad; 6036 else if (OpInfo.Type == InlineAsm::isOutput) 6037 ExtraInfo |= InlineAsm::Extra_MayStore; 6038 else if (OpInfo.Type == InlineAsm::isClobber) 6039 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6040 } 6041 } 6042 6043 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6044 TLI.getPointerTy())); 6045 6046 // Loop over all of the inputs, copying the operand values into the 6047 // appropriate registers and processing the output regs. 6048 RegsForValue RetValRegs; 6049 6050 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6051 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6052 6053 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6054 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6055 6056 switch (OpInfo.Type) { 6057 case InlineAsm::isOutput: { 6058 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6059 OpInfo.ConstraintType != TargetLowering::C_Register) { 6060 // Memory output, or 'other' output (e.g. 'X' constraint). 6061 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6062 6063 unsigned ConstraintID = 6064 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6065 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6066 "Failed to convert memory constraint code to constraint id."); 6067 6068 // Add information to the INLINEASM node to know about this output. 6069 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6070 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6071 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6072 AsmNodeOperands.push_back(OpInfo.CallOperand); 6073 break; 6074 } 6075 6076 // Otherwise, this is a register or register class output. 6077 6078 // Copy the output from the appropriate register. Find a register that 6079 // we can use. 6080 if (OpInfo.AssignedRegs.Regs.empty()) { 6081 LLVMContext &Ctx = *DAG.getContext(); 6082 Ctx.emitError(CS.getInstruction(), 6083 "couldn't allocate output register for constraint '" + 6084 Twine(OpInfo.ConstraintCode) + "'"); 6085 return; 6086 } 6087 6088 // If this is an indirect operand, store through the pointer after the 6089 // asm. 6090 if (OpInfo.isIndirect) { 6091 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6092 OpInfo.CallOperandVal)); 6093 } else { 6094 // This is the result value of the call. 6095 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6096 // Concatenate this output onto the outputs list. 6097 RetValRegs.append(OpInfo.AssignedRegs); 6098 } 6099 6100 // Add information to the INLINEASM node to know that this register is 6101 // set. 6102 OpInfo.AssignedRegs 6103 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6104 ? InlineAsm::Kind_RegDefEarlyClobber 6105 : InlineAsm::Kind_RegDef, 6106 false, 0, DAG, AsmNodeOperands); 6107 break; 6108 } 6109 case InlineAsm::isInput: { 6110 SDValue InOperandVal = OpInfo.CallOperand; 6111 6112 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6113 // If this is required to match an output register we have already set, 6114 // just use its register. 6115 unsigned OperandNo = OpInfo.getMatchedOperand(); 6116 6117 // Scan until we find the definition we already emitted of this operand. 6118 // When we find it, create a RegsForValue operand. 6119 unsigned CurOp = InlineAsm::Op_FirstOperand; 6120 for (; OperandNo; --OperandNo) { 6121 // Advance to the next operand. 6122 unsigned OpFlag = 6123 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6124 assert((InlineAsm::isRegDefKind(OpFlag) || 6125 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6126 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6127 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6128 } 6129 6130 unsigned OpFlag = 6131 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6132 if (InlineAsm::isRegDefKind(OpFlag) || 6133 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6134 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6135 if (OpInfo.isIndirect) { 6136 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6137 LLVMContext &Ctx = *DAG.getContext(); 6138 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6139 " don't know how to handle tied " 6140 "indirect register inputs"); 6141 return; 6142 } 6143 6144 RegsForValue MatchedRegs; 6145 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6146 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6147 MatchedRegs.RegVTs.push_back(RegVT); 6148 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6149 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6150 i != e; ++i) { 6151 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6152 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6153 else { 6154 LLVMContext &Ctx = *DAG.getContext(); 6155 Ctx.emitError(CS.getInstruction(), 6156 "inline asm error: This value" 6157 " type register class is not natively supported!"); 6158 return; 6159 } 6160 } 6161 // Use the produced MatchedRegs object to 6162 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6163 Chain, &Flag, CS.getInstruction()); 6164 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6165 true, OpInfo.getMatchedOperand(), 6166 DAG, AsmNodeOperands); 6167 break; 6168 } 6169 6170 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6171 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6172 "Unexpected number of operands"); 6173 // Add information to the INLINEASM node to know about this input. 6174 // See InlineAsm.h isUseOperandTiedToDef. 6175 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6176 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6177 OpInfo.getMatchedOperand()); 6178 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6179 TLI.getPointerTy())); 6180 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6181 break; 6182 } 6183 6184 // Treat indirect 'X' constraint as memory. 6185 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6186 OpInfo.isIndirect) 6187 OpInfo.ConstraintType = TargetLowering::C_Memory; 6188 6189 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6190 std::vector<SDValue> Ops; 6191 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6192 Ops, DAG); 6193 if (Ops.empty()) { 6194 LLVMContext &Ctx = *DAG.getContext(); 6195 Ctx.emitError(CS.getInstruction(), 6196 "invalid operand for inline asm constraint '" + 6197 Twine(OpInfo.ConstraintCode) + "'"); 6198 return; 6199 } 6200 6201 // Add information to the INLINEASM node to know about this input. 6202 unsigned ResOpType = 6203 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6204 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6205 TLI.getPointerTy())); 6206 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6207 break; 6208 } 6209 6210 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6211 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6212 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6213 "Memory operands expect pointer values"); 6214 6215 unsigned ConstraintID = 6216 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6217 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6218 "Failed to convert memory constraint code to constraint id."); 6219 6220 // Add information to the INLINEASM node to know about this input. 6221 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6222 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6223 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6224 AsmNodeOperands.push_back(InOperandVal); 6225 break; 6226 } 6227 6228 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6229 OpInfo.ConstraintType == TargetLowering::C_Register) && 6230 "Unknown constraint type!"); 6231 6232 // TODO: Support this. 6233 if (OpInfo.isIndirect) { 6234 LLVMContext &Ctx = *DAG.getContext(); 6235 Ctx.emitError(CS.getInstruction(), 6236 "Don't know how to handle indirect register inputs yet " 6237 "for constraint '" + 6238 Twine(OpInfo.ConstraintCode) + "'"); 6239 return; 6240 } 6241 6242 // Copy the input into the appropriate registers. 6243 if (OpInfo.AssignedRegs.Regs.empty()) { 6244 LLVMContext &Ctx = *DAG.getContext(); 6245 Ctx.emitError(CS.getInstruction(), 6246 "couldn't allocate input reg for constraint '" + 6247 Twine(OpInfo.ConstraintCode) + "'"); 6248 return; 6249 } 6250 6251 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6252 Chain, &Flag, CS.getInstruction()); 6253 6254 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6255 DAG, AsmNodeOperands); 6256 break; 6257 } 6258 case InlineAsm::isClobber: { 6259 // Add the clobbered value to the operand list, so that the register 6260 // allocator is aware that the physreg got clobbered. 6261 if (!OpInfo.AssignedRegs.Regs.empty()) 6262 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6263 false, 0, DAG, 6264 AsmNodeOperands); 6265 break; 6266 } 6267 } 6268 } 6269 6270 // Finish up input operands. Set the input chain and add the flag last. 6271 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6272 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6273 6274 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6275 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6276 Flag = Chain.getValue(1); 6277 6278 // If this asm returns a register value, copy the result from that register 6279 // and set it as the value of the call. 6280 if (!RetValRegs.Regs.empty()) { 6281 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6282 Chain, &Flag, CS.getInstruction()); 6283 6284 // FIXME: Why don't we do this for inline asms with MRVs? 6285 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6286 EVT ResultType = TLI.getValueType(CS.getType()); 6287 6288 // If any of the results of the inline asm is a vector, it may have the 6289 // wrong width/num elts. This can happen for register classes that can 6290 // contain multiple different value types. The preg or vreg allocated may 6291 // not have the same VT as was expected. Convert it to the right type 6292 // with bit_convert. 6293 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6294 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6295 ResultType, Val); 6296 6297 } else if (ResultType != Val.getValueType() && 6298 ResultType.isInteger() && Val.getValueType().isInteger()) { 6299 // If a result value was tied to an input value, the computed result may 6300 // have a wider width than the expected result. Extract the relevant 6301 // portion. 6302 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6303 } 6304 6305 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6306 } 6307 6308 setValue(CS.getInstruction(), Val); 6309 // Don't need to use this as a chain in this case. 6310 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6311 return; 6312 } 6313 6314 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6315 6316 // Process indirect outputs, first output all of the flagged copies out of 6317 // physregs. 6318 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6319 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6320 const Value *Ptr = IndirectStoresToEmit[i].second; 6321 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6322 Chain, &Flag, IA); 6323 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6324 } 6325 6326 // Emit the non-flagged stores from the physregs. 6327 SmallVector<SDValue, 8> OutChains; 6328 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6329 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6330 StoresToEmit[i].first, 6331 getValue(StoresToEmit[i].second), 6332 MachinePointerInfo(StoresToEmit[i].second), 6333 false, false, 0); 6334 OutChains.push_back(Val); 6335 } 6336 6337 if (!OutChains.empty()) 6338 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6339 6340 DAG.setRoot(Chain); 6341 } 6342 6343 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6344 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6345 MVT::Other, getRoot(), 6346 getValue(I.getArgOperand(0)), 6347 DAG.getSrcValue(I.getArgOperand(0)))); 6348 } 6349 6350 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6352 const DataLayout &DL = *TLI.getDataLayout(); 6353 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6354 getRoot(), getValue(I.getOperand(0)), 6355 DAG.getSrcValue(I.getOperand(0)), 6356 DL.getABITypeAlignment(I.getType())); 6357 setValue(&I, V); 6358 DAG.setRoot(V.getValue(1)); 6359 } 6360 6361 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6362 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6363 MVT::Other, getRoot(), 6364 getValue(I.getArgOperand(0)), 6365 DAG.getSrcValue(I.getArgOperand(0)))); 6366 } 6367 6368 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6369 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6370 MVT::Other, getRoot(), 6371 getValue(I.getArgOperand(0)), 6372 getValue(I.getArgOperand(1)), 6373 DAG.getSrcValue(I.getArgOperand(0)), 6374 DAG.getSrcValue(I.getArgOperand(1)))); 6375 } 6376 6377 /// \brief Lower an argument list according to the target calling convention. 6378 /// 6379 /// \return A tuple of <return-value, token-chain> 6380 /// 6381 /// This is a helper for lowering intrinsics that follow a target calling 6382 /// convention or require stack pointer adjustment. Only a subset of the 6383 /// intrinsic's operands need to participate in the calling convention. 6384 std::pair<SDValue, SDValue> 6385 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6386 unsigned NumArgs, SDValue Callee, 6387 bool UseVoidTy, 6388 MachineBasicBlock *LandingPad, 6389 bool IsPatchPoint) { 6390 TargetLowering::ArgListTy Args; 6391 Args.reserve(NumArgs); 6392 6393 // Populate the argument list. 6394 // Attributes for args start at offset 1, after the return attribute. 6395 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6396 ArgI != ArgE; ++ArgI) { 6397 const Value *V = CS->getOperand(ArgI); 6398 6399 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6400 6401 TargetLowering::ArgListEntry Entry; 6402 Entry.Node = getValue(V); 6403 Entry.Ty = V->getType(); 6404 Entry.setAttributes(&CS, AttrI); 6405 Args.push_back(Entry); 6406 } 6407 6408 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6409 TargetLowering::CallLoweringInfo CLI(DAG); 6410 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6411 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6412 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6413 6414 return lowerInvokable(CLI, LandingPad); 6415 } 6416 6417 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6418 /// or patchpoint target node's operand list. 6419 /// 6420 /// Constants are converted to TargetConstants purely as an optimization to 6421 /// avoid constant materialization and register allocation. 6422 /// 6423 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6424 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6425 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6426 /// address materialization and register allocation, but may also be required 6427 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6428 /// alloca in the entry block, then the runtime may assume that the alloca's 6429 /// StackMap location can be read immediately after compilation and that the 6430 /// location is valid at any point during execution (this is similar to the 6431 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6432 /// only available in a register, then the runtime would need to trap when 6433 /// execution reaches the StackMap in order to read the alloca's location. 6434 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6435 SmallVectorImpl<SDValue> &Ops, 6436 SelectionDAGBuilder &Builder) { 6437 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6438 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6439 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6440 Ops.push_back( 6441 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6442 Ops.push_back( 6443 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6444 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6445 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6446 Ops.push_back( 6447 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6448 } else 6449 Ops.push_back(OpVal); 6450 } 6451 } 6452 6453 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6454 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6455 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6456 // [live variables...]) 6457 6458 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6459 6460 SDValue Chain, InFlag, Callee, NullPtr; 6461 SmallVector<SDValue, 32> Ops; 6462 6463 SDLoc DL = getCurSDLoc(); 6464 Callee = getValue(CI.getCalledValue()); 6465 NullPtr = DAG.getIntPtrConstant(0, true); 6466 6467 // The stackmap intrinsic only records the live variables (the arguemnts 6468 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6469 // intrinsic, this won't be lowered to a function call. This means we don't 6470 // have to worry about calling conventions and target specific lowering code. 6471 // Instead we perform the call lowering right here. 6472 // 6473 // chain, flag = CALLSEQ_START(chain, 0) 6474 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6475 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6476 // 6477 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6478 InFlag = Chain.getValue(1); 6479 6480 // Add the <id> and <numBytes> constants. 6481 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6482 Ops.push_back(DAG.getTargetConstant( 6483 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6484 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6485 Ops.push_back(DAG.getTargetConstant( 6486 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6487 6488 // Push live variables for the stack map. 6489 addStackMapLiveVars(&CI, 2, Ops, *this); 6490 6491 // We are not pushing any register mask info here on the operands list, 6492 // because the stackmap doesn't clobber anything. 6493 6494 // Push the chain and the glue flag. 6495 Ops.push_back(Chain); 6496 Ops.push_back(InFlag); 6497 6498 // Create the STACKMAP node. 6499 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6500 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6501 Chain = SDValue(SM, 0); 6502 InFlag = Chain.getValue(1); 6503 6504 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6505 6506 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6507 6508 // Set the root to the target-lowered call chain. 6509 DAG.setRoot(Chain); 6510 6511 // Inform the Frame Information that we have a stackmap in this function. 6512 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6513 } 6514 6515 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6516 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6517 MachineBasicBlock *LandingPad) { 6518 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6519 // i32 <numBytes>, 6520 // i8* <target>, 6521 // i32 <numArgs>, 6522 // [Args...], 6523 // [live variables...]) 6524 6525 CallingConv::ID CC = CS.getCallingConv(); 6526 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6527 bool HasDef = !CS->getType()->isVoidTy(); 6528 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6529 6530 // Handle immediate and symbolic callees. 6531 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6532 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), 6533 /*isTarget=*/true); 6534 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6535 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6536 SDLoc(SymbolicCallee), 6537 SymbolicCallee->getValueType(0)); 6538 6539 // Get the real number of arguments participating in the call <numArgs> 6540 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6541 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6542 6543 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6544 // Intrinsics include all meta-operands up to but not including CC. 6545 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6546 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6547 "Not enough arguments provided to the patchpoint intrinsic"); 6548 6549 // For AnyRegCC the arguments are lowered later on manually. 6550 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6551 std::pair<SDValue, SDValue> Result = 6552 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6553 LandingPad, true); 6554 6555 SDNode *CallEnd = Result.second.getNode(); 6556 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6557 CallEnd = CallEnd->getOperand(0).getNode(); 6558 6559 /// Get a call instruction from the call sequence chain. 6560 /// Tail calls are not allowed. 6561 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6562 "Expected a callseq node."); 6563 SDNode *Call = CallEnd->getOperand(0).getNode(); 6564 bool HasGlue = Call->getGluedNode(); 6565 6566 // Replace the target specific call node with the patchable intrinsic. 6567 SmallVector<SDValue, 8> Ops; 6568 6569 // Add the <id> and <numBytes> constants. 6570 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6571 Ops.push_back(DAG.getTargetConstant( 6572 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6573 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6574 Ops.push_back(DAG.getTargetConstant( 6575 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6576 6577 // Add the callee. 6578 Ops.push_back(Callee); 6579 6580 // Adjust <numArgs> to account for any arguments that have been passed on the 6581 // stack instead. 6582 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6583 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6584 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6585 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6586 6587 // Add the calling convention 6588 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6589 6590 // Add the arguments we omitted previously. The register allocator should 6591 // place these in any free register. 6592 if (IsAnyRegCC) 6593 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6594 Ops.push_back(getValue(CS.getArgument(i))); 6595 6596 // Push the arguments from the call instruction up to the register mask. 6597 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6598 Ops.append(Call->op_begin() + 2, e); 6599 6600 // Push live variables for the stack map. 6601 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 6602 6603 // Push the register mask info. 6604 if (HasGlue) 6605 Ops.push_back(*(Call->op_end()-2)); 6606 else 6607 Ops.push_back(*(Call->op_end()-1)); 6608 6609 // Push the chain (this is originally the first operand of the call, but 6610 // becomes now the last or second to last operand). 6611 Ops.push_back(*(Call->op_begin())); 6612 6613 // Push the glue flag (last operand). 6614 if (HasGlue) 6615 Ops.push_back(*(Call->op_end()-1)); 6616 6617 SDVTList NodeTys; 6618 if (IsAnyRegCC && HasDef) { 6619 // Create the return types based on the intrinsic definition 6620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6621 SmallVector<EVT, 3> ValueVTs; 6622 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6623 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6624 6625 // There is always a chain and a glue type at the end 6626 ValueVTs.push_back(MVT::Other); 6627 ValueVTs.push_back(MVT::Glue); 6628 NodeTys = DAG.getVTList(ValueVTs); 6629 } else 6630 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6631 6632 // Replace the target specific call node with a PATCHPOINT node. 6633 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6634 getCurSDLoc(), NodeTys, Ops); 6635 6636 // Update the NodeMap. 6637 if (HasDef) { 6638 if (IsAnyRegCC) 6639 setValue(CS.getInstruction(), SDValue(MN, 0)); 6640 else 6641 setValue(CS.getInstruction(), Result.first); 6642 } 6643 6644 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6645 // call sequence. Furthermore the location of the chain and glue can change 6646 // when the AnyReg calling convention is used and the intrinsic returns a 6647 // value. 6648 if (IsAnyRegCC && HasDef) { 6649 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6650 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6651 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6652 } else 6653 DAG.ReplaceAllUsesWith(Call, MN); 6654 DAG.DeleteNode(Call); 6655 6656 // Inform the Frame Information that we have a patchpoint in this function. 6657 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6658 } 6659 6660 /// Returns an AttributeSet representing the attributes applied to the return 6661 /// value of the given call. 6662 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6663 SmallVector<Attribute::AttrKind, 2> Attrs; 6664 if (CLI.RetSExt) 6665 Attrs.push_back(Attribute::SExt); 6666 if (CLI.RetZExt) 6667 Attrs.push_back(Attribute::ZExt); 6668 if (CLI.IsInReg) 6669 Attrs.push_back(Attribute::InReg); 6670 6671 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6672 Attrs); 6673 } 6674 6675 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6676 /// implementation, which just calls LowerCall. 6677 /// FIXME: When all targets are 6678 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6679 std::pair<SDValue, SDValue> 6680 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6681 // Handle the incoming return values from the call. 6682 CLI.Ins.clear(); 6683 Type *OrigRetTy = CLI.RetTy; 6684 SmallVector<EVT, 4> RetTys; 6685 SmallVector<uint64_t, 4> Offsets; 6686 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6687 6688 SmallVector<ISD::OutputArg, 4> Outs; 6689 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6690 6691 bool CanLowerReturn = 6692 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6693 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6694 6695 SDValue DemoteStackSlot; 6696 int DemoteStackIdx = -100; 6697 if (!CanLowerReturn) { 6698 // FIXME: equivalent assert? 6699 // assert(!CS.hasInAllocaArgument() && 6700 // "sret demotion is incompatible with inalloca"); 6701 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6702 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6703 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6704 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6705 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6706 6707 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6708 ArgListEntry Entry; 6709 Entry.Node = DemoteStackSlot; 6710 Entry.Ty = StackSlotPtrType; 6711 Entry.isSExt = false; 6712 Entry.isZExt = false; 6713 Entry.isInReg = false; 6714 Entry.isSRet = true; 6715 Entry.isNest = false; 6716 Entry.isByVal = false; 6717 Entry.isReturned = false; 6718 Entry.Alignment = Align; 6719 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6720 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6721 6722 // sret demotion isn't compatible with tail-calls, since the sret argument 6723 // points into the callers stack frame. 6724 CLI.IsTailCall = false; 6725 } else { 6726 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6727 EVT VT = RetTys[I]; 6728 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6729 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6730 for (unsigned i = 0; i != NumRegs; ++i) { 6731 ISD::InputArg MyFlags; 6732 MyFlags.VT = RegisterVT; 6733 MyFlags.ArgVT = VT; 6734 MyFlags.Used = CLI.IsReturnValueUsed; 6735 if (CLI.RetSExt) 6736 MyFlags.Flags.setSExt(); 6737 if (CLI.RetZExt) 6738 MyFlags.Flags.setZExt(); 6739 if (CLI.IsInReg) 6740 MyFlags.Flags.setInReg(); 6741 CLI.Ins.push_back(MyFlags); 6742 } 6743 } 6744 } 6745 6746 // Handle all of the outgoing arguments. 6747 CLI.Outs.clear(); 6748 CLI.OutVals.clear(); 6749 ArgListTy &Args = CLI.getArgs(); 6750 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6751 SmallVector<EVT, 4> ValueVTs; 6752 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6753 Type *FinalType = Args[i].Ty; 6754 if (Args[i].isByVal) 6755 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6756 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6757 FinalType, CLI.CallConv, CLI.IsVarArg); 6758 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6759 ++Value) { 6760 EVT VT = ValueVTs[Value]; 6761 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6762 SDValue Op = SDValue(Args[i].Node.getNode(), 6763 Args[i].Node.getResNo() + Value); 6764 ISD::ArgFlagsTy Flags; 6765 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6766 6767 if (Args[i].isZExt) 6768 Flags.setZExt(); 6769 if (Args[i].isSExt) 6770 Flags.setSExt(); 6771 if (Args[i].isInReg) 6772 Flags.setInReg(); 6773 if (Args[i].isSRet) 6774 Flags.setSRet(); 6775 if (Args[i].isByVal) 6776 Flags.setByVal(); 6777 if (Args[i].isInAlloca) { 6778 Flags.setInAlloca(); 6779 // Set the byval flag for CCAssignFn callbacks that don't know about 6780 // inalloca. This way we can know how many bytes we should've allocated 6781 // and how many bytes a callee cleanup function will pop. If we port 6782 // inalloca to more targets, we'll have to add custom inalloca handling 6783 // in the various CC lowering callbacks. 6784 Flags.setByVal(); 6785 } 6786 if (Args[i].isByVal || Args[i].isInAlloca) { 6787 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6788 Type *ElementTy = Ty->getElementType(); 6789 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6790 // For ByVal, alignment should come from FE. BE will guess if this 6791 // info is not there but there are cases it cannot get right. 6792 unsigned FrameAlign; 6793 if (Args[i].Alignment) 6794 FrameAlign = Args[i].Alignment; 6795 else 6796 FrameAlign = getByValTypeAlignment(ElementTy); 6797 Flags.setByValAlign(FrameAlign); 6798 } 6799 if (Args[i].isNest) 6800 Flags.setNest(); 6801 if (NeedsRegBlock) 6802 Flags.setInConsecutiveRegs(); 6803 Flags.setOrigAlign(OriginalAlignment); 6804 6805 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6806 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6807 SmallVector<SDValue, 4> Parts(NumParts); 6808 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6809 6810 if (Args[i].isSExt) 6811 ExtendKind = ISD::SIGN_EXTEND; 6812 else if (Args[i].isZExt) 6813 ExtendKind = ISD::ZERO_EXTEND; 6814 6815 // Conservatively only handle 'returned' on non-vectors for now 6816 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6817 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6818 "unexpected use of 'returned'"); 6819 // Before passing 'returned' to the target lowering code, ensure that 6820 // either the register MVT and the actual EVT are the same size or that 6821 // the return value and argument are extended in the same way; in these 6822 // cases it's safe to pass the argument register value unchanged as the 6823 // return register value (although it's at the target's option whether 6824 // to do so) 6825 // TODO: allow code generation to take advantage of partially preserved 6826 // registers rather than clobbering the entire register when the 6827 // parameter extension method is not compatible with the return 6828 // extension method 6829 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6830 (ExtendKind != ISD::ANY_EXTEND && 6831 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6832 Flags.setReturned(); 6833 } 6834 6835 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6836 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6837 6838 for (unsigned j = 0; j != NumParts; ++j) { 6839 // if it isn't first piece, alignment must be 1 6840 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6841 i < CLI.NumFixedArgs, 6842 i, j*Parts[j].getValueType().getStoreSize()); 6843 if (NumParts > 1 && j == 0) 6844 MyFlags.Flags.setSplit(); 6845 else if (j != 0) 6846 MyFlags.Flags.setOrigAlign(1); 6847 6848 CLI.Outs.push_back(MyFlags); 6849 CLI.OutVals.push_back(Parts[j]); 6850 } 6851 6852 if (NeedsRegBlock && Value == NumValues - 1) 6853 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6854 } 6855 } 6856 6857 SmallVector<SDValue, 4> InVals; 6858 CLI.Chain = LowerCall(CLI, InVals); 6859 6860 // Verify that the target's LowerCall behaved as expected. 6861 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6862 "LowerCall didn't return a valid chain!"); 6863 assert((!CLI.IsTailCall || InVals.empty()) && 6864 "LowerCall emitted a return value for a tail call!"); 6865 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6866 "LowerCall didn't emit the correct number of values!"); 6867 6868 // For a tail call, the return value is merely live-out and there aren't 6869 // any nodes in the DAG representing it. Return a special value to 6870 // indicate that a tail call has been emitted and no more Instructions 6871 // should be processed in the current block. 6872 if (CLI.IsTailCall) { 6873 CLI.DAG.setRoot(CLI.Chain); 6874 return std::make_pair(SDValue(), SDValue()); 6875 } 6876 6877 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6878 assert(InVals[i].getNode() && 6879 "LowerCall emitted a null value!"); 6880 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6881 "LowerCall emitted a value with the wrong type!"); 6882 }); 6883 6884 SmallVector<SDValue, 4> ReturnValues; 6885 if (!CanLowerReturn) { 6886 // The instruction result is the result of loading from the 6887 // hidden sret parameter. 6888 SmallVector<EVT, 1> PVTs; 6889 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6890 6891 ComputeValueVTs(*this, PtrRetTy, PVTs); 6892 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6893 EVT PtrVT = PVTs[0]; 6894 6895 unsigned NumValues = RetTys.size(); 6896 ReturnValues.resize(NumValues); 6897 SmallVector<SDValue, 4> Chains(NumValues); 6898 6899 for (unsigned i = 0; i < NumValues; ++i) { 6900 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6901 CLI.DAG.getConstant(Offsets[i], PtrVT)); 6902 SDValue L = CLI.DAG.getLoad( 6903 RetTys[i], CLI.DL, CLI.Chain, Add, 6904 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6905 false, false, 1); 6906 ReturnValues[i] = L; 6907 Chains[i] = L.getValue(1); 6908 } 6909 6910 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6911 } else { 6912 // Collect the legal value parts into potentially illegal values 6913 // that correspond to the original function's return values. 6914 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6915 if (CLI.RetSExt) 6916 AssertOp = ISD::AssertSext; 6917 else if (CLI.RetZExt) 6918 AssertOp = ISD::AssertZext; 6919 unsigned CurReg = 0; 6920 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6921 EVT VT = RetTys[I]; 6922 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6923 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6924 6925 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6926 NumRegs, RegisterVT, VT, nullptr, 6927 AssertOp)); 6928 CurReg += NumRegs; 6929 } 6930 6931 // For a function returning void, there is no return value. We can't create 6932 // such a node, so we just return a null return value in that case. In 6933 // that case, nothing will actually look at the value. 6934 if (ReturnValues.empty()) 6935 return std::make_pair(SDValue(), CLI.Chain); 6936 } 6937 6938 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6939 CLI.DAG.getVTList(RetTys), ReturnValues); 6940 return std::make_pair(Res, CLI.Chain); 6941 } 6942 6943 void TargetLowering::LowerOperationWrapper(SDNode *N, 6944 SmallVectorImpl<SDValue> &Results, 6945 SelectionDAG &DAG) const { 6946 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6947 if (Res.getNode()) 6948 Results.push_back(Res); 6949 } 6950 6951 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6952 llvm_unreachable("LowerOperation not implemented for this target!"); 6953 } 6954 6955 void 6956 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6957 SDValue Op = getNonRegisterValue(V); 6958 assert((Op.getOpcode() != ISD::CopyFromReg || 6959 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6960 "Copy from a reg to the same reg!"); 6961 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6962 6963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6964 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6965 SDValue Chain = DAG.getEntryNode(); 6966 6967 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6968 FuncInfo.PreferredExtendType.end()) 6969 ? ISD::ANY_EXTEND 6970 : FuncInfo.PreferredExtendType[V]; 6971 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6972 PendingExports.push_back(Chain); 6973 } 6974 6975 #include "llvm/CodeGen/SelectionDAGISel.h" 6976 6977 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6978 /// entry block, return true. This includes arguments used by switches, since 6979 /// the switch may expand into multiple basic blocks. 6980 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6981 // With FastISel active, we may be splitting blocks, so force creation 6982 // of virtual registers for all non-dead arguments. 6983 if (FastISel) 6984 return A->use_empty(); 6985 6986 const BasicBlock *Entry = A->getParent()->begin(); 6987 for (const User *U : A->users()) 6988 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6989 return false; // Use not in entry block. 6990 6991 return true; 6992 } 6993 6994 void SelectionDAGISel::LowerArguments(const Function &F) { 6995 SelectionDAG &DAG = SDB->DAG; 6996 SDLoc dl = SDB->getCurSDLoc(); 6997 const DataLayout *DL = TLI->getDataLayout(); 6998 SmallVector<ISD::InputArg, 16> Ins; 6999 7000 if (!FuncInfo->CanLowerReturn) { 7001 // Put in an sret pointer parameter before all the other parameters. 7002 SmallVector<EVT, 1> ValueVTs; 7003 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7004 7005 // NOTE: Assuming that a pointer will never break down to more than one VT 7006 // or one register. 7007 ISD::ArgFlagsTy Flags; 7008 Flags.setSRet(); 7009 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7010 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7011 ISD::InputArg::NoArgIndex, 0); 7012 Ins.push_back(RetArg); 7013 } 7014 7015 // Set up the incoming argument description vector. 7016 unsigned Idx = 1; 7017 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7018 I != E; ++I, ++Idx) { 7019 SmallVector<EVT, 4> ValueVTs; 7020 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7021 bool isArgValueUsed = !I->use_empty(); 7022 unsigned PartBase = 0; 7023 Type *FinalType = I->getType(); 7024 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7025 FinalType = cast<PointerType>(FinalType)->getElementType(); 7026 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7027 FinalType, F.getCallingConv(), F.isVarArg()); 7028 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7029 Value != NumValues; ++Value) { 7030 EVT VT = ValueVTs[Value]; 7031 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7032 ISD::ArgFlagsTy Flags; 7033 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7034 7035 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7036 Flags.setZExt(); 7037 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7038 Flags.setSExt(); 7039 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7040 Flags.setInReg(); 7041 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7042 Flags.setSRet(); 7043 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7044 Flags.setByVal(); 7045 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7046 Flags.setInAlloca(); 7047 // Set the byval flag for CCAssignFn callbacks that don't know about 7048 // inalloca. This way we can know how many bytes we should've allocated 7049 // and how many bytes a callee cleanup function will pop. If we port 7050 // inalloca to more targets, we'll have to add custom inalloca handling 7051 // in the various CC lowering callbacks. 7052 Flags.setByVal(); 7053 } 7054 if (Flags.isByVal() || Flags.isInAlloca()) { 7055 PointerType *Ty = cast<PointerType>(I->getType()); 7056 Type *ElementTy = Ty->getElementType(); 7057 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7058 // For ByVal, alignment should be passed from FE. BE will guess if 7059 // this info is not there but there are cases it cannot get right. 7060 unsigned FrameAlign; 7061 if (F.getParamAlignment(Idx)) 7062 FrameAlign = F.getParamAlignment(Idx); 7063 else 7064 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7065 Flags.setByValAlign(FrameAlign); 7066 } 7067 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7068 Flags.setNest(); 7069 if (NeedsRegBlock) 7070 Flags.setInConsecutiveRegs(); 7071 Flags.setOrigAlign(OriginalAlignment); 7072 7073 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7074 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7075 for (unsigned i = 0; i != NumRegs; ++i) { 7076 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7077 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7078 if (NumRegs > 1 && i == 0) 7079 MyFlags.Flags.setSplit(); 7080 // if it isn't first piece, alignment must be 1 7081 else if (i > 0) 7082 MyFlags.Flags.setOrigAlign(1); 7083 Ins.push_back(MyFlags); 7084 } 7085 if (NeedsRegBlock && Value == NumValues - 1) 7086 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7087 PartBase += VT.getStoreSize(); 7088 } 7089 } 7090 7091 // Call the target to set up the argument values. 7092 SmallVector<SDValue, 8> InVals; 7093 SDValue NewRoot = TLI->LowerFormalArguments( 7094 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7095 7096 // Verify that the target's LowerFormalArguments behaved as expected. 7097 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7098 "LowerFormalArguments didn't return a valid chain!"); 7099 assert(InVals.size() == Ins.size() && 7100 "LowerFormalArguments didn't emit the correct number of values!"); 7101 DEBUG({ 7102 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7103 assert(InVals[i].getNode() && 7104 "LowerFormalArguments emitted a null value!"); 7105 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7106 "LowerFormalArguments emitted a value with the wrong type!"); 7107 } 7108 }); 7109 7110 // Update the DAG with the new chain value resulting from argument lowering. 7111 DAG.setRoot(NewRoot); 7112 7113 // Set up the argument values. 7114 unsigned i = 0; 7115 Idx = 1; 7116 if (!FuncInfo->CanLowerReturn) { 7117 // Create a virtual register for the sret pointer, and put in a copy 7118 // from the sret argument into it. 7119 SmallVector<EVT, 1> ValueVTs; 7120 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7121 MVT VT = ValueVTs[0].getSimpleVT(); 7122 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7123 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7124 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7125 RegVT, VT, nullptr, AssertOp); 7126 7127 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7128 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7129 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7130 FuncInfo->DemoteRegister = SRetReg; 7131 NewRoot = 7132 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7133 DAG.setRoot(NewRoot); 7134 7135 // i indexes lowered arguments. Bump it past the hidden sret argument. 7136 // Idx indexes LLVM arguments. Don't touch it. 7137 ++i; 7138 } 7139 7140 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7141 ++I, ++Idx) { 7142 SmallVector<SDValue, 4> ArgValues; 7143 SmallVector<EVT, 4> ValueVTs; 7144 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7145 unsigned NumValues = ValueVTs.size(); 7146 7147 // If this argument is unused then remember its value. It is used to generate 7148 // debugging information. 7149 if (I->use_empty() && NumValues) { 7150 SDB->setUnusedArgValue(I, InVals[i]); 7151 7152 // Also remember any frame index for use in FastISel. 7153 if (FrameIndexSDNode *FI = 7154 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7155 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7156 } 7157 7158 for (unsigned Val = 0; Val != NumValues; ++Val) { 7159 EVT VT = ValueVTs[Val]; 7160 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7161 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7162 7163 if (!I->use_empty()) { 7164 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7165 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7166 AssertOp = ISD::AssertSext; 7167 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7168 AssertOp = ISD::AssertZext; 7169 7170 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7171 NumParts, PartVT, VT, 7172 nullptr, AssertOp)); 7173 } 7174 7175 i += NumParts; 7176 } 7177 7178 // We don't need to do anything else for unused arguments. 7179 if (ArgValues.empty()) 7180 continue; 7181 7182 // Note down frame index. 7183 if (FrameIndexSDNode *FI = 7184 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7185 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7186 7187 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7188 SDB->getCurSDLoc()); 7189 7190 SDB->setValue(I, Res); 7191 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7192 if (LoadSDNode *LNode = 7193 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7194 if (FrameIndexSDNode *FI = 7195 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7196 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7197 } 7198 7199 // If this argument is live outside of the entry block, insert a copy from 7200 // wherever we got it to the vreg that other BB's will reference it as. 7201 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7202 // If we can, though, try to skip creating an unnecessary vreg. 7203 // FIXME: This isn't very clean... it would be nice to make this more 7204 // general. It's also subtly incompatible with the hacks FastISel 7205 // uses with vregs. 7206 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7207 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7208 FuncInfo->ValueMap[I] = Reg; 7209 continue; 7210 } 7211 } 7212 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7213 FuncInfo->InitializeRegForValue(I); 7214 SDB->CopyToExportRegsIfNeeded(I); 7215 } 7216 } 7217 7218 assert(i == InVals.size() && "Argument register count mismatch!"); 7219 7220 // Finally, if the target has anything special to do, allow it to do so. 7221 EmitFunctionEntryCode(); 7222 } 7223 7224 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7225 /// ensure constants are generated when needed. Remember the virtual registers 7226 /// that need to be added to the Machine PHI nodes as input. We cannot just 7227 /// directly add them, because expansion might result in multiple MBB's for one 7228 /// BB. As such, the start of the BB might correspond to a different MBB than 7229 /// the end. 7230 /// 7231 void 7232 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7233 const TerminatorInst *TI = LLVMBB->getTerminator(); 7234 7235 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7236 7237 // Check PHI nodes in successors that expect a value to be available from this 7238 // block. 7239 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7240 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7241 if (!isa<PHINode>(SuccBB->begin())) continue; 7242 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7243 7244 // If this terminator has multiple identical successors (common for 7245 // switches), only handle each succ once. 7246 if (!SuccsHandled.insert(SuccMBB).second) 7247 continue; 7248 7249 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7250 7251 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7252 // nodes and Machine PHI nodes, but the incoming operands have not been 7253 // emitted yet. 7254 for (BasicBlock::const_iterator I = SuccBB->begin(); 7255 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7256 // Ignore dead phi's. 7257 if (PN->use_empty()) continue; 7258 7259 // Skip empty types 7260 if (PN->getType()->isEmptyTy()) 7261 continue; 7262 7263 unsigned Reg; 7264 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7265 7266 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7267 unsigned &RegOut = ConstantsOut[C]; 7268 if (RegOut == 0) { 7269 RegOut = FuncInfo.CreateRegs(C->getType()); 7270 CopyValueToVirtualRegister(C, RegOut); 7271 } 7272 Reg = RegOut; 7273 } else { 7274 DenseMap<const Value *, unsigned>::iterator I = 7275 FuncInfo.ValueMap.find(PHIOp); 7276 if (I != FuncInfo.ValueMap.end()) 7277 Reg = I->second; 7278 else { 7279 assert(isa<AllocaInst>(PHIOp) && 7280 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7281 "Didn't codegen value into a register!??"); 7282 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7283 CopyValueToVirtualRegister(PHIOp, Reg); 7284 } 7285 } 7286 7287 // Remember that this register needs to added to the machine PHI node as 7288 // the input for this MBB. 7289 SmallVector<EVT, 4> ValueVTs; 7290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7291 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7292 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7293 EVT VT = ValueVTs[vti]; 7294 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7295 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7296 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7297 Reg += NumRegisters; 7298 } 7299 } 7300 } 7301 7302 ConstantsOut.clear(); 7303 } 7304 7305 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7306 /// is 0. 7307 MachineBasicBlock * 7308 SelectionDAGBuilder::StackProtectorDescriptor:: 7309 AddSuccessorMBB(const BasicBlock *BB, 7310 MachineBasicBlock *ParentMBB, 7311 bool IsLikely, 7312 MachineBasicBlock *SuccMBB) { 7313 // If SuccBB has not been created yet, create it. 7314 if (!SuccMBB) { 7315 MachineFunction *MF = ParentMBB->getParent(); 7316 MachineFunction::iterator BBI = ParentMBB; 7317 SuccMBB = MF->CreateMachineBasicBlock(BB); 7318 MF->insert(++BBI, SuccMBB); 7319 } 7320 // Add it as a successor of ParentMBB. 7321 ParentMBB->addSuccessor( 7322 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7323 return SuccMBB; 7324 } 7325 7326 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7327 MachineFunction::iterator I = MBB; 7328 if (++I == FuncInfo.MF->end()) 7329 return nullptr; 7330 return I; 7331 } 7332 7333 /// During lowering new call nodes can be created (such as memset, etc.). 7334 /// Those will become new roots of the current DAG, but complications arise 7335 /// when they are tail calls. In such cases, the call lowering will update 7336 /// the root, but the builder still needs to know that a tail call has been 7337 /// lowered in order to avoid generating an additional return. 7338 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7339 // If the node is null, we do have a tail call. 7340 if (MaybeTC.getNode() != nullptr) 7341 DAG.setRoot(MaybeTC); 7342 else 7343 HasTailCall = true; 7344 } 7345 7346 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7347 unsigned *TotalCases, unsigned First, 7348 unsigned Last) { 7349 assert(Last >= First); 7350 assert(TotalCases[Last] >= TotalCases[First]); 7351 7352 APInt LowCase = Clusters[First].Low->getValue(); 7353 APInt HighCase = Clusters[Last].High->getValue(); 7354 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7355 7356 // FIXME: A range of consecutive cases has 100% density, but only requires one 7357 // comparison to lower. We should discriminate against such consecutive ranges 7358 // in jump tables. 7359 7360 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7361 uint64_t Range = Diff + 1; 7362 7363 uint64_t NumCases = 7364 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7365 7366 assert(NumCases < UINT64_MAX / 100); 7367 assert(Range >= NumCases); 7368 7369 return NumCases * 100 >= Range * MinJumpTableDensity; 7370 } 7371 7372 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7373 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7374 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7375 } 7376 7377 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7378 unsigned First, unsigned Last, 7379 const SwitchInst *SI, 7380 MachineBasicBlock *DefaultMBB, 7381 CaseCluster &JTCluster) { 7382 assert(First <= Last); 7383 7384 uint32_t Weight = 0; 7385 unsigned NumCmps = 0; 7386 std::vector<MachineBasicBlock*> Table; 7387 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7388 for (unsigned I = First; I <= Last; ++I) { 7389 assert(Clusters[I].Kind == CC_Range); 7390 Weight += Clusters[I].Weight; 7391 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7392 APInt Low = Clusters[I].Low->getValue(); 7393 APInt High = Clusters[I].High->getValue(); 7394 NumCmps += (Low == High) ? 1 : 2; 7395 if (I != First) { 7396 // Fill the gap between this and the previous cluster. 7397 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7398 assert(PreviousHigh.slt(Low)); 7399 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7400 for (uint64_t J = 0; J < Gap; J++) 7401 Table.push_back(DefaultMBB); 7402 } 7403 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7404 for (uint64_t J = 0; J < ClusterSize; ++J) 7405 Table.push_back(Clusters[I].MBB); 7406 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7407 } 7408 7409 unsigned NumDests = JTWeights.size(); 7410 if (isSuitableForBitTests(NumDests, NumCmps, 7411 Clusters[First].Low->getValue(), 7412 Clusters[Last].High->getValue())) { 7413 // Clusters[First..Last] should be lowered as bit tests instead. 7414 return false; 7415 } 7416 7417 // Create the MBB that will load from and jump through the table. 7418 // Note: We create it here, but it's not inserted into the function yet. 7419 MachineFunction *CurMF = FuncInfo.MF; 7420 MachineBasicBlock *JumpTableMBB = 7421 CurMF->CreateMachineBasicBlock(SI->getParent()); 7422 7423 // Add successors. Note: use table order for determinism. 7424 SmallPtrSet<MachineBasicBlock *, 8> Done; 7425 for (MachineBasicBlock *Succ : Table) { 7426 if (Done.count(Succ)) 7427 continue; 7428 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7429 Done.insert(Succ); 7430 } 7431 7432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7433 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7434 ->createJumpTableIndex(Table); 7435 7436 // Set up the jump table info. 7437 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7438 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7439 Clusters[Last].High->getValue(), SI->getCondition(), 7440 nullptr, false); 7441 JTCases.push_back(JumpTableBlock(JTH, JT)); 7442 7443 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7444 JTCases.size() - 1, Weight); 7445 return true; 7446 } 7447 7448 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7449 const SwitchInst *SI, 7450 MachineBasicBlock *DefaultMBB) { 7451 #ifndef NDEBUG 7452 // Clusters must be non-empty, sorted, and only contain Range clusters. 7453 assert(!Clusters.empty()); 7454 for (CaseCluster &C : Clusters) 7455 assert(C.Kind == CC_Range); 7456 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7457 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7458 #endif 7459 7460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7461 if (!areJTsAllowed(TLI)) 7462 return; 7463 7464 const int64_t N = Clusters.size(); 7465 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7466 7467 // Split Clusters into minimum number of dense partitions. The algorithm uses 7468 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7469 // for the Case Statement'" (1994), but builds the MinPartitions array in 7470 // reverse order to make it easier to reconstruct the partitions in ascending 7471 // order. In the choice between two optimal partitionings, it picks the one 7472 // which yields more jump tables. 7473 7474 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7475 SmallVector<unsigned, 8> MinPartitions(N); 7476 // LastElement[i] is the last element of the partition starting at i. 7477 SmallVector<unsigned, 8> LastElement(N); 7478 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7479 SmallVector<unsigned, 8> NumTables(N); 7480 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7481 SmallVector<unsigned, 8> TotalCases(N); 7482 7483 for (unsigned i = 0; i < N; ++i) { 7484 APInt Hi = Clusters[i].High->getValue(); 7485 APInt Lo = Clusters[i].Low->getValue(); 7486 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7487 if (i != 0) 7488 TotalCases[i] += TotalCases[i - 1]; 7489 } 7490 7491 // Base case: There is only one way to partition Clusters[N-1]. 7492 MinPartitions[N - 1] = 1; 7493 LastElement[N - 1] = N - 1; 7494 assert(MinJumpTableSize > 1); 7495 NumTables[N - 1] = 0; 7496 7497 // Note: loop indexes are signed to avoid underflow. 7498 for (int64_t i = N - 2; i >= 0; i--) { 7499 // Find optimal partitioning of Clusters[i..N-1]. 7500 // Baseline: Put Clusters[i] into a partition on its own. 7501 MinPartitions[i] = MinPartitions[i + 1] + 1; 7502 LastElement[i] = i; 7503 NumTables[i] = NumTables[i + 1]; 7504 7505 // Search for a solution that results in fewer partitions. 7506 for (int64_t j = N - 1; j > i; j--) { 7507 // Try building a partition from Clusters[i..j]. 7508 if (isDense(Clusters, &TotalCases[0], i, j)) { 7509 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7510 bool IsTable = j - i + 1 >= MinJumpTableSize; 7511 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7512 7513 // If this j leads to fewer partitions, or same number of partitions 7514 // with more lookup tables, it is a better partitioning. 7515 if (NumPartitions < MinPartitions[i] || 7516 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7517 MinPartitions[i] = NumPartitions; 7518 LastElement[i] = j; 7519 NumTables[i] = Tables; 7520 } 7521 } 7522 } 7523 } 7524 7525 // Iterate over the partitions, replacing some with jump tables in-place. 7526 unsigned DstIndex = 0; 7527 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7528 Last = LastElement[First]; 7529 assert(Last >= First); 7530 assert(DstIndex <= First); 7531 unsigned NumClusters = Last - First + 1; 7532 7533 CaseCluster JTCluster; 7534 if (NumClusters >= MinJumpTableSize && 7535 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7536 Clusters[DstIndex++] = JTCluster; 7537 } else { 7538 for (unsigned I = First; I <= Last; ++I) 7539 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7540 } 7541 } 7542 Clusters.resize(DstIndex); 7543 } 7544 7545 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7546 // FIXME: Using the pointer type doesn't seem ideal. 7547 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7548 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7549 return Range <= BW; 7550 } 7551 7552 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7553 unsigned NumCmps, 7554 const APInt &Low, 7555 const APInt &High) { 7556 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7557 // range of cases both require only one branch to lower. Just looking at the 7558 // number of clusters and destinations should be enough to decide whether to 7559 // build bit tests. 7560 7561 // To lower a range with bit tests, the range must fit the bitwidth of a 7562 // machine word. 7563 if (!rangeFitsInWord(Low, High)) 7564 return false; 7565 7566 // Decide whether it's profitable to lower this range with bit tests. Each 7567 // destination requires a bit test and branch, and there is an overall range 7568 // check branch. For a small number of clusters, separate comparisons might be 7569 // cheaper, and for many destinations, splitting the range might be better. 7570 return (NumDests == 1 && NumCmps >= 3) || 7571 (NumDests == 2 && NumCmps >= 5) || 7572 (NumDests == 3 && NumCmps >= 6); 7573 } 7574 7575 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7576 unsigned First, unsigned Last, 7577 const SwitchInst *SI, 7578 CaseCluster &BTCluster) { 7579 assert(First <= Last); 7580 if (First == Last) 7581 return false; 7582 7583 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7584 unsigned NumCmps = 0; 7585 for (int64_t I = First; I <= Last; ++I) { 7586 assert(Clusters[I].Kind == CC_Range); 7587 Dests.set(Clusters[I].MBB->getNumber()); 7588 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7589 } 7590 unsigned NumDests = Dests.count(); 7591 7592 APInt Low = Clusters[First].Low->getValue(); 7593 APInt High = Clusters[Last].High->getValue(); 7594 assert(Low.slt(High)); 7595 7596 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7597 return false; 7598 7599 APInt LowBound; 7600 APInt CmpRange; 7601 7602 const int BitWidth = 7603 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7604 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7605 7606 if (Low.isNonNegative() && High.slt(BitWidth)) { 7607 // Optimize the case where all the case values fit in a 7608 // word without having to subtract minValue. In this case, 7609 // we can optimize away the subtraction. 7610 LowBound = APInt::getNullValue(Low.getBitWidth()); 7611 CmpRange = High; 7612 } else { 7613 LowBound = Low; 7614 CmpRange = High - Low; 7615 } 7616 7617 CaseBitsVector CBV; 7618 uint32_t TotalWeight = 0; 7619 for (unsigned i = First; i <= Last; ++i) { 7620 // Find the CaseBits for this destination. 7621 unsigned j; 7622 for (j = 0; j < CBV.size(); ++j) 7623 if (CBV[j].BB == Clusters[i].MBB) 7624 break; 7625 if (j == CBV.size()) 7626 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7627 CaseBits *CB = &CBV[j]; 7628 7629 // Update Mask, Bits and ExtraWeight. 7630 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7631 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7632 for (uint64_t j = Lo; j <= Hi; ++j) { 7633 CB->Mask |= 1ULL << j; 7634 CB->Bits++; 7635 } 7636 CB->ExtraWeight += Clusters[i].Weight; 7637 TotalWeight += Clusters[i].Weight; 7638 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7639 } 7640 7641 BitTestInfo BTI; 7642 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7643 // Sort by weight first, number of bits second. 7644 if (a.ExtraWeight != b.ExtraWeight) 7645 return a.ExtraWeight > b.ExtraWeight; 7646 return a.Bits > b.Bits; 7647 }); 7648 7649 for (auto &CB : CBV) { 7650 MachineBasicBlock *BitTestBB = 7651 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7652 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7653 } 7654 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7655 -1U, MVT::Other, false, nullptr, 7656 nullptr, std::move(BTI))); 7657 7658 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7659 BitTestCases.size() - 1, TotalWeight); 7660 return true; 7661 } 7662 7663 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7664 const SwitchInst *SI) { 7665 // Partition Clusters into as few subsets as possible, where each subset has a 7666 // range that fits in a machine word and has <= 3 unique destinations. 7667 7668 #ifndef NDEBUG 7669 // Clusters must be sorted and contain Range or JumpTable clusters. 7670 assert(!Clusters.empty()); 7671 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7672 for (const CaseCluster &C : Clusters) 7673 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7674 for (unsigned i = 1; i < Clusters.size(); ++i) 7675 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7676 #endif 7677 7678 // If target does not have legal shift left, do not emit bit tests at all. 7679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7680 EVT PTy = TLI.getPointerTy(); 7681 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7682 return; 7683 7684 int BitWidth = PTy.getSizeInBits(); 7685 const int64_t N = Clusters.size(); 7686 7687 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7688 SmallVector<unsigned, 8> MinPartitions(N); 7689 // LastElement[i] is the last element of the partition starting at i. 7690 SmallVector<unsigned, 8> LastElement(N); 7691 7692 // FIXME: This might not be the best algorithm for finding bit test clusters. 7693 7694 // Base case: There is only one way to partition Clusters[N-1]. 7695 MinPartitions[N - 1] = 1; 7696 LastElement[N - 1] = N - 1; 7697 7698 // Note: loop indexes are signed to avoid underflow. 7699 for (int64_t i = N - 2; i >= 0; --i) { 7700 // Find optimal partitioning of Clusters[i..N-1]. 7701 // Baseline: Put Clusters[i] into a partition on its own. 7702 MinPartitions[i] = MinPartitions[i + 1] + 1; 7703 LastElement[i] = i; 7704 7705 // Search for a solution that results in fewer partitions. 7706 // Note: the search is limited by BitWidth, reducing time complexity. 7707 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7708 // Try building a partition from Clusters[i..j]. 7709 7710 // Check the range. 7711 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7712 Clusters[j].High->getValue())) 7713 continue; 7714 7715 // Check nbr of destinations and cluster types. 7716 // FIXME: This works, but doesn't seem very efficient. 7717 bool RangesOnly = true; 7718 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7719 for (int64_t k = i; k <= j; k++) { 7720 if (Clusters[k].Kind != CC_Range) { 7721 RangesOnly = false; 7722 break; 7723 } 7724 Dests.set(Clusters[k].MBB->getNumber()); 7725 } 7726 if (!RangesOnly || Dests.count() > 3) 7727 break; 7728 7729 // Check if it's a better partition. 7730 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7731 if (NumPartitions < MinPartitions[i]) { 7732 // Found a better partition. 7733 MinPartitions[i] = NumPartitions; 7734 LastElement[i] = j; 7735 } 7736 } 7737 } 7738 7739 // Iterate over the partitions, replacing with bit-test clusters in-place. 7740 unsigned DstIndex = 0; 7741 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7742 Last = LastElement[First]; 7743 assert(First <= Last); 7744 assert(DstIndex <= First); 7745 7746 CaseCluster BitTestCluster; 7747 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7748 Clusters[DstIndex++] = BitTestCluster; 7749 } else { 7750 for (unsigned I = First; I <= Last; ++I) 7751 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7752 } 7753 } 7754 Clusters.resize(DstIndex); 7755 } 7756 7757 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7758 MachineBasicBlock *SwitchMBB, 7759 MachineBasicBlock *DefaultMBB) { 7760 MachineFunction *CurMF = FuncInfo.MF; 7761 MachineBasicBlock *NextMBB = nullptr; 7762 MachineFunction::iterator BBI = W.MBB; 7763 if (++BBI != FuncInfo.MF->end()) 7764 NextMBB = BBI; 7765 7766 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7767 7768 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7769 7770 if (Size == 2 && W.MBB == SwitchMBB) { 7771 // If any two of the cases has the same destination, and if one value 7772 // is the same as the other, but has one bit unset that the other has set, 7773 // use bit manipulation to do two compares at once. For example: 7774 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7775 // TODO: This could be extended to merge any 2 cases in switches with 3 7776 // cases. 7777 // TODO: Handle cases where W.CaseBB != SwitchBB. 7778 CaseCluster &Small = *W.FirstCluster; 7779 CaseCluster &Big = *W.LastCluster; 7780 7781 if (Small.Low == Small.High && Big.Low == Big.High && 7782 Small.MBB == Big.MBB) { 7783 const APInt &SmallValue = Small.Low->getValue(); 7784 const APInt &BigValue = Big.Low->getValue(); 7785 7786 // Check that there is only one bit different. 7787 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7788 (SmallValue | BigValue) == BigValue) { 7789 // Isolate the common bit. 7790 APInt CommonBit = BigValue & ~SmallValue; 7791 assert((SmallValue | CommonBit) == BigValue && 7792 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7793 7794 SDValue CondLHS = getValue(Cond); 7795 EVT VT = CondLHS.getValueType(); 7796 SDLoc DL = getCurSDLoc(); 7797 7798 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7799 DAG.getConstant(CommonBit, VT)); 7800 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7801 DAG.getConstant(BigValue, VT), ISD::SETEQ); 7802 7803 // Update successor info. 7804 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7805 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7806 addSuccessorWithWeight( 7807 SwitchMBB, DefaultMBB, 7808 // The default destination is the first successor in IR. 7809 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7810 : 0); 7811 7812 // Insert the true branch. 7813 SDValue BrCond = 7814 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7815 DAG.getBasicBlock(Small.MBB)); 7816 // Insert the false branch. 7817 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7818 DAG.getBasicBlock(DefaultMBB)); 7819 7820 DAG.setRoot(BrCond); 7821 return; 7822 } 7823 } 7824 } 7825 7826 if (TM.getOptLevel() != CodeGenOpt::None) { 7827 // Order cases by weight so the most likely case will be checked first. 7828 std::sort(W.FirstCluster, W.LastCluster + 1, 7829 [](const CaseCluster &a, const CaseCluster &b) { 7830 return a.Weight > b.Weight; 7831 }); 7832 7833 // Rearrange the case blocks so that the last one falls through if possible 7834 // without without changing the order of weights. 7835 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7836 --I; 7837 if (I->Weight > W.LastCluster->Weight) 7838 break; 7839 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7840 std::swap(*I, *W.LastCluster); 7841 break; 7842 } 7843 } 7844 } 7845 7846 // Compute total weight. 7847 uint32_t UnhandledWeights = 0; 7848 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7849 UnhandledWeights += I->Weight; 7850 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7851 } 7852 7853 MachineBasicBlock *CurMBB = W.MBB; 7854 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7855 MachineBasicBlock *Fallthrough; 7856 if (I == W.LastCluster) { 7857 // For the last cluster, fall through to the default destination. 7858 Fallthrough = DefaultMBB; 7859 } else { 7860 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7861 CurMF->insert(BBI, Fallthrough); 7862 // Put Cond in a virtual register to make it available from the new blocks. 7863 ExportFromCurrentBlock(Cond); 7864 } 7865 7866 switch (I->Kind) { 7867 case CC_JumpTable: { 7868 // FIXME: Optimize away range check based on pivot comparisons. 7869 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7870 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7871 7872 // The jump block hasn't been inserted yet; insert it here. 7873 MachineBasicBlock *JumpMBB = JT->MBB; 7874 CurMF->insert(BBI, JumpMBB); 7875 addSuccessorWithWeight(CurMBB, Fallthrough); 7876 addSuccessorWithWeight(CurMBB, JumpMBB); 7877 7878 // The jump table header will be inserted in our current block, do the 7879 // range check, and fall through to our fallthrough block. 7880 JTH->HeaderBB = CurMBB; 7881 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7882 7883 // If we're in the right place, emit the jump table header right now. 7884 if (CurMBB == SwitchMBB) { 7885 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7886 JTH->Emitted = true; 7887 } 7888 break; 7889 } 7890 case CC_BitTests: { 7891 // FIXME: Optimize away range check based on pivot comparisons. 7892 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7893 7894 // The bit test blocks haven't been inserted yet; insert them here. 7895 for (BitTestCase &BTC : BTB->Cases) 7896 CurMF->insert(BBI, BTC.ThisBB); 7897 7898 // Fill in fields of the BitTestBlock. 7899 BTB->Parent = CurMBB; 7900 BTB->Default = Fallthrough; 7901 7902 // If we're in the right place, emit the bit test header header right now. 7903 if (CurMBB ==SwitchMBB) { 7904 visitBitTestHeader(*BTB, SwitchMBB); 7905 BTB->Emitted = true; 7906 } 7907 break; 7908 } 7909 case CC_Range: { 7910 const Value *RHS, *LHS, *MHS; 7911 ISD::CondCode CC; 7912 if (I->Low == I->High) { 7913 // Check Cond == I->Low. 7914 CC = ISD::SETEQ; 7915 LHS = Cond; 7916 RHS=I->Low; 7917 MHS = nullptr; 7918 } else { 7919 // Check I->Low <= Cond <= I->High. 7920 CC = ISD::SETLE; 7921 LHS = I->Low; 7922 MHS = Cond; 7923 RHS = I->High; 7924 } 7925 7926 // The false weight is the sum of all unhandled cases. 7927 UnhandledWeights -= I->Weight; 7928 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7929 UnhandledWeights); 7930 7931 if (CurMBB == SwitchMBB) 7932 visitSwitchCase(CB, SwitchMBB); 7933 else 7934 SwitchCases.push_back(CB); 7935 7936 break; 7937 } 7938 } 7939 CurMBB = Fallthrough; 7940 } 7941 } 7942 7943 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7944 const SwitchWorkListItem &W, 7945 Value *Cond, 7946 MachineBasicBlock *SwitchMBB) { 7947 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7948 "Clusters not sorted?"); 7949 7950 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7951 assert(NumClusters >= 2 && "Too small to split!"); 7952 7953 // FIXME: When we have profile info, we might want to balance the tree based 7954 // on weights instead of node count. 7955 7956 CaseClusterIt PivotCluster = W.FirstCluster + NumClusters / 2; 7957 CaseClusterIt FirstLeft = W.FirstCluster; 7958 CaseClusterIt LastLeft = PivotCluster - 1; 7959 CaseClusterIt FirstRight = PivotCluster; 7960 CaseClusterIt LastRight = W.LastCluster; 7961 const ConstantInt *Pivot = PivotCluster->Low; 7962 7963 // New blocks will be inserted immediately after the current one. 7964 MachineFunction::iterator BBI = W.MBB; 7965 ++BBI; 7966 7967 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7968 // we can branch to its destination directly if it's squeezed exactly in 7969 // between the known lower bound and Pivot - 1. 7970 MachineBasicBlock *LeftMBB; 7971 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7972 FirstLeft->Low == W.GE && 7973 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7974 LeftMBB = FirstLeft->MBB; 7975 } else { 7976 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7977 FuncInfo.MF->insert(BBI, LeftMBB); 7978 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7979 // Put Cond in a virtual register to make it available from the new blocks. 7980 ExportFromCurrentBlock(Cond); 7981 } 7982 7983 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7984 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7985 // directly if RHS.High equals the current upper bound. 7986 MachineBasicBlock *RightMBB; 7987 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 7988 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 7989 RightMBB = FirstRight->MBB; 7990 } else { 7991 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7992 FuncInfo.MF->insert(BBI, RightMBB); 7993 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 7994 // Put Cond in a virtual register to make it available from the new blocks. 7995 ExportFromCurrentBlock(Cond); 7996 } 7997 7998 // Create the CaseBlock record that will be used to lower the branch. 7999 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB); 8000 8001 if (W.MBB == SwitchMBB) 8002 visitSwitchCase(CB, SwitchMBB); 8003 else 8004 SwitchCases.push_back(CB); 8005 } 8006 8007 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8008 // Extract cases from the switch. 8009 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8010 CaseClusterVector Clusters; 8011 Clusters.reserve(SI.getNumCases()); 8012 for (auto I : SI.cases()) { 8013 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8014 const ConstantInt *CaseVal = I.getCaseValue(); 8015 uint32_t Weight = 0; // FIXME: Use 1 instead? 8016 if (BPI) { 8017 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 8018 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 8019 } 8020 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8021 } 8022 8023 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8024 8025 if (TM.getOptLevel() != CodeGenOpt::None) { 8026 // Cluster adjacent cases with the same destination. 8027 sortAndRangeify(Clusters); 8028 8029 // Replace an unreachable default with the most popular destination. 8030 // FIXME: Exploit unreachable default more aggressively. 8031 bool UnreachableDefault = 8032 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8033 if (UnreachableDefault && !Clusters.empty()) { 8034 DenseMap<const BasicBlock *, unsigned> Popularity; 8035 unsigned MaxPop = 0; 8036 const BasicBlock *MaxBB = nullptr; 8037 for (auto I : SI.cases()) { 8038 const BasicBlock *BB = I.getCaseSuccessor(); 8039 if (++Popularity[BB] > MaxPop) { 8040 MaxPop = Popularity[BB]; 8041 MaxBB = BB; 8042 } 8043 } 8044 // Set new default. 8045 assert(MaxPop > 0 && MaxBB); 8046 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8047 8048 // Remove cases that were pointing to the destination that is now the 8049 // default. 8050 CaseClusterVector New; 8051 New.reserve(Clusters.size()); 8052 for (CaseCluster &CC : Clusters) { 8053 if (CC.MBB != DefaultMBB) 8054 New.push_back(CC); 8055 } 8056 Clusters = std::move(New); 8057 } 8058 } 8059 8060 // If there is only the default destination, jump there directly. 8061 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8062 if (Clusters.empty()) { 8063 SwitchMBB->addSuccessor(DefaultMBB); 8064 if (DefaultMBB != NextBlock(SwitchMBB)) { 8065 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8066 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8067 } 8068 return; 8069 } 8070 8071 if (TM.getOptLevel() != CodeGenOpt::None) { 8072 findJumpTables(Clusters, &SI, DefaultMBB); 8073 findBitTestClusters(Clusters, &SI); 8074 } 8075 8076 8077 DEBUG({ 8078 dbgs() << "Case clusters: "; 8079 for (const CaseCluster &C : Clusters) { 8080 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8081 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8082 8083 C.Low->getValue().print(dbgs(), true); 8084 if (C.Low != C.High) { 8085 dbgs() << '-'; 8086 C.High->getValue().print(dbgs(), true); 8087 } 8088 dbgs() << ' '; 8089 } 8090 dbgs() << '\n'; 8091 }); 8092 8093 assert(!Clusters.empty()); 8094 SwitchWorkList WorkList; 8095 CaseClusterIt First = Clusters.begin(); 8096 CaseClusterIt Last = Clusters.end() - 1; 8097 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8098 8099 while (!WorkList.empty()) { 8100 SwitchWorkListItem W = WorkList.back(); 8101 WorkList.pop_back(); 8102 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8103 8104 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8105 // For optimized builds, lower large range as a balanced binary tree. 8106 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8107 continue; 8108 } 8109 8110 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8111 } 8112 } 8113