1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 using namespace PatternMatch; 125 126 #define DEBUG_TYPE "isel" 127 128 /// LimitFloatPrecision - Generate low-precision inline sequences for 129 /// some float libcalls (6, 8 or 12 bits). 130 static unsigned LimitFloatPrecision; 131 132 static cl::opt<unsigned, true> 133 LimitFPPrecision("limit-float-precision", 134 cl::desc("Generate low-precision inline sequences " 135 "for some float libcalls"), 136 cl::location(LimitFloatPrecision), cl::Hidden, 137 cl::init(0)); 138 139 static cl::opt<unsigned> SwitchPeelThreshold( 140 "switch-peel-threshold", cl::Hidden, cl::init(66), 141 cl::desc("Set the case probability threshold for peeling the case from a " 142 "switch statement. A value greater than 100 will void this " 143 "optimization")); 144 145 // Limit the width of DAG chains. This is important in general to prevent 146 // DAG-based analysis from blowing up. For example, alias analysis and 147 // load clustering may not complete in reasonable time. It is difficult to 148 // recognize and avoid this situation within each individual analysis, and 149 // future analyses are likely to have the same behavior. Limiting DAG width is 150 // the safe approach and will be especially important with global DAGs. 151 // 152 // MaxParallelChains default is arbitrarily high to avoid affecting 153 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 154 // sequence over this should have been converted to llvm.memcpy by the 155 // frontend. It is easy to induce this behavior with .ll code such as: 156 // %buffer = alloca [4096 x i8] 157 // %data = load [4096 x i8]* %argPtr 158 // store [4096 x i8] %data, [4096 x i8]* %buffer 159 static const unsigned MaxParallelChains = 64; 160 161 // Return the calling convention if the Value passed requires ABI mangling as it 162 // is a parameter to a function or a return value from a function which is not 163 // an intrinsic. 164 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 165 if (auto *R = dyn_cast<ReturnInst>(V)) 166 return R->getParent()->getParent()->getCallingConv(); 167 168 if (auto *CI = dyn_cast<CallInst>(V)) { 169 const bool IsInlineAsm = CI->isInlineAsm(); 170 const bool IsIndirectFunctionCall = 171 !IsInlineAsm && !CI->getCalledFunction(); 172 173 // It is possible that the call instruction is an inline asm statement or an 174 // indirect function call in which case the return value of 175 // getCalledFunction() would be nullptr. 176 const bool IsInstrinsicCall = 177 !IsInlineAsm && !IsIndirectFunctionCall && 178 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 179 180 if (!IsInlineAsm && !IsInstrinsicCall) 181 return CI->getCallingConv(); 182 } 183 184 return None; 185 } 186 187 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 188 const SDValue *Parts, unsigned NumParts, 189 MVT PartVT, EVT ValueVT, const Value *V, 190 Optional<CallingConv::ID> CC); 191 192 /// getCopyFromParts - Create a value that contains the specified legal parts 193 /// combined into the value they represent. If the parts combine to a type 194 /// larger than ValueVT then AssertOp can be used to specify whether the extra 195 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 196 /// (ISD::AssertSext). 197 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 198 const SDValue *Parts, unsigned NumParts, 199 MVT PartVT, EVT ValueVT, const Value *V, 200 Optional<CallingConv::ID> CC = None, 201 Optional<ISD::NodeType> AssertOp = None) { 202 if (ValueVT.isVector()) 203 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 204 CC); 205 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 if (NumParts > 1) { 211 // Assemble the value from multiple parts. 212 if (ValueVT.isInteger()) { 213 unsigned PartBits = PartVT.getSizeInBits(); 214 unsigned ValueBits = ValueVT.getSizeInBits(); 215 216 // Assemble the power of 2 part. 217 unsigned RoundParts = NumParts & (NumParts - 1) ? 218 1 << Log2_32(NumParts) : NumParts; 219 unsigned RoundBits = PartBits * RoundParts; 220 EVT RoundVT = RoundBits == ValueBits ? 221 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 222 SDValue Lo, Hi; 223 224 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 225 226 if (RoundParts > 2) { 227 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 228 PartVT, HalfVT, V); 229 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 230 RoundParts / 2, PartVT, HalfVT, V); 231 } else { 232 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 234 } 235 236 if (DAG.getDataLayout().isBigEndian()) 237 std::swap(Lo, Hi); 238 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 240 241 if (RoundParts < NumParts) { 242 // Assemble the trailing non-power-of-2 part. 243 unsigned OddParts = NumParts - RoundParts; 244 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 245 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 246 OddVT, V, CC); 247 248 // Combine the round and odd parts. 249 Lo = Val; 250 if (DAG.getDataLayout().isBigEndian()) 251 std::swap(Lo, Hi); 252 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 253 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 254 Hi = 255 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 256 DAG.getConstant(Lo.getValueSizeInBits(), DL, 257 TLI.getPointerTy(DAG.getDataLayout()))); 258 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 259 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 260 } 261 } else if (PartVT.isFloatingPoint()) { 262 // FP split into multiple FP parts (for ppcf128) 263 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 264 "Unexpected split"); 265 SDValue Lo, Hi; 266 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 267 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 268 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 269 std::swap(Lo, Hi); 270 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 271 } else { 272 // FP split into integer parts (soft fp) 273 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 274 !PartVT.isVector() && "Unexpected split"); 275 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 276 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 277 } 278 } 279 280 // There is now one part, held in Val. Correct it to match ValueVT. 281 // PartEVT is the type of the register class that holds the value. 282 // ValueVT is the type of the inline asm operation. 283 EVT PartEVT = Val.getValueType(); 284 285 if (PartEVT == ValueVT) 286 return Val; 287 288 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 289 ValueVT.bitsLT(PartEVT)) { 290 // For an FP value in an integer part, we need to truncate to the right 291 // width first. 292 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 293 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 294 } 295 296 // Handle types that have the same size. 297 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 299 300 // Handle types with different sizes. 301 if (PartEVT.isInteger() && ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartEVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp.hasValue()) 307 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 310 } 311 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 312 } 313 314 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 // FP_ROUND's are always exact here. 316 if (ValueVT.bitsLT(Val.getValueType())) 317 return DAG.getNode( 318 ISD::FP_ROUND, DL, ValueVT, Val, 319 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 320 321 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 322 } 323 324 llvm_unreachable("Unknown mismatch!"); 325 } 326 327 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 328 const Twine &ErrMsg) { 329 const Instruction *I = dyn_cast_or_null<Instruction>(V); 330 if (!V) 331 return Ctx.emitError(ErrMsg); 332 333 const char *AsmError = ", possible invalid constraint for vector type"; 334 if (const CallInst *CI = dyn_cast<CallInst>(I)) 335 if (isa<InlineAsm>(CI->getCalledValue())) 336 return Ctx.emitError(I, ErrMsg + AsmError); 337 338 return Ctx.emitError(I, ErrMsg); 339 } 340 341 /// getCopyFromPartsVector - Create a value that contains the specified legal 342 /// parts combined into the value they represent. If the parts combine to a 343 /// type larger than ValueVT then AssertOp can be used to specify whether the 344 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 345 /// ValueVT (ISD::AssertSext). 346 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 347 const SDValue *Parts, unsigned NumParts, 348 MVT PartVT, EVT ValueVT, const Value *V, 349 Optional<CallingConv::ID> CallConv) { 350 assert(ValueVT.isVector() && "Not a vector value"); 351 assert(NumParts > 0 && "No parts to assemble!"); 352 const bool IsABIRegCopy = CallConv.hasValue(); 353 354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 355 SDValue Val = Parts[0]; 356 357 // Handle a multi-element vector. 358 if (NumParts > 1) { 359 EVT IntermediateVT; 360 MVT RegisterVT; 361 unsigned NumIntermediates; 362 unsigned NumRegs; 363 364 if (IsABIRegCopy) { 365 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 366 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } else { 369 NumRegs = 370 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 371 NumIntermediates, RegisterVT); 372 } 373 374 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 375 NumParts = NumRegs; // Silence a compiler warning. 376 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 377 assert(RegisterVT.getSizeInBits() == 378 Parts[0].getSimpleValueType().getSizeInBits() && 379 "Part type sizes don't match!"); 380 381 // Assemble the parts into intermediate operands. 382 SmallVector<SDValue, 8> Ops(NumIntermediates); 383 if (NumIntermediates == NumParts) { 384 // If the register was not expanded, truncate or copy the value, 385 // as appropriate. 386 for (unsigned i = 0; i != NumParts; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 388 PartVT, IntermediateVT, V); 389 } else if (NumParts > 0) { 390 // If the intermediate type was expanded, build the intermediate 391 // operands from the parts. 392 assert(NumParts % NumIntermediates == 0 && 393 "Must expand into a divisible number of parts!"); 394 unsigned Factor = NumParts / NumIntermediates; 395 for (unsigned i = 0; i != NumIntermediates; ++i) 396 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 397 PartVT, IntermediateVT, V); 398 } 399 400 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 401 // intermediate operands. 402 EVT BuiltVectorTy = 403 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 404 (IntermediateVT.isVector() 405 ? IntermediateVT.getVectorNumElements() * NumParts 406 : NumIntermediates)); 407 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 408 : ISD::BUILD_VECTOR, 409 DL, BuiltVectorTy, Ops); 410 } 411 412 // There is now one part, held in Val. Correct it to match ValueVT. 413 EVT PartEVT = Val.getValueType(); 414 415 if (PartEVT == ValueVT) 416 return Val; 417 418 if (PartEVT.isVector()) { 419 // If the element type of the source/dest vectors are the same, but the 420 // parts vector has more elements than the value vector, then we have a 421 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 422 // elements we want. 423 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 424 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 425 "Cannot narrow, it would be a lossy transformation"); 426 return DAG.getNode( 427 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 428 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 429 } 430 431 // Vector/Vector bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 435 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 436 "Cannot handle this kind of promotion"); 437 // Promoted vector extract 438 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 439 440 } 441 442 // Trivial bitcast if the types are the same size and the destination 443 // vector type is legal. 444 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 445 TLI.isTypeLegal(ValueVT)) 446 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 447 448 if (ValueVT.getVectorNumElements() != 1) { 449 // Certain ABIs require that vectors are passed as integers. For vectors 450 // are the same size, this is an obvious bitcast. 451 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 454 // Bitcast Val back the original type and extract the corresponding 455 // vector we want. 456 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 457 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 458 ValueVT.getVectorElementType(), Elts); 459 Val = DAG.getBitcast(WiderVecType, Val); 460 return DAG.getNode( 461 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 462 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 473 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 474 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 Optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 488 SDValue *Parts, unsigned NumParts, MVT PartVT, 489 const Value *V, 490 Optional<CallingConv::ID> CallConv = None, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 EVT ValueVT = Val.getValueType(); 493 494 // Handle the vector case separately. 495 if (ValueVT.isVector()) 496 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 497 CallConv); 498 499 unsigned PartBits = PartVT.getSizeInBits(); 500 unsigned OrigNumParts = NumParts; 501 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 502 "Copying to an illegal type!"); 503 504 if (NumParts == 0) 505 return; 506 507 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 508 EVT PartEVT = PartVT; 509 if (PartEVT == ValueVT) { 510 assert(NumParts == 1 && "No-op copy with multiple parts!"); 511 Parts[0] = Val; 512 return; 513 } 514 515 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 516 // If the parts cover more bits than the value has, promote the value. 517 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 518 assert(NumParts == 1 && "Do not know what to promote to!"); 519 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 520 } else { 521 if (ValueVT.isFloatingPoint()) { 522 // FP values need to be bitcast, then extended if they are being put 523 // into a larger container. 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 525 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 526 } 527 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 528 ValueVT.isInteger() && 529 "Unknown mismatch!"); 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 531 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 532 if (PartVT == MVT::x86mmx) 533 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 534 } 535 } else if (PartBits == ValueVT.getSizeInBits()) { 536 // Different types of the same size. 537 assert(NumParts == 1 && PartEVT != ValueVT); 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 540 // If the parts cover less bits than value has, truncate the value. 541 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 542 ValueVT.isInteger() && 543 "Unknown mismatch!"); 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 545 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 546 if (PartVT == MVT::x86mmx) 547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 548 } 549 550 // The value may have changed - recompute ValueVT. 551 ValueVT = Val.getValueType(); 552 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 553 "Failed to tile the value with PartVT!"); 554 555 if (NumParts == 1) { 556 if (PartEVT != ValueVT) { 557 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 558 "scalar-to-vector conversion failed"); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } 561 562 Parts[0] = Val; 563 return; 564 } 565 566 // Expand the value into multiple parts. 567 if (NumParts & (NumParts - 1)) { 568 // The number of parts is not a power of 2. Split off and copy the tail. 569 assert(PartVT.isInteger() && ValueVT.isInteger() && 570 "Do not know what to expand to!"); 571 unsigned RoundParts = 1 << Log2_32(NumParts); 572 unsigned RoundBits = RoundParts * PartBits; 573 unsigned OddParts = NumParts - RoundParts; 574 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 575 DAG.getIntPtrConstant(RoundBits, DL)); 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, 619 SDValue Val, const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 unsigned PartNumElts = PartVT.getVectorNumElements(); 625 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 626 if (PartNumElts > ValueNumElts && 627 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 DAG.ExtractVectorElements(Val, Ops); 633 SDValue EltUndef = DAG.getUNDEF(ElementVT); 634 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 635 Ops.push_back(EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 return SDValue(); 642 } 643 644 /// getCopyToPartsVector - Create a series of nodes that contain the specified 645 /// value split into legal parts. 646 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 647 SDValue Val, SDValue *Parts, unsigned NumParts, 648 MVT PartVT, const Value *V, 649 Optional<CallingConv::ID> CallConv) { 650 EVT ValueVT = Val.getValueType(); 651 assert(ValueVT.isVector() && "Not a vector"); 652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 653 const bool IsABIRegCopy = CallConv.hasValue(); 654 655 if (NumParts == 1) { 656 EVT PartEVT = PartVT; 657 if (PartEVT == ValueVT) { 658 // Nothing to do. 659 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 660 // Bitconvert vector->vector case. 661 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 662 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 663 Val = Widened; 664 } else if (PartVT.isVector() && 665 PartEVT.getVectorElementType().bitsGE( 666 ValueVT.getVectorElementType()) && 667 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 668 669 // Promoted vector extract 670 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 671 } else { 672 if (ValueVT.getVectorNumElements() == 1) { 673 Val = DAG.getNode( 674 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 675 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 676 } else { 677 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 678 "lossy conversion of vector to scalar type"); 679 EVT IntermediateType = 680 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 681 Val = DAG.getBitcast(IntermediateType, Val); 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } 684 } 685 686 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 687 Parts[0] = Val; 688 return; 689 } 690 691 // Handle a multi-element vector. 692 EVT IntermediateVT; 693 MVT RegisterVT; 694 unsigned NumIntermediates; 695 unsigned NumRegs; 696 if (IsABIRegCopy) { 697 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 698 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 699 NumIntermediates, RegisterVT); 700 } else { 701 NumRegs = 702 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 703 NumIntermediates, RegisterVT); 704 } 705 706 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 707 NumParts = NumRegs; // Silence a compiler warning. 708 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 709 710 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 711 IntermediateVT.getVectorNumElements() : 1; 712 713 // Convert the vector to the appropiate type if necessary. 714 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 715 716 EVT BuiltVectorTy = EVT::getVectorVT( 717 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 718 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 719 if (ValueVT != BuiltVectorTy) { 720 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 721 Val = Widened; 722 723 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 724 } 725 726 // Split the vector into intermediate operands. 727 SmallVector<SDValue, 8> Ops(NumIntermediates); 728 for (unsigned i = 0; i != NumIntermediates; ++i) { 729 if (IntermediateVT.isVector()) { 730 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 731 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 732 } else { 733 Ops[i] = DAG.getNode( 734 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 735 DAG.getConstant(i, DL, IdxVT)); 736 } 737 } 738 739 // Split the intermediate operands into legal parts. 740 if (NumParts == NumIntermediates) { 741 // If the register was not expanded, promote or copy the value, 742 // as appropriate. 743 for (unsigned i = 0; i != NumParts; ++i) 744 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 745 } else if (NumParts > 0) { 746 // If the intermediate type was expanded, split each the value into 747 // legal parts. 748 assert(NumIntermediates != 0 && "division by zero"); 749 assert(NumParts % NumIntermediates == 0 && 750 "Must expand into a divisible number of parts!"); 751 unsigned Factor = NumParts / NumIntermediates; 752 for (unsigned i = 0; i != NumIntermediates; ++i) 753 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 754 CallConv); 755 } 756 } 757 758 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 759 EVT valuevt, Optional<CallingConv::ID> CC) 760 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 761 RegCount(1, regs.size()), CallConv(CC) {} 762 763 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 764 const DataLayout &DL, unsigned Reg, Type *Ty, 765 Optional<CallingConv::ID> CC) { 766 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 767 768 CallConv = CC; 769 770 for (EVT ValueVT : ValueVTs) { 771 unsigned NumRegs = 772 isABIMangled() 773 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 774 : TLI.getNumRegisters(Context, ValueVT); 775 MVT RegisterVT = 776 isABIMangled() 777 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 778 : TLI.getRegisterType(Context, ValueVT); 779 for (unsigned i = 0; i != NumRegs; ++i) 780 Regs.push_back(Reg + i); 781 RegVTs.push_back(RegisterVT); 782 RegCount.push_back(NumRegs); 783 Reg += NumRegs; 784 } 785 } 786 787 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 788 FunctionLoweringInfo &FuncInfo, 789 const SDLoc &dl, SDValue &Chain, 790 SDValue *Flag, const Value *V) const { 791 // A Value with type {} or [0 x %t] needs no registers. 792 if (ValueVTs.empty()) 793 return SDValue(); 794 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 797 // Assemble the legal parts into the final values. 798 SmallVector<SDValue, 4> Values(ValueVTs.size()); 799 SmallVector<SDValue, 8> Parts; 800 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 801 // Copy the legal parts from the registers. 802 EVT ValueVT = ValueVTs[Value]; 803 unsigned NumRegs = RegCount[Value]; 804 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 805 *DAG.getContext(), 806 CallConv.getValue(), RegVTs[Value]) 807 : RegVTs[Value]; 808 809 Parts.resize(NumRegs); 810 for (unsigned i = 0; i != NumRegs; ++i) { 811 SDValue P; 812 if (!Flag) { 813 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 814 } else { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 816 *Flag = P.getValue(2); 817 } 818 819 Chain = P.getValue(1); 820 Parts[i] = P; 821 822 // If the source register was virtual and if we know something about it, 823 // add an assert node. 824 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 825 !RegisterVT.isInteger()) 826 continue; 827 828 const FunctionLoweringInfo::LiveOutInfo *LOI = 829 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 830 if (!LOI) 831 continue; 832 833 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 834 unsigned NumSignBits = LOI->NumSignBits; 835 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 836 837 if (NumZeroBits == RegSize) { 838 // The current value is a zero. 839 // Explicitly express that as it would be easier for 840 // optimizations to kick in. 841 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 842 continue; 843 } 844 845 // FIXME: We capture more information than the dag can represent. For 846 // now, just use the tightest assertzext/assertsext possible. 847 bool isSExt; 848 EVT FromVT(MVT::Other); 849 if (NumZeroBits) { 850 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 851 isSExt = false; 852 } else if (NumSignBits > 1) { 853 FromVT = 854 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 855 isSExt = true; 856 } else { 857 continue; 858 } 859 // Add an assertion node. 860 assert(FromVT != MVT::Other); 861 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 862 RegisterVT, P, DAG.getValueType(FromVT)); 863 } 864 865 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 866 RegisterVT, ValueVT, V, CallConv); 867 Part += NumRegs; 868 Parts.clear(); 869 } 870 871 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 872 } 873 874 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 875 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 876 const Value *V, 877 ISD::NodeType PreferredExtendType) const { 878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 879 ISD::NodeType ExtendKind = PreferredExtendType; 880 881 // Get the list of the values's legal parts. 882 unsigned NumRegs = Regs.size(); 883 SmallVector<SDValue, 8> Parts(NumRegs); 884 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 885 unsigned NumParts = RegCount[Value]; 886 887 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 888 *DAG.getContext(), 889 CallConv.getValue(), RegVTs[Value]) 890 : RegVTs[Value]; 891 892 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 893 ExtendKind = ISD::ZERO_EXTEND; 894 895 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 896 NumParts, RegisterVT, V, CallConv, ExtendKind); 897 Part += NumParts; 898 } 899 900 // Copy the parts into the registers. 901 SmallVector<SDValue, 8> Chains(NumRegs); 902 for (unsigned i = 0; i != NumRegs; ++i) { 903 SDValue Part; 904 if (!Flag) { 905 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 906 } else { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 908 *Flag = Part.getValue(1); 909 } 910 911 Chains[i] = Part.getValue(0); 912 } 913 914 if (NumRegs == 1 || Flag) 915 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 916 // flagged to it. That is the CopyToReg nodes and the user are considered 917 // a single scheduling unit. If we create a TokenFactor and return it as 918 // chain, then the TokenFactor is both a predecessor (operand) of the 919 // user as well as a successor (the TF operands are flagged to the user). 920 // c1, f1 = CopyToReg 921 // c2, f2 = CopyToReg 922 // c3 = TokenFactor c1, c2 923 // ... 924 // = op c3, ..., f2 925 Chain = Chains[NumRegs-1]; 926 else 927 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 928 } 929 930 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 931 unsigned MatchingIdx, const SDLoc &dl, 932 SelectionDAG &DAG, 933 std::vector<SDValue> &Ops) const { 934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 935 936 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 937 if (HasMatching) 938 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 939 else if (!Regs.empty() && 940 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, unsigned>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 unsigned RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 } 1006 1007 void SelectionDAGBuilder::clear() { 1008 NodeMap.clear(); 1009 UnusedArgNodeMap.clear(); 1010 PendingLoads.clear(); 1011 PendingExports.clear(); 1012 CurInst = nullptr; 1013 HasTailCall = false; 1014 SDNodeOrder = LowestSDNodeOrder; 1015 StatepointLowering.clear(); 1016 } 1017 1018 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1019 DanglingDebugInfoMap.clear(); 1020 } 1021 1022 SDValue SelectionDAGBuilder::getRoot() { 1023 if (PendingLoads.empty()) 1024 return DAG.getRoot(); 1025 1026 if (PendingLoads.size() == 1) { 1027 SDValue Root = PendingLoads[0]; 1028 DAG.setRoot(Root); 1029 PendingLoads.clear(); 1030 return Root; 1031 } 1032 1033 // Otherwise, we have to make a token factor node. 1034 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1035 PendingLoads.clear(); 1036 DAG.setRoot(Root); 1037 return Root; 1038 } 1039 1040 SDValue SelectionDAGBuilder::getControlRoot() { 1041 SDValue Root = DAG.getRoot(); 1042 1043 if (PendingExports.empty()) 1044 return Root; 1045 1046 // Turn all of the CopyToReg chains into one factored node. 1047 if (Root.getOpcode() != ISD::EntryToken) { 1048 unsigned i = 0, e = PendingExports.size(); 1049 for (; i != e; ++i) { 1050 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1051 if (PendingExports[i].getNode()->getOperand(0) == Root) 1052 break; // Don't add the root if we already indirectly depend on it. 1053 } 1054 1055 if (i == e) 1056 PendingExports.push_back(Root); 1057 } 1058 1059 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1060 PendingExports); 1061 PendingExports.clear(); 1062 DAG.setRoot(Root); 1063 return Root; 1064 } 1065 1066 void SelectionDAGBuilder::visit(const Instruction &I) { 1067 // Set up outgoing PHI node register values before emitting the terminator. 1068 if (I.isTerminator()) { 1069 HandlePHINodesInSuccessorBlocks(I.getParent()); 1070 } 1071 1072 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1073 if (!isa<DbgInfoIntrinsic>(I)) 1074 ++SDNodeOrder; 1075 1076 CurInst = &I; 1077 1078 visit(I.getOpcode(), I); 1079 1080 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1081 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1082 // maps to this instruction. 1083 // TODO: We could handle all flags (nsw, etc) here. 1084 // TODO: If an IR instruction maps to >1 node, only the final node will have 1085 // flags set. 1086 if (SDNode *Node = getNodeForIRValue(&I)) { 1087 SDNodeFlags IncomingFlags; 1088 IncomingFlags.copyFMF(*FPMO); 1089 if (!Node->getFlags().isDefined()) 1090 Node->setFlags(IncomingFlags); 1091 else 1092 Node->intersectFlagsWith(IncomingFlags); 1093 } 1094 } 1095 1096 if (!I.isTerminator() && !HasTailCall && 1097 !isStatepoint(&I)) // statepoints handle their exports internally 1098 CopyToExportRegsIfNeeded(&I); 1099 1100 CurInst = nullptr; 1101 } 1102 1103 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1104 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1105 } 1106 1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1108 // Note: this doesn't use InstVisitor, because it has to work with 1109 // ConstantExpr's in addition to instructions. 1110 switch (Opcode) { 1111 default: llvm_unreachable("Unknown instruction type encountered!"); 1112 // Build the switch statement using the Instruction.def file. 1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1114 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1115 #include "llvm/IR/Instruction.def" 1116 } 1117 } 1118 1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1120 const DIExpression *Expr) { 1121 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1122 const DbgValueInst *DI = DDI.getDI(); 1123 DIVariable *DanglingVariable = DI->getVariable(); 1124 DIExpression *DanglingExpr = DI->getExpression(); 1125 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1126 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1127 return true; 1128 } 1129 return false; 1130 }; 1131 1132 for (auto &DDIMI : DanglingDebugInfoMap) { 1133 DanglingDebugInfoVector &DDIV = DDIMI.second; 1134 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1135 } 1136 } 1137 1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1139 // generate the debug data structures now that we've seen its definition. 1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1141 SDValue Val) { 1142 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1143 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1144 return; 1145 1146 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1147 for (auto &DDI : DDIV) { 1148 const DbgValueInst *DI = DDI.getDI(); 1149 assert(DI && "Ill-formed DanglingDebugInfo"); 1150 DebugLoc dl = DDI.getdl(); 1151 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1152 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1153 DILocalVariable *Variable = DI->getVariable(); 1154 DIExpression *Expr = DI->getExpression(); 1155 assert(Variable->isValidLocationForIntrinsic(dl) && 1156 "Expected inlined-at fields to agree"); 1157 SDDbgValue *SDV; 1158 if (Val.getNode()) { 1159 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1160 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1161 // we couldn't resolve it directly when examining the DbgValue intrinsic 1162 // in the first place we should not be more successful here). Unless we 1163 // have some test case that prove this to be correct we should avoid 1164 // calling EmitFuncArgumentDbgValue here. 1165 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1166 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1167 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1168 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1169 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1170 // inserted after the definition of Val when emitting the instructions 1171 // after ISel. An alternative could be to teach 1172 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1173 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1174 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1175 << ValSDNodeOrder << "\n"); 1176 SDV = getDbgValue(Val, Variable, Expr, dl, 1177 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1178 DAG.AddDbgValue(SDV, Val.getNode(), false); 1179 } else 1180 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1181 << "in EmitFuncArgumentDbgValue\n"); 1182 } else 1183 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1184 } 1185 DDIV.clear(); 1186 } 1187 1188 /// getCopyFromRegs - If there was virtual register allocated for the value V 1189 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1190 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1191 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1192 SDValue Result; 1193 1194 if (It != FuncInfo.ValueMap.end()) { 1195 unsigned InReg = It->second; 1196 1197 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1198 DAG.getDataLayout(), InReg, Ty, 1199 None); // This is not an ABI copy. 1200 SDValue Chain = DAG.getEntryNode(); 1201 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1202 V); 1203 resolveDanglingDebugInfo(V, Result); 1204 } 1205 1206 return Result; 1207 } 1208 1209 /// getValue - Return an SDValue for the given Value. 1210 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1211 // If we already have an SDValue for this value, use it. It's important 1212 // to do this first, so that we don't create a CopyFromReg if we already 1213 // have a regular SDValue. 1214 SDValue &N = NodeMap[V]; 1215 if (N.getNode()) return N; 1216 1217 // If there's a virtual register allocated and initialized for this 1218 // value, use it. 1219 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1220 return copyFromReg; 1221 1222 // Otherwise create a new SDValue and remember it. 1223 SDValue Val = getValueImpl(V); 1224 NodeMap[V] = Val; 1225 resolveDanglingDebugInfo(V, Val); 1226 return Val; 1227 } 1228 1229 // Return true if SDValue exists for the given Value 1230 bool SelectionDAGBuilder::findValue(const Value *V) const { 1231 return (NodeMap.find(V) != NodeMap.end()) || 1232 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1233 } 1234 1235 /// getNonRegisterValue - Return an SDValue for the given Value, but 1236 /// don't look in FuncInfo.ValueMap for a virtual register. 1237 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1238 // If we already have an SDValue for this value, use it. 1239 SDValue &N = NodeMap[V]; 1240 if (N.getNode()) { 1241 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1242 // Remove the debug location from the node as the node is about to be used 1243 // in a location which may differ from the original debug location. This 1244 // is relevant to Constant and ConstantFP nodes because they can appear 1245 // as constant expressions inside PHI nodes. 1246 N->setDebugLoc(DebugLoc()); 1247 } 1248 return N; 1249 } 1250 1251 // Otherwise create a new SDValue and remember it. 1252 SDValue Val = getValueImpl(V); 1253 NodeMap[V] = Val; 1254 resolveDanglingDebugInfo(V, Val); 1255 return Val; 1256 } 1257 1258 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1259 /// Create an SDValue for the given value. 1260 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 1263 if (const Constant *C = dyn_cast<Constant>(V)) { 1264 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1265 1266 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1267 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1268 1269 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1270 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1271 1272 if (isa<ConstantPointerNull>(C)) { 1273 unsigned AS = V->getType()->getPointerAddressSpace(); 1274 return DAG.getConstant(0, getCurSDLoc(), 1275 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1276 } 1277 1278 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1279 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1280 1281 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1282 return DAG.getUNDEF(VT); 1283 1284 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1285 visit(CE->getOpcode(), *CE); 1286 SDValue N1 = NodeMap[V]; 1287 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1288 return N1; 1289 } 1290 1291 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1292 SmallVector<SDValue, 4> Constants; 1293 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1294 OI != OE; ++OI) { 1295 SDNode *Val = getValue(*OI).getNode(); 1296 // If the operand is an empty aggregate, there are no values. 1297 if (!Val) continue; 1298 // Add each leaf value from the operand to the Constants list 1299 // to form a flattened list of all the values. 1300 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1301 Constants.push_back(SDValue(Val, i)); 1302 } 1303 1304 return DAG.getMergeValues(Constants, getCurSDLoc()); 1305 } 1306 1307 if (const ConstantDataSequential *CDS = 1308 dyn_cast<ConstantDataSequential>(C)) { 1309 SmallVector<SDValue, 4> Ops; 1310 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1311 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1312 // Add each leaf value from the operand to the Constants list 1313 // to form a flattened list of all the values. 1314 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1315 Ops.push_back(SDValue(Val, i)); 1316 } 1317 1318 if (isa<ArrayType>(CDS->getType())) 1319 return DAG.getMergeValues(Ops, getCurSDLoc()); 1320 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1321 } 1322 1323 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1324 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1325 "Unknown struct or array constant!"); 1326 1327 SmallVector<EVT, 4> ValueVTs; 1328 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1329 unsigned NumElts = ValueVTs.size(); 1330 if (NumElts == 0) 1331 return SDValue(); // empty struct 1332 SmallVector<SDValue, 4> Constants(NumElts); 1333 for (unsigned i = 0; i != NumElts; ++i) { 1334 EVT EltVT = ValueVTs[i]; 1335 if (isa<UndefValue>(C)) 1336 Constants[i] = DAG.getUNDEF(EltVT); 1337 else if (EltVT.isFloatingPoint()) 1338 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1339 else 1340 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1341 } 1342 1343 return DAG.getMergeValues(Constants, getCurSDLoc()); 1344 } 1345 1346 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1347 return DAG.getBlockAddress(BA, VT); 1348 1349 VectorType *VecTy = cast<VectorType>(V->getType()); 1350 unsigned NumElements = VecTy->getNumElements(); 1351 1352 // Now that we know the number and type of the elements, get that number of 1353 // elements into the Ops array based on what kind of constant it is. 1354 SmallVector<SDValue, 16> Ops; 1355 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1356 for (unsigned i = 0; i != NumElements; ++i) 1357 Ops.push_back(getValue(CV->getOperand(i))); 1358 } else { 1359 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1360 EVT EltVT = 1361 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1362 1363 SDValue Op; 1364 if (EltVT.isFloatingPoint()) 1365 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1366 else 1367 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1368 Ops.assign(NumElements, Op); 1369 } 1370 1371 // Create a BUILD_VECTOR node. 1372 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1373 } 1374 1375 // If this is a static alloca, generate it as the frameindex instead of 1376 // computation. 1377 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1378 DenseMap<const AllocaInst*, int>::iterator SI = 1379 FuncInfo.StaticAllocaMap.find(AI); 1380 if (SI != FuncInfo.StaticAllocaMap.end()) 1381 return DAG.getFrameIndex(SI->second, 1382 TLI.getFrameIndexTy(DAG.getDataLayout())); 1383 } 1384 1385 // If this is an instruction which fast-isel has deferred, select it now. 1386 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1387 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1388 1389 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1390 Inst->getType(), getABIRegCopyCC(V)); 1391 SDValue Chain = DAG.getEntryNode(); 1392 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1393 } 1394 1395 llvm_unreachable("Can't get register for value!"); 1396 } 1397 1398 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1399 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1400 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1401 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1402 bool IsSEH = isAsynchronousEHPersonality(Pers); 1403 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1404 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1405 if (!IsSEH) 1406 CatchPadMBB->setIsEHScopeEntry(); 1407 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1408 if (IsMSVCCXX || IsCoreCLR) 1409 CatchPadMBB->setIsEHFuncletEntry(); 1410 // Wasm does not need catchpads anymore 1411 if (!IsWasmCXX) 1412 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1413 getControlRoot())); 1414 } 1415 1416 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1417 // Update machine-CFG edge. 1418 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1419 FuncInfo.MBB->addSuccessor(TargetMBB); 1420 1421 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1422 bool IsSEH = isAsynchronousEHPersonality(Pers); 1423 if (IsSEH) { 1424 // If this is not a fall-through branch or optimizations are switched off, 1425 // emit the branch. 1426 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1427 TM.getOptLevel() == CodeGenOpt::None) 1428 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1429 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1430 return; 1431 } 1432 1433 // Figure out the funclet membership for the catchret's successor. 1434 // This will be used by the FuncletLayout pass to determine how to order the 1435 // BB's. 1436 // A 'catchret' returns to the outer scope's color. 1437 Value *ParentPad = I.getCatchSwitchParentPad(); 1438 const BasicBlock *SuccessorColor; 1439 if (isa<ConstantTokenNone>(ParentPad)) 1440 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1441 else 1442 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1443 assert(SuccessorColor && "No parent funclet for catchret!"); 1444 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1445 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1446 1447 // Create the terminator node. 1448 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1449 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1450 DAG.getBasicBlock(SuccessorColorMBB)); 1451 DAG.setRoot(Ret); 1452 } 1453 1454 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1455 // Don't emit any special code for the cleanuppad instruction. It just marks 1456 // the start of an EH scope/funclet. 1457 FuncInfo.MBB->setIsEHScopeEntry(); 1458 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1459 if (Pers != EHPersonality::Wasm_CXX) { 1460 FuncInfo.MBB->setIsEHFuncletEntry(); 1461 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1462 } 1463 } 1464 1465 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1466 // the control flow always stops at the single catch pad, as it does for a 1467 // cleanup pad. In case the exception caught is not of the types the catch pad 1468 // catches, it will be rethrown by a rethrow. 1469 static void findWasmUnwindDestinations( 1470 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1471 BranchProbability Prob, 1472 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1473 &UnwindDests) { 1474 while (EHPadBB) { 1475 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1476 if (isa<CleanupPadInst>(Pad)) { 1477 // Stop on cleanup pads. 1478 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1479 UnwindDests.back().first->setIsEHScopeEntry(); 1480 break; 1481 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1482 // Add the catchpad handlers to the possible destinations. We don't 1483 // continue to the unwind destination of the catchswitch for wasm. 1484 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1485 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1486 UnwindDests.back().first->setIsEHScopeEntry(); 1487 } 1488 break; 1489 } else { 1490 continue; 1491 } 1492 } 1493 } 1494 1495 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1496 /// many places it could ultimately go. In the IR, we have a single unwind 1497 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1498 /// This function skips over imaginary basic blocks that hold catchswitch 1499 /// instructions, and finds all the "real" machine 1500 /// basic block destinations. As those destinations may not be successors of 1501 /// EHPadBB, here we also calculate the edge probability to those destinations. 1502 /// The passed-in Prob is the edge probability to EHPadBB. 1503 static void findUnwindDestinations( 1504 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1505 BranchProbability Prob, 1506 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1507 &UnwindDests) { 1508 EHPersonality Personality = 1509 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1510 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1511 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1512 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1513 bool IsSEH = isAsynchronousEHPersonality(Personality); 1514 1515 if (IsWasmCXX) { 1516 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1517 return; 1518 } 1519 1520 while (EHPadBB) { 1521 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1522 BasicBlock *NewEHPadBB = nullptr; 1523 if (isa<LandingPadInst>(Pad)) { 1524 // Stop on landingpads. They are not funclets. 1525 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1526 break; 1527 } else if (isa<CleanupPadInst>(Pad)) { 1528 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1529 // personalities. 1530 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1531 UnwindDests.back().first->setIsEHScopeEntry(); 1532 UnwindDests.back().first->setIsEHFuncletEntry(); 1533 break; 1534 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1535 // Add the catchpad handlers to the possible destinations. 1536 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1537 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1538 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1539 if (IsMSVCCXX || IsCoreCLR) 1540 UnwindDests.back().first->setIsEHFuncletEntry(); 1541 if (!IsSEH) 1542 UnwindDests.back().first->setIsEHScopeEntry(); 1543 } 1544 NewEHPadBB = CatchSwitch->getUnwindDest(); 1545 } else { 1546 continue; 1547 } 1548 1549 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1550 if (BPI && NewEHPadBB) 1551 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1552 EHPadBB = NewEHPadBB; 1553 } 1554 } 1555 1556 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1557 // Update successor info. 1558 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1559 auto UnwindDest = I.getUnwindDest(); 1560 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1561 BranchProbability UnwindDestProb = 1562 (BPI && UnwindDest) 1563 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1564 : BranchProbability::getZero(); 1565 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1566 for (auto &UnwindDest : UnwindDests) { 1567 UnwindDest.first->setIsEHPad(); 1568 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1569 } 1570 FuncInfo.MBB->normalizeSuccProbs(); 1571 1572 // Create the terminator node. 1573 SDValue Ret = 1574 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1575 DAG.setRoot(Ret); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1579 report_fatal_error("visitCatchSwitch not yet implemented!"); 1580 } 1581 1582 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1584 auto &DL = DAG.getDataLayout(); 1585 SDValue Chain = getControlRoot(); 1586 SmallVector<ISD::OutputArg, 8> Outs; 1587 SmallVector<SDValue, 8> OutVals; 1588 1589 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1590 // lower 1591 // 1592 // %val = call <ty> @llvm.experimental.deoptimize() 1593 // ret <ty> %val 1594 // 1595 // differently. 1596 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1597 LowerDeoptimizingReturn(); 1598 return; 1599 } 1600 1601 if (!FuncInfo.CanLowerReturn) { 1602 unsigned DemoteReg = FuncInfo.DemoteRegister; 1603 const Function *F = I.getParent()->getParent(); 1604 1605 // Emit a store of the return value through the virtual register. 1606 // Leave Outs empty so that LowerReturn won't try to load return 1607 // registers the usual way. 1608 SmallVector<EVT, 1> PtrValueVTs; 1609 ComputeValueVTs(TLI, DL, 1610 F->getReturnType()->getPointerTo( 1611 DAG.getDataLayout().getAllocaAddrSpace()), 1612 PtrValueVTs); 1613 1614 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1615 DemoteReg, PtrValueVTs[0]); 1616 SDValue RetOp = getValue(I.getOperand(0)); 1617 1618 SmallVector<EVT, 4> ValueVTs; 1619 SmallVector<uint64_t, 4> Offsets; 1620 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1621 unsigned NumValues = ValueVTs.size(); 1622 1623 SmallVector<SDValue, 4> Chains(NumValues); 1624 for (unsigned i = 0; i != NumValues; ++i) { 1625 // An aggregate return value cannot wrap around the address space, so 1626 // offsets to its parts don't wrap either. 1627 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1628 Chains[i] = DAG.getStore( 1629 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1630 // FIXME: better loc info would be nice. 1631 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1632 } 1633 1634 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1635 MVT::Other, Chains); 1636 } else if (I.getNumOperands() != 0) { 1637 SmallVector<EVT, 4> ValueVTs; 1638 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1639 unsigned NumValues = ValueVTs.size(); 1640 if (NumValues) { 1641 SDValue RetOp = getValue(I.getOperand(0)); 1642 1643 const Function *F = I.getParent()->getParent(); 1644 1645 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1646 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1647 Attribute::SExt)) 1648 ExtendKind = ISD::SIGN_EXTEND; 1649 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1650 Attribute::ZExt)) 1651 ExtendKind = ISD::ZERO_EXTEND; 1652 1653 LLVMContext &Context = F->getContext(); 1654 bool RetInReg = F->getAttributes().hasAttribute( 1655 AttributeList::ReturnIndex, Attribute::InReg); 1656 1657 for (unsigned j = 0; j != NumValues; ++j) { 1658 EVT VT = ValueVTs[j]; 1659 1660 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1661 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1662 1663 CallingConv::ID CC = F->getCallingConv(); 1664 1665 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1666 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1667 SmallVector<SDValue, 4> Parts(NumParts); 1668 getCopyToParts(DAG, getCurSDLoc(), 1669 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1670 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1671 1672 // 'inreg' on function refers to return value 1673 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1674 if (RetInReg) 1675 Flags.setInReg(); 1676 1677 // Propagate extension type if any 1678 if (ExtendKind == ISD::SIGN_EXTEND) 1679 Flags.setSExt(); 1680 else if (ExtendKind == ISD::ZERO_EXTEND) 1681 Flags.setZExt(); 1682 1683 for (unsigned i = 0; i < NumParts; ++i) { 1684 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1685 VT, /*isfixed=*/true, 0, 0)); 1686 OutVals.push_back(Parts[i]); 1687 } 1688 } 1689 } 1690 } 1691 1692 // Push in swifterror virtual register as the last element of Outs. This makes 1693 // sure swifterror virtual register will be returned in the swifterror 1694 // physical register. 1695 const Function *F = I.getParent()->getParent(); 1696 if (TLI.supportSwiftError() && 1697 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1698 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1699 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1700 Flags.setSwiftError(); 1701 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1702 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1703 true /*isfixed*/, 1 /*origidx*/, 1704 0 /*partOffs*/)); 1705 // Create SDNode for the swifterror virtual register. 1706 OutVals.push_back( 1707 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1708 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1709 EVT(TLI.getPointerTy(DL)))); 1710 } 1711 1712 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1713 CallingConv::ID CallConv = 1714 DAG.getMachineFunction().getFunction().getCallingConv(); 1715 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1716 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1717 1718 // Verify that the target's LowerReturn behaved as expected. 1719 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1720 "LowerReturn didn't return a valid chain!"); 1721 1722 // Update the DAG with the new chain value resulting from return lowering. 1723 DAG.setRoot(Chain); 1724 } 1725 1726 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1727 /// created for it, emit nodes to copy the value into the virtual 1728 /// registers. 1729 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1730 // Skip empty types 1731 if (V->getType()->isEmptyTy()) 1732 return; 1733 1734 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1735 if (VMI != FuncInfo.ValueMap.end()) { 1736 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1737 CopyValueToVirtualRegister(V, VMI->second); 1738 } 1739 } 1740 1741 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1742 /// the current basic block, add it to ValueMap now so that we'll get a 1743 /// CopyTo/FromReg. 1744 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1745 // No need to export constants. 1746 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1747 1748 // Already exported? 1749 if (FuncInfo.isExportedInst(V)) return; 1750 1751 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1752 CopyValueToVirtualRegister(V, Reg); 1753 } 1754 1755 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1756 const BasicBlock *FromBB) { 1757 // The operands of the setcc have to be in this block. We don't know 1758 // how to export them from some other block. 1759 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1760 // Can export from current BB. 1761 if (VI->getParent() == FromBB) 1762 return true; 1763 1764 // Is already exported, noop. 1765 return FuncInfo.isExportedInst(V); 1766 } 1767 1768 // If this is an argument, we can export it if the BB is the entry block or 1769 // if it is already exported. 1770 if (isa<Argument>(V)) { 1771 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1772 return true; 1773 1774 // Otherwise, can only export this if it is already exported. 1775 return FuncInfo.isExportedInst(V); 1776 } 1777 1778 // Otherwise, constants can always be exported. 1779 return true; 1780 } 1781 1782 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1783 BranchProbability 1784 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1785 const MachineBasicBlock *Dst) const { 1786 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1787 const BasicBlock *SrcBB = Src->getBasicBlock(); 1788 const BasicBlock *DstBB = Dst->getBasicBlock(); 1789 if (!BPI) { 1790 // If BPI is not available, set the default probability as 1 / N, where N is 1791 // the number of successors. 1792 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1793 return BranchProbability(1, SuccSize); 1794 } 1795 return BPI->getEdgeProbability(SrcBB, DstBB); 1796 } 1797 1798 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1799 MachineBasicBlock *Dst, 1800 BranchProbability Prob) { 1801 if (!FuncInfo.BPI) 1802 Src->addSuccessorWithoutProb(Dst); 1803 else { 1804 if (Prob.isUnknown()) 1805 Prob = getEdgeProbability(Src, Dst); 1806 Src->addSuccessor(Dst, Prob); 1807 } 1808 } 1809 1810 static bool InBlock(const Value *V, const BasicBlock *BB) { 1811 if (const Instruction *I = dyn_cast<Instruction>(V)) 1812 return I->getParent() == BB; 1813 return true; 1814 } 1815 1816 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1817 /// This function emits a branch and is used at the leaves of an OR or an 1818 /// AND operator tree. 1819 void 1820 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1821 MachineBasicBlock *TBB, 1822 MachineBasicBlock *FBB, 1823 MachineBasicBlock *CurBB, 1824 MachineBasicBlock *SwitchBB, 1825 BranchProbability TProb, 1826 BranchProbability FProb, 1827 bool InvertCond) { 1828 const BasicBlock *BB = CurBB->getBasicBlock(); 1829 1830 // If the leaf of the tree is a comparison, merge the condition into 1831 // the caseblock. 1832 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1833 // The operands of the cmp have to be in this block. We don't know 1834 // how to export them from some other block. If this is the first block 1835 // of the sequence, no exporting is needed. 1836 if (CurBB == SwitchBB || 1837 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1838 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1839 ISD::CondCode Condition; 1840 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1841 ICmpInst::Predicate Pred = 1842 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1843 Condition = getICmpCondCode(Pred); 1844 } else { 1845 const FCmpInst *FC = cast<FCmpInst>(Cond); 1846 FCmpInst::Predicate Pred = 1847 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1848 Condition = getFCmpCondCode(Pred); 1849 if (TM.Options.NoNaNsFPMath) 1850 Condition = getFCmpCodeWithoutNaN(Condition); 1851 } 1852 1853 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1854 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1855 SwitchCases.push_back(CB); 1856 return; 1857 } 1858 } 1859 1860 // Create a CaseBlock record representing this branch. 1861 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1862 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1863 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1864 SwitchCases.push_back(CB); 1865 } 1866 1867 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1868 MachineBasicBlock *TBB, 1869 MachineBasicBlock *FBB, 1870 MachineBasicBlock *CurBB, 1871 MachineBasicBlock *SwitchBB, 1872 Instruction::BinaryOps Opc, 1873 BranchProbability TProb, 1874 BranchProbability FProb, 1875 bool InvertCond) { 1876 // Skip over not part of the tree and remember to invert op and operands at 1877 // next level. 1878 Value *NotCond; 1879 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 1880 InBlock(NotCond, CurBB->getBasicBlock())) { 1881 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1882 !InvertCond); 1883 return; 1884 } 1885 1886 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1887 // Compute the effective opcode for Cond, taking into account whether it needs 1888 // to be inverted, e.g. 1889 // and (not (or A, B)), C 1890 // gets lowered as 1891 // and (and (not A, not B), C) 1892 unsigned BOpc = 0; 1893 if (BOp) { 1894 BOpc = BOp->getOpcode(); 1895 if (InvertCond) { 1896 if (BOpc == Instruction::And) 1897 BOpc = Instruction::Or; 1898 else if (BOpc == Instruction::Or) 1899 BOpc = Instruction::And; 1900 } 1901 } 1902 1903 // If this node is not part of the or/and tree, emit it as a branch. 1904 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1905 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1906 BOp->getParent() != CurBB->getBasicBlock() || 1907 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1908 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1909 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1910 TProb, FProb, InvertCond); 1911 return; 1912 } 1913 1914 // Create TmpBB after CurBB. 1915 MachineFunction::iterator BBI(CurBB); 1916 MachineFunction &MF = DAG.getMachineFunction(); 1917 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1918 CurBB->getParent()->insert(++BBI, TmpBB); 1919 1920 if (Opc == Instruction::Or) { 1921 // Codegen X | Y as: 1922 // BB1: 1923 // jmp_if_X TBB 1924 // jmp TmpBB 1925 // TmpBB: 1926 // jmp_if_Y TBB 1927 // jmp FBB 1928 // 1929 1930 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1931 // The requirement is that 1932 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1933 // = TrueProb for original BB. 1934 // Assuming the original probabilities are A and B, one choice is to set 1935 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1936 // A/(1+B) and 2B/(1+B). This choice assumes that 1937 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1938 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1939 // TmpBB, but the math is more complicated. 1940 1941 auto NewTrueProb = TProb / 2; 1942 auto NewFalseProb = TProb / 2 + FProb; 1943 // Emit the LHS condition. 1944 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1945 NewTrueProb, NewFalseProb, InvertCond); 1946 1947 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1948 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1949 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1950 // Emit the RHS condition into TmpBB. 1951 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1952 Probs[0], Probs[1], InvertCond); 1953 } else { 1954 assert(Opc == Instruction::And && "Unknown merge op!"); 1955 // Codegen X & Y as: 1956 // BB1: 1957 // jmp_if_X TmpBB 1958 // jmp FBB 1959 // TmpBB: 1960 // jmp_if_Y TBB 1961 // jmp FBB 1962 // 1963 // This requires creation of TmpBB after CurBB. 1964 1965 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1966 // The requirement is that 1967 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1968 // = FalseProb for original BB. 1969 // Assuming the original probabilities are A and B, one choice is to set 1970 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1971 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1972 // TrueProb for BB1 * FalseProb for TmpBB. 1973 1974 auto NewTrueProb = TProb + FProb / 2; 1975 auto NewFalseProb = FProb / 2; 1976 // Emit the LHS condition. 1977 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1978 NewTrueProb, NewFalseProb, InvertCond); 1979 1980 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1981 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1982 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1983 // Emit the RHS condition into TmpBB. 1984 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1985 Probs[0], Probs[1], InvertCond); 1986 } 1987 } 1988 1989 /// If the set of cases should be emitted as a series of branches, return true. 1990 /// If we should emit this as a bunch of and/or'd together conditions, return 1991 /// false. 1992 bool 1993 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1994 if (Cases.size() != 2) return true; 1995 1996 // If this is two comparisons of the same values or'd or and'd together, they 1997 // will get folded into a single comparison, so don't emit two blocks. 1998 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1999 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2000 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2001 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2002 return false; 2003 } 2004 2005 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2006 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2007 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2008 Cases[0].CC == Cases[1].CC && 2009 isa<Constant>(Cases[0].CmpRHS) && 2010 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2011 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2012 return false; 2013 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2014 return false; 2015 } 2016 2017 return true; 2018 } 2019 2020 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2021 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2022 2023 // Update machine-CFG edges. 2024 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2025 2026 if (I.isUnconditional()) { 2027 // Update machine-CFG edges. 2028 BrMBB->addSuccessor(Succ0MBB); 2029 2030 // If this is not a fall-through branch or optimizations are switched off, 2031 // emit the branch. 2032 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2034 MVT::Other, getControlRoot(), 2035 DAG.getBasicBlock(Succ0MBB))); 2036 2037 return; 2038 } 2039 2040 // If this condition is one of the special cases we handle, do special stuff 2041 // now. 2042 const Value *CondVal = I.getCondition(); 2043 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2044 2045 // If this is a series of conditions that are or'd or and'd together, emit 2046 // this as a sequence of branches instead of setcc's with and/or operations. 2047 // As long as jumps are not expensive, this should improve performance. 2048 // For example, instead of something like: 2049 // cmp A, B 2050 // C = seteq 2051 // cmp D, E 2052 // F = setle 2053 // or C, F 2054 // jnz foo 2055 // Emit: 2056 // cmp A, B 2057 // je foo 2058 // cmp D, E 2059 // jle foo 2060 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2061 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2062 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2063 !I.getMetadata(LLVMContext::MD_unpredictable) && 2064 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2065 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2066 Opcode, 2067 getEdgeProbability(BrMBB, Succ0MBB), 2068 getEdgeProbability(BrMBB, Succ1MBB), 2069 /*InvertCond=*/false); 2070 // If the compares in later blocks need to use values not currently 2071 // exported from this block, export them now. This block should always 2072 // be the first entry. 2073 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2074 2075 // Allow some cases to be rejected. 2076 if (ShouldEmitAsBranches(SwitchCases)) { 2077 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2078 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2079 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2080 } 2081 2082 // Emit the branch for this block. 2083 visitSwitchCase(SwitchCases[0], BrMBB); 2084 SwitchCases.erase(SwitchCases.begin()); 2085 return; 2086 } 2087 2088 // Okay, we decided not to do this, remove any inserted MBB's and clear 2089 // SwitchCases. 2090 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2091 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2092 2093 SwitchCases.clear(); 2094 } 2095 } 2096 2097 // Create a CaseBlock record representing this branch. 2098 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2099 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2100 2101 // Use visitSwitchCase to actually insert the fast branch sequence for this 2102 // cond branch. 2103 visitSwitchCase(CB, BrMBB); 2104 } 2105 2106 /// visitSwitchCase - Emits the necessary code to represent a single node in 2107 /// the binary search tree resulting from lowering a switch instruction. 2108 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2109 MachineBasicBlock *SwitchBB) { 2110 SDValue Cond; 2111 SDValue CondLHS = getValue(CB.CmpLHS); 2112 SDLoc dl = CB.DL; 2113 2114 // Build the setcc now. 2115 if (!CB.CmpMHS) { 2116 // Fold "(X == true)" to X and "(X == false)" to !X to 2117 // handle common cases produced by branch lowering. 2118 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2119 CB.CC == ISD::SETEQ) 2120 Cond = CondLHS; 2121 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2122 CB.CC == ISD::SETEQ) { 2123 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2124 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2125 } else 2126 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2127 } else { 2128 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2129 2130 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2131 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2132 2133 SDValue CmpOp = getValue(CB.CmpMHS); 2134 EVT VT = CmpOp.getValueType(); 2135 2136 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2137 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2138 ISD::SETLE); 2139 } else { 2140 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2141 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2142 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2143 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2144 } 2145 } 2146 2147 // Update successor info 2148 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2149 // TrueBB and FalseBB are always different unless the incoming IR is 2150 // degenerate. This only happens when running llc on weird IR. 2151 if (CB.TrueBB != CB.FalseBB) 2152 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2153 SwitchBB->normalizeSuccProbs(); 2154 2155 // If the lhs block is the next block, invert the condition so that we can 2156 // fall through to the lhs instead of the rhs block. 2157 if (CB.TrueBB == NextBlock(SwitchBB)) { 2158 std::swap(CB.TrueBB, CB.FalseBB); 2159 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2160 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2161 } 2162 2163 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2164 MVT::Other, getControlRoot(), Cond, 2165 DAG.getBasicBlock(CB.TrueBB)); 2166 2167 // Insert the false branch. Do this even if it's a fall through branch, 2168 // this makes it easier to do DAG optimizations which require inverting 2169 // the branch condition. 2170 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2171 DAG.getBasicBlock(CB.FalseBB)); 2172 2173 DAG.setRoot(BrCond); 2174 } 2175 2176 /// visitJumpTable - Emit JumpTable node in the current MBB 2177 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2178 // Emit the code for the jump table 2179 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2180 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2181 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2182 JT.Reg, PTy); 2183 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2184 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2185 MVT::Other, Index.getValue(1), 2186 Table, Index); 2187 DAG.setRoot(BrJumpTable); 2188 } 2189 2190 /// visitJumpTableHeader - This function emits necessary code to produce index 2191 /// in the JumpTable from switch case. 2192 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2193 JumpTableHeader &JTH, 2194 MachineBasicBlock *SwitchBB) { 2195 SDLoc dl = getCurSDLoc(); 2196 2197 // Subtract the lowest switch case value from the value being switched on and 2198 // conditional branch to default mbb if the result is greater than the 2199 // difference between smallest and largest cases. 2200 SDValue SwitchOp = getValue(JTH.SValue); 2201 EVT VT = SwitchOp.getValueType(); 2202 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2203 DAG.getConstant(JTH.First, dl, VT)); 2204 2205 // The SDNode we just created, which holds the value being switched on minus 2206 // the smallest case value, needs to be copied to a virtual register so it 2207 // can be used as an index into the jump table in a subsequent basic block. 2208 // This value may be smaller or larger than the target's pointer type, and 2209 // therefore require extension or truncating. 2210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2211 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2212 2213 unsigned JumpTableReg = 2214 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2215 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2216 JumpTableReg, SwitchOp); 2217 JT.Reg = JumpTableReg; 2218 2219 // Emit the range check for the jump table, and branch to the default block 2220 // for the switch statement if the value being switched on exceeds the largest 2221 // case in the switch. 2222 SDValue CMP = DAG.getSetCC( 2223 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2224 Sub.getValueType()), 2225 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2226 2227 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2228 MVT::Other, CopyTo, CMP, 2229 DAG.getBasicBlock(JT.Default)); 2230 2231 // Avoid emitting unnecessary branches to the next block. 2232 if (JT.MBB != NextBlock(SwitchBB)) 2233 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2234 DAG.getBasicBlock(JT.MBB)); 2235 2236 DAG.setRoot(BrCond); 2237 } 2238 2239 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2240 /// variable if there exists one. 2241 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2242 SDValue &Chain) { 2243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2244 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2245 MachineFunction &MF = DAG.getMachineFunction(); 2246 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2247 MachineSDNode *Node = 2248 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2249 if (Global) { 2250 MachinePointerInfo MPInfo(Global); 2251 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2252 MachineMemOperand::MODereferenceable; 2253 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2254 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2255 DAG.setNodeMemRefs(Node, {MemRef}); 2256 } 2257 return SDValue(Node, 0); 2258 } 2259 2260 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2261 /// tail spliced into a stack protector check success bb. 2262 /// 2263 /// For a high level explanation of how this fits into the stack protector 2264 /// generation see the comment on the declaration of class 2265 /// StackProtectorDescriptor. 2266 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2267 MachineBasicBlock *ParentBB) { 2268 2269 // First create the loads to the guard/stack slot for the comparison. 2270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2271 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2272 2273 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2274 int FI = MFI.getStackProtectorIndex(); 2275 2276 SDValue Guard; 2277 SDLoc dl = getCurSDLoc(); 2278 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2279 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2280 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2281 2282 // Generate code to load the content of the guard slot. 2283 SDValue GuardVal = DAG.getLoad( 2284 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2285 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2286 MachineMemOperand::MOVolatile); 2287 2288 if (TLI.useStackGuardXorFP()) 2289 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2290 2291 // Retrieve guard check function, nullptr if instrumentation is inlined. 2292 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2293 // The target provides a guard check function to validate the guard value. 2294 // Generate a call to that function with the content of the guard slot as 2295 // argument. 2296 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2297 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2298 2299 TargetLowering::ArgListTy Args; 2300 TargetLowering::ArgListEntry Entry; 2301 Entry.Node = GuardVal; 2302 Entry.Ty = FnTy->getParamType(0); 2303 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2304 Entry.IsInReg = true; 2305 Args.push_back(Entry); 2306 2307 TargetLowering::CallLoweringInfo CLI(DAG); 2308 CLI.setDebugLoc(getCurSDLoc()) 2309 .setChain(DAG.getEntryNode()) 2310 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2311 getValue(GuardCheckFn), std::move(Args)); 2312 2313 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2314 DAG.setRoot(Result.second); 2315 return; 2316 } 2317 2318 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2319 // Otherwise, emit a volatile load to retrieve the stack guard value. 2320 SDValue Chain = DAG.getEntryNode(); 2321 if (TLI.useLoadStackGuardNode()) { 2322 Guard = getLoadStackGuard(DAG, dl, Chain); 2323 } else { 2324 const Value *IRGuard = TLI.getSDagStackGuard(M); 2325 SDValue GuardPtr = getValue(IRGuard); 2326 2327 Guard = 2328 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2329 Align, MachineMemOperand::MOVolatile); 2330 } 2331 2332 // Perform the comparison via a subtract/getsetcc. 2333 EVT VT = Guard.getValueType(); 2334 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2335 2336 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2337 *DAG.getContext(), 2338 Sub.getValueType()), 2339 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2340 2341 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2342 // branch to failure MBB. 2343 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2344 MVT::Other, GuardVal.getOperand(0), 2345 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2346 // Otherwise branch to success MBB. 2347 SDValue Br = DAG.getNode(ISD::BR, dl, 2348 MVT::Other, BrCond, 2349 DAG.getBasicBlock(SPD.getSuccessMBB())); 2350 2351 DAG.setRoot(Br); 2352 } 2353 2354 /// Codegen the failure basic block for a stack protector check. 2355 /// 2356 /// A failure stack protector machine basic block consists simply of a call to 2357 /// __stack_chk_fail(). 2358 /// 2359 /// For a high level explanation of how this fits into the stack protector 2360 /// generation see the comment on the declaration of class 2361 /// StackProtectorDescriptor. 2362 void 2363 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2365 SDValue Chain = 2366 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2367 None, false, getCurSDLoc(), false, false).second; 2368 DAG.setRoot(Chain); 2369 } 2370 2371 /// visitBitTestHeader - This function emits necessary code to produce value 2372 /// suitable for "bit tests" 2373 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2374 MachineBasicBlock *SwitchBB) { 2375 SDLoc dl = getCurSDLoc(); 2376 2377 // Subtract the minimum value 2378 SDValue SwitchOp = getValue(B.SValue); 2379 EVT VT = SwitchOp.getValueType(); 2380 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2381 DAG.getConstant(B.First, dl, VT)); 2382 2383 // Check range 2384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2385 SDValue RangeCmp = DAG.getSetCC( 2386 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2387 Sub.getValueType()), 2388 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2389 2390 // Determine the type of the test operands. 2391 bool UsePtrType = false; 2392 if (!TLI.isTypeLegal(VT)) 2393 UsePtrType = true; 2394 else { 2395 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2396 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2397 // Switch table case range are encoded into series of masks. 2398 // Just use pointer type, it's guaranteed to fit. 2399 UsePtrType = true; 2400 break; 2401 } 2402 } 2403 if (UsePtrType) { 2404 VT = TLI.getPointerTy(DAG.getDataLayout()); 2405 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2406 } 2407 2408 B.RegVT = VT.getSimpleVT(); 2409 B.Reg = FuncInfo.CreateReg(B.RegVT); 2410 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2411 2412 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2413 2414 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2415 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2416 SwitchBB->normalizeSuccProbs(); 2417 2418 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2419 MVT::Other, CopyTo, RangeCmp, 2420 DAG.getBasicBlock(B.Default)); 2421 2422 // Avoid emitting unnecessary branches to the next block. 2423 if (MBB != NextBlock(SwitchBB)) 2424 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2425 DAG.getBasicBlock(MBB)); 2426 2427 DAG.setRoot(BrRange); 2428 } 2429 2430 /// visitBitTestCase - this function produces one "bit test" 2431 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2432 MachineBasicBlock* NextMBB, 2433 BranchProbability BranchProbToNext, 2434 unsigned Reg, 2435 BitTestCase &B, 2436 MachineBasicBlock *SwitchBB) { 2437 SDLoc dl = getCurSDLoc(); 2438 MVT VT = BB.RegVT; 2439 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2440 SDValue Cmp; 2441 unsigned PopCount = countPopulation(B.Mask); 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 if (PopCount == 1) { 2444 // Testing for a single bit; just compare the shift count with what it 2445 // would need to be to shift a 1 bit in that position. 2446 Cmp = DAG.getSetCC( 2447 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2448 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2449 ISD::SETEQ); 2450 } else if (PopCount == BB.Range) { 2451 // There is only one zero bit in the range, test for it directly. 2452 Cmp = DAG.getSetCC( 2453 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2454 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2455 ISD::SETNE); 2456 } else { 2457 // Make desired shift 2458 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2459 DAG.getConstant(1, dl, VT), ShiftOp); 2460 2461 // Emit bit tests and jumps 2462 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2463 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2464 Cmp = DAG.getSetCC( 2465 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2466 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2467 } 2468 2469 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2470 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2471 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2472 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2473 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2474 // one as they are relative probabilities (and thus work more like weights), 2475 // and hence we need to normalize them to let the sum of them become one. 2476 SwitchBB->normalizeSuccProbs(); 2477 2478 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2479 MVT::Other, getControlRoot(), 2480 Cmp, DAG.getBasicBlock(B.TargetBB)); 2481 2482 // Avoid emitting unnecessary branches to the next block. 2483 if (NextMBB != NextBlock(SwitchBB)) 2484 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2485 DAG.getBasicBlock(NextMBB)); 2486 2487 DAG.setRoot(BrAnd); 2488 } 2489 2490 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2491 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2492 2493 // Retrieve successors. Look through artificial IR level blocks like 2494 // catchswitch for successors. 2495 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2496 const BasicBlock *EHPadBB = I.getSuccessor(1); 2497 2498 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2499 // have to do anything here to lower funclet bundles. 2500 assert(!I.hasOperandBundlesOtherThan( 2501 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2502 "Cannot lower invokes with arbitrary operand bundles yet!"); 2503 2504 const Value *Callee(I.getCalledValue()); 2505 const Function *Fn = dyn_cast<Function>(Callee); 2506 if (isa<InlineAsm>(Callee)) 2507 visitInlineAsm(&I); 2508 else if (Fn && Fn->isIntrinsic()) { 2509 switch (Fn->getIntrinsicID()) { 2510 default: 2511 llvm_unreachable("Cannot invoke this intrinsic"); 2512 case Intrinsic::donothing: 2513 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2514 break; 2515 case Intrinsic::experimental_patchpoint_void: 2516 case Intrinsic::experimental_patchpoint_i64: 2517 visitPatchpoint(&I, EHPadBB); 2518 break; 2519 case Intrinsic::experimental_gc_statepoint: 2520 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2521 break; 2522 } 2523 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2524 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2525 // Eventually we will support lowering the @llvm.experimental.deoptimize 2526 // intrinsic, and right now there are no plans to support other intrinsics 2527 // with deopt state. 2528 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2529 } else { 2530 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2531 } 2532 2533 // If the value of the invoke is used outside of its defining block, make it 2534 // available as a virtual register. 2535 // We already took care of the exported value for the statepoint instruction 2536 // during call to the LowerStatepoint. 2537 if (!isStatepoint(I)) { 2538 CopyToExportRegsIfNeeded(&I); 2539 } 2540 2541 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2542 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2543 BranchProbability EHPadBBProb = 2544 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2545 : BranchProbability::getZero(); 2546 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2547 2548 // Update successor info. 2549 addSuccessorWithProb(InvokeMBB, Return); 2550 for (auto &UnwindDest : UnwindDests) { 2551 UnwindDest.first->setIsEHPad(); 2552 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2553 } 2554 InvokeMBB->normalizeSuccProbs(); 2555 2556 // Drop into normal successor. 2557 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2558 DAG.getBasicBlock(Return))); 2559 } 2560 2561 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2562 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2563 2564 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2565 // have to do anything here to lower funclet bundles. 2566 assert(!I.hasOperandBundlesOtherThan( 2567 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2568 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2569 2570 assert(isa<InlineAsm>(I.getCalledValue()) && 2571 "Only know how to handle inlineasm callbr"); 2572 visitInlineAsm(&I); 2573 2574 // Retrieve successors. 2575 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2576 2577 // Update successor info. 2578 addSuccessorWithProb(CallBrMBB, Return); 2579 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2580 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2581 addSuccessorWithProb(CallBrMBB, Target); 2582 } 2583 CallBrMBB->normalizeSuccProbs(); 2584 2585 // Drop into default successor. 2586 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2587 MVT::Other, getControlRoot(), 2588 DAG.getBasicBlock(Return))); 2589 } 2590 2591 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2592 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2593 } 2594 2595 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2596 assert(FuncInfo.MBB->isEHPad() && 2597 "Call to landingpad not in landing pad!"); 2598 2599 // If there aren't registers to copy the values into (e.g., during SjLj 2600 // exceptions), then don't bother to create these DAG nodes. 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2603 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2604 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2605 return; 2606 2607 // If landingpad's return type is token type, we don't create DAG nodes 2608 // for its exception pointer and selector value. The extraction of exception 2609 // pointer or selector value from token type landingpads is not currently 2610 // supported. 2611 if (LP.getType()->isTokenTy()) 2612 return; 2613 2614 SmallVector<EVT, 2> ValueVTs; 2615 SDLoc dl = getCurSDLoc(); 2616 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2617 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2618 2619 // Get the two live-in registers as SDValues. The physregs have already been 2620 // copied into virtual registers. 2621 SDValue Ops[2]; 2622 if (FuncInfo.ExceptionPointerVirtReg) { 2623 Ops[0] = DAG.getZExtOrTrunc( 2624 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2625 FuncInfo.ExceptionPointerVirtReg, 2626 TLI.getPointerTy(DAG.getDataLayout())), 2627 dl, ValueVTs[0]); 2628 } else { 2629 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2630 } 2631 Ops[1] = DAG.getZExtOrTrunc( 2632 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2633 FuncInfo.ExceptionSelectorVirtReg, 2634 TLI.getPointerTy(DAG.getDataLayout())), 2635 dl, ValueVTs[1]); 2636 2637 // Merge into one. 2638 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2639 DAG.getVTList(ValueVTs), Ops); 2640 setValue(&LP, Res); 2641 } 2642 2643 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2644 #ifndef NDEBUG 2645 for (const CaseCluster &CC : Clusters) 2646 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2647 #endif 2648 2649 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2650 return a.Low->getValue().slt(b.Low->getValue()); 2651 }); 2652 2653 // Merge adjacent clusters with the same destination. 2654 const unsigned N = Clusters.size(); 2655 unsigned DstIndex = 0; 2656 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2657 CaseCluster &CC = Clusters[SrcIndex]; 2658 const ConstantInt *CaseVal = CC.Low; 2659 MachineBasicBlock *Succ = CC.MBB; 2660 2661 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2662 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2663 // If this case has the same successor and is a neighbour, merge it into 2664 // the previous cluster. 2665 Clusters[DstIndex - 1].High = CaseVal; 2666 Clusters[DstIndex - 1].Prob += CC.Prob; 2667 } else { 2668 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2669 sizeof(Clusters[SrcIndex])); 2670 } 2671 } 2672 Clusters.resize(DstIndex); 2673 } 2674 2675 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2676 MachineBasicBlock *Last) { 2677 // Update JTCases. 2678 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2679 if (JTCases[i].first.HeaderBB == First) 2680 JTCases[i].first.HeaderBB = Last; 2681 2682 // Update BitTestCases. 2683 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2684 if (BitTestCases[i].Parent == First) 2685 BitTestCases[i].Parent = Last; 2686 } 2687 2688 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2689 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2690 2691 // Update machine-CFG edges with unique successors. 2692 SmallSet<BasicBlock*, 32> Done; 2693 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2694 BasicBlock *BB = I.getSuccessor(i); 2695 bool Inserted = Done.insert(BB).second; 2696 if (!Inserted) 2697 continue; 2698 2699 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2700 addSuccessorWithProb(IndirectBrMBB, Succ); 2701 } 2702 IndirectBrMBB->normalizeSuccProbs(); 2703 2704 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2705 MVT::Other, getControlRoot(), 2706 getValue(I.getAddress()))); 2707 } 2708 2709 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2710 if (!DAG.getTarget().Options.TrapUnreachable) 2711 return; 2712 2713 // We may be able to ignore unreachable behind a noreturn call. 2714 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2715 const BasicBlock &BB = *I.getParent(); 2716 if (&I != &BB.front()) { 2717 BasicBlock::const_iterator PredI = 2718 std::prev(BasicBlock::const_iterator(&I)); 2719 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2720 if (Call->doesNotReturn()) 2721 return; 2722 } 2723 } 2724 } 2725 2726 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2727 } 2728 2729 void SelectionDAGBuilder::visitFSub(const User &I) { 2730 // -0.0 - X --> fneg 2731 Type *Ty = I.getType(); 2732 if (isa<Constant>(I.getOperand(0)) && 2733 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2734 SDValue Op2 = getValue(I.getOperand(1)); 2735 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2736 Op2.getValueType(), Op2)); 2737 return; 2738 } 2739 2740 visitBinary(I, ISD::FSUB); 2741 } 2742 2743 /// Checks if the given instruction performs a vector reduction, in which case 2744 /// we have the freedom to alter the elements in the result as long as the 2745 /// reduction of them stays unchanged. 2746 static bool isVectorReductionOp(const User *I) { 2747 const Instruction *Inst = dyn_cast<Instruction>(I); 2748 if (!Inst || !Inst->getType()->isVectorTy()) 2749 return false; 2750 2751 auto OpCode = Inst->getOpcode(); 2752 switch (OpCode) { 2753 case Instruction::Add: 2754 case Instruction::Mul: 2755 case Instruction::And: 2756 case Instruction::Or: 2757 case Instruction::Xor: 2758 break; 2759 case Instruction::FAdd: 2760 case Instruction::FMul: 2761 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2762 if (FPOp->getFastMathFlags().isFast()) 2763 break; 2764 LLVM_FALLTHROUGH; 2765 default: 2766 return false; 2767 } 2768 2769 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2770 // Ensure the reduction size is a power of 2. 2771 if (!isPowerOf2_32(ElemNum)) 2772 return false; 2773 2774 unsigned ElemNumToReduce = ElemNum; 2775 2776 // Do DFS search on the def-use chain from the given instruction. We only 2777 // allow four kinds of operations during the search until we reach the 2778 // instruction that extracts the first element from the vector: 2779 // 2780 // 1. The reduction operation of the same opcode as the given instruction. 2781 // 2782 // 2. PHI node. 2783 // 2784 // 3. ShuffleVector instruction together with a reduction operation that 2785 // does a partial reduction. 2786 // 2787 // 4. ExtractElement that extracts the first element from the vector, and we 2788 // stop searching the def-use chain here. 2789 // 2790 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2791 // from 1-3 to the stack to continue the DFS. The given instruction is not 2792 // a reduction operation if we meet any other instructions other than those 2793 // listed above. 2794 2795 SmallVector<const User *, 16> UsersToVisit{Inst}; 2796 SmallPtrSet<const User *, 16> Visited; 2797 bool ReduxExtracted = false; 2798 2799 while (!UsersToVisit.empty()) { 2800 auto User = UsersToVisit.back(); 2801 UsersToVisit.pop_back(); 2802 if (!Visited.insert(User).second) 2803 continue; 2804 2805 for (const auto &U : User->users()) { 2806 auto Inst = dyn_cast<Instruction>(U); 2807 if (!Inst) 2808 return false; 2809 2810 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2811 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2812 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2813 return false; 2814 UsersToVisit.push_back(U); 2815 } else if (const ShuffleVectorInst *ShufInst = 2816 dyn_cast<ShuffleVectorInst>(U)) { 2817 // Detect the following pattern: A ShuffleVector instruction together 2818 // with a reduction that do partial reduction on the first and second 2819 // ElemNumToReduce / 2 elements, and store the result in 2820 // ElemNumToReduce / 2 elements in another vector. 2821 2822 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2823 if (ResultElements < ElemNum) 2824 return false; 2825 2826 if (ElemNumToReduce == 1) 2827 return false; 2828 if (!isa<UndefValue>(U->getOperand(1))) 2829 return false; 2830 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2831 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2832 return false; 2833 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2834 if (ShufInst->getMaskValue(i) != -1) 2835 return false; 2836 2837 // There is only one user of this ShuffleVector instruction, which 2838 // must be a reduction operation. 2839 if (!U->hasOneUse()) 2840 return false; 2841 2842 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2843 if (!U2 || U2->getOpcode() != OpCode) 2844 return false; 2845 2846 // Check operands of the reduction operation. 2847 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2848 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2849 UsersToVisit.push_back(U2); 2850 ElemNumToReduce /= 2; 2851 } else 2852 return false; 2853 } else if (isa<ExtractElementInst>(U)) { 2854 // At this moment we should have reduced all elements in the vector. 2855 if (ElemNumToReduce != 1) 2856 return false; 2857 2858 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2859 if (!Val || !Val->isZero()) 2860 return false; 2861 2862 ReduxExtracted = true; 2863 } else 2864 return false; 2865 } 2866 } 2867 return ReduxExtracted; 2868 } 2869 2870 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2871 SDNodeFlags Flags; 2872 2873 SDValue Op = getValue(I.getOperand(0)); 2874 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2875 Op, Flags); 2876 setValue(&I, UnNodeValue); 2877 } 2878 2879 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2880 SDNodeFlags Flags; 2881 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2882 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2883 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2884 } 2885 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2886 Flags.setExact(ExactOp->isExact()); 2887 } 2888 if (isVectorReductionOp(&I)) { 2889 Flags.setVectorReduction(true); 2890 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2891 } 2892 2893 SDValue Op1 = getValue(I.getOperand(0)); 2894 SDValue Op2 = getValue(I.getOperand(1)); 2895 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2896 Op1, Op2, Flags); 2897 setValue(&I, BinNodeValue); 2898 } 2899 2900 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2901 SDValue Op1 = getValue(I.getOperand(0)); 2902 SDValue Op2 = getValue(I.getOperand(1)); 2903 2904 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2905 Op1.getValueType(), DAG.getDataLayout()); 2906 2907 // Coerce the shift amount to the right type if we can. 2908 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2909 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2910 unsigned Op2Size = Op2.getValueSizeInBits(); 2911 SDLoc DL = getCurSDLoc(); 2912 2913 // If the operand is smaller than the shift count type, promote it. 2914 if (ShiftSize > Op2Size) 2915 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2916 2917 // If the operand is larger than the shift count type but the shift 2918 // count type has enough bits to represent any shift value, truncate 2919 // it now. This is a common case and it exposes the truncate to 2920 // optimization early. 2921 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2922 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2923 // Otherwise we'll need to temporarily settle for some other convenient 2924 // type. Type legalization will make adjustments once the shiftee is split. 2925 else 2926 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2927 } 2928 2929 bool nuw = false; 2930 bool nsw = false; 2931 bool exact = false; 2932 2933 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2934 2935 if (const OverflowingBinaryOperator *OFBinOp = 2936 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2937 nuw = OFBinOp->hasNoUnsignedWrap(); 2938 nsw = OFBinOp->hasNoSignedWrap(); 2939 } 2940 if (const PossiblyExactOperator *ExactOp = 2941 dyn_cast<const PossiblyExactOperator>(&I)) 2942 exact = ExactOp->isExact(); 2943 } 2944 SDNodeFlags Flags; 2945 Flags.setExact(exact); 2946 Flags.setNoSignedWrap(nsw); 2947 Flags.setNoUnsignedWrap(nuw); 2948 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2949 Flags); 2950 setValue(&I, Res); 2951 } 2952 2953 void SelectionDAGBuilder::visitSDiv(const User &I) { 2954 SDValue Op1 = getValue(I.getOperand(0)); 2955 SDValue Op2 = getValue(I.getOperand(1)); 2956 2957 SDNodeFlags Flags; 2958 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2959 cast<PossiblyExactOperator>(&I)->isExact()); 2960 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2961 Op2, Flags)); 2962 } 2963 2964 void SelectionDAGBuilder::visitICmp(const User &I) { 2965 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2966 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2967 predicate = IC->getPredicate(); 2968 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2969 predicate = ICmpInst::Predicate(IC->getPredicate()); 2970 SDValue Op1 = getValue(I.getOperand(0)); 2971 SDValue Op2 = getValue(I.getOperand(1)); 2972 ISD::CondCode Opcode = getICmpCondCode(predicate); 2973 2974 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2975 I.getType()); 2976 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2977 } 2978 2979 void SelectionDAGBuilder::visitFCmp(const User &I) { 2980 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2981 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2982 predicate = FC->getPredicate(); 2983 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2984 predicate = FCmpInst::Predicate(FC->getPredicate()); 2985 SDValue Op1 = getValue(I.getOperand(0)); 2986 SDValue Op2 = getValue(I.getOperand(1)); 2987 2988 ISD::CondCode Condition = getFCmpCondCode(predicate); 2989 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2990 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2991 Condition = getFCmpCodeWithoutNaN(Condition); 2992 2993 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2994 I.getType()); 2995 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2996 } 2997 2998 // Check if the condition of the select has one use or two users that are both 2999 // selects with the same condition. 3000 static bool hasOnlySelectUsers(const Value *Cond) { 3001 return llvm::all_of(Cond->users(), [](const Value *V) { 3002 return isa<SelectInst>(V); 3003 }); 3004 } 3005 3006 void SelectionDAGBuilder::visitSelect(const User &I) { 3007 SmallVector<EVT, 4> ValueVTs; 3008 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3009 ValueVTs); 3010 unsigned NumValues = ValueVTs.size(); 3011 if (NumValues == 0) return; 3012 3013 SmallVector<SDValue, 4> Values(NumValues); 3014 SDValue Cond = getValue(I.getOperand(0)); 3015 SDValue LHSVal = getValue(I.getOperand(1)); 3016 SDValue RHSVal = getValue(I.getOperand(2)); 3017 auto BaseOps = {Cond}; 3018 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3019 ISD::VSELECT : ISD::SELECT; 3020 3021 // Min/max matching is only viable if all output VTs are the same. 3022 if (is_splat(ValueVTs)) { 3023 EVT VT = ValueVTs[0]; 3024 LLVMContext &Ctx = *DAG.getContext(); 3025 auto &TLI = DAG.getTargetLoweringInfo(); 3026 3027 // We care about the legality of the operation after it has been type 3028 // legalized. 3029 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3030 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3031 VT = TLI.getTypeToTransformTo(Ctx, VT); 3032 3033 // If the vselect is legal, assume we want to leave this as a vector setcc + 3034 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3035 // min/max is legal on the scalar type. 3036 bool UseScalarMinMax = VT.isVector() && 3037 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3038 3039 Value *LHS, *RHS; 3040 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3041 ISD::NodeType Opc = ISD::DELETED_NODE; 3042 switch (SPR.Flavor) { 3043 case SPF_UMAX: Opc = ISD::UMAX; break; 3044 case SPF_UMIN: Opc = ISD::UMIN; break; 3045 case SPF_SMAX: Opc = ISD::SMAX; break; 3046 case SPF_SMIN: Opc = ISD::SMIN; break; 3047 case SPF_FMINNUM: 3048 switch (SPR.NaNBehavior) { 3049 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3050 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3051 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3052 case SPNB_RETURNS_ANY: { 3053 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3054 Opc = ISD::FMINNUM; 3055 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3056 Opc = ISD::FMINIMUM; 3057 else if (UseScalarMinMax) 3058 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3059 ISD::FMINNUM : ISD::FMINIMUM; 3060 break; 3061 } 3062 } 3063 break; 3064 case SPF_FMAXNUM: 3065 switch (SPR.NaNBehavior) { 3066 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3067 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3068 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3069 case SPNB_RETURNS_ANY: 3070 3071 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3072 Opc = ISD::FMAXNUM; 3073 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3074 Opc = ISD::FMAXIMUM; 3075 else if (UseScalarMinMax) 3076 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3077 ISD::FMAXNUM : ISD::FMAXIMUM; 3078 break; 3079 } 3080 break; 3081 default: break; 3082 } 3083 3084 if (Opc != ISD::DELETED_NODE && 3085 (TLI.isOperationLegalOrCustom(Opc, VT) || 3086 (UseScalarMinMax && 3087 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3088 // If the underlying comparison instruction is used by any other 3089 // instruction, the consumed instructions won't be destroyed, so it is 3090 // not profitable to convert to a min/max. 3091 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3092 OpCode = Opc; 3093 LHSVal = getValue(LHS); 3094 RHSVal = getValue(RHS); 3095 BaseOps = {}; 3096 } 3097 } 3098 3099 for (unsigned i = 0; i != NumValues; ++i) { 3100 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3101 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3102 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3103 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3104 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3105 Ops); 3106 } 3107 3108 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3109 DAG.getVTList(ValueVTs), Values)); 3110 } 3111 3112 void SelectionDAGBuilder::visitTrunc(const User &I) { 3113 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3114 SDValue N = getValue(I.getOperand(0)); 3115 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3116 I.getType()); 3117 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3118 } 3119 3120 void SelectionDAGBuilder::visitZExt(const User &I) { 3121 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3122 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3123 SDValue N = getValue(I.getOperand(0)); 3124 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3125 I.getType()); 3126 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3127 } 3128 3129 void SelectionDAGBuilder::visitSExt(const User &I) { 3130 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3131 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3132 SDValue N = getValue(I.getOperand(0)); 3133 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3134 I.getType()); 3135 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3136 } 3137 3138 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3139 // FPTrunc is never a no-op cast, no need to check 3140 SDValue N = getValue(I.getOperand(0)); 3141 SDLoc dl = getCurSDLoc(); 3142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3143 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3144 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3145 DAG.getTargetConstant( 3146 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3147 } 3148 3149 void SelectionDAGBuilder::visitFPExt(const User &I) { 3150 // FPExt is never a no-op cast, no need to check 3151 SDValue N = getValue(I.getOperand(0)); 3152 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3153 I.getType()); 3154 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3155 } 3156 3157 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3158 // FPToUI is never a no-op cast, no need to check 3159 SDValue N = getValue(I.getOperand(0)); 3160 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3161 I.getType()); 3162 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3163 } 3164 3165 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3166 // FPToSI is never a no-op cast, no need to check 3167 SDValue N = getValue(I.getOperand(0)); 3168 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3169 I.getType()); 3170 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3171 } 3172 3173 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3174 // UIToFP is never a no-op cast, no need to check 3175 SDValue N = getValue(I.getOperand(0)); 3176 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3177 I.getType()); 3178 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3179 } 3180 3181 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3182 // SIToFP is never a no-op cast, no need to check 3183 SDValue N = getValue(I.getOperand(0)); 3184 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3185 I.getType()); 3186 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3187 } 3188 3189 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3190 // What to do depends on the size of the integer and the size of the pointer. 3191 // We can either truncate, zero extend, or no-op, accordingly. 3192 SDValue N = getValue(I.getOperand(0)); 3193 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3194 I.getType()); 3195 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3196 } 3197 3198 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3199 // What to do depends on the size of the integer and the size of the pointer. 3200 // We can either truncate, zero extend, or no-op, accordingly. 3201 SDValue N = getValue(I.getOperand(0)); 3202 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3203 I.getType()); 3204 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3205 } 3206 3207 void SelectionDAGBuilder::visitBitCast(const User &I) { 3208 SDValue N = getValue(I.getOperand(0)); 3209 SDLoc dl = getCurSDLoc(); 3210 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3211 I.getType()); 3212 3213 // BitCast assures us that source and destination are the same size so this is 3214 // either a BITCAST or a no-op. 3215 if (DestVT != N.getValueType()) 3216 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3217 DestVT, N)); // convert types. 3218 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3219 // might fold any kind of constant expression to an integer constant and that 3220 // is not what we are looking for. Only recognize a bitcast of a genuine 3221 // constant integer as an opaque constant. 3222 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3223 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3224 /*isOpaque*/true)); 3225 else 3226 setValue(&I, N); // noop cast. 3227 } 3228 3229 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3231 const Value *SV = I.getOperand(0); 3232 SDValue N = getValue(SV); 3233 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3234 3235 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3236 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3237 3238 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3239 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3240 3241 setValue(&I, N); 3242 } 3243 3244 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3246 SDValue InVec = getValue(I.getOperand(0)); 3247 SDValue InVal = getValue(I.getOperand(1)); 3248 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3249 TLI.getVectorIdxTy(DAG.getDataLayout())); 3250 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3251 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3252 InVec, InVal, InIdx)); 3253 } 3254 3255 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3257 SDValue InVec = getValue(I.getOperand(0)); 3258 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3259 TLI.getVectorIdxTy(DAG.getDataLayout())); 3260 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3261 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3262 InVec, InIdx)); 3263 } 3264 3265 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3266 SDValue Src1 = getValue(I.getOperand(0)); 3267 SDValue Src2 = getValue(I.getOperand(1)); 3268 SDLoc DL = getCurSDLoc(); 3269 3270 SmallVector<int, 8> Mask; 3271 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3272 unsigned MaskNumElts = Mask.size(); 3273 3274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3275 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3276 EVT SrcVT = Src1.getValueType(); 3277 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3278 3279 if (SrcNumElts == MaskNumElts) { 3280 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3281 return; 3282 } 3283 3284 // Normalize the shuffle vector since mask and vector length don't match. 3285 if (SrcNumElts < MaskNumElts) { 3286 // Mask is longer than the source vectors. We can use concatenate vector to 3287 // make the mask and vectors lengths match. 3288 3289 if (MaskNumElts % SrcNumElts == 0) { 3290 // Mask length is a multiple of the source vector length. 3291 // Check if the shuffle is some kind of concatenation of the input 3292 // vectors. 3293 unsigned NumConcat = MaskNumElts / SrcNumElts; 3294 bool IsConcat = true; 3295 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3296 for (unsigned i = 0; i != MaskNumElts; ++i) { 3297 int Idx = Mask[i]; 3298 if (Idx < 0) 3299 continue; 3300 // Ensure the indices in each SrcVT sized piece are sequential and that 3301 // the same source is used for the whole piece. 3302 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3303 (ConcatSrcs[i / SrcNumElts] >= 0 && 3304 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3305 IsConcat = false; 3306 break; 3307 } 3308 // Remember which source this index came from. 3309 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3310 } 3311 3312 // The shuffle is concatenating multiple vectors together. Just emit 3313 // a CONCAT_VECTORS operation. 3314 if (IsConcat) { 3315 SmallVector<SDValue, 8> ConcatOps; 3316 for (auto Src : ConcatSrcs) { 3317 if (Src < 0) 3318 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3319 else if (Src == 0) 3320 ConcatOps.push_back(Src1); 3321 else 3322 ConcatOps.push_back(Src2); 3323 } 3324 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3325 return; 3326 } 3327 } 3328 3329 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3330 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3331 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3332 PaddedMaskNumElts); 3333 3334 // Pad both vectors with undefs to make them the same length as the mask. 3335 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3336 3337 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3338 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3339 MOps1[0] = Src1; 3340 MOps2[0] = Src2; 3341 3342 Src1 = Src1.isUndef() 3343 ? DAG.getUNDEF(PaddedVT) 3344 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3345 Src2 = Src2.isUndef() 3346 ? DAG.getUNDEF(PaddedVT) 3347 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3348 3349 // Readjust mask for new input vector length. 3350 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3351 for (unsigned i = 0; i != MaskNumElts; ++i) { 3352 int Idx = Mask[i]; 3353 if (Idx >= (int)SrcNumElts) 3354 Idx -= SrcNumElts - PaddedMaskNumElts; 3355 MappedOps[i] = Idx; 3356 } 3357 3358 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3359 3360 // If the concatenated vector was padded, extract a subvector with the 3361 // correct number of elements. 3362 if (MaskNumElts != PaddedMaskNumElts) 3363 Result = DAG.getNode( 3364 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3365 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3366 3367 setValue(&I, Result); 3368 return; 3369 } 3370 3371 if (SrcNumElts > MaskNumElts) { 3372 // Analyze the access pattern of the vector to see if we can extract 3373 // two subvectors and do the shuffle. 3374 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3375 bool CanExtract = true; 3376 for (int Idx : Mask) { 3377 unsigned Input = 0; 3378 if (Idx < 0) 3379 continue; 3380 3381 if (Idx >= (int)SrcNumElts) { 3382 Input = 1; 3383 Idx -= SrcNumElts; 3384 } 3385 3386 // If all the indices come from the same MaskNumElts sized portion of 3387 // the sources we can use extract. Also make sure the extract wouldn't 3388 // extract past the end of the source. 3389 int NewStartIdx = alignDown(Idx, MaskNumElts); 3390 if (NewStartIdx + MaskNumElts > SrcNumElts || 3391 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3392 CanExtract = false; 3393 // Make sure we always update StartIdx as we use it to track if all 3394 // elements are undef. 3395 StartIdx[Input] = NewStartIdx; 3396 } 3397 3398 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3399 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3400 return; 3401 } 3402 if (CanExtract) { 3403 // Extract appropriate subvector and generate a vector shuffle 3404 for (unsigned Input = 0; Input < 2; ++Input) { 3405 SDValue &Src = Input == 0 ? Src1 : Src2; 3406 if (StartIdx[Input] < 0) 3407 Src = DAG.getUNDEF(VT); 3408 else { 3409 Src = DAG.getNode( 3410 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3411 DAG.getConstant(StartIdx[Input], DL, 3412 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3413 } 3414 } 3415 3416 // Calculate new mask. 3417 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3418 for (int &Idx : MappedOps) { 3419 if (Idx >= (int)SrcNumElts) 3420 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3421 else if (Idx >= 0) 3422 Idx -= StartIdx[0]; 3423 } 3424 3425 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3426 return; 3427 } 3428 } 3429 3430 // We can't use either concat vectors or extract subvectors so fall back to 3431 // replacing the shuffle with extract and build vector. 3432 // to insert and build vector. 3433 EVT EltVT = VT.getVectorElementType(); 3434 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3435 SmallVector<SDValue,8> Ops; 3436 for (int Idx : Mask) { 3437 SDValue Res; 3438 3439 if (Idx < 0) { 3440 Res = DAG.getUNDEF(EltVT); 3441 } else { 3442 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3443 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3444 3445 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3446 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3447 } 3448 3449 Ops.push_back(Res); 3450 } 3451 3452 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3453 } 3454 3455 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3456 ArrayRef<unsigned> Indices; 3457 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3458 Indices = IV->getIndices(); 3459 else 3460 Indices = cast<ConstantExpr>(&I)->getIndices(); 3461 3462 const Value *Op0 = I.getOperand(0); 3463 const Value *Op1 = I.getOperand(1); 3464 Type *AggTy = I.getType(); 3465 Type *ValTy = Op1->getType(); 3466 bool IntoUndef = isa<UndefValue>(Op0); 3467 bool FromUndef = isa<UndefValue>(Op1); 3468 3469 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3470 3471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3472 SmallVector<EVT, 4> AggValueVTs; 3473 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3474 SmallVector<EVT, 4> ValValueVTs; 3475 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3476 3477 unsigned NumAggValues = AggValueVTs.size(); 3478 unsigned NumValValues = ValValueVTs.size(); 3479 SmallVector<SDValue, 4> Values(NumAggValues); 3480 3481 // Ignore an insertvalue that produces an empty object 3482 if (!NumAggValues) { 3483 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3484 return; 3485 } 3486 3487 SDValue Agg = getValue(Op0); 3488 unsigned i = 0; 3489 // Copy the beginning value(s) from the original aggregate. 3490 for (; i != LinearIndex; ++i) 3491 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3492 SDValue(Agg.getNode(), Agg.getResNo() + i); 3493 // Copy values from the inserted value(s). 3494 if (NumValValues) { 3495 SDValue Val = getValue(Op1); 3496 for (; i != LinearIndex + NumValValues; ++i) 3497 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3498 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3499 } 3500 // Copy remaining value(s) from the original aggregate. 3501 for (; i != NumAggValues; ++i) 3502 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3503 SDValue(Agg.getNode(), Agg.getResNo() + i); 3504 3505 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3506 DAG.getVTList(AggValueVTs), Values)); 3507 } 3508 3509 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3510 ArrayRef<unsigned> Indices; 3511 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3512 Indices = EV->getIndices(); 3513 else 3514 Indices = cast<ConstantExpr>(&I)->getIndices(); 3515 3516 const Value *Op0 = I.getOperand(0); 3517 Type *AggTy = Op0->getType(); 3518 Type *ValTy = I.getType(); 3519 bool OutOfUndef = isa<UndefValue>(Op0); 3520 3521 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3522 3523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3524 SmallVector<EVT, 4> ValValueVTs; 3525 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3526 3527 unsigned NumValValues = ValValueVTs.size(); 3528 3529 // Ignore a extractvalue that produces an empty object 3530 if (!NumValValues) { 3531 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3532 return; 3533 } 3534 3535 SmallVector<SDValue, 4> Values(NumValValues); 3536 3537 SDValue Agg = getValue(Op0); 3538 // Copy out the selected value(s). 3539 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3540 Values[i - LinearIndex] = 3541 OutOfUndef ? 3542 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3543 SDValue(Agg.getNode(), Agg.getResNo() + i); 3544 3545 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3546 DAG.getVTList(ValValueVTs), Values)); 3547 } 3548 3549 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3550 Value *Op0 = I.getOperand(0); 3551 // Note that the pointer operand may be a vector of pointers. Take the scalar 3552 // element which holds a pointer. 3553 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3554 SDValue N = getValue(Op0); 3555 SDLoc dl = getCurSDLoc(); 3556 3557 // Normalize Vector GEP - all scalar operands should be converted to the 3558 // splat vector. 3559 unsigned VectorWidth = I.getType()->isVectorTy() ? 3560 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3561 3562 if (VectorWidth && !N.getValueType().isVector()) { 3563 LLVMContext &Context = *DAG.getContext(); 3564 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3565 N = DAG.getSplatBuildVector(VT, dl, N); 3566 } 3567 3568 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3569 GTI != E; ++GTI) { 3570 const Value *Idx = GTI.getOperand(); 3571 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3572 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3573 if (Field) { 3574 // N = N + Offset 3575 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3576 3577 // In an inbounds GEP with an offset that is nonnegative even when 3578 // interpreted as signed, assume there is no unsigned overflow. 3579 SDNodeFlags Flags; 3580 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3581 Flags.setNoUnsignedWrap(true); 3582 3583 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3584 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3585 } 3586 } else { 3587 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3588 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3589 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3590 3591 // If this is a scalar constant or a splat vector of constants, 3592 // handle it quickly. 3593 const auto *CI = dyn_cast<ConstantInt>(Idx); 3594 if (!CI && isa<ConstantDataVector>(Idx) && 3595 cast<ConstantDataVector>(Idx)->getSplatValue()) 3596 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3597 3598 if (CI) { 3599 if (CI->isZero()) 3600 continue; 3601 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3602 LLVMContext &Context = *DAG.getContext(); 3603 SDValue OffsVal = VectorWidth ? 3604 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3605 DAG.getConstant(Offs, dl, IdxTy); 3606 3607 // In an inbouds GEP with an offset that is nonnegative even when 3608 // interpreted as signed, assume there is no unsigned overflow. 3609 SDNodeFlags Flags; 3610 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3611 Flags.setNoUnsignedWrap(true); 3612 3613 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3614 continue; 3615 } 3616 3617 // N = N + Idx * ElementSize; 3618 SDValue IdxN = getValue(Idx); 3619 3620 if (!IdxN.getValueType().isVector() && VectorWidth) { 3621 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3622 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3623 } 3624 3625 // If the index is smaller or larger than intptr_t, truncate or extend 3626 // it. 3627 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3628 3629 // If this is a multiply by a power of two, turn it into a shl 3630 // immediately. This is a very common case. 3631 if (ElementSize != 1) { 3632 if (ElementSize.isPowerOf2()) { 3633 unsigned Amt = ElementSize.logBase2(); 3634 IdxN = DAG.getNode(ISD::SHL, dl, 3635 N.getValueType(), IdxN, 3636 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3637 } else { 3638 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3639 IdxN = DAG.getNode(ISD::MUL, dl, 3640 N.getValueType(), IdxN, Scale); 3641 } 3642 } 3643 3644 N = DAG.getNode(ISD::ADD, dl, 3645 N.getValueType(), N, IdxN); 3646 } 3647 } 3648 3649 setValue(&I, N); 3650 } 3651 3652 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3653 // If this is a fixed sized alloca in the entry block of the function, 3654 // allocate it statically on the stack. 3655 if (FuncInfo.StaticAllocaMap.count(&I)) 3656 return; // getValue will auto-populate this. 3657 3658 SDLoc dl = getCurSDLoc(); 3659 Type *Ty = I.getAllocatedType(); 3660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3661 auto &DL = DAG.getDataLayout(); 3662 uint64_t TySize = DL.getTypeAllocSize(Ty); 3663 unsigned Align = 3664 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3665 3666 SDValue AllocSize = getValue(I.getArraySize()); 3667 3668 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3669 if (AllocSize.getValueType() != IntPtr) 3670 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3671 3672 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3673 AllocSize, 3674 DAG.getConstant(TySize, dl, IntPtr)); 3675 3676 // Handle alignment. If the requested alignment is less than or equal to 3677 // the stack alignment, ignore it. If the size is greater than or equal to 3678 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3679 unsigned StackAlign = 3680 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3681 if (Align <= StackAlign) 3682 Align = 0; 3683 3684 // Round the size of the allocation up to the stack alignment size 3685 // by add SA-1 to the size. This doesn't overflow because we're computing 3686 // an address inside an alloca. 3687 SDNodeFlags Flags; 3688 Flags.setNoUnsignedWrap(true); 3689 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3690 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3691 3692 // Mask out the low bits for alignment purposes. 3693 AllocSize = 3694 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3695 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3696 3697 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3698 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3699 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3700 setValue(&I, DSA); 3701 DAG.setRoot(DSA.getValue(1)); 3702 3703 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3704 } 3705 3706 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3707 if (I.isAtomic()) 3708 return visitAtomicLoad(I); 3709 3710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3711 const Value *SV = I.getOperand(0); 3712 if (TLI.supportSwiftError()) { 3713 // Swifterror values can come from either a function parameter with 3714 // swifterror attribute or an alloca with swifterror attribute. 3715 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3716 if (Arg->hasSwiftErrorAttr()) 3717 return visitLoadFromSwiftError(I); 3718 } 3719 3720 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3721 if (Alloca->isSwiftError()) 3722 return visitLoadFromSwiftError(I); 3723 } 3724 } 3725 3726 SDValue Ptr = getValue(SV); 3727 3728 Type *Ty = I.getType(); 3729 3730 bool isVolatile = I.isVolatile(); 3731 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3732 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3733 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3734 unsigned Alignment = I.getAlignment(); 3735 3736 AAMDNodes AAInfo; 3737 I.getAAMetadata(AAInfo); 3738 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3739 3740 SmallVector<EVT, 4> ValueVTs; 3741 SmallVector<uint64_t, 4> Offsets; 3742 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3743 unsigned NumValues = ValueVTs.size(); 3744 if (NumValues == 0) 3745 return; 3746 3747 SDValue Root; 3748 bool ConstantMemory = false; 3749 if (isVolatile || NumValues > MaxParallelChains) 3750 // Serialize volatile loads with other side effects. 3751 Root = getRoot(); 3752 else if (AA && 3753 AA->pointsToConstantMemory(MemoryLocation( 3754 SV, 3755 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3756 AAInfo))) { 3757 // Do not serialize (non-volatile) loads of constant memory with anything. 3758 Root = DAG.getEntryNode(); 3759 ConstantMemory = true; 3760 } else { 3761 // Do not serialize non-volatile loads against each other. 3762 Root = DAG.getRoot(); 3763 } 3764 3765 SDLoc dl = getCurSDLoc(); 3766 3767 if (isVolatile) 3768 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3769 3770 // An aggregate load cannot wrap around the address space, so offsets to its 3771 // parts don't wrap either. 3772 SDNodeFlags Flags; 3773 Flags.setNoUnsignedWrap(true); 3774 3775 SmallVector<SDValue, 4> Values(NumValues); 3776 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3777 EVT PtrVT = Ptr.getValueType(); 3778 unsigned ChainI = 0; 3779 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3780 // Serializing loads here may result in excessive register pressure, and 3781 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3782 // could recover a bit by hoisting nodes upward in the chain by recognizing 3783 // they are side-effect free or do not alias. The optimizer should really 3784 // avoid this case by converting large object/array copies to llvm.memcpy 3785 // (MaxParallelChains should always remain as failsafe). 3786 if (ChainI == MaxParallelChains) { 3787 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3788 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3789 makeArrayRef(Chains.data(), ChainI)); 3790 Root = Chain; 3791 ChainI = 0; 3792 } 3793 SDValue A = DAG.getNode(ISD::ADD, dl, 3794 PtrVT, Ptr, 3795 DAG.getConstant(Offsets[i], dl, PtrVT), 3796 Flags); 3797 auto MMOFlags = MachineMemOperand::MONone; 3798 if (isVolatile) 3799 MMOFlags |= MachineMemOperand::MOVolatile; 3800 if (isNonTemporal) 3801 MMOFlags |= MachineMemOperand::MONonTemporal; 3802 if (isInvariant) 3803 MMOFlags |= MachineMemOperand::MOInvariant; 3804 if (isDereferenceable) 3805 MMOFlags |= MachineMemOperand::MODereferenceable; 3806 MMOFlags |= TLI.getMMOFlags(I); 3807 3808 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3809 MachinePointerInfo(SV, Offsets[i]), Alignment, 3810 MMOFlags, AAInfo, Ranges); 3811 3812 Values[i] = L; 3813 Chains[ChainI] = L.getValue(1); 3814 } 3815 3816 if (!ConstantMemory) { 3817 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3818 makeArrayRef(Chains.data(), ChainI)); 3819 if (isVolatile) 3820 DAG.setRoot(Chain); 3821 else 3822 PendingLoads.push_back(Chain); 3823 } 3824 3825 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3826 DAG.getVTList(ValueVTs), Values)); 3827 } 3828 3829 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3830 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3831 "call visitStoreToSwiftError when backend supports swifterror"); 3832 3833 SmallVector<EVT, 4> ValueVTs; 3834 SmallVector<uint64_t, 4> Offsets; 3835 const Value *SrcV = I.getOperand(0); 3836 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3837 SrcV->getType(), ValueVTs, &Offsets); 3838 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3839 "expect a single EVT for swifterror"); 3840 3841 SDValue Src = getValue(SrcV); 3842 // Create a virtual register, then update the virtual register. 3843 unsigned VReg; bool CreatedVReg; 3844 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3845 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3846 // Chain can be getRoot or getControlRoot. 3847 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3848 SDValue(Src.getNode(), Src.getResNo())); 3849 DAG.setRoot(CopyNode); 3850 if (CreatedVReg) 3851 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3852 } 3853 3854 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3855 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3856 "call visitLoadFromSwiftError when backend supports swifterror"); 3857 3858 assert(!I.isVolatile() && 3859 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3860 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3861 "Support volatile, non temporal, invariant for load_from_swift_error"); 3862 3863 const Value *SV = I.getOperand(0); 3864 Type *Ty = I.getType(); 3865 AAMDNodes AAInfo; 3866 I.getAAMetadata(AAInfo); 3867 assert( 3868 (!AA || 3869 !AA->pointsToConstantMemory(MemoryLocation( 3870 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3871 AAInfo))) && 3872 "load_from_swift_error should not be constant memory"); 3873 3874 SmallVector<EVT, 4> ValueVTs; 3875 SmallVector<uint64_t, 4> Offsets; 3876 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3877 ValueVTs, &Offsets); 3878 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3879 "expect a single EVT for swifterror"); 3880 3881 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3882 SDValue L = DAG.getCopyFromReg( 3883 getRoot(), getCurSDLoc(), 3884 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3885 ValueVTs[0]); 3886 3887 setValue(&I, L); 3888 } 3889 3890 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3891 if (I.isAtomic()) 3892 return visitAtomicStore(I); 3893 3894 const Value *SrcV = I.getOperand(0); 3895 const Value *PtrV = I.getOperand(1); 3896 3897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3898 if (TLI.supportSwiftError()) { 3899 // Swifterror values can come from either a function parameter with 3900 // swifterror attribute or an alloca with swifterror attribute. 3901 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3902 if (Arg->hasSwiftErrorAttr()) 3903 return visitStoreToSwiftError(I); 3904 } 3905 3906 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3907 if (Alloca->isSwiftError()) 3908 return visitStoreToSwiftError(I); 3909 } 3910 } 3911 3912 SmallVector<EVT, 4> ValueVTs; 3913 SmallVector<uint64_t, 4> Offsets; 3914 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3915 SrcV->getType(), ValueVTs, &Offsets); 3916 unsigned NumValues = ValueVTs.size(); 3917 if (NumValues == 0) 3918 return; 3919 3920 // Get the lowered operands. Note that we do this after 3921 // checking if NumResults is zero, because with zero results 3922 // the operands won't have values in the map. 3923 SDValue Src = getValue(SrcV); 3924 SDValue Ptr = getValue(PtrV); 3925 3926 SDValue Root = getRoot(); 3927 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3928 SDLoc dl = getCurSDLoc(); 3929 EVT PtrVT = Ptr.getValueType(); 3930 unsigned Alignment = I.getAlignment(); 3931 AAMDNodes AAInfo; 3932 I.getAAMetadata(AAInfo); 3933 3934 auto MMOFlags = MachineMemOperand::MONone; 3935 if (I.isVolatile()) 3936 MMOFlags |= MachineMemOperand::MOVolatile; 3937 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3938 MMOFlags |= MachineMemOperand::MONonTemporal; 3939 MMOFlags |= TLI.getMMOFlags(I); 3940 3941 // An aggregate load cannot wrap around the address space, so offsets to its 3942 // parts don't wrap either. 3943 SDNodeFlags Flags; 3944 Flags.setNoUnsignedWrap(true); 3945 3946 unsigned ChainI = 0; 3947 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3948 // See visitLoad comments. 3949 if (ChainI == MaxParallelChains) { 3950 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3951 makeArrayRef(Chains.data(), ChainI)); 3952 Root = Chain; 3953 ChainI = 0; 3954 } 3955 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3956 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3957 SDValue St = DAG.getStore( 3958 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3959 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3960 Chains[ChainI] = St; 3961 } 3962 3963 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3964 makeArrayRef(Chains.data(), ChainI)); 3965 DAG.setRoot(StoreNode); 3966 } 3967 3968 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3969 bool IsCompressing) { 3970 SDLoc sdl = getCurSDLoc(); 3971 3972 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3973 unsigned& Alignment) { 3974 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3975 Src0 = I.getArgOperand(0); 3976 Ptr = I.getArgOperand(1); 3977 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3978 Mask = I.getArgOperand(3); 3979 }; 3980 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3981 unsigned& Alignment) { 3982 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3983 Src0 = I.getArgOperand(0); 3984 Ptr = I.getArgOperand(1); 3985 Mask = I.getArgOperand(2); 3986 Alignment = 0; 3987 }; 3988 3989 Value *PtrOperand, *MaskOperand, *Src0Operand; 3990 unsigned Alignment; 3991 if (IsCompressing) 3992 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3993 else 3994 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3995 3996 SDValue Ptr = getValue(PtrOperand); 3997 SDValue Src0 = getValue(Src0Operand); 3998 SDValue Mask = getValue(MaskOperand); 3999 4000 EVT VT = Src0.getValueType(); 4001 if (!Alignment) 4002 Alignment = DAG.getEVTAlignment(VT); 4003 4004 AAMDNodes AAInfo; 4005 I.getAAMetadata(AAInfo); 4006 4007 MachineMemOperand *MMO = 4008 DAG.getMachineFunction(). 4009 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4010 MachineMemOperand::MOStore, VT.getStoreSize(), 4011 Alignment, AAInfo); 4012 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4013 MMO, false /* Truncating */, 4014 IsCompressing); 4015 DAG.setRoot(StoreNode); 4016 setValue(&I, StoreNode); 4017 } 4018 4019 // Get a uniform base for the Gather/Scatter intrinsic. 4020 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4021 // We try to represent it as a base pointer + vector of indices. 4022 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4023 // The first operand of the GEP may be a single pointer or a vector of pointers 4024 // Example: 4025 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4026 // or 4027 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4028 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4029 // 4030 // When the first GEP operand is a single pointer - it is the uniform base we 4031 // are looking for. If first operand of the GEP is a splat vector - we 4032 // extract the splat value and use it as a uniform base. 4033 // In all other cases the function returns 'false'. 4034 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4035 SDValue &Scale, SelectionDAGBuilder* SDB) { 4036 SelectionDAG& DAG = SDB->DAG; 4037 LLVMContext &Context = *DAG.getContext(); 4038 4039 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4040 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4041 if (!GEP) 4042 return false; 4043 4044 const Value *GEPPtr = GEP->getPointerOperand(); 4045 if (!GEPPtr->getType()->isVectorTy()) 4046 Ptr = GEPPtr; 4047 else if (!(Ptr = getSplatValue(GEPPtr))) 4048 return false; 4049 4050 unsigned FinalIndex = GEP->getNumOperands() - 1; 4051 Value *IndexVal = GEP->getOperand(FinalIndex); 4052 4053 // Ensure all the other indices are 0. 4054 for (unsigned i = 1; i < FinalIndex; ++i) { 4055 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4056 if (!C || !C->isZero()) 4057 return false; 4058 } 4059 4060 // The operands of the GEP may be defined in another basic block. 4061 // In this case we'll not find nodes for the operands. 4062 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4063 return false; 4064 4065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4066 const DataLayout &DL = DAG.getDataLayout(); 4067 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4068 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4069 Base = SDB->getValue(Ptr); 4070 Index = SDB->getValue(IndexVal); 4071 4072 if (!Index.getValueType().isVector()) { 4073 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4074 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4075 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4076 } 4077 return true; 4078 } 4079 4080 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4081 SDLoc sdl = getCurSDLoc(); 4082 4083 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4084 const Value *Ptr = I.getArgOperand(1); 4085 SDValue Src0 = getValue(I.getArgOperand(0)); 4086 SDValue Mask = getValue(I.getArgOperand(3)); 4087 EVT VT = Src0.getValueType(); 4088 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4089 if (!Alignment) 4090 Alignment = DAG.getEVTAlignment(VT); 4091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4092 4093 AAMDNodes AAInfo; 4094 I.getAAMetadata(AAInfo); 4095 4096 SDValue Base; 4097 SDValue Index; 4098 SDValue Scale; 4099 const Value *BasePtr = Ptr; 4100 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4101 4102 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4103 MachineMemOperand *MMO = DAG.getMachineFunction(). 4104 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4105 MachineMemOperand::MOStore, VT.getStoreSize(), 4106 Alignment, AAInfo); 4107 if (!UniformBase) { 4108 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4109 Index = getValue(Ptr); 4110 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4111 } 4112 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4113 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4114 Ops, MMO); 4115 DAG.setRoot(Scatter); 4116 setValue(&I, Scatter); 4117 } 4118 4119 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4120 SDLoc sdl = getCurSDLoc(); 4121 4122 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4123 unsigned& Alignment) { 4124 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4125 Ptr = I.getArgOperand(0); 4126 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4127 Mask = I.getArgOperand(2); 4128 Src0 = I.getArgOperand(3); 4129 }; 4130 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4131 unsigned& Alignment) { 4132 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4133 Ptr = I.getArgOperand(0); 4134 Alignment = 0; 4135 Mask = I.getArgOperand(1); 4136 Src0 = I.getArgOperand(2); 4137 }; 4138 4139 Value *PtrOperand, *MaskOperand, *Src0Operand; 4140 unsigned Alignment; 4141 if (IsExpanding) 4142 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4143 else 4144 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4145 4146 SDValue Ptr = getValue(PtrOperand); 4147 SDValue Src0 = getValue(Src0Operand); 4148 SDValue Mask = getValue(MaskOperand); 4149 4150 EVT VT = Src0.getValueType(); 4151 if (!Alignment) 4152 Alignment = DAG.getEVTAlignment(VT); 4153 4154 AAMDNodes AAInfo; 4155 I.getAAMetadata(AAInfo); 4156 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4157 4158 // Do not serialize masked loads of constant memory with anything. 4159 bool AddToChain = 4160 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4161 PtrOperand, 4162 LocationSize::precise( 4163 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4164 AAInfo)); 4165 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4166 4167 MachineMemOperand *MMO = 4168 DAG.getMachineFunction(). 4169 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4170 MachineMemOperand::MOLoad, VT.getStoreSize(), 4171 Alignment, AAInfo, Ranges); 4172 4173 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4174 ISD::NON_EXTLOAD, IsExpanding); 4175 if (AddToChain) 4176 PendingLoads.push_back(Load.getValue(1)); 4177 setValue(&I, Load); 4178 } 4179 4180 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4181 SDLoc sdl = getCurSDLoc(); 4182 4183 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4184 const Value *Ptr = I.getArgOperand(0); 4185 SDValue Src0 = getValue(I.getArgOperand(3)); 4186 SDValue Mask = getValue(I.getArgOperand(2)); 4187 4188 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4189 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4190 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4191 if (!Alignment) 4192 Alignment = DAG.getEVTAlignment(VT); 4193 4194 AAMDNodes AAInfo; 4195 I.getAAMetadata(AAInfo); 4196 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4197 4198 SDValue Root = DAG.getRoot(); 4199 SDValue Base; 4200 SDValue Index; 4201 SDValue Scale; 4202 const Value *BasePtr = Ptr; 4203 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4204 bool ConstantMemory = false; 4205 if (UniformBase && AA && 4206 AA->pointsToConstantMemory( 4207 MemoryLocation(BasePtr, 4208 LocationSize::precise( 4209 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4210 AAInfo))) { 4211 // Do not serialize (non-volatile) loads of constant memory with anything. 4212 Root = DAG.getEntryNode(); 4213 ConstantMemory = true; 4214 } 4215 4216 MachineMemOperand *MMO = 4217 DAG.getMachineFunction(). 4218 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4219 MachineMemOperand::MOLoad, VT.getStoreSize(), 4220 Alignment, AAInfo, Ranges); 4221 4222 if (!UniformBase) { 4223 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4224 Index = getValue(Ptr); 4225 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4226 } 4227 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4228 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4229 Ops, MMO); 4230 4231 SDValue OutChain = Gather.getValue(1); 4232 if (!ConstantMemory) 4233 PendingLoads.push_back(OutChain); 4234 setValue(&I, Gather); 4235 } 4236 4237 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4238 SDLoc dl = getCurSDLoc(); 4239 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4240 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4241 SyncScope::ID SSID = I.getSyncScopeID(); 4242 4243 SDValue InChain = getRoot(); 4244 4245 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4246 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4247 SDValue L = DAG.getAtomicCmpSwap( 4248 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4249 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4250 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4251 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4252 4253 SDValue OutChain = L.getValue(2); 4254 4255 setValue(&I, L); 4256 DAG.setRoot(OutChain); 4257 } 4258 4259 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4260 SDLoc dl = getCurSDLoc(); 4261 ISD::NodeType NT; 4262 switch (I.getOperation()) { 4263 default: llvm_unreachable("Unknown atomicrmw operation"); 4264 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4265 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4266 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4267 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4268 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4269 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4270 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4271 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4272 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4273 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4274 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4275 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4276 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4277 } 4278 AtomicOrdering Order = I.getOrdering(); 4279 SyncScope::ID SSID = I.getSyncScopeID(); 4280 4281 SDValue InChain = getRoot(); 4282 4283 SDValue L = 4284 DAG.getAtomic(NT, dl, 4285 getValue(I.getValOperand()).getSimpleValueType(), 4286 InChain, 4287 getValue(I.getPointerOperand()), 4288 getValue(I.getValOperand()), 4289 I.getPointerOperand(), 4290 /* Alignment=*/ 0, Order, SSID); 4291 4292 SDValue OutChain = L.getValue(1); 4293 4294 setValue(&I, L); 4295 DAG.setRoot(OutChain); 4296 } 4297 4298 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4299 SDLoc dl = getCurSDLoc(); 4300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4301 SDValue Ops[3]; 4302 Ops[0] = getRoot(); 4303 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4304 TLI.getFenceOperandTy(DAG.getDataLayout())); 4305 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4306 TLI.getFenceOperandTy(DAG.getDataLayout())); 4307 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4308 } 4309 4310 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4311 SDLoc dl = getCurSDLoc(); 4312 AtomicOrdering Order = I.getOrdering(); 4313 SyncScope::ID SSID = I.getSyncScopeID(); 4314 4315 SDValue InChain = getRoot(); 4316 4317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4318 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4319 4320 if (!TLI.supportsUnalignedAtomics() && 4321 I.getAlignment() < VT.getStoreSize()) 4322 report_fatal_error("Cannot generate unaligned atomic load"); 4323 4324 MachineMemOperand *MMO = 4325 DAG.getMachineFunction(). 4326 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4327 MachineMemOperand::MOVolatile | 4328 MachineMemOperand::MOLoad, 4329 VT.getStoreSize(), 4330 I.getAlignment() ? I.getAlignment() : 4331 DAG.getEVTAlignment(VT), 4332 AAMDNodes(), nullptr, SSID, Order); 4333 4334 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4335 SDValue L = 4336 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4337 getValue(I.getPointerOperand()), MMO); 4338 4339 SDValue OutChain = L.getValue(1); 4340 4341 setValue(&I, L); 4342 DAG.setRoot(OutChain); 4343 } 4344 4345 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4346 SDLoc dl = getCurSDLoc(); 4347 4348 AtomicOrdering Order = I.getOrdering(); 4349 SyncScope::ID SSID = I.getSyncScopeID(); 4350 4351 SDValue InChain = getRoot(); 4352 4353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4354 EVT VT = 4355 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4356 4357 if (I.getAlignment() < VT.getStoreSize()) 4358 report_fatal_error("Cannot generate unaligned atomic store"); 4359 4360 SDValue OutChain = 4361 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4362 InChain, 4363 getValue(I.getPointerOperand()), 4364 getValue(I.getValueOperand()), 4365 I.getPointerOperand(), I.getAlignment(), 4366 Order, SSID); 4367 4368 DAG.setRoot(OutChain); 4369 } 4370 4371 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4372 /// node. 4373 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4374 unsigned Intrinsic) { 4375 // Ignore the callsite's attributes. A specific call site may be marked with 4376 // readnone, but the lowering code will expect the chain based on the 4377 // definition. 4378 const Function *F = I.getCalledFunction(); 4379 bool HasChain = !F->doesNotAccessMemory(); 4380 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4381 4382 // Build the operand list. 4383 SmallVector<SDValue, 8> Ops; 4384 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4385 if (OnlyLoad) { 4386 // We don't need to serialize loads against other loads. 4387 Ops.push_back(DAG.getRoot()); 4388 } else { 4389 Ops.push_back(getRoot()); 4390 } 4391 } 4392 4393 // Info is set by getTgtMemInstrinsic 4394 TargetLowering::IntrinsicInfo Info; 4395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4396 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4397 DAG.getMachineFunction(), 4398 Intrinsic); 4399 4400 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4401 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4402 Info.opc == ISD::INTRINSIC_W_CHAIN) 4403 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4404 TLI.getPointerTy(DAG.getDataLayout()))); 4405 4406 // Add all operands of the call to the operand list. 4407 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4408 SDValue Op = getValue(I.getArgOperand(i)); 4409 Ops.push_back(Op); 4410 } 4411 4412 SmallVector<EVT, 4> ValueVTs; 4413 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4414 4415 if (HasChain) 4416 ValueVTs.push_back(MVT::Other); 4417 4418 SDVTList VTs = DAG.getVTList(ValueVTs); 4419 4420 // Create the node. 4421 SDValue Result; 4422 if (IsTgtIntrinsic) { 4423 // This is target intrinsic that touches memory 4424 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4425 Ops, Info.memVT, 4426 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4427 Info.flags, Info.size); 4428 } else if (!HasChain) { 4429 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4430 } else if (!I.getType()->isVoidTy()) { 4431 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4432 } else { 4433 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4434 } 4435 4436 if (HasChain) { 4437 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4438 if (OnlyLoad) 4439 PendingLoads.push_back(Chain); 4440 else 4441 DAG.setRoot(Chain); 4442 } 4443 4444 if (!I.getType()->isVoidTy()) { 4445 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4446 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4447 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4448 } else 4449 Result = lowerRangeToAssertZExt(DAG, I, Result); 4450 4451 setValue(&I, Result); 4452 } 4453 } 4454 4455 /// GetSignificand - Get the significand and build it into a floating-point 4456 /// number with exponent of 1: 4457 /// 4458 /// Op = (Op & 0x007fffff) | 0x3f800000; 4459 /// 4460 /// where Op is the hexadecimal representation of floating point value. 4461 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4462 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4463 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4464 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4465 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4466 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4467 } 4468 4469 /// GetExponent - Get the exponent: 4470 /// 4471 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4472 /// 4473 /// where Op is the hexadecimal representation of floating point value. 4474 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4475 const TargetLowering &TLI, const SDLoc &dl) { 4476 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4477 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4478 SDValue t1 = DAG.getNode( 4479 ISD::SRL, dl, MVT::i32, t0, 4480 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4481 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4482 DAG.getConstant(127, dl, MVT::i32)); 4483 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4484 } 4485 4486 /// getF32Constant - Get 32-bit floating point constant. 4487 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4488 const SDLoc &dl) { 4489 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4490 MVT::f32); 4491 } 4492 4493 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4494 SelectionDAG &DAG) { 4495 // TODO: What fast-math-flags should be set on the floating-point nodes? 4496 4497 // IntegerPartOfX = ((int32_t)(t0); 4498 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4499 4500 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4501 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4502 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4503 4504 // IntegerPartOfX <<= 23; 4505 IntegerPartOfX = DAG.getNode( 4506 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4507 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4508 DAG.getDataLayout()))); 4509 4510 SDValue TwoToFractionalPartOfX; 4511 if (LimitFloatPrecision <= 6) { 4512 // For floating-point precision of 6: 4513 // 4514 // TwoToFractionalPartOfX = 4515 // 0.997535578f + 4516 // (0.735607626f + 0.252464424f * x) * x; 4517 // 4518 // error 0.0144103317, which is 6 bits 4519 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4520 getF32Constant(DAG, 0x3e814304, dl)); 4521 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4522 getF32Constant(DAG, 0x3f3c50c8, dl)); 4523 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4524 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4525 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4526 } else if (LimitFloatPrecision <= 12) { 4527 // For floating-point precision of 12: 4528 // 4529 // TwoToFractionalPartOfX = 4530 // 0.999892986f + 4531 // (0.696457318f + 4532 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4533 // 4534 // error 0.000107046256, which is 13 to 14 bits 4535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4536 getF32Constant(DAG, 0x3da235e3, dl)); 4537 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4538 getF32Constant(DAG, 0x3e65b8f3, dl)); 4539 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4540 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4541 getF32Constant(DAG, 0x3f324b07, dl)); 4542 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4543 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4544 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4545 } else { // LimitFloatPrecision <= 18 4546 // For floating-point precision of 18: 4547 // 4548 // TwoToFractionalPartOfX = 4549 // 0.999999982f + 4550 // (0.693148872f + 4551 // (0.240227044f + 4552 // (0.554906021e-1f + 4553 // (0.961591928e-2f + 4554 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4555 // error 2.47208000*10^(-7), which is better than 18 bits 4556 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4557 getF32Constant(DAG, 0x3924b03e, dl)); 4558 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4559 getF32Constant(DAG, 0x3ab24b87, dl)); 4560 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4561 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4562 getF32Constant(DAG, 0x3c1d8c17, dl)); 4563 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4564 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4565 getF32Constant(DAG, 0x3d634a1d, dl)); 4566 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4567 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4568 getF32Constant(DAG, 0x3e75fe14, dl)); 4569 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4570 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4571 getF32Constant(DAG, 0x3f317234, dl)); 4572 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4573 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4574 getF32Constant(DAG, 0x3f800000, dl)); 4575 } 4576 4577 // Add the exponent into the result in integer domain. 4578 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4579 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4580 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4581 } 4582 4583 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4584 /// limited-precision mode. 4585 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4586 const TargetLowering &TLI) { 4587 if (Op.getValueType() == MVT::f32 && 4588 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4589 4590 // Put the exponent in the right bit position for later addition to the 4591 // final result: 4592 // 4593 // #define LOG2OFe 1.4426950f 4594 // t0 = Op * LOG2OFe 4595 4596 // TODO: What fast-math-flags should be set here? 4597 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4598 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4599 return getLimitedPrecisionExp2(t0, dl, DAG); 4600 } 4601 4602 // No special expansion. 4603 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4604 } 4605 4606 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4607 /// limited-precision mode. 4608 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4609 const TargetLowering &TLI) { 4610 // TODO: What fast-math-flags should be set on the floating-point nodes? 4611 4612 if (Op.getValueType() == MVT::f32 && 4613 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4614 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4615 4616 // Scale the exponent by log(2) [0.69314718f]. 4617 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4618 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4619 getF32Constant(DAG, 0x3f317218, dl)); 4620 4621 // Get the significand and build it into a floating-point number with 4622 // exponent of 1. 4623 SDValue X = GetSignificand(DAG, Op1, dl); 4624 4625 SDValue LogOfMantissa; 4626 if (LimitFloatPrecision <= 6) { 4627 // For floating-point precision of 6: 4628 // 4629 // LogofMantissa = 4630 // -1.1609546f + 4631 // (1.4034025f - 0.23903021f * x) * x; 4632 // 4633 // error 0.0034276066, which is better than 8 bits 4634 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4635 getF32Constant(DAG, 0xbe74c456, dl)); 4636 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4637 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4638 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4639 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4640 getF32Constant(DAG, 0x3f949a29, dl)); 4641 } else if (LimitFloatPrecision <= 12) { 4642 // For floating-point precision of 12: 4643 // 4644 // LogOfMantissa = 4645 // -1.7417939f + 4646 // (2.8212026f + 4647 // (-1.4699568f + 4648 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4649 // 4650 // error 0.000061011436, which is 14 bits 4651 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4652 getF32Constant(DAG, 0xbd67b6d6, dl)); 4653 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4654 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4655 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4656 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4657 getF32Constant(DAG, 0x3fbc278b, dl)); 4658 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4659 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4660 getF32Constant(DAG, 0x40348e95, dl)); 4661 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4662 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4663 getF32Constant(DAG, 0x3fdef31a, dl)); 4664 } else { // LimitFloatPrecision <= 18 4665 // For floating-point precision of 18: 4666 // 4667 // LogOfMantissa = 4668 // -2.1072184f + 4669 // (4.2372794f + 4670 // (-3.7029485f + 4671 // (2.2781945f + 4672 // (-0.87823314f + 4673 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4674 // 4675 // error 0.0000023660568, which is better than 18 bits 4676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4677 getF32Constant(DAG, 0xbc91e5ac, dl)); 4678 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4679 getF32Constant(DAG, 0x3e4350aa, dl)); 4680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4681 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4682 getF32Constant(DAG, 0x3f60d3e3, dl)); 4683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4685 getF32Constant(DAG, 0x4011cdf0, dl)); 4686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4687 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4688 getF32Constant(DAG, 0x406cfd1c, dl)); 4689 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4690 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4691 getF32Constant(DAG, 0x408797cb, dl)); 4692 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4693 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4694 getF32Constant(DAG, 0x4006dcab, dl)); 4695 } 4696 4697 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4698 } 4699 4700 // No special expansion. 4701 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4702 } 4703 4704 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4705 /// limited-precision mode. 4706 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4707 const TargetLowering &TLI) { 4708 // TODO: What fast-math-flags should be set on the floating-point nodes? 4709 4710 if (Op.getValueType() == MVT::f32 && 4711 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4712 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4713 4714 // Get the exponent. 4715 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4716 4717 // Get the significand and build it into a floating-point number with 4718 // exponent of 1. 4719 SDValue X = GetSignificand(DAG, Op1, dl); 4720 4721 // Different possible minimax approximations of significand in 4722 // floating-point for various degrees of accuracy over [1,2]. 4723 SDValue Log2ofMantissa; 4724 if (LimitFloatPrecision <= 6) { 4725 // For floating-point precision of 6: 4726 // 4727 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4728 // 4729 // error 0.0049451742, which is more than 7 bits 4730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4731 getF32Constant(DAG, 0xbeb08fe0, dl)); 4732 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4733 getF32Constant(DAG, 0x40019463, dl)); 4734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4735 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4736 getF32Constant(DAG, 0x3fd6633d, dl)); 4737 } else if (LimitFloatPrecision <= 12) { 4738 // For floating-point precision of 12: 4739 // 4740 // Log2ofMantissa = 4741 // -2.51285454f + 4742 // (4.07009056f + 4743 // (-2.12067489f + 4744 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4745 // 4746 // error 0.0000876136000, which is better than 13 bits 4747 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4748 getF32Constant(DAG, 0xbda7262e, dl)); 4749 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4750 getF32Constant(DAG, 0x3f25280b, dl)); 4751 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4752 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4753 getF32Constant(DAG, 0x4007b923, dl)); 4754 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4755 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4756 getF32Constant(DAG, 0x40823e2f, dl)); 4757 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4758 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4759 getF32Constant(DAG, 0x4020d29c, dl)); 4760 } else { // LimitFloatPrecision <= 18 4761 // For floating-point precision of 18: 4762 // 4763 // Log2ofMantissa = 4764 // -3.0400495f + 4765 // (6.1129976f + 4766 // (-5.3420409f + 4767 // (3.2865683f + 4768 // (-1.2669343f + 4769 // (0.27515199f - 4770 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4771 // 4772 // error 0.0000018516, which is better than 18 bits 4773 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4774 getF32Constant(DAG, 0xbcd2769e, dl)); 4775 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4776 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4778 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4779 getF32Constant(DAG, 0x3fa22ae7, dl)); 4780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4781 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4782 getF32Constant(DAG, 0x40525723, dl)); 4783 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4784 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4785 getF32Constant(DAG, 0x40aaf200, dl)); 4786 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4787 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4788 getF32Constant(DAG, 0x40c39dad, dl)); 4789 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4790 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4791 getF32Constant(DAG, 0x4042902c, dl)); 4792 } 4793 4794 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4795 } 4796 4797 // No special expansion. 4798 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4799 } 4800 4801 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4802 /// limited-precision mode. 4803 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4804 const TargetLowering &TLI) { 4805 // TODO: What fast-math-flags should be set on the floating-point nodes? 4806 4807 if (Op.getValueType() == MVT::f32 && 4808 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4809 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4810 4811 // Scale the exponent by log10(2) [0.30102999f]. 4812 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4813 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4814 getF32Constant(DAG, 0x3e9a209a, dl)); 4815 4816 // Get the significand and build it into a floating-point number with 4817 // exponent of 1. 4818 SDValue X = GetSignificand(DAG, Op1, dl); 4819 4820 SDValue Log10ofMantissa; 4821 if (LimitFloatPrecision <= 6) { 4822 // For floating-point precision of 6: 4823 // 4824 // Log10ofMantissa = 4825 // -0.50419619f + 4826 // (0.60948995f - 0.10380950f * x) * x; 4827 // 4828 // error 0.0014886165, which is 6 bits 4829 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4830 getF32Constant(DAG, 0xbdd49a13, dl)); 4831 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4832 getF32Constant(DAG, 0x3f1c0789, dl)); 4833 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4834 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4835 getF32Constant(DAG, 0x3f011300, dl)); 4836 } else if (LimitFloatPrecision <= 12) { 4837 // For floating-point precision of 12: 4838 // 4839 // Log10ofMantissa = 4840 // -0.64831180f + 4841 // (0.91751397f + 4842 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4843 // 4844 // error 0.00019228036, which is better than 12 bits 4845 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4846 getF32Constant(DAG, 0x3d431f31, dl)); 4847 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4848 getF32Constant(DAG, 0x3ea21fb2, dl)); 4849 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4850 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4851 getF32Constant(DAG, 0x3f6ae232, dl)); 4852 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4853 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4854 getF32Constant(DAG, 0x3f25f7c3, dl)); 4855 } else { // LimitFloatPrecision <= 18 4856 // For floating-point precision of 18: 4857 // 4858 // Log10ofMantissa = 4859 // -0.84299375f + 4860 // (1.5327582f + 4861 // (-1.0688956f + 4862 // (0.49102474f + 4863 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4864 // 4865 // error 0.0000037995730, which is better than 18 bits 4866 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4867 getF32Constant(DAG, 0x3c5d51ce, dl)); 4868 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4869 getF32Constant(DAG, 0x3e00685a, dl)); 4870 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4871 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4872 getF32Constant(DAG, 0x3efb6798, dl)); 4873 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4874 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4875 getF32Constant(DAG, 0x3f88d192, dl)); 4876 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4877 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4878 getF32Constant(DAG, 0x3fc4316c, dl)); 4879 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4880 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4881 getF32Constant(DAG, 0x3f57ce70, dl)); 4882 } 4883 4884 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4885 } 4886 4887 // No special expansion. 4888 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4889 } 4890 4891 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4892 /// limited-precision mode. 4893 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4894 const TargetLowering &TLI) { 4895 if (Op.getValueType() == MVT::f32 && 4896 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4897 return getLimitedPrecisionExp2(Op, dl, DAG); 4898 4899 // No special expansion. 4900 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4901 } 4902 4903 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4904 /// limited-precision mode with x == 10.0f. 4905 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4906 SelectionDAG &DAG, const TargetLowering &TLI) { 4907 bool IsExp10 = false; 4908 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4909 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4910 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4911 APFloat Ten(10.0f); 4912 IsExp10 = LHSC->isExactlyValue(Ten); 4913 } 4914 } 4915 4916 // TODO: What fast-math-flags should be set on the FMUL node? 4917 if (IsExp10) { 4918 // Put the exponent in the right bit position for later addition to the 4919 // final result: 4920 // 4921 // #define LOG2OF10 3.3219281f 4922 // t0 = Op * LOG2OF10; 4923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4924 getF32Constant(DAG, 0x40549a78, dl)); 4925 return getLimitedPrecisionExp2(t0, dl, DAG); 4926 } 4927 4928 // No special expansion. 4929 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4930 } 4931 4932 /// ExpandPowI - Expand a llvm.powi intrinsic. 4933 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4934 SelectionDAG &DAG) { 4935 // If RHS is a constant, we can expand this out to a multiplication tree, 4936 // otherwise we end up lowering to a call to __powidf2 (for example). When 4937 // optimizing for size, we only want to do this if the expansion would produce 4938 // a small number of multiplies, otherwise we do the full expansion. 4939 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4940 // Get the exponent as a positive value. 4941 unsigned Val = RHSC->getSExtValue(); 4942 if ((int)Val < 0) Val = -Val; 4943 4944 // powi(x, 0) -> 1.0 4945 if (Val == 0) 4946 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4947 4948 const Function &F = DAG.getMachineFunction().getFunction(); 4949 if (!F.optForSize() || 4950 // If optimizing for size, don't insert too many multiplies. 4951 // This inserts up to 5 multiplies. 4952 countPopulation(Val) + Log2_32(Val) < 7) { 4953 // We use the simple binary decomposition method to generate the multiply 4954 // sequence. There are more optimal ways to do this (for example, 4955 // powi(x,15) generates one more multiply than it should), but this has 4956 // the benefit of being both really simple and much better than a libcall. 4957 SDValue Res; // Logically starts equal to 1.0 4958 SDValue CurSquare = LHS; 4959 // TODO: Intrinsics should have fast-math-flags that propagate to these 4960 // nodes. 4961 while (Val) { 4962 if (Val & 1) { 4963 if (Res.getNode()) 4964 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4965 else 4966 Res = CurSquare; // 1.0*CurSquare. 4967 } 4968 4969 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4970 CurSquare, CurSquare); 4971 Val >>= 1; 4972 } 4973 4974 // If the original was negative, invert the result, producing 1/(x*x*x). 4975 if (RHSC->getSExtValue() < 0) 4976 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4977 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4978 return Res; 4979 } 4980 } 4981 4982 // Otherwise, expand to a libcall. 4983 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4984 } 4985 4986 // getUnderlyingArgReg - Find underlying register used for a truncated or 4987 // bitcasted argument. 4988 static unsigned getUnderlyingArgReg(const SDValue &N) { 4989 switch (N.getOpcode()) { 4990 case ISD::CopyFromReg: 4991 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4992 case ISD::BITCAST: 4993 case ISD::AssertZext: 4994 case ISD::AssertSext: 4995 case ISD::TRUNCATE: 4996 return getUnderlyingArgReg(N.getOperand(0)); 4997 default: 4998 return 0; 4999 } 5000 } 5001 5002 /// If the DbgValueInst is a dbg_value of a function argument, create the 5003 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5004 /// instruction selection, they will be inserted to the entry BB. 5005 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5006 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5007 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5008 const Argument *Arg = dyn_cast<Argument>(V); 5009 if (!Arg) 5010 return false; 5011 5012 if (!IsDbgDeclare) { 5013 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5014 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5015 // the entry block. 5016 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5017 if (!IsInEntryBlock) 5018 return false; 5019 5020 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5021 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5022 // variable that also is a param. 5023 // 5024 // Although, if we are at the top of the entry block already, we can still 5025 // emit using ArgDbgValue. This might catch some situations when the 5026 // dbg.value refers to an argument that isn't used in the entry block, so 5027 // any CopyToReg node would be optimized out and the only way to express 5028 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5029 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5030 // we should only emit as ArgDbgValue if the Variable is an argument to the 5031 // current function, and the dbg.value intrinsic is found in the entry 5032 // block. 5033 bool VariableIsFunctionInputArg = Variable->isParameter() && 5034 !DL->getInlinedAt(); 5035 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5036 if (!IsInPrologue && !VariableIsFunctionInputArg) 5037 return false; 5038 5039 // Here we assume that a function argument on IR level only can be used to 5040 // describe one input parameter on source level. If we for example have 5041 // source code like this 5042 // 5043 // struct A { long x, y; }; 5044 // void foo(struct A a, long b) { 5045 // ... 5046 // b = a.x; 5047 // ... 5048 // } 5049 // 5050 // and IR like this 5051 // 5052 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5053 // entry: 5054 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5055 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5056 // call void @llvm.dbg.value(metadata i32 %b, "b", 5057 // ... 5058 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5059 // ... 5060 // 5061 // then the last dbg.value is describing a parameter "b" using a value that 5062 // is an argument. But since we already has used %a1 to describe a parameter 5063 // we should not handle that last dbg.value here (that would result in an 5064 // incorrect hoisting of the DBG_VALUE to the function entry). 5065 // Notice that we allow one dbg.value per IR level argument, to accomodate 5066 // for the situation with fragments above. 5067 if (VariableIsFunctionInputArg) { 5068 unsigned ArgNo = Arg->getArgNo(); 5069 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5070 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5071 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5072 return false; 5073 FuncInfo.DescribedArgs.set(ArgNo); 5074 } 5075 } 5076 5077 MachineFunction &MF = DAG.getMachineFunction(); 5078 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5079 5080 bool IsIndirect = false; 5081 Optional<MachineOperand> Op; 5082 // Some arguments' frame index is recorded during argument lowering. 5083 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5084 if (FI != std::numeric_limits<int>::max()) 5085 Op = MachineOperand::CreateFI(FI); 5086 5087 if (!Op && N.getNode()) { 5088 unsigned Reg = getUnderlyingArgReg(N); 5089 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5090 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5091 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5092 if (PR) 5093 Reg = PR; 5094 } 5095 if (Reg) { 5096 Op = MachineOperand::CreateReg(Reg, false); 5097 IsIndirect = IsDbgDeclare; 5098 } 5099 } 5100 5101 if (!Op && N.getNode()) 5102 // Check if frame index is available. 5103 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5104 if (FrameIndexSDNode *FINode = 5105 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5106 Op = MachineOperand::CreateFI(FINode->getIndex()); 5107 5108 if (!Op) { 5109 // Check if ValueMap has reg number. 5110 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5111 if (VMI != FuncInfo.ValueMap.end()) { 5112 const auto &TLI = DAG.getTargetLoweringInfo(); 5113 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5114 V->getType(), getABIRegCopyCC(V)); 5115 if (RFV.occupiesMultipleRegs()) { 5116 unsigned Offset = 0; 5117 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5118 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5119 auto FragmentExpr = DIExpression::createFragmentExpression( 5120 Expr, Offset, RegAndSize.second); 5121 if (!FragmentExpr) 5122 continue; 5123 FuncInfo.ArgDbgValues.push_back( 5124 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5125 Op->getReg(), Variable, *FragmentExpr)); 5126 Offset += RegAndSize.second; 5127 } 5128 return true; 5129 } 5130 Op = MachineOperand::CreateReg(VMI->second, false); 5131 IsIndirect = IsDbgDeclare; 5132 } 5133 } 5134 5135 if (!Op) 5136 return false; 5137 5138 assert(Variable->isValidLocationForIntrinsic(DL) && 5139 "Expected inlined-at fields to agree"); 5140 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5141 FuncInfo.ArgDbgValues.push_back( 5142 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5143 *Op, Variable, Expr)); 5144 5145 return true; 5146 } 5147 5148 /// Return the appropriate SDDbgValue based on N. 5149 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5150 DILocalVariable *Variable, 5151 DIExpression *Expr, 5152 const DebugLoc &dl, 5153 unsigned DbgSDNodeOrder) { 5154 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5155 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5156 // stack slot locations. 5157 // 5158 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5159 // debug values here after optimization: 5160 // 5161 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5162 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5163 // 5164 // Both describe the direct values of their associated variables. 5165 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5166 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5167 } 5168 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5169 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5170 } 5171 5172 // VisualStudio defines setjmp as _setjmp 5173 #if defined(_MSC_VER) && defined(setjmp) && \ 5174 !defined(setjmp_undefined_for_msvc) 5175 # pragma push_macro("setjmp") 5176 # undef setjmp 5177 # define setjmp_undefined_for_msvc 5178 #endif 5179 5180 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5181 switch (Intrinsic) { 5182 case Intrinsic::smul_fix: 5183 return ISD::SMULFIX; 5184 case Intrinsic::umul_fix: 5185 return ISD::UMULFIX; 5186 default: 5187 llvm_unreachable("Unhandled fixed point intrinsic"); 5188 } 5189 } 5190 5191 /// Lower the call to the specified intrinsic function. If we want to emit this 5192 /// as a call to a named external function, return the name. Otherwise, lower it 5193 /// and return null. 5194 const char * 5195 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5197 SDLoc sdl = getCurSDLoc(); 5198 DebugLoc dl = getCurDebugLoc(); 5199 SDValue Res; 5200 5201 switch (Intrinsic) { 5202 default: 5203 // By default, turn this into a target intrinsic node. 5204 visitTargetIntrinsic(I, Intrinsic); 5205 return nullptr; 5206 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5207 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5208 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5209 case Intrinsic::returnaddress: 5210 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5211 TLI.getPointerTy(DAG.getDataLayout()), 5212 getValue(I.getArgOperand(0)))); 5213 return nullptr; 5214 case Intrinsic::addressofreturnaddress: 5215 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5216 TLI.getPointerTy(DAG.getDataLayout()))); 5217 return nullptr; 5218 case Intrinsic::sponentry: 5219 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5220 TLI.getPointerTy(DAG.getDataLayout()))); 5221 return nullptr; 5222 case Intrinsic::frameaddress: 5223 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5224 TLI.getPointerTy(DAG.getDataLayout()), 5225 getValue(I.getArgOperand(0)))); 5226 return nullptr; 5227 case Intrinsic::read_register: { 5228 Value *Reg = I.getArgOperand(0); 5229 SDValue Chain = getRoot(); 5230 SDValue RegName = 5231 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5232 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5233 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5234 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5235 setValue(&I, Res); 5236 DAG.setRoot(Res.getValue(1)); 5237 return nullptr; 5238 } 5239 case Intrinsic::write_register: { 5240 Value *Reg = I.getArgOperand(0); 5241 Value *RegValue = I.getArgOperand(1); 5242 SDValue Chain = getRoot(); 5243 SDValue RegName = 5244 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5245 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5246 RegName, getValue(RegValue))); 5247 return nullptr; 5248 } 5249 case Intrinsic::setjmp: 5250 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5251 case Intrinsic::longjmp: 5252 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5253 case Intrinsic::memcpy: { 5254 const auto &MCI = cast<MemCpyInst>(I); 5255 SDValue Op1 = getValue(I.getArgOperand(0)); 5256 SDValue Op2 = getValue(I.getArgOperand(1)); 5257 SDValue Op3 = getValue(I.getArgOperand(2)); 5258 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5259 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5260 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5261 unsigned Align = MinAlign(DstAlign, SrcAlign); 5262 bool isVol = MCI.isVolatile(); 5263 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5264 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5265 // node. 5266 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5267 false, isTC, 5268 MachinePointerInfo(I.getArgOperand(0)), 5269 MachinePointerInfo(I.getArgOperand(1))); 5270 updateDAGForMaybeTailCall(MC); 5271 return nullptr; 5272 } 5273 case Intrinsic::memset: { 5274 const auto &MSI = cast<MemSetInst>(I); 5275 SDValue Op1 = getValue(I.getArgOperand(0)); 5276 SDValue Op2 = getValue(I.getArgOperand(1)); 5277 SDValue Op3 = getValue(I.getArgOperand(2)); 5278 // @llvm.memset defines 0 and 1 to both mean no alignment. 5279 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5280 bool isVol = MSI.isVolatile(); 5281 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5282 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5283 isTC, MachinePointerInfo(I.getArgOperand(0))); 5284 updateDAGForMaybeTailCall(MS); 5285 return nullptr; 5286 } 5287 case Intrinsic::memmove: { 5288 const auto &MMI = cast<MemMoveInst>(I); 5289 SDValue Op1 = getValue(I.getArgOperand(0)); 5290 SDValue Op2 = getValue(I.getArgOperand(1)); 5291 SDValue Op3 = getValue(I.getArgOperand(2)); 5292 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5293 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5294 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5295 unsigned Align = MinAlign(DstAlign, SrcAlign); 5296 bool isVol = MMI.isVolatile(); 5297 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5298 // FIXME: Support passing different dest/src alignments to the memmove DAG 5299 // node. 5300 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5301 isTC, MachinePointerInfo(I.getArgOperand(0)), 5302 MachinePointerInfo(I.getArgOperand(1))); 5303 updateDAGForMaybeTailCall(MM); 5304 return nullptr; 5305 } 5306 case Intrinsic::memcpy_element_unordered_atomic: { 5307 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5308 SDValue Dst = getValue(MI.getRawDest()); 5309 SDValue Src = getValue(MI.getRawSource()); 5310 SDValue Length = getValue(MI.getLength()); 5311 5312 unsigned DstAlign = MI.getDestAlignment(); 5313 unsigned SrcAlign = MI.getSourceAlignment(); 5314 Type *LengthTy = MI.getLength()->getType(); 5315 unsigned ElemSz = MI.getElementSizeInBytes(); 5316 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5317 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5318 SrcAlign, Length, LengthTy, ElemSz, isTC, 5319 MachinePointerInfo(MI.getRawDest()), 5320 MachinePointerInfo(MI.getRawSource())); 5321 updateDAGForMaybeTailCall(MC); 5322 return nullptr; 5323 } 5324 case Intrinsic::memmove_element_unordered_atomic: { 5325 auto &MI = cast<AtomicMemMoveInst>(I); 5326 SDValue Dst = getValue(MI.getRawDest()); 5327 SDValue Src = getValue(MI.getRawSource()); 5328 SDValue Length = getValue(MI.getLength()); 5329 5330 unsigned DstAlign = MI.getDestAlignment(); 5331 unsigned SrcAlign = MI.getSourceAlignment(); 5332 Type *LengthTy = MI.getLength()->getType(); 5333 unsigned ElemSz = MI.getElementSizeInBytes(); 5334 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5335 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5336 SrcAlign, Length, LengthTy, ElemSz, isTC, 5337 MachinePointerInfo(MI.getRawDest()), 5338 MachinePointerInfo(MI.getRawSource())); 5339 updateDAGForMaybeTailCall(MC); 5340 return nullptr; 5341 } 5342 case Intrinsic::memset_element_unordered_atomic: { 5343 auto &MI = cast<AtomicMemSetInst>(I); 5344 SDValue Dst = getValue(MI.getRawDest()); 5345 SDValue Val = getValue(MI.getValue()); 5346 SDValue Length = getValue(MI.getLength()); 5347 5348 unsigned DstAlign = MI.getDestAlignment(); 5349 Type *LengthTy = MI.getLength()->getType(); 5350 unsigned ElemSz = MI.getElementSizeInBytes(); 5351 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5352 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5353 LengthTy, ElemSz, isTC, 5354 MachinePointerInfo(MI.getRawDest())); 5355 updateDAGForMaybeTailCall(MC); 5356 return nullptr; 5357 } 5358 case Intrinsic::dbg_addr: 5359 case Intrinsic::dbg_declare: { 5360 const auto &DI = cast<DbgVariableIntrinsic>(I); 5361 DILocalVariable *Variable = DI.getVariable(); 5362 DIExpression *Expression = DI.getExpression(); 5363 dropDanglingDebugInfo(Variable, Expression); 5364 assert(Variable && "Missing variable"); 5365 5366 // Check if address has undef value. 5367 const Value *Address = DI.getVariableLocation(); 5368 if (!Address || isa<UndefValue>(Address) || 5369 (Address->use_empty() && !isa<Argument>(Address))) { 5370 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5371 return nullptr; 5372 } 5373 5374 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5375 5376 // Check if this variable can be described by a frame index, typically 5377 // either as a static alloca or a byval parameter. 5378 int FI = std::numeric_limits<int>::max(); 5379 if (const auto *AI = 5380 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5381 if (AI->isStaticAlloca()) { 5382 auto I = FuncInfo.StaticAllocaMap.find(AI); 5383 if (I != FuncInfo.StaticAllocaMap.end()) 5384 FI = I->second; 5385 } 5386 } else if (const auto *Arg = dyn_cast<Argument>( 5387 Address->stripInBoundsConstantOffsets())) { 5388 FI = FuncInfo.getArgumentFrameIndex(Arg); 5389 } 5390 5391 // llvm.dbg.addr is control dependent and always generates indirect 5392 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5393 // the MachineFunction variable table. 5394 if (FI != std::numeric_limits<int>::max()) { 5395 if (Intrinsic == Intrinsic::dbg_addr) { 5396 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5397 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5398 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5399 } 5400 return nullptr; 5401 } 5402 5403 SDValue &N = NodeMap[Address]; 5404 if (!N.getNode() && isa<Argument>(Address)) 5405 // Check unused arguments map. 5406 N = UnusedArgNodeMap[Address]; 5407 SDDbgValue *SDV; 5408 if (N.getNode()) { 5409 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5410 Address = BCI->getOperand(0); 5411 // Parameters are handled specially. 5412 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5413 if (isParameter && FINode) { 5414 // Byval parameter. We have a frame index at this point. 5415 SDV = 5416 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5417 /*IsIndirect*/ true, dl, SDNodeOrder); 5418 } else if (isa<Argument>(Address)) { 5419 // Address is an argument, so try to emit its dbg value using 5420 // virtual register info from the FuncInfo.ValueMap. 5421 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5422 return nullptr; 5423 } else { 5424 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5425 true, dl, SDNodeOrder); 5426 } 5427 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5428 } else { 5429 // If Address is an argument then try to emit its dbg value using 5430 // virtual register info from the FuncInfo.ValueMap. 5431 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5432 N)) { 5433 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5434 } 5435 } 5436 return nullptr; 5437 } 5438 case Intrinsic::dbg_label: { 5439 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5440 DILabel *Label = DI.getLabel(); 5441 assert(Label && "Missing label"); 5442 5443 SDDbgLabel *SDV; 5444 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5445 DAG.AddDbgLabel(SDV); 5446 return nullptr; 5447 } 5448 case Intrinsic::dbg_value: { 5449 const DbgValueInst &DI = cast<DbgValueInst>(I); 5450 assert(DI.getVariable() && "Missing variable"); 5451 5452 DILocalVariable *Variable = DI.getVariable(); 5453 DIExpression *Expression = DI.getExpression(); 5454 dropDanglingDebugInfo(Variable, Expression); 5455 const Value *V = DI.getValue(); 5456 if (!V) 5457 return nullptr; 5458 5459 SDDbgValue *SDV; 5460 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 5461 isa<ConstantPointerNull>(V)) { 5462 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5463 DAG.AddDbgValue(SDV, nullptr, false); 5464 return nullptr; 5465 } 5466 5467 // If the Value is a frame index, we can create a FrameIndex debug value 5468 // without relying on the DAG at all. 5469 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 5470 auto SI = FuncInfo.StaticAllocaMap.find(AI); 5471 if (SI != FuncInfo.StaticAllocaMap.end()) { 5472 auto SDV = 5473 DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5474 /*IsIndirect*/ false, dl, SDNodeOrder); 5475 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 5476 // is still available even if the SDNode gets optimized out. 5477 DAG.AddDbgValue(SDV, nullptr, false); 5478 return nullptr; 5479 } 5480 } 5481 5482 // Do not use getValue() in here; we don't want to generate code at 5483 // this point if it hasn't been done yet. 5484 SDValue N = NodeMap[V]; 5485 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5486 N = UnusedArgNodeMap[V]; 5487 if (N.getNode()) { 5488 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5489 return nullptr; 5490 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5491 DAG.AddDbgValue(SDV, N.getNode(), false); 5492 return nullptr; 5493 } 5494 5495 // The value is not used in this block yet (or it would have an SDNode). 5496 // We still want the value to appear for the user if possible -- if it has 5497 // an associated VReg, we can refer to that instead. 5498 if (!isa<Argument>(V)) { 5499 auto VMI = FuncInfo.ValueMap.find(V); 5500 if (VMI != FuncInfo.ValueMap.end()) { 5501 unsigned Reg = VMI->second; 5502 // If this is a PHI node, it may be split up into several MI PHI nodes 5503 // (in FunctionLoweringInfo::set). 5504 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5505 V->getType(), None); 5506 if (RFV.occupiesMultipleRegs()) { 5507 unsigned Offset = 0; 5508 unsigned BitsToDescribe = 0; 5509 if (auto VarSize = Variable->getSizeInBits()) 5510 BitsToDescribe = *VarSize; 5511 if (auto Fragment = Expression->getFragmentInfo()) 5512 BitsToDescribe = Fragment->SizeInBits; 5513 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5514 unsigned RegisterSize = RegAndSize.second; 5515 // Bail out if all bits are described already. 5516 if (Offset >= BitsToDescribe) 5517 break; 5518 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5519 ? BitsToDescribe - Offset 5520 : RegisterSize; 5521 auto FragmentExpr = DIExpression::createFragmentExpression( 5522 Expression, Offset, FragmentSize); 5523 if (!FragmentExpr) 5524 continue; 5525 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5526 false, dl, SDNodeOrder); 5527 DAG.AddDbgValue(SDV, nullptr, false); 5528 Offset += RegisterSize; 5529 } 5530 } else { 5531 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5532 SDNodeOrder); 5533 DAG.AddDbgValue(SDV, nullptr, false); 5534 } 5535 return nullptr; 5536 } 5537 } 5538 5539 // TODO: When we get here we will either drop the dbg.value completely, or 5540 // we try to move it forward by letting it dangle for awhile. So we should 5541 // probably add an extra DbgValue to the DAG here, with a reference to 5542 // "noreg", to indicate that we have lost the debug location for the 5543 // variable. 5544 5545 if (!V->use_empty() ) { 5546 // Do not call getValue(V) yet, as we don't want to generate code. 5547 // Remember it for later. 5548 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5549 return nullptr; 5550 } 5551 5552 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5553 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5554 return nullptr; 5555 } 5556 5557 case Intrinsic::eh_typeid_for: { 5558 // Find the type id for the given typeinfo. 5559 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5560 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5561 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5562 setValue(&I, Res); 5563 return nullptr; 5564 } 5565 5566 case Intrinsic::eh_return_i32: 5567 case Intrinsic::eh_return_i64: 5568 DAG.getMachineFunction().setCallsEHReturn(true); 5569 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5570 MVT::Other, 5571 getControlRoot(), 5572 getValue(I.getArgOperand(0)), 5573 getValue(I.getArgOperand(1)))); 5574 return nullptr; 5575 case Intrinsic::eh_unwind_init: 5576 DAG.getMachineFunction().setCallsUnwindInit(true); 5577 return nullptr; 5578 case Intrinsic::eh_dwarf_cfa: 5579 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5580 TLI.getPointerTy(DAG.getDataLayout()), 5581 getValue(I.getArgOperand(0)))); 5582 return nullptr; 5583 case Intrinsic::eh_sjlj_callsite: { 5584 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5585 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5586 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5587 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5588 5589 MMI.setCurrentCallSite(CI->getZExtValue()); 5590 return nullptr; 5591 } 5592 case Intrinsic::eh_sjlj_functioncontext: { 5593 // Get and store the index of the function context. 5594 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5595 AllocaInst *FnCtx = 5596 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5597 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5598 MFI.setFunctionContextIndex(FI); 5599 return nullptr; 5600 } 5601 case Intrinsic::eh_sjlj_setjmp: { 5602 SDValue Ops[2]; 5603 Ops[0] = getRoot(); 5604 Ops[1] = getValue(I.getArgOperand(0)); 5605 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5606 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5607 setValue(&I, Op.getValue(0)); 5608 DAG.setRoot(Op.getValue(1)); 5609 return nullptr; 5610 } 5611 case Intrinsic::eh_sjlj_longjmp: 5612 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5613 getRoot(), getValue(I.getArgOperand(0)))); 5614 return nullptr; 5615 case Intrinsic::eh_sjlj_setup_dispatch: 5616 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5617 getRoot())); 5618 return nullptr; 5619 case Intrinsic::masked_gather: 5620 visitMaskedGather(I); 5621 return nullptr; 5622 case Intrinsic::masked_load: 5623 visitMaskedLoad(I); 5624 return nullptr; 5625 case Intrinsic::masked_scatter: 5626 visitMaskedScatter(I); 5627 return nullptr; 5628 case Intrinsic::masked_store: 5629 visitMaskedStore(I); 5630 return nullptr; 5631 case Intrinsic::masked_expandload: 5632 visitMaskedLoad(I, true /* IsExpanding */); 5633 return nullptr; 5634 case Intrinsic::masked_compressstore: 5635 visitMaskedStore(I, true /* IsCompressing */); 5636 return nullptr; 5637 case Intrinsic::x86_mmx_pslli_w: 5638 case Intrinsic::x86_mmx_pslli_d: 5639 case Intrinsic::x86_mmx_pslli_q: 5640 case Intrinsic::x86_mmx_psrli_w: 5641 case Intrinsic::x86_mmx_psrli_d: 5642 case Intrinsic::x86_mmx_psrli_q: 5643 case Intrinsic::x86_mmx_psrai_w: 5644 case Intrinsic::x86_mmx_psrai_d: { 5645 SDValue ShAmt = getValue(I.getArgOperand(1)); 5646 if (isa<ConstantSDNode>(ShAmt)) { 5647 visitTargetIntrinsic(I, Intrinsic); 5648 return nullptr; 5649 } 5650 unsigned NewIntrinsic = 0; 5651 EVT ShAmtVT = MVT::v2i32; 5652 switch (Intrinsic) { 5653 case Intrinsic::x86_mmx_pslli_w: 5654 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5655 break; 5656 case Intrinsic::x86_mmx_pslli_d: 5657 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5658 break; 5659 case Intrinsic::x86_mmx_pslli_q: 5660 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5661 break; 5662 case Intrinsic::x86_mmx_psrli_w: 5663 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5664 break; 5665 case Intrinsic::x86_mmx_psrli_d: 5666 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5667 break; 5668 case Intrinsic::x86_mmx_psrli_q: 5669 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5670 break; 5671 case Intrinsic::x86_mmx_psrai_w: 5672 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5673 break; 5674 case Intrinsic::x86_mmx_psrai_d: 5675 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5676 break; 5677 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5678 } 5679 5680 // The vector shift intrinsics with scalars uses 32b shift amounts but 5681 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5682 // to be zero. 5683 // We must do this early because v2i32 is not a legal type. 5684 SDValue ShOps[2]; 5685 ShOps[0] = ShAmt; 5686 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5687 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5688 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5689 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5690 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5691 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5692 getValue(I.getArgOperand(0)), ShAmt); 5693 setValue(&I, Res); 5694 return nullptr; 5695 } 5696 case Intrinsic::powi: 5697 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5698 getValue(I.getArgOperand(1)), DAG)); 5699 return nullptr; 5700 case Intrinsic::log: 5701 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5702 return nullptr; 5703 case Intrinsic::log2: 5704 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5705 return nullptr; 5706 case Intrinsic::log10: 5707 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5708 return nullptr; 5709 case Intrinsic::exp: 5710 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5711 return nullptr; 5712 case Intrinsic::exp2: 5713 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5714 return nullptr; 5715 case Intrinsic::pow: 5716 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5717 getValue(I.getArgOperand(1)), DAG, TLI)); 5718 return nullptr; 5719 case Intrinsic::sqrt: 5720 case Intrinsic::fabs: 5721 case Intrinsic::sin: 5722 case Intrinsic::cos: 5723 case Intrinsic::floor: 5724 case Intrinsic::ceil: 5725 case Intrinsic::trunc: 5726 case Intrinsic::rint: 5727 case Intrinsic::nearbyint: 5728 case Intrinsic::round: 5729 case Intrinsic::canonicalize: { 5730 unsigned Opcode; 5731 switch (Intrinsic) { 5732 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5733 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5734 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5735 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5736 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5737 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5738 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5739 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5740 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5741 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5742 case Intrinsic::round: Opcode = ISD::FROUND; break; 5743 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5744 } 5745 5746 setValue(&I, DAG.getNode(Opcode, sdl, 5747 getValue(I.getArgOperand(0)).getValueType(), 5748 getValue(I.getArgOperand(0)))); 5749 return nullptr; 5750 } 5751 case Intrinsic::minnum: { 5752 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5753 unsigned Opc = 5754 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5755 ? ISD::FMINIMUM 5756 : ISD::FMINNUM; 5757 setValue(&I, DAG.getNode(Opc, sdl, VT, 5758 getValue(I.getArgOperand(0)), 5759 getValue(I.getArgOperand(1)))); 5760 return nullptr; 5761 } 5762 case Intrinsic::maxnum: { 5763 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5764 unsigned Opc = 5765 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5766 ? ISD::FMAXIMUM 5767 : ISD::FMAXNUM; 5768 setValue(&I, DAG.getNode(Opc, sdl, VT, 5769 getValue(I.getArgOperand(0)), 5770 getValue(I.getArgOperand(1)))); 5771 return nullptr; 5772 } 5773 case Intrinsic::minimum: 5774 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5775 getValue(I.getArgOperand(0)).getValueType(), 5776 getValue(I.getArgOperand(0)), 5777 getValue(I.getArgOperand(1)))); 5778 return nullptr; 5779 case Intrinsic::maximum: 5780 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5781 getValue(I.getArgOperand(0)).getValueType(), 5782 getValue(I.getArgOperand(0)), 5783 getValue(I.getArgOperand(1)))); 5784 return nullptr; 5785 case Intrinsic::copysign: 5786 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5787 getValue(I.getArgOperand(0)).getValueType(), 5788 getValue(I.getArgOperand(0)), 5789 getValue(I.getArgOperand(1)))); 5790 return nullptr; 5791 case Intrinsic::fma: 5792 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5793 getValue(I.getArgOperand(0)).getValueType(), 5794 getValue(I.getArgOperand(0)), 5795 getValue(I.getArgOperand(1)), 5796 getValue(I.getArgOperand(2)))); 5797 return nullptr; 5798 case Intrinsic::experimental_constrained_fadd: 5799 case Intrinsic::experimental_constrained_fsub: 5800 case Intrinsic::experimental_constrained_fmul: 5801 case Intrinsic::experimental_constrained_fdiv: 5802 case Intrinsic::experimental_constrained_frem: 5803 case Intrinsic::experimental_constrained_fma: 5804 case Intrinsic::experimental_constrained_sqrt: 5805 case Intrinsic::experimental_constrained_pow: 5806 case Intrinsic::experimental_constrained_powi: 5807 case Intrinsic::experimental_constrained_sin: 5808 case Intrinsic::experimental_constrained_cos: 5809 case Intrinsic::experimental_constrained_exp: 5810 case Intrinsic::experimental_constrained_exp2: 5811 case Intrinsic::experimental_constrained_log: 5812 case Intrinsic::experimental_constrained_log10: 5813 case Intrinsic::experimental_constrained_log2: 5814 case Intrinsic::experimental_constrained_rint: 5815 case Intrinsic::experimental_constrained_nearbyint: 5816 case Intrinsic::experimental_constrained_maxnum: 5817 case Intrinsic::experimental_constrained_minnum: 5818 case Intrinsic::experimental_constrained_ceil: 5819 case Intrinsic::experimental_constrained_floor: 5820 case Intrinsic::experimental_constrained_round: 5821 case Intrinsic::experimental_constrained_trunc: 5822 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5823 return nullptr; 5824 case Intrinsic::fmuladd: { 5825 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5826 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5827 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5828 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5829 getValue(I.getArgOperand(0)).getValueType(), 5830 getValue(I.getArgOperand(0)), 5831 getValue(I.getArgOperand(1)), 5832 getValue(I.getArgOperand(2)))); 5833 } else { 5834 // TODO: Intrinsic calls should have fast-math-flags. 5835 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5836 getValue(I.getArgOperand(0)).getValueType(), 5837 getValue(I.getArgOperand(0)), 5838 getValue(I.getArgOperand(1))); 5839 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5840 getValue(I.getArgOperand(0)).getValueType(), 5841 Mul, 5842 getValue(I.getArgOperand(2))); 5843 setValue(&I, Add); 5844 } 5845 return nullptr; 5846 } 5847 case Intrinsic::convert_to_fp16: 5848 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5849 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5850 getValue(I.getArgOperand(0)), 5851 DAG.getTargetConstant(0, sdl, 5852 MVT::i32)))); 5853 return nullptr; 5854 case Intrinsic::convert_from_fp16: 5855 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5856 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5857 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5858 getValue(I.getArgOperand(0))))); 5859 return nullptr; 5860 case Intrinsic::pcmarker: { 5861 SDValue Tmp = getValue(I.getArgOperand(0)); 5862 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5863 return nullptr; 5864 } 5865 case Intrinsic::readcyclecounter: { 5866 SDValue Op = getRoot(); 5867 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5868 DAG.getVTList(MVT::i64, MVT::Other), Op); 5869 setValue(&I, Res); 5870 DAG.setRoot(Res.getValue(1)); 5871 return nullptr; 5872 } 5873 case Intrinsic::bitreverse: 5874 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5875 getValue(I.getArgOperand(0)).getValueType(), 5876 getValue(I.getArgOperand(0)))); 5877 return nullptr; 5878 case Intrinsic::bswap: 5879 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5880 getValue(I.getArgOperand(0)).getValueType(), 5881 getValue(I.getArgOperand(0)))); 5882 return nullptr; 5883 case Intrinsic::cttz: { 5884 SDValue Arg = getValue(I.getArgOperand(0)); 5885 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5886 EVT Ty = Arg.getValueType(); 5887 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5888 sdl, Ty, Arg)); 5889 return nullptr; 5890 } 5891 case Intrinsic::ctlz: { 5892 SDValue Arg = getValue(I.getArgOperand(0)); 5893 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5894 EVT Ty = Arg.getValueType(); 5895 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5896 sdl, Ty, Arg)); 5897 return nullptr; 5898 } 5899 case Intrinsic::ctpop: { 5900 SDValue Arg = getValue(I.getArgOperand(0)); 5901 EVT Ty = Arg.getValueType(); 5902 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5903 return nullptr; 5904 } 5905 case Intrinsic::fshl: 5906 case Intrinsic::fshr: { 5907 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5908 SDValue X = getValue(I.getArgOperand(0)); 5909 SDValue Y = getValue(I.getArgOperand(1)); 5910 SDValue Z = getValue(I.getArgOperand(2)); 5911 EVT VT = X.getValueType(); 5912 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5913 SDValue Zero = DAG.getConstant(0, sdl, VT); 5914 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5915 5916 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 5917 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 5918 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 5919 return nullptr; 5920 } 5921 5922 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5923 // avoid the select that is necessary in the general case to filter out 5924 // the 0-shift possibility that leads to UB. 5925 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5926 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5927 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5928 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5929 return nullptr; 5930 } 5931 5932 // Some targets only rotate one way. Try the opposite direction. 5933 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5934 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5935 // Negate the shift amount because it is safe to ignore the high bits. 5936 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5937 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5938 return nullptr; 5939 } 5940 5941 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5942 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5943 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5944 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5945 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5946 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5947 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5948 return nullptr; 5949 } 5950 5951 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5952 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5953 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5954 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5955 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5956 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5957 5958 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5959 // and that is undefined. We must compare and select to avoid UB. 5960 EVT CCVT = MVT::i1; 5961 if (VT.isVector()) 5962 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5963 5964 // For fshl, 0-shift returns the 1st arg (X). 5965 // For fshr, 0-shift returns the 2nd arg (Y). 5966 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5967 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5968 return nullptr; 5969 } 5970 case Intrinsic::sadd_sat: { 5971 SDValue Op1 = getValue(I.getArgOperand(0)); 5972 SDValue Op2 = getValue(I.getArgOperand(1)); 5973 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5974 return nullptr; 5975 } 5976 case Intrinsic::uadd_sat: { 5977 SDValue Op1 = getValue(I.getArgOperand(0)); 5978 SDValue Op2 = getValue(I.getArgOperand(1)); 5979 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5980 return nullptr; 5981 } 5982 case Intrinsic::ssub_sat: { 5983 SDValue Op1 = getValue(I.getArgOperand(0)); 5984 SDValue Op2 = getValue(I.getArgOperand(1)); 5985 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5986 return nullptr; 5987 } 5988 case Intrinsic::usub_sat: { 5989 SDValue Op1 = getValue(I.getArgOperand(0)); 5990 SDValue Op2 = getValue(I.getArgOperand(1)); 5991 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5992 return nullptr; 5993 } 5994 case Intrinsic::smul_fix: 5995 case Intrinsic::umul_fix: { 5996 SDValue Op1 = getValue(I.getArgOperand(0)); 5997 SDValue Op2 = getValue(I.getArgOperand(1)); 5998 SDValue Op3 = getValue(I.getArgOperand(2)); 5999 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6000 Op1.getValueType(), Op1, Op2, Op3)); 6001 return nullptr; 6002 } 6003 case Intrinsic::stacksave: { 6004 SDValue Op = getRoot(); 6005 Res = DAG.getNode( 6006 ISD::STACKSAVE, sdl, 6007 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6008 setValue(&I, Res); 6009 DAG.setRoot(Res.getValue(1)); 6010 return nullptr; 6011 } 6012 case Intrinsic::stackrestore: 6013 Res = getValue(I.getArgOperand(0)); 6014 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6015 return nullptr; 6016 case Intrinsic::get_dynamic_area_offset: { 6017 SDValue Op = getRoot(); 6018 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6019 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6020 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6021 // target. 6022 if (PtrTy != ResTy) 6023 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6024 " intrinsic!"); 6025 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6026 Op); 6027 DAG.setRoot(Op); 6028 setValue(&I, Res); 6029 return nullptr; 6030 } 6031 case Intrinsic::stackguard: { 6032 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6033 MachineFunction &MF = DAG.getMachineFunction(); 6034 const Module &M = *MF.getFunction().getParent(); 6035 SDValue Chain = getRoot(); 6036 if (TLI.useLoadStackGuardNode()) { 6037 Res = getLoadStackGuard(DAG, sdl, Chain); 6038 } else { 6039 const Value *Global = TLI.getSDagStackGuard(M); 6040 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6041 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6042 MachinePointerInfo(Global, 0), Align, 6043 MachineMemOperand::MOVolatile); 6044 } 6045 if (TLI.useStackGuardXorFP()) 6046 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6047 DAG.setRoot(Chain); 6048 setValue(&I, Res); 6049 return nullptr; 6050 } 6051 case Intrinsic::stackprotector: { 6052 // Emit code into the DAG to store the stack guard onto the stack. 6053 MachineFunction &MF = DAG.getMachineFunction(); 6054 MachineFrameInfo &MFI = MF.getFrameInfo(); 6055 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6056 SDValue Src, Chain = getRoot(); 6057 6058 if (TLI.useLoadStackGuardNode()) 6059 Src = getLoadStackGuard(DAG, sdl, Chain); 6060 else 6061 Src = getValue(I.getArgOperand(0)); // The guard's value. 6062 6063 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6064 6065 int FI = FuncInfo.StaticAllocaMap[Slot]; 6066 MFI.setStackProtectorIndex(FI); 6067 6068 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6069 6070 // Store the stack protector onto the stack. 6071 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6072 DAG.getMachineFunction(), FI), 6073 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6074 setValue(&I, Res); 6075 DAG.setRoot(Res); 6076 return nullptr; 6077 } 6078 case Intrinsic::objectsize: { 6079 // If we don't know by now, we're never going to know. 6080 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6081 6082 assert(CI && "Non-constant type in __builtin_object_size?"); 6083 6084 SDValue Arg = getValue(I.getCalledValue()); 6085 EVT Ty = Arg.getValueType(); 6086 6087 if (CI->isZero()) 6088 Res = DAG.getConstant(-1ULL, sdl, Ty); 6089 else 6090 Res = DAG.getConstant(0, sdl, Ty); 6091 6092 setValue(&I, Res); 6093 return nullptr; 6094 } 6095 6096 case Intrinsic::is_constant: 6097 // If this wasn't constant-folded away by now, then it's not a 6098 // constant. 6099 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6100 return nullptr; 6101 6102 case Intrinsic::annotation: 6103 case Intrinsic::ptr_annotation: 6104 case Intrinsic::launder_invariant_group: 6105 case Intrinsic::strip_invariant_group: 6106 // Drop the intrinsic, but forward the value 6107 setValue(&I, getValue(I.getOperand(0))); 6108 return nullptr; 6109 case Intrinsic::assume: 6110 case Intrinsic::var_annotation: 6111 case Intrinsic::sideeffect: 6112 // Discard annotate attributes, assumptions, and artificial side-effects. 6113 return nullptr; 6114 6115 case Intrinsic::codeview_annotation: { 6116 // Emit a label associated with this metadata. 6117 MachineFunction &MF = DAG.getMachineFunction(); 6118 MCSymbol *Label = 6119 MF.getMMI().getContext().createTempSymbol("annotation", true); 6120 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6121 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6122 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6123 DAG.setRoot(Res); 6124 return nullptr; 6125 } 6126 6127 case Intrinsic::init_trampoline: { 6128 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6129 6130 SDValue Ops[6]; 6131 Ops[0] = getRoot(); 6132 Ops[1] = getValue(I.getArgOperand(0)); 6133 Ops[2] = getValue(I.getArgOperand(1)); 6134 Ops[3] = getValue(I.getArgOperand(2)); 6135 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6136 Ops[5] = DAG.getSrcValue(F); 6137 6138 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6139 6140 DAG.setRoot(Res); 6141 return nullptr; 6142 } 6143 case Intrinsic::adjust_trampoline: 6144 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6145 TLI.getPointerTy(DAG.getDataLayout()), 6146 getValue(I.getArgOperand(0)))); 6147 return nullptr; 6148 case Intrinsic::gcroot: { 6149 assert(DAG.getMachineFunction().getFunction().hasGC() && 6150 "only valid in functions with gc specified, enforced by Verifier"); 6151 assert(GFI && "implied by previous"); 6152 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6153 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6154 6155 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6156 GFI->addStackRoot(FI->getIndex(), TypeMap); 6157 return nullptr; 6158 } 6159 case Intrinsic::gcread: 6160 case Intrinsic::gcwrite: 6161 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6162 case Intrinsic::flt_rounds: 6163 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6164 return nullptr; 6165 6166 case Intrinsic::expect: 6167 // Just replace __builtin_expect(exp, c) with EXP. 6168 setValue(&I, getValue(I.getArgOperand(0))); 6169 return nullptr; 6170 6171 case Intrinsic::debugtrap: 6172 case Intrinsic::trap: { 6173 StringRef TrapFuncName = 6174 I.getAttributes() 6175 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6176 .getValueAsString(); 6177 if (TrapFuncName.empty()) { 6178 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6179 ISD::TRAP : ISD::DEBUGTRAP; 6180 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6181 return nullptr; 6182 } 6183 TargetLowering::ArgListTy Args; 6184 6185 TargetLowering::CallLoweringInfo CLI(DAG); 6186 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6187 CallingConv::C, I.getType(), 6188 DAG.getExternalSymbol(TrapFuncName.data(), 6189 TLI.getPointerTy(DAG.getDataLayout())), 6190 std::move(Args)); 6191 6192 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6193 DAG.setRoot(Result.second); 6194 return nullptr; 6195 } 6196 6197 case Intrinsic::uadd_with_overflow: 6198 case Intrinsic::sadd_with_overflow: 6199 case Intrinsic::usub_with_overflow: 6200 case Intrinsic::ssub_with_overflow: 6201 case Intrinsic::umul_with_overflow: 6202 case Intrinsic::smul_with_overflow: { 6203 ISD::NodeType Op; 6204 switch (Intrinsic) { 6205 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6206 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6207 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6208 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6209 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6210 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6211 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6212 } 6213 SDValue Op1 = getValue(I.getArgOperand(0)); 6214 SDValue Op2 = getValue(I.getArgOperand(1)); 6215 6216 EVT ResultVT = Op1.getValueType(); 6217 EVT OverflowVT = MVT::i1; 6218 if (ResultVT.isVector()) 6219 OverflowVT = EVT::getVectorVT( 6220 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6221 6222 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6223 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6224 return nullptr; 6225 } 6226 case Intrinsic::prefetch: { 6227 SDValue Ops[5]; 6228 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6229 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6230 Ops[0] = DAG.getRoot(); 6231 Ops[1] = getValue(I.getArgOperand(0)); 6232 Ops[2] = getValue(I.getArgOperand(1)); 6233 Ops[3] = getValue(I.getArgOperand(2)); 6234 Ops[4] = getValue(I.getArgOperand(3)); 6235 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6236 DAG.getVTList(MVT::Other), Ops, 6237 EVT::getIntegerVT(*Context, 8), 6238 MachinePointerInfo(I.getArgOperand(0)), 6239 0, /* align */ 6240 Flags); 6241 6242 // Chain the prefetch in parallell with any pending loads, to stay out of 6243 // the way of later optimizations. 6244 PendingLoads.push_back(Result); 6245 Result = getRoot(); 6246 DAG.setRoot(Result); 6247 return nullptr; 6248 } 6249 case Intrinsic::lifetime_start: 6250 case Intrinsic::lifetime_end: { 6251 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6252 // Stack coloring is not enabled in O0, discard region information. 6253 if (TM.getOptLevel() == CodeGenOpt::None) 6254 return nullptr; 6255 6256 SmallVector<Value *, 4> Allocas; 6257 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6258 6259 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6260 E = Allocas.end(); Object != E; ++Object) { 6261 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6262 6263 // Could not find an Alloca. 6264 if (!LifetimeObject) 6265 continue; 6266 6267 // First check that the Alloca is static, otherwise it won't have a 6268 // valid frame index. 6269 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6270 if (SI == FuncInfo.StaticAllocaMap.end()) 6271 return nullptr; 6272 6273 int FI = SI->second; 6274 6275 SDValue Ops[2]; 6276 Ops[0] = getRoot(); 6277 Ops[1] = 6278 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6279 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6280 6281 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6282 DAG.setRoot(Res); 6283 } 6284 return nullptr; 6285 } 6286 case Intrinsic::invariant_start: 6287 // Discard region information. 6288 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6289 return nullptr; 6290 case Intrinsic::invariant_end: 6291 // Discard region information. 6292 return nullptr; 6293 case Intrinsic::clear_cache: 6294 return TLI.getClearCacheBuiltinName(); 6295 case Intrinsic::donothing: 6296 // ignore 6297 return nullptr; 6298 case Intrinsic::experimental_stackmap: 6299 visitStackmap(I); 6300 return nullptr; 6301 case Intrinsic::experimental_patchpoint_void: 6302 case Intrinsic::experimental_patchpoint_i64: 6303 visitPatchpoint(&I); 6304 return nullptr; 6305 case Intrinsic::experimental_gc_statepoint: 6306 LowerStatepoint(ImmutableStatepoint(&I)); 6307 return nullptr; 6308 case Intrinsic::experimental_gc_result: 6309 visitGCResult(cast<GCResultInst>(I)); 6310 return nullptr; 6311 case Intrinsic::experimental_gc_relocate: 6312 visitGCRelocate(cast<GCRelocateInst>(I)); 6313 return nullptr; 6314 case Intrinsic::instrprof_increment: 6315 llvm_unreachable("instrprof failed to lower an increment"); 6316 case Intrinsic::instrprof_value_profile: 6317 llvm_unreachable("instrprof failed to lower a value profiling call"); 6318 case Intrinsic::localescape: { 6319 MachineFunction &MF = DAG.getMachineFunction(); 6320 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6321 6322 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6323 // is the same on all targets. 6324 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6325 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6326 if (isa<ConstantPointerNull>(Arg)) 6327 continue; // Skip null pointers. They represent a hole in index space. 6328 AllocaInst *Slot = cast<AllocaInst>(Arg); 6329 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6330 "can only escape static allocas"); 6331 int FI = FuncInfo.StaticAllocaMap[Slot]; 6332 MCSymbol *FrameAllocSym = 6333 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6334 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6336 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6337 .addSym(FrameAllocSym) 6338 .addFrameIndex(FI); 6339 } 6340 6341 return nullptr; 6342 } 6343 6344 case Intrinsic::localrecover: { 6345 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6346 MachineFunction &MF = DAG.getMachineFunction(); 6347 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6348 6349 // Get the symbol that defines the frame offset. 6350 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6351 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6352 unsigned IdxVal = 6353 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6354 MCSymbol *FrameAllocSym = 6355 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6356 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6357 6358 // Create a MCSymbol for the label to avoid any target lowering 6359 // that would make this PC relative. 6360 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6361 SDValue OffsetVal = 6362 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6363 6364 // Add the offset to the FP. 6365 Value *FP = I.getArgOperand(1); 6366 SDValue FPVal = getValue(FP); 6367 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6368 setValue(&I, Add); 6369 6370 return nullptr; 6371 } 6372 6373 case Intrinsic::eh_exceptionpointer: 6374 case Intrinsic::eh_exceptioncode: { 6375 // Get the exception pointer vreg, copy from it, and resize it to fit. 6376 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6377 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6378 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6379 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6380 SDValue N = 6381 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6382 if (Intrinsic == Intrinsic::eh_exceptioncode) 6383 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6384 setValue(&I, N); 6385 return nullptr; 6386 } 6387 case Intrinsic::xray_customevent: { 6388 // Here we want to make sure that the intrinsic behaves as if it has a 6389 // specific calling convention, and only for x86_64. 6390 // FIXME: Support other platforms later. 6391 const auto &Triple = DAG.getTarget().getTargetTriple(); 6392 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6393 return nullptr; 6394 6395 SDLoc DL = getCurSDLoc(); 6396 SmallVector<SDValue, 8> Ops; 6397 6398 // We want to say that we always want the arguments in registers. 6399 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6400 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6401 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6402 SDValue Chain = getRoot(); 6403 Ops.push_back(LogEntryVal); 6404 Ops.push_back(StrSizeVal); 6405 Ops.push_back(Chain); 6406 6407 // We need to enforce the calling convention for the callsite, so that 6408 // argument ordering is enforced correctly, and that register allocation can 6409 // see that some registers may be assumed clobbered and have to preserve 6410 // them across calls to the intrinsic. 6411 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6412 DL, NodeTys, Ops); 6413 SDValue patchableNode = SDValue(MN, 0); 6414 DAG.setRoot(patchableNode); 6415 setValue(&I, patchableNode); 6416 return nullptr; 6417 } 6418 case Intrinsic::xray_typedevent: { 6419 // Here we want to make sure that the intrinsic behaves as if it has a 6420 // specific calling convention, and only for x86_64. 6421 // FIXME: Support other platforms later. 6422 const auto &Triple = DAG.getTarget().getTargetTriple(); 6423 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6424 return nullptr; 6425 6426 SDLoc DL = getCurSDLoc(); 6427 SmallVector<SDValue, 8> Ops; 6428 6429 // We want to say that we always want the arguments in registers. 6430 // It's unclear to me how manipulating the selection DAG here forces callers 6431 // to provide arguments in registers instead of on the stack. 6432 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6433 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6434 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6435 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6436 SDValue Chain = getRoot(); 6437 Ops.push_back(LogTypeId); 6438 Ops.push_back(LogEntryVal); 6439 Ops.push_back(StrSizeVal); 6440 Ops.push_back(Chain); 6441 6442 // We need to enforce the calling convention for the callsite, so that 6443 // argument ordering is enforced correctly, and that register allocation can 6444 // see that some registers may be assumed clobbered and have to preserve 6445 // them across calls to the intrinsic. 6446 MachineSDNode *MN = DAG.getMachineNode( 6447 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6448 SDValue patchableNode = SDValue(MN, 0); 6449 DAG.setRoot(patchableNode); 6450 setValue(&I, patchableNode); 6451 return nullptr; 6452 } 6453 case Intrinsic::experimental_deoptimize: 6454 LowerDeoptimizeCall(&I); 6455 return nullptr; 6456 6457 case Intrinsic::experimental_vector_reduce_fadd: 6458 case Intrinsic::experimental_vector_reduce_fmul: 6459 case Intrinsic::experimental_vector_reduce_add: 6460 case Intrinsic::experimental_vector_reduce_mul: 6461 case Intrinsic::experimental_vector_reduce_and: 6462 case Intrinsic::experimental_vector_reduce_or: 6463 case Intrinsic::experimental_vector_reduce_xor: 6464 case Intrinsic::experimental_vector_reduce_smax: 6465 case Intrinsic::experimental_vector_reduce_smin: 6466 case Intrinsic::experimental_vector_reduce_umax: 6467 case Intrinsic::experimental_vector_reduce_umin: 6468 case Intrinsic::experimental_vector_reduce_fmax: 6469 case Intrinsic::experimental_vector_reduce_fmin: 6470 visitVectorReduce(I, Intrinsic); 6471 return nullptr; 6472 6473 case Intrinsic::icall_branch_funnel: { 6474 SmallVector<SDValue, 16> Ops; 6475 Ops.push_back(DAG.getRoot()); 6476 Ops.push_back(getValue(I.getArgOperand(0))); 6477 6478 int64_t Offset; 6479 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6480 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6481 if (!Base) 6482 report_fatal_error( 6483 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6484 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6485 6486 struct BranchFunnelTarget { 6487 int64_t Offset; 6488 SDValue Target; 6489 }; 6490 SmallVector<BranchFunnelTarget, 8> Targets; 6491 6492 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6493 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6494 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6495 if (ElemBase != Base) 6496 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6497 "to the same GlobalValue"); 6498 6499 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6500 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6501 if (!GA) 6502 report_fatal_error( 6503 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6504 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6505 GA->getGlobal(), getCurSDLoc(), 6506 Val.getValueType(), GA->getOffset())}); 6507 } 6508 llvm::sort(Targets, 6509 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6510 return T1.Offset < T2.Offset; 6511 }); 6512 6513 for (auto &T : Targets) { 6514 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6515 Ops.push_back(T.Target); 6516 } 6517 6518 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6519 getCurSDLoc(), MVT::Other, Ops), 6520 0); 6521 DAG.setRoot(N); 6522 setValue(&I, N); 6523 HasTailCall = true; 6524 return nullptr; 6525 } 6526 6527 case Intrinsic::wasm_landingpad_index: 6528 // Information this intrinsic contained has been transferred to 6529 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6530 // delete it now. 6531 return nullptr; 6532 } 6533 } 6534 6535 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6536 const ConstrainedFPIntrinsic &FPI) { 6537 SDLoc sdl = getCurSDLoc(); 6538 unsigned Opcode; 6539 switch (FPI.getIntrinsicID()) { 6540 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6541 case Intrinsic::experimental_constrained_fadd: 6542 Opcode = ISD::STRICT_FADD; 6543 break; 6544 case Intrinsic::experimental_constrained_fsub: 6545 Opcode = ISD::STRICT_FSUB; 6546 break; 6547 case Intrinsic::experimental_constrained_fmul: 6548 Opcode = ISD::STRICT_FMUL; 6549 break; 6550 case Intrinsic::experimental_constrained_fdiv: 6551 Opcode = ISD::STRICT_FDIV; 6552 break; 6553 case Intrinsic::experimental_constrained_frem: 6554 Opcode = ISD::STRICT_FREM; 6555 break; 6556 case Intrinsic::experimental_constrained_fma: 6557 Opcode = ISD::STRICT_FMA; 6558 break; 6559 case Intrinsic::experimental_constrained_sqrt: 6560 Opcode = ISD::STRICT_FSQRT; 6561 break; 6562 case Intrinsic::experimental_constrained_pow: 6563 Opcode = ISD::STRICT_FPOW; 6564 break; 6565 case Intrinsic::experimental_constrained_powi: 6566 Opcode = ISD::STRICT_FPOWI; 6567 break; 6568 case Intrinsic::experimental_constrained_sin: 6569 Opcode = ISD::STRICT_FSIN; 6570 break; 6571 case Intrinsic::experimental_constrained_cos: 6572 Opcode = ISD::STRICT_FCOS; 6573 break; 6574 case Intrinsic::experimental_constrained_exp: 6575 Opcode = ISD::STRICT_FEXP; 6576 break; 6577 case Intrinsic::experimental_constrained_exp2: 6578 Opcode = ISD::STRICT_FEXP2; 6579 break; 6580 case Intrinsic::experimental_constrained_log: 6581 Opcode = ISD::STRICT_FLOG; 6582 break; 6583 case Intrinsic::experimental_constrained_log10: 6584 Opcode = ISD::STRICT_FLOG10; 6585 break; 6586 case Intrinsic::experimental_constrained_log2: 6587 Opcode = ISD::STRICT_FLOG2; 6588 break; 6589 case Intrinsic::experimental_constrained_rint: 6590 Opcode = ISD::STRICT_FRINT; 6591 break; 6592 case Intrinsic::experimental_constrained_nearbyint: 6593 Opcode = ISD::STRICT_FNEARBYINT; 6594 break; 6595 case Intrinsic::experimental_constrained_maxnum: 6596 Opcode = ISD::STRICT_FMAXNUM; 6597 break; 6598 case Intrinsic::experimental_constrained_minnum: 6599 Opcode = ISD::STRICT_FMINNUM; 6600 break; 6601 case Intrinsic::experimental_constrained_ceil: 6602 Opcode = ISD::STRICT_FCEIL; 6603 break; 6604 case Intrinsic::experimental_constrained_floor: 6605 Opcode = ISD::STRICT_FFLOOR; 6606 break; 6607 case Intrinsic::experimental_constrained_round: 6608 Opcode = ISD::STRICT_FROUND; 6609 break; 6610 case Intrinsic::experimental_constrained_trunc: 6611 Opcode = ISD::STRICT_FTRUNC; 6612 break; 6613 } 6614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6615 SDValue Chain = getRoot(); 6616 SmallVector<EVT, 4> ValueVTs; 6617 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6618 ValueVTs.push_back(MVT::Other); // Out chain 6619 6620 SDVTList VTs = DAG.getVTList(ValueVTs); 6621 SDValue Result; 6622 if (FPI.isUnaryOp()) 6623 Result = DAG.getNode(Opcode, sdl, VTs, 6624 { Chain, getValue(FPI.getArgOperand(0)) }); 6625 else if (FPI.isTernaryOp()) 6626 Result = DAG.getNode(Opcode, sdl, VTs, 6627 { Chain, getValue(FPI.getArgOperand(0)), 6628 getValue(FPI.getArgOperand(1)), 6629 getValue(FPI.getArgOperand(2)) }); 6630 else 6631 Result = DAG.getNode(Opcode, sdl, VTs, 6632 { Chain, getValue(FPI.getArgOperand(0)), 6633 getValue(FPI.getArgOperand(1)) }); 6634 6635 assert(Result.getNode()->getNumValues() == 2); 6636 SDValue OutChain = Result.getValue(1); 6637 DAG.setRoot(OutChain); 6638 SDValue FPResult = Result.getValue(0); 6639 setValue(&FPI, FPResult); 6640 } 6641 6642 std::pair<SDValue, SDValue> 6643 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6644 const BasicBlock *EHPadBB) { 6645 MachineFunction &MF = DAG.getMachineFunction(); 6646 MachineModuleInfo &MMI = MF.getMMI(); 6647 MCSymbol *BeginLabel = nullptr; 6648 6649 if (EHPadBB) { 6650 // Insert a label before the invoke call to mark the try range. This can be 6651 // used to detect deletion of the invoke via the MachineModuleInfo. 6652 BeginLabel = MMI.getContext().createTempSymbol(); 6653 6654 // For SjLj, keep track of which landing pads go with which invokes 6655 // so as to maintain the ordering of pads in the LSDA. 6656 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6657 if (CallSiteIndex) { 6658 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6659 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6660 6661 // Now that the call site is handled, stop tracking it. 6662 MMI.setCurrentCallSite(0); 6663 } 6664 6665 // Both PendingLoads and PendingExports must be flushed here; 6666 // this call might not return. 6667 (void)getRoot(); 6668 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6669 6670 CLI.setChain(getRoot()); 6671 } 6672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6673 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6674 6675 assert((CLI.IsTailCall || Result.second.getNode()) && 6676 "Non-null chain expected with non-tail call!"); 6677 assert((Result.second.getNode() || !Result.first.getNode()) && 6678 "Null value expected with tail call!"); 6679 6680 if (!Result.second.getNode()) { 6681 // As a special case, a null chain means that a tail call has been emitted 6682 // and the DAG root is already updated. 6683 HasTailCall = true; 6684 6685 // Since there's no actual continuation from this block, nothing can be 6686 // relying on us setting vregs for them. 6687 PendingExports.clear(); 6688 } else { 6689 DAG.setRoot(Result.second); 6690 } 6691 6692 if (EHPadBB) { 6693 // Insert a label at the end of the invoke call to mark the try range. This 6694 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6695 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6696 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6697 6698 // Inform MachineModuleInfo of range. 6699 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6700 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6701 // actually use outlined funclets and their LSDA info style. 6702 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6703 assert(CLI.CS); 6704 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6705 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6706 BeginLabel, EndLabel); 6707 } else if (!isScopedEHPersonality(Pers)) { 6708 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6709 } 6710 } 6711 6712 return Result; 6713 } 6714 6715 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6716 bool isTailCall, 6717 const BasicBlock *EHPadBB) { 6718 auto &DL = DAG.getDataLayout(); 6719 FunctionType *FTy = CS.getFunctionType(); 6720 Type *RetTy = CS.getType(); 6721 6722 TargetLowering::ArgListTy Args; 6723 Args.reserve(CS.arg_size()); 6724 6725 const Value *SwiftErrorVal = nullptr; 6726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6727 6728 // We can't tail call inside a function with a swifterror argument. Lowering 6729 // does not support this yet. It would have to move into the swifterror 6730 // register before the call. 6731 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6732 if (TLI.supportSwiftError() && 6733 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6734 isTailCall = false; 6735 6736 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6737 i != e; ++i) { 6738 TargetLowering::ArgListEntry Entry; 6739 const Value *V = *i; 6740 6741 // Skip empty types 6742 if (V->getType()->isEmptyTy()) 6743 continue; 6744 6745 SDValue ArgNode = getValue(V); 6746 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6747 6748 Entry.setAttributes(&CS, i - CS.arg_begin()); 6749 6750 // Use swifterror virtual register as input to the call. 6751 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6752 SwiftErrorVal = V; 6753 // We find the virtual register for the actual swifterror argument. 6754 // Instead of using the Value, we use the virtual register instead. 6755 Entry.Node = DAG.getRegister(FuncInfo 6756 .getOrCreateSwiftErrorVRegUseAt( 6757 CS.getInstruction(), FuncInfo.MBB, V) 6758 .first, 6759 EVT(TLI.getPointerTy(DL))); 6760 } 6761 6762 Args.push_back(Entry); 6763 6764 // If we have an explicit sret argument that is an Instruction, (i.e., it 6765 // might point to function-local memory), we can't meaningfully tail-call. 6766 if (Entry.IsSRet && isa<Instruction>(V)) 6767 isTailCall = false; 6768 } 6769 6770 // Check if target-independent constraints permit a tail call here. 6771 // Target-dependent constraints are checked within TLI->LowerCallTo. 6772 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6773 isTailCall = false; 6774 6775 // Disable tail calls if there is an swifterror argument. Targets have not 6776 // been updated to support tail calls. 6777 if (TLI.supportSwiftError() && SwiftErrorVal) 6778 isTailCall = false; 6779 6780 TargetLowering::CallLoweringInfo CLI(DAG); 6781 CLI.setDebugLoc(getCurSDLoc()) 6782 .setChain(getRoot()) 6783 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6784 .setTailCall(isTailCall) 6785 .setConvergent(CS.isConvergent()); 6786 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6787 6788 if (Result.first.getNode()) { 6789 const Instruction *Inst = CS.getInstruction(); 6790 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6791 setValue(Inst, Result.first); 6792 } 6793 6794 // The last element of CLI.InVals has the SDValue for swifterror return. 6795 // Here we copy it to a virtual register and update SwiftErrorMap for 6796 // book-keeping. 6797 if (SwiftErrorVal && TLI.supportSwiftError()) { 6798 // Get the last element of InVals. 6799 SDValue Src = CLI.InVals.back(); 6800 unsigned VReg; bool CreatedVReg; 6801 std::tie(VReg, CreatedVReg) = 6802 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6803 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6804 // We update the virtual register for the actual swifterror argument. 6805 if (CreatedVReg) 6806 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6807 DAG.setRoot(CopyNode); 6808 } 6809 } 6810 6811 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6812 SelectionDAGBuilder &Builder) { 6813 // Check to see if this load can be trivially constant folded, e.g. if the 6814 // input is from a string literal. 6815 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6816 // Cast pointer to the type we really want to load. 6817 Type *LoadTy = 6818 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6819 if (LoadVT.isVector()) 6820 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6821 6822 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6823 PointerType::getUnqual(LoadTy)); 6824 6825 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6826 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6827 return Builder.getValue(LoadCst); 6828 } 6829 6830 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6831 // still constant memory, the input chain can be the entry node. 6832 SDValue Root; 6833 bool ConstantMemory = false; 6834 6835 // Do not serialize (non-volatile) loads of constant memory with anything. 6836 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6837 Root = Builder.DAG.getEntryNode(); 6838 ConstantMemory = true; 6839 } else { 6840 // Do not serialize non-volatile loads against each other. 6841 Root = Builder.DAG.getRoot(); 6842 } 6843 6844 SDValue Ptr = Builder.getValue(PtrVal); 6845 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6846 Ptr, MachinePointerInfo(PtrVal), 6847 /* Alignment = */ 1); 6848 6849 if (!ConstantMemory) 6850 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6851 return LoadVal; 6852 } 6853 6854 /// Record the value for an instruction that produces an integer result, 6855 /// converting the type where necessary. 6856 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6857 SDValue Value, 6858 bool IsSigned) { 6859 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6860 I.getType(), true); 6861 if (IsSigned) 6862 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6863 else 6864 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6865 setValue(&I, Value); 6866 } 6867 6868 /// See if we can lower a memcmp call into an optimized form. If so, return 6869 /// true and lower it. Otherwise return false, and it will be lowered like a 6870 /// normal call. 6871 /// The caller already checked that \p I calls the appropriate LibFunc with a 6872 /// correct prototype. 6873 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6874 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6875 const Value *Size = I.getArgOperand(2); 6876 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6877 if (CSize && CSize->getZExtValue() == 0) { 6878 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6879 I.getType(), true); 6880 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6881 return true; 6882 } 6883 6884 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6885 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6886 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6887 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6888 if (Res.first.getNode()) { 6889 processIntegerCallValue(I, Res.first, true); 6890 PendingLoads.push_back(Res.second); 6891 return true; 6892 } 6893 6894 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6895 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6896 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6897 return false; 6898 6899 // If the target has a fast compare for the given size, it will return a 6900 // preferred load type for that size. Require that the load VT is legal and 6901 // that the target supports unaligned loads of that type. Otherwise, return 6902 // INVALID. 6903 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6905 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6906 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6907 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6908 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6909 // TODO: Check alignment of src and dest ptrs. 6910 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6911 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6912 if (!TLI.isTypeLegal(LVT) || 6913 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6914 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6915 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6916 } 6917 6918 return LVT; 6919 }; 6920 6921 // This turns into unaligned loads. We only do this if the target natively 6922 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6923 // we'll only produce a small number of byte loads. 6924 MVT LoadVT; 6925 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6926 switch (NumBitsToCompare) { 6927 default: 6928 return false; 6929 case 16: 6930 LoadVT = MVT::i16; 6931 break; 6932 case 32: 6933 LoadVT = MVT::i32; 6934 break; 6935 case 64: 6936 case 128: 6937 case 256: 6938 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6939 break; 6940 } 6941 6942 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6943 return false; 6944 6945 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6946 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6947 6948 // Bitcast to a wide integer type if the loads are vectors. 6949 if (LoadVT.isVector()) { 6950 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6951 LoadL = DAG.getBitcast(CmpVT, LoadL); 6952 LoadR = DAG.getBitcast(CmpVT, LoadR); 6953 } 6954 6955 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6956 processIntegerCallValue(I, Cmp, false); 6957 return true; 6958 } 6959 6960 /// See if we can lower a memchr call into an optimized form. If so, return 6961 /// true and lower it. Otherwise return false, and it will be lowered like a 6962 /// normal call. 6963 /// The caller already checked that \p I calls the appropriate LibFunc with a 6964 /// correct prototype. 6965 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6966 const Value *Src = I.getArgOperand(0); 6967 const Value *Char = I.getArgOperand(1); 6968 const Value *Length = I.getArgOperand(2); 6969 6970 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6971 std::pair<SDValue, SDValue> Res = 6972 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6973 getValue(Src), getValue(Char), getValue(Length), 6974 MachinePointerInfo(Src)); 6975 if (Res.first.getNode()) { 6976 setValue(&I, Res.first); 6977 PendingLoads.push_back(Res.second); 6978 return true; 6979 } 6980 6981 return false; 6982 } 6983 6984 /// See if we can lower a mempcpy call into an optimized form. If so, return 6985 /// true and lower it. Otherwise return false, and it will be lowered like a 6986 /// normal call. 6987 /// The caller already checked that \p I calls the appropriate LibFunc with a 6988 /// correct prototype. 6989 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6990 SDValue Dst = getValue(I.getArgOperand(0)); 6991 SDValue Src = getValue(I.getArgOperand(1)); 6992 SDValue Size = getValue(I.getArgOperand(2)); 6993 6994 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6995 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6996 unsigned Align = std::min(DstAlign, SrcAlign); 6997 if (Align == 0) // Alignment of one or both could not be inferred. 6998 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6999 7000 bool isVol = false; 7001 SDLoc sdl = getCurSDLoc(); 7002 7003 // In the mempcpy context we need to pass in a false value for isTailCall 7004 // because the return pointer needs to be adjusted by the size of 7005 // the copied memory. 7006 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7007 false, /*isTailCall=*/false, 7008 MachinePointerInfo(I.getArgOperand(0)), 7009 MachinePointerInfo(I.getArgOperand(1))); 7010 assert(MC.getNode() != nullptr && 7011 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7012 DAG.setRoot(MC); 7013 7014 // Check if Size needs to be truncated or extended. 7015 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7016 7017 // Adjust return pointer to point just past the last dst byte. 7018 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7019 Dst, Size); 7020 setValue(&I, DstPlusSize); 7021 return true; 7022 } 7023 7024 /// See if we can lower a strcpy call into an optimized form. If so, return 7025 /// true and lower it, otherwise return false and it will be lowered like a 7026 /// normal call. 7027 /// The caller already checked that \p I calls the appropriate LibFunc with a 7028 /// correct prototype. 7029 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7030 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7031 7032 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7033 std::pair<SDValue, SDValue> Res = 7034 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7035 getValue(Arg0), getValue(Arg1), 7036 MachinePointerInfo(Arg0), 7037 MachinePointerInfo(Arg1), isStpcpy); 7038 if (Res.first.getNode()) { 7039 setValue(&I, Res.first); 7040 DAG.setRoot(Res.second); 7041 return true; 7042 } 7043 7044 return false; 7045 } 7046 7047 /// See if we can lower a strcmp call into an optimized form. If so, return 7048 /// true and lower it, otherwise return false and it will be lowered like a 7049 /// normal call. 7050 /// The caller already checked that \p I calls the appropriate LibFunc with a 7051 /// correct prototype. 7052 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7053 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7054 7055 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7056 std::pair<SDValue, SDValue> Res = 7057 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7058 getValue(Arg0), getValue(Arg1), 7059 MachinePointerInfo(Arg0), 7060 MachinePointerInfo(Arg1)); 7061 if (Res.first.getNode()) { 7062 processIntegerCallValue(I, Res.first, true); 7063 PendingLoads.push_back(Res.second); 7064 return true; 7065 } 7066 7067 return false; 7068 } 7069 7070 /// See if we can lower a strlen call into an optimized form. If so, return 7071 /// true and lower it, otherwise return false and it will be lowered like a 7072 /// normal call. 7073 /// The caller already checked that \p I calls the appropriate LibFunc with a 7074 /// correct prototype. 7075 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7076 const Value *Arg0 = I.getArgOperand(0); 7077 7078 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7079 std::pair<SDValue, SDValue> Res = 7080 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7081 getValue(Arg0), MachinePointerInfo(Arg0)); 7082 if (Res.first.getNode()) { 7083 processIntegerCallValue(I, Res.first, false); 7084 PendingLoads.push_back(Res.second); 7085 return true; 7086 } 7087 7088 return false; 7089 } 7090 7091 /// See if we can lower a strnlen call into an optimized form. If so, return 7092 /// true and lower it, otherwise return false and it will be lowered like a 7093 /// normal call. 7094 /// The caller already checked that \p I calls the appropriate LibFunc with a 7095 /// correct prototype. 7096 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7097 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7098 7099 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7100 std::pair<SDValue, SDValue> Res = 7101 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7102 getValue(Arg0), getValue(Arg1), 7103 MachinePointerInfo(Arg0)); 7104 if (Res.first.getNode()) { 7105 processIntegerCallValue(I, Res.first, false); 7106 PendingLoads.push_back(Res.second); 7107 return true; 7108 } 7109 7110 return false; 7111 } 7112 7113 /// See if we can lower a unary floating-point operation into an SDNode with 7114 /// the specified Opcode. If so, return true and lower it, otherwise return 7115 /// false and it will be lowered like a normal call. 7116 /// The caller already checked that \p I calls the appropriate LibFunc with a 7117 /// correct prototype. 7118 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7119 unsigned Opcode) { 7120 // We already checked this call's prototype; verify it doesn't modify errno. 7121 if (!I.onlyReadsMemory()) 7122 return false; 7123 7124 SDValue Tmp = getValue(I.getArgOperand(0)); 7125 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7126 return true; 7127 } 7128 7129 /// See if we can lower a binary floating-point operation into an SDNode with 7130 /// the specified Opcode. If so, return true and lower it. Otherwise return 7131 /// false, and it will be lowered like a normal call. 7132 /// The caller already checked that \p I calls the appropriate LibFunc with a 7133 /// correct prototype. 7134 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7135 unsigned Opcode) { 7136 // We already checked this call's prototype; verify it doesn't modify errno. 7137 if (!I.onlyReadsMemory()) 7138 return false; 7139 7140 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7141 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7142 EVT VT = Tmp0.getValueType(); 7143 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7144 return true; 7145 } 7146 7147 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7148 // Handle inline assembly differently. 7149 if (isa<InlineAsm>(I.getCalledValue())) { 7150 visitInlineAsm(&I); 7151 return; 7152 } 7153 7154 const char *RenameFn = nullptr; 7155 if (Function *F = I.getCalledFunction()) { 7156 if (F->isDeclaration()) { 7157 // Is this an LLVM intrinsic or a target-specific intrinsic? 7158 unsigned IID = F->getIntrinsicID(); 7159 if (!IID) 7160 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7161 IID = II->getIntrinsicID(F); 7162 7163 if (IID) { 7164 RenameFn = visitIntrinsicCall(I, IID); 7165 if (!RenameFn) 7166 return; 7167 } 7168 } 7169 7170 // Check for well-known libc/libm calls. If the function is internal, it 7171 // can't be a library call. Don't do the check if marked as nobuiltin for 7172 // some reason or the call site requires strict floating point semantics. 7173 LibFunc Func; 7174 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7175 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7176 LibInfo->hasOptimizedCodeGen(Func)) { 7177 switch (Func) { 7178 default: break; 7179 case LibFunc_copysign: 7180 case LibFunc_copysignf: 7181 case LibFunc_copysignl: 7182 // We already checked this call's prototype; verify it doesn't modify 7183 // errno. 7184 if (I.onlyReadsMemory()) { 7185 SDValue LHS = getValue(I.getArgOperand(0)); 7186 SDValue RHS = getValue(I.getArgOperand(1)); 7187 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7188 LHS.getValueType(), LHS, RHS)); 7189 return; 7190 } 7191 break; 7192 case LibFunc_fabs: 7193 case LibFunc_fabsf: 7194 case LibFunc_fabsl: 7195 if (visitUnaryFloatCall(I, ISD::FABS)) 7196 return; 7197 break; 7198 case LibFunc_fmin: 7199 case LibFunc_fminf: 7200 case LibFunc_fminl: 7201 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7202 return; 7203 break; 7204 case LibFunc_fmax: 7205 case LibFunc_fmaxf: 7206 case LibFunc_fmaxl: 7207 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7208 return; 7209 break; 7210 case LibFunc_sin: 7211 case LibFunc_sinf: 7212 case LibFunc_sinl: 7213 if (visitUnaryFloatCall(I, ISD::FSIN)) 7214 return; 7215 break; 7216 case LibFunc_cos: 7217 case LibFunc_cosf: 7218 case LibFunc_cosl: 7219 if (visitUnaryFloatCall(I, ISD::FCOS)) 7220 return; 7221 break; 7222 case LibFunc_sqrt: 7223 case LibFunc_sqrtf: 7224 case LibFunc_sqrtl: 7225 case LibFunc_sqrt_finite: 7226 case LibFunc_sqrtf_finite: 7227 case LibFunc_sqrtl_finite: 7228 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7229 return; 7230 break; 7231 case LibFunc_floor: 7232 case LibFunc_floorf: 7233 case LibFunc_floorl: 7234 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7235 return; 7236 break; 7237 case LibFunc_nearbyint: 7238 case LibFunc_nearbyintf: 7239 case LibFunc_nearbyintl: 7240 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7241 return; 7242 break; 7243 case LibFunc_ceil: 7244 case LibFunc_ceilf: 7245 case LibFunc_ceill: 7246 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7247 return; 7248 break; 7249 case LibFunc_rint: 7250 case LibFunc_rintf: 7251 case LibFunc_rintl: 7252 if (visitUnaryFloatCall(I, ISD::FRINT)) 7253 return; 7254 break; 7255 case LibFunc_round: 7256 case LibFunc_roundf: 7257 case LibFunc_roundl: 7258 if (visitUnaryFloatCall(I, ISD::FROUND)) 7259 return; 7260 break; 7261 case LibFunc_trunc: 7262 case LibFunc_truncf: 7263 case LibFunc_truncl: 7264 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7265 return; 7266 break; 7267 case LibFunc_log2: 7268 case LibFunc_log2f: 7269 case LibFunc_log2l: 7270 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7271 return; 7272 break; 7273 case LibFunc_exp2: 7274 case LibFunc_exp2f: 7275 case LibFunc_exp2l: 7276 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7277 return; 7278 break; 7279 case LibFunc_memcmp: 7280 if (visitMemCmpCall(I)) 7281 return; 7282 break; 7283 case LibFunc_mempcpy: 7284 if (visitMemPCpyCall(I)) 7285 return; 7286 break; 7287 case LibFunc_memchr: 7288 if (visitMemChrCall(I)) 7289 return; 7290 break; 7291 case LibFunc_strcpy: 7292 if (visitStrCpyCall(I, false)) 7293 return; 7294 break; 7295 case LibFunc_stpcpy: 7296 if (visitStrCpyCall(I, true)) 7297 return; 7298 break; 7299 case LibFunc_strcmp: 7300 if (visitStrCmpCall(I)) 7301 return; 7302 break; 7303 case LibFunc_strlen: 7304 if (visitStrLenCall(I)) 7305 return; 7306 break; 7307 case LibFunc_strnlen: 7308 if (visitStrNLenCall(I)) 7309 return; 7310 break; 7311 } 7312 } 7313 } 7314 7315 SDValue Callee; 7316 if (!RenameFn) 7317 Callee = getValue(I.getCalledValue()); 7318 else 7319 Callee = DAG.getExternalSymbol( 7320 RenameFn, 7321 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7322 7323 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7324 // have to do anything here to lower funclet bundles. 7325 assert(!I.hasOperandBundlesOtherThan( 7326 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7327 "Cannot lower calls with arbitrary operand bundles!"); 7328 7329 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7330 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7331 else 7332 // Check if we can potentially perform a tail call. More detailed checking 7333 // is be done within LowerCallTo, after more information about the call is 7334 // known. 7335 LowerCallTo(&I, Callee, I.isTailCall()); 7336 } 7337 7338 namespace { 7339 7340 /// AsmOperandInfo - This contains information for each constraint that we are 7341 /// lowering. 7342 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7343 public: 7344 /// CallOperand - If this is the result output operand or a clobber 7345 /// this is null, otherwise it is the incoming operand to the CallInst. 7346 /// This gets modified as the asm is processed. 7347 SDValue CallOperand; 7348 7349 /// AssignedRegs - If this is a register or register class operand, this 7350 /// contains the set of register corresponding to the operand. 7351 RegsForValue AssignedRegs; 7352 7353 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7354 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7355 } 7356 7357 /// Whether or not this operand accesses memory 7358 bool hasMemory(const TargetLowering &TLI) const { 7359 // Indirect operand accesses access memory. 7360 if (isIndirect) 7361 return true; 7362 7363 for (const auto &Code : Codes) 7364 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7365 return true; 7366 7367 return false; 7368 } 7369 7370 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7371 /// corresponds to. If there is no Value* for this operand, it returns 7372 /// MVT::Other. 7373 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7374 const DataLayout &DL) const { 7375 if (!CallOperandVal) return MVT::Other; 7376 7377 if (isa<BasicBlock>(CallOperandVal)) 7378 return TLI.getPointerTy(DL); 7379 7380 llvm::Type *OpTy = CallOperandVal->getType(); 7381 7382 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7383 // If this is an indirect operand, the operand is a pointer to the 7384 // accessed type. 7385 if (isIndirect) { 7386 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7387 if (!PtrTy) 7388 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7389 OpTy = PtrTy->getElementType(); 7390 } 7391 7392 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7393 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7394 if (STy->getNumElements() == 1) 7395 OpTy = STy->getElementType(0); 7396 7397 // If OpTy is not a single value, it may be a struct/union that we 7398 // can tile with integers. 7399 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7400 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7401 switch (BitSize) { 7402 default: break; 7403 case 1: 7404 case 8: 7405 case 16: 7406 case 32: 7407 case 64: 7408 case 128: 7409 OpTy = IntegerType::get(Context, BitSize); 7410 break; 7411 } 7412 } 7413 7414 return TLI.getValueType(DL, OpTy, true); 7415 } 7416 }; 7417 7418 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7419 7420 } // end anonymous namespace 7421 7422 /// Make sure that the output operand \p OpInfo and its corresponding input 7423 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7424 /// out). 7425 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7426 SDISelAsmOperandInfo &MatchingOpInfo, 7427 SelectionDAG &DAG) { 7428 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7429 return; 7430 7431 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7432 const auto &TLI = DAG.getTargetLoweringInfo(); 7433 7434 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7435 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7436 OpInfo.ConstraintVT); 7437 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7438 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7439 MatchingOpInfo.ConstraintVT); 7440 if ((OpInfo.ConstraintVT.isInteger() != 7441 MatchingOpInfo.ConstraintVT.isInteger()) || 7442 (MatchRC.second != InputRC.second)) { 7443 // FIXME: error out in a more elegant fashion 7444 report_fatal_error("Unsupported asm: input constraint" 7445 " with a matching output constraint of" 7446 " incompatible type!"); 7447 } 7448 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7449 } 7450 7451 /// Get a direct memory input to behave well as an indirect operand. 7452 /// This may introduce stores, hence the need for a \p Chain. 7453 /// \return The (possibly updated) chain. 7454 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7455 SDISelAsmOperandInfo &OpInfo, 7456 SelectionDAG &DAG) { 7457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7458 7459 // If we don't have an indirect input, put it in the constpool if we can, 7460 // otherwise spill it to a stack slot. 7461 // TODO: This isn't quite right. We need to handle these according to 7462 // the addressing mode that the constraint wants. Also, this may take 7463 // an additional register for the computation and we don't want that 7464 // either. 7465 7466 // If the operand is a float, integer, or vector constant, spill to a 7467 // constant pool entry to get its address. 7468 const Value *OpVal = OpInfo.CallOperandVal; 7469 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7470 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7471 OpInfo.CallOperand = DAG.getConstantPool( 7472 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7473 return Chain; 7474 } 7475 7476 // Otherwise, create a stack slot and emit a store to it before the asm. 7477 Type *Ty = OpVal->getType(); 7478 auto &DL = DAG.getDataLayout(); 7479 uint64_t TySize = DL.getTypeAllocSize(Ty); 7480 unsigned Align = DL.getPrefTypeAlignment(Ty); 7481 MachineFunction &MF = DAG.getMachineFunction(); 7482 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7483 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7484 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7485 MachinePointerInfo::getFixedStack(MF, SSFI)); 7486 OpInfo.CallOperand = StackSlot; 7487 7488 return Chain; 7489 } 7490 7491 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7492 /// specified operand. We prefer to assign virtual registers, to allow the 7493 /// register allocator to handle the assignment process. However, if the asm 7494 /// uses features that we can't model on machineinstrs, we have SDISel do the 7495 /// allocation. This produces generally horrible, but correct, code. 7496 /// 7497 /// OpInfo describes the operand 7498 /// RefOpInfo describes the matching operand if any, the operand otherwise 7499 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7500 SDISelAsmOperandInfo &OpInfo, 7501 SDISelAsmOperandInfo &RefOpInfo) { 7502 LLVMContext &Context = *DAG.getContext(); 7503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7504 7505 MachineFunction &MF = DAG.getMachineFunction(); 7506 SmallVector<unsigned, 4> Regs; 7507 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7508 7509 // No work to do for memory operations. 7510 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7511 return; 7512 7513 // If this is a constraint for a single physreg, or a constraint for a 7514 // register class, find it. 7515 unsigned AssignedReg; 7516 const TargetRegisterClass *RC; 7517 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7518 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7519 // RC is unset only on failure. Return immediately. 7520 if (!RC) 7521 return; 7522 7523 // Get the actual register value type. This is important, because the user 7524 // may have asked for (e.g.) the AX register in i32 type. We need to 7525 // remember that AX is actually i16 to get the right extension. 7526 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7527 7528 if (OpInfo.ConstraintVT != MVT::Other) { 7529 // If this is an FP operand in an integer register (or visa versa), or more 7530 // generally if the operand value disagrees with the register class we plan 7531 // to stick it in, fix the operand type. 7532 // 7533 // If this is an input value, the bitcast to the new type is done now. 7534 // Bitcast for output value is done at the end of visitInlineAsm(). 7535 if ((OpInfo.Type == InlineAsm::isOutput || 7536 OpInfo.Type == InlineAsm::isInput) && 7537 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7538 // Try to convert to the first EVT that the reg class contains. If the 7539 // types are identical size, use a bitcast to convert (e.g. two differing 7540 // vector types). Note: output bitcast is done at the end of 7541 // visitInlineAsm(). 7542 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7543 // Exclude indirect inputs while they are unsupported because the code 7544 // to perform the load is missing and thus OpInfo.CallOperand still 7545 // refers to the input address rather than the pointed-to value. 7546 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7547 OpInfo.CallOperand = 7548 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7549 OpInfo.ConstraintVT = RegVT; 7550 // If the operand is an FP value and we want it in integer registers, 7551 // use the corresponding integer type. This turns an f64 value into 7552 // i64, which can be passed with two i32 values on a 32-bit machine. 7553 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7554 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7555 if (OpInfo.Type == InlineAsm::isInput) 7556 OpInfo.CallOperand = 7557 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7558 OpInfo.ConstraintVT = VT; 7559 } 7560 } 7561 } 7562 7563 // No need to allocate a matching input constraint since the constraint it's 7564 // matching to has already been allocated. 7565 if (OpInfo.isMatchingInputConstraint()) 7566 return; 7567 7568 EVT ValueVT = OpInfo.ConstraintVT; 7569 if (OpInfo.ConstraintVT == MVT::Other) 7570 ValueVT = RegVT; 7571 7572 // Initialize NumRegs. 7573 unsigned NumRegs = 1; 7574 if (OpInfo.ConstraintVT != MVT::Other) 7575 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7576 7577 // If this is a constraint for a specific physical register, like {r17}, 7578 // assign it now. 7579 7580 // If this associated to a specific register, initialize iterator to correct 7581 // place. If virtual, make sure we have enough registers 7582 7583 // Initialize iterator if necessary 7584 TargetRegisterClass::iterator I = RC->begin(); 7585 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7586 7587 // Do not check for single registers. 7588 if (AssignedReg) { 7589 for (; *I != AssignedReg; ++I) 7590 assert(I != RC->end() && "AssignedReg should be member of RC"); 7591 } 7592 7593 for (; NumRegs; --NumRegs, ++I) { 7594 assert(I != RC->end() && "Ran out of registers to allocate!"); 7595 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7596 Regs.push_back(R); 7597 } 7598 7599 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7600 } 7601 7602 static unsigned 7603 findMatchingInlineAsmOperand(unsigned OperandNo, 7604 const std::vector<SDValue> &AsmNodeOperands) { 7605 // Scan until we find the definition we already emitted of this operand. 7606 unsigned CurOp = InlineAsm::Op_FirstOperand; 7607 for (; OperandNo; --OperandNo) { 7608 // Advance to the next operand. 7609 unsigned OpFlag = 7610 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7611 assert((InlineAsm::isRegDefKind(OpFlag) || 7612 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7613 InlineAsm::isMemKind(OpFlag)) && 7614 "Skipped past definitions?"); 7615 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7616 } 7617 return CurOp; 7618 } 7619 7620 namespace { 7621 7622 class ExtraFlags { 7623 unsigned Flags = 0; 7624 7625 public: 7626 explicit ExtraFlags(ImmutableCallSite CS) { 7627 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7628 if (IA->hasSideEffects()) 7629 Flags |= InlineAsm::Extra_HasSideEffects; 7630 if (IA->isAlignStack()) 7631 Flags |= InlineAsm::Extra_IsAlignStack; 7632 if (CS.isConvergent()) 7633 Flags |= InlineAsm::Extra_IsConvergent; 7634 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7635 } 7636 7637 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7638 // Ideally, we would only check against memory constraints. However, the 7639 // meaning of an Other constraint can be target-specific and we can't easily 7640 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7641 // for Other constraints as well. 7642 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7643 OpInfo.ConstraintType == TargetLowering::C_Other) { 7644 if (OpInfo.Type == InlineAsm::isInput) 7645 Flags |= InlineAsm::Extra_MayLoad; 7646 else if (OpInfo.Type == InlineAsm::isOutput) 7647 Flags |= InlineAsm::Extra_MayStore; 7648 else if (OpInfo.Type == InlineAsm::isClobber) 7649 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7650 } 7651 } 7652 7653 unsigned get() const { return Flags; } 7654 }; 7655 7656 } // end anonymous namespace 7657 7658 /// visitInlineAsm - Handle a call to an InlineAsm object. 7659 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7660 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7661 7662 /// ConstraintOperands - Information about all of the constraints. 7663 SDISelAsmOperandInfoVector ConstraintOperands; 7664 7665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7666 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7667 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7668 7669 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7670 // AsmDialect, MayLoad, MayStore). 7671 bool HasSideEffect = IA->hasSideEffects(); 7672 ExtraFlags ExtraInfo(CS); 7673 7674 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7675 unsigned ResNo = 0; // ResNo - The result number of the next output. 7676 for (auto &T : TargetConstraints) { 7677 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7678 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7679 7680 // Compute the value type for each operand. 7681 if (OpInfo.Type == InlineAsm::isInput || 7682 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7683 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7684 7685 // Process the call argument. BasicBlocks are labels, currently appearing 7686 // only in asm's. 7687 const Instruction *I = CS.getInstruction(); 7688 if (isa<CallBrInst>(I) && 7689 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7690 cast<CallBrInst>(I)->getNumIndirectDests())) { 7691 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7692 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7693 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7694 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7695 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7696 } else { 7697 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7698 } 7699 7700 OpInfo.ConstraintVT = 7701 OpInfo 7702 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7703 .getSimpleVT(); 7704 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7705 // The return value of the call is this value. As such, there is no 7706 // corresponding argument. 7707 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7708 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7709 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7710 DAG.getDataLayout(), STy->getElementType(ResNo)); 7711 } else { 7712 assert(ResNo == 0 && "Asm only has one result!"); 7713 OpInfo.ConstraintVT = 7714 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7715 } 7716 ++ResNo; 7717 } else { 7718 OpInfo.ConstraintVT = MVT::Other; 7719 } 7720 7721 if (!HasSideEffect) 7722 HasSideEffect = OpInfo.hasMemory(TLI); 7723 7724 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7725 // FIXME: Could we compute this on OpInfo rather than T? 7726 7727 // Compute the constraint code and ConstraintType to use. 7728 TLI.ComputeConstraintToUse(T, SDValue()); 7729 7730 ExtraInfo.update(T); 7731 } 7732 7733 // We won't need to flush pending loads if this asm doesn't touch 7734 // memory and is nonvolatile. 7735 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7736 7737 // Second pass over the constraints: compute which constraint option to use. 7738 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7739 // If this is an output operand with a matching input operand, look up the 7740 // matching input. If their types mismatch, e.g. one is an integer, the 7741 // other is floating point, or their sizes are different, flag it as an 7742 // error. 7743 if (OpInfo.hasMatchingInput()) { 7744 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7745 patchMatchingInput(OpInfo, Input, DAG); 7746 } 7747 7748 // Compute the constraint code and ConstraintType to use. 7749 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7750 7751 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7752 OpInfo.Type == InlineAsm::isClobber) 7753 continue; 7754 7755 // If this is a memory input, and if the operand is not indirect, do what we 7756 // need to provide an address for the memory input. 7757 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7758 !OpInfo.isIndirect) { 7759 assert((OpInfo.isMultipleAlternative || 7760 (OpInfo.Type == InlineAsm::isInput)) && 7761 "Can only indirectify direct input operands!"); 7762 7763 // Memory operands really want the address of the value. 7764 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7765 7766 // There is no longer a Value* corresponding to this operand. 7767 OpInfo.CallOperandVal = nullptr; 7768 7769 // It is now an indirect operand. 7770 OpInfo.isIndirect = true; 7771 } 7772 7773 } 7774 7775 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7776 std::vector<SDValue> AsmNodeOperands; 7777 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7778 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7779 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7780 7781 // If we have a !srcloc metadata node associated with it, we want to attach 7782 // this to the ultimately generated inline asm machineinstr. To do this, we 7783 // pass in the third operand as this (potentially null) inline asm MDNode. 7784 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7785 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7786 7787 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7788 // bits as operand 3. 7789 AsmNodeOperands.push_back(DAG.getTargetConstant( 7790 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7791 7792 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7793 // this, assign virtual and physical registers for inputs and otput. 7794 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7795 // Assign Registers. 7796 SDISelAsmOperandInfo &RefOpInfo = 7797 OpInfo.isMatchingInputConstraint() 7798 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7799 : OpInfo; 7800 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7801 7802 switch (OpInfo.Type) { 7803 case InlineAsm::isOutput: 7804 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7805 (OpInfo.ConstraintType == TargetLowering::C_Other && 7806 OpInfo.isIndirect)) { 7807 unsigned ConstraintID = 7808 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7809 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7810 "Failed to convert memory constraint code to constraint id."); 7811 7812 // Add information to the INLINEASM node to know about this output. 7813 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7814 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7815 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7816 MVT::i32)); 7817 AsmNodeOperands.push_back(OpInfo.CallOperand); 7818 break; 7819 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7820 !OpInfo.isIndirect) || 7821 OpInfo.ConstraintType == TargetLowering::C_Register || 7822 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7823 // Otherwise, this outputs to a register (directly for C_Register / 7824 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7825 // register that we can use. 7826 if (OpInfo.AssignedRegs.Regs.empty()) { 7827 emitInlineAsmError( 7828 CS, "couldn't allocate output register for constraint '" + 7829 Twine(OpInfo.ConstraintCode) + "'"); 7830 return; 7831 } 7832 7833 // Add information to the INLINEASM node to know that this register is 7834 // set. 7835 OpInfo.AssignedRegs.AddInlineAsmOperands( 7836 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7837 : InlineAsm::Kind_RegDef, 7838 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7839 } 7840 break; 7841 7842 case InlineAsm::isInput: { 7843 SDValue InOperandVal = OpInfo.CallOperand; 7844 7845 if (OpInfo.isMatchingInputConstraint()) { 7846 // If this is required to match an output register we have already set, 7847 // just use its register. 7848 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7849 AsmNodeOperands); 7850 unsigned OpFlag = 7851 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7852 if (InlineAsm::isRegDefKind(OpFlag) || 7853 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7854 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7855 if (OpInfo.isIndirect) { 7856 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7857 emitInlineAsmError(CS, "inline asm not supported yet:" 7858 " don't know how to handle tied " 7859 "indirect register inputs"); 7860 return; 7861 } 7862 7863 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7864 SmallVector<unsigned, 4> Regs; 7865 7866 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7867 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7868 MachineRegisterInfo &RegInfo = 7869 DAG.getMachineFunction().getRegInfo(); 7870 for (unsigned i = 0; i != NumRegs; ++i) 7871 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7872 } else { 7873 emitInlineAsmError(CS, "inline asm error: This value type register " 7874 "class is not natively supported!"); 7875 return; 7876 } 7877 7878 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7879 7880 SDLoc dl = getCurSDLoc(); 7881 // Use the produced MatchedRegs object to 7882 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7883 CS.getInstruction()); 7884 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7885 true, OpInfo.getMatchedOperand(), dl, 7886 DAG, AsmNodeOperands); 7887 break; 7888 } 7889 7890 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7891 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7892 "Unexpected number of operands"); 7893 // Add information to the INLINEASM node to know about this input. 7894 // See InlineAsm.h isUseOperandTiedToDef. 7895 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7896 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7897 OpInfo.getMatchedOperand()); 7898 AsmNodeOperands.push_back(DAG.getTargetConstant( 7899 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7900 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7901 break; 7902 } 7903 7904 // Treat indirect 'X' constraint as memory. 7905 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7906 OpInfo.isIndirect) 7907 OpInfo.ConstraintType = TargetLowering::C_Memory; 7908 7909 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7910 std::vector<SDValue> Ops; 7911 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7912 Ops, DAG); 7913 if (Ops.empty()) { 7914 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7915 Twine(OpInfo.ConstraintCode) + "'"); 7916 return; 7917 } 7918 7919 // Add information to the INLINEASM node to know about this input. 7920 unsigned ResOpType = 7921 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7922 AsmNodeOperands.push_back(DAG.getTargetConstant( 7923 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7924 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7925 break; 7926 } 7927 7928 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7929 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7930 assert(InOperandVal.getValueType() == 7931 TLI.getPointerTy(DAG.getDataLayout()) && 7932 "Memory operands expect pointer values"); 7933 7934 unsigned ConstraintID = 7935 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7936 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7937 "Failed to convert memory constraint code to constraint id."); 7938 7939 // Add information to the INLINEASM node to know about this input. 7940 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7941 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7942 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7943 getCurSDLoc(), 7944 MVT::i32)); 7945 AsmNodeOperands.push_back(InOperandVal); 7946 break; 7947 } 7948 7949 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7950 OpInfo.ConstraintType == TargetLowering::C_Register) && 7951 "Unknown constraint type!"); 7952 7953 // TODO: Support this. 7954 if (OpInfo.isIndirect) { 7955 emitInlineAsmError( 7956 CS, "Don't know how to handle indirect register inputs yet " 7957 "for constraint '" + 7958 Twine(OpInfo.ConstraintCode) + "'"); 7959 return; 7960 } 7961 7962 // Copy the input into the appropriate registers. 7963 if (OpInfo.AssignedRegs.Regs.empty()) { 7964 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7965 Twine(OpInfo.ConstraintCode) + "'"); 7966 return; 7967 } 7968 7969 SDLoc dl = getCurSDLoc(); 7970 7971 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7972 Chain, &Flag, CS.getInstruction()); 7973 7974 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7975 dl, DAG, AsmNodeOperands); 7976 break; 7977 } 7978 case InlineAsm::isClobber: 7979 // Add the clobbered value to the operand list, so that the register 7980 // allocator is aware that the physreg got clobbered. 7981 if (!OpInfo.AssignedRegs.Regs.empty()) 7982 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7983 false, 0, getCurSDLoc(), DAG, 7984 AsmNodeOperands); 7985 break; 7986 } 7987 } 7988 7989 // Finish up input operands. Set the input chain and add the flag last. 7990 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7991 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7992 7993 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 7994 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 7995 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7996 Flag = Chain.getValue(1); 7997 7998 // Do additional work to generate outputs. 7999 8000 SmallVector<EVT, 1> ResultVTs; 8001 SmallVector<SDValue, 1> ResultValues; 8002 SmallVector<SDValue, 8> OutChains; 8003 8004 llvm::Type *CSResultType = CS.getType(); 8005 ArrayRef<Type *> ResultTypes; 8006 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8007 ResultTypes = StructResult->elements(); 8008 else if (!CSResultType->isVoidTy()) 8009 ResultTypes = makeArrayRef(CSResultType); 8010 8011 auto CurResultType = ResultTypes.begin(); 8012 auto handleRegAssign = [&](SDValue V) { 8013 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8014 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8015 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8016 ++CurResultType; 8017 // If the type of the inline asm call site return value is different but has 8018 // same size as the type of the asm output bitcast it. One example of this 8019 // is for vectors with different width / number of elements. This can 8020 // happen for register classes that can contain multiple different value 8021 // types. The preg or vreg allocated may not have the same VT as was 8022 // expected. 8023 // 8024 // This can also happen for a return value that disagrees with the register 8025 // class it is put in, eg. a double in a general-purpose register on a 8026 // 32-bit machine. 8027 if (ResultVT != V.getValueType() && 8028 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8029 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8030 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8031 V.getValueType().isInteger()) { 8032 // If a result value was tied to an input value, the computed result 8033 // may have a wider width than the expected result. Extract the 8034 // relevant portion. 8035 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8036 } 8037 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8038 ResultVTs.push_back(ResultVT); 8039 ResultValues.push_back(V); 8040 }; 8041 8042 // Deal with output operands. 8043 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8044 if (OpInfo.Type == InlineAsm::isOutput) { 8045 SDValue Val; 8046 // Skip trivial output operands. 8047 if (OpInfo.AssignedRegs.Regs.empty()) 8048 continue; 8049 8050 switch (OpInfo.ConstraintType) { 8051 case TargetLowering::C_Register: 8052 case TargetLowering::C_RegisterClass: 8053 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8054 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8055 break; 8056 case TargetLowering::C_Other: 8057 Val = TLI.LowerAsmOutputForConstraint(Chain, &Flag, getCurSDLoc(), 8058 OpInfo, DAG); 8059 break; 8060 case TargetLowering::C_Memory: 8061 break; // Already handled. 8062 case TargetLowering::C_Unknown: 8063 assert(false && "Unexpected unknown constraint"); 8064 } 8065 8066 // Indirect output manifest as stores. Record output chains. 8067 if (OpInfo.isIndirect) { 8068 8069 const Value *Ptr = OpInfo.CallOperandVal; 8070 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8071 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8072 MachinePointerInfo(Ptr)); 8073 OutChains.push_back(Store); 8074 } else { 8075 // generate CopyFromRegs to associated registers. 8076 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8077 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8078 for (const SDValue &V : Val->op_values()) 8079 handleRegAssign(V); 8080 } else 8081 handleRegAssign(Val); 8082 } 8083 } 8084 } 8085 8086 // Set results. 8087 if (!ResultValues.empty()) { 8088 assert(CurResultType == ResultTypes.end() && 8089 "Mismatch in number of ResultTypes"); 8090 assert(ResultValues.size() == ResultTypes.size() && 8091 "Mismatch in number of output operands in asm result"); 8092 8093 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8094 DAG.getVTList(ResultVTs), ResultValues); 8095 setValue(CS.getInstruction(), V); 8096 } 8097 8098 // Collect store chains. 8099 if (!OutChains.empty()) 8100 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8101 8102 // Only Update Root if inline assembly has a memory effect. 8103 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8104 DAG.setRoot(Chain); 8105 } 8106 8107 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8108 const Twine &Message) { 8109 LLVMContext &Ctx = *DAG.getContext(); 8110 Ctx.emitError(CS.getInstruction(), Message); 8111 8112 // Make sure we leave the DAG in a valid state 8113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8114 SmallVector<EVT, 1> ValueVTs; 8115 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8116 8117 if (ValueVTs.empty()) 8118 return; 8119 8120 SmallVector<SDValue, 1> Ops; 8121 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8122 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8123 8124 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8125 } 8126 8127 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8128 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8129 MVT::Other, getRoot(), 8130 getValue(I.getArgOperand(0)), 8131 DAG.getSrcValue(I.getArgOperand(0)))); 8132 } 8133 8134 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8136 const DataLayout &DL = DAG.getDataLayout(); 8137 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8138 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8139 DAG.getSrcValue(I.getOperand(0)), 8140 DL.getABITypeAlignment(I.getType())); 8141 setValue(&I, V); 8142 DAG.setRoot(V.getValue(1)); 8143 } 8144 8145 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8146 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8147 MVT::Other, getRoot(), 8148 getValue(I.getArgOperand(0)), 8149 DAG.getSrcValue(I.getArgOperand(0)))); 8150 } 8151 8152 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8153 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8154 MVT::Other, getRoot(), 8155 getValue(I.getArgOperand(0)), 8156 getValue(I.getArgOperand(1)), 8157 DAG.getSrcValue(I.getArgOperand(0)), 8158 DAG.getSrcValue(I.getArgOperand(1)))); 8159 } 8160 8161 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8162 const Instruction &I, 8163 SDValue Op) { 8164 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8165 if (!Range) 8166 return Op; 8167 8168 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8169 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8170 return Op; 8171 8172 APInt Lo = CR.getUnsignedMin(); 8173 if (!Lo.isMinValue()) 8174 return Op; 8175 8176 APInt Hi = CR.getUnsignedMax(); 8177 unsigned Bits = std::max(Hi.getActiveBits(), 8178 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8179 8180 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8181 8182 SDLoc SL = getCurSDLoc(); 8183 8184 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8185 DAG.getValueType(SmallVT)); 8186 unsigned NumVals = Op.getNode()->getNumValues(); 8187 if (NumVals == 1) 8188 return ZExt; 8189 8190 SmallVector<SDValue, 4> Ops; 8191 8192 Ops.push_back(ZExt); 8193 for (unsigned I = 1; I != NumVals; ++I) 8194 Ops.push_back(Op.getValue(I)); 8195 8196 return DAG.getMergeValues(Ops, SL); 8197 } 8198 8199 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8200 /// the call being lowered. 8201 /// 8202 /// This is a helper for lowering intrinsics that follow a target calling 8203 /// convention or require stack pointer adjustment. Only a subset of the 8204 /// intrinsic's operands need to participate in the calling convention. 8205 void SelectionDAGBuilder::populateCallLoweringInfo( 8206 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8207 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8208 bool IsPatchPoint) { 8209 TargetLowering::ArgListTy Args; 8210 Args.reserve(NumArgs); 8211 8212 // Populate the argument list. 8213 // Attributes for args start at offset 1, after the return attribute. 8214 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8215 ArgI != ArgE; ++ArgI) { 8216 const Value *V = Call->getOperand(ArgI); 8217 8218 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8219 8220 TargetLowering::ArgListEntry Entry; 8221 Entry.Node = getValue(V); 8222 Entry.Ty = V->getType(); 8223 Entry.setAttributes(Call, ArgI); 8224 Args.push_back(Entry); 8225 } 8226 8227 CLI.setDebugLoc(getCurSDLoc()) 8228 .setChain(getRoot()) 8229 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8230 .setDiscardResult(Call->use_empty()) 8231 .setIsPatchPoint(IsPatchPoint); 8232 } 8233 8234 /// Add a stack map intrinsic call's live variable operands to a stackmap 8235 /// or patchpoint target node's operand list. 8236 /// 8237 /// Constants are converted to TargetConstants purely as an optimization to 8238 /// avoid constant materialization and register allocation. 8239 /// 8240 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8241 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8242 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8243 /// address materialization and register allocation, but may also be required 8244 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8245 /// alloca in the entry block, then the runtime may assume that the alloca's 8246 /// StackMap location can be read immediately after compilation and that the 8247 /// location is valid at any point during execution (this is similar to the 8248 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8249 /// only available in a register, then the runtime would need to trap when 8250 /// execution reaches the StackMap in order to read the alloca's location. 8251 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8252 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8253 SelectionDAGBuilder &Builder) { 8254 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8255 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8256 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8257 Ops.push_back( 8258 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8259 Ops.push_back( 8260 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8261 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8262 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8263 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8264 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8265 } else 8266 Ops.push_back(OpVal); 8267 } 8268 } 8269 8270 /// Lower llvm.experimental.stackmap directly to its target opcode. 8271 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8272 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8273 // [live variables...]) 8274 8275 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8276 8277 SDValue Chain, InFlag, Callee, NullPtr; 8278 SmallVector<SDValue, 32> Ops; 8279 8280 SDLoc DL = getCurSDLoc(); 8281 Callee = getValue(CI.getCalledValue()); 8282 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8283 8284 // The stackmap intrinsic only records the live variables (the arguemnts 8285 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8286 // intrinsic, this won't be lowered to a function call. This means we don't 8287 // have to worry about calling conventions and target specific lowering code. 8288 // Instead we perform the call lowering right here. 8289 // 8290 // chain, flag = CALLSEQ_START(chain, 0, 0) 8291 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8292 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8293 // 8294 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8295 InFlag = Chain.getValue(1); 8296 8297 // Add the <id> and <numBytes> constants. 8298 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8299 Ops.push_back(DAG.getTargetConstant( 8300 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8301 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8302 Ops.push_back(DAG.getTargetConstant( 8303 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8304 MVT::i32)); 8305 8306 // Push live variables for the stack map. 8307 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8308 8309 // We are not pushing any register mask info here on the operands list, 8310 // because the stackmap doesn't clobber anything. 8311 8312 // Push the chain and the glue flag. 8313 Ops.push_back(Chain); 8314 Ops.push_back(InFlag); 8315 8316 // Create the STACKMAP node. 8317 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8318 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8319 Chain = SDValue(SM, 0); 8320 InFlag = Chain.getValue(1); 8321 8322 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8323 8324 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8325 8326 // Set the root to the target-lowered call chain. 8327 DAG.setRoot(Chain); 8328 8329 // Inform the Frame Information that we have a stackmap in this function. 8330 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8331 } 8332 8333 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8334 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8335 const BasicBlock *EHPadBB) { 8336 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8337 // i32 <numBytes>, 8338 // i8* <target>, 8339 // i32 <numArgs>, 8340 // [Args...], 8341 // [live variables...]) 8342 8343 CallingConv::ID CC = CS.getCallingConv(); 8344 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8345 bool HasDef = !CS->getType()->isVoidTy(); 8346 SDLoc dl = getCurSDLoc(); 8347 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8348 8349 // Handle immediate and symbolic callees. 8350 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8351 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8352 /*isTarget=*/true); 8353 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8354 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8355 SDLoc(SymbolicCallee), 8356 SymbolicCallee->getValueType(0)); 8357 8358 // Get the real number of arguments participating in the call <numArgs> 8359 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8360 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8361 8362 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8363 // Intrinsics include all meta-operands up to but not including CC. 8364 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8365 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8366 "Not enough arguments provided to the patchpoint intrinsic"); 8367 8368 // For AnyRegCC the arguments are lowered later on manually. 8369 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8370 Type *ReturnTy = 8371 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8372 8373 TargetLowering::CallLoweringInfo CLI(DAG); 8374 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8375 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8376 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8377 8378 SDNode *CallEnd = Result.second.getNode(); 8379 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8380 CallEnd = CallEnd->getOperand(0).getNode(); 8381 8382 /// Get a call instruction from the call sequence chain. 8383 /// Tail calls are not allowed. 8384 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8385 "Expected a callseq node."); 8386 SDNode *Call = CallEnd->getOperand(0).getNode(); 8387 bool HasGlue = Call->getGluedNode(); 8388 8389 // Replace the target specific call node with the patchable intrinsic. 8390 SmallVector<SDValue, 8> Ops; 8391 8392 // Add the <id> and <numBytes> constants. 8393 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8394 Ops.push_back(DAG.getTargetConstant( 8395 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8396 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8397 Ops.push_back(DAG.getTargetConstant( 8398 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8399 MVT::i32)); 8400 8401 // Add the callee. 8402 Ops.push_back(Callee); 8403 8404 // Adjust <numArgs> to account for any arguments that have been passed on the 8405 // stack instead. 8406 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8407 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8408 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8409 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8410 8411 // Add the calling convention 8412 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8413 8414 // Add the arguments we omitted previously. The register allocator should 8415 // place these in any free register. 8416 if (IsAnyRegCC) 8417 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8418 Ops.push_back(getValue(CS.getArgument(i))); 8419 8420 // Push the arguments from the call instruction up to the register mask. 8421 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8422 Ops.append(Call->op_begin() + 2, e); 8423 8424 // Push live variables for the stack map. 8425 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8426 8427 // Push the register mask info. 8428 if (HasGlue) 8429 Ops.push_back(*(Call->op_end()-2)); 8430 else 8431 Ops.push_back(*(Call->op_end()-1)); 8432 8433 // Push the chain (this is originally the first operand of the call, but 8434 // becomes now the last or second to last operand). 8435 Ops.push_back(*(Call->op_begin())); 8436 8437 // Push the glue flag (last operand). 8438 if (HasGlue) 8439 Ops.push_back(*(Call->op_end()-1)); 8440 8441 SDVTList NodeTys; 8442 if (IsAnyRegCC && HasDef) { 8443 // Create the return types based on the intrinsic definition 8444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8445 SmallVector<EVT, 3> ValueVTs; 8446 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8447 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8448 8449 // There is always a chain and a glue type at the end 8450 ValueVTs.push_back(MVT::Other); 8451 ValueVTs.push_back(MVT::Glue); 8452 NodeTys = DAG.getVTList(ValueVTs); 8453 } else 8454 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8455 8456 // Replace the target specific call node with a PATCHPOINT node. 8457 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8458 dl, NodeTys, Ops); 8459 8460 // Update the NodeMap. 8461 if (HasDef) { 8462 if (IsAnyRegCC) 8463 setValue(CS.getInstruction(), SDValue(MN, 0)); 8464 else 8465 setValue(CS.getInstruction(), Result.first); 8466 } 8467 8468 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8469 // call sequence. Furthermore the location of the chain and glue can change 8470 // when the AnyReg calling convention is used and the intrinsic returns a 8471 // value. 8472 if (IsAnyRegCC && HasDef) { 8473 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8474 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8475 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8476 } else 8477 DAG.ReplaceAllUsesWith(Call, MN); 8478 DAG.DeleteNode(Call); 8479 8480 // Inform the Frame Information that we have a patchpoint in this function. 8481 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8482 } 8483 8484 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8485 unsigned Intrinsic) { 8486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8487 SDValue Op1 = getValue(I.getArgOperand(0)); 8488 SDValue Op2; 8489 if (I.getNumArgOperands() > 1) 8490 Op2 = getValue(I.getArgOperand(1)); 8491 SDLoc dl = getCurSDLoc(); 8492 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8493 SDValue Res; 8494 FastMathFlags FMF; 8495 if (isa<FPMathOperator>(I)) 8496 FMF = I.getFastMathFlags(); 8497 8498 switch (Intrinsic) { 8499 case Intrinsic::experimental_vector_reduce_fadd: 8500 if (FMF.isFast()) 8501 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8502 else 8503 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8504 break; 8505 case Intrinsic::experimental_vector_reduce_fmul: 8506 if (FMF.isFast()) 8507 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8508 else 8509 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8510 break; 8511 case Intrinsic::experimental_vector_reduce_add: 8512 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8513 break; 8514 case Intrinsic::experimental_vector_reduce_mul: 8515 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8516 break; 8517 case Intrinsic::experimental_vector_reduce_and: 8518 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8519 break; 8520 case Intrinsic::experimental_vector_reduce_or: 8521 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8522 break; 8523 case Intrinsic::experimental_vector_reduce_xor: 8524 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8525 break; 8526 case Intrinsic::experimental_vector_reduce_smax: 8527 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8528 break; 8529 case Intrinsic::experimental_vector_reduce_smin: 8530 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8531 break; 8532 case Intrinsic::experimental_vector_reduce_umax: 8533 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8534 break; 8535 case Intrinsic::experimental_vector_reduce_umin: 8536 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8537 break; 8538 case Intrinsic::experimental_vector_reduce_fmax: 8539 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8540 break; 8541 case Intrinsic::experimental_vector_reduce_fmin: 8542 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8543 break; 8544 default: 8545 llvm_unreachable("Unhandled vector reduce intrinsic"); 8546 } 8547 setValue(&I, Res); 8548 } 8549 8550 /// Returns an AttributeList representing the attributes applied to the return 8551 /// value of the given call. 8552 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8553 SmallVector<Attribute::AttrKind, 2> Attrs; 8554 if (CLI.RetSExt) 8555 Attrs.push_back(Attribute::SExt); 8556 if (CLI.RetZExt) 8557 Attrs.push_back(Attribute::ZExt); 8558 if (CLI.IsInReg) 8559 Attrs.push_back(Attribute::InReg); 8560 8561 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8562 Attrs); 8563 } 8564 8565 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8566 /// implementation, which just calls LowerCall. 8567 /// FIXME: When all targets are 8568 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8569 std::pair<SDValue, SDValue> 8570 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8571 // Handle the incoming return values from the call. 8572 CLI.Ins.clear(); 8573 Type *OrigRetTy = CLI.RetTy; 8574 SmallVector<EVT, 4> RetTys; 8575 SmallVector<uint64_t, 4> Offsets; 8576 auto &DL = CLI.DAG.getDataLayout(); 8577 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8578 8579 if (CLI.IsPostTypeLegalization) { 8580 // If we are lowering a libcall after legalization, split the return type. 8581 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8582 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8583 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8584 EVT RetVT = OldRetTys[i]; 8585 uint64_t Offset = OldOffsets[i]; 8586 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8587 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8588 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8589 RetTys.append(NumRegs, RegisterVT); 8590 for (unsigned j = 0; j != NumRegs; ++j) 8591 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8592 } 8593 } 8594 8595 SmallVector<ISD::OutputArg, 4> Outs; 8596 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8597 8598 bool CanLowerReturn = 8599 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8600 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8601 8602 SDValue DemoteStackSlot; 8603 int DemoteStackIdx = -100; 8604 if (!CanLowerReturn) { 8605 // FIXME: equivalent assert? 8606 // assert(!CS.hasInAllocaArgument() && 8607 // "sret demotion is incompatible with inalloca"); 8608 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8609 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8610 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8611 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8612 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8613 DL.getAllocaAddrSpace()); 8614 8615 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8616 ArgListEntry Entry; 8617 Entry.Node = DemoteStackSlot; 8618 Entry.Ty = StackSlotPtrType; 8619 Entry.IsSExt = false; 8620 Entry.IsZExt = false; 8621 Entry.IsInReg = false; 8622 Entry.IsSRet = true; 8623 Entry.IsNest = false; 8624 Entry.IsByVal = false; 8625 Entry.IsReturned = false; 8626 Entry.IsSwiftSelf = false; 8627 Entry.IsSwiftError = false; 8628 Entry.Alignment = Align; 8629 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8630 CLI.NumFixedArgs += 1; 8631 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8632 8633 // sret demotion isn't compatible with tail-calls, since the sret argument 8634 // points into the callers stack frame. 8635 CLI.IsTailCall = false; 8636 } else { 8637 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8638 EVT VT = RetTys[I]; 8639 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8640 CLI.CallConv, VT); 8641 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8642 CLI.CallConv, VT); 8643 for (unsigned i = 0; i != NumRegs; ++i) { 8644 ISD::InputArg MyFlags; 8645 MyFlags.VT = RegisterVT; 8646 MyFlags.ArgVT = VT; 8647 MyFlags.Used = CLI.IsReturnValueUsed; 8648 if (CLI.RetSExt) 8649 MyFlags.Flags.setSExt(); 8650 if (CLI.RetZExt) 8651 MyFlags.Flags.setZExt(); 8652 if (CLI.IsInReg) 8653 MyFlags.Flags.setInReg(); 8654 CLI.Ins.push_back(MyFlags); 8655 } 8656 } 8657 } 8658 8659 // We push in swifterror return as the last element of CLI.Ins. 8660 ArgListTy &Args = CLI.getArgs(); 8661 if (supportSwiftError()) { 8662 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8663 if (Args[i].IsSwiftError) { 8664 ISD::InputArg MyFlags; 8665 MyFlags.VT = getPointerTy(DL); 8666 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8667 MyFlags.Flags.setSwiftError(); 8668 CLI.Ins.push_back(MyFlags); 8669 } 8670 } 8671 } 8672 8673 // Handle all of the outgoing arguments. 8674 CLI.Outs.clear(); 8675 CLI.OutVals.clear(); 8676 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8677 SmallVector<EVT, 4> ValueVTs; 8678 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8679 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8680 Type *FinalType = Args[i].Ty; 8681 if (Args[i].IsByVal) 8682 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8683 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8684 FinalType, CLI.CallConv, CLI.IsVarArg); 8685 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8686 ++Value) { 8687 EVT VT = ValueVTs[Value]; 8688 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8689 SDValue Op = SDValue(Args[i].Node.getNode(), 8690 Args[i].Node.getResNo() + Value); 8691 ISD::ArgFlagsTy Flags; 8692 8693 // Certain targets (such as MIPS), may have a different ABI alignment 8694 // for a type depending on the context. Give the target a chance to 8695 // specify the alignment it wants. 8696 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8697 8698 if (Args[i].IsZExt) 8699 Flags.setZExt(); 8700 if (Args[i].IsSExt) 8701 Flags.setSExt(); 8702 if (Args[i].IsInReg) { 8703 // If we are using vectorcall calling convention, a structure that is 8704 // passed InReg - is surely an HVA 8705 if (CLI.CallConv == CallingConv::X86_VectorCall && 8706 isa<StructType>(FinalType)) { 8707 // The first value of a structure is marked 8708 if (0 == Value) 8709 Flags.setHvaStart(); 8710 Flags.setHva(); 8711 } 8712 // Set InReg Flag 8713 Flags.setInReg(); 8714 } 8715 if (Args[i].IsSRet) 8716 Flags.setSRet(); 8717 if (Args[i].IsSwiftSelf) 8718 Flags.setSwiftSelf(); 8719 if (Args[i].IsSwiftError) 8720 Flags.setSwiftError(); 8721 if (Args[i].IsByVal) 8722 Flags.setByVal(); 8723 if (Args[i].IsInAlloca) { 8724 Flags.setInAlloca(); 8725 // Set the byval flag for CCAssignFn callbacks that don't know about 8726 // inalloca. This way we can know how many bytes we should've allocated 8727 // and how many bytes a callee cleanup function will pop. If we port 8728 // inalloca to more targets, we'll have to add custom inalloca handling 8729 // in the various CC lowering callbacks. 8730 Flags.setByVal(); 8731 } 8732 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8733 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8734 Type *ElementTy = Ty->getElementType(); 8735 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8736 // For ByVal, alignment should come from FE. BE will guess if this 8737 // info is not there but there are cases it cannot get right. 8738 unsigned FrameAlign; 8739 if (Args[i].Alignment) 8740 FrameAlign = Args[i].Alignment; 8741 else 8742 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8743 Flags.setByValAlign(FrameAlign); 8744 } 8745 if (Args[i].IsNest) 8746 Flags.setNest(); 8747 if (NeedsRegBlock) 8748 Flags.setInConsecutiveRegs(); 8749 Flags.setOrigAlign(OriginalAlignment); 8750 8751 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8752 CLI.CallConv, VT); 8753 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8754 CLI.CallConv, VT); 8755 SmallVector<SDValue, 4> Parts(NumParts); 8756 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8757 8758 if (Args[i].IsSExt) 8759 ExtendKind = ISD::SIGN_EXTEND; 8760 else if (Args[i].IsZExt) 8761 ExtendKind = ISD::ZERO_EXTEND; 8762 8763 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8764 // for now. 8765 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8766 CanLowerReturn) { 8767 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8768 "unexpected use of 'returned'"); 8769 // Before passing 'returned' to the target lowering code, ensure that 8770 // either the register MVT and the actual EVT are the same size or that 8771 // the return value and argument are extended in the same way; in these 8772 // cases it's safe to pass the argument register value unchanged as the 8773 // return register value (although it's at the target's option whether 8774 // to do so) 8775 // TODO: allow code generation to take advantage of partially preserved 8776 // registers rather than clobbering the entire register when the 8777 // parameter extension method is not compatible with the return 8778 // extension method 8779 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8780 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8781 CLI.RetZExt == Args[i].IsZExt)) 8782 Flags.setReturned(); 8783 } 8784 8785 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8786 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8787 8788 for (unsigned j = 0; j != NumParts; ++j) { 8789 // if it isn't first piece, alignment must be 1 8790 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8791 i < CLI.NumFixedArgs, 8792 i, j*Parts[j].getValueType().getStoreSize()); 8793 if (NumParts > 1 && j == 0) 8794 MyFlags.Flags.setSplit(); 8795 else if (j != 0) { 8796 MyFlags.Flags.setOrigAlign(1); 8797 if (j == NumParts - 1) 8798 MyFlags.Flags.setSplitEnd(); 8799 } 8800 8801 CLI.Outs.push_back(MyFlags); 8802 CLI.OutVals.push_back(Parts[j]); 8803 } 8804 8805 if (NeedsRegBlock && Value == NumValues - 1) 8806 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8807 } 8808 } 8809 8810 SmallVector<SDValue, 4> InVals; 8811 CLI.Chain = LowerCall(CLI, InVals); 8812 8813 // Update CLI.InVals to use outside of this function. 8814 CLI.InVals = InVals; 8815 8816 // Verify that the target's LowerCall behaved as expected. 8817 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8818 "LowerCall didn't return a valid chain!"); 8819 assert((!CLI.IsTailCall || InVals.empty()) && 8820 "LowerCall emitted a return value for a tail call!"); 8821 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8822 "LowerCall didn't emit the correct number of values!"); 8823 8824 // For a tail call, the return value is merely live-out and there aren't 8825 // any nodes in the DAG representing it. Return a special value to 8826 // indicate that a tail call has been emitted and no more Instructions 8827 // should be processed in the current block. 8828 if (CLI.IsTailCall) { 8829 CLI.DAG.setRoot(CLI.Chain); 8830 return std::make_pair(SDValue(), SDValue()); 8831 } 8832 8833 #ifndef NDEBUG 8834 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8835 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8836 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8837 "LowerCall emitted a value with the wrong type!"); 8838 } 8839 #endif 8840 8841 SmallVector<SDValue, 4> ReturnValues; 8842 if (!CanLowerReturn) { 8843 // The instruction result is the result of loading from the 8844 // hidden sret parameter. 8845 SmallVector<EVT, 1> PVTs; 8846 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8847 8848 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8849 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8850 EVT PtrVT = PVTs[0]; 8851 8852 unsigned NumValues = RetTys.size(); 8853 ReturnValues.resize(NumValues); 8854 SmallVector<SDValue, 4> Chains(NumValues); 8855 8856 // An aggregate return value cannot wrap around the address space, so 8857 // offsets to its parts don't wrap either. 8858 SDNodeFlags Flags; 8859 Flags.setNoUnsignedWrap(true); 8860 8861 for (unsigned i = 0; i < NumValues; ++i) { 8862 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8863 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8864 PtrVT), Flags); 8865 SDValue L = CLI.DAG.getLoad( 8866 RetTys[i], CLI.DL, CLI.Chain, Add, 8867 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8868 DemoteStackIdx, Offsets[i]), 8869 /* Alignment = */ 1); 8870 ReturnValues[i] = L; 8871 Chains[i] = L.getValue(1); 8872 } 8873 8874 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8875 } else { 8876 // Collect the legal value parts into potentially illegal values 8877 // that correspond to the original function's return values. 8878 Optional<ISD::NodeType> AssertOp; 8879 if (CLI.RetSExt) 8880 AssertOp = ISD::AssertSext; 8881 else if (CLI.RetZExt) 8882 AssertOp = ISD::AssertZext; 8883 unsigned CurReg = 0; 8884 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8885 EVT VT = RetTys[I]; 8886 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8887 CLI.CallConv, VT); 8888 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8889 CLI.CallConv, VT); 8890 8891 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8892 NumRegs, RegisterVT, VT, nullptr, 8893 CLI.CallConv, AssertOp)); 8894 CurReg += NumRegs; 8895 } 8896 8897 // For a function returning void, there is no return value. We can't create 8898 // such a node, so we just return a null return value in that case. In 8899 // that case, nothing will actually look at the value. 8900 if (ReturnValues.empty()) 8901 return std::make_pair(SDValue(), CLI.Chain); 8902 } 8903 8904 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8905 CLI.DAG.getVTList(RetTys), ReturnValues); 8906 return std::make_pair(Res, CLI.Chain); 8907 } 8908 8909 void TargetLowering::LowerOperationWrapper(SDNode *N, 8910 SmallVectorImpl<SDValue> &Results, 8911 SelectionDAG &DAG) const { 8912 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8913 Results.push_back(Res); 8914 } 8915 8916 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8917 llvm_unreachable("LowerOperation not implemented for this target!"); 8918 } 8919 8920 void 8921 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8922 SDValue Op = getNonRegisterValue(V); 8923 assert((Op.getOpcode() != ISD::CopyFromReg || 8924 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8925 "Copy from a reg to the same reg!"); 8926 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8927 8928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8929 // If this is an InlineAsm we have to match the registers required, not the 8930 // notional registers required by the type. 8931 8932 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8933 None); // This is not an ABI copy. 8934 SDValue Chain = DAG.getEntryNode(); 8935 8936 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8937 FuncInfo.PreferredExtendType.end()) 8938 ? ISD::ANY_EXTEND 8939 : FuncInfo.PreferredExtendType[V]; 8940 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8941 PendingExports.push_back(Chain); 8942 } 8943 8944 #include "llvm/CodeGen/SelectionDAGISel.h" 8945 8946 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8947 /// entry block, return true. This includes arguments used by switches, since 8948 /// the switch may expand into multiple basic blocks. 8949 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8950 // With FastISel active, we may be splitting blocks, so force creation 8951 // of virtual registers for all non-dead arguments. 8952 if (FastISel) 8953 return A->use_empty(); 8954 8955 const BasicBlock &Entry = A->getParent()->front(); 8956 for (const User *U : A->users()) 8957 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8958 return false; // Use not in entry block. 8959 8960 return true; 8961 } 8962 8963 using ArgCopyElisionMapTy = 8964 DenseMap<const Argument *, 8965 std::pair<const AllocaInst *, const StoreInst *>>; 8966 8967 /// Scan the entry block of the function in FuncInfo for arguments that look 8968 /// like copies into a local alloca. Record any copied arguments in 8969 /// ArgCopyElisionCandidates. 8970 static void 8971 findArgumentCopyElisionCandidates(const DataLayout &DL, 8972 FunctionLoweringInfo *FuncInfo, 8973 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8974 // Record the state of every static alloca used in the entry block. Argument 8975 // allocas are all used in the entry block, so we need approximately as many 8976 // entries as we have arguments. 8977 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8978 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8979 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8980 StaticAllocas.reserve(NumArgs * 2); 8981 8982 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8983 if (!V) 8984 return nullptr; 8985 V = V->stripPointerCasts(); 8986 const auto *AI = dyn_cast<AllocaInst>(V); 8987 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8988 return nullptr; 8989 auto Iter = StaticAllocas.insert({AI, Unknown}); 8990 return &Iter.first->second; 8991 }; 8992 8993 // Look for stores of arguments to static allocas. Look through bitcasts and 8994 // GEPs to handle type coercions, as long as the alloca is fully initialized 8995 // by the store. Any non-store use of an alloca escapes it and any subsequent 8996 // unanalyzed store might write it. 8997 // FIXME: Handle structs initialized with multiple stores. 8998 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8999 // Look for stores, and handle non-store uses conservatively. 9000 const auto *SI = dyn_cast<StoreInst>(&I); 9001 if (!SI) { 9002 // We will look through cast uses, so ignore them completely. 9003 if (I.isCast()) 9004 continue; 9005 // Ignore debug info intrinsics, they don't escape or store to allocas. 9006 if (isa<DbgInfoIntrinsic>(I)) 9007 continue; 9008 // This is an unknown instruction. Assume it escapes or writes to all 9009 // static alloca operands. 9010 for (const Use &U : I.operands()) { 9011 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9012 *Info = StaticAllocaInfo::Clobbered; 9013 } 9014 continue; 9015 } 9016 9017 // If the stored value is a static alloca, mark it as escaped. 9018 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9019 *Info = StaticAllocaInfo::Clobbered; 9020 9021 // Check if the destination is a static alloca. 9022 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9023 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9024 if (!Info) 9025 continue; 9026 const AllocaInst *AI = cast<AllocaInst>(Dst); 9027 9028 // Skip allocas that have been initialized or clobbered. 9029 if (*Info != StaticAllocaInfo::Unknown) 9030 continue; 9031 9032 // Check if the stored value is an argument, and that this store fully 9033 // initializes the alloca. Don't elide copies from the same argument twice. 9034 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9035 const auto *Arg = dyn_cast<Argument>(Val); 9036 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9037 Arg->getType()->isEmptyTy() || 9038 DL.getTypeStoreSize(Arg->getType()) != 9039 DL.getTypeAllocSize(AI->getAllocatedType()) || 9040 ArgCopyElisionCandidates.count(Arg)) { 9041 *Info = StaticAllocaInfo::Clobbered; 9042 continue; 9043 } 9044 9045 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9046 << '\n'); 9047 9048 // Mark this alloca and store for argument copy elision. 9049 *Info = StaticAllocaInfo::Elidable; 9050 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9051 9052 // Stop scanning if we've seen all arguments. This will happen early in -O0 9053 // builds, which is useful, because -O0 builds have large entry blocks and 9054 // many allocas. 9055 if (ArgCopyElisionCandidates.size() == NumArgs) 9056 break; 9057 } 9058 } 9059 9060 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9061 /// ArgVal is a load from a suitable fixed stack object. 9062 static void tryToElideArgumentCopy( 9063 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9064 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9065 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9066 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9067 SDValue ArgVal, bool &ArgHasUses) { 9068 // Check if this is a load from a fixed stack object. 9069 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9070 if (!LNode) 9071 return; 9072 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9073 if (!FINode) 9074 return; 9075 9076 // Check that the fixed stack object is the right size and alignment. 9077 // Look at the alignment that the user wrote on the alloca instead of looking 9078 // at the stack object. 9079 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9080 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9081 const AllocaInst *AI = ArgCopyIter->second.first; 9082 int FixedIndex = FINode->getIndex(); 9083 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9084 int OldIndex = AllocaIndex; 9085 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9086 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9087 LLVM_DEBUG( 9088 dbgs() << " argument copy elision failed due to bad fixed stack " 9089 "object size\n"); 9090 return; 9091 } 9092 unsigned RequiredAlignment = AI->getAlignment(); 9093 if (!RequiredAlignment) { 9094 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9095 AI->getAllocatedType()); 9096 } 9097 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9098 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9099 "greater than stack argument alignment (" 9100 << RequiredAlignment << " vs " 9101 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9102 return; 9103 } 9104 9105 // Perform the elision. Delete the old stack object and replace its only use 9106 // in the variable info map. Mark the stack object as mutable. 9107 LLVM_DEBUG({ 9108 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9109 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9110 << '\n'; 9111 }); 9112 MFI.RemoveStackObject(OldIndex); 9113 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9114 AllocaIndex = FixedIndex; 9115 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9116 Chains.push_back(ArgVal.getValue(1)); 9117 9118 // Avoid emitting code for the store implementing the copy. 9119 const StoreInst *SI = ArgCopyIter->second.second; 9120 ElidedArgCopyInstrs.insert(SI); 9121 9122 // Check for uses of the argument again so that we can avoid exporting ArgVal 9123 // if it is't used by anything other than the store. 9124 for (const Value *U : Arg.users()) { 9125 if (U != SI) { 9126 ArgHasUses = true; 9127 break; 9128 } 9129 } 9130 } 9131 9132 void SelectionDAGISel::LowerArguments(const Function &F) { 9133 SelectionDAG &DAG = SDB->DAG; 9134 SDLoc dl = SDB->getCurSDLoc(); 9135 const DataLayout &DL = DAG.getDataLayout(); 9136 SmallVector<ISD::InputArg, 16> Ins; 9137 9138 if (!FuncInfo->CanLowerReturn) { 9139 // Put in an sret pointer parameter before all the other parameters. 9140 SmallVector<EVT, 1> ValueVTs; 9141 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9142 F.getReturnType()->getPointerTo( 9143 DAG.getDataLayout().getAllocaAddrSpace()), 9144 ValueVTs); 9145 9146 // NOTE: Assuming that a pointer will never break down to more than one VT 9147 // or one register. 9148 ISD::ArgFlagsTy Flags; 9149 Flags.setSRet(); 9150 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9151 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9152 ISD::InputArg::NoArgIndex, 0); 9153 Ins.push_back(RetArg); 9154 } 9155 9156 // Look for stores of arguments to static allocas. Mark such arguments with a 9157 // flag to ask the target to give us the memory location of that argument if 9158 // available. 9159 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9160 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9161 9162 // Set up the incoming argument description vector. 9163 for (const Argument &Arg : F.args()) { 9164 unsigned ArgNo = Arg.getArgNo(); 9165 SmallVector<EVT, 4> ValueVTs; 9166 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9167 bool isArgValueUsed = !Arg.use_empty(); 9168 unsigned PartBase = 0; 9169 Type *FinalType = Arg.getType(); 9170 if (Arg.hasAttribute(Attribute::ByVal)) 9171 FinalType = cast<PointerType>(FinalType)->getElementType(); 9172 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9173 FinalType, F.getCallingConv(), F.isVarArg()); 9174 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9175 Value != NumValues; ++Value) { 9176 EVT VT = ValueVTs[Value]; 9177 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9178 ISD::ArgFlagsTy Flags; 9179 9180 // Certain targets (such as MIPS), may have a different ABI alignment 9181 // for a type depending on the context. Give the target a chance to 9182 // specify the alignment it wants. 9183 unsigned OriginalAlignment = 9184 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9185 9186 if (Arg.hasAttribute(Attribute::ZExt)) 9187 Flags.setZExt(); 9188 if (Arg.hasAttribute(Attribute::SExt)) 9189 Flags.setSExt(); 9190 if (Arg.hasAttribute(Attribute::InReg)) { 9191 // If we are using vectorcall calling convention, a structure that is 9192 // passed InReg - is surely an HVA 9193 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9194 isa<StructType>(Arg.getType())) { 9195 // The first value of a structure is marked 9196 if (0 == Value) 9197 Flags.setHvaStart(); 9198 Flags.setHva(); 9199 } 9200 // Set InReg Flag 9201 Flags.setInReg(); 9202 } 9203 if (Arg.hasAttribute(Attribute::StructRet)) 9204 Flags.setSRet(); 9205 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9206 Flags.setSwiftSelf(); 9207 if (Arg.hasAttribute(Attribute::SwiftError)) 9208 Flags.setSwiftError(); 9209 if (Arg.hasAttribute(Attribute::ByVal)) 9210 Flags.setByVal(); 9211 if (Arg.hasAttribute(Attribute::InAlloca)) { 9212 Flags.setInAlloca(); 9213 // Set the byval flag for CCAssignFn callbacks that don't know about 9214 // inalloca. This way we can know how many bytes we should've allocated 9215 // and how many bytes a callee cleanup function will pop. If we port 9216 // inalloca to more targets, we'll have to add custom inalloca handling 9217 // in the various CC lowering callbacks. 9218 Flags.setByVal(); 9219 } 9220 if (F.getCallingConv() == CallingConv::X86_INTR) { 9221 // IA Interrupt passes frame (1st parameter) by value in the stack. 9222 if (ArgNo == 0) 9223 Flags.setByVal(); 9224 } 9225 if (Flags.isByVal() || Flags.isInAlloca()) { 9226 PointerType *Ty = cast<PointerType>(Arg.getType()); 9227 Type *ElementTy = Ty->getElementType(); 9228 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9229 // For ByVal, alignment should be passed from FE. BE will guess if 9230 // this info is not there but there are cases it cannot get right. 9231 unsigned FrameAlign; 9232 if (Arg.getParamAlignment()) 9233 FrameAlign = Arg.getParamAlignment(); 9234 else 9235 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9236 Flags.setByValAlign(FrameAlign); 9237 } 9238 if (Arg.hasAttribute(Attribute::Nest)) 9239 Flags.setNest(); 9240 if (NeedsRegBlock) 9241 Flags.setInConsecutiveRegs(); 9242 Flags.setOrigAlign(OriginalAlignment); 9243 if (ArgCopyElisionCandidates.count(&Arg)) 9244 Flags.setCopyElisionCandidate(); 9245 9246 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9247 *CurDAG->getContext(), F.getCallingConv(), VT); 9248 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9249 *CurDAG->getContext(), F.getCallingConv(), VT); 9250 for (unsigned i = 0; i != NumRegs; ++i) { 9251 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9252 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9253 if (NumRegs > 1 && i == 0) 9254 MyFlags.Flags.setSplit(); 9255 // if it isn't first piece, alignment must be 1 9256 else if (i > 0) { 9257 MyFlags.Flags.setOrigAlign(1); 9258 if (i == NumRegs - 1) 9259 MyFlags.Flags.setSplitEnd(); 9260 } 9261 Ins.push_back(MyFlags); 9262 } 9263 if (NeedsRegBlock && Value == NumValues - 1) 9264 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9265 PartBase += VT.getStoreSize(); 9266 } 9267 } 9268 9269 // Call the target to set up the argument values. 9270 SmallVector<SDValue, 8> InVals; 9271 SDValue NewRoot = TLI->LowerFormalArguments( 9272 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9273 9274 // Verify that the target's LowerFormalArguments behaved as expected. 9275 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9276 "LowerFormalArguments didn't return a valid chain!"); 9277 assert(InVals.size() == Ins.size() && 9278 "LowerFormalArguments didn't emit the correct number of values!"); 9279 LLVM_DEBUG({ 9280 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9281 assert(InVals[i].getNode() && 9282 "LowerFormalArguments emitted a null value!"); 9283 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9284 "LowerFormalArguments emitted a value with the wrong type!"); 9285 } 9286 }); 9287 9288 // Update the DAG with the new chain value resulting from argument lowering. 9289 DAG.setRoot(NewRoot); 9290 9291 // Set up the argument values. 9292 unsigned i = 0; 9293 if (!FuncInfo->CanLowerReturn) { 9294 // Create a virtual register for the sret pointer, and put in a copy 9295 // from the sret argument into it. 9296 SmallVector<EVT, 1> ValueVTs; 9297 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9298 F.getReturnType()->getPointerTo( 9299 DAG.getDataLayout().getAllocaAddrSpace()), 9300 ValueVTs); 9301 MVT VT = ValueVTs[0].getSimpleVT(); 9302 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9303 Optional<ISD::NodeType> AssertOp = None; 9304 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9305 nullptr, F.getCallingConv(), AssertOp); 9306 9307 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9308 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9309 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9310 FuncInfo->DemoteRegister = SRetReg; 9311 NewRoot = 9312 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9313 DAG.setRoot(NewRoot); 9314 9315 // i indexes lowered arguments. Bump it past the hidden sret argument. 9316 ++i; 9317 } 9318 9319 SmallVector<SDValue, 4> Chains; 9320 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9321 for (const Argument &Arg : F.args()) { 9322 SmallVector<SDValue, 4> ArgValues; 9323 SmallVector<EVT, 4> ValueVTs; 9324 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9325 unsigned NumValues = ValueVTs.size(); 9326 if (NumValues == 0) 9327 continue; 9328 9329 bool ArgHasUses = !Arg.use_empty(); 9330 9331 // Elide the copying store if the target loaded this argument from a 9332 // suitable fixed stack object. 9333 if (Ins[i].Flags.isCopyElisionCandidate()) { 9334 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9335 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9336 InVals[i], ArgHasUses); 9337 } 9338 9339 // If this argument is unused then remember its value. It is used to generate 9340 // debugging information. 9341 bool isSwiftErrorArg = 9342 TLI->supportSwiftError() && 9343 Arg.hasAttribute(Attribute::SwiftError); 9344 if (!ArgHasUses && !isSwiftErrorArg) { 9345 SDB->setUnusedArgValue(&Arg, InVals[i]); 9346 9347 // Also remember any frame index for use in FastISel. 9348 if (FrameIndexSDNode *FI = 9349 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9350 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9351 } 9352 9353 for (unsigned Val = 0; Val != NumValues; ++Val) { 9354 EVT VT = ValueVTs[Val]; 9355 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9356 F.getCallingConv(), VT); 9357 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9358 *CurDAG->getContext(), F.getCallingConv(), VT); 9359 9360 // Even an apparant 'unused' swifterror argument needs to be returned. So 9361 // we do generate a copy for it that can be used on return from the 9362 // function. 9363 if (ArgHasUses || isSwiftErrorArg) { 9364 Optional<ISD::NodeType> AssertOp; 9365 if (Arg.hasAttribute(Attribute::SExt)) 9366 AssertOp = ISD::AssertSext; 9367 else if (Arg.hasAttribute(Attribute::ZExt)) 9368 AssertOp = ISD::AssertZext; 9369 9370 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9371 PartVT, VT, nullptr, 9372 F.getCallingConv(), AssertOp)); 9373 } 9374 9375 i += NumParts; 9376 } 9377 9378 // We don't need to do anything else for unused arguments. 9379 if (ArgValues.empty()) 9380 continue; 9381 9382 // Note down frame index. 9383 if (FrameIndexSDNode *FI = 9384 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9385 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9386 9387 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9388 SDB->getCurSDLoc()); 9389 9390 SDB->setValue(&Arg, Res); 9391 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9392 // We want to associate the argument with the frame index, among 9393 // involved operands, that correspond to the lowest address. The 9394 // getCopyFromParts function, called earlier, is swapping the order of 9395 // the operands to BUILD_PAIR depending on endianness. The result of 9396 // that swapping is that the least significant bits of the argument will 9397 // be in the first operand of the BUILD_PAIR node, and the most 9398 // significant bits will be in the second operand. 9399 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9400 if (LoadSDNode *LNode = 9401 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9402 if (FrameIndexSDNode *FI = 9403 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9404 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9405 } 9406 9407 // Update the SwiftErrorVRegDefMap. 9408 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9409 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9410 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9411 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9412 FuncInfo->SwiftErrorArg, Reg); 9413 } 9414 9415 // If this argument is live outside of the entry block, insert a copy from 9416 // wherever we got it to the vreg that other BB's will reference it as. 9417 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9418 // If we can, though, try to skip creating an unnecessary vreg. 9419 // FIXME: This isn't very clean... it would be nice to make this more 9420 // general. It's also subtly incompatible with the hacks FastISel 9421 // uses with vregs. 9422 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9423 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9424 FuncInfo->ValueMap[&Arg] = Reg; 9425 continue; 9426 } 9427 } 9428 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9429 FuncInfo->InitializeRegForValue(&Arg); 9430 SDB->CopyToExportRegsIfNeeded(&Arg); 9431 } 9432 } 9433 9434 if (!Chains.empty()) { 9435 Chains.push_back(NewRoot); 9436 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9437 } 9438 9439 DAG.setRoot(NewRoot); 9440 9441 assert(i == InVals.size() && "Argument register count mismatch!"); 9442 9443 // If any argument copy elisions occurred and we have debug info, update the 9444 // stale frame indices used in the dbg.declare variable info table. 9445 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9446 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9447 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9448 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9449 if (I != ArgCopyElisionFrameIndexMap.end()) 9450 VI.Slot = I->second; 9451 } 9452 } 9453 9454 // Finally, if the target has anything special to do, allow it to do so. 9455 EmitFunctionEntryCode(); 9456 } 9457 9458 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9459 /// ensure constants are generated when needed. Remember the virtual registers 9460 /// that need to be added to the Machine PHI nodes as input. We cannot just 9461 /// directly add them, because expansion might result in multiple MBB's for one 9462 /// BB. As such, the start of the BB might correspond to a different MBB than 9463 /// the end. 9464 void 9465 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9466 const Instruction *TI = LLVMBB->getTerminator(); 9467 9468 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9469 9470 // Check PHI nodes in successors that expect a value to be available from this 9471 // block. 9472 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9473 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9474 if (!isa<PHINode>(SuccBB->begin())) continue; 9475 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9476 9477 // If this terminator has multiple identical successors (common for 9478 // switches), only handle each succ once. 9479 if (!SuccsHandled.insert(SuccMBB).second) 9480 continue; 9481 9482 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9483 9484 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9485 // nodes and Machine PHI nodes, but the incoming operands have not been 9486 // emitted yet. 9487 for (const PHINode &PN : SuccBB->phis()) { 9488 // Ignore dead phi's. 9489 if (PN.use_empty()) 9490 continue; 9491 9492 // Skip empty types 9493 if (PN.getType()->isEmptyTy()) 9494 continue; 9495 9496 unsigned Reg; 9497 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9498 9499 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9500 unsigned &RegOut = ConstantsOut[C]; 9501 if (RegOut == 0) { 9502 RegOut = FuncInfo.CreateRegs(C->getType()); 9503 CopyValueToVirtualRegister(C, RegOut); 9504 } 9505 Reg = RegOut; 9506 } else { 9507 DenseMap<const Value *, unsigned>::iterator I = 9508 FuncInfo.ValueMap.find(PHIOp); 9509 if (I != FuncInfo.ValueMap.end()) 9510 Reg = I->second; 9511 else { 9512 assert(isa<AllocaInst>(PHIOp) && 9513 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9514 "Didn't codegen value into a register!??"); 9515 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9516 CopyValueToVirtualRegister(PHIOp, Reg); 9517 } 9518 } 9519 9520 // Remember that this register needs to added to the machine PHI node as 9521 // the input for this MBB. 9522 SmallVector<EVT, 4> ValueVTs; 9523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9524 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9525 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9526 EVT VT = ValueVTs[vti]; 9527 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9528 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9529 FuncInfo.PHINodesToUpdate.push_back( 9530 std::make_pair(&*MBBI++, Reg + i)); 9531 Reg += NumRegisters; 9532 } 9533 } 9534 } 9535 9536 ConstantsOut.clear(); 9537 } 9538 9539 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9540 /// is 0. 9541 MachineBasicBlock * 9542 SelectionDAGBuilder::StackProtectorDescriptor:: 9543 AddSuccessorMBB(const BasicBlock *BB, 9544 MachineBasicBlock *ParentMBB, 9545 bool IsLikely, 9546 MachineBasicBlock *SuccMBB) { 9547 // If SuccBB has not been created yet, create it. 9548 if (!SuccMBB) { 9549 MachineFunction *MF = ParentMBB->getParent(); 9550 MachineFunction::iterator BBI(ParentMBB); 9551 SuccMBB = MF->CreateMachineBasicBlock(BB); 9552 MF->insert(++BBI, SuccMBB); 9553 } 9554 // Add it as a successor of ParentMBB. 9555 ParentMBB->addSuccessor( 9556 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9557 return SuccMBB; 9558 } 9559 9560 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9561 MachineFunction::iterator I(MBB); 9562 if (++I == FuncInfo.MF->end()) 9563 return nullptr; 9564 return &*I; 9565 } 9566 9567 /// During lowering new call nodes can be created (such as memset, etc.). 9568 /// Those will become new roots of the current DAG, but complications arise 9569 /// when they are tail calls. In such cases, the call lowering will update 9570 /// the root, but the builder still needs to know that a tail call has been 9571 /// lowered in order to avoid generating an additional return. 9572 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9573 // If the node is null, we do have a tail call. 9574 if (MaybeTC.getNode() != nullptr) 9575 DAG.setRoot(MaybeTC); 9576 else 9577 HasTailCall = true; 9578 } 9579 9580 uint64_t 9581 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9582 unsigned First, unsigned Last) const { 9583 assert(Last >= First); 9584 const APInt &LowCase = Clusters[First].Low->getValue(); 9585 const APInt &HighCase = Clusters[Last].High->getValue(); 9586 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9587 9588 // FIXME: A range of consecutive cases has 100% density, but only requires one 9589 // comparison to lower. We should discriminate against such consecutive ranges 9590 // in jump tables. 9591 9592 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9593 } 9594 9595 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9596 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9597 unsigned Last) const { 9598 assert(Last >= First); 9599 assert(TotalCases[Last] >= TotalCases[First]); 9600 uint64_t NumCases = 9601 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9602 return NumCases; 9603 } 9604 9605 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9606 unsigned First, unsigned Last, 9607 const SwitchInst *SI, 9608 MachineBasicBlock *DefaultMBB, 9609 CaseCluster &JTCluster) { 9610 assert(First <= Last); 9611 9612 auto Prob = BranchProbability::getZero(); 9613 unsigned NumCmps = 0; 9614 std::vector<MachineBasicBlock*> Table; 9615 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9616 9617 // Initialize probabilities in JTProbs. 9618 for (unsigned I = First; I <= Last; ++I) 9619 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9620 9621 for (unsigned I = First; I <= Last; ++I) { 9622 assert(Clusters[I].Kind == CC_Range); 9623 Prob += Clusters[I].Prob; 9624 const APInt &Low = Clusters[I].Low->getValue(); 9625 const APInt &High = Clusters[I].High->getValue(); 9626 NumCmps += (Low == High) ? 1 : 2; 9627 if (I != First) { 9628 // Fill the gap between this and the previous cluster. 9629 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9630 assert(PreviousHigh.slt(Low)); 9631 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9632 for (uint64_t J = 0; J < Gap; J++) 9633 Table.push_back(DefaultMBB); 9634 } 9635 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9636 for (uint64_t J = 0; J < ClusterSize; ++J) 9637 Table.push_back(Clusters[I].MBB); 9638 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9639 } 9640 9641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9642 unsigned NumDests = JTProbs.size(); 9643 if (TLI.isSuitableForBitTests( 9644 NumDests, NumCmps, Clusters[First].Low->getValue(), 9645 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9646 // Clusters[First..Last] should be lowered as bit tests instead. 9647 return false; 9648 } 9649 9650 // Create the MBB that will load from and jump through the table. 9651 // Note: We create it here, but it's not inserted into the function yet. 9652 MachineFunction *CurMF = FuncInfo.MF; 9653 MachineBasicBlock *JumpTableMBB = 9654 CurMF->CreateMachineBasicBlock(SI->getParent()); 9655 9656 // Add successors. Note: use table order for determinism. 9657 SmallPtrSet<MachineBasicBlock *, 8> Done; 9658 for (MachineBasicBlock *Succ : Table) { 9659 if (Done.count(Succ)) 9660 continue; 9661 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9662 Done.insert(Succ); 9663 } 9664 JumpTableMBB->normalizeSuccProbs(); 9665 9666 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9667 ->createJumpTableIndex(Table); 9668 9669 // Set up the jump table info. 9670 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9671 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9672 Clusters[Last].High->getValue(), SI->getCondition(), 9673 nullptr, false); 9674 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9675 9676 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9677 JTCases.size() - 1, Prob); 9678 return true; 9679 } 9680 9681 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9682 const SwitchInst *SI, 9683 MachineBasicBlock *DefaultMBB) { 9684 #ifndef NDEBUG 9685 // Clusters must be non-empty, sorted, and only contain Range clusters. 9686 assert(!Clusters.empty()); 9687 for (CaseCluster &C : Clusters) 9688 assert(C.Kind == CC_Range); 9689 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9690 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9691 #endif 9692 9693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9694 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9695 return; 9696 9697 const int64_t N = Clusters.size(); 9698 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9699 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9700 9701 if (N < 2 || N < MinJumpTableEntries) 9702 return; 9703 9704 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9705 SmallVector<unsigned, 8> TotalCases(N); 9706 for (unsigned i = 0; i < N; ++i) { 9707 const APInt &Hi = Clusters[i].High->getValue(); 9708 const APInt &Lo = Clusters[i].Low->getValue(); 9709 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9710 if (i != 0) 9711 TotalCases[i] += TotalCases[i - 1]; 9712 } 9713 9714 // Cheap case: the whole range may be suitable for jump table. 9715 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9716 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9717 assert(NumCases < UINT64_MAX / 100); 9718 assert(Range >= NumCases); 9719 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9720 CaseCluster JTCluster; 9721 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9722 Clusters[0] = JTCluster; 9723 Clusters.resize(1); 9724 return; 9725 } 9726 } 9727 9728 // The algorithm below is not suitable for -O0. 9729 if (TM.getOptLevel() == CodeGenOpt::None) 9730 return; 9731 9732 // Split Clusters into minimum number of dense partitions. The algorithm uses 9733 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9734 // for the Case Statement'" (1994), but builds the MinPartitions array in 9735 // reverse order to make it easier to reconstruct the partitions in ascending 9736 // order. In the choice between two optimal partitionings, it picks the one 9737 // which yields more jump tables. 9738 9739 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9740 SmallVector<unsigned, 8> MinPartitions(N); 9741 // LastElement[i] is the last element of the partition starting at i. 9742 SmallVector<unsigned, 8> LastElement(N); 9743 // PartitionsScore[i] is used to break ties when choosing between two 9744 // partitionings resulting in the same number of partitions. 9745 SmallVector<unsigned, 8> PartitionsScore(N); 9746 // For PartitionsScore, a small number of comparisons is considered as good as 9747 // a jump table and a single comparison is considered better than a jump 9748 // table. 9749 enum PartitionScores : unsigned { 9750 NoTable = 0, 9751 Table = 1, 9752 FewCases = 1, 9753 SingleCase = 2 9754 }; 9755 9756 // Base case: There is only one way to partition Clusters[N-1]. 9757 MinPartitions[N - 1] = 1; 9758 LastElement[N - 1] = N - 1; 9759 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9760 9761 // Note: loop indexes are signed to avoid underflow. 9762 for (int64_t i = N - 2; i >= 0; i--) { 9763 // Find optimal partitioning of Clusters[i..N-1]. 9764 // Baseline: Put Clusters[i] into a partition on its own. 9765 MinPartitions[i] = MinPartitions[i + 1] + 1; 9766 LastElement[i] = i; 9767 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9768 9769 // Search for a solution that results in fewer partitions. 9770 for (int64_t j = N - 1; j > i; j--) { 9771 // Try building a partition from Clusters[i..j]. 9772 uint64_t Range = getJumpTableRange(Clusters, i, j); 9773 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9774 assert(NumCases < UINT64_MAX / 100); 9775 assert(Range >= NumCases); 9776 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9777 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9778 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9779 int64_t NumEntries = j - i + 1; 9780 9781 if (NumEntries == 1) 9782 Score += PartitionScores::SingleCase; 9783 else if (NumEntries <= SmallNumberOfEntries) 9784 Score += PartitionScores::FewCases; 9785 else if (NumEntries >= MinJumpTableEntries) 9786 Score += PartitionScores::Table; 9787 9788 // If this leads to fewer partitions, or to the same number of 9789 // partitions with better score, it is a better partitioning. 9790 if (NumPartitions < MinPartitions[i] || 9791 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9792 MinPartitions[i] = NumPartitions; 9793 LastElement[i] = j; 9794 PartitionsScore[i] = Score; 9795 } 9796 } 9797 } 9798 } 9799 9800 // Iterate over the partitions, replacing some with jump tables in-place. 9801 unsigned DstIndex = 0; 9802 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9803 Last = LastElement[First]; 9804 assert(Last >= First); 9805 assert(DstIndex <= First); 9806 unsigned NumClusters = Last - First + 1; 9807 9808 CaseCluster JTCluster; 9809 if (NumClusters >= MinJumpTableEntries && 9810 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9811 Clusters[DstIndex++] = JTCluster; 9812 } else { 9813 for (unsigned I = First; I <= Last; ++I) 9814 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9815 } 9816 } 9817 Clusters.resize(DstIndex); 9818 } 9819 9820 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9821 unsigned First, unsigned Last, 9822 const SwitchInst *SI, 9823 CaseCluster &BTCluster) { 9824 assert(First <= Last); 9825 if (First == Last) 9826 return false; 9827 9828 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9829 unsigned NumCmps = 0; 9830 for (int64_t I = First; I <= Last; ++I) { 9831 assert(Clusters[I].Kind == CC_Range); 9832 Dests.set(Clusters[I].MBB->getNumber()); 9833 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9834 } 9835 unsigned NumDests = Dests.count(); 9836 9837 APInt Low = Clusters[First].Low->getValue(); 9838 APInt High = Clusters[Last].High->getValue(); 9839 assert(Low.slt(High)); 9840 9841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9842 const DataLayout &DL = DAG.getDataLayout(); 9843 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9844 return false; 9845 9846 APInt LowBound; 9847 APInt CmpRange; 9848 9849 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9850 assert(TLI.rangeFitsInWord(Low, High, DL) && 9851 "Case range must fit in bit mask!"); 9852 9853 // Check if the clusters cover a contiguous range such that no value in the 9854 // range will jump to the default statement. 9855 bool ContiguousRange = true; 9856 for (int64_t I = First + 1; I <= Last; ++I) { 9857 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9858 ContiguousRange = false; 9859 break; 9860 } 9861 } 9862 9863 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9864 // Optimize the case where all the case values fit in a word without having 9865 // to subtract minValue. In this case, we can optimize away the subtraction. 9866 LowBound = APInt::getNullValue(Low.getBitWidth()); 9867 CmpRange = High; 9868 ContiguousRange = false; 9869 } else { 9870 LowBound = Low; 9871 CmpRange = High - Low; 9872 } 9873 9874 CaseBitsVector CBV; 9875 auto TotalProb = BranchProbability::getZero(); 9876 for (unsigned i = First; i <= Last; ++i) { 9877 // Find the CaseBits for this destination. 9878 unsigned j; 9879 for (j = 0; j < CBV.size(); ++j) 9880 if (CBV[j].BB == Clusters[i].MBB) 9881 break; 9882 if (j == CBV.size()) 9883 CBV.push_back( 9884 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9885 CaseBits *CB = &CBV[j]; 9886 9887 // Update Mask, Bits and ExtraProb. 9888 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9889 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9890 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9891 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9892 CB->Bits += Hi - Lo + 1; 9893 CB->ExtraProb += Clusters[i].Prob; 9894 TotalProb += Clusters[i].Prob; 9895 } 9896 9897 BitTestInfo BTI; 9898 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9899 // Sort by probability first, number of bits second, bit mask third. 9900 if (a.ExtraProb != b.ExtraProb) 9901 return a.ExtraProb > b.ExtraProb; 9902 if (a.Bits != b.Bits) 9903 return a.Bits > b.Bits; 9904 return a.Mask < b.Mask; 9905 }); 9906 9907 for (auto &CB : CBV) { 9908 MachineBasicBlock *BitTestBB = 9909 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9910 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9911 } 9912 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9913 SI->getCondition(), -1U, MVT::Other, false, 9914 ContiguousRange, nullptr, nullptr, std::move(BTI), 9915 TotalProb); 9916 9917 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9918 BitTestCases.size() - 1, TotalProb); 9919 return true; 9920 } 9921 9922 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9923 const SwitchInst *SI) { 9924 // Partition Clusters into as few subsets as possible, where each subset has a 9925 // range that fits in a machine word and has <= 3 unique destinations. 9926 9927 #ifndef NDEBUG 9928 // Clusters must be sorted and contain Range or JumpTable clusters. 9929 assert(!Clusters.empty()); 9930 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9931 for (const CaseCluster &C : Clusters) 9932 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9933 for (unsigned i = 1; i < Clusters.size(); ++i) 9934 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9935 #endif 9936 9937 // The algorithm below is not suitable for -O0. 9938 if (TM.getOptLevel() == CodeGenOpt::None) 9939 return; 9940 9941 // If target does not have legal shift left, do not emit bit tests at all. 9942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9943 const DataLayout &DL = DAG.getDataLayout(); 9944 9945 EVT PTy = TLI.getPointerTy(DL); 9946 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9947 return; 9948 9949 int BitWidth = PTy.getSizeInBits(); 9950 const int64_t N = Clusters.size(); 9951 9952 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9953 SmallVector<unsigned, 8> MinPartitions(N); 9954 // LastElement[i] is the last element of the partition starting at i. 9955 SmallVector<unsigned, 8> LastElement(N); 9956 9957 // FIXME: This might not be the best algorithm for finding bit test clusters. 9958 9959 // Base case: There is only one way to partition Clusters[N-1]. 9960 MinPartitions[N - 1] = 1; 9961 LastElement[N - 1] = N - 1; 9962 9963 // Note: loop indexes are signed to avoid underflow. 9964 for (int64_t i = N - 2; i >= 0; --i) { 9965 // Find optimal partitioning of Clusters[i..N-1]. 9966 // Baseline: Put Clusters[i] into a partition on its own. 9967 MinPartitions[i] = MinPartitions[i + 1] + 1; 9968 LastElement[i] = i; 9969 9970 // Search for a solution that results in fewer partitions. 9971 // Note: the search is limited by BitWidth, reducing time complexity. 9972 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9973 // Try building a partition from Clusters[i..j]. 9974 9975 // Check the range. 9976 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9977 Clusters[j].High->getValue(), DL)) 9978 continue; 9979 9980 // Check nbr of destinations and cluster types. 9981 // FIXME: This works, but doesn't seem very efficient. 9982 bool RangesOnly = true; 9983 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9984 for (int64_t k = i; k <= j; k++) { 9985 if (Clusters[k].Kind != CC_Range) { 9986 RangesOnly = false; 9987 break; 9988 } 9989 Dests.set(Clusters[k].MBB->getNumber()); 9990 } 9991 if (!RangesOnly || Dests.count() > 3) 9992 break; 9993 9994 // Check if it's a better partition. 9995 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9996 if (NumPartitions < MinPartitions[i]) { 9997 // Found a better partition. 9998 MinPartitions[i] = NumPartitions; 9999 LastElement[i] = j; 10000 } 10001 } 10002 } 10003 10004 // Iterate over the partitions, replacing with bit-test clusters in-place. 10005 unsigned DstIndex = 0; 10006 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10007 Last = LastElement[First]; 10008 assert(First <= Last); 10009 assert(DstIndex <= First); 10010 10011 CaseCluster BitTestCluster; 10012 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10013 Clusters[DstIndex++] = BitTestCluster; 10014 } else { 10015 size_t NumClusters = Last - First + 1; 10016 std::memmove(&Clusters[DstIndex], &Clusters[First], 10017 sizeof(Clusters[0]) * NumClusters); 10018 DstIndex += NumClusters; 10019 } 10020 } 10021 Clusters.resize(DstIndex); 10022 } 10023 10024 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10025 MachineBasicBlock *SwitchMBB, 10026 MachineBasicBlock *DefaultMBB) { 10027 MachineFunction *CurMF = FuncInfo.MF; 10028 MachineBasicBlock *NextMBB = nullptr; 10029 MachineFunction::iterator BBI(W.MBB); 10030 if (++BBI != FuncInfo.MF->end()) 10031 NextMBB = &*BBI; 10032 10033 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10034 10035 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10036 10037 if (Size == 2 && W.MBB == SwitchMBB) { 10038 // If any two of the cases has the same destination, and if one value 10039 // is the same as the other, but has one bit unset that the other has set, 10040 // use bit manipulation to do two compares at once. For example: 10041 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10042 // TODO: This could be extended to merge any 2 cases in switches with 3 10043 // cases. 10044 // TODO: Handle cases where W.CaseBB != SwitchBB. 10045 CaseCluster &Small = *W.FirstCluster; 10046 CaseCluster &Big = *W.LastCluster; 10047 10048 if (Small.Low == Small.High && Big.Low == Big.High && 10049 Small.MBB == Big.MBB) { 10050 const APInt &SmallValue = Small.Low->getValue(); 10051 const APInt &BigValue = Big.Low->getValue(); 10052 10053 // Check that there is only one bit different. 10054 APInt CommonBit = BigValue ^ SmallValue; 10055 if (CommonBit.isPowerOf2()) { 10056 SDValue CondLHS = getValue(Cond); 10057 EVT VT = CondLHS.getValueType(); 10058 SDLoc DL = getCurSDLoc(); 10059 10060 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10061 DAG.getConstant(CommonBit, DL, VT)); 10062 SDValue Cond = DAG.getSetCC( 10063 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10064 ISD::SETEQ); 10065 10066 // Update successor info. 10067 // Both Small and Big will jump to Small.BB, so we sum up the 10068 // probabilities. 10069 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10070 if (BPI) 10071 addSuccessorWithProb( 10072 SwitchMBB, DefaultMBB, 10073 // The default destination is the first successor in IR. 10074 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10075 else 10076 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10077 10078 // Insert the true branch. 10079 SDValue BrCond = 10080 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10081 DAG.getBasicBlock(Small.MBB)); 10082 // Insert the false branch. 10083 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10084 DAG.getBasicBlock(DefaultMBB)); 10085 10086 DAG.setRoot(BrCond); 10087 return; 10088 } 10089 } 10090 } 10091 10092 if (TM.getOptLevel() != CodeGenOpt::None) { 10093 // Here, we order cases by probability so the most likely case will be 10094 // checked first. However, two clusters can have the same probability in 10095 // which case their relative ordering is non-deterministic. So we use Low 10096 // as a tie-breaker as clusters are guaranteed to never overlap. 10097 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10098 [](const CaseCluster &a, const CaseCluster &b) { 10099 return a.Prob != b.Prob ? 10100 a.Prob > b.Prob : 10101 a.Low->getValue().slt(b.Low->getValue()); 10102 }); 10103 10104 // Rearrange the case blocks so that the last one falls through if possible 10105 // without changing the order of probabilities. 10106 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10107 --I; 10108 if (I->Prob > W.LastCluster->Prob) 10109 break; 10110 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10111 std::swap(*I, *W.LastCluster); 10112 break; 10113 } 10114 } 10115 } 10116 10117 // Compute total probability. 10118 BranchProbability DefaultProb = W.DefaultProb; 10119 BranchProbability UnhandledProbs = DefaultProb; 10120 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10121 UnhandledProbs += I->Prob; 10122 10123 MachineBasicBlock *CurMBB = W.MBB; 10124 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10125 MachineBasicBlock *Fallthrough; 10126 if (I == W.LastCluster) { 10127 // For the last cluster, fall through to the default destination. 10128 Fallthrough = DefaultMBB; 10129 } else { 10130 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10131 CurMF->insert(BBI, Fallthrough); 10132 // Put Cond in a virtual register to make it available from the new blocks. 10133 ExportFromCurrentBlock(Cond); 10134 } 10135 UnhandledProbs -= I->Prob; 10136 10137 switch (I->Kind) { 10138 case CC_JumpTable: { 10139 // FIXME: Optimize away range check based on pivot comparisons. 10140 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10141 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10142 10143 // The jump block hasn't been inserted yet; insert it here. 10144 MachineBasicBlock *JumpMBB = JT->MBB; 10145 CurMF->insert(BBI, JumpMBB); 10146 10147 auto JumpProb = I->Prob; 10148 auto FallthroughProb = UnhandledProbs; 10149 10150 // If the default statement is a target of the jump table, we evenly 10151 // distribute the default probability to successors of CurMBB. Also 10152 // update the probability on the edge from JumpMBB to Fallthrough. 10153 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10154 SE = JumpMBB->succ_end(); 10155 SI != SE; ++SI) { 10156 if (*SI == DefaultMBB) { 10157 JumpProb += DefaultProb / 2; 10158 FallthroughProb -= DefaultProb / 2; 10159 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10160 JumpMBB->normalizeSuccProbs(); 10161 break; 10162 } 10163 } 10164 10165 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10166 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10167 CurMBB->normalizeSuccProbs(); 10168 10169 // The jump table header will be inserted in our current block, do the 10170 // range check, and fall through to our fallthrough block. 10171 JTH->HeaderBB = CurMBB; 10172 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10173 10174 // If we're in the right place, emit the jump table header right now. 10175 if (CurMBB == SwitchMBB) { 10176 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10177 JTH->Emitted = true; 10178 } 10179 break; 10180 } 10181 case CC_BitTests: { 10182 // FIXME: Optimize away range check based on pivot comparisons. 10183 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10184 10185 // The bit test blocks haven't been inserted yet; insert them here. 10186 for (BitTestCase &BTC : BTB->Cases) 10187 CurMF->insert(BBI, BTC.ThisBB); 10188 10189 // Fill in fields of the BitTestBlock. 10190 BTB->Parent = CurMBB; 10191 BTB->Default = Fallthrough; 10192 10193 BTB->DefaultProb = UnhandledProbs; 10194 // If the cases in bit test don't form a contiguous range, we evenly 10195 // distribute the probability on the edge to Fallthrough to two 10196 // successors of CurMBB. 10197 if (!BTB->ContiguousRange) { 10198 BTB->Prob += DefaultProb / 2; 10199 BTB->DefaultProb -= DefaultProb / 2; 10200 } 10201 10202 // If we're in the right place, emit the bit test header right now. 10203 if (CurMBB == SwitchMBB) { 10204 visitBitTestHeader(*BTB, SwitchMBB); 10205 BTB->Emitted = true; 10206 } 10207 break; 10208 } 10209 case CC_Range: { 10210 const Value *RHS, *LHS, *MHS; 10211 ISD::CondCode CC; 10212 if (I->Low == I->High) { 10213 // Check Cond == I->Low. 10214 CC = ISD::SETEQ; 10215 LHS = Cond; 10216 RHS=I->Low; 10217 MHS = nullptr; 10218 } else { 10219 // Check I->Low <= Cond <= I->High. 10220 CC = ISD::SETLE; 10221 LHS = I->Low; 10222 MHS = Cond; 10223 RHS = I->High; 10224 } 10225 10226 // The false probability is the sum of all unhandled cases. 10227 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10228 getCurSDLoc(), I->Prob, UnhandledProbs); 10229 10230 if (CurMBB == SwitchMBB) 10231 visitSwitchCase(CB, SwitchMBB); 10232 else 10233 SwitchCases.push_back(CB); 10234 10235 break; 10236 } 10237 } 10238 CurMBB = Fallthrough; 10239 } 10240 } 10241 10242 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10243 CaseClusterIt First, 10244 CaseClusterIt Last) { 10245 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10246 if (X.Prob != CC.Prob) 10247 return X.Prob > CC.Prob; 10248 10249 // Ties are broken by comparing the case value. 10250 return X.Low->getValue().slt(CC.Low->getValue()); 10251 }); 10252 } 10253 10254 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10255 const SwitchWorkListItem &W, 10256 Value *Cond, 10257 MachineBasicBlock *SwitchMBB) { 10258 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10259 "Clusters not sorted?"); 10260 10261 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10262 10263 // Balance the tree based on branch probabilities to create a near-optimal (in 10264 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10265 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10266 CaseClusterIt LastLeft = W.FirstCluster; 10267 CaseClusterIt FirstRight = W.LastCluster; 10268 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10269 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10270 10271 // Move LastLeft and FirstRight towards each other from opposite directions to 10272 // find a partitioning of the clusters which balances the probability on both 10273 // sides. If LeftProb and RightProb are equal, alternate which side is 10274 // taken to ensure 0-probability nodes are distributed evenly. 10275 unsigned I = 0; 10276 while (LastLeft + 1 < FirstRight) { 10277 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10278 LeftProb += (++LastLeft)->Prob; 10279 else 10280 RightProb += (--FirstRight)->Prob; 10281 I++; 10282 } 10283 10284 while (true) { 10285 // Our binary search tree differs from a typical BST in that ours can have up 10286 // to three values in each leaf. The pivot selection above doesn't take that 10287 // into account, which means the tree might require more nodes and be less 10288 // efficient. We compensate for this here. 10289 10290 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10291 unsigned NumRight = W.LastCluster - FirstRight + 1; 10292 10293 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10294 // If one side has less than 3 clusters, and the other has more than 3, 10295 // consider taking a cluster from the other side. 10296 10297 if (NumLeft < NumRight) { 10298 // Consider moving the first cluster on the right to the left side. 10299 CaseCluster &CC = *FirstRight; 10300 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10301 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10302 if (LeftSideRank <= RightSideRank) { 10303 // Moving the cluster to the left does not demote it. 10304 ++LastLeft; 10305 ++FirstRight; 10306 continue; 10307 } 10308 } else { 10309 assert(NumRight < NumLeft); 10310 // Consider moving the last element on the left to the right side. 10311 CaseCluster &CC = *LastLeft; 10312 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10313 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10314 if (RightSideRank <= LeftSideRank) { 10315 // Moving the cluster to the right does not demot it. 10316 --LastLeft; 10317 --FirstRight; 10318 continue; 10319 } 10320 } 10321 } 10322 break; 10323 } 10324 10325 assert(LastLeft + 1 == FirstRight); 10326 assert(LastLeft >= W.FirstCluster); 10327 assert(FirstRight <= W.LastCluster); 10328 10329 // Use the first element on the right as pivot since we will make less-than 10330 // comparisons against it. 10331 CaseClusterIt PivotCluster = FirstRight; 10332 assert(PivotCluster > W.FirstCluster); 10333 assert(PivotCluster <= W.LastCluster); 10334 10335 CaseClusterIt FirstLeft = W.FirstCluster; 10336 CaseClusterIt LastRight = W.LastCluster; 10337 10338 const ConstantInt *Pivot = PivotCluster->Low; 10339 10340 // New blocks will be inserted immediately after the current one. 10341 MachineFunction::iterator BBI(W.MBB); 10342 ++BBI; 10343 10344 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10345 // we can branch to its destination directly if it's squeezed exactly in 10346 // between the known lower bound and Pivot - 1. 10347 MachineBasicBlock *LeftMBB; 10348 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10349 FirstLeft->Low == W.GE && 10350 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10351 LeftMBB = FirstLeft->MBB; 10352 } else { 10353 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10354 FuncInfo.MF->insert(BBI, LeftMBB); 10355 WorkList.push_back( 10356 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10357 // Put Cond in a virtual register to make it available from the new blocks. 10358 ExportFromCurrentBlock(Cond); 10359 } 10360 10361 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10362 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10363 // directly if RHS.High equals the current upper bound. 10364 MachineBasicBlock *RightMBB; 10365 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10366 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10367 RightMBB = FirstRight->MBB; 10368 } else { 10369 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10370 FuncInfo.MF->insert(BBI, RightMBB); 10371 WorkList.push_back( 10372 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10373 // Put Cond in a virtual register to make it available from the new blocks. 10374 ExportFromCurrentBlock(Cond); 10375 } 10376 10377 // Create the CaseBlock record that will be used to lower the branch. 10378 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10379 getCurSDLoc(), LeftProb, RightProb); 10380 10381 if (W.MBB == SwitchMBB) 10382 visitSwitchCase(CB, SwitchMBB); 10383 else 10384 SwitchCases.push_back(CB); 10385 } 10386 10387 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10388 // from the swith statement. 10389 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10390 BranchProbability PeeledCaseProb) { 10391 if (PeeledCaseProb == BranchProbability::getOne()) 10392 return BranchProbability::getZero(); 10393 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10394 10395 uint32_t Numerator = CaseProb.getNumerator(); 10396 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10397 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10398 } 10399 10400 // Try to peel the top probability case if it exceeds the threshold. 10401 // Return current MachineBasicBlock for the switch statement if the peeling 10402 // does not occur. 10403 // If the peeling is performed, return the newly created MachineBasicBlock 10404 // for the peeled switch statement. Also update Clusters to remove the peeled 10405 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10406 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10407 const SwitchInst &SI, CaseClusterVector &Clusters, 10408 BranchProbability &PeeledCaseProb) { 10409 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10410 // Don't perform if there is only one cluster or optimizing for size. 10411 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10412 TM.getOptLevel() == CodeGenOpt::None || 10413 SwitchMBB->getParent()->getFunction().optForMinSize()) 10414 return SwitchMBB; 10415 10416 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10417 unsigned PeeledCaseIndex = 0; 10418 bool SwitchPeeled = false; 10419 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10420 CaseCluster &CC = Clusters[Index]; 10421 if (CC.Prob < TopCaseProb) 10422 continue; 10423 TopCaseProb = CC.Prob; 10424 PeeledCaseIndex = Index; 10425 SwitchPeeled = true; 10426 } 10427 if (!SwitchPeeled) 10428 return SwitchMBB; 10429 10430 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10431 << TopCaseProb << "\n"); 10432 10433 // Record the MBB for the peeled switch statement. 10434 MachineFunction::iterator BBI(SwitchMBB); 10435 ++BBI; 10436 MachineBasicBlock *PeeledSwitchMBB = 10437 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10438 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10439 10440 ExportFromCurrentBlock(SI.getCondition()); 10441 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10442 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10443 nullptr, nullptr, TopCaseProb.getCompl()}; 10444 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10445 10446 Clusters.erase(PeeledCaseIt); 10447 for (CaseCluster &CC : Clusters) { 10448 LLVM_DEBUG( 10449 dbgs() << "Scale the probablity for one cluster, before scaling: " 10450 << CC.Prob << "\n"); 10451 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10452 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10453 } 10454 PeeledCaseProb = TopCaseProb; 10455 return PeeledSwitchMBB; 10456 } 10457 10458 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10459 // Extract cases from the switch. 10460 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10461 CaseClusterVector Clusters; 10462 Clusters.reserve(SI.getNumCases()); 10463 for (auto I : SI.cases()) { 10464 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10465 const ConstantInt *CaseVal = I.getCaseValue(); 10466 BranchProbability Prob = 10467 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10468 : BranchProbability(1, SI.getNumCases() + 1); 10469 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10470 } 10471 10472 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10473 10474 // Cluster adjacent cases with the same destination. We do this at all 10475 // optimization levels because it's cheap to do and will make codegen faster 10476 // if there are many clusters. 10477 sortAndRangeify(Clusters); 10478 10479 if (TM.getOptLevel() != CodeGenOpt::None) { 10480 // Replace an unreachable default with the most popular destination. 10481 // FIXME: Exploit unreachable default more aggressively. 10482 bool UnreachableDefault = 10483 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10484 if (UnreachableDefault && !Clusters.empty()) { 10485 DenseMap<const BasicBlock *, unsigned> Popularity; 10486 unsigned MaxPop = 0; 10487 const BasicBlock *MaxBB = nullptr; 10488 for (auto I : SI.cases()) { 10489 const BasicBlock *BB = I.getCaseSuccessor(); 10490 if (++Popularity[BB] > MaxPop) { 10491 MaxPop = Popularity[BB]; 10492 MaxBB = BB; 10493 } 10494 } 10495 // Set new default. 10496 assert(MaxPop > 0 && MaxBB); 10497 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10498 10499 // Remove cases that were pointing to the destination that is now the 10500 // default. 10501 CaseClusterVector New; 10502 New.reserve(Clusters.size()); 10503 for (CaseCluster &CC : Clusters) { 10504 if (CC.MBB != DefaultMBB) 10505 New.push_back(CC); 10506 } 10507 Clusters = std::move(New); 10508 } 10509 } 10510 10511 // The branch probablity of the peeled case. 10512 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10513 MachineBasicBlock *PeeledSwitchMBB = 10514 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10515 10516 // If there is only the default destination, jump there directly. 10517 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10518 if (Clusters.empty()) { 10519 assert(PeeledSwitchMBB == SwitchMBB); 10520 SwitchMBB->addSuccessor(DefaultMBB); 10521 if (DefaultMBB != NextBlock(SwitchMBB)) { 10522 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10523 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10524 } 10525 return; 10526 } 10527 10528 findJumpTables(Clusters, &SI, DefaultMBB); 10529 findBitTestClusters(Clusters, &SI); 10530 10531 LLVM_DEBUG({ 10532 dbgs() << "Case clusters: "; 10533 for (const CaseCluster &C : Clusters) { 10534 if (C.Kind == CC_JumpTable) 10535 dbgs() << "JT:"; 10536 if (C.Kind == CC_BitTests) 10537 dbgs() << "BT:"; 10538 10539 C.Low->getValue().print(dbgs(), true); 10540 if (C.Low != C.High) { 10541 dbgs() << '-'; 10542 C.High->getValue().print(dbgs(), true); 10543 } 10544 dbgs() << ' '; 10545 } 10546 dbgs() << '\n'; 10547 }); 10548 10549 assert(!Clusters.empty()); 10550 SwitchWorkList WorkList; 10551 CaseClusterIt First = Clusters.begin(); 10552 CaseClusterIt Last = Clusters.end() - 1; 10553 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10554 // Scale the branchprobability for DefaultMBB if the peel occurs and 10555 // DefaultMBB is not replaced. 10556 if (PeeledCaseProb != BranchProbability::getZero() && 10557 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10558 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10559 WorkList.push_back( 10560 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10561 10562 while (!WorkList.empty()) { 10563 SwitchWorkListItem W = WorkList.back(); 10564 WorkList.pop_back(); 10565 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10566 10567 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10568 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10569 // For optimized builds, lower large range as a balanced binary tree. 10570 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10571 continue; 10572 } 10573 10574 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10575 } 10576 } 10577