1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.isBigEndian()) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(&Constants[0], Constants.size(), 1096 getCurSDLoc()); 1097 } 1098 1099 if (const ConstantDataSequential *CDS = 1100 dyn_cast<ConstantDataSequential>(C)) { 1101 SmallVector<SDValue, 4> Ops; 1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1104 // Add each leaf value from the operand to the Constants list 1105 // to form a flattened list of all the values. 1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1107 Ops.push_back(SDValue(Val, i)); 1108 } 1109 1110 if (isa<ArrayType>(CDS->getType())) 1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1113 VT, Ops); 1114 } 1115 1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1118 "Unknown struct or array constant!"); 1119 1120 SmallVector<EVT, 4> ValueVTs; 1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1122 unsigned NumElts = ValueVTs.size(); 1123 if (NumElts == 0) 1124 return SDValue(); // empty struct 1125 SmallVector<SDValue, 4> Constants(NumElts); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 EVT EltVT = ValueVTs[i]; 1128 if (isa<UndefValue>(C)) 1129 Constants[i] = DAG.getUNDEF(EltVT); 1130 else if (EltVT.isFloatingPoint()) 1131 Constants[i] = DAG.getConstantFP(0, EltVT); 1132 else 1133 Constants[i] = DAG.getConstant(0, EltVT); 1134 } 1135 1136 return DAG.getMergeValues(&Constants[0], NumElts, 1137 getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1281 Outs, OutVals, getCurSDLoc(), 1282 DAG); 1283 1284 // Verify that the target's LowerReturn behaved as expected. 1285 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1286 "LowerReturn didn't return a valid chain!"); 1287 1288 // Update the DAG with the new chain value resulting from return lowering. 1289 DAG.setRoot(Chain); 1290 } 1291 1292 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1293 /// created for it, emit nodes to copy the value into the virtual 1294 /// registers. 1295 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1296 // Skip empty types 1297 if (V->getType()->isEmptyTy()) 1298 return; 1299 1300 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1301 if (VMI != FuncInfo.ValueMap.end()) { 1302 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1303 CopyValueToVirtualRegister(V, VMI->second); 1304 } 1305 } 1306 1307 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1308 /// the current basic block, add it to ValueMap now so that we'll get a 1309 /// CopyTo/FromReg. 1310 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1311 // No need to export constants. 1312 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1313 1314 // Already exported? 1315 if (FuncInfo.isExportedInst(V)) return; 1316 1317 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1318 CopyValueToVirtualRegister(V, Reg); 1319 } 1320 1321 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1322 const BasicBlock *FromBB) { 1323 // The operands of the setcc have to be in this block. We don't know 1324 // how to export them from some other block. 1325 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1326 // Can export from current BB. 1327 if (VI->getParent() == FromBB) 1328 return true; 1329 1330 // Is already exported, noop. 1331 return FuncInfo.isExportedInst(V); 1332 } 1333 1334 // If this is an argument, we can export it if the BB is the entry block or 1335 // if it is already exported. 1336 if (isa<Argument>(V)) { 1337 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1338 return true; 1339 1340 // Otherwise, can only export this if it is already exported. 1341 return FuncInfo.isExportedInst(V); 1342 } 1343 1344 // Otherwise, constants can always be exported. 1345 return true; 1346 } 1347 1348 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1349 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1350 const MachineBasicBlock *Dst) const { 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 if (!BPI) 1353 return 0; 1354 const BasicBlock *SrcBB = Src->getBasicBlock(); 1355 const BasicBlock *DstBB = Dst->getBasicBlock(); 1356 return BPI->getEdgeWeight(SrcBB, DstBB); 1357 } 1358 1359 void SelectionDAGBuilder:: 1360 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1361 uint32_t Weight /* = 0 */) { 1362 if (!Weight) 1363 Weight = getEdgeWeight(Src, Dst); 1364 Src->addSuccessor(Dst, Weight); 1365 } 1366 1367 1368 static bool InBlock(const Value *V, const BasicBlock *BB) { 1369 if (const Instruction *I = dyn_cast<Instruction>(V)) 1370 return I->getParent() == BB; 1371 return true; 1372 } 1373 1374 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1375 /// This function emits a branch and is used at the leaves of an OR or an 1376 /// AND operator tree. 1377 /// 1378 void 1379 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1380 MachineBasicBlock *TBB, 1381 MachineBasicBlock *FBB, 1382 MachineBasicBlock *CurBB, 1383 MachineBasicBlock *SwitchBB, 1384 uint32_t TWeight, 1385 uint32_t FWeight) { 1386 const BasicBlock *BB = CurBB->getBasicBlock(); 1387 1388 // If the leaf of the tree is a comparison, merge the condition into 1389 // the caseblock. 1390 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1391 // The operands of the cmp have to be in this block. We don't know 1392 // how to export them from some other block. If this is the first block 1393 // of the sequence, no exporting is needed. 1394 if (CurBB == SwitchBB || 1395 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1396 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1397 ISD::CondCode Condition; 1398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1399 Condition = getICmpCondCode(IC->getPredicate()); 1400 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1401 Condition = getFCmpCondCode(FC->getPredicate()); 1402 if (TM.Options.NoNaNsFPMath) 1403 Condition = getFCmpCodeWithoutNaN(Condition); 1404 } else { 1405 Condition = ISD::SETEQ; // silence warning. 1406 llvm_unreachable("Unknown compare instruction"); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 unsigned Opc, uint32_t TWeight, 1437 uint32_t FWeight) { 1438 // If this node is not part of the or/and tree, emit it as a branch. 1439 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1440 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1441 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1442 BOp->getParent() != CurBB->getBasicBlock() || 1443 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1444 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1445 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1446 TWeight, FWeight); 1447 return; 1448 } 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // BB1: 1459 // jmp_if_X TBB 1460 // jmp TmpBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 1466 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1467 // The requirement is that 1468 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1469 // = TrueProb for orignal BB. 1470 // Assuming the orignal weights are A and B, one choice is to set BB1's 1471 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1472 // assumes that 1473 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1474 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1475 // TmpBB, but the math is more complicated. 1476 1477 uint64_t NewTrueWeight = TWeight; 1478 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = TWeight; 1485 NewFalseWeight = 2 * (uint64_t)FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } else { 1491 assert(Opc == Instruction::And && "Unknown merge op!"); 1492 // Codegen X & Y as: 1493 // BB1: 1494 // jmp_if_X TmpBB 1495 // jmp FBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 // This requires creation of TmpBB after CurBB. 1501 1502 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1503 // The requirement is that 1504 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1505 // = FalseProb for orignal BB. 1506 // Assuming the orignal weights are A and B, one choice is to set BB1's 1507 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1508 // assumes that 1509 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1510 1511 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1512 uint64_t NewFalseWeight = FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the LHS condition. 1515 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 1518 NewTrueWeight = 2 * (uint64_t)TWeight; 1519 NewFalseWeight = FWeight; 1520 ScaleWeights(NewTrueWeight, NewFalseWeight); 1521 // Emit the RHS condition into TmpBB. 1522 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1523 NewTrueWeight, NewFalseWeight); 1524 } 1525 } 1526 1527 /// If the set of cases should be emitted as a series of branches, return true. 1528 /// If we should emit this as a bunch of and/or'd together conditions, return 1529 /// false. 1530 bool 1531 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1532 if (Cases.size() != 2) return true; 1533 1534 // If this is two comparisons of the same values or'd or and'd together, they 1535 // will get folded into a single comparison, so don't emit two blocks. 1536 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1537 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1538 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1539 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1540 return false; 1541 } 1542 1543 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1544 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1545 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1546 Cases[0].CC == Cases[1].CC && 1547 isa<Constant>(Cases[0].CmpRHS) && 1548 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1549 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1550 return false; 1551 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1559 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1560 1561 // Update machine-CFG edges. 1562 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1563 1564 // Figure out which block is immediately after the current one. 1565 MachineBasicBlock *NextBlock = nullptr; 1566 MachineFunction::iterator BBI = BrMBB; 1567 if (++BBI != FuncInfo.MF->end()) 1568 NextBlock = BBI; 1569 1570 if (I.isUnconditional()) { 1571 // Update machine-CFG edges. 1572 BrMBB->addSuccessor(Succ0MBB); 1573 1574 // If this is not a fall-through branch or optimizations are switched off, 1575 // emit the branch. 1576 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1577 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1578 MVT::Other, getControlRoot(), 1579 DAG.getBasicBlock(Succ0MBB))); 1580 1581 return; 1582 } 1583 1584 // If this condition is one of the special cases we handle, do special stuff 1585 // now. 1586 const Value *CondVal = I.getCondition(); 1587 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1588 1589 // If this is a series of conditions that are or'd or and'd together, emit 1590 // this as a sequence of branches instead of setcc's with and/or operations. 1591 // As long as jumps are not expensive, this should improve performance. 1592 // For example, instead of something like: 1593 // cmp A, B 1594 // C = seteq 1595 // cmp D, E 1596 // F = setle 1597 // or C, F 1598 // jnz foo 1599 // Emit: 1600 // cmp A, B 1601 // je foo 1602 // cmp D, E 1603 // jle foo 1604 // 1605 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1606 if (!TM.getTargetLowering()->isJumpExpensive() && 1607 BOp->hasOneUse() && 1608 (BOp->getOpcode() == Instruction::And || 1609 BOp->getOpcode() == Instruction::Or)) { 1610 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1611 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1612 getEdgeWeight(BrMBB, Succ1MBB)); 1613 // If the compares in later blocks need to use values not currently 1614 // exported from this block, export them now. This block should always 1615 // be the first entry. 1616 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1617 1618 // Allow some cases to be rejected. 1619 if (ShouldEmitAsBranches(SwitchCases)) { 1620 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1621 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1622 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1623 } 1624 1625 // Emit the branch for this block. 1626 visitSwitchCase(SwitchCases[0], BrMBB); 1627 SwitchCases.erase(SwitchCases.begin()); 1628 return; 1629 } 1630 1631 // Okay, we decided not to do this, remove any inserted MBB's and clear 1632 // SwitchCases. 1633 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1634 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1635 1636 SwitchCases.clear(); 1637 } 1638 } 1639 1640 // Create a CaseBlock record representing this branch. 1641 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1642 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1643 1644 // Use visitSwitchCase to actually insert the fast branch sequence for this 1645 // cond branch. 1646 visitSwitchCase(CB, BrMBB); 1647 } 1648 1649 /// visitSwitchCase - Emits the necessary code to represent a single node in 1650 /// the binary search tree resulting from lowering a switch instruction. 1651 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1652 MachineBasicBlock *SwitchBB) { 1653 SDValue Cond; 1654 SDValue CondLHS = getValue(CB.CmpLHS); 1655 SDLoc dl = getCurSDLoc(); 1656 1657 // Build the setcc now. 1658 if (!CB.CmpMHS) { 1659 // Fold "(X == true)" to X and "(X == false)" to !X to 1660 // handle common cases produced by branch lowering. 1661 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1662 CB.CC == ISD::SETEQ) 1663 Cond = CondLHS; 1664 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1665 CB.CC == ISD::SETEQ) { 1666 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1667 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1668 } else 1669 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1670 } else { 1671 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1672 1673 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1674 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1675 1676 SDValue CmpOp = getValue(CB.CmpMHS); 1677 EVT VT = CmpOp.getValueType(); 1678 1679 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1680 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1681 ISD::SETLE); 1682 } else { 1683 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1684 VT, CmpOp, DAG.getConstant(Low, VT)); 1685 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1686 DAG.getConstant(High-Low, VT), ISD::SETULE); 1687 } 1688 } 1689 1690 // Update successor info 1691 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1692 // TrueBB and FalseBB are always different unless the incoming IR is 1693 // degenerate. This only happens when running llc on weird IR. 1694 if (CB.TrueBB != CB.FalseBB) 1695 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1696 1697 // Set NextBlock to be the MBB immediately after the current one, if any. 1698 // This is used to avoid emitting unnecessary branches to the next block. 1699 MachineBasicBlock *NextBlock = nullptr; 1700 MachineFunction::iterator BBI = SwitchBB; 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 // If the lhs block is the next block, invert the condition so that we can 1705 // fall through to the lhs instead of the rhs block. 1706 if (CB.TrueBB == NextBlock) { 1707 std::swap(CB.TrueBB, CB.FalseBB); 1708 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1709 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1710 } 1711 1712 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1713 MVT::Other, getControlRoot(), Cond, 1714 DAG.getBasicBlock(CB.TrueBB)); 1715 1716 // Insert the false branch. Do this even if it's a fall through branch, 1717 // this makes it easier to do DAG optimizations which require inverting 1718 // the branch condition. 1719 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1720 DAG.getBasicBlock(CB.FalseBB)); 1721 1722 DAG.setRoot(BrCond); 1723 } 1724 1725 /// visitJumpTable - Emit JumpTable node in the current MBB 1726 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1727 // Emit the code for the jump table 1728 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1729 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1730 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1731 JT.Reg, PTy); 1732 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1733 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1734 MVT::Other, Index.getValue(1), 1735 Table, Index); 1736 DAG.setRoot(BrJumpTable); 1737 } 1738 1739 /// visitJumpTableHeader - This function emits necessary code to produce index 1740 /// in the JumpTable from switch case. 1741 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1742 JumpTableHeader &JTH, 1743 MachineBasicBlock *SwitchBB) { 1744 // Subtract the lowest switch case value from the value being switched on and 1745 // conditional branch to default mbb if the result is greater than the 1746 // difference between smallest and largest cases. 1747 SDValue SwitchOp = getValue(JTH.SValue); 1748 EVT VT = SwitchOp.getValueType(); 1749 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1750 DAG.getConstant(JTH.First, VT)); 1751 1752 // The SDNode we just created, which holds the value being switched on minus 1753 // the smallest case value, needs to be copied to a virtual register so it 1754 // can be used as an index into the jump table in a subsequent basic block. 1755 // This value may be smaller or larger than the target's pointer type, and 1756 // therefore require extension or truncating. 1757 const TargetLowering *TLI = TM.getTargetLowering(); 1758 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1759 1760 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1761 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1762 JumpTableReg, SwitchOp); 1763 JT.Reg = JumpTableReg; 1764 1765 // Emit the range check for the jump table, and branch to the default block 1766 // for the switch statement if the value being switched on exceeds the largest 1767 // case in the switch. 1768 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1769 TLI->getSetCCResultType(*DAG.getContext(), 1770 Sub.getValueType()), 1771 Sub, 1772 DAG.getConstant(JTH.Last - JTH.First,VT), 1773 ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering *TLI = TM.getTargetLowering(); 1805 EVT PtrTy = TLI->getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1817 GuardPtr, MachinePointerInfo(IRGuard, 0), 1818 true, false, false, Align); 1819 1820 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1821 StackSlotPtr, 1822 MachinePointerInfo::getFixedStack(FI), 1823 true, false, false, Align); 1824 1825 // Perform the comparison via a subtract/getsetcc. 1826 EVT VT = Guard.getValueType(); 1827 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1828 1829 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1830 TLI->getSetCCResultType(*DAG.getContext(), 1831 Sub.getValueType()), 1832 Sub, DAG.getConstant(0, VT), 1833 ISD::SETNE); 1834 1835 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1836 // branch to failure MBB. 1837 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1838 MVT::Other, StackSlot.getOperand(0), 1839 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1840 // Otherwise branch to success MBB. 1841 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1842 MVT::Other, BrCond, 1843 DAG.getBasicBlock(SPD.getSuccessMBB())); 1844 1845 DAG.setRoot(Br); 1846 } 1847 1848 /// Codegen the failure basic block for a stack protector check. 1849 /// 1850 /// A failure stack protector machine basic block consists simply of a call to 1851 /// __stack_chk_fail(). 1852 /// 1853 /// For a high level explanation of how this fits into the stack protector 1854 /// generation see the comment on the declaration of class 1855 /// StackProtectorDescriptor. 1856 void 1857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1858 const TargetLowering *TLI = TM.getTargetLowering(); 1859 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1860 MVT::isVoid, nullptr, 0, false, 1861 getCurSDLoc(), false, false).second; 1862 DAG.setRoot(Chain); 1863 } 1864 1865 /// visitBitTestHeader - This function emits necessary code to produce value 1866 /// suitable for "bit tests" 1867 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1868 MachineBasicBlock *SwitchBB) { 1869 // Subtract the minimum value 1870 SDValue SwitchOp = getValue(B.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1873 DAG.getConstant(B.First, VT)); 1874 1875 // Check range 1876 const TargetLowering *TLI = TM.getTargetLowering(); 1877 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1878 TLI->getSetCCResultType(*DAG.getContext(), 1879 Sub.getValueType()), 1880 Sub, DAG.getConstant(B.Range, VT), 1881 ISD::SETUGT); 1882 1883 // Determine the type of the test operands. 1884 bool UsePtrType = false; 1885 if (!TLI->isTypeLegal(VT)) 1886 UsePtrType = true; 1887 else { 1888 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1889 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1890 // Switch table case range are encoded into series of masks. 1891 // Just use pointer type, it's guaranteed to fit. 1892 UsePtrType = true; 1893 break; 1894 } 1895 } 1896 if (UsePtrType) { 1897 VT = TLI->getPointerTy(); 1898 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1899 } 1900 1901 B.RegVT = VT.getSimpleVT(); 1902 B.Reg = FuncInfo.CreateReg(B.RegVT); 1903 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1904 B.Reg, Sub); 1905 1906 // Set NextBlock to be the MBB immediately after the current one, if any. 1907 // This is used to avoid emitting unnecessary branches to the next block. 1908 MachineBasicBlock *NextBlock = nullptr; 1909 MachineFunction::iterator BBI = SwitchBB; 1910 if (++BBI != FuncInfo.MF->end()) 1911 NextBlock = BBI; 1912 1913 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1914 1915 addSuccessorWithWeight(SwitchBB, B.Default); 1916 addSuccessorWithWeight(SwitchBB, MBB); 1917 1918 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1919 MVT::Other, CopyTo, RangeCmp, 1920 DAG.getBasicBlock(B.Default)); 1921 1922 if (MBB != NextBlock) 1923 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1924 DAG.getBasicBlock(MBB)); 1925 1926 DAG.setRoot(BrRange); 1927 } 1928 1929 /// visitBitTestCase - this function produces one "bit test" 1930 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1931 MachineBasicBlock* NextMBB, 1932 uint32_t BranchWeightToNext, 1933 unsigned Reg, 1934 BitTestCase &B, 1935 MachineBasicBlock *SwitchBB) { 1936 MVT VT = BB.RegVT; 1937 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1938 Reg, VT); 1939 SDValue Cmp; 1940 unsigned PopCount = CountPopulation_64(B.Mask); 1941 const TargetLowering *TLI = TM.getTargetLowering(); 1942 if (PopCount == 1) { 1943 // Testing for a single bit; just compare the shift count with what it 1944 // would need to be to shift a 1 bit in that position. 1945 Cmp = DAG.getSetCC(getCurSDLoc(), 1946 TLI->getSetCCResultType(*DAG.getContext(), VT), 1947 ShiftOp, 1948 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1949 ISD::SETEQ); 1950 } else if (PopCount == BB.Range) { 1951 // There is only one zero bit in the range, test for it directly. 1952 Cmp = DAG.getSetCC(getCurSDLoc(), 1953 TLI->getSetCCResultType(*DAG.getContext(), VT), 1954 ShiftOp, 1955 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1956 ISD::SETNE); 1957 } else { 1958 // Make desired shift 1959 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1960 DAG.getConstant(1, VT), ShiftOp); 1961 1962 // Emit bit tests and jumps 1963 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1964 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1965 Cmp = DAG.getSetCC(getCurSDLoc(), 1966 TLI->getSetCCResultType(*DAG.getContext(), VT), 1967 AndOp, DAG.getConstant(0, VT), 1968 ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Set NextBlock to be the MBB immediately after the current one, if any. 1981 // This is used to avoid emitting unnecessary branches to the next block. 1982 MachineBasicBlock *NextBlock = nullptr; 1983 MachineFunction::iterator BBI = SwitchBB; 1984 if (++BBI != FuncInfo.MF->end()) 1985 NextBlock = BBI; 1986 1987 if (NextMBB != NextBlock) 1988 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1989 DAG.getBasicBlock(NextMBB)); 1990 1991 DAG.setRoot(BrAnd); 1992 } 1993 1994 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1995 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1996 1997 // Retrieve successors. 1998 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1999 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2000 2001 const Value *Callee(I.getCalledValue()); 2002 const Function *Fn = dyn_cast<Function>(Callee); 2003 if (isa<InlineAsm>(Callee)) 2004 visitInlineAsm(&I); 2005 else if (Fn && Fn->isIntrinsic()) { 2006 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 } else 2009 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2010 2011 // If the value of the invoke is used outside of its defining block, make it 2012 // available as a virtual register. 2013 CopyToExportRegsIfNeeded(&I); 2014 2015 // Update successor info 2016 addSuccessorWithWeight(InvokeMBB, Return); 2017 addSuccessorWithWeight(InvokeMBB, LandingPad); 2018 2019 // Drop into normal successor. 2020 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2021 MVT::Other, getControlRoot(), 2022 DAG.getBasicBlock(Return))); 2023 } 2024 2025 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2026 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2027 } 2028 2029 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2030 assert(FuncInfo.MBB->isLandingPad() && 2031 "Call to landingpad not in landing pad!"); 2032 2033 MachineBasicBlock *MBB = FuncInfo.MBB; 2034 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2035 AddLandingPadInfo(LP, MMI, MBB); 2036 2037 // If there aren't registers to copy the values into (e.g., during SjLj 2038 // exceptions), then don't bother to create these DAG nodes. 2039 const TargetLowering *TLI = TM.getTargetLowering(); 2040 if (TLI->getExceptionPointerRegister() == 0 && 2041 TLI->getExceptionSelectorRegister() == 0) 2042 return; 2043 2044 SmallVector<EVT, 2> ValueVTs; 2045 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2046 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2047 2048 // Get the two live-in registers as SDValues. The physregs have already been 2049 // copied into virtual registers. 2050 SDValue Ops[2]; 2051 Ops[0] = DAG.getZExtOrTrunc( 2052 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2053 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2054 getCurSDLoc(), ValueVTs[0]); 2055 Ops[1] = DAG.getZExtOrTrunc( 2056 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2057 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2058 getCurSDLoc(), ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2067 /// small case ranges). 2068 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2069 CaseRecVector& WorkList, 2070 const Value* SV, 2071 MachineBasicBlock *Default, 2072 MachineBasicBlock *SwitchBB) { 2073 // Size is the number of Cases represented by this range. 2074 size_t Size = CR.Range.second - CR.Range.first; 2075 if (Size > 3) 2076 return false; 2077 2078 // Get the MachineFunction which holds the current MBB. This is used when 2079 // inserting any additional MBBs necessary to represent the switch. 2080 MachineFunction *CurMF = FuncInfo.MF; 2081 2082 // Figure out which block is immediately after the current one. 2083 MachineBasicBlock *NextBlock = nullptr; 2084 MachineFunction::iterator BBI = CR.CaseBB; 2085 2086 if (++BBI != FuncInfo.MF->end()) 2087 NextBlock = BBI; 2088 2089 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2090 // If any two of the cases has the same destination, and if one value 2091 // is the same as the other, but has one bit unset that the other has set, 2092 // use bit manipulation to do two compares at once. For example: 2093 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2094 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2095 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2096 if (Size == 2 && CR.CaseBB == SwitchBB) { 2097 Case &Small = *CR.Range.first; 2098 Case &Big = *(CR.Range.second-1); 2099 2100 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2101 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2102 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2103 2104 // Check that there is only one bit different. 2105 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2106 (SmallValue | BigValue) == BigValue) { 2107 // Isolate the common bit. 2108 APInt CommonBit = BigValue & ~SmallValue; 2109 assert((SmallValue | CommonBit) == BigValue && 2110 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2111 2112 SDValue CondLHS = getValue(SV); 2113 EVT VT = CondLHS.getValueType(); 2114 SDLoc DL = getCurSDLoc(); 2115 2116 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2117 DAG.getConstant(CommonBit, VT)); 2118 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2119 Or, DAG.getConstant(BigValue, VT), 2120 ISD::SETEQ); 2121 2122 // Update successor info. 2123 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2124 addSuccessorWithWeight(SwitchBB, Small.BB, 2125 Small.ExtraWeight + Big.ExtraWeight); 2126 addSuccessorWithWeight(SwitchBB, Default, 2127 // The default destination is the first successor in IR. 2128 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2129 2130 // Insert the true branch. 2131 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2132 getControlRoot(), Cond, 2133 DAG.getBasicBlock(Small.BB)); 2134 2135 // Insert the false branch. 2136 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2137 DAG.getBasicBlock(Default)); 2138 2139 DAG.setRoot(BrCond); 2140 return true; 2141 } 2142 } 2143 } 2144 2145 // Order cases by weight so the most likely case will be checked first. 2146 uint32_t UnhandledWeights = 0; 2147 if (BPI) { 2148 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2149 uint32_t IWeight = I->ExtraWeight; 2150 UnhandledWeights += IWeight; 2151 for (CaseItr J = CR.Range.first; J < I; ++J) { 2152 uint32_t JWeight = J->ExtraWeight; 2153 if (IWeight > JWeight) 2154 std::swap(*I, *J); 2155 } 2156 } 2157 } 2158 // Rearrange the case blocks so that the last one falls through if possible. 2159 Case &BackCase = *(CR.Range.second-1); 2160 if (Size > 1 && 2161 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2162 // The last case block won't fall through into 'NextBlock' if we emit the 2163 // branches in this order. See if rearranging a case value would help. 2164 // We start at the bottom as it's the case with the least weight. 2165 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2166 if (I->BB == NextBlock) { 2167 std::swap(*I, BackCase); 2168 break; 2169 } 2170 } 2171 2172 // Create a CaseBlock record representing a conditional branch to 2173 // the Case's target mbb if the value being switched on SV is equal 2174 // to C. 2175 MachineBasicBlock *CurBlock = CR.CaseBB; 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 MachineBasicBlock *FallThrough; 2178 if (I != E-1) { 2179 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2180 CurMF->insert(BBI, FallThrough); 2181 2182 // Put SV in a virtual register to make it available from the new blocks. 2183 ExportFromCurrentBlock(SV); 2184 } else { 2185 // If the last case doesn't match, go to the default block. 2186 FallThrough = Default; 2187 } 2188 2189 const Value *RHS, *LHS, *MHS; 2190 ISD::CondCode CC; 2191 if (I->High == I->Low) { 2192 // This is just small small case range :) containing exactly 1 case 2193 CC = ISD::SETEQ; 2194 LHS = SV; RHS = I->High; MHS = nullptr; 2195 } else { 2196 CC = ISD::SETLE; 2197 LHS = I->Low; MHS = SV; RHS = I->High; 2198 } 2199 2200 // The false weight should be sum of all un-handled cases. 2201 UnhandledWeights -= I->ExtraWeight; 2202 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2203 /* me */ CurBlock, 2204 /* trueweight */ I->ExtraWeight, 2205 /* falseweight */ UnhandledWeights); 2206 2207 // If emitting the first comparison, just call visitSwitchCase to emit the 2208 // code into the current block. Otherwise, push the CaseBlock onto the 2209 // vector to be later processed by SDISel, and insert the node's MBB 2210 // before the next MBB. 2211 if (CurBlock == SwitchBB) 2212 visitSwitchCase(CB, SwitchBB); 2213 else 2214 SwitchCases.push_back(CB); 2215 2216 CurBlock = FallThrough; 2217 } 2218 2219 return true; 2220 } 2221 2222 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2223 return TLI.supportJumpTables() && 2224 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2225 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2226 } 2227 2228 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2229 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2230 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2231 return (LastExt - FirstExt + 1ULL); 2232 } 2233 2234 /// handleJTSwitchCase - Emit jumptable for current switch case range 2235 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2236 CaseRecVector &WorkList, 2237 const Value *SV, 2238 MachineBasicBlock *Default, 2239 MachineBasicBlock *SwitchBB) { 2240 Case& FrontCase = *CR.Range.first; 2241 Case& BackCase = *(CR.Range.second-1); 2242 2243 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2244 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2245 2246 APInt TSize(First.getBitWidth(), 0); 2247 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2248 TSize += I->size(); 2249 2250 const TargetLowering *TLI = TM.getTargetLowering(); 2251 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2252 return false; 2253 2254 APInt Range = ComputeRange(First, Last); 2255 // The density is TSize / Range. Require at least 40%. 2256 // It should not be possible for IntTSize to saturate for sane code, but make 2257 // sure we handle Range saturation correctly. 2258 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2259 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2260 if (IntTSize * 10 < IntRange * 4) 2261 return false; 2262 2263 DEBUG(dbgs() << "Lowering jump table\n" 2264 << "First entry: " << First << ". Last entry: " << Last << '\n' 2265 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2266 2267 // Get the MachineFunction which holds the current MBB. This is used when 2268 // inserting any additional MBBs necessary to represent the switch. 2269 MachineFunction *CurMF = FuncInfo.MF; 2270 2271 // Figure out which block is immediately after the current one. 2272 MachineFunction::iterator BBI = CR.CaseBB; 2273 ++BBI; 2274 2275 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2276 2277 // Create a new basic block to hold the code for loading the address 2278 // of the jump table, and jumping to it. Update successor information; 2279 // we will either branch to the default case for the switch, or the jump 2280 // table. 2281 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2282 CurMF->insert(BBI, JumpTableBB); 2283 2284 addSuccessorWithWeight(CR.CaseBB, Default); 2285 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2286 2287 // Build a vector of destination BBs, corresponding to each target 2288 // of the jump table. If the value of the jump table slot corresponds to 2289 // a case statement, push the case's BB onto the vector, otherwise, push 2290 // the default BB. 2291 std::vector<MachineBasicBlock*> DestBBs; 2292 APInt TEI = First; 2293 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2294 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2295 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2296 2297 if (Low.sle(TEI) && TEI.sle(High)) { 2298 DestBBs.push_back(I->BB); 2299 if (TEI==High) 2300 ++I; 2301 } else { 2302 DestBBs.push_back(Default); 2303 } 2304 } 2305 2306 // Calculate weight for each unique destination in CR. 2307 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2308 if (FuncInfo.BPI) 2309 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2310 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2311 DestWeights.find(I->BB); 2312 if (Itr != DestWeights.end()) 2313 Itr->second += I->ExtraWeight; 2314 else 2315 DestWeights[I->BB] = I->ExtraWeight; 2316 } 2317 2318 // Update successor info. Add one edge to each unique successor. 2319 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2320 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2321 E = DestBBs.end(); I != E; ++I) { 2322 if (!SuccsHandled[(*I)->getNumber()]) { 2323 SuccsHandled[(*I)->getNumber()] = true; 2324 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2325 DestWeights.find(*I); 2326 addSuccessorWithWeight(JumpTableBB, *I, 2327 Itr != DestWeights.end() ? Itr->second : 0); 2328 } 2329 } 2330 2331 // Create a jump table index for this jump table. 2332 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2333 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2334 ->createJumpTableIndex(DestBBs); 2335 2336 // Set the jump table information so that we can codegen it as a second 2337 // MachineBasicBlock 2338 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2339 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2340 if (CR.CaseBB == SwitchBB) 2341 visitJumpTableHeader(JT, JTH, SwitchBB); 2342 2343 JTCases.push_back(JumpTableBlock(JTH, JT)); 2344 return true; 2345 } 2346 2347 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2348 /// 2 subtrees. 2349 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock* SwitchBB) { 2354 // Get the MachineFunction which holds the current MBB. This is used when 2355 // inserting any additional MBBs necessary to represent the switch. 2356 MachineFunction *CurMF = FuncInfo.MF; 2357 2358 // Figure out which block is immediately after the current one. 2359 MachineFunction::iterator BBI = CR.CaseBB; 2360 ++BBI; 2361 2362 Case& FrontCase = *CR.Range.first; 2363 Case& BackCase = *(CR.Range.second-1); 2364 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2365 2366 // Size is the number of Cases represented by this range. 2367 unsigned Size = CR.Range.second - CR.Range.first; 2368 2369 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2370 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2371 double FMetric = 0; 2372 CaseItr Pivot = CR.Range.first + Size/2; 2373 2374 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2375 // (heuristically) allow us to emit JumpTable's later. 2376 APInt TSize(First.getBitWidth(), 0); 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2378 I!=E; ++I) 2379 TSize += I->size(); 2380 2381 APInt LSize = FrontCase.size(); 2382 APInt RSize = TSize-LSize; 2383 DEBUG(dbgs() << "Selecting best pivot: \n" 2384 << "First: " << First << ", Last: " << Last <<'\n' 2385 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2386 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2387 J!=E; ++I, ++J) { 2388 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2389 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2390 APInt Range = ComputeRange(LEnd, RBegin); 2391 assert((Range - 2ULL).isNonNegative() && 2392 "Invalid case distance"); 2393 // Use volatile double here to avoid excess precision issues on some hosts, 2394 // e.g. that use 80-bit X87 registers. 2395 volatile double LDensity = 2396 (double)LSize.roundToDouble() / 2397 (LEnd - First + 1ULL).roundToDouble(); 2398 volatile double RDensity = 2399 (double)RSize.roundToDouble() / 2400 (Last - RBegin + 1ULL).roundToDouble(); 2401 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2402 // Should always split in some non-trivial place 2403 DEBUG(dbgs() <<"=>Step\n" 2404 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2405 << "LDensity: " << LDensity 2406 << ", RDensity: " << RDensity << '\n' 2407 << "Metric: " << Metric << '\n'); 2408 if (FMetric < Metric) { 2409 Pivot = J; 2410 FMetric = Metric; 2411 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2412 } 2413 2414 LSize += J->size(); 2415 RSize -= J->size(); 2416 } 2417 2418 const TargetLowering *TLI = TM.getTargetLowering(); 2419 if (areJTsAllowed(*TLI)) { 2420 // If our case is dense we *really* should handle it earlier! 2421 assert((FMetric > 0) && "Should handle dense range earlier!"); 2422 } else { 2423 Pivot = CR.Range.first + Size/2; 2424 } 2425 2426 CaseRange LHSR(CR.Range.first, Pivot); 2427 CaseRange RHSR(Pivot, CR.Range.second); 2428 const Constant *C = Pivot->Low; 2429 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2430 2431 // We know that we branch to the LHS if the Value being switched on is 2432 // less than the Pivot value, C. We use this to optimize our binary 2433 // tree a bit, by recognizing that if SV is greater than or equal to the 2434 // LHS's Case Value, and that Case Value is exactly one less than the 2435 // Pivot's Value, then we can branch directly to the LHS's Target, 2436 // rather than creating a leaf node for it. 2437 if ((LHSR.second - LHSR.first) == 1 && 2438 LHSR.first->High == CR.GE && 2439 cast<ConstantInt>(C)->getValue() == 2440 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2441 TrueBB = LHSR.first->BB; 2442 } else { 2443 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2444 CurMF->insert(BBI, TrueBB); 2445 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2446 2447 // Put SV in a virtual register to make it available from the new blocks. 2448 ExportFromCurrentBlock(SV); 2449 } 2450 2451 // Similar to the optimization above, if the Value being switched on is 2452 // known to be less than the Constant CR.LT, and the current Case Value 2453 // is CR.LT - 1, then we can branch directly to the target block for 2454 // the current Case Value, rather than emitting a RHS leaf node for it. 2455 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2456 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2457 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2458 FalseBB = RHSR.first->BB; 2459 } else { 2460 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2461 CurMF->insert(BBI, FalseBB); 2462 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 // Create a CaseBlock record representing a conditional branch to 2469 // the LHS node if the value being switched on SV is less than C. 2470 // Otherwise, branch to LHS. 2471 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2472 2473 if (CR.CaseBB == SwitchBB) 2474 visitSwitchCase(CB, SwitchBB); 2475 else 2476 SwitchCases.push_back(CB); 2477 2478 return true; 2479 } 2480 2481 /// handleBitTestsSwitchCase - if current case range has few destination and 2482 /// range span less, than machine word bitwidth, encode case range into series 2483 /// of masks and emit bit tests with these masks. 2484 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2485 CaseRecVector& WorkList, 2486 const Value* SV, 2487 MachineBasicBlock* Default, 2488 MachineBasicBlock* SwitchBB) { 2489 const TargetLowering *TLI = TM.getTargetLowering(); 2490 EVT PTy = TLI->getPointerTy(); 2491 unsigned IntPtrBits = PTy.getSizeInBits(); 2492 2493 Case& FrontCase = *CR.Range.first; 2494 Case& BackCase = *(CR.Range.second-1); 2495 2496 // Get the MachineFunction which holds the current MBB. This is used when 2497 // inserting any additional MBBs necessary to represent the switch. 2498 MachineFunction *CurMF = FuncInfo.MF; 2499 2500 // If target does not have legal shift left, do not emit bit tests at all. 2501 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2502 return false; 2503 2504 size_t numCmps = 0; 2505 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2506 I!=E; ++I) { 2507 // Single case counts one, case range - two. 2508 numCmps += (I->Low == I->High ? 1 : 2); 2509 } 2510 2511 // Count unique destinations 2512 SmallSet<MachineBasicBlock*, 4> Dests; 2513 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2514 Dests.insert(I->BB); 2515 if (Dests.size() > 3) 2516 // Don't bother the code below, if there are too much unique destinations 2517 return false; 2518 } 2519 DEBUG(dbgs() << "Total number of unique destinations: " 2520 << Dests.size() << '\n' 2521 << "Total number of comparisons: " << numCmps << '\n'); 2522 2523 // Compute span of values. 2524 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2525 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2526 APInt cmpRange = maxValue - minValue; 2527 2528 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2529 << "Low bound: " << minValue << '\n' 2530 << "High bound: " << maxValue << '\n'); 2531 2532 if (cmpRange.uge(IntPtrBits) || 2533 (!(Dests.size() == 1 && numCmps >= 3) && 2534 !(Dests.size() == 2 && numCmps >= 5) && 2535 !(Dests.size() >= 3 && numCmps >= 6))) 2536 return false; 2537 2538 DEBUG(dbgs() << "Emitting bit tests\n"); 2539 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2540 2541 // Optimize the case where all the case values fit in a 2542 // word without having to subtract minValue. In this case, 2543 // we can optimize away the subtraction. 2544 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2545 cmpRange = maxValue; 2546 } else { 2547 lowBound = minValue; 2548 } 2549 2550 CaseBitsVector CasesBits; 2551 unsigned i, count = 0; 2552 2553 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2554 MachineBasicBlock* Dest = I->BB; 2555 for (i = 0; i < count; ++i) 2556 if (Dest == CasesBits[i].BB) 2557 break; 2558 2559 if (i == count) { 2560 assert((count < 3) && "Too much destinations to test!"); 2561 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2562 count++; 2563 } 2564 2565 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2566 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2567 2568 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2569 uint64_t hi = (highValue - lowBound).getZExtValue(); 2570 CasesBits[i].ExtraWeight += I->ExtraWeight; 2571 2572 for (uint64_t j = lo; j <= hi; j++) { 2573 CasesBits[i].Mask |= 1ULL << j; 2574 CasesBits[i].Bits++; 2575 } 2576 2577 } 2578 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2579 2580 BitTestInfo BTC; 2581 2582 // Figure out which block is immediately after the current one. 2583 MachineFunction::iterator BBI = CR.CaseBB; 2584 ++BBI; 2585 2586 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2587 2588 DEBUG(dbgs() << "Cases:\n"); 2589 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2590 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2591 << ", Bits: " << CasesBits[i].Bits 2592 << ", BB: " << CasesBits[i].BB << '\n'); 2593 2594 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2595 CurMF->insert(BBI, CaseBB); 2596 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2597 CaseBB, 2598 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2599 2600 // Put SV in a virtual register to make it available from the new blocks. 2601 ExportFromCurrentBlock(SV); 2602 } 2603 2604 BitTestBlock BTB(lowBound, cmpRange, SV, 2605 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2606 CR.CaseBB, Default, BTC); 2607 2608 if (CR.CaseBB == SwitchBB) 2609 visitBitTestHeader(BTB, SwitchBB); 2610 2611 BitTestCases.push_back(BTB); 2612 2613 return true; 2614 } 2615 2616 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2617 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2618 const SwitchInst& SI) { 2619 size_t numCmps = 0; 2620 2621 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2622 // Start with "simple" cases 2623 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2624 i != e; ++i) { 2625 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2626 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2627 2628 uint32_t ExtraWeight = 2629 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2630 2631 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2632 SMBB, ExtraWeight)); 2633 } 2634 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2635 2636 // Merge case into clusters 2637 if (Cases.size() >= 2) 2638 // Must recompute end() each iteration because it may be 2639 // invalidated by erase if we hold on to it 2640 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2641 J != Cases.end(); ) { 2642 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2643 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2644 MachineBasicBlock* nextBB = J->BB; 2645 MachineBasicBlock* currentBB = I->BB; 2646 2647 // If the two neighboring cases go to the same destination, merge them 2648 // into a single case. 2649 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2650 I->High = J->High; 2651 I->ExtraWeight += J->ExtraWeight; 2652 J = Cases.erase(J); 2653 } else { 2654 I = J++; 2655 } 2656 } 2657 2658 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2659 if (I->Low != I->High) 2660 // A range counts double, since it requires two compares. 2661 ++numCmps; 2662 } 2663 2664 return numCmps; 2665 } 2666 2667 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2668 MachineBasicBlock *Last) { 2669 // Update JTCases. 2670 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2671 if (JTCases[i].first.HeaderBB == First) 2672 JTCases[i].first.HeaderBB = Last; 2673 2674 // Update BitTestCases. 2675 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2676 if (BitTestCases[i].Parent == First) 2677 BitTestCases[i].Parent = Last; 2678 } 2679 2680 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2681 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2682 2683 // Figure out which block is immediately after the current one. 2684 MachineBasicBlock *NextBlock = nullptr; 2685 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2686 2687 // If there is only the default destination, branch to it if it is not the 2688 // next basic block. Otherwise, just fall through. 2689 if (!SI.getNumCases()) { 2690 // Update machine-CFG edges. 2691 2692 // If this is not a fall-through branch, emit the branch. 2693 SwitchMBB->addSuccessor(Default); 2694 if (Default != NextBlock) 2695 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2696 MVT::Other, getControlRoot(), 2697 DAG.getBasicBlock(Default))); 2698 2699 return; 2700 } 2701 2702 // If there are any non-default case statements, create a vector of Cases 2703 // representing each one, and sort the vector so that we can efficiently 2704 // create a binary search tree from them. 2705 CaseVector Cases; 2706 size_t numCmps = Clusterify(Cases, SI); 2707 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2708 << ". Total compares: " << numCmps << '\n'); 2709 (void)numCmps; 2710 2711 // Get the Value to be switched on and default basic blocks, which will be 2712 // inserted into CaseBlock records, representing basic blocks in the binary 2713 // search tree. 2714 const Value *SV = SI.getCondition(); 2715 2716 // Push the initial CaseRec onto the worklist 2717 CaseRecVector WorkList; 2718 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2719 CaseRange(Cases.begin(),Cases.end()))); 2720 2721 while (!WorkList.empty()) { 2722 // Grab a record representing a case range to process off the worklist 2723 CaseRec CR = WorkList.back(); 2724 WorkList.pop_back(); 2725 2726 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2727 continue; 2728 2729 // If the range has few cases (two or less) emit a series of specific 2730 // tests. 2731 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2732 continue; 2733 2734 // If the switch has more than N blocks, and is at least 40% dense, and the 2735 // target supports indirect branches, then emit a jump table rather than 2736 // lowering the switch to a binary tree of conditional branches. 2737 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2738 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2742 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2743 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2744 } 2745 } 2746 2747 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2748 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2749 2750 // Update machine-CFG edges with unique successors. 2751 SmallSet<BasicBlock*, 32> Done; 2752 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2753 BasicBlock *BB = I.getSuccessor(i); 2754 bool Inserted = Done.insert(BB); 2755 if (!Inserted) 2756 continue; 2757 2758 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2759 addSuccessorWithWeight(IndirectBrMBB, Succ); 2760 } 2761 2762 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2763 MVT::Other, getControlRoot(), 2764 getValue(I.getAddress()))); 2765 } 2766 2767 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2768 if (DAG.getTarget().Options.TrapUnreachable) 2769 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2770 } 2771 2772 void SelectionDAGBuilder::visitFSub(const User &I) { 2773 // -0.0 - X --> fneg 2774 Type *Ty = I.getType(); 2775 if (isa<Constant>(I.getOperand(0)) && 2776 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2777 SDValue Op2 = getValue(I.getOperand(1)); 2778 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2779 Op2.getValueType(), Op2)); 2780 return; 2781 } 2782 2783 visitBinary(I, ISD::FSUB); 2784 } 2785 2786 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2787 SDValue Op1 = getValue(I.getOperand(0)); 2788 SDValue Op2 = getValue(I.getOperand(1)); 2789 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2790 Op1.getValueType(), Op1, Op2)); 2791 } 2792 2793 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2794 SDValue Op1 = getValue(I.getOperand(0)); 2795 SDValue Op2 = getValue(I.getOperand(1)); 2796 2797 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2798 2799 // Coerce the shift amount to the right type if we can. 2800 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2801 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2802 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2803 SDLoc DL = getCurSDLoc(); 2804 2805 // If the operand is smaller than the shift count type, promote it. 2806 if (ShiftSize > Op2Size) 2807 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2808 2809 // If the operand is larger than the shift count type but the shift 2810 // count type has enough bits to represent any shift value, truncate 2811 // it now. This is a common case and it exposes the truncate to 2812 // optimization early. 2813 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2814 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2815 // Otherwise we'll need to temporarily settle for some other convenient 2816 // type. Type legalization will make adjustments once the shiftee is split. 2817 else 2818 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2819 } 2820 2821 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2822 Op1.getValueType(), Op1, Op2)); 2823 } 2824 2825 void SelectionDAGBuilder::visitSDiv(const User &I) { 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 2829 // Turn exact SDivs into multiplications. 2830 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2831 // exact bit. 2832 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2833 !isa<ConstantSDNode>(Op1) && 2834 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2835 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2836 getCurSDLoc(), DAG)); 2837 else 2838 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2839 Op1, Op2)); 2840 } 2841 2842 void SelectionDAGBuilder::visitICmp(const User &I) { 2843 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2844 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2845 predicate = IC->getPredicate(); 2846 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2847 predicate = ICmpInst::Predicate(IC->getPredicate()); 2848 SDValue Op1 = getValue(I.getOperand(0)); 2849 SDValue Op2 = getValue(I.getOperand(1)); 2850 ISD::CondCode Opcode = getICmpCondCode(predicate); 2851 2852 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2853 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2854 } 2855 2856 void SelectionDAGBuilder::visitFCmp(const User &I) { 2857 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2858 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2859 predicate = FC->getPredicate(); 2860 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2861 predicate = FCmpInst::Predicate(FC->getPredicate()); 2862 SDValue Op1 = getValue(I.getOperand(0)); 2863 SDValue Op2 = getValue(I.getOperand(1)); 2864 ISD::CondCode Condition = getFCmpCondCode(predicate); 2865 if (TM.Options.NoNaNsFPMath) 2866 Condition = getFCmpCodeWithoutNaN(Condition); 2867 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2868 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2869 } 2870 2871 void SelectionDAGBuilder::visitSelect(const User &I) { 2872 SmallVector<EVT, 4> ValueVTs; 2873 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2874 unsigned NumValues = ValueVTs.size(); 2875 if (NumValues == 0) return; 2876 2877 SmallVector<SDValue, 4> Values(NumValues); 2878 SDValue Cond = getValue(I.getOperand(0)); 2879 SDValue TrueVal = getValue(I.getOperand(1)); 2880 SDValue FalseVal = getValue(I.getOperand(2)); 2881 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2882 ISD::VSELECT : ISD::SELECT; 2883 2884 for (unsigned i = 0; i != NumValues; ++i) 2885 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2886 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2887 Cond, 2888 SDValue(TrueVal.getNode(), 2889 TrueVal.getResNo() + i), 2890 SDValue(FalseVal.getNode(), 2891 FalseVal.getResNo() + i)); 2892 2893 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2894 DAG.getVTList(ValueVTs), Values)); 2895 } 2896 2897 void SelectionDAGBuilder::visitTrunc(const User &I) { 2898 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2899 SDValue N = getValue(I.getOperand(0)); 2900 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2901 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2902 } 2903 2904 void SelectionDAGBuilder::visitZExt(const User &I) { 2905 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2906 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2907 SDValue N = getValue(I.getOperand(0)); 2908 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2909 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSExt(const User &I) { 2913 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2914 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2915 SDValue N = getValue(I.getOperand(0)); 2916 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2917 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2918 } 2919 2920 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2921 // FPTrunc is never a no-op cast, no need to check 2922 SDValue N = getValue(I.getOperand(0)); 2923 const TargetLowering *TLI = TM.getTargetLowering(); 2924 EVT DestVT = TLI->getValueType(I.getType()); 2925 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2926 DestVT, N, 2927 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2928 } 2929 2930 void SelectionDAGBuilder::visitFPExt(const User &I) { 2931 // FPExt is never a no-op cast, no need to check 2932 SDValue N = getValue(I.getOperand(0)); 2933 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2934 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2935 } 2936 2937 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2938 // FPToUI is never a no-op cast, no need to check 2939 SDValue N = getValue(I.getOperand(0)); 2940 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2941 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2942 } 2943 2944 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2945 // FPToSI is never a no-op cast, no need to check 2946 SDValue N = getValue(I.getOperand(0)); 2947 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2948 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2949 } 2950 2951 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2952 // UIToFP is never a no-op cast, no need to check 2953 SDValue N = getValue(I.getOperand(0)); 2954 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2955 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2956 } 2957 2958 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2959 // SIToFP is never a no-op cast, no need to check 2960 SDValue N = getValue(I.getOperand(0)); 2961 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2962 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2963 } 2964 2965 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2966 // What to do depends on the size of the integer and the size of the pointer. 2967 // We can either truncate, zero extend, or no-op, accordingly. 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2970 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2971 } 2972 2973 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2974 // What to do depends on the size of the integer and the size of the pointer. 2975 // We can either truncate, zero extend, or no-op, accordingly. 2976 SDValue N = getValue(I.getOperand(0)); 2977 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2978 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2979 } 2980 2981 void SelectionDAGBuilder::visitBitCast(const User &I) { 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2984 2985 // BitCast assures us that source and destination are the same size so this is 2986 // either a BITCAST or a no-op. 2987 if (DestVT != N.getValueType()) 2988 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2989 DestVT, N)); // convert types. 2990 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2991 // might fold any kind of constant expression to an integer constant and that 2992 // is not what we are looking for. Only regcognize a bitcast of a genuine 2993 // constant integer as an opaque constant. 2994 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2995 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2996 /*isOpaque*/true)); 2997 else 2998 setValue(&I, N); // noop cast. 2999 } 3000 3001 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3003 const Value *SV = I.getOperand(0); 3004 SDValue N = getValue(SV); 3005 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3006 3007 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3008 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3009 3010 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3011 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3012 3013 setValue(&I, N); 3014 } 3015 3016 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3018 SDValue InVec = getValue(I.getOperand(0)); 3019 SDValue InVal = getValue(I.getOperand(1)); 3020 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3021 getCurSDLoc(), TLI.getVectorIdxTy()); 3022 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3023 TM.getTargetLowering()->getValueType(I.getType()), 3024 InVec, InVal, InIdx)); 3025 } 3026 3027 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3029 SDValue InVec = getValue(I.getOperand(0)); 3030 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3031 getCurSDLoc(), TLI.getVectorIdxTy()); 3032 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3033 TM.getTargetLowering()->getValueType(I.getType()), 3034 InVec, InIdx)); 3035 } 3036 3037 // Utility for visitShuffleVector - Return true if every element in Mask, 3038 // beginning from position Pos and ending in Pos+Size, falls within the 3039 // specified sequential range [L, L+Pos). or is undef. 3040 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3041 unsigned Pos, unsigned Size, int Low) { 3042 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3043 if (Mask[i] >= 0 && Mask[i] != Low) 3044 return false; 3045 return true; 3046 } 3047 3048 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3049 SDValue Src1 = getValue(I.getOperand(0)); 3050 SDValue Src2 = getValue(I.getOperand(1)); 3051 3052 SmallVector<int, 8> Mask; 3053 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3054 unsigned MaskNumElts = Mask.size(); 3055 3056 const TargetLowering *TLI = TM.getTargetLowering(); 3057 EVT VT = TLI->getValueType(I.getType()); 3058 EVT SrcVT = Src1.getValueType(); 3059 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3060 3061 if (SrcNumElts == MaskNumElts) { 3062 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3063 &Mask[0])); 3064 return; 3065 } 3066 3067 // Normalize the shuffle vector since mask and vector length don't match. 3068 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3069 // Mask is longer than the source vectors and is a multiple of the source 3070 // vectors. We can use concatenate vector to make the mask and vectors 3071 // lengths match. 3072 if (SrcNumElts*2 == MaskNumElts) { 3073 // First check for Src1 in low and Src2 in high 3074 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3075 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3076 // The shuffle is concatenating two vectors together. 3077 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3078 VT, Src1, Src2)); 3079 return; 3080 } 3081 // Then check for Src2 in low and Src1 in high 3082 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3083 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3084 // The shuffle is concatenating two vectors together. 3085 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3086 VT, Src2, Src1)); 3087 return; 3088 } 3089 } 3090 3091 // Pad both vectors with undefs to make them the same length as the mask. 3092 unsigned NumConcat = MaskNumElts / SrcNumElts; 3093 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3094 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3095 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3096 3097 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3098 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3099 MOps1[0] = Src1; 3100 MOps2[0] = Src2; 3101 3102 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3103 getCurSDLoc(), VT, MOps1); 3104 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3105 getCurSDLoc(), VT, MOps2); 3106 3107 // Readjust mask for new input vector length. 3108 SmallVector<int, 8> MappedOps; 3109 for (unsigned i = 0; i != MaskNumElts; ++i) { 3110 int Idx = Mask[i]; 3111 if (Idx >= (int)SrcNumElts) 3112 Idx -= SrcNumElts - MaskNumElts; 3113 MappedOps.push_back(Idx); 3114 } 3115 3116 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3117 &MappedOps[0])); 3118 return; 3119 } 3120 3121 if (SrcNumElts > MaskNumElts) { 3122 // Analyze the access pattern of the vector to see if we can extract 3123 // two subvectors and do the shuffle. The analysis is done by calculating 3124 // the range of elements the mask access on both vectors. 3125 int MinRange[2] = { static_cast<int>(SrcNumElts), 3126 static_cast<int>(SrcNumElts)}; 3127 int MaxRange[2] = {-1, -1}; 3128 3129 for (unsigned i = 0; i != MaskNumElts; ++i) { 3130 int Idx = Mask[i]; 3131 unsigned Input = 0; 3132 if (Idx < 0) 3133 continue; 3134 3135 if (Idx >= (int)SrcNumElts) { 3136 Input = 1; 3137 Idx -= SrcNumElts; 3138 } 3139 if (Idx > MaxRange[Input]) 3140 MaxRange[Input] = Idx; 3141 if (Idx < MinRange[Input]) 3142 MinRange[Input] = Idx; 3143 } 3144 3145 // Check if the access is smaller than the vector size and can we find 3146 // a reasonable extract index. 3147 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3148 // Extract. 3149 int StartIdx[2]; // StartIdx to extract from 3150 for (unsigned Input = 0; Input < 2; ++Input) { 3151 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3152 RangeUse[Input] = 0; // Unused 3153 StartIdx[Input] = 0; 3154 continue; 3155 } 3156 3157 // Find a good start index that is a multiple of the mask length. Then 3158 // see if the rest of the elements are in range. 3159 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3160 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3161 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3162 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3163 } 3164 3165 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3166 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3167 return; 3168 } 3169 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3170 // Extract appropriate subvector and generate a vector shuffle 3171 for (unsigned Input = 0; Input < 2; ++Input) { 3172 SDValue &Src = Input == 0 ? Src1 : Src2; 3173 if (RangeUse[Input] == 0) 3174 Src = DAG.getUNDEF(VT); 3175 else 3176 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3177 Src, DAG.getConstant(StartIdx[Input], 3178 TLI->getVectorIdxTy())); 3179 } 3180 3181 // Calculate new mask. 3182 SmallVector<int, 8> MappedOps; 3183 for (unsigned i = 0; i != MaskNumElts; ++i) { 3184 int Idx = Mask[i]; 3185 if (Idx >= 0) { 3186 if (Idx < (int)SrcNumElts) 3187 Idx -= StartIdx[0]; 3188 else 3189 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3190 } 3191 MappedOps.push_back(Idx); 3192 } 3193 3194 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3195 &MappedOps[0])); 3196 return; 3197 } 3198 } 3199 3200 // We can't use either concat vectors or extract subvectors so fall back to 3201 // replacing the shuffle with extract and build vector. 3202 // to insert and build vector. 3203 EVT EltVT = VT.getVectorElementType(); 3204 EVT IdxVT = TLI->getVectorIdxTy(); 3205 SmallVector<SDValue,8> Ops; 3206 for (unsigned i = 0; i != MaskNumElts; ++i) { 3207 int Idx = Mask[i]; 3208 SDValue Res; 3209 3210 if (Idx < 0) { 3211 Res = DAG.getUNDEF(EltVT); 3212 } else { 3213 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3214 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3215 3216 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3217 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3218 } 3219 3220 Ops.push_back(Res); 3221 } 3222 3223 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3224 } 3225 3226 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3227 const Value *Op0 = I.getOperand(0); 3228 const Value *Op1 = I.getOperand(1); 3229 Type *AggTy = I.getType(); 3230 Type *ValTy = Op1->getType(); 3231 bool IntoUndef = isa<UndefValue>(Op0); 3232 bool FromUndef = isa<UndefValue>(Op1); 3233 3234 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3235 3236 const TargetLowering *TLI = TM.getTargetLowering(); 3237 SmallVector<EVT, 4> AggValueVTs; 3238 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3239 SmallVector<EVT, 4> ValValueVTs; 3240 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3241 3242 unsigned NumAggValues = AggValueVTs.size(); 3243 unsigned NumValValues = ValValueVTs.size(); 3244 SmallVector<SDValue, 4> Values(NumAggValues); 3245 3246 SDValue Agg = getValue(Op0); 3247 unsigned i = 0; 3248 // Copy the beginning value(s) from the original aggregate. 3249 for (; i != LinearIndex; ++i) 3250 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3251 SDValue(Agg.getNode(), Agg.getResNo() + i); 3252 // Copy values from the inserted value(s). 3253 if (NumValValues) { 3254 SDValue Val = getValue(Op1); 3255 for (; i != LinearIndex + NumValValues; ++i) 3256 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3257 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3258 } 3259 // Copy remaining value(s) from the original aggregate. 3260 for (; i != NumAggValues; ++i) 3261 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3262 SDValue(Agg.getNode(), Agg.getResNo() + i); 3263 3264 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3265 DAG.getVTList(AggValueVTs), Values)); 3266 } 3267 3268 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3269 const Value *Op0 = I.getOperand(0); 3270 Type *AggTy = Op0->getType(); 3271 Type *ValTy = I.getType(); 3272 bool OutOfUndef = isa<UndefValue>(Op0); 3273 3274 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3275 3276 const TargetLowering *TLI = TM.getTargetLowering(); 3277 SmallVector<EVT, 4> ValValueVTs; 3278 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3279 3280 unsigned NumValValues = ValValueVTs.size(); 3281 3282 // Ignore a extractvalue that produces an empty object 3283 if (!NumValValues) { 3284 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3285 return; 3286 } 3287 3288 SmallVector<SDValue, 4> Values(NumValValues); 3289 3290 SDValue Agg = getValue(Op0); 3291 // Copy out the selected value(s). 3292 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3293 Values[i - LinearIndex] = 3294 OutOfUndef ? 3295 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3296 SDValue(Agg.getNode(), Agg.getResNo() + i); 3297 3298 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3299 DAG.getVTList(ValValueVTs), Values)); 3300 } 3301 3302 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3303 Value *Op0 = I.getOperand(0); 3304 // Note that the pointer operand may be a vector of pointers. Take the scalar 3305 // element which holds a pointer. 3306 Type *Ty = Op0->getType()->getScalarType(); 3307 unsigned AS = Ty->getPointerAddressSpace(); 3308 SDValue N = getValue(Op0); 3309 3310 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3311 OI != E; ++OI) { 3312 const Value *Idx = *OI; 3313 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3314 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3315 if (Field) { 3316 // N = N + Offset 3317 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3318 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3319 DAG.getConstant(Offset, N.getValueType())); 3320 } 3321 3322 Ty = StTy->getElementType(Field); 3323 } else { 3324 Ty = cast<SequentialType>(Ty)->getElementType(); 3325 3326 // If this is a constant subscript, handle it quickly. 3327 const TargetLowering *TLI = TM.getTargetLowering(); 3328 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3329 if (CI->isZero()) continue; 3330 uint64_t Offs = 3331 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3332 SDValue OffsVal; 3333 EVT PTy = TLI->getPointerTy(AS); 3334 unsigned PtrBits = PTy.getSizeInBits(); 3335 if (PtrBits < 64) 3336 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3337 DAG.getConstant(Offs, MVT::i64)); 3338 else 3339 OffsVal = DAG.getConstant(Offs, PTy); 3340 3341 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3342 OffsVal); 3343 continue; 3344 } 3345 3346 // N = N + Idx * ElementSize; 3347 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3348 DL->getTypeAllocSize(Ty)); 3349 SDValue IdxN = getValue(Idx); 3350 3351 // If the index is smaller or larger than intptr_t, truncate or extend 3352 // it. 3353 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3354 3355 // If this is a multiply by a power of two, turn it into a shl 3356 // immediately. This is a very common case. 3357 if (ElementSize != 1) { 3358 if (ElementSize.isPowerOf2()) { 3359 unsigned Amt = ElementSize.logBase2(); 3360 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3361 N.getValueType(), IdxN, 3362 DAG.getConstant(Amt, IdxN.getValueType())); 3363 } else { 3364 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3365 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3366 N.getValueType(), IdxN, Scale); 3367 } 3368 } 3369 3370 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3371 N.getValueType(), N, IdxN); 3372 } 3373 } 3374 3375 setValue(&I, N); 3376 } 3377 3378 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3379 // If this is a fixed sized alloca in the entry block of the function, 3380 // allocate it statically on the stack. 3381 if (FuncInfo.StaticAllocaMap.count(&I)) 3382 return; // getValue will auto-populate this. 3383 3384 Type *Ty = I.getAllocatedType(); 3385 const TargetLowering *TLI = TM.getTargetLowering(); 3386 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3387 unsigned Align = 3388 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3389 I.getAlignment()); 3390 3391 SDValue AllocSize = getValue(I.getArraySize()); 3392 3393 EVT IntPtr = TLI->getPointerTy(); 3394 if (AllocSize.getValueType() != IntPtr) 3395 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3396 3397 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3398 AllocSize, 3399 DAG.getConstant(TySize, IntPtr)); 3400 3401 // Handle alignment. If the requested alignment is less than or equal to 3402 // the stack alignment, ignore it. If the size is greater than or equal to 3403 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3404 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3405 if (Align <= StackAlign) 3406 Align = 0; 3407 3408 // Round the size of the allocation up to the stack alignment size 3409 // by add SA-1 to the size. 3410 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3411 AllocSize.getValueType(), AllocSize, 3412 DAG.getIntPtrConstant(StackAlign-1)); 3413 3414 // Mask out the low bits for alignment purposes. 3415 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3416 AllocSize.getValueType(), AllocSize, 3417 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3418 3419 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3420 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3421 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3422 setValue(&I, DSA); 3423 DAG.setRoot(DSA.getValue(1)); 3424 3425 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3426 } 3427 3428 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3429 if (I.isAtomic()) 3430 return visitAtomicLoad(I); 3431 3432 const Value *SV = I.getOperand(0); 3433 SDValue Ptr = getValue(SV); 3434 3435 Type *Ty = I.getType(); 3436 3437 bool isVolatile = I.isVolatile(); 3438 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3439 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3440 unsigned Alignment = I.getAlignment(); 3441 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3442 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3443 3444 SmallVector<EVT, 4> ValueVTs; 3445 SmallVector<uint64_t, 4> Offsets; 3446 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3447 unsigned NumValues = ValueVTs.size(); 3448 if (NumValues == 0) 3449 return; 3450 3451 SDValue Root; 3452 bool ConstantMemory = false; 3453 if (isVolatile || NumValues > MaxParallelChains) 3454 // Serialize volatile loads with other side effects. 3455 Root = getRoot(); 3456 else if (AA->pointsToConstantMemory( 3457 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3458 // Do not serialize (non-volatile) loads of constant memory with anything. 3459 Root = DAG.getEntryNode(); 3460 ConstantMemory = true; 3461 } else { 3462 // Do not serialize non-volatile loads against each other. 3463 Root = DAG.getRoot(); 3464 } 3465 3466 const TargetLowering *TLI = TM.getTargetLowering(); 3467 if (isVolatile) 3468 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3469 3470 SmallVector<SDValue, 4> Values(NumValues); 3471 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3472 NumValues)); 3473 EVT PtrVT = Ptr.getValueType(); 3474 unsigned ChainI = 0; 3475 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3476 // Serializing loads here may result in excessive register pressure, and 3477 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3478 // could recover a bit by hoisting nodes upward in the chain by recognizing 3479 // they are side-effect free or do not alias. The optimizer should really 3480 // avoid this case by converting large object/array copies to llvm.memcpy 3481 // (MaxParallelChains should always remain as failsafe). 3482 if (ChainI == MaxParallelChains) { 3483 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3484 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3485 ArrayRef<SDValue>(Chains.data(), ChainI)); 3486 Root = Chain; 3487 ChainI = 0; 3488 } 3489 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3490 PtrVT, Ptr, 3491 DAG.getConstant(Offsets[i], PtrVT)); 3492 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3493 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3494 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3495 Ranges); 3496 3497 Values[i] = L; 3498 Chains[ChainI] = L.getValue(1); 3499 } 3500 3501 if (!ConstantMemory) { 3502 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3503 ArrayRef<SDValue>(Chains.data(), ChainI)); 3504 if (isVolatile) 3505 DAG.setRoot(Chain); 3506 else 3507 PendingLoads.push_back(Chain); 3508 } 3509 3510 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3511 DAG.getVTList(ValueVTs), Values)); 3512 } 3513 3514 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3515 if (I.isAtomic()) 3516 return visitAtomicStore(I); 3517 3518 const Value *SrcV = I.getOperand(0); 3519 const Value *PtrV = I.getOperand(1); 3520 3521 SmallVector<EVT, 4> ValueVTs; 3522 SmallVector<uint64_t, 4> Offsets; 3523 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3524 unsigned NumValues = ValueVTs.size(); 3525 if (NumValues == 0) 3526 return; 3527 3528 // Get the lowered operands. Note that we do this after 3529 // checking if NumResults is zero, because with zero results 3530 // the operands won't have values in the map. 3531 SDValue Src = getValue(SrcV); 3532 SDValue Ptr = getValue(PtrV); 3533 3534 SDValue Root = getRoot(); 3535 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3536 NumValues)); 3537 EVT PtrVT = Ptr.getValueType(); 3538 bool isVolatile = I.isVolatile(); 3539 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3540 unsigned Alignment = I.getAlignment(); 3541 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3542 3543 unsigned ChainI = 0; 3544 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3545 // See visitLoad comments. 3546 if (ChainI == MaxParallelChains) { 3547 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3548 ArrayRef<SDValue>(Chains.data(), ChainI)); 3549 Root = Chain; 3550 ChainI = 0; 3551 } 3552 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3553 DAG.getConstant(Offsets[i], PtrVT)); 3554 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3555 SDValue(Src.getNode(), Src.getResNo() + i), 3556 Add, MachinePointerInfo(PtrV, Offsets[i]), 3557 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3558 Chains[ChainI] = St; 3559 } 3560 3561 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3562 ArrayRef<SDValue>(Chains.data(), ChainI)); 3563 DAG.setRoot(StoreNode); 3564 } 3565 3566 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3567 SynchronizationScope Scope, 3568 bool Before, SDLoc dl, 3569 SelectionDAG &DAG, 3570 const TargetLowering &TLI) { 3571 // Fence, if necessary 3572 if (Before) { 3573 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3574 Order = Release; 3575 else if (Order == Acquire || Order == Monotonic) 3576 return Chain; 3577 } else { 3578 if (Order == AcquireRelease) 3579 Order = Acquire; 3580 else if (Order == Release || Order == Monotonic) 3581 return Chain; 3582 } 3583 SDValue Ops[3]; 3584 Ops[0] = Chain; 3585 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3586 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3587 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3588 } 3589 3590 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3591 SDLoc dl = getCurSDLoc(); 3592 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3593 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3594 SynchronizationScope Scope = I.getSynchScope(); 3595 3596 SDValue InChain = getRoot(); 3597 3598 const TargetLowering *TLI = TM.getTargetLowering(); 3599 if (TLI->getInsertFencesForAtomic()) 3600 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3601 DAG, *TLI); 3602 3603 SDValue L = 3604 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3605 getValue(I.getCompareOperand()).getSimpleValueType(), 3606 InChain, 3607 getValue(I.getPointerOperand()), 3608 getValue(I.getCompareOperand()), 3609 getValue(I.getNewValOperand()), 3610 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3611 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3612 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3613 Scope); 3614 3615 SDValue OutChain = L.getValue(1); 3616 3617 if (TLI->getInsertFencesForAtomic()) 3618 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3619 DAG, *TLI); 3620 3621 setValue(&I, L); 3622 DAG.setRoot(OutChain); 3623 } 3624 3625 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3626 SDLoc dl = getCurSDLoc(); 3627 ISD::NodeType NT; 3628 switch (I.getOperation()) { 3629 default: llvm_unreachable("Unknown atomicrmw operation"); 3630 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3631 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3632 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3633 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3634 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3635 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3636 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3637 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3638 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3639 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3640 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3641 } 3642 AtomicOrdering Order = I.getOrdering(); 3643 SynchronizationScope Scope = I.getSynchScope(); 3644 3645 SDValue InChain = getRoot(); 3646 3647 const TargetLowering *TLI = TM.getTargetLowering(); 3648 if (TLI->getInsertFencesForAtomic()) 3649 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3650 DAG, *TLI); 3651 3652 SDValue L = 3653 DAG.getAtomic(NT, dl, 3654 getValue(I.getValOperand()).getSimpleValueType(), 3655 InChain, 3656 getValue(I.getPointerOperand()), 3657 getValue(I.getValOperand()), 3658 I.getPointerOperand(), 0 /* Alignment */, 3659 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3660 Scope); 3661 3662 SDValue OutChain = L.getValue(1); 3663 3664 if (TLI->getInsertFencesForAtomic()) 3665 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3666 DAG, *TLI); 3667 3668 setValue(&I, L); 3669 DAG.setRoot(OutChain); 3670 } 3671 3672 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3673 SDLoc dl = getCurSDLoc(); 3674 const TargetLowering *TLI = TM.getTargetLowering(); 3675 SDValue Ops[3]; 3676 Ops[0] = getRoot(); 3677 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3678 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3679 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3680 } 3681 3682 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3683 SDLoc dl = getCurSDLoc(); 3684 AtomicOrdering Order = I.getOrdering(); 3685 SynchronizationScope Scope = I.getSynchScope(); 3686 3687 SDValue InChain = getRoot(); 3688 3689 const TargetLowering *TLI = TM.getTargetLowering(); 3690 EVT VT = TLI->getValueType(I.getType()); 3691 3692 if (I.getAlignment() < VT.getSizeInBits() / 8) 3693 report_fatal_error("Cannot generate unaligned atomic load"); 3694 3695 MachineMemOperand *MMO = 3696 DAG.getMachineFunction(). 3697 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3698 MachineMemOperand::MOVolatile | 3699 MachineMemOperand::MOLoad, 3700 VT.getStoreSize(), 3701 I.getAlignment() ? I.getAlignment() : 3702 DAG.getEVTAlignment(VT)); 3703 3704 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3705 SDValue L = 3706 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3707 getValue(I.getPointerOperand()), MMO, 3708 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3709 Scope); 3710 3711 SDValue OutChain = L.getValue(1); 3712 3713 if (TLI->getInsertFencesForAtomic()) 3714 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3715 DAG, *TLI); 3716 3717 setValue(&I, L); 3718 DAG.setRoot(OutChain); 3719 } 3720 3721 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3722 SDLoc dl = getCurSDLoc(); 3723 3724 AtomicOrdering Order = I.getOrdering(); 3725 SynchronizationScope Scope = I.getSynchScope(); 3726 3727 SDValue InChain = getRoot(); 3728 3729 const TargetLowering *TLI = TM.getTargetLowering(); 3730 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3731 3732 if (I.getAlignment() < VT.getSizeInBits() / 8) 3733 report_fatal_error("Cannot generate unaligned atomic store"); 3734 3735 if (TLI->getInsertFencesForAtomic()) 3736 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3737 DAG, *TLI); 3738 3739 SDValue OutChain = 3740 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3741 InChain, 3742 getValue(I.getPointerOperand()), 3743 getValue(I.getValueOperand()), 3744 I.getPointerOperand(), I.getAlignment(), 3745 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3746 Scope); 3747 3748 if (TLI->getInsertFencesForAtomic()) 3749 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3750 DAG, *TLI); 3751 3752 DAG.setRoot(OutChain); 3753 } 3754 3755 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3756 /// node. 3757 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3758 unsigned Intrinsic) { 3759 bool HasChain = !I.doesNotAccessMemory(); 3760 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3761 3762 // Build the operand list. 3763 SmallVector<SDValue, 8> Ops; 3764 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3765 if (OnlyLoad) { 3766 // We don't need to serialize loads against other loads. 3767 Ops.push_back(DAG.getRoot()); 3768 } else { 3769 Ops.push_back(getRoot()); 3770 } 3771 } 3772 3773 // Info is set by getTgtMemInstrinsic 3774 TargetLowering::IntrinsicInfo Info; 3775 const TargetLowering *TLI = TM.getTargetLowering(); 3776 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3777 3778 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3779 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3780 Info.opc == ISD::INTRINSIC_W_CHAIN) 3781 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3782 3783 // Add all operands of the call to the operand list. 3784 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3785 SDValue Op = getValue(I.getArgOperand(i)); 3786 Ops.push_back(Op); 3787 } 3788 3789 SmallVector<EVT, 4> ValueVTs; 3790 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3791 3792 if (HasChain) 3793 ValueVTs.push_back(MVT::Other); 3794 3795 SDVTList VTs = DAG.getVTList(ValueVTs); 3796 3797 // Create the node. 3798 SDValue Result; 3799 if (IsTgtIntrinsic) { 3800 // This is target intrinsic that touches memory 3801 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3802 VTs, &Ops[0], Ops.size(), 3803 Info.memVT, 3804 MachinePointerInfo(Info.ptrVal, Info.offset), 3805 Info.align, Info.vol, 3806 Info.readMem, Info.writeMem); 3807 } else if (!HasChain) { 3808 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3809 } else if (!I.getType()->isVoidTy()) { 3810 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3811 } else { 3812 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3813 } 3814 3815 if (HasChain) { 3816 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3817 if (OnlyLoad) 3818 PendingLoads.push_back(Chain); 3819 else 3820 DAG.setRoot(Chain); 3821 } 3822 3823 if (!I.getType()->isVoidTy()) { 3824 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3825 EVT VT = TLI->getValueType(PTy); 3826 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3827 } 3828 3829 setValue(&I, Result); 3830 } 3831 } 3832 3833 /// GetSignificand - Get the significand and build it into a floating-point 3834 /// number with exponent of 1: 3835 /// 3836 /// Op = (Op & 0x007fffff) | 0x3f800000; 3837 /// 3838 /// where Op is the hexadecimal representation of floating point value. 3839 static SDValue 3840 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3841 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3842 DAG.getConstant(0x007fffff, MVT::i32)); 3843 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3844 DAG.getConstant(0x3f800000, MVT::i32)); 3845 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3846 } 3847 3848 /// GetExponent - Get the exponent: 3849 /// 3850 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3851 /// 3852 /// where Op is the hexadecimal representation of floating point value. 3853 static SDValue 3854 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3855 SDLoc dl) { 3856 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3857 DAG.getConstant(0x7f800000, MVT::i32)); 3858 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3859 DAG.getConstant(23, TLI.getPointerTy())); 3860 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3861 DAG.getConstant(127, MVT::i32)); 3862 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3863 } 3864 3865 /// getF32Constant - Get 32-bit floating point constant. 3866 static SDValue 3867 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3868 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3869 MVT::f32); 3870 } 3871 3872 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3873 /// limited-precision mode. 3874 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3875 const TargetLowering &TLI) { 3876 if (Op.getValueType() == MVT::f32 && 3877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3878 3879 // Put the exponent in the right bit position for later addition to the 3880 // final result: 3881 // 3882 // #define LOG2OFe 1.4426950f 3883 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3884 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3885 getF32Constant(DAG, 0x3fb8aa3b)); 3886 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3887 3888 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3889 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3890 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3891 3892 // IntegerPartOfX <<= 23; 3893 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3894 DAG.getConstant(23, TLI.getPointerTy())); 3895 3896 SDValue TwoToFracPartOfX; 3897 if (LimitFloatPrecision <= 6) { 3898 // For floating-point precision of 6: 3899 // 3900 // TwoToFractionalPartOfX = 3901 // 0.997535578f + 3902 // (0.735607626f + 0.252464424f * x) * x; 3903 // 3904 // error 0.0144103317, which is 6 bits 3905 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3906 getF32Constant(DAG, 0x3e814304)); 3907 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3908 getF32Constant(DAG, 0x3f3c50c8)); 3909 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3910 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3911 getF32Constant(DAG, 0x3f7f5e7e)); 3912 } else if (LimitFloatPrecision <= 12) { 3913 // For floating-point precision of 12: 3914 // 3915 // TwoToFractionalPartOfX = 3916 // 0.999892986f + 3917 // (0.696457318f + 3918 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3919 // 3920 // 0.000107046256 error, which is 13 to 14 bits 3921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3922 getF32Constant(DAG, 0x3da235e3)); 3923 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3924 getF32Constant(DAG, 0x3e65b8f3)); 3925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3926 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3927 getF32Constant(DAG, 0x3f324b07)); 3928 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3929 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3930 getF32Constant(DAG, 0x3f7ff8fd)); 3931 } else { // LimitFloatPrecision <= 18 3932 // For floating-point precision of 18: 3933 // 3934 // TwoToFractionalPartOfX = 3935 // 0.999999982f + 3936 // (0.693148872f + 3937 // (0.240227044f + 3938 // (0.554906021e-1f + 3939 // (0.961591928e-2f + 3940 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3941 // 3942 // error 2.47208000*10^(-7), which is better than 18 bits 3943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3944 getF32Constant(DAG, 0x3924b03e)); 3945 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3946 getF32Constant(DAG, 0x3ab24b87)); 3947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3949 getF32Constant(DAG, 0x3c1d8c17)); 3950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3951 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3952 getF32Constant(DAG, 0x3d634a1d)); 3953 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3954 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3955 getF32Constant(DAG, 0x3e75fe14)); 3956 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3957 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3958 getF32Constant(DAG, 0x3f317234)); 3959 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3960 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3961 getF32Constant(DAG, 0x3f800000)); 3962 } 3963 3964 // Add the exponent into the result in integer domain. 3965 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3966 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3967 DAG.getNode(ISD::ADD, dl, MVT::i32, 3968 t13, IntegerPartOfX)); 3969 } 3970 3971 // No special expansion. 3972 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3973 } 3974 3975 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3976 /// limited-precision mode. 3977 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3978 const TargetLowering &TLI) { 3979 if (Op.getValueType() == MVT::f32 && 3980 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3981 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3982 3983 // Scale the exponent by log(2) [0.69314718f]. 3984 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3985 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3986 getF32Constant(DAG, 0x3f317218)); 3987 3988 // Get the significand and build it into a floating-point number with 3989 // exponent of 1. 3990 SDValue X = GetSignificand(DAG, Op1, dl); 3991 3992 SDValue LogOfMantissa; 3993 if (LimitFloatPrecision <= 6) { 3994 // For floating-point precision of 6: 3995 // 3996 // LogofMantissa = 3997 // -1.1609546f + 3998 // (1.4034025f - 0.23903021f * x) * x; 3999 // 4000 // error 0.0034276066, which is better than 8 bits 4001 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4002 getF32Constant(DAG, 0xbe74c456)); 4003 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4004 getF32Constant(DAG, 0x3fb3a2b1)); 4005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4006 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4007 getF32Constant(DAG, 0x3f949a29)); 4008 } else if (LimitFloatPrecision <= 12) { 4009 // For floating-point precision of 12: 4010 // 4011 // LogOfMantissa = 4012 // -1.7417939f + 4013 // (2.8212026f + 4014 // (-1.4699568f + 4015 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4016 // 4017 // error 0.000061011436, which is 14 bits 4018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4019 getF32Constant(DAG, 0xbd67b6d6)); 4020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4021 getF32Constant(DAG, 0x3ee4f4b8)); 4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4023 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4024 getF32Constant(DAG, 0x3fbc278b)); 4025 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4026 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4027 getF32Constant(DAG, 0x40348e95)); 4028 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4029 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4030 getF32Constant(DAG, 0x3fdef31a)); 4031 } else { // LimitFloatPrecision <= 18 4032 // For floating-point precision of 18: 4033 // 4034 // LogOfMantissa = 4035 // -2.1072184f + 4036 // (4.2372794f + 4037 // (-3.7029485f + 4038 // (2.2781945f + 4039 // (-0.87823314f + 4040 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4041 // 4042 // error 0.0000023660568, which is better than 18 bits 4043 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4044 getF32Constant(DAG, 0xbc91e5ac)); 4045 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4046 getF32Constant(DAG, 0x3e4350aa)); 4047 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4048 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4049 getF32Constant(DAG, 0x3f60d3e3)); 4050 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4051 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4052 getF32Constant(DAG, 0x4011cdf0)); 4053 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4054 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4055 getF32Constant(DAG, 0x406cfd1c)); 4056 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4057 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4058 getF32Constant(DAG, 0x408797cb)); 4059 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4060 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4061 getF32Constant(DAG, 0x4006dcab)); 4062 } 4063 4064 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4065 } 4066 4067 // No special expansion. 4068 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4069 } 4070 4071 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4072 /// limited-precision mode. 4073 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4074 const TargetLowering &TLI) { 4075 if (Op.getValueType() == MVT::f32 && 4076 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4077 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4078 4079 // Get the exponent. 4080 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4081 4082 // Get the significand and build it into a floating-point number with 4083 // exponent of 1. 4084 SDValue X = GetSignificand(DAG, Op1, dl); 4085 4086 // Different possible minimax approximations of significand in 4087 // floating-point for various degrees of accuracy over [1,2]. 4088 SDValue Log2ofMantissa; 4089 if (LimitFloatPrecision <= 6) { 4090 // For floating-point precision of 6: 4091 // 4092 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4093 // 4094 // error 0.0049451742, which is more than 7 bits 4095 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4096 getF32Constant(DAG, 0xbeb08fe0)); 4097 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4098 getF32Constant(DAG, 0x40019463)); 4099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4100 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4101 getF32Constant(DAG, 0x3fd6633d)); 4102 } else if (LimitFloatPrecision <= 12) { 4103 // For floating-point precision of 12: 4104 // 4105 // Log2ofMantissa = 4106 // -2.51285454f + 4107 // (4.07009056f + 4108 // (-2.12067489f + 4109 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4110 // 4111 // error 0.0000876136000, which is better than 13 bits 4112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4113 getF32Constant(DAG, 0xbda7262e)); 4114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4115 getF32Constant(DAG, 0x3f25280b)); 4116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4117 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x4007b923)); 4119 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4120 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4121 getF32Constant(DAG, 0x40823e2f)); 4122 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4123 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4124 getF32Constant(DAG, 0x4020d29c)); 4125 } else { // LimitFloatPrecision <= 18 4126 // For floating-point precision of 18: 4127 // 4128 // Log2ofMantissa = 4129 // -3.0400495f + 4130 // (6.1129976f + 4131 // (-5.3420409f + 4132 // (3.2865683f + 4133 // (-1.2669343f + 4134 // (0.27515199f - 4135 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4136 // 4137 // error 0.0000018516, which is better than 18 bits 4138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4139 getF32Constant(DAG, 0xbcd2769e)); 4140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4141 getF32Constant(DAG, 0x3e8ce0b9)); 4142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4143 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4144 getF32Constant(DAG, 0x3fa22ae7)); 4145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4147 getF32Constant(DAG, 0x40525723)); 4148 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4149 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4150 getF32Constant(DAG, 0x40aaf200)); 4151 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4152 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4153 getF32Constant(DAG, 0x40c39dad)); 4154 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4155 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4156 getF32Constant(DAG, 0x4042902c)); 4157 } 4158 4159 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4160 } 4161 4162 // No special expansion. 4163 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4164 } 4165 4166 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4167 /// limited-precision mode. 4168 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4169 const TargetLowering &TLI) { 4170 if (Op.getValueType() == MVT::f32 && 4171 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4172 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4173 4174 // Scale the exponent by log10(2) [0.30102999f]. 4175 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4176 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4177 getF32Constant(DAG, 0x3e9a209a)); 4178 4179 // Get the significand and build it into a floating-point number with 4180 // exponent of 1. 4181 SDValue X = GetSignificand(DAG, Op1, dl); 4182 4183 SDValue Log10ofMantissa; 4184 if (LimitFloatPrecision <= 6) { 4185 // For floating-point precision of 6: 4186 // 4187 // Log10ofMantissa = 4188 // -0.50419619f + 4189 // (0.60948995f - 0.10380950f * x) * x; 4190 // 4191 // error 0.0014886165, which is 6 bits 4192 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4193 getF32Constant(DAG, 0xbdd49a13)); 4194 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4195 getF32Constant(DAG, 0x3f1c0789)); 4196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4197 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4198 getF32Constant(DAG, 0x3f011300)); 4199 } else if (LimitFloatPrecision <= 12) { 4200 // For floating-point precision of 12: 4201 // 4202 // Log10ofMantissa = 4203 // -0.64831180f + 4204 // (0.91751397f + 4205 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4206 // 4207 // error 0.00019228036, which is better than 12 bits 4208 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4209 getF32Constant(DAG, 0x3d431f31)); 4210 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4211 getF32Constant(DAG, 0x3ea21fb2)); 4212 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4213 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4214 getF32Constant(DAG, 0x3f6ae232)); 4215 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4216 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4217 getF32Constant(DAG, 0x3f25f7c3)); 4218 } else { // LimitFloatPrecision <= 18 4219 // For floating-point precision of 18: 4220 // 4221 // Log10ofMantissa = 4222 // -0.84299375f + 4223 // (1.5327582f + 4224 // (-1.0688956f + 4225 // (0.49102474f + 4226 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4227 // 4228 // error 0.0000037995730, which is better than 18 bits 4229 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4230 getF32Constant(DAG, 0x3c5d51ce)); 4231 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4232 getF32Constant(DAG, 0x3e00685a)); 4233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4234 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4235 getF32Constant(DAG, 0x3efb6798)); 4236 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4237 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4238 getF32Constant(DAG, 0x3f88d192)); 4239 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4240 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4241 getF32Constant(DAG, 0x3fc4316c)); 4242 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4243 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4244 getF32Constant(DAG, 0x3f57ce70)); 4245 } 4246 4247 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4248 } 4249 4250 // No special expansion. 4251 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4252 } 4253 4254 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4255 /// limited-precision mode. 4256 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4257 const TargetLowering &TLI) { 4258 if (Op.getValueType() == MVT::f32 && 4259 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4260 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4261 4262 // FractionalPartOfX = x - (float)IntegerPartOfX; 4263 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4264 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4265 4266 // IntegerPartOfX <<= 23; 4267 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4268 DAG.getConstant(23, TLI.getPointerTy())); 4269 4270 SDValue TwoToFractionalPartOfX; 4271 if (LimitFloatPrecision <= 6) { 4272 // For floating-point precision of 6: 4273 // 4274 // TwoToFractionalPartOfX = 4275 // 0.997535578f + 4276 // (0.735607626f + 0.252464424f * x) * x; 4277 // 4278 // error 0.0144103317, which is 6 bits 4279 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4280 getF32Constant(DAG, 0x3e814304)); 4281 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4282 getF32Constant(DAG, 0x3f3c50c8)); 4283 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4284 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4285 getF32Constant(DAG, 0x3f7f5e7e)); 4286 } else if (LimitFloatPrecision <= 12) { 4287 // For floating-point precision of 12: 4288 // 4289 // TwoToFractionalPartOfX = 4290 // 0.999892986f + 4291 // (0.696457318f + 4292 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4293 // 4294 // error 0.000107046256, which is 13 to 14 bits 4295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4296 getF32Constant(DAG, 0x3da235e3)); 4297 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4298 getF32Constant(DAG, 0x3e65b8f3)); 4299 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4300 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4301 getF32Constant(DAG, 0x3f324b07)); 4302 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4303 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4304 getF32Constant(DAG, 0x3f7ff8fd)); 4305 } else { // LimitFloatPrecision <= 18 4306 // For floating-point precision of 18: 4307 // 4308 // TwoToFractionalPartOfX = 4309 // 0.999999982f + 4310 // (0.693148872f + 4311 // (0.240227044f + 4312 // (0.554906021e-1f + 4313 // (0.961591928e-2f + 4314 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4315 // error 2.47208000*10^(-7), which is better than 18 bits 4316 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4317 getF32Constant(DAG, 0x3924b03e)); 4318 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4319 getF32Constant(DAG, 0x3ab24b87)); 4320 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4321 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4322 getF32Constant(DAG, 0x3c1d8c17)); 4323 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4324 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4325 getF32Constant(DAG, 0x3d634a1d)); 4326 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4327 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4328 getF32Constant(DAG, 0x3e75fe14)); 4329 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4330 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4331 getF32Constant(DAG, 0x3f317234)); 4332 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4333 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4334 getF32Constant(DAG, 0x3f800000)); 4335 } 4336 4337 // Add the exponent into the result in integer domain. 4338 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4339 TwoToFractionalPartOfX); 4340 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4341 DAG.getNode(ISD::ADD, dl, MVT::i32, 4342 t13, IntegerPartOfX)); 4343 } 4344 4345 // No special expansion. 4346 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4347 } 4348 4349 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4350 /// limited-precision mode with x == 10.0f. 4351 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4352 SelectionDAG &DAG, const TargetLowering &TLI) { 4353 bool IsExp10 = false; 4354 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4355 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4356 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4357 APFloat Ten(10.0f); 4358 IsExp10 = LHSC->isExactlyValue(Ten); 4359 } 4360 } 4361 4362 if (IsExp10) { 4363 // Put the exponent in the right bit position for later addition to the 4364 // final result: 4365 // 4366 // #define LOG2OF10 3.3219281f 4367 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4368 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4369 getF32Constant(DAG, 0x40549a78)); 4370 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4371 4372 // FractionalPartOfX = x - (float)IntegerPartOfX; 4373 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4374 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4375 4376 // IntegerPartOfX <<= 23; 4377 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4378 DAG.getConstant(23, TLI.getPointerTy())); 4379 4380 SDValue TwoToFractionalPartOfX; 4381 if (LimitFloatPrecision <= 6) { 4382 // For floating-point precision of 6: 4383 // 4384 // twoToFractionalPartOfX = 4385 // 0.997535578f + 4386 // (0.735607626f + 0.252464424f * x) * x; 4387 // 4388 // error 0.0144103317, which is 6 bits 4389 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4390 getF32Constant(DAG, 0x3e814304)); 4391 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4392 getF32Constant(DAG, 0x3f3c50c8)); 4393 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4394 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4395 getF32Constant(DAG, 0x3f7f5e7e)); 4396 } else if (LimitFloatPrecision <= 12) { 4397 // For floating-point precision of 12: 4398 // 4399 // TwoToFractionalPartOfX = 4400 // 0.999892986f + 4401 // (0.696457318f + 4402 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4403 // 4404 // error 0.000107046256, which is 13 to 14 bits 4405 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4406 getF32Constant(DAG, 0x3da235e3)); 4407 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3e65b8f3)); 4409 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4410 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4411 getF32Constant(DAG, 0x3f324b07)); 4412 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4413 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4414 getF32Constant(DAG, 0x3f7ff8fd)); 4415 } else { // LimitFloatPrecision <= 18 4416 // For floating-point precision of 18: 4417 // 4418 // TwoToFractionalPartOfX = 4419 // 0.999999982f + 4420 // (0.693148872f + 4421 // (0.240227044f + 4422 // (0.554906021e-1f + 4423 // (0.961591928e-2f + 4424 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4425 // error 2.47208000*10^(-7), which is better than 18 bits 4426 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4427 getF32Constant(DAG, 0x3924b03e)); 4428 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4429 getF32Constant(DAG, 0x3ab24b87)); 4430 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4431 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4432 getF32Constant(DAG, 0x3c1d8c17)); 4433 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4434 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4435 getF32Constant(DAG, 0x3d634a1d)); 4436 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4437 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4438 getF32Constant(DAG, 0x3e75fe14)); 4439 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4440 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4441 getF32Constant(DAG, 0x3f317234)); 4442 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4443 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4444 getF32Constant(DAG, 0x3f800000)); 4445 } 4446 4447 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4448 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4449 DAG.getNode(ISD::ADD, dl, MVT::i32, 4450 t13, IntegerPartOfX)); 4451 } 4452 4453 // No special expansion. 4454 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4455 } 4456 4457 4458 /// ExpandPowI - Expand a llvm.powi intrinsic. 4459 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4460 SelectionDAG &DAG) { 4461 // If RHS is a constant, we can expand this out to a multiplication tree, 4462 // otherwise we end up lowering to a call to __powidf2 (for example). When 4463 // optimizing for size, we only want to do this if the expansion would produce 4464 // a small number of multiplies, otherwise we do the full expansion. 4465 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4466 // Get the exponent as a positive value. 4467 unsigned Val = RHSC->getSExtValue(); 4468 if ((int)Val < 0) Val = -Val; 4469 4470 // powi(x, 0) -> 1.0 4471 if (Val == 0) 4472 return DAG.getConstantFP(1.0, LHS.getValueType()); 4473 4474 const Function *F = DAG.getMachineFunction().getFunction(); 4475 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4476 Attribute::OptimizeForSize) || 4477 // If optimizing for size, don't insert too many multiplies. This 4478 // inserts up to 5 multiplies. 4479 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4480 // We use the simple binary decomposition method to generate the multiply 4481 // sequence. There are more optimal ways to do this (for example, 4482 // powi(x,15) generates one more multiply than it should), but this has 4483 // the benefit of being both really simple and much better than a libcall. 4484 SDValue Res; // Logically starts equal to 1.0 4485 SDValue CurSquare = LHS; 4486 while (Val) { 4487 if (Val & 1) { 4488 if (Res.getNode()) 4489 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4490 else 4491 Res = CurSquare; // 1.0*CurSquare. 4492 } 4493 4494 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4495 CurSquare, CurSquare); 4496 Val >>= 1; 4497 } 4498 4499 // If the original was negative, invert the result, producing 1/(x*x*x). 4500 if (RHSC->getSExtValue() < 0) 4501 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4502 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4503 return Res; 4504 } 4505 } 4506 4507 // Otherwise, expand to a libcall. 4508 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4509 } 4510 4511 // getTruncatedArgReg - Find underlying register used for an truncated 4512 // argument. 4513 static unsigned getTruncatedArgReg(const SDValue &N) { 4514 if (N.getOpcode() != ISD::TRUNCATE) 4515 return 0; 4516 4517 const SDValue &Ext = N.getOperand(0); 4518 if (Ext.getOpcode() == ISD::AssertZext || 4519 Ext.getOpcode() == ISD::AssertSext) { 4520 const SDValue &CFR = Ext.getOperand(0); 4521 if (CFR.getOpcode() == ISD::CopyFromReg) 4522 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4523 if (CFR.getOpcode() == ISD::TRUNCATE) 4524 return getTruncatedArgReg(CFR); 4525 } 4526 return 0; 4527 } 4528 4529 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4530 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4531 /// At the end of instruction selection, they will be inserted to the entry BB. 4532 bool 4533 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4534 int64_t Offset, bool IsIndirect, 4535 const SDValue &N) { 4536 const Argument *Arg = dyn_cast<Argument>(V); 4537 if (!Arg) 4538 return false; 4539 4540 MachineFunction &MF = DAG.getMachineFunction(); 4541 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4542 4543 // Ignore inlined function arguments here. 4544 DIVariable DV(Variable); 4545 if (DV.isInlinedFnArgument(MF.getFunction())) 4546 return false; 4547 4548 Optional<MachineOperand> Op; 4549 // Some arguments' frame index is recorded during argument lowering. 4550 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4551 Op = MachineOperand::CreateFI(FI); 4552 4553 if (!Op && N.getNode()) { 4554 unsigned Reg; 4555 if (N.getOpcode() == ISD::CopyFromReg) 4556 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4557 else 4558 Reg = getTruncatedArgReg(N); 4559 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4560 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4561 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4562 if (PR) 4563 Reg = PR; 4564 } 4565 if (Reg) 4566 Op = MachineOperand::CreateReg(Reg, false); 4567 } 4568 4569 if (!Op) { 4570 // Check if ValueMap has reg number. 4571 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4572 if (VMI != FuncInfo.ValueMap.end()) 4573 Op = MachineOperand::CreateReg(VMI->second, false); 4574 } 4575 4576 if (!Op && N.getNode()) 4577 // Check if frame index is available. 4578 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4579 if (FrameIndexSDNode *FINode = 4580 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4581 Op = MachineOperand::CreateFI(FINode->getIndex()); 4582 4583 if (!Op) 4584 return false; 4585 4586 if (Op->isReg()) 4587 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4588 TII->get(TargetOpcode::DBG_VALUE), 4589 IsIndirect, 4590 Op->getReg(), Offset, Variable)); 4591 else 4592 FuncInfo.ArgDbgValues.push_back( 4593 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4594 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4595 4596 return true; 4597 } 4598 4599 // VisualStudio defines setjmp as _setjmp 4600 #if defined(_MSC_VER) && defined(setjmp) && \ 4601 !defined(setjmp_undefined_for_msvc) 4602 # pragma push_macro("setjmp") 4603 # undef setjmp 4604 # define setjmp_undefined_for_msvc 4605 #endif 4606 4607 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4608 /// we want to emit this as a call to a named external function, return the name 4609 /// otherwise lower it and return null. 4610 const char * 4611 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4612 const TargetLowering *TLI = TM.getTargetLowering(); 4613 SDLoc sdl = getCurSDLoc(); 4614 DebugLoc dl = getCurDebugLoc(); 4615 SDValue Res; 4616 4617 switch (Intrinsic) { 4618 default: 4619 // By default, turn this into a target intrinsic node. 4620 visitTargetIntrinsic(I, Intrinsic); 4621 return nullptr; 4622 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4623 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4624 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4625 case Intrinsic::returnaddress: 4626 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4627 getValue(I.getArgOperand(0)))); 4628 return nullptr; 4629 case Intrinsic::frameaddress: 4630 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4631 getValue(I.getArgOperand(0)))); 4632 return nullptr; 4633 case Intrinsic::setjmp: 4634 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4635 case Intrinsic::longjmp: 4636 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4637 case Intrinsic::memcpy: { 4638 // Assert for address < 256 since we support only user defined address 4639 // spaces. 4640 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4641 < 256 && 4642 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4643 < 256 && 4644 "Unknown address space"); 4645 SDValue Op1 = getValue(I.getArgOperand(0)); 4646 SDValue Op2 = getValue(I.getArgOperand(1)); 4647 SDValue Op3 = getValue(I.getArgOperand(2)); 4648 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4649 if (!Align) 4650 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4651 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4652 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4653 MachinePointerInfo(I.getArgOperand(0)), 4654 MachinePointerInfo(I.getArgOperand(1)))); 4655 return nullptr; 4656 } 4657 case Intrinsic::memset: { 4658 // Assert for address < 256 since we support only user defined address 4659 // spaces. 4660 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4661 < 256 && 4662 "Unknown address space"); 4663 SDValue Op1 = getValue(I.getArgOperand(0)); 4664 SDValue Op2 = getValue(I.getArgOperand(1)); 4665 SDValue Op3 = getValue(I.getArgOperand(2)); 4666 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4667 if (!Align) 4668 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4669 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4670 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4671 MachinePointerInfo(I.getArgOperand(0)))); 4672 return nullptr; 4673 } 4674 case Intrinsic::memmove: { 4675 // Assert for address < 256 since we support only user defined address 4676 // spaces. 4677 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4678 < 256 && 4679 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4680 < 256 && 4681 "Unknown address space"); 4682 SDValue Op1 = getValue(I.getArgOperand(0)); 4683 SDValue Op2 = getValue(I.getArgOperand(1)); 4684 SDValue Op3 = getValue(I.getArgOperand(2)); 4685 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4686 if (!Align) 4687 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4688 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4689 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4690 MachinePointerInfo(I.getArgOperand(0)), 4691 MachinePointerInfo(I.getArgOperand(1)))); 4692 return nullptr; 4693 } 4694 case Intrinsic::dbg_declare: { 4695 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4696 MDNode *Variable = DI.getVariable(); 4697 const Value *Address = DI.getAddress(); 4698 DIVariable DIVar(Variable); 4699 assert((!DIVar || DIVar.isVariable()) && 4700 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4701 if (!Address || !DIVar) { 4702 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4703 return nullptr; 4704 } 4705 4706 // Check if address has undef value. 4707 if (isa<UndefValue>(Address) || 4708 (Address->use_empty() && !isa<Argument>(Address))) { 4709 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4710 return nullptr; 4711 } 4712 4713 SDValue &N = NodeMap[Address]; 4714 if (!N.getNode() && isa<Argument>(Address)) 4715 // Check unused arguments map. 4716 N = UnusedArgNodeMap[Address]; 4717 SDDbgValue *SDV; 4718 if (N.getNode()) { 4719 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4720 Address = BCI->getOperand(0); 4721 // Parameters are handled specially. 4722 bool isParameter = 4723 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4724 isa<Argument>(Address)); 4725 4726 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4727 4728 if (isParameter && !AI) { 4729 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4730 if (FINode) 4731 // Byval parameter. We have a frame index at this point. 4732 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4733 0, dl, SDNodeOrder); 4734 else { 4735 // Address is an argument, so try to emit its dbg value using 4736 // virtual register info from the FuncInfo.ValueMap. 4737 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4738 return nullptr; 4739 } 4740 } else if (AI) 4741 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4742 true, 0, dl, SDNodeOrder); 4743 else { 4744 // Can't do anything with other non-AI cases yet. 4745 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4746 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4747 DEBUG(Address->dump()); 4748 return nullptr; 4749 } 4750 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4751 } else { 4752 // If Address is an argument then try to emit its dbg value using 4753 // virtual register info from the FuncInfo.ValueMap. 4754 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4755 // If variable is pinned by a alloca in dominating bb then 4756 // use StaticAllocaMap. 4757 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4758 if (AI->getParent() != DI.getParent()) { 4759 DenseMap<const AllocaInst*, int>::iterator SI = 4760 FuncInfo.StaticAllocaMap.find(AI); 4761 if (SI != FuncInfo.StaticAllocaMap.end()) { 4762 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4763 0, dl, SDNodeOrder); 4764 DAG.AddDbgValue(SDV, nullptr, false); 4765 return nullptr; 4766 } 4767 } 4768 } 4769 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4770 } 4771 } 4772 return nullptr; 4773 } 4774 case Intrinsic::dbg_value: { 4775 const DbgValueInst &DI = cast<DbgValueInst>(I); 4776 DIVariable DIVar(DI.getVariable()); 4777 assert((!DIVar || DIVar.isVariable()) && 4778 "Variable in DbgValueInst should be either null or a DIVariable."); 4779 if (!DIVar) 4780 return nullptr; 4781 4782 MDNode *Variable = DI.getVariable(); 4783 uint64_t Offset = DI.getOffset(); 4784 const Value *V = DI.getValue(); 4785 if (!V) 4786 return nullptr; 4787 4788 SDDbgValue *SDV; 4789 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4790 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4791 DAG.AddDbgValue(SDV, nullptr, false); 4792 } else { 4793 // Do not use getValue() in here; we don't want to generate code at 4794 // this point if it hasn't been done yet. 4795 SDValue N = NodeMap[V]; 4796 if (!N.getNode() && isa<Argument>(V)) 4797 // Check unused arguments map. 4798 N = UnusedArgNodeMap[V]; 4799 if (N.getNode()) { 4800 // A dbg.value for an alloca is always indirect. 4801 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4802 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4803 SDV = DAG.getDbgValue(Variable, N.getNode(), 4804 N.getResNo(), IsIndirect, 4805 Offset, dl, SDNodeOrder); 4806 DAG.AddDbgValue(SDV, N.getNode(), false); 4807 } 4808 } else if (!V->use_empty() ) { 4809 // Do not call getValue(V) yet, as we don't want to generate code. 4810 // Remember it for later. 4811 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4812 DanglingDebugInfoMap[V] = DDI; 4813 } else { 4814 // We may expand this to cover more cases. One case where we have no 4815 // data available is an unreferenced parameter. 4816 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4817 } 4818 } 4819 4820 // Build a debug info table entry. 4821 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4822 V = BCI->getOperand(0); 4823 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4824 // Don't handle byval struct arguments or VLAs, for example. 4825 if (!AI) { 4826 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4827 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4828 return nullptr; 4829 } 4830 DenseMap<const AllocaInst*, int>::iterator SI = 4831 FuncInfo.StaticAllocaMap.find(AI); 4832 if (SI == FuncInfo.StaticAllocaMap.end()) 4833 return nullptr; // VLAs. 4834 return nullptr; 4835 } 4836 4837 case Intrinsic::eh_typeid_for: { 4838 // Find the type id for the given typeinfo. 4839 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4840 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4841 Res = DAG.getConstant(TypeID, MVT::i32); 4842 setValue(&I, Res); 4843 return nullptr; 4844 } 4845 4846 case Intrinsic::eh_return_i32: 4847 case Intrinsic::eh_return_i64: 4848 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4849 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4850 MVT::Other, 4851 getControlRoot(), 4852 getValue(I.getArgOperand(0)), 4853 getValue(I.getArgOperand(1)))); 4854 return nullptr; 4855 case Intrinsic::eh_unwind_init: 4856 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4857 return nullptr; 4858 case Intrinsic::eh_dwarf_cfa: { 4859 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4860 TLI->getPointerTy()); 4861 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4862 CfaArg.getValueType(), 4863 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4864 CfaArg.getValueType()), 4865 CfaArg); 4866 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4867 TLI->getPointerTy(), 4868 DAG.getConstant(0, TLI->getPointerTy())); 4869 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4870 FA, Offset)); 4871 return nullptr; 4872 } 4873 case Intrinsic::eh_sjlj_callsite: { 4874 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4875 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4876 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4877 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4878 4879 MMI.setCurrentCallSite(CI->getZExtValue()); 4880 return nullptr; 4881 } 4882 case Intrinsic::eh_sjlj_functioncontext: { 4883 // Get and store the index of the function context. 4884 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4885 AllocaInst *FnCtx = 4886 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4887 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4888 MFI->setFunctionContextIndex(FI); 4889 return nullptr; 4890 } 4891 case Intrinsic::eh_sjlj_setjmp: { 4892 SDValue Ops[2]; 4893 Ops[0] = getRoot(); 4894 Ops[1] = getValue(I.getArgOperand(0)); 4895 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4896 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4897 setValue(&I, Op.getValue(0)); 4898 DAG.setRoot(Op.getValue(1)); 4899 return nullptr; 4900 } 4901 case Intrinsic::eh_sjlj_longjmp: { 4902 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4903 getRoot(), getValue(I.getArgOperand(0)))); 4904 return nullptr; 4905 } 4906 4907 case Intrinsic::x86_mmx_pslli_w: 4908 case Intrinsic::x86_mmx_pslli_d: 4909 case Intrinsic::x86_mmx_pslli_q: 4910 case Intrinsic::x86_mmx_psrli_w: 4911 case Intrinsic::x86_mmx_psrli_d: 4912 case Intrinsic::x86_mmx_psrli_q: 4913 case Intrinsic::x86_mmx_psrai_w: 4914 case Intrinsic::x86_mmx_psrai_d: { 4915 SDValue ShAmt = getValue(I.getArgOperand(1)); 4916 if (isa<ConstantSDNode>(ShAmt)) { 4917 visitTargetIntrinsic(I, Intrinsic); 4918 return nullptr; 4919 } 4920 unsigned NewIntrinsic = 0; 4921 EVT ShAmtVT = MVT::v2i32; 4922 switch (Intrinsic) { 4923 case Intrinsic::x86_mmx_pslli_w: 4924 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4925 break; 4926 case Intrinsic::x86_mmx_pslli_d: 4927 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4928 break; 4929 case Intrinsic::x86_mmx_pslli_q: 4930 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4931 break; 4932 case Intrinsic::x86_mmx_psrli_w: 4933 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4934 break; 4935 case Intrinsic::x86_mmx_psrli_d: 4936 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4937 break; 4938 case Intrinsic::x86_mmx_psrli_q: 4939 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4940 break; 4941 case Intrinsic::x86_mmx_psrai_w: 4942 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4943 break; 4944 case Intrinsic::x86_mmx_psrai_d: 4945 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4946 break; 4947 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4948 } 4949 4950 // The vector shift intrinsics with scalars uses 32b shift amounts but 4951 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4952 // to be zero. 4953 // We must do this early because v2i32 is not a legal type. 4954 SDValue ShOps[2]; 4955 ShOps[0] = ShAmt; 4956 ShOps[1] = DAG.getConstant(0, MVT::i32); 4957 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4958 EVT DestVT = TLI->getValueType(I.getType()); 4959 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4960 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4961 DAG.getConstant(NewIntrinsic, MVT::i32), 4962 getValue(I.getArgOperand(0)), ShAmt); 4963 setValue(&I, Res); 4964 return nullptr; 4965 } 4966 case Intrinsic::x86_avx_vinsertf128_pd_256: 4967 case Intrinsic::x86_avx_vinsertf128_ps_256: 4968 case Intrinsic::x86_avx_vinsertf128_si_256: 4969 case Intrinsic::x86_avx2_vinserti128: { 4970 EVT DestVT = TLI->getValueType(I.getType()); 4971 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4972 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4973 ElVT.getVectorNumElements(); 4974 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4975 getValue(I.getArgOperand(0)), 4976 getValue(I.getArgOperand(1)), 4977 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4978 setValue(&I, Res); 4979 return nullptr; 4980 } 4981 case Intrinsic::x86_avx_vextractf128_pd_256: 4982 case Intrinsic::x86_avx_vextractf128_ps_256: 4983 case Intrinsic::x86_avx_vextractf128_si_256: 4984 case Intrinsic::x86_avx2_vextracti128: { 4985 EVT DestVT = TLI->getValueType(I.getType()); 4986 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4987 DestVT.getVectorNumElements(); 4988 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4989 getValue(I.getArgOperand(0)), 4990 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4991 setValue(&I, Res); 4992 return nullptr; 4993 } 4994 case Intrinsic::convertff: 4995 case Intrinsic::convertfsi: 4996 case Intrinsic::convertfui: 4997 case Intrinsic::convertsif: 4998 case Intrinsic::convertuif: 4999 case Intrinsic::convertss: 5000 case Intrinsic::convertsu: 5001 case Intrinsic::convertus: 5002 case Intrinsic::convertuu: { 5003 ISD::CvtCode Code = ISD::CVT_INVALID; 5004 switch (Intrinsic) { 5005 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5006 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5007 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5008 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5009 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5010 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5011 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5012 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5013 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5014 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5015 } 5016 EVT DestVT = TLI->getValueType(I.getType()); 5017 const Value *Op1 = I.getArgOperand(0); 5018 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5019 DAG.getValueType(DestVT), 5020 DAG.getValueType(getValue(Op1).getValueType()), 5021 getValue(I.getArgOperand(1)), 5022 getValue(I.getArgOperand(2)), 5023 Code); 5024 setValue(&I, Res); 5025 return nullptr; 5026 } 5027 case Intrinsic::powi: 5028 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5029 getValue(I.getArgOperand(1)), DAG)); 5030 return nullptr; 5031 case Intrinsic::log: 5032 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5033 return nullptr; 5034 case Intrinsic::log2: 5035 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5036 return nullptr; 5037 case Intrinsic::log10: 5038 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5039 return nullptr; 5040 case Intrinsic::exp: 5041 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5042 return nullptr; 5043 case Intrinsic::exp2: 5044 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5045 return nullptr; 5046 case Intrinsic::pow: 5047 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5048 getValue(I.getArgOperand(1)), DAG, *TLI)); 5049 return nullptr; 5050 case Intrinsic::sqrt: 5051 case Intrinsic::fabs: 5052 case Intrinsic::sin: 5053 case Intrinsic::cos: 5054 case Intrinsic::floor: 5055 case Intrinsic::ceil: 5056 case Intrinsic::trunc: 5057 case Intrinsic::rint: 5058 case Intrinsic::nearbyint: 5059 case Intrinsic::round: { 5060 unsigned Opcode; 5061 switch (Intrinsic) { 5062 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5063 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5064 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5065 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5066 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5067 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5068 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5069 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5070 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5071 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5072 case Intrinsic::round: Opcode = ISD::FROUND; break; 5073 } 5074 5075 setValue(&I, DAG.getNode(Opcode, sdl, 5076 getValue(I.getArgOperand(0)).getValueType(), 5077 getValue(I.getArgOperand(0)))); 5078 return nullptr; 5079 } 5080 case Intrinsic::copysign: 5081 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5082 getValue(I.getArgOperand(0)).getValueType(), 5083 getValue(I.getArgOperand(0)), 5084 getValue(I.getArgOperand(1)))); 5085 return nullptr; 5086 case Intrinsic::fma: 5087 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5088 getValue(I.getArgOperand(0)).getValueType(), 5089 getValue(I.getArgOperand(0)), 5090 getValue(I.getArgOperand(1)), 5091 getValue(I.getArgOperand(2)))); 5092 return nullptr; 5093 case Intrinsic::fmuladd: { 5094 EVT VT = TLI->getValueType(I.getType()); 5095 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5096 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5097 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5098 getValue(I.getArgOperand(0)).getValueType(), 5099 getValue(I.getArgOperand(0)), 5100 getValue(I.getArgOperand(1)), 5101 getValue(I.getArgOperand(2)))); 5102 } else { 5103 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5104 getValue(I.getArgOperand(0)).getValueType(), 5105 getValue(I.getArgOperand(0)), 5106 getValue(I.getArgOperand(1))); 5107 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5108 getValue(I.getArgOperand(0)).getValueType(), 5109 Mul, 5110 getValue(I.getArgOperand(2))); 5111 setValue(&I, Add); 5112 } 5113 return nullptr; 5114 } 5115 case Intrinsic::convert_to_fp16: 5116 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5117 MVT::i16, getValue(I.getArgOperand(0)))); 5118 return nullptr; 5119 case Intrinsic::convert_from_fp16: 5120 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5121 MVT::f32, getValue(I.getArgOperand(0)))); 5122 return nullptr; 5123 case Intrinsic::pcmarker: { 5124 SDValue Tmp = getValue(I.getArgOperand(0)); 5125 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5126 return nullptr; 5127 } 5128 case Intrinsic::readcyclecounter: { 5129 SDValue Op = getRoot(); 5130 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5131 DAG.getVTList(MVT::i64, MVT::Other), Op); 5132 setValue(&I, Res); 5133 DAG.setRoot(Res.getValue(1)); 5134 return nullptr; 5135 } 5136 case Intrinsic::bswap: 5137 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5138 getValue(I.getArgOperand(0)).getValueType(), 5139 getValue(I.getArgOperand(0)))); 5140 return nullptr; 5141 case Intrinsic::cttz: { 5142 SDValue Arg = getValue(I.getArgOperand(0)); 5143 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5144 EVT Ty = Arg.getValueType(); 5145 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5146 sdl, Ty, Arg)); 5147 return nullptr; 5148 } 5149 case Intrinsic::ctlz: { 5150 SDValue Arg = getValue(I.getArgOperand(0)); 5151 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5152 EVT Ty = Arg.getValueType(); 5153 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5154 sdl, Ty, Arg)); 5155 return nullptr; 5156 } 5157 case Intrinsic::ctpop: { 5158 SDValue Arg = getValue(I.getArgOperand(0)); 5159 EVT Ty = Arg.getValueType(); 5160 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5161 return nullptr; 5162 } 5163 case Intrinsic::stacksave: { 5164 SDValue Op = getRoot(); 5165 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5166 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5167 setValue(&I, Res); 5168 DAG.setRoot(Res.getValue(1)); 5169 return nullptr; 5170 } 5171 case Intrinsic::stackrestore: { 5172 Res = getValue(I.getArgOperand(0)); 5173 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5174 return nullptr; 5175 } 5176 case Intrinsic::stackprotector: { 5177 // Emit code into the DAG to store the stack guard onto the stack. 5178 MachineFunction &MF = DAG.getMachineFunction(); 5179 MachineFrameInfo *MFI = MF.getFrameInfo(); 5180 EVT PtrTy = TLI->getPointerTy(); 5181 5182 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5183 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5184 5185 int FI = FuncInfo.StaticAllocaMap[Slot]; 5186 MFI->setStackProtectorIndex(FI); 5187 5188 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5189 5190 // Store the stack protector onto the stack. 5191 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5192 MachinePointerInfo::getFixedStack(FI), 5193 true, false, 0); 5194 setValue(&I, Res); 5195 DAG.setRoot(Res); 5196 return nullptr; 5197 } 5198 case Intrinsic::objectsize: { 5199 // If we don't know by now, we're never going to know. 5200 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5201 5202 assert(CI && "Non-constant type in __builtin_object_size?"); 5203 5204 SDValue Arg = getValue(I.getCalledValue()); 5205 EVT Ty = Arg.getValueType(); 5206 5207 if (CI->isZero()) 5208 Res = DAG.getConstant(-1ULL, Ty); 5209 else 5210 Res = DAG.getConstant(0, Ty); 5211 5212 setValue(&I, Res); 5213 return nullptr; 5214 } 5215 case Intrinsic::annotation: 5216 case Intrinsic::ptr_annotation: 5217 // Drop the intrinsic, but forward the value 5218 setValue(&I, getValue(I.getOperand(0))); 5219 return nullptr; 5220 case Intrinsic::var_annotation: 5221 // Discard annotate attributes 5222 return nullptr; 5223 5224 case Intrinsic::init_trampoline: { 5225 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5226 5227 SDValue Ops[6]; 5228 Ops[0] = getRoot(); 5229 Ops[1] = getValue(I.getArgOperand(0)); 5230 Ops[2] = getValue(I.getArgOperand(1)); 5231 Ops[3] = getValue(I.getArgOperand(2)); 5232 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5233 Ops[5] = DAG.getSrcValue(F); 5234 5235 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5236 5237 DAG.setRoot(Res); 5238 return nullptr; 5239 } 5240 case Intrinsic::adjust_trampoline: { 5241 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5242 TLI->getPointerTy(), 5243 getValue(I.getArgOperand(0)))); 5244 return nullptr; 5245 } 5246 case Intrinsic::gcroot: 5247 if (GFI) { 5248 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5249 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5250 5251 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5252 GFI->addStackRoot(FI->getIndex(), TypeMap); 5253 } 5254 return nullptr; 5255 case Intrinsic::gcread: 5256 case Intrinsic::gcwrite: 5257 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5258 case Intrinsic::flt_rounds: 5259 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5260 return nullptr; 5261 5262 case Intrinsic::expect: { 5263 // Just replace __builtin_expect(exp, c) with EXP. 5264 setValue(&I, getValue(I.getArgOperand(0))); 5265 return nullptr; 5266 } 5267 5268 case Intrinsic::debugtrap: 5269 case Intrinsic::trap: { 5270 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5271 if (TrapFuncName.empty()) { 5272 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5273 ISD::TRAP : ISD::DEBUGTRAP; 5274 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5275 return nullptr; 5276 } 5277 TargetLowering::ArgListTy Args; 5278 TargetLowering:: 5279 CallLoweringInfo CLI(getRoot(), I.getType(), 5280 false, false, false, false, 0, CallingConv::C, 5281 /*isTailCall=*/false, 5282 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5283 DAG.getExternalSymbol(TrapFuncName.data(), 5284 TLI->getPointerTy()), 5285 Args, DAG, sdl); 5286 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5287 DAG.setRoot(Result.second); 5288 return nullptr; 5289 } 5290 5291 case Intrinsic::uadd_with_overflow: 5292 case Intrinsic::sadd_with_overflow: 5293 case Intrinsic::usub_with_overflow: 5294 case Intrinsic::ssub_with_overflow: 5295 case Intrinsic::umul_with_overflow: 5296 case Intrinsic::smul_with_overflow: { 5297 ISD::NodeType Op; 5298 switch (Intrinsic) { 5299 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5300 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5301 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5302 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5303 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5304 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5305 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5306 } 5307 SDValue Op1 = getValue(I.getArgOperand(0)); 5308 SDValue Op2 = getValue(I.getArgOperand(1)); 5309 5310 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5311 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5312 return nullptr; 5313 } 5314 case Intrinsic::prefetch: { 5315 SDValue Ops[5]; 5316 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5317 Ops[0] = getRoot(); 5318 Ops[1] = getValue(I.getArgOperand(0)); 5319 Ops[2] = getValue(I.getArgOperand(1)); 5320 Ops[3] = getValue(I.getArgOperand(2)); 5321 Ops[4] = getValue(I.getArgOperand(3)); 5322 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5323 DAG.getVTList(MVT::Other), 5324 &Ops[0], 5, 5325 EVT::getIntegerVT(*Context, 8), 5326 MachinePointerInfo(I.getArgOperand(0)), 5327 0, /* align */ 5328 false, /* volatile */ 5329 rw==0, /* read */ 5330 rw==1)); /* write */ 5331 return nullptr; 5332 } 5333 case Intrinsic::lifetime_start: 5334 case Intrinsic::lifetime_end: { 5335 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5336 // Stack coloring is not enabled in O0, discard region information. 5337 if (TM.getOptLevel() == CodeGenOpt::None) 5338 return nullptr; 5339 5340 SmallVector<Value *, 4> Allocas; 5341 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5342 5343 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5344 E = Allocas.end(); Object != E; ++Object) { 5345 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5346 5347 // Could not find an Alloca. 5348 if (!LifetimeObject) 5349 continue; 5350 5351 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5352 5353 SDValue Ops[2]; 5354 Ops[0] = getRoot(); 5355 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5356 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5357 5358 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5359 DAG.setRoot(Res); 5360 } 5361 return nullptr; 5362 } 5363 case Intrinsic::invariant_start: 5364 // Discard region information. 5365 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5366 return nullptr; 5367 case Intrinsic::invariant_end: 5368 // Discard region information. 5369 return nullptr; 5370 case Intrinsic::stackprotectorcheck: { 5371 // Do not actually emit anything for this basic block. Instead we initialize 5372 // the stack protector descriptor and export the guard variable so we can 5373 // access it in FinishBasicBlock. 5374 const BasicBlock *BB = I.getParent(); 5375 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5376 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5377 5378 // Flush our exports since we are going to process a terminator. 5379 (void)getControlRoot(); 5380 return nullptr; 5381 } 5382 case Intrinsic::clear_cache: 5383 return TLI->getClearCacheBuiltinName(); 5384 case Intrinsic::donothing: 5385 // ignore 5386 return nullptr; 5387 case Intrinsic::experimental_stackmap: { 5388 visitStackmap(I); 5389 return nullptr; 5390 } 5391 case Intrinsic::experimental_patchpoint_void: 5392 case Intrinsic::experimental_patchpoint_i64: { 5393 visitPatchpoint(I); 5394 return nullptr; 5395 } 5396 } 5397 } 5398 5399 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5400 bool isTailCall, 5401 MachineBasicBlock *LandingPad) { 5402 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5403 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5404 Type *RetTy = FTy->getReturnType(); 5405 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5406 MCSymbol *BeginLabel = nullptr; 5407 5408 TargetLowering::ArgListTy Args; 5409 TargetLowering::ArgListEntry Entry; 5410 Args.reserve(CS.arg_size()); 5411 5412 // Check whether the function can return without sret-demotion. 5413 SmallVector<ISD::OutputArg, 4> Outs; 5414 const TargetLowering *TLI = TM.getTargetLowering(); 5415 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5416 5417 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5418 DAG.getMachineFunction(), 5419 FTy->isVarArg(), Outs, 5420 FTy->getContext()); 5421 5422 SDValue DemoteStackSlot; 5423 int DemoteStackIdx = -100; 5424 5425 if (!CanLowerReturn) { 5426 assert(!CS.hasInAllocaArgument() && 5427 "sret demotion is incompatible with inalloca"); 5428 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5429 FTy->getReturnType()); 5430 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5431 FTy->getReturnType()); 5432 MachineFunction &MF = DAG.getMachineFunction(); 5433 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5434 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5435 5436 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5437 Entry.Node = DemoteStackSlot; 5438 Entry.Ty = StackSlotPtrType; 5439 Entry.isSExt = false; 5440 Entry.isZExt = false; 5441 Entry.isInReg = false; 5442 Entry.isSRet = true; 5443 Entry.isNest = false; 5444 Entry.isByVal = false; 5445 Entry.isReturned = false; 5446 Entry.Alignment = Align; 5447 Args.push_back(Entry); 5448 RetTy = Type::getVoidTy(FTy->getContext()); 5449 } 5450 5451 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5452 i != e; ++i) { 5453 const Value *V = *i; 5454 5455 // Skip empty types 5456 if (V->getType()->isEmptyTy()) 5457 continue; 5458 5459 SDValue ArgNode = getValue(V); 5460 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5461 5462 // Skip the first return-type Attribute to get to params. 5463 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5464 Args.push_back(Entry); 5465 } 5466 5467 if (LandingPad) { 5468 // Insert a label before the invoke call to mark the try range. This can be 5469 // used to detect deletion of the invoke via the MachineModuleInfo. 5470 BeginLabel = MMI.getContext().CreateTempSymbol(); 5471 5472 // For SjLj, keep track of which landing pads go with which invokes 5473 // so as to maintain the ordering of pads in the LSDA. 5474 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5475 if (CallSiteIndex) { 5476 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5477 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5478 5479 // Now that the call site is handled, stop tracking it. 5480 MMI.setCurrentCallSite(0); 5481 } 5482 5483 // Both PendingLoads and PendingExports must be flushed here; 5484 // this call might not return. 5485 (void)getRoot(); 5486 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5487 } 5488 5489 // Check if target-independent constraints permit a tail call here. 5490 // Target-dependent constraints are checked within TLI->LowerCallTo. 5491 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5492 isTailCall = false; 5493 5494 TargetLowering:: 5495 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5496 getCurSDLoc(), CS); 5497 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5498 assert((isTailCall || Result.second.getNode()) && 5499 "Non-null chain expected with non-tail call!"); 5500 assert((Result.second.getNode() || !Result.first.getNode()) && 5501 "Null value expected with tail call!"); 5502 if (Result.first.getNode()) { 5503 setValue(CS.getInstruction(), Result.first); 5504 } else if (!CanLowerReturn && Result.second.getNode()) { 5505 // The instruction result is the result of loading from the 5506 // hidden sret parameter. 5507 SmallVector<EVT, 1> PVTs; 5508 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5509 5510 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5511 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5512 EVT PtrVT = PVTs[0]; 5513 5514 SmallVector<EVT, 4> RetTys; 5515 SmallVector<uint64_t, 4> Offsets; 5516 RetTy = FTy->getReturnType(); 5517 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5518 5519 unsigned NumValues = RetTys.size(); 5520 SmallVector<SDValue, 4> Values(NumValues); 5521 SmallVector<SDValue, 4> Chains(NumValues); 5522 5523 for (unsigned i = 0; i < NumValues; ++i) { 5524 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5525 DemoteStackSlot, 5526 DAG.getConstant(Offsets[i], PtrVT)); 5527 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5528 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5529 false, false, false, 1); 5530 Values[i] = L; 5531 Chains[i] = L.getValue(1); 5532 } 5533 5534 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5535 MVT::Other, Chains); 5536 PendingLoads.push_back(Chain); 5537 5538 setValue(CS.getInstruction(), 5539 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5540 DAG.getVTList(RetTys), Values)); 5541 } 5542 5543 if (!Result.second.getNode()) { 5544 // As a special case, a null chain means that a tail call has been emitted 5545 // and the DAG root is already updated. 5546 HasTailCall = true; 5547 5548 // Since there's no actual continuation from this block, nothing can be 5549 // relying on us setting vregs for them. 5550 PendingExports.clear(); 5551 } else { 5552 DAG.setRoot(Result.second); 5553 } 5554 5555 if (LandingPad) { 5556 // Insert a label at the end of the invoke call to mark the try range. This 5557 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5558 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5559 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5560 5561 // Inform MachineModuleInfo of range. 5562 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5563 } 5564 } 5565 5566 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5567 /// value is equal or not-equal to zero. 5568 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5569 for (const User *U : V->users()) { 5570 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5571 if (IC->isEquality()) 5572 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5573 if (C->isNullValue()) 5574 continue; 5575 // Unknown instruction. 5576 return false; 5577 } 5578 return true; 5579 } 5580 5581 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5582 Type *LoadTy, 5583 SelectionDAGBuilder &Builder) { 5584 5585 // Check to see if this load can be trivially constant folded, e.g. if the 5586 // input is from a string literal. 5587 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5588 // Cast pointer to the type we really want to load. 5589 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5590 PointerType::getUnqual(LoadTy)); 5591 5592 if (const Constant *LoadCst = 5593 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5594 Builder.DL)) 5595 return Builder.getValue(LoadCst); 5596 } 5597 5598 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5599 // still constant memory, the input chain can be the entry node. 5600 SDValue Root; 5601 bool ConstantMemory = false; 5602 5603 // Do not serialize (non-volatile) loads of constant memory with anything. 5604 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5605 Root = Builder.DAG.getEntryNode(); 5606 ConstantMemory = true; 5607 } else { 5608 // Do not serialize non-volatile loads against each other. 5609 Root = Builder.DAG.getRoot(); 5610 } 5611 5612 SDValue Ptr = Builder.getValue(PtrVal); 5613 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5614 Ptr, MachinePointerInfo(PtrVal), 5615 false /*volatile*/, 5616 false /*nontemporal*/, 5617 false /*isinvariant*/, 1 /* align=1 */); 5618 5619 if (!ConstantMemory) 5620 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5621 return LoadVal; 5622 } 5623 5624 /// processIntegerCallValue - Record the value for an instruction that 5625 /// produces an integer result, converting the type where necessary. 5626 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5627 SDValue Value, 5628 bool IsSigned) { 5629 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5630 if (IsSigned) 5631 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5632 else 5633 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5634 setValue(&I, Value); 5635 } 5636 5637 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5638 /// If so, return true and lower it, otherwise return false and it will be 5639 /// lowered like a normal call. 5640 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5641 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5642 if (I.getNumArgOperands() != 3) 5643 return false; 5644 5645 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5646 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5647 !I.getArgOperand(2)->getType()->isIntegerTy() || 5648 !I.getType()->isIntegerTy()) 5649 return false; 5650 5651 const Value *Size = I.getArgOperand(2); 5652 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5653 if (CSize && CSize->getZExtValue() == 0) { 5654 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5655 setValue(&I, DAG.getConstant(0, CallVT)); 5656 return true; 5657 } 5658 5659 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5660 std::pair<SDValue, SDValue> Res = 5661 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5662 getValue(LHS), getValue(RHS), getValue(Size), 5663 MachinePointerInfo(LHS), 5664 MachinePointerInfo(RHS)); 5665 if (Res.first.getNode()) { 5666 processIntegerCallValue(I, Res.first, true); 5667 PendingLoads.push_back(Res.second); 5668 return true; 5669 } 5670 5671 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5672 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5673 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5674 bool ActuallyDoIt = true; 5675 MVT LoadVT; 5676 Type *LoadTy; 5677 switch (CSize->getZExtValue()) { 5678 default: 5679 LoadVT = MVT::Other; 5680 LoadTy = nullptr; 5681 ActuallyDoIt = false; 5682 break; 5683 case 2: 5684 LoadVT = MVT::i16; 5685 LoadTy = Type::getInt16Ty(CSize->getContext()); 5686 break; 5687 case 4: 5688 LoadVT = MVT::i32; 5689 LoadTy = Type::getInt32Ty(CSize->getContext()); 5690 break; 5691 case 8: 5692 LoadVT = MVT::i64; 5693 LoadTy = Type::getInt64Ty(CSize->getContext()); 5694 break; 5695 /* 5696 case 16: 5697 LoadVT = MVT::v4i32; 5698 LoadTy = Type::getInt32Ty(CSize->getContext()); 5699 LoadTy = VectorType::get(LoadTy, 4); 5700 break; 5701 */ 5702 } 5703 5704 // This turns into unaligned loads. We only do this if the target natively 5705 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5706 // we'll only produce a small number of byte loads. 5707 5708 // Require that we can find a legal MVT, and only do this if the target 5709 // supports unaligned loads of that type. Expanding into byte loads would 5710 // bloat the code. 5711 const TargetLowering *TLI = TM.getTargetLowering(); 5712 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5713 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5714 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5715 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5716 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5717 if (!TLI->isTypeLegal(LoadVT) || 5718 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5719 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5720 ActuallyDoIt = false; 5721 } 5722 5723 if (ActuallyDoIt) { 5724 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5725 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5726 5727 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5728 ISD::SETNE); 5729 processIntegerCallValue(I, Res, false); 5730 return true; 5731 } 5732 } 5733 5734 5735 return false; 5736 } 5737 5738 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5739 /// form. If so, return true and lower it, otherwise return false and it 5740 /// will be lowered like a normal call. 5741 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5742 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5743 if (I.getNumArgOperands() != 3) 5744 return false; 5745 5746 const Value *Src = I.getArgOperand(0); 5747 const Value *Char = I.getArgOperand(1); 5748 const Value *Length = I.getArgOperand(2); 5749 if (!Src->getType()->isPointerTy() || 5750 !Char->getType()->isIntegerTy() || 5751 !Length->getType()->isIntegerTy() || 5752 !I.getType()->isPointerTy()) 5753 return false; 5754 5755 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5756 std::pair<SDValue, SDValue> Res = 5757 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5758 getValue(Src), getValue(Char), getValue(Length), 5759 MachinePointerInfo(Src)); 5760 if (Res.first.getNode()) { 5761 setValue(&I, Res.first); 5762 PendingLoads.push_back(Res.second); 5763 return true; 5764 } 5765 5766 return false; 5767 } 5768 5769 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5770 /// optimized form. If so, return true and lower it, otherwise return false 5771 /// and it will be lowered like a normal call. 5772 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5773 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5774 if (I.getNumArgOperands() != 2) 5775 return false; 5776 5777 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5778 if (!Arg0->getType()->isPointerTy() || 5779 !Arg1->getType()->isPointerTy() || 5780 !I.getType()->isPointerTy()) 5781 return false; 5782 5783 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5784 std::pair<SDValue, SDValue> Res = 5785 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5786 getValue(Arg0), getValue(Arg1), 5787 MachinePointerInfo(Arg0), 5788 MachinePointerInfo(Arg1), isStpcpy); 5789 if (Res.first.getNode()) { 5790 setValue(&I, Res.first); 5791 DAG.setRoot(Res.second); 5792 return true; 5793 } 5794 5795 return false; 5796 } 5797 5798 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5799 /// If so, return true and lower it, otherwise return false and it will be 5800 /// lowered like a normal call. 5801 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5802 // Verify that the prototype makes sense. int strcmp(void*,void*) 5803 if (I.getNumArgOperands() != 2) 5804 return false; 5805 5806 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5807 if (!Arg0->getType()->isPointerTy() || 5808 !Arg1->getType()->isPointerTy() || 5809 !I.getType()->isIntegerTy()) 5810 return false; 5811 5812 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5813 std::pair<SDValue, SDValue> Res = 5814 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5815 getValue(Arg0), getValue(Arg1), 5816 MachinePointerInfo(Arg0), 5817 MachinePointerInfo(Arg1)); 5818 if (Res.first.getNode()) { 5819 processIntegerCallValue(I, Res.first, true); 5820 PendingLoads.push_back(Res.second); 5821 return true; 5822 } 5823 5824 return false; 5825 } 5826 5827 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5828 /// form. If so, return true and lower it, otherwise return false and it 5829 /// will be lowered like a normal call. 5830 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5831 // Verify that the prototype makes sense. size_t strlen(char *) 5832 if (I.getNumArgOperands() != 1) 5833 return false; 5834 5835 const Value *Arg0 = I.getArgOperand(0); 5836 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5837 return false; 5838 5839 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5840 std::pair<SDValue, SDValue> Res = 5841 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5842 getValue(Arg0), MachinePointerInfo(Arg0)); 5843 if (Res.first.getNode()) { 5844 processIntegerCallValue(I, Res.first, false); 5845 PendingLoads.push_back(Res.second); 5846 return true; 5847 } 5848 5849 return false; 5850 } 5851 5852 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5853 /// form. If so, return true and lower it, otherwise return false and it 5854 /// will be lowered like a normal call. 5855 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5856 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5857 if (I.getNumArgOperands() != 2) 5858 return false; 5859 5860 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5861 if (!Arg0->getType()->isPointerTy() || 5862 !Arg1->getType()->isIntegerTy() || 5863 !I.getType()->isIntegerTy()) 5864 return false; 5865 5866 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5867 std::pair<SDValue, SDValue> Res = 5868 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5869 getValue(Arg0), getValue(Arg1), 5870 MachinePointerInfo(Arg0)); 5871 if (Res.first.getNode()) { 5872 processIntegerCallValue(I, Res.first, false); 5873 PendingLoads.push_back(Res.second); 5874 return true; 5875 } 5876 5877 return false; 5878 } 5879 5880 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5881 /// operation (as expected), translate it to an SDNode with the specified opcode 5882 /// and return true. 5883 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5884 unsigned Opcode) { 5885 // Sanity check that it really is a unary floating-point call. 5886 if (I.getNumArgOperands() != 1 || 5887 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5888 I.getType() != I.getArgOperand(0)->getType() || 5889 !I.onlyReadsMemory()) 5890 return false; 5891 5892 SDValue Tmp = getValue(I.getArgOperand(0)); 5893 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5894 return true; 5895 } 5896 5897 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5898 // Handle inline assembly differently. 5899 if (isa<InlineAsm>(I.getCalledValue())) { 5900 visitInlineAsm(&I); 5901 return; 5902 } 5903 5904 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5905 ComputeUsesVAFloatArgument(I, &MMI); 5906 5907 const char *RenameFn = nullptr; 5908 if (Function *F = I.getCalledFunction()) { 5909 if (F->isDeclaration()) { 5910 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5911 if (unsigned IID = II->getIntrinsicID(F)) { 5912 RenameFn = visitIntrinsicCall(I, IID); 5913 if (!RenameFn) 5914 return; 5915 } 5916 } 5917 if (unsigned IID = F->getIntrinsicID()) { 5918 RenameFn = visitIntrinsicCall(I, IID); 5919 if (!RenameFn) 5920 return; 5921 } 5922 } 5923 5924 // Check for well-known libc/libm calls. If the function is internal, it 5925 // can't be a library call. 5926 LibFunc::Func Func; 5927 if (!F->hasLocalLinkage() && F->hasName() && 5928 LibInfo->getLibFunc(F->getName(), Func) && 5929 LibInfo->hasOptimizedCodeGen(Func)) { 5930 switch (Func) { 5931 default: break; 5932 case LibFunc::copysign: 5933 case LibFunc::copysignf: 5934 case LibFunc::copysignl: 5935 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5936 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5937 I.getType() == I.getArgOperand(0)->getType() && 5938 I.getType() == I.getArgOperand(1)->getType() && 5939 I.onlyReadsMemory()) { 5940 SDValue LHS = getValue(I.getArgOperand(0)); 5941 SDValue RHS = getValue(I.getArgOperand(1)); 5942 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5943 LHS.getValueType(), LHS, RHS)); 5944 return; 5945 } 5946 break; 5947 case LibFunc::fabs: 5948 case LibFunc::fabsf: 5949 case LibFunc::fabsl: 5950 if (visitUnaryFloatCall(I, ISD::FABS)) 5951 return; 5952 break; 5953 case LibFunc::sin: 5954 case LibFunc::sinf: 5955 case LibFunc::sinl: 5956 if (visitUnaryFloatCall(I, ISD::FSIN)) 5957 return; 5958 break; 5959 case LibFunc::cos: 5960 case LibFunc::cosf: 5961 case LibFunc::cosl: 5962 if (visitUnaryFloatCall(I, ISD::FCOS)) 5963 return; 5964 break; 5965 case LibFunc::sqrt: 5966 case LibFunc::sqrtf: 5967 case LibFunc::sqrtl: 5968 case LibFunc::sqrt_finite: 5969 case LibFunc::sqrtf_finite: 5970 case LibFunc::sqrtl_finite: 5971 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5972 return; 5973 break; 5974 case LibFunc::floor: 5975 case LibFunc::floorf: 5976 case LibFunc::floorl: 5977 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5978 return; 5979 break; 5980 case LibFunc::nearbyint: 5981 case LibFunc::nearbyintf: 5982 case LibFunc::nearbyintl: 5983 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5984 return; 5985 break; 5986 case LibFunc::ceil: 5987 case LibFunc::ceilf: 5988 case LibFunc::ceill: 5989 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5990 return; 5991 break; 5992 case LibFunc::rint: 5993 case LibFunc::rintf: 5994 case LibFunc::rintl: 5995 if (visitUnaryFloatCall(I, ISD::FRINT)) 5996 return; 5997 break; 5998 case LibFunc::round: 5999 case LibFunc::roundf: 6000 case LibFunc::roundl: 6001 if (visitUnaryFloatCall(I, ISD::FROUND)) 6002 return; 6003 break; 6004 case LibFunc::trunc: 6005 case LibFunc::truncf: 6006 case LibFunc::truncl: 6007 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6008 return; 6009 break; 6010 case LibFunc::log2: 6011 case LibFunc::log2f: 6012 case LibFunc::log2l: 6013 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6014 return; 6015 break; 6016 case LibFunc::exp2: 6017 case LibFunc::exp2f: 6018 case LibFunc::exp2l: 6019 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6020 return; 6021 break; 6022 case LibFunc::memcmp: 6023 if (visitMemCmpCall(I)) 6024 return; 6025 break; 6026 case LibFunc::memchr: 6027 if (visitMemChrCall(I)) 6028 return; 6029 break; 6030 case LibFunc::strcpy: 6031 if (visitStrCpyCall(I, false)) 6032 return; 6033 break; 6034 case LibFunc::stpcpy: 6035 if (visitStrCpyCall(I, true)) 6036 return; 6037 break; 6038 case LibFunc::strcmp: 6039 if (visitStrCmpCall(I)) 6040 return; 6041 break; 6042 case LibFunc::strlen: 6043 if (visitStrLenCall(I)) 6044 return; 6045 break; 6046 case LibFunc::strnlen: 6047 if (visitStrNLenCall(I)) 6048 return; 6049 break; 6050 } 6051 } 6052 } 6053 6054 SDValue Callee; 6055 if (!RenameFn) 6056 Callee = getValue(I.getCalledValue()); 6057 else 6058 Callee = DAG.getExternalSymbol(RenameFn, 6059 TM.getTargetLowering()->getPointerTy()); 6060 6061 // Check if we can potentially perform a tail call. More detailed checking is 6062 // be done within LowerCallTo, after more information about the call is known. 6063 LowerCallTo(&I, Callee, I.isTailCall()); 6064 } 6065 6066 namespace { 6067 6068 /// AsmOperandInfo - This contains information for each constraint that we are 6069 /// lowering. 6070 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6071 public: 6072 /// CallOperand - If this is the result output operand or a clobber 6073 /// this is null, otherwise it is the incoming operand to the CallInst. 6074 /// This gets modified as the asm is processed. 6075 SDValue CallOperand; 6076 6077 /// AssignedRegs - If this is a register or register class operand, this 6078 /// contains the set of register corresponding to the operand. 6079 RegsForValue AssignedRegs; 6080 6081 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6082 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6083 } 6084 6085 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6086 /// corresponds to. If there is no Value* for this operand, it returns 6087 /// MVT::Other. 6088 EVT getCallOperandValEVT(LLVMContext &Context, 6089 const TargetLowering &TLI, 6090 const DataLayout *DL) const { 6091 if (!CallOperandVal) return MVT::Other; 6092 6093 if (isa<BasicBlock>(CallOperandVal)) 6094 return TLI.getPointerTy(); 6095 6096 llvm::Type *OpTy = CallOperandVal->getType(); 6097 6098 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6099 // If this is an indirect operand, the operand is a pointer to the 6100 // accessed type. 6101 if (isIndirect) { 6102 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6103 if (!PtrTy) 6104 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6105 OpTy = PtrTy->getElementType(); 6106 } 6107 6108 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6109 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6110 if (STy->getNumElements() == 1) 6111 OpTy = STy->getElementType(0); 6112 6113 // If OpTy is not a single value, it may be a struct/union that we 6114 // can tile with integers. 6115 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6116 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6117 switch (BitSize) { 6118 default: break; 6119 case 1: 6120 case 8: 6121 case 16: 6122 case 32: 6123 case 64: 6124 case 128: 6125 OpTy = IntegerType::get(Context, BitSize); 6126 break; 6127 } 6128 } 6129 6130 return TLI.getValueType(OpTy, true); 6131 } 6132 }; 6133 6134 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6135 6136 } // end anonymous namespace 6137 6138 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6139 /// specified operand. We prefer to assign virtual registers, to allow the 6140 /// register allocator to handle the assignment process. However, if the asm 6141 /// uses features that we can't model on machineinstrs, we have SDISel do the 6142 /// allocation. This produces generally horrible, but correct, code. 6143 /// 6144 /// OpInfo describes the operand. 6145 /// 6146 static void GetRegistersForValue(SelectionDAG &DAG, 6147 const TargetLowering &TLI, 6148 SDLoc DL, 6149 SDISelAsmOperandInfo &OpInfo) { 6150 LLVMContext &Context = *DAG.getContext(); 6151 6152 MachineFunction &MF = DAG.getMachineFunction(); 6153 SmallVector<unsigned, 4> Regs; 6154 6155 // If this is a constraint for a single physreg, or a constraint for a 6156 // register class, find it. 6157 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6158 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6159 OpInfo.ConstraintVT); 6160 6161 unsigned NumRegs = 1; 6162 if (OpInfo.ConstraintVT != MVT::Other) { 6163 // If this is a FP input in an integer register (or visa versa) insert a bit 6164 // cast of the input value. More generally, handle any case where the input 6165 // value disagrees with the register class we plan to stick this in. 6166 if (OpInfo.Type == InlineAsm::isInput && 6167 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6168 // Try to convert to the first EVT that the reg class contains. If the 6169 // types are identical size, use a bitcast to convert (e.g. two differing 6170 // vector types). 6171 MVT RegVT = *PhysReg.second->vt_begin(); 6172 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6173 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6174 RegVT, OpInfo.CallOperand); 6175 OpInfo.ConstraintVT = RegVT; 6176 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6177 // If the input is a FP value and we want it in FP registers, do a 6178 // bitcast to the corresponding integer type. This turns an f64 value 6179 // into i64, which can be passed with two i32 values on a 32-bit 6180 // machine. 6181 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6182 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6183 RegVT, OpInfo.CallOperand); 6184 OpInfo.ConstraintVT = RegVT; 6185 } 6186 } 6187 6188 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6189 } 6190 6191 MVT RegVT; 6192 EVT ValueVT = OpInfo.ConstraintVT; 6193 6194 // If this is a constraint for a specific physical register, like {r17}, 6195 // assign it now. 6196 if (unsigned AssignedReg = PhysReg.first) { 6197 const TargetRegisterClass *RC = PhysReg.second; 6198 if (OpInfo.ConstraintVT == MVT::Other) 6199 ValueVT = *RC->vt_begin(); 6200 6201 // Get the actual register value type. This is important, because the user 6202 // may have asked for (e.g.) the AX register in i32 type. We need to 6203 // remember that AX is actually i16 to get the right extension. 6204 RegVT = *RC->vt_begin(); 6205 6206 // This is a explicit reference to a physical register. 6207 Regs.push_back(AssignedReg); 6208 6209 // If this is an expanded reference, add the rest of the regs to Regs. 6210 if (NumRegs != 1) { 6211 TargetRegisterClass::iterator I = RC->begin(); 6212 for (; *I != AssignedReg; ++I) 6213 assert(I != RC->end() && "Didn't find reg!"); 6214 6215 // Already added the first reg. 6216 --NumRegs; ++I; 6217 for (; NumRegs; --NumRegs, ++I) { 6218 assert(I != RC->end() && "Ran out of registers to allocate!"); 6219 Regs.push_back(*I); 6220 } 6221 } 6222 6223 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6224 return; 6225 } 6226 6227 // Otherwise, if this was a reference to an LLVM register class, create vregs 6228 // for this reference. 6229 if (const TargetRegisterClass *RC = PhysReg.second) { 6230 RegVT = *RC->vt_begin(); 6231 if (OpInfo.ConstraintVT == MVT::Other) 6232 ValueVT = RegVT; 6233 6234 // Create the appropriate number of virtual registers. 6235 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6236 for (; NumRegs; --NumRegs) 6237 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6238 6239 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6240 return; 6241 } 6242 6243 // Otherwise, we couldn't allocate enough registers for this. 6244 } 6245 6246 /// visitInlineAsm - Handle a call to an InlineAsm object. 6247 /// 6248 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6249 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6250 6251 /// ConstraintOperands - Information about all of the constraints. 6252 SDISelAsmOperandInfoVector ConstraintOperands; 6253 6254 const TargetLowering *TLI = TM.getTargetLowering(); 6255 TargetLowering::AsmOperandInfoVector 6256 TargetConstraints = TLI->ParseConstraints(CS); 6257 6258 bool hasMemory = false; 6259 6260 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6261 unsigned ResNo = 0; // ResNo - The result number of the next output. 6262 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6263 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6264 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6265 6266 MVT OpVT = MVT::Other; 6267 6268 // Compute the value type for each operand. 6269 switch (OpInfo.Type) { 6270 case InlineAsm::isOutput: 6271 // Indirect outputs just consume an argument. 6272 if (OpInfo.isIndirect) { 6273 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6274 break; 6275 } 6276 6277 // The return value of the call is this value. As such, there is no 6278 // corresponding argument. 6279 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6280 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6281 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6282 } else { 6283 assert(ResNo == 0 && "Asm only has one result!"); 6284 OpVT = TLI->getSimpleValueType(CS.getType()); 6285 } 6286 ++ResNo; 6287 break; 6288 case InlineAsm::isInput: 6289 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6290 break; 6291 case InlineAsm::isClobber: 6292 // Nothing to do. 6293 break; 6294 } 6295 6296 // If this is an input or an indirect output, process the call argument. 6297 // BasicBlocks are labels, currently appearing only in asm's. 6298 if (OpInfo.CallOperandVal) { 6299 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6300 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6301 } else { 6302 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6303 } 6304 6305 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6306 getSimpleVT(); 6307 } 6308 6309 OpInfo.ConstraintVT = OpVT; 6310 6311 // Indirect operand accesses access memory. 6312 if (OpInfo.isIndirect) 6313 hasMemory = true; 6314 else { 6315 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6316 TargetLowering::ConstraintType 6317 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6318 if (CType == TargetLowering::C_Memory) { 6319 hasMemory = true; 6320 break; 6321 } 6322 } 6323 } 6324 } 6325 6326 SDValue Chain, Flag; 6327 6328 // We won't need to flush pending loads if this asm doesn't touch 6329 // memory and is nonvolatile. 6330 if (hasMemory || IA->hasSideEffects()) 6331 Chain = getRoot(); 6332 else 6333 Chain = DAG.getRoot(); 6334 6335 // Second pass over the constraints: compute which constraint option to use 6336 // and assign registers to constraints that want a specific physreg. 6337 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6338 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6339 6340 // If this is an output operand with a matching input operand, look up the 6341 // matching input. If their types mismatch, e.g. one is an integer, the 6342 // other is floating point, or their sizes are different, flag it as an 6343 // error. 6344 if (OpInfo.hasMatchingInput()) { 6345 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6346 6347 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6348 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6349 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6350 OpInfo.ConstraintVT); 6351 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6352 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6353 Input.ConstraintVT); 6354 if ((OpInfo.ConstraintVT.isInteger() != 6355 Input.ConstraintVT.isInteger()) || 6356 (MatchRC.second != InputRC.second)) { 6357 report_fatal_error("Unsupported asm: input constraint" 6358 " with a matching output constraint of" 6359 " incompatible type!"); 6360 } 6361 Input.ConstraintVT = OpInfo.ConstraintVT; 6362 } 6363 } 6364 6365 // Compute the constraint code and ConstraintType to use. 6366 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6367 6368 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6369 OpInfo.Type == InlineAsm::isClobber) 6370 continue; 6371 6372 // If this is a memory input, and if the operand is not indirect, do what we 6373 // need to to provide an address for the memory input. 6374 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6375 !OpInfo.isIndirect) { 6376 assert((OpInfo.isMultipleAlternative || 6377 (OpInfo.Type == InlineAsm::isInput)) && 6378 "Can only indirectify direct input operands!"); 6379 6380 // Memory operands really want the address of the value. If we don't have 6381 // an indirect input, put it in the constpool if we can, otherwise spill 6382 // it to a stack slot. 6383 // TODO: This isn't quite right. We need to handle these according to 6384 // the addressing mode that the constraint wants. Also, this may take 6385 // an additional register for the computation and we don't want that 6386 // either. 6387 6388 // If the operand is a float, integer, or vector constant, spill to a 6389 // constant pool entry to get its address. 6390 const Value *OpVal = OpInfo.CallOperandVal; 6391 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6392 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6393 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6394 TLI->getPointerTy()); 6395 } else { 6396 // Otherwise, create a stack slot and emit a store to it before the 6397 // asm. 6398 Type *Ty = OpVal->getType(); 6399 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6400 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6401 MachineFunction &MF = DAG.getMachineFunction(); 6402 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6403 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6404 Chain = DAG.getStore(Chain, getCurSDLoc(), 6405 OpInfo.CallOperand, StackSlot, 6406 MachinePointerInfo::getFixedStack(SSFI), 6407 false, false, 0); 6408 OpInfo.CallOperand = StackSlot; 6409 } 6410 6411 // There is no longer a Value* corresponding to this operand. 6412 OpInfo.CallOperandVal = nullptr; 6413 6414 // It is now an indirect operand. 6415 OpInfo.isIndirect = true; 6416 } 6417 6418 // If this constraint is for a specific register, allocate it before 6419 // anything else. 6420 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6421 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6422 } 6423 6424 // Second pass - Loop over all of the operands, assigning virtual or physregs 6425 // to register class operands. 6426 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6427 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6428 6429 // C_Register operands have already been allocated, Other/Memory don't need 6430 // to be. 6431 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6432 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6433 } 6434 6435 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6436 std::vector<SDValue> AsmNodeOperands; 6437 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6438 AsmNodeOperands.push_back( 6439 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6440 TLI->getPointerTy())); 6441 6442 // If we have a !srcloc metadata node associated with it, we want to attach 6443 // this to the ultimately generated inline asm machineinstr. To do this, we 6444 // pass in the third operand as this (potentially null) inline asm MDNode. 6445 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6446 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6447 6448 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6449 // bits as operand 3. 6450 unsigned ExtraInfo = 0; 6451 if (IA->hasSideEffects()) 6452 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6453 if (IA->isAlignStack()) 6454 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6455 // Set the asm dialect. 6456 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6457 6458 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6459 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6460 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6461 6462 // Compute the constraint code and ConstraintType to use. 6463 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6464 6465 // Ideally, we would only check against memory constraints. However, the 6466 // meaning of an other constraint can be target-specific and we can't easily 6467 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6468 // for other constriants as well. 6469 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6470 OpInfo.ConstraintType == TargetLowering::C_Other) { 6471 if (OpInfo.Type == InlineAsm::isInput) 6472 ExtraInfo |= InlineAsm::Extra_MayLoad; 6473 else if (OpInfo.Type == InlineAsm::isOutput) 6474 ExtraInfo |= InlineAsm::Extra_MayStore; 6475 else if (OpInfo.Type == InlineAsm::isClobber) 6476 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6477 } 6478 } 6479 6480 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6481 TLI->getPointerTy())); 6482 6483 // Loop over all of the inputs, copying the operand values into the 6484 // appropriate registers and processing the output regs. 6485 RegsForValue RetValRegs; 6486 6487 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6488 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6489 6490 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6491 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6492 6493 switch (OpInfo.Type) { 6494 case InlineAsm::isOutput: { 6495 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6496 OpInfo.ConstraintType != TargetLowering::C_Register) { 6497 // Memory output, or 'other' output (e.g. 'X' constraint). 6498 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6499 6500 // Add information to the INLINEASM node to know about this output. 6501 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6502 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6503 TLI->getPointerTy())); 6504 AsmNodeOperands.push_back(OpInfo.CallOperand); 6505 break; 6506 } 6507 6508 // Otherwise, this is a register or register class output. 6509 6510 // Copy the output from the appropriate register. Find a register that 6511 // we can use. 6512 if (OpInfo.AssignedRegs.Regs.empty()) { 6513 LLVMContext &Ctx = *DAG.getContext(); 6514 Ctx.emitError(CS.getInstruction(), 6515 "couldn't allocate output register for constraint '" + 6516 Twine(OpInfo.ConstraintCode) + "'"); 6517 return; 6518 } 6519 6520 // If this is an indirect operand, store through the pointer after the 6521 // asm. 6522 if (OpInfo.isIndirect) { 6523 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6524 OpInfo.CallOperandVal)); 6525 } else { 6526 // This is the result value of the call. 6527 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6528 // Concatenate this output onto the outputs list. 6529 RetValRegs.append(OpInfo.AssignedRegs); 6530 } 6531 6532 // Add information to the INLINEASM node to know that this register is 6533 // set. 6534 OpInfo.AssignedRegs 6535 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6536 ? InlineAsm::Kind_RegDefEarlyClobber 6537 : InlineAsm::Kind_RegDef, 6538 false, 0, DAG, AsmNodeOperands); 6539 break; 6540 } 6541 case InlineAsm::isInput: { 6542 SDValue InOperandVal = OpInfo.CallOperand; 6543 6544 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6545 // If this is required to match an output register we have already set, 6546 // just use its register. 6547 unsigned OperandNo = OpInfo.getMatchedOperand(); 6548 6549 // Scan until we find the definition we already emitted of this operand. 6550 // When we find it, create a RegsForValue operand. 6551 unsigned CurOp = InlineAsm::Op_FirstOperand; 6552 for (; OperandNo; --OperandNo) { 6553 // Advance to the next operand. 6554 unsigned OpFlag = 6555 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6556 assert((InlineAsm::isRegDefKind(OpFlag) || 6557 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6558 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6559 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6560 } 6561 6562 unsigned OpFlag = 6563 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6564 if (InlineAsm::isRegDefKind(OpFlag) || 6565 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6566 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6567 if (OpInfo.isIndirect) { 6568 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6569 LLVMContext &Ctx = *DAG.getContext(); 6570 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6571 " don't know how to handle tied " 6572 "indirect register inputs"); 6573 return; 6574 } 6575 6576 RegsForValue MatchedRegs; 6577 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6578 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6579 MatchedRegs.RegVTs.push_back(RegVT); 6580 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6581 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6582 i != e; ++i) { 6583 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6584 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6585 else { 6586 LLVMContext &Ctx = *DAG.getContext(); 6587 Ctx.emitError(CS.getInstruction(), 6588 "inline asm error: This value" 6589 " type register class is not natively supported!"); 6590 return; 6591 } 6592 } 6593 // Use the produced MatchedRegs object to 6594 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6595 Chain, &Flag, CS.getInstruction()); 6596 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6597 true, OpInfo.getMatchedOperand(), 6598 DAG, AsmNodeOperands); 6599 break; 6600 } 6601 6602 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6603 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6604 "Unexpected number of operands"); 6605 // Add information to the INLINEASM node to know about this input. 6606 // See InlineAsm.h isUseOperandTiedToDef. 6607 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6608 OpInfo.getMatchedOperand()); 6609 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6610 TLI->getPointerTy())); 6611 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6612 break; 6613 } 6614 6615 // Treat indirect 'X' constraint as memory. 6616 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6617 OpInfo.isIndirect) 6618 OpInfo.ConstraintType = TargetLowering::C_Memory; 6619 6620 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6621 std::vector<SDValue> Ops; 6622 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6623 Ops, DAG); 6624 if (Ops.empty()) { 6625 LLVMContext &Ctx = *DAG.getContext(); 6626 Ctx.emitError(CS.getInstruction(), 6627 "invalid operand for inline asm constraint '" + 6628 Twine(OpInfo.ConstraintCode) + "'"); 6629 return; 6630 } 6631 6632 // Add information to the INLINEASM node to know about this input. 6633 unsigned ResOpType = 6634 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6635 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6636 TLI->getPointerTy())); 6637 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6638 break; 6639 } 6640 6641 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6642 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6643 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6644 "Memory operands expect pointer values"); 6645 6646 // Add information to the INLINEASM node to know about this input. 6647 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6648 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6649 TLI->getPointerTy())); 6650 AsmNodeOperands.push_back(InOperandVal); 6651 break; 6652 } 6653 6654 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6655 OpInfo.ConstraintType == TargetLowering::C_Register) && 6656 "Unknown constraint type!"); 6657 6658 // TODO: Support this. 6659 if (OpInfo.isIndirect) { 6660 LLVMContext &Ctx = *DAG.getContext(); 6661 Ctx.emitError(CS.getInstruction(), 6662 "Don't know how to handle indirect register inputs yet " 6663 "for constraint '" + 6664 Twine(OpInfo.ConstraintCode) + "'"); 6665 return; 6666 } 6667 6668 // Copy the input into the appropriate registers. 6669 if (OpInfo.AssignedRegs.Regs.empty()) { 6670 LLVMContext &Ctx = *DAG.getContext(); 6671 Ctx.emitError(CS.getInstruction(), 6672 "couldn't allocate input reg for constraint '" + 6673 Twine(OpInfo.ConstraintCode) + "'"); 6674 return; 6675 } 6676 6677 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6678 Chain, &Flag, CS.getInstruction()); 6679 6680 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6681 DAG, AsmNodeOperands); 6682 break; 6683 } 6684 case InlineAsm::isClobber: { 6685 // Add the clobbered value to the operand list, so that the register 6686 // allocator is aware that the physreg got clobbered. 6687 if (!OpInfo.AssignedRegs.Regs.empty()) 6688 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6689 false, 0, DAG, 6690 AsmNodeOperands); 6691 break; 6692 } 6693 } 6694 } 6695 6696 // Finish up input operands. Set the input chain and add the flag last. 6697 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6698 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6699 6700 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6701 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6702 Flag = Chain.getValue(1); 6703 6704 // If this asm returns a register value, copy the result from that register 6705 // and set it as the value of the call. 6706 if (!RetValRegs.Regs.empty()) { 6707 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6708 Chain, &Flag, CS.getInstruction()); 6709 6710 // FIXME: Why don't we do this for inline asms with MRVs? 6711 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6712 EVT ResultType = TLI->getValueType(CS.getType()); 6713 6714 // If any of the results of the inline asm is a vector, it may have the 6715 // wrong width/num elts. This can happen for register classes that can 6716 // contain multiple different value types. The preg or vreg allocated may 6717 // not have the same VT as was expected. Convert it to the right type 6718 // with bit_convert. 6719 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6720 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6721 ResultType, Val); 6722 6723 } else if (ResultType != Val.getValueType() && 6724 ResultType.isInteger() && Val.getValueType().isInteger()) { 6725 // If a result value was tied to an input value, the computed result may 6726 // have a wider width than the expected result. Extract the relevant 6727 // portion. 6728 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6729 } 6730 6731 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6732 } 6733 6734 setValue(CS.getInstruction(), Val); 6735 // Don't need to use this as a chain in this case. 6736 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6737 return; 6738 } 6739 6740 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6741 6742 // Process indirect outputs, first output all of the flagged copies out of 6743 // physregs. 6744 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6745 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6746 const Value *Ptr = IndirectStoresToEmit[i].second; 6747 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6748 Chain, &Flag, IA); 6749 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6750 } 6751 6752 // Emit the non-flagged stores from the physregs. 6753 SmallVector<SDValue, 8> OutChains; 6754 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6755 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6756 StoresToEmit[i].first, 6757 getValue(StoresToEmit[i].second), 6758 MachinePointerInfo(StoresToEmit[i].second), 6759 false, false, 0); 6760 OutChains.push_back(Val); 6761 } 6762 6763 if (!OutChains.empty()) 6764 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6765 6766 DAG.setRoot(Chain); 6767 } 6768 6769 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6770 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6771 MVT::Other, getRoot(), 6772 getValue(I.getArgOperand(0)), 6773 DAG.getSrcValue(I.getArgOperand(0)))); 6774 } 6775 6776 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6777 const TargetLowering *TLI = TM.getTargetLowering(); 6778 const DataLayout &DL = *TLI->getDataLayout(); 6779 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6780 getRoot(), getValue(I.getOperand(0)), 6781 DAG.getSrcValue(I.getOperand(0)), 6782 DL.getABITypeAlignment(I.getType())); 6783 setValue(&I, V); 6784 DAG.setRoot(V.getValue(1)); 6785 } 6786 6787 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6788 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6789 MVT::Other, getRoot(), 6790 getValue(I.getArgOperand(0)), 6791 DAG.getSrcValue(I.getArgOperand(0)))); 6792 } 6793 6794 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6795 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6796 MVT::Other, getRoot(), 6797 getValue(I.getArgOperand(0)), 6798 getValue(I.getArgOperand(1)), 6799 DAG.getSrcValue(I.getArgOperand(0)), 6800 DAG.getSrcValue(I.getArgOperand(1)))); 6801 } 6802 6803 /// \brief Lower an argument list according to the target calling convention. 6804 /// 6805 /// \return A tuple of <return-value, token-chain> 6806 /// 6807 /// This is a helper for lowering intrinsics that follow a target calling 6808 /// convention or require stack pointer adjustment. Only a subset of the 6809 /// intrinsic's operands need to participate in the calling convention. 6810 std::pair<SDValue, SDValue> 6811 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6812 unsigned NumArgs, SDValue Callee, 6813 bool useVoidTy) { 6814 TargetLowering::ArgListTy Args; 6815 Args.reserve(NumArgs); 6816 6817 // Populate the argument list. 6818 // Attributes for args start at offset 1, after the return attribute. 6819 ImmutableCallSite CS(&CI); 6820 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6821 ArgI != ArgE; ++ArgI) { 6822 const Value *V = CI.getOperand(ArgI); 6823 6824 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6825 6826 TargetLowering::ArgListEntry Entry; 6827 Entry.Node = getValue(V); 6828 Entry.Ty = V->getType(); 6829 Entry.setAttributes(&CS, AttrI); 6830 Args.push_back(Entry); 6831 } 6832 6833 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6834 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6835 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6836 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6837 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6838 6839 const TargetLowering *TLI = TM.getTargetLowering(); 6840 return TLI->LowerCallTo(CLI); 6841 } 6842 6843 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6844 /// or patchpoint target node's operand list. 6845 /// 6846 /// Constants are converted to TargetConstants purely as an optimization to 6847 /// avoid constant materialization and register allocation. 6848 /// 6849 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6850 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6851 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6852 /// address materialization and register allocation, but may also be required 6853 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6854 /// alloca in the entry block, then the runtime may assume that the alloca's 6855 /// StackMap location can be read immediately after compilation and that the 6856 /// location is valid at any point during execution (this is similar to the 6857 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6858 /// only available in a register, then the runtime would need to trap when 6859 /// execution reaches the StackMap in order to read the alloca's location. 6860 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6861 SmallVectorImpl<SDValue> &Ops, 6862 SelectionDAGBuilder &Builder) { 6863 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6864 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6865 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6866 Ops.push_back( 6867 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6868 Ops.push_back( 6869 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6870 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6871 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6872 Ops.push_back( 6873 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6874 } else 6875 Ops.push_back(OpVal); 6876 } 6877 } 6878 6879 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6880 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6881 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6882 // [live variables...]) 6883 6884 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6885 6886 SDValue Chain, InFlag, Callee, NullPtr; 6887 SmallVector<SDValue, 32> Ops; 6888 6889 SDLoc DL = getCurSDLoc(); 6890 Callee = getValue(CI.getCalledValue()); 6891 NullPtr = DAG.getIntPtrConstant(0, true); 6892 6893 // The stackmap intrinsic only records the live variables (the arguemnts 6894 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6895 // intrinsic, this won't be lowered to a function call. This means we don't 6896 // have to worry about calling conventions and target specific lowering code. 6897 // Instead we perform the call lowering right here. 6898 // 6899 // chain, flag = CALLSEQ_START(chain, 0) 6900 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6901 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6902 // 6903 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6904 InFlag = Chain.getValue(1); 6905 6906 // Add the <id> and <numBytes> constants. 6907 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6908 Ops.push_back(DAG.getTargetConstant( 6909 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6910 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6911 Ops.push_back(DAG.getTargetConstant( 6912 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6913 6914 // Push live variables for the stack map. 6915 addStackMapLiveVars(CI, 2, Ops, *this); 6916 6917 // We are not pushing any register mask info here on the operands list, 6918 // because the stackmap doesn't clobber anything. 6919 6920 // Push the chain and the glue flag. 6921 Ops.push_back(Chain); 6922 Ops.push_back(InFlag); 6923 6924 // Create the STACKMAP node. 6925 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6926 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6927 Chain = SDValue(SM, 0); 6928 InFlag = Chain.getValue(1); 6929 6930 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6931 6932 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6933 6934 // Set the root to the target-lowered call chain. 6935 DAG.setRoot(Chain); 6936 6937 // Inform the Frame Information that we have a stackmap in this function. 6938 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6939 } 6940 6941 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6942 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6943 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6944 // i32 <numBytes>, 6945 // i8* <target>, 6946 // i32 <numArgs>, 6947 // [Args...], 6948 // [live variables...]) 6949 6950 CallingConv::ID CC = CI.getCallingConv(); 6951 bool isAnyRegCC = CC == CallingConv::AnyReg; 6952 bool hasDef = !CI.getType()->isVoidTy(); 6953 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6954 6955 // Get the real number of arguments participating in the call <numArgs> 6956 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6957 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6958 6959 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6960 // Intrinsics include all meta-operands up to but not including CC. 6961 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6962 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6963 "Not enough arguments provided to the patchpoint intrinsic"); 6964 6965 // For AnyRegCC the arguments are lowered later on manually. 6966 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6967 std::pair<SDValue, SDValue> Result = 6968 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6969 6970 // Set the root to the target-lowered call chain. 6971 SDValue Chain = Result.second; 6972 DAG.setRoot(Chain); 6973 6974 SDNode *CallEnd = Chain.getNode(); 6975 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6976 CallEnd = CallEnd->getOperand(0).getNode(); 6977 6978 /// Get a call instruction from the call sequence chain. 6979 /// Tail calls are not allowed. 6980 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6981 "Expected a callseq node."); 6982 SDNode *Call = CallEnd->getOperand(0).getNode(); 6983 bool hasGlue = Call->getGluedNode(); 6984 6985 // Replace the target specific call node with the patchable intrinsic. 6986 SmallVector<SDValue, 8> Ops; 6987 6988 // Add the <id> and <numBytes> constants. 6989 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6990 Ops.push_back(DAG.getTargetConstant( 6991 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6992 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6993 Ops.push_back(DAG.getTargetConstant( 6994 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6995 6996 // Assume that the Callee is a constant address. 6997 // FIXME: handle function symbols in the future. 6998 Ops.push_back( 6999 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7000 /*isTarget=*/true)); 7001 7002 // Adjust <numArgs> to account for any arguments that have been passed on the 7003 // stack instead. 7004 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7005 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7006 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7007 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7008 7009 // Add the calling convention 7010 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7011 7012 // Add the arguments we omitted previously. The register allocator should 7013 // place these in any free register. 7014 if (isAnyRegCC) 7015 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7016 Ops.push_back(getValue(CI.getArgOperand(i))); 7017 7018 // Push the arguments from the call instruction up to the register mask. 7019 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7020 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7021 Ops.push_back(*i); 7022 7023 // Push live variables for the stack map. 7024 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7025 7026 // Push the register mask info. 7027 if (hasGlue) 7028 Ops.push_back(*(Call->op_end()-2)); 7029 else 7030 Ops.push_back(*(Call->op_end()-1)); 7031 7032 // Push the chain (this is originally the first operand of the call, but 7033 // becomes now the last or second to last operand). 7034 Ops.push_back(*(Call->op_begin())); 7035 7036 // Push the glue flag (last operand). 7037 if (hasGlue) 7038 Ops.push_back(*(Call->op_end()-1)); 7039 7040 SDVTList NodeTys; 7041 if (isAnyRegCC && hasDef) { 7042 // Create the return types based on the intrinsic definition 7043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7044 SmallVector<EVT, 3> ValueVTs; 7045 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7046 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7047 7048 // There is always a chain and a glue type at the end 7049 ValueVTs.push_back(MVT::Other); 7050 ValueVTs.push_back(MVT::Glue); 7051 NodeTys = DAG.getVTList(ValueVTs); 7052 } else 7053 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7054 7055 // Replace the target specific call node with a PATCHPOINT node. 7056 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7057 getCurSDLoc(), NodeTys, Ops); 7058 7059 // Update the NodeMap. 7060 if (hasDef) { 7061 if (isAnyRegCC) 7062 setValue(&CI, SDValue(MN, 0)); 7063 else 7064 setValue(&CI, Result.first); 7065 } 7066 7067 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7068 // call sequence. Furthermore the location of the chain and glue can change 7069 // when the AnyReg calling convention is used and the intrinsic returns a 7070 // value. 7071 if (isAnyRegCC && hasDef) { 7072 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7073 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7074 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7075 } else 7076 DAG.ReplaceAllUsesWith(Call, MN); 7077 DAG.DeleteNode(Call); 7078 7079 // Inform the Frame Information that we have a patchpoint in this function. 7080 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7081 } 7082 7083 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7084 /// implementation, which just calls LowerCall. 7085 /// FIXME: When all targets are 7086 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7087 std::pair<SDValue, SDValue> 7088 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7089 // Handle the incoming return values from the call. 7090 CLI.Ins.clear(); 7091 SmallVector<EVT, 4> RetTys; 7092 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7093 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7094 EVT VT = RetTys[I]; 7095 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7096 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7097 for (unsigned i = 0; i != NumRegs; ++i) { 7098 ISD::InputArg MyFlags; 7099 MyFlags.VT = RegisterVT; 7100 MyFlags.ArgVT = VT; 7101 MyFlags.Used = CLI.IsReturnValueUsed; 7102 if (CLI.RetSExt) 7103 MyFlags.Flags.setSExt(); 7104 if (CLI.RetZExt) 7105 MyFlags.Flags.setZExt(); 7106 if (CLI.IsInReg) 7107 MyFlags.Flags.setInReg(); 7108 CLI.Ins.push_back(MyFlags); 7109 } 7110 } 7111 7112 // Handle all of the outgoing arguments. 7113 CLI.Outs.clear(); 7114 CLI.OutVals.clear(); 7115 ArgListTy &Args = CLI.Args; 7116 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7117 SmallVector<EVT, 4> ValueVTs; 7118 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7119 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7120 Value != NumValues; ++Value) { 7121 EVT VT = ValueVTs[Value]; 7122 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7123 SDValue Op = SDValue(Args[i].Node.getNode(), 7124 Args[i].Node.getResNo() + Value); 7125 ISD::ArgFlagsTy Flags; 7126 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7127 7128 if (Args[i].isZExt) 7129 Flags.setZExt(); 7130 if (Args[i].isSExt) 7131 Flags.setSExt(); 7132 if (Args[i].isInReg) 7133 Flags.setInReg(); 7134 if (Args[i].isSRet) 7135 Flags.setSRet(); 7136 if (Args[i].isByVal) 7137 Flags.setByVal(); 7138 if (Args[i].isInAlloca) { 7139 Flags.setInAlloca(); 7140 // Set the byval flag for CCAssignFn callbacks that don't know about 7141 // inalloca. This way we can know how many bytes we should've allocated 7142 // and how many bytes a callee cleanup function will pop. If we port 7143 // inalloca to more targets, we'll have to add custom inalloca handling 7144 // in the various CC lowering callbacks. 7145 Flags.setByVal(); 7146 } 7147 if (Args[i].isByVal || Args[i].isInAlloca) { 7148 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7149 Type *ElementTy = Ty->getElementType(); 7150 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7151 // For ByVal, alignment should come from FE. BE will guess if this 7152 // info is not there but there are cases it cannot get right. 7153 unsigned FrameAlign; 7154 if (Args[i].Alignment) 7155 FrameAlign = Args[i].Alignment; 7156 else 7157 FrameAlign = getByValTypeAlignment(ElementTy); 7158 Flags.setByValAlign(FrameAlign); 7159 } 7160 if (Args[i].isNest) 7161 Flags.setNest(); 7162 Flags.setOrigAlign(OriginalAlignment); 7163 7164 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7165 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7166 SmallVector<SDValue, 4> Parts(NumParts); 7167 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7168 7169 if (Args[i].isSExt) 7170 ExtendKind = ISD::SIGN_EXTEND; 7171 else if (Args[i].isZExt) 7172 ExtendKind = ISD::ZERO_EXTEND; 7173 7174 // Conservatively only handle 'returned' on non-vectors for now 7175 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7176 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7177 "unexpected use of 'returned'"); 7178 // Before passing 'returned' to the target lowering code, ensure that 7179 // either the register MVT and the actual EVT are the same size or that 7180 // the return value and argument are extended in the same way; in these 7181 // cases it's safe to pass the argument register value unchanged as the 7182 // return register value (although it's at the target's option whether 7183 // to do so) 7184 // TODO: allow code generation to take advantage of partially preserved 7185 // registers rather than clobbering the entire register when the 7186 // parameter extension method is not compatible with the return 7187 // extension method 7188 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7189 (ExtendKind != ISD::ANY_EXTEND && 7190 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7191 Flags.setReturned(); 7192 } 7193 7194 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7195 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7196 7197 for (unsigned j = 0; j != NumParts; ++j) { 7198 // if it isn't first piece, alignment must be 1 7199 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7200 i < CLI.NumFixedArgs, 7201 i, j*Parts[j].getValueType().getStoreSize()); 7202 if (NumParts > 1 && j == 0) 7203 MyFlags.Flags.setSplit(); 7204 else if (j != 0) 7205 MyFlags.Flags.setOrigAlign(1); 7206 7207 CLI.Outs.push_back(MyFlags); 7208 CLI.OutVals.push_back(Parts[j]); 7209 } 7210 } 7211 } 7212 7213 SmallVector<SDValue, 4> InVals; 7214 CLI.Chain = LowerCall(CLI, InVals); 7215 7216 // Verify that the target's LowerCall behaved as expected. 7217 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7218 "LowerCall didn't return a valid chain!"); 7219 assert((!CLI.IsTailCall || InVals.empty()) && 7220 "LowerCall emitted a return value for a tail call!"); 7221 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7222 "LowerCall didn't emit the correct number of values!"); 7223 7224 // For a tail call, the return value is merely live-out and there aren't 7225 // any nodes in the DAG representing it. Return a special value to 7226 // indicate that a tail call has been emitted and no more Instructions 7227 // should be processed in the current block. 7228 if (CLI.IsTailCall) { 7229 CLI.DAG.setRoot(CLI.Chain); 7230 return std::make_pair(SDValue(), SDValue()); 7231 } 7232 7233 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7234 assert(InVals[i].getNode() && 7235 "LowerCall emitted a null value!"); 7236 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7237 "LowerCall emitted a value with the wrong type!"); 7238 }); 7239 7240 // Collect the legal value parts into potentially illegal values 7241 // that correspond to the original function's return values. 7242 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7243 if (CLI.RetSExt) 7244 AssertOp = ISD::AssertSext; 7245 else if (CLI.RetZExt) 7246 AssertOp = ISD::AssertZext; 7247 SmallVector<SDValue, 4> ReturnValues; 7248 unsigned CurReg = 0; 7249 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7250 EVT VT = RetTys[I]; 7251 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7252 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7253 7254 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7255 NumRegs, RegisterVT, VT, nullptr, 7256 AssertOp)); 7257 CurReg += NumRegs; 7258 } 7259 7260 // For a function returning void, there is no return value. We can't create 7261 // such a node, so we just return a null return value in that case. In 7262 // that case, nothing will actually look at the value. 7263 if (ReturnValues.empty()) 7264 return std::make_pair(SDValue(), CLI.Chain); 7265 7266 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7267 CLI.DAG.getVTList(RetTys), ReturnValues); 7268 return std::make_pair(Res, CLI.Chain); 7269 } 7270 7271 void TargetLowering::LowerOperationWrapper(SDNode *N, 7272 SmallVectorImpl<SDValue> &Results, 7273 SelectionDAG &DAG) const { 7274 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7275 if (Res.getNode()) 7276 Results.push_back(Res); 7277 } 7278 7279 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7280 llvm_unreachable("LowerOperation not implemented for this target!"); 7281 } 7282 7283 void 7284 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7285 SDValue Op = getNonRegisterValue(V); 7286 assert((Op.getOpcode() != ISD::CopyFromReg || 7287 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7288 "Copy from a reg to the same reg!"); 7289 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7290 7291 const TargetLowering *TLI = TM.getTargetLowering(); 7292 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7293 SDValue Chain = DAG.getEntryNode(); 7294 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7295 PendingExports.push_back(Chain); 7296 } 7297 7298 #include "llvm/CodeGen/SelectionDAGISel.h" 7299 7300 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7301 /// entry block, return true. This includes arguments used by switches, since 7302 /// the switch may expand into multiple basic blocks. 7303 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7304 // With FastISel active, we may be splitting blocks, so force creation 7305 // of virtual registers for all non-dead arguments. 7306 if (FastISel) 7307 return A->use_empty(); 7308 7309 const BasicBlock *Entry = A->getParent()->begin(); 7310 for (const User *U : A->users()) 7311 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7312 return false; // Use not in entry block. 7313 7314 return true; 7315 } 7316 7317 void SelectionDAGISel::LowerArguments(const Function &F) { 7318 SelectionDAG &DAG = SDB->DAG; 7319 SDLoc dl = SDB->getCurSDLoc(); 7320 const TargetLowering *TLI = getTargetLowering(); 7321 const DataLayout *DL = TLI->getDataLayout(); 7322 SmallVector<ISD::InputArg, 16> Ins; 7323 7324 if (!FuncInfo->CanLowerReturn) { 7325 // Put in an sret pointer parameter before all the other parameters. 7326 SmallVector<EVT, 1> ValueVTs; 7327 ComputeValueVTs(*getTargetLowering(), 7328 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7329 7330 // NOTE: Assuming that a pointer will never break down to more than one VT 7331 // or one register. 7332 ISD::ArgFlagsTy Flags; 7333 Flags.setSRet(); 7334 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7335 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7336 Ins.push_back(RetArg); 7337 } 7338 7339 // Set up the incoming argument description vector. 7340 unsigned Idx = 1; 7341 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7342 I != E; ++I, ++Idx) { 7343 SmallVector<EVT, 4> ValueVTs; 7344 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7345 bool isArgValueUsed = !I->use_empty(); 7346 unsigned PartBase = 0; 7347 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7348 Value != NumValues; ++Value) { 7349 EVT VT = ValueVTs[Value]; 7350 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7351 ISD::ArgFlagsTy Flags; 7352 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7353 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7355 Flags.setZExt(); 7356 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7357 Flags.setSExt(); 7358 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7359 Flags.setInReg(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7361 Flags.setSRet(); 7362 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7363 Flags.setByVal(); 7364 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7365 Flags.setInAlloca(); 7366 // Set the byval flag for CCAssignFn callbacks that don't know about 7367 // inalloca. This way we can know how many bytes we should've allocated 7368 // and how many bytes a callee cleanup function will pop. If we port 7369 // inalloca to more targets, we'll have to add custom inalloca handling 7370 // in the various CC lowering callbacks. 7371 Flags.setByVal(); 7372 } 7373 if (Flags.isByVal() || Flags.isInAlloca()) { 7374 PointerType *Ty = cast<PointerType>(I->getType()); 7375 Type *ElementTy = Ty->getElementType(); 7376 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7377 // For ByVal, alignment should be passed from FE. BE will guess if 7378 // this info is not there but there are cases it cannot get right. 7379 unsigned FrameAlign; 7380 if (F.getParamAlignment(Idx)) 7381 FrameAlign = F.getParamAlignment(Idx); 7382 else 7383 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7384 Flags.setByValAlign(FrameAlign); 7385 } 7386 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7387 Flags.setNest(); 7388 Flags.setOrigAlign(OriginalAlignment); 7389 7390 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7391 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7392 for (unsigned i = 0; i != NumRegs; ++i) { 7393 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7394 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7395 if (NumRegs > 1 && i == 0) 7396 MyFlags.Flags.setSplit(); 7397 // if it isn't first piece, alignment must be 1 7398 else if (i > 0) 7399 MyFlags.Flags.setOrigAlign(1); 7400 Ins.push_back(MyFlags); 7401 } 7402 PartBase += VT.getStoreSize(); 7403 } 7404 } 7405 7406 // Call the target to set up the argument values. 7407 SmallVector<SDValue, 8> InVals; 7408 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7409 F.isVarArg(), Ins, 7410 dl, DAG, InVals); 7411 7412 // Verify that the target's LowerFormalArguments behaved as expected. 7413 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7414 "LowerFormalArguments didn't return a valid chain!"); 7415 assert(InVals.size() == Ins.size() && 7416 "LowerFormalArguments didn't emit the correct number of values!"); 7417 DEBUG({ 7418 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7419 assert(InVals[i].getNode() && 7420 "LowerFormalArguments emitted a null value!"); 7421 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7422 "LowerFormalArguments emitted a value with the wrong type!"); 7423 } 7424 }); 7425 7426 // Update the DAG with the new chain value resulting from argument lowering. 7427 DAG.setRoot(NewRoot); 7428 7429 // Set up the argument values. 7430 unsigned i = 0; 7431 Idx = 1; 7432 if (!FuncInfo->CanLowerReturn) { 7433 // Create a virtual register for the sret pointer, and put in a copy 7434 // from the sret argument into it. 7435 SmallVector<EVT, 1> ValueVTs; 7436 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7437 MVT VT = ValueVTs[0].getSimpleVT(); 7438 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7439 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7440 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7441 RegVT, VT, nullptr, AssertOp); 7442 7443 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7444 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7445 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7446 FuncInfo->DemoteRegister = SRetReg; 7447 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7448 SRetReg, ArgValue); 7449 DAG.setRoot(NewRoot); 7450 7451 // i indexes lowered arguments. Bump it past the hidden sret argument. 7452 // Idx indexes LLVM arguments. Don't touch it. 7453 ++i; 7454 } 7455 7456 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7457 ++I, ++Idx) { 7458 SmallVector<SDValue, 4> ArgValues; 7459 SmallVector<EVT, 4> ValueVTs; 7460 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7461 unsigned NumValues = ValueVTs.size(); 7462 7463 // If this argument is unused then remember its value. It is used to generate 7464 // debugging information. 7465 if (I->use_empty() && NumValues) { 7466 SDB->setUnusedArgValue(I, InVals[i]); 7467 7468 // Also remember any frame index for use in FastISel. 7469 if (FrameIndexSDNode *FI = 7470 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7471 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7472 } 7473 7474 for (unsigned Val = 0; Val != NumValues; ++Val) { 7475 EVT VT = ValueVTs[Val]; 7476 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7477 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7478 7479 if (!I->use_empty()) { 7480 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7481 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7482 AssertOp = ISD::AssertSext; 7483 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7484 AssertOp = ISD::AssertZext; 7485 7486 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7487 NumParts, PartVT, VT, 7488 nullptr, AssertOp)); 7489 } 7490 7491 i += NumParts; 7492 } 7493 7494 // We don't need to do anything else for unused arguments. 7495 if (ArgValues.empty()) 7496 continue; 7497 7498 // Note down frame index. 7499 if (FrameIndexSDNode *FI = 7500 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7501 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7502 7503 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7504 SDB->getCurSDLoc()); 7505 7506 SDB->setValue(I, Res); 7507 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7508 if (LoadSDNode *LNode = 7509 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7510 if (FrameIndexSDNode *FI = 7511 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7512 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7513 } 7514 7515 // If this argument is live outside of the entry block, insert a copy from 7516 // wherever we got it to the vreg that other BB's will reference it as. 7517 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7518 // If we can, though, try to skip creating an unnecessary vreg. 7519 // FIXME: This isn't very clean... it would be nice to make this more 7520 // general. It's also subtly incompatible with the hacks FastISel 7521 // uses with vregs. 7522 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7523 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7524 FuncInfo->ValueMap[I] = Reg; 7525 continue; 7526 } 7527 } 7528 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7529 FuncInfo->InitializeRegForValue(I); 7530 SDB->CopyToExportRegsIfNeeded(I); 7531 } 7532 } 7533 7534 assert(i == InVals.size() && "Argument register count mismatch!"); 7535 7536 // Finally, if the target has anything special to do, allow it to do so. 7537 // FIXME: this should insert code into the DAG! 7538 EmitFunctionEntryCode(); 7539 } 7540 7541 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7542 /// ensure constants are generated when needed. Remember the virtual registers 7543 /// that need to be added to the Machine PHI nodes as input. We cannot just 7544 /// directly add them, because expansion might result in multiple MBB's for one 7545 /// BB. As such, the start of the BB might correspond to a different MBB than 7546 /// the end. 7547 /// 7548 void 7549 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7550 const TerminatorInst *TI = LLVMBB->getTerminator(); 7551 7552 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7553 7554 // Check successor nodes' PHI nodes that expect a constant to be available 7555 // from this block. 7556 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7557 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7558 if (!isa<PHINode>(SuccBB->begin())) continue; 7559 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7560 7561 // If this terminator has multiple identical successors (common for 7562 // switches), only handle each succ once. 7563 if (!SuccsHandled.insert(SuccMBB)) continue; 7564 7565 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7566 7567 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7568 // nodes and Machine PHI nodes, but the incoming operands have not been 7569 // emitted yet. 7570 for (BasicBlock::const_iterator I = SuccBB->begin(); 7571 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7572 // Ignore dead phi's. 7573 if (PN->use_empty()) continue; 7574 7575 // Skip empty types 7576 if (PN->getType()->isEmptyTy()) 7577 continue; 7578 7579 unsigned Reg; 7580 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7581 7582 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7583 unsigned &RegOut = ConstantsOut[C]; 7584 if (RegOut == 0) { 7585 RegOut = FuncInfo.CreateRegs(C->getType()); 7586 CopyValueToVirtualRegister(C, RegOut); 7587 } 7588 Reg = RegOut; 7589 } else { 7590 DenseMap<const Value *, unsigned>::iterator I = 7591 FuncInfo.ValueMap.find(PHIOp); 7592 if (I != FuncInfo.ValueMap.end()) 7593 Reg = I->second; 7594 else { 7595 assert(isa<AllocaInst>(PHIOp) && 7596 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7597 "Didn't codegen value into a register!??"); 7598 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7599 CopyValueToVirtualRegister(PHIOp, Reg); 7600 } 7601 } 7602 7603 // Remember that this register needs to added to the machine PHI node as 7604 // the input for this MBB. 7605 SmallVector<EVT, 4> ValueVTs; 7606 const TargetLowering *TLI = TM.getTargetLowering(); 7607 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7608 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7609 EVT VT = ValueVTs[vti]; 7610 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7611 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7612 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7613 Reg += NumRegisters; 7614 } 7615 } 7616 } 7617 7618 ConstantsOut.clear(); 7619 } 7620 7621 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7622 /// is 0. 7623 MachineBasicBlock * 7624 SelectionDAGBuilder::StackProtectorDescriptor:: 7625 AddSuccessorMBB(const BasicBlock *BB, 7626 MachineBasicBlock *ParentMBB, 7627 MachineBasicBlock *SuccMBB) { 7628 // If SuccBB has not been created yet, create it. 7629 if (!SuccMBB) { 7630 MachineFunction *MF = ParentMBB->getParent(); 7631 MachineFunction::iterator BBI = ParentMBB; 7632 SuccMBB = MF->CreateMachineBasicBlock(BB); 7633 MF->insert(++BBI, SuccMBB); 7634 } 7635 // Add it as a successor of ParentMBB. 7636 ParentMBB->addSuccessor(SuccMBB); 7637 return SuccMBB; 7638 } 7639