xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 452aae62024ad7aac864c9c4b9dccf37a9e69d0a)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   const BasicBlock *SrcBB = Src->getBasicBlock();
1281   const BasicBlock *DstBB = Dst->getBasicBlock();
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::
1286 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                        uint32_t Weight /* = 0 */) {
1288   if (!Weight)
1289     Weight = getEdgeWeight(Src, Dst);
1290   Src->addSuccessor(Dst, Weight);
1291 }
1292 
1293 
1294 static bool InBlock(const Value *V, const BasicBlock *BB) {
1295   if (const Instruction *I = dyn_cast<Instruction>(V))
1296     return I->getParent() == BB;
1297   return true;
1298 }
1299 
1300 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301 /// This function emits a branch and is used at the leaves of an OR or an
1302 /// AND operator tree.
1303 ///
1304 void
1305 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                   MachineBasicBlock *TBB,
1307                                                   MachineBasicBlock *FBB,
1308                                                   MachineBasicBlock *CurBB,
1309                                                   MachineBasicBlock *SwitchBB) {
1310   const BasicBlock *BB = CurBB->getBasicBlock();
1311 
1312   // If the leaf of the tree is a comparison, merge the condition into
1313   // the caseblock.
1314   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315     // The operands of the cmp have to be in this block.  We don't know
1316     // how to export them from some other block.  If this is the first block
1317     // of the sequence, no exporting is needed.
1318     if (CurBB == SwitchBB ||
1319         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321       ISD::CondCode Condition;
1322       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323         Condition = getICmpCondCode(IC->getPredicate());
1324       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325         Condition = getFCmpCondCode(FC->getPredicate());
1326       } else {
1327         Condition = ISD::SETEQ; // silence warning.
1328         llvm_unreachable("Unknown compare instruction");
1329       }
1330 
1331       CaseBlock CB(Condition, BOp->getOperand(0),
1332                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333       SwitchCases.push_back(CB);
1334       return;
1335     }
1336   }
1337 
1338   // Create a CaseBlock record representing this branch.
1339   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340                NULL, TBB, FBB, CurBB);
1341   SwitchCases.push_back(CB);
1342 }
1343 
1344 /// FindMergedConditions - If Cond is an expression like
1345 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                                MachineBasicBlock *TBB,
1347                                                MachineBasicBlock *FBB,
1348                                                MachineBasicBlock *CurBB,
1349                                                MachineBasicBlock *SwitchBB,
1350                                                unsigned Opc) {
1351   // If this node is not part of the or/and tree, emit it as a branch.
1352   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355       BOp->getParent() != CurBB->getBasicBlock() ||
1356       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359     return;
1360   }
1361 
1362   //  Create TmpBB after CurBB.
1363   MachineFunction::iterator BBI = CurBB;
1364   MachineFunction &MF = DAG.getMachineFunction();
1365   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366   CurBB->getParent()->insert(++BBI, TmpBB);
1367 
1368   if (Opc == Instruction::Or) {
1369     // Codegen X | Y as:
1370     //   jmp_if_X TBB
1371     //   jmp TmpBB
1372     // TmpBB:
1373     //   jmp_if_Y TBB
1374     //   jmp FBB
1375     //
1376 
1377     // Emit the LHS condition.
1378     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379 
1380     // Emit the RHS condition into TmpBB.
1381     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382   } else {
1383     assert(Opc == Instruction::And && "Unknown merge op!");
1384     // Codegen X & Y as:
1385     //   jmp_if_X TmpBB
1386     //   jmp FBB
1387     // TmpBB:
1388     //   jmp_if_Y TBB
1389     //   jmp FBB
1390     //
1391     //  This requires creation of TmpBB after CurBB.
1392 
1393     // Emit the LHS condition.
1394     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395 
1396     // Emit the RHS condition into TmpBB.
1397     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398   }
1399 }
1400 
1401 /// If the set of cases should be emitted as a series of branches, return true.
1402 /// If we should emit this as a bunch of and/or'd together conditions, return
1403 /// false.
1404 bool
1405 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406   if (Cases.size() != 2) return true;
1407 
1408   // If this is two comparisons of the same values or'd or and'd together, they
1409   // will get folded into a single comparison, so don't emit two blocks.
1410   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414     return false;
1415   }
1416 
1417   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420       Cases[0].CC == Cases[1].CC &&
1421       isa<Constant>(Cases[0].CmpRHS) &&
1422       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424       return false;
1425     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426       return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434 
1435   // Update machine-CFG edges.
1436   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437 
1438   // Figure out which block is immediately after the current one.
1439   MachineBasicBlock *NextBlock = 0;
1440   MachineFunction::iterator BBI = BrMBB;
1441   if (++BBI != FuncInfo.MF->end())
1442     NextBlock = BBI;
1443 
1444   if (I.isUnconditional()) {
1445     // Update machine-CFG edges.
1446     BrMBB->addSuccessor(Succ0MBB);
1447 
1448     // If this is not a fall-through branch, emit the branch.
1449     if (Succ0MBB != NextBlock)
1450       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                               MVT::Other, getControlRoot(),
1452                               DAG.getBasicBlock(Succ0MBB)));
1453 
1454     return;
1455   }
1456 
1457   // If this condition is one of the special cases we handle, do special stuff
1458   // now.
1459   const Value *CondVal = I.getCondition();
1460   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461 
1462   // If this is a series of conditions that are or'd or and'd together, emit
1463   // this as a sequence of branches instead of setcc's with and/or operations.
1464   // As long as jumps are not expensive, this should improve performance.
1465   // For example, instead of something like:
1466   //     cmp A, B
1467   //     C = seteq
1468   //     cmp D, E
1469   //     F = setle
1470   //     or C, F
1471   //     jnz foo
1472   // Emit:
1473   //     cmp A, B
1474   //     je foo
1475   //     cmp D, E
1476   //     jle foo
1477   //
1478   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479     if (!TLI.isJumpExpensive() &&
1480         BOp->hasOneUse() &&
1481         (BOp->getOpcode() == Instruction::And ||
1482          BOp->getOpcode() == Instruction::Or)) {
1483       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                            BOp->getOpcode());
1485       // If the compares in later blocks need to use values not currently
1486       // exported from this block, export them now.  This block should always
1487       // be the first entry.
1488       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489 
1490       // Allow some cases to be rejected.
1491       if (ShouldEmitAsBranches(SwitchCases)) {
1492         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495         }
1496 
1497         // Emit the branch for this block.
1498         visitSwitchCase(SwitchCases[0], BrMBB);
1499         SwitchCases.erase(SwitchCases.begin());
1500         return;
1501       }
1502 
1503       // Okay, we decided not to do this, remove any inserted MBB's and clear
1504       // SwitchCases.
1505       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507 
1508       SwitchCases.clear();
1509     }
1510   }
1511 
1512   // Create a CaseBlock record representing this branch.
1513   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514                NULL, Succ0MBB, Succ1MBB, BrMBB);
1515 
1516   // Use visitSwitchCase to actually insert the fast branch sequence for this
1517   // cond branch.
1518   visitSwitchCase(CB, BrMBB);
1519 }
1520 
1521 /// visitSwitchCase - Emits the necessary code to represent a single node in
1522 /// the binary search tree resulting from lowering a switch instruction.
1523 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                           MachineBasicBlock *SwitchBB) {
1525   SDValue Cond;
1526   SDValue CondLHS = getValue(CB.CmpLHS);
1527   DebugLoc dl = getCurDebugLoc();
1528 
1529   // Build the setcc now.
1530   if (CB.CmpMHS == NULL) {
1531     // Fold "(X == true)" to X and "(X == false)" to !X to
1532     // handle common cases produced by branch lowering.
1533     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534         CB.CC == ISD::SETEQ)
1535       Cond = CondLHS;
1536     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537              CB.CC == ISD::SETEQ) {
1538       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540     } else
1541       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542   } else {
1543     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544 
1545     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547 
1548     SDValue CmpOp = getValue(CB.CmpMHS);
1549     EVT VT = CmpOp.getValueType();
1550 
1551     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                           ISD::SETLE);
1554     } else {
1555       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                 VT, CmpOp, DAG.getConstant(Low, VT));
1557       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1559     }
1560   }
1561 
1562   // Update successor info
1563   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565 
1566   // Set NextBlock to be the MBB immediately after the current one, if any.
1567   // This is used to avoid emitting unnecessary branches to the next block.
1568   MachineBasicBlock *NextBlock = 0;
1569   MachineFunction::iterator BBI = SwitchBB;
1570   if (++BBI != FuncInfo.MF->end())
1571     NextBlock = BBI;
1572 
1573   // If the lhs block is the next block, invert the condition so that we can
1574   // fall through to the lhs instead of the rhs block.
1575   if (CB.TrueBB == NextBlock) {
1576     std::swap(CB.TrueBB, CB.FalseBB);
1577     SDValue True = DAG.getConstant(1, Cond.getValueType());
1578     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579   }
1580 
1581   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                                MVT::Other, getControlRoot(), Cond,
1583                                DAG.getBasicBlock(CB.TrueBB));
1584 
1585   // Insert the false branch. Do this even if it's a fall through branch,
1586   // this makes it easier to do DAG optimizations which require inverting
1587   // the branch condition.
1588   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                        DAG.getBasicBlock(CB.FalseBB));
1590 
1591   DAG.setRoot(BrCond);
1592 }
1593 
1594 /// visitJumpTable - Emit JumpTable node in the current MBB
1595 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596   // Emit the code for the jump table
1597   assert(JT.Reg != -1U && "Should lower JT Header first!");
1598   EVT PTy = TLI.getPointerTy();
1599   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                      JT.Reg, PTy);
1601   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                     MVT::Other, Index.getValue(1),
1604                                     Table, Index);
1605   DAG.setRoot(BrJumpTable);
1606 }
1607 
1608 /// visitJumpTableHeader - This function emits necessary code to produce index
1609 /// in the JumpTable from switch case.
1610 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                                JumpTableHeader &JTH,
1612                                                MachineBasicBlock *SwitchBB) {
1613   // Subtract the lowest switch case value from the value being switched on and
1614   // conditional branch to default mbb if the result is greater than the
1615   // difference between smallest and largest cases.
1616   SDValue SwitchOp = getValue(JTH.SValue);
1617   EVT VT = SwitchOp.getValueType();
1618   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                             DAG.getConstant(JTH.First, VT));
1620 
1621   // The SDNode we just created, which holds the value being switched on minus
1622   // the smallest case value, needs to be copied to a virtual register so it
1623   // can be used as an index into the jump table in a subsequent basic block.
1624   // This value may be smaller or larger than the target's pointer type, and
1625   // therefore require extension or truncating.
1626   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627 
1628   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                     JumpTableReg, SwitchOp);
1631   JT.Reg = JumpTableReg;
1632 
1633   // Emit the range check for the jump table, and branch to the default block
1634   // for the switch statement if the value being switched on exceeds the largest
1635   // case in the switch.
1636   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                              DAG.getConstant(JTH.Last-JTH.First,VT),
1639                              ISD::SETUGT);
1640 
1641   // Set NextBlock to be the MBB immediately after the current one, if any.
1642   // This is used to avoid emitting unnecessary branches to the next block.
1643   MachineBasicBlock *NextBlock = 0;
1644   MachineFunction::iterator BBI = SwitchBB;
1645 
1646   if (++BBI != FuncInfo.MF->end())
1647     NextBlock = BBI;
1648 
1649   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                                MVT::Other, CopyTo, CMP,
1651                                DAG.getBasicBlock(JT.Default));
1652 
1653   if (JT.MBB != NextBlock)
1654     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                          DAG.getBasicBlock(JT.MBB));
1656 
1657   DAG.setRoot(BrCond);
1658 }
1659 
1660 /// visitBitTestHeader - This function emits necessary code to produce value
1661 /// suitable for "bit tests"
1662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                              MachineBasicBlock *SwitchBB) {
1664   // Subtract the minimum value
1665   SDValue SwitchOp = getValue(B.SValue);
1666   EVT VT = SwitchOp.getValueType();
1667   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                             DAG.getConstant(B.First, VT));
1669 
1670   // Check range
1671   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                   TLI.getSetCCResultType(Sub.getValueType()),
1673                                   Sub, DAG.getConstant(B.Range, VT),
1674                                   ISD::SETUGT);
1675 
1676   // Determine the type of the test operands.
1677   bool UsePtrType = false;
1678   if (!TLI.isTypeLegal(VT))
1679     UsePtrType = true;
1680   else {
1681     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683         // Switch table case range are encoded into series of masks.
1684         // Just use pointer type, it's guaranteed to fit.
1685         UsePtrType = true;
1686         break;
1687       }
1688   }
1689   if (UsePtrType) {
1690     VT = TLI.getPointerTy();
1691     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692   }
1693 
1694   B.RegVT = VT;
1695   B.Reg = FuncInfo.CreateReg(VT);
1696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                     B.Reg, Sub);
1698 
1699   // Set NextBlock to be the MBB immediately after the current one, if any.
1700   // This is used to avoid emitting unnecessary branches to the next block.
1701   MachineBasicBlock *NextBlock = 0;
1702   MachineFunction::iterator BBI = SwitchBB;
1703   if (++BBI != FuncInfo.MF->end())
1704     NextBlock = BBI;
1705 
1706   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707 
1708   addSuccessorWithWeight(SwitchBB, B.Default);
1709   addSuccessorWithWeight(SwitchBB, MBB);
1710 
1711   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                 MVT::Other, CopyTo, RangeCmp,
1713                                 DAG.getBasicBlock(B.Default));
1714 
1715   if (MBB != NextBlock)
1716     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                           DAG.getBasicBlock(MBB));
1718 
1719   DAG.setRoot(BrRange);
1720 }
1721 
1722 /// visitBitTestCase - this function produces one "bit test"
1723 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                            MachineBasicBlock* NextMBB,
1725                                            unsigned Reg,
1726                                            BitTestCase &B,
1727                                            MachineBasicBlock *SwitchBB) {
1728   EVT VT = BB.RegVT;
1729   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                        Reg, VT);
1731   SDValue Cmp;
1732   unsigned PopCount = CountPopulation_64(B.Mask);
1733   if (PopCount == 1) {
1734     // Testing for a single bit; just compare the shift count with what it
1735     // would need to be to shift a 1 bit in that position.
1736     Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                        TLI.getSetCCResultType(VT),
1738                        ShiftOp,
1739                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                        ISD::SETEQ);
1741   } else if (PopCount == BB.Range) {
1742     // There is only one zero bit in the range, test for it directly.
1743     Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                        TLI.getSetCCResultType(VT),
1745                        ShiftOp,
1746                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                        ISD::SETNE);
1748   } else {
1749     // Make desired shift
1750     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                     DAG.getConstant(1, VT), ShiftOp);
1752 
1753     // Emit bit tests and jumps
1754     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                        TLI.getSetCCResultType(VT),
1758                        AndOp, DAG.getConstant(0, VT),
1759                        ISD::SETNE);
1760   }
1761 
1762   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763   addSuccessorWithWeight(SwitchBB, NextMBB);
1764 
1765   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                               MVT::Other, getControlRoot(),
1767                               Cmp, DAG.getBasicBlock(B.TargetBB));
1768 
1769   // Set NextBlock to be the MBB immediately after the current one, if any.
1770   // This is used to avoid emitting unnecessary branches to the next block.
1771   MachineBasicBlock *NextBlock = 0;
1772   MachineFunction::iterator BBI = SwitchBB;
1773   if (++BBI != FuncInfo.MF->end())
1774     NextBlock = BBI;
1775 
1776   if (NextMBB != NextBlock)
1777     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                         DAG.getBasicBlock(NextMBB));
1779 
1780   DAG.setRoot(BrAnd);
1781 }
1782 
1783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785 
1786   // Retrieve successors.
1787   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789 
1790   const Value *Callee(I.getCalledValue());
1791   if (isa<InlineAsm>(Callee))
1792     visitInlineAsm(&I);
1793   else
1794     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795 
1796   // If the value of the invoke is used outside of its defining block, make it
1797   // available as a virtual register.
1798   CopyToExportRegsIfNeeded(&I);
1799 
1800   // Update successor info
1801   InvokeMBB->addSuccessor(Return);
1802   InvokeMBB->addSuccessor(LandingPad);
1803 
1804   // Drop into normal successor.
1805   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                           MVT::Other, getControlRoot(),
1807                           DAG.getBasicBlock(Return)));
1808 }
1809 
1810 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811 }
1812 
1813 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815 }
1816 
1817 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1818   assert(FuncInfo.MBB->isLandingPad() &&
1819          "Call to landingpad not in landing pad!");
1820 
1821   MachineBasicBlock *MBB = FuncInfo.MBB;
1822   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1823   AddLandingPadInfo(LP, MMI, MBB);
1824 
1825   SmallVector<EVT, 2> ValueVTs;
1826   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1827 
1828   // Insert the EXCEPTIONADDR instruction.
1829   assert(FuncInfo.MBB->isLandingPad() &&
1830          "Call to eh.exception not in landing pad!");
1831   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1832   SDValue Ops[2];
1833   Ops[0] = DAG.getRoot();
1834   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1835   SDValue Chain = Op1.getValue(1);
1836 
1837   // Insert the EHSELECTION instruction.
1838   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1839   Ops[0] = Op1;
1840   Ops[1] = Chain;
1841   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1842   Chain = Op2.getValue(1);
1843   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1844 
1845   Ops[0] = Op1;
1846   Ops[1] = Op2;
1847   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1848                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1849                             &Ops[0], 2);
1850 
1851   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1852   setValue(&LP, RetPair.first);
1853   DAG.setRoot(RetPair.second);
1854 }
1855 
1856 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1857 /// small case ranges).
1858 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1859                                                  CaseRecVector& WorkList,
1860                                                  const Value* SV,
1861                                                  MachineBasicBlock *Default,
1862                                                  MachineBasicBlock *SwitchBB) {
1863   Case& BackCase  = *(CR.Range.second-1);
1864 
1865   // Size is the number of Cases represented by this range.
1866   size_t Size = CR.Range.second - CR.Range.first;
1867   if (Size > 3)
1868     return false;
1869 
1870   // Get the MachineFunction which holds the current MBB.  This is used when
1871   // inserting any additional MBBs necessary to represent the switch.
1872   MachineFunction *CurMF = FuncInfo.MF;
1873 
1874   // Figure out which block is immediately after the current one.
1875   MachineBasicBlock *NextBlock = 0;
1876   MachineFunction::iterator BBI = CR.CaseBB;
1877 
1878   if (++BBI != FuncInfo.MF->end())
1879     NextBlock = BBI;
1880 
1881   // If any two of the cases has the same destination, and if one value
1882   // is the same as the other, but has one bit unset that the other has set,
1883   // use bit manipulation to do two compares at once.  For example:
1884   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1885   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1886   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1887   if (Size == 2 && CR.CaseBB == SwitchBB) {
1888     Case &Small = *CR.Range.first;
1889     Case &Big = *(CR.Range.second-1);
1890 
1891     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1892       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1893       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1894 
1895       // Check that there is only one bit different.
1896       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1897           (SmallValue | BigValue) == BigValue) {
1898         // Isolate the common bit.
1899         APInt CommonBit = BigValue & ~SmallValue;
1900         assert((SmallValue | CommonBit) == BigValue &&
1901                CommonBit.countPopulation() == 1 && "Not a common bit?");
1902 
1903         SDValue CondLHS = getValue(SV);
1904         EVT VT = CondLHS.getValueType();
1905         DebugLoc DL = getCurDebugLoc();
1906 
1907         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1908                                  DAG.getConstant(CommonBit, VT));
1909         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1910                                     Or, DAG.getConstant(BigValue, VT),
1911                                     ISD::SETEQ);
1912 
1913         // Update successor info.
1914         addSuccessorWithWeight(SwitchBB, Small.BB);
1915         addSuccessorWithWeight(SwitchBB, Default);
1916 
1917         // Insert the true branch.
1918         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1919                                      getControlRoot(), Cond,
1920                                      DAG.getBasicBlock(Small.BB));
1921 
1922         // Insert the false branch.
1923         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1924                              DAG.getBasicBlock(Default));
1925 
1926         DAG.setRoot(BrCond);
1927         return true;
1928       }
1929     }
1930   }
1931 
1932   // Rearrange the case blocks so that the last one falls through if possible.
1933   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1934     // The last case block won't fall through into 'NextBlock' if we emit the
1935     // branches in this order.  See if rearranging a case value would help.
1936     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1937       if (I->BB == NextBlock) {
1938         std::swap(*I, BackCase);
1939         break;
1940       }
1941     }
1942   }
1943 
1944   // Create a CaseBlock record representing a conditional branch to
1945   // the Case's target mbb if the value being switched on SV is equal
1946   // to C.
1947   MachineBasicBlock *CurBlock = CR.CaseBB;
1948   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1949     MachineBasicBlock *FallThrough;
1950     if (I != E-1) {
1951       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1952       CurMF->insert(BBI, FallThrough);
1953 
1954       // Put SV in a virtual register to make it available from the new blocks.
1955       ExportFromCurrentBlock(SV);
1956     } else {
1957       // If the last case doesn't match, go to the default block.
1958       FallThrough = Default;
1959     }
1960 
1961     const Value *RHS, *LHS, *MHS;
1962     ISD::CondCode CC;
1963     if (I->High == I->Low) {
1964       // This is just small small case range :) containing exactly 1 case
1965       CC = ISD::SETEQ;
1966       LHS = SV; RHS = I->High; MHS = NULL;
1967     } else {
1968       CC = ISD::SETLE;
1969       LHS = I->Low; MHS = SV; RHS = I->High;
1970     }
1971 
1972     uint32_t ExtraWeight = I->ExtraWeight;
1973     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1974                  /* me */ CurBlock,
1975                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1976 
1977     // If emitting the first comparison, just call visitSwitchCase to emit the
1978     // code into the current block.  Otherwise, push the CaseBlock onto the
1979     // vector to be later processed by SDISel, and insert the node's MBB
1980     // before the next MBB.
1981     if (CurBlock == SwitchBB)
1982       visitSwitchCase(CB, SwitchBB);
1983     else
1984       SwitchCases.push_back(CB);
1985 
1986     CurBlock = FallThrough;
1987   }
1988 
1989   return true;
1990 }
1991 
1992 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1993   return !DisableJumpTables &&
1994           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1995            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1996 }
1997 
1998 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1999   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2000   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2001   return (LastExt - FirstExt + 1ULL);
2002 }
2003 
2004 /// handleJTSwitchCase - Emit jumptable for current switch case range
2005 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
2006                                              CaseRecVector& WorkList,
2007                                              const Value* SV,
2008                                              MachineBasicBlock* Default,
2009                                              MachineBasicBlock *SwitchBB) {
2010   Case& FrontCase = *CR.Range.first;
2011   Case& BackCase  = *(CR.Range.second-1);
2012 
2013   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2014   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2015 
2016   APInt TSize(First.getBitWidth(), 0);
2017   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2018        I!=E; ++I)
2019     TSize += I->size();
2020 
2021   if (!areJTsAllowed(TLI) || TSize.ult(4))
2022     return false;
2023 
2024   APInt Range = ComputeRange(First, Last);
2025   double Density = TSize.roundToDouble() / Range.roundToDouble();
2026   if (Density < 0.4)
2027     return false;
2028 
2029   DEBUG(dbgs() << "Lowering jump table\n"
2030                << "First entry: " << First << ". Last entry: " << Last << '\n'
2031                << "Range: " << Range
2032                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2033 
2034   // Get the MachineFunction which holds the current MBB.  This is used when
2035   // inserting any additional MBBs necessary to represent the switch.
2036   MachineFunction *CurMF = FuncInfo.MF;
2037 
2038   // Figure out which block is immediately after the current one.
2039   MachineFunction::iterator BBI = CR.CaseBB;
2040   ++BBI;
2041 
2042   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2043 
2044   // Create a new basic block to hold the code for loading the address
2045   // of the jump table, and jumping to it.  Update successor information;
2046   // we will either branch to the default case for the switch, or the jump
2047   // table.
2048   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2049   CurMF->insert(BBI, JumpTableBB);
2050 
2051   addSuccessorWithWeight(CR.CaseBB, Default);
2052   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2053 
2054   // Build a vector of destination BBs, corresponding to each target
2055   // of the jump table. If the value of the jump table slot corresponds to
2056   // a case statement, push the case's BB onto the vector, otherwise, push
2057   // the default BB.
2058   std::vector<MachineBasicBlock*> DestBBs;
2059   APInt TEI = First;
2060   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2061     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2062     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2063 
2064     if (Low.sle(TEI) && TEI.sle(High)) {
2065       DestBBs.push_back(I->BB);
2066       if (TEI==High)
2067         ++I;
2068     } else {
2069       DestBBs.push_back(Default);
2070     }
2071   }
2072 
2073   // Update successor info. Add one edge to each unique successor.
2074   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2075   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2076          E = DestBBs.end(); I != E; ++I) {
2077     if (!SuccsHandled[(*I)->getNumber()]) {
2078       SuccsHandled[(*I)->getNumber()] = true;
2079       addSuccessorWithWeight(JumpTableBB, *I);
2080     }
2081   }
2082 
2083   // Create a jump table index for this jump table.
2084   unsigned JTEncoding = TLI.getJumpTableEncoding();
2085   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2086                        ->createJumpTableIndex(DestBBs);
2087 
2088   // Set the jump table information so that we can codegen it as a second
2089   // MachineBasicBlock
2090   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2091   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2092   if (CR.CaseBB == SwitchBB)
2093     visitJumpTableHeader(JT, JTH, SwitchBB);
2094 
2095   JTCases.push_back(JumpTableBlock(JTH, JT));
2096 
2097   return true;
2098 }
2099 
2100 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2101 /// 2 subtrees.
2102 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2103                                                   CaseRecVector& WorkList,
2104                                                   const Value* SV,
2105                                                   MachineBasicBlock *Default,
2106                                                   MachineBasicBlock *SwitchBB) {
2107   // Get the MachineFunction which holds the current MBB.  This is used when
2108   // inserting any additional MBBs necessary to represent the switch.
2109   MachineFunction *CurMF = FuncInfo.MF;
2110 
2111   // Figure out which block is immediately after the current one.
2112   MachineFunction::iterator BBI = CR.CaseBB;
2113   ++BBI;
2114 
2115   Case& FrontCase = *CR.Range.first;
2116   Case& BackCase  = *(CR.Range.second-1);
2117   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2118 
2119   // Size is the number of Cases represented by this range.
2120   unsigned Size = CR.Range.second - CR.Range.first;
2121 
2122   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2123   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2124   double FMetric = 0;
2125   CaseItr Pivot = CR.Range.first + Size/2;
2126 
2127   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2128   // (heuristically) allow us to emit JumpTable's later.
2129   APInt TSize(First.getBitWidth(), 0);
2130   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2131        I!=E; ++I)
2132     TSize += I->size();
2133 
2134   APInt LSize = FrontCase.size();
2135   APInt RSize = TSize-LSize;
2136   DEBUG(dbgs() << "Selecting best pivot: \n"
2137                << "First: " << First << ", Last: " << Last <<'\n'
2138                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2139   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2140        J!=E; ++I, ++J) {
2141     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2142     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2143     APInt Range = ComputeRange(LEnd, RBegin);
2144     assert((Range - 2ULL).isNonNegative() &&
2145            "Invalid case distance");
2146     // Use volatile double here to avoid excess precision issues on some hosts,
2147     // e.g. that use 80-bit X87 registers.
2148     volatile double LDensity =
2149        (double)LSize.roundToDouble() /
2150                            (LEnd - First + 1ULL).roundToDouble();
2151     volatile double RDensity =
2152       (double)RSize.roundToDouble() /
2153                            (Last - RBegin + 1ULL).roundToDouble();
2154     double Metric = Range.logBase2()*(LDensity+RDensity);
2155     // Should always split in some non-trivial place
2156     DEBUG(dbgs() <<"=>Step\n"
2157                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2158                  << "LDensity: " << LDensity
2159                  << ", RDensity: " << RDensity << '\n'
2160                  << "Metric: " << Metric << '\n');
2161     if (FMetric < Metric) {
2162       Pivot = J;
2163       FMetric = Metric;
2164       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2165     }
2166 
2167     LSize += J->size();
2168     RSize -= J->size();
2169   }
2170   if (areJTsAllowed(TLI)) {
2171     // If our case is dense we *really* should handle it earlier!
2172     assert((FMetric > 0) && "Should handle dense range earlier!");
2173   } else {
2174     Pivot = CR.Range.first + Size/2;
2175   }
2176 
2177   CaseRange LHSR(CR.Range.first, Pivot);
2178   CaseRange RHSR(Pivot, CR.Range.second);
2179   Constant *C = Pivot->Low;
2180   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2181 
2182   // We know that we branch to the LHS if the Value being switched on is
2183   // less than the Pivot value, C.  We use this to optimize our binary
2184   // tree a bit, by recognizing that if SV is greater than or equal to the
2185   // LHS's Case Value, and that Case Value is exactly one less than the
2186   // Pivot's Value, then we can branch directly to the LHS's Target,
2187   // rather than creating a leaf node for it.
2188   if ((LHSR.second - LHSR.first) == 1 &&
2189       LHSR.first->High == CR.GE &&
2190       cast<ConstantInt>(C)->getValue() ==
2191       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2192     TrueBB = LHSR.first->BB;
2193   } else {
2194     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2195     CurMF->insert(BBI, TrueBB);
2196     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2197 
2198     // Put SV in a virtual register to make it available from the new blocks.
2199     ExportFromCurrentBlock(SV);
2200   }
2201 
2202   // Similar to the optimization above, if the Value being switched on is
2203   // known to be less than the Constant CR.LT, and the current Case Value
2204   // is CR.LT - 1, then we can branch directly to the target block for
2205   // the current Case Value, rather than emitting a RHS leaf node for it.
2206   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2207       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2208       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2209     FalseBB = RHSR.first->BB;
2210   } else {
2211     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2212     CurMF->insert(BBI, FalseBB);
2213     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2214 
2215     // Put SV in a virtual register to make it available from the new blocks.
2216     ExportFromCurrentBlock(SV);
2217   }
2218 
2219   // Create a CaseBlock record representing a conditional branch to
2220   // the LHS node if the value being switched on SV is less than C.
2221   // Otherwise, branch to LHS.
2222   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2223 
2224   if (CR.CaseBB == SwitchBB)
2225     visitSwitchCase(CB, SwitchBB);
2226   else
2227     SwitchCases.push_back(CB);
2228 
2229   return true;
2230 }
2231 
2232 /// handleBitTestsSwitchCase - if current case range has few destination and
2233 /// range span less, than machine word bitwidth, encode case range into series
2234 /// of masks and emit bit tests with these masks.
2235 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2236                                                    CaseRecVector& WorkList,
2237                                                    const Value* SV,
2238                                                    MachineBasicBlock* Default,
2239                                                    MachineBasicBlock *SwitchBB){
2240   EVT PTy = TLI.getPointerTy();
2241   unsigned IntPtrBits = PTy.getSizeInBits();
2242 
2243   Case& FrontCase = *CR.Range.first;
2244   Case& BackCase  = *(CR.Range.second-1);
2245 
2246   // Get the MachineFunction which holds the current MBB.  This is used when
2247   // inserting any additional MBBs necessary to represent the switch.
2248   MachineFunction *CurMF = FuncInfo.MF;
2249 
2250   // If target does not have legal shift left, do not emit bit tests at all.
2251   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2252     return false;
2253 
2254   size_t numCmps = 0;
2255   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2256        I!=E; ++I) {
2257     // Single case counts one, case range - two.
2258     numCmps += (I->Low == I->High ? 1 : 2);
2259   }
2260 
2261   // Count unique destinations
2262   SmallSet<MachineBasicBlock*, 4> Dests;
2263   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2264     Dests.insert(I->BB);
2265     if (Dests.size() > 3)
2266       // Don't bother the code below, if there are too much unique destinations
2267       return false;
2268   }
2269   DEBUG(dbgs() << "Total number of unique destinations: "
2270         << Dests.size() << '\n'
2271         << "Total number of comparisons: " << numCmps << '\n');
2272 
2273   // Compute span of values.
2274   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2275   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2276   APInt cmpRange = maxValue - minValue;
2277 
2278   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2279                << "Low bound: " << minValue << '\n'
2280                << "High bound: " << maxValue << '\n');
2281 
2282   if (cmpRange.uge(IntPtrBits) ||
2283       (!(Dests.size() == 1 && numCmps >= 3) &&
2284        !(Dests.size() == 2 && numCmps >= 5) &&
2285        !(Dests.size() >= 3 && numCmps >= 6)))
2286     return false;
2287 
2288   DEBUG(dbgs() << "Emitting bit tests\n");
2289   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2290 
2291   // Optimize the case where all the case values fit in a
2292   // word without having to subtract minValue. In this case,
2293   // we can optimize away the subtraction.
2294   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2295     cmpRange = maxValue;
2296   } else {
2297     lowBound = minValue;
2298   }
2299 
2300   CaseBitsVector CasesBits;
2301   unsigned i, count = 0;
2302 
2303   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2304     MachineBasicBlock* Dest = I->BB;
2305     for (i = 0; i < count; ++i)
2306       if (Dest == CasesBits[i].BB)
2307         break;
2308 
2309     if (i == count) {
2310       assert((count < 3) && "Too much destinations to test!");
2311       CasesBits.push_back(CaseBits(0, Dest, 0));
2312       count++;
2313     }
2314 
2315     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2316     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2317 
2318     uint64_t lo = (lowValue - lowBound).getZExtValue();
2319     uint64_t hi = (highValue - lowBound).getZExtValue();
2320 
2321     for (uint64_t j = lo; j <= hi; j++) {
2322       CasesBits[i].Mask |=  1ULL << j;
2323       CasesBits[i].Bits++;
2324     }
2325 
2326   }
2327   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2328 
2329   BitTestInfo BTC;
2330 
2331   // Figure out which block is immediately after the current one.
2332   MachineFunction::iterator BBI = CR.CaseBB;
2333   ++BBI;
2334 
2335   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2336 
2337   DEBUG(dbgs() << "Cases:\n");
2338   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2339     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2340                  << ", Bits: " << CasesBits[i].Bits
2341                  << ", BB: " << CasesBits[i].BB << '\n');
2342 
2343     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2344     CurMF->insert(BBI, CaseBB);
2345     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2346                               CaseBB,
2347                               CasesBits[i].BB));
2348 
2349     // Put SV in a virtual register to make it available from the new blocks.
2350     ExportFromCurrentBlock(SV);
2351   }
2352 
2353   BitTestBlock BTB(lowBound, cmpRange, SV,
2354                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2355                    CR.CaseBB, Default, BTC);
2356 
2357   if (CR.CaseBB == SwitchBB)
2358     visitBitTestHeader(BTB, SwitchBB);
2359 
2360   BitTestCases.push_back(BTB);
2361 
2362   return true;
2363 }
2364 
2365 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2366 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2367                                        const SwitchInst& SI) {
2368   size_t numCmps = 0;
2369 
2370   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2371   // Start with "simple" cases
2372   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2373     BasicBlock *SuccBB = SI.getSuccessor(i);
2374     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2375 
2376     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2377 
2378     Cases.push_back(Case(SI.getSuccessorValue(i),
2379                          SI.getSuccessorValue(i),
2380                          SMBB, ExtraWeight));
2381   }
2382   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2383 
2384   // Merge case into clusters
2385   if (Cases.size() >= 2)
2386     // Must recompute end() each iteration because it may be
2387     // invalidated by erase if we hold on to it
2388     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2389          J != Cases.end(); ) {
2390       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2391       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2392       MachineBasicBlock* nextBB = J->BB;
2393       MachineBasicBlock* currentBB = I->BB;
2394 
2395       // If the two neighboring cases go to the same destination, merge them
2396       // into a single case.
2397       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2398         I->High = J->High;
2399         J = Cases.erase(J);
2400 
2401         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2402           uint32_t CurWeight = currentBB->getBasicBlock() ?
2403             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2404           uint32_t NextWeight = nextBB->getBasicBlock() ?
2405             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2406 
2407           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2408                              CurWeight + NextWeight);
2409         }
2410       } else {
2411         I = J++;
2412       }
2413     }
2414 
2415   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2416     if (I->Low != I->High)
2417       // A range counts double, since it requires two compares.
2418       ++numCmps;
2419   }
2420 
2421   return numCmps;
2422 }
2423 
2424 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2425                                            MachineBasicBlock *Last) {
2426   // Update JTCases.
2427   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2428     if (JTCases[i].first.HeaderBB == First)
2429       JTCases[i].first.HeaderBB = Last;
2430 
2431   // Update BitTestCases.
2432   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2433     if (BitTestCases[i].Parent == First)
2434       BitTestCases[i].Parent = Last;
2435 }
2436 
2437 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2438   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2439 
2440   // Figure out which block is immediately after the current one.
2441   MachineBasicBlock *NextBlock = 0;
2442   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2443 
2444   // If there is only the default destination, branch to it if it is not the
2445   // next basic block.  Otherwise, just fall through.
2446   if (SI.getNumOperands() == 2) {
2447     // Update machine-CFG edges.
2448 
2449     // If this is not a fall-through branch, emit the branch.
2450     SwitchMBB->addSuccessor(Default);
2451     if (Default != NextBlock)
2452       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2453                               MVT::Other, getControlRoot(),
2454                               DAG.getBasicBlock(Default)));
2455 
2456     return;
2457   }
2458 
2459   // If there are any non-default case statements, create a vector of Cases
2460   // representing each one, and sort the vector so that we can efficiently
2461   // create a binary search tree from them.
2462   CaseVector Cases;
2463   size_t numCmps = Clusterify(Cases, SI);
2464   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2465                << ". Total compares: " << numCmps << '\n');
2466   numCmps = 0;
2467 
2468   // Get the Value to be switched on and default basic blocks, which will be
2469   // inserted into CaseBlock records, representing basic blocks in the binary
2470   // search tree.
2471   const Value *SV = SI.getOperand(0);
2472 
2473   // Push the initial CaseRec onto the worklist
2474   CaseRecVector WorkList;
2475   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2476                              CaseRange(Cases.begin(),Cases.end())));
2477 
2478   while (!WorkList.empty()) {
2479     // Grab a record representing a case range to process off the worklist
2480     CaseRec CR = WorkList.back();
2481     WorkList.pop_back();
2482 
2483     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2484       continue;
2485 
2486     // If the range has few cases (two or less) emit a series of specific
2487     // tests.
2488     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2489       continue;
2490 
2491     // If the switch has more than 5 blocks, and at least 40% dense, and the
2492     // target supports indirect branches, then emit a jump table rather than
2493     // lowering the switch to a binary tree of conditional branches.
2494     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2495       continue;
2496 
2497     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2498     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2499     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2500   }
2501 }
2502 
2503 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2504   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2505 
2506   // Update machine-CFG edges with unique successors.
2507   SmallVector<BasicBlock*, 32> succs;
2508   succs.reserve(I.getNumSuccessors());
2509   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2510     succs.push_back(I.getSuccessor(i));
2511   array_pod_sort(succs.begin(), succs.end());
2512   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2513   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2514     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2515     addSuccessorWithWeight(IndirectBrMBB, Succ);
2516   }
2517 
2518   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2519                           MVT::Other, getControlRoot(),
2520                           getValue(I.getAddress())));
2521 }
2522 
2523 void SelectionDAGBuilder::visitFSub(const User &I) {
2524   // -0.0 - X --> fneg
2525   Type *Ty = I.getType();
2526   if (isa<Constant>(I.getOperand(0)) &&
2527       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2528     SDValue Op2 = getValue(I.getOperand(1));
2529     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2530                              Op2.getValueType(), Op2));
2531     return;
2532   }
2533 
2534   visitBinary(I, ISD::FSUB);
2535 }
2536 
2537 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2538   SDValue Op1 = getValue(I.getOperand(0));
2539   SDValue Op2 = getValue(I.getOperand(1));
2540   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2541                            Op1.getValueType(), Op1, Op2));
2542 }
2543 
2544 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2545   SDValue Op1 = getValue(I.getOperand(0));
2546   SDValue Op2 = getValue(I.getOperand(1));
2547 
2548   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2549 
2550   // Coerce the shift amount to the right type if we can.
2551   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2552     unsigned ShiftSize = ShiftTy.getSizeInBits();
2553     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2554     DebugLoc DL = getCurDebugLoc();
2555 
2556     // If the operand is smaller than the shift count type, promote it.
2557     if (ShiftSize > Op2Size)
2558       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2559 
2560     // If the operand is larger than the shift count type but the shift
2561     // count type has enough bits to represent any shift value, truncate
2562     // it now. This is a common case and it exposes the truncate to
2563     // optimization early.
2564     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2565       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2566     // Otherwise we'll need to temporarily settle for some other convenient
2567     // type.  Type legalization will make adjustments once the shiftee is split.
2568     else
2569       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2570   }
2571 
2572   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2573                            Op1.getValueType(), Op1, Op2));
2574 }
2575 
2576 void SelectionDAGBuilder::visitSDiv(const User &I) {
2577   SDValue Op1 = getValue(I.getOperand(0));
2578   SDValue Op2 = getValue(I.getOperand(1));
2579 
2580   // Turn exact SDivs into multiplications.
2581   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2582   // exact bit.
2583   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2584       !isa<ConstantSDNode>(Op1) &&
2585       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2586     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2587   else
2588     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2589                              Op1, Op2));
2590 }
2591 
2592 void SelectionDAGBuilder::visitICmp(const User &I) {
2593   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2594   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2595     predicate = IC->getPredicate();
2596   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2597     predicate = ICmpInst::Predicate(IC->getPredicate());
2598   SDValue Op1 = getValue(I.getOperand(0));
2599   SDValue Op2 = getValue(I.getOperand(1));
2600   ISD::CondCode Opcode = getICmpCondCode(predicate);
2601 
2602   EVT DestVT = TLI.getValueType(I.getType());
2603   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2604 }
2605 
2606 void SelectionDAGBuilder::visitFCmp(const User &I) {
2607   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2608   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2609     predicate = FC->getPredicate();
2610   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2611     predicate = FCmpInst::Predicate(FC->getPredicate());
2612   SDValue Op1 = getValue(I.getOperand(0));
2613   SDValue Op2 = getValue(I.getOperand(1));
2614   ISD::CondCode Condition = getFCmpCondCode(predicate);
2615   EVT DestVT = TLI.getValueType(I.getType());
2616   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2617 }
2618 
2619 void SelectionDAGBuilder::visitSelect(const User &I) {
2620   SmallVector<EVT, 4> ValueVTs;
2621   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2622   unsigned NumValues = ValueVTs.size();
2623   if (NumValues == 0) return;
2624 
2625   SmallVector<SDValue, 4> Values(NumValues);
2626   SDValue Cond     = getValue(I.getOperand(0));
2627   SDValue TrueVal  = getValue(I.getOperand(1));
2628   SDValue FalseVal = getValue(I.getOperand(2));
2629 
2630   for (unsigned i = 0; i != NumValues; ++i)
2631     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2632                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2633                             Cond,
2634                             SDValue(TrueVal.getNode(),
2635                                     TrueVal.getResNo() + i),
2636                             SDValue(FalseVal.getNode(),
2637                                     FalseVal.getResNo() + i));
2638 
2639   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2640                            DAG.getVTList(&ValueVTs[0], NumValues),
2641                            &Values[0], NumValues));
2642 }
2643 
2644 void SelectionDAGBuilder::visitTrunc(const User &I) {
2645   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2646   SDValue N = getValue(I.getOperand(0));
2647   EVT DestVT = TLI.getValueType(I.getType());
2648   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2649 }
2650 
2651 void SelectionDAGBuilder::visitZExt(const User &I) {
2652   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2653   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2654   SDValue N = getValue(I.getOperand(0));
2655   EVT DestVT = TLI.getValueType(I.getType());
2656   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2657 }
2658 
2659 void SelectionDAGBuilder::visitSExt(const User &I) {
2660   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2661   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2662   SDValue N = getValue(I.getOperand(0));
2663   EVT DestVT = TLI.getValueType(I.getType());
2664   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2665 }
2666 
2667 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2668   // FPTrunc is never a no-op cast, no need to check
2669   SDValue N = getValue(I.getOperand(0));
2670   EVT DestVT = TLI.getValueType(I.getType());
2671   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2672                            DestVT, N, DAG.getIntPtrConstant(0)));
2673 }
2674 
2675 void SelectionDAGBuilder::visitFPExt(const User &I){
2676   // FPTrunc is never a no-op cast, no need to check
2677   SDValue N = getValue(I.getOperand(0));
2678   EVT DestVT = TLI.getValueType(I.getType());
2679   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2680 }
2681 
2682 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2683   // FPToUI is never a no-op cast, no need to check
2684   SDValue N = getValue(I.getOperand(0));
2685   EVT DestVT = TLI.getValueType(I.getType());
2686   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2687 }
2688 
2689 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2690   // FPToSI is never a no-op cast, no need to check
2691   SDValue N = getValue(I.getOperand(0));
2692   EVT DestVT = TLI.getValueType(I.getType());
2693   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2694 }
2695 
2696 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2697   // UIToFP is never a no-op cast, no need to check
2698   SDValue N = getValue(I.getOperand(0));
2699   EVT DestVT = TLI.getValueType(I.getType());
2700   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2701 }
2702 
2703 void SelectionDAGBuilder::visitSIToFP(const User &I){
2704   // SIToFP is never a no-op cast, no need to check
2705   SDValue N = getValue(I.getOperand(0));
2706   EVT DestVT = TLI.getValueType(I.getType());
2707   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2708 }
2709 
2710 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2711   // What to do depends on the size of the integer and the size of the pointer.
2712   // We can either truncate, zero extend, or no-op, accordingly.
2713   SDValue N = getValue(I.getOperand(0));
2714   EVT DestVT = TLI.getValueType(I.getType());
2715   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2716 }
2717 
2718 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2719   // What to do depends on the size of the integer and the size of the pointer.
2720   // We can either truncate, zero extend, or no-op, accordingly.
2721   SDValue N = getValue(I.getOperand(0));
2722   EVT DestVT = TLI.getValueType(I.getType());
2723   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2724 }
2725 
2726 void SelectionDAGBuilder::visitBitCast(const User &I) {
2727   SDValue N = getValue(I.getOperand(0));
2728   EVT DestVT = TLI.getValueType(I.getType());
2729 
2730   // BitCast assures us that source and destination are the same size so this is
2731   // either a BITCAST or a no-op.
2732   if (DestVT != N.getValueType())
2733     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2734                              DestVT, N)); // convert types.
2735   else
2736     setValue(&I, N);            // noop cast.
2737 }
2738 
2739 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2740   SDValue InVec = getValue(I.getOperand(0));
2741   SDValue InVal = getValue(I.getOperand(1));
2742   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2743                               TLI.getPointerTy(),
2744                               getValue(I.getOperand(2)));
2745   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2746                            TLI.getValueType(I.getType()),
2747                            InVec, InVal, InIdx));
2748 }
2749 
2750 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2751   SDValue InVec = getValue(I.getOperand(0));
2752   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2753                               TLI.getPointerTy(),
2754                               getValue(I.getOperand(1)));
2755   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2756                            TLI.getValueType(I.getType()), InVec, InIdx));
2757 }
2758 
2759 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2760 // from SIndx and increasing to the element length (undefs are allowed).
2761 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2762   unsigned MaskNumElts = Mask.size();
2763   for (unsigned i = 0; i != MaskNumElts; ++i)
2764     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2765       return false;
2766   return true;
2767 }
2768 
2769 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2770   SmallVector<int, 8> Mask;
2771   SDValue Src1 = getValue(I.getOperand(0));
2772   SDValue Src2 = getValue(I.getOperand(1));
2773 
2774   // Convert the ConstantVector mask operand into an array of ints, with -1
2775   // representing undef values.
2776   SmallVector<Constant*, 8> MaskElts;
2777   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2778   unsigned MaskNumElts = MaskElts.size();
2779   for (unsigned i = 0; i != MaskNumElts; ++i) {
2780     if (isa<UndefValue>(MaskElts[i]))
2781       Mask.push_back(-1);
2782     else
2783       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2784   }
2785 
2786   EVT VT = TLI.getValueType(I.getType());
2787   EVT SrcVT = Src1.getValueType();
2788   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2789 
2790   if (SrcNumElts == MaskNumElts) {
2791     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2792                                       &Mask[0]));
2793     return;
2794   }
2795 
2796   // Normalize the shuffle vector since mask and vector length don't match.
2797   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2798     // Mask is longer than the source vectors and is a multiple of the source
2799     // vectors.  We can use concatenate vector to make the mask and vectors
2800     // lengths match.
2801     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2802       // The shuffle is concatenating two vectors together.
2803       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2804                                VT, Src1, Src2));
2805       return;
2806     }
2807 
2808     // Pad both vectors with undefs to make them the same length as the mask.
2809     unsigned NumConcat = MaskNumElts / SrcNumElts;
2810     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2811     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2812     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2813 
2814     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2815     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2816     MOps1[0] = Src1;
2817     MOps2[0] = Src2;
2818 
2819     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2820                                                   getCurDebugLoc(), VT,
2821                                                   &MOps1[0], NumConcat);
2822     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2823                                                   getCurDebugLoc(), VT,
2824                                                   &MOps2[0], NumConcat);
2825 
2826     // Readjust mask for new input vector length.
2827     SmallVector<int, 8> MappedOps;
2828     for (unsigned i = 0; i != MaskNumElts; ++i) {
2829       int Idx = Mask[i];
2830       if (Idx < (int)SrcNumElts)
2831         MappedOps.push_back(Idx);
2832       else
2833         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2834     }
2835 
2836     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2837                                       &MappedOps[0]));
2838     return;
2839   }
2840 
2841   if (SrcNumElts > MaskNumElts) {
2842     // Analyze the access pattern of the vector to see if we can extract
2843     // two subvectors and do the shuffle. The analysis is done by calculating
2844     // the range of elements the mask access on both vectors.
2845     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2846                         static_cast<int>(SrcNumElts+1)};
2847     int MaxRange[2] = {-1, -1};
2848 
2849     for (unsigned i = 0; i != MaskNumElts; ++i) {
2850       int Idx = Mask[i];
2851       int Input = 0;
2852       if (Idx < 0)
2853         continue;
2854 
2855       if (Idx >= (int)SrcNumElts) {
2856         Input = 1;
2857         Idx -= SrcNumElts;
2858       }
2859       if (Idx > MaxRange[Input])
2860         MaxRange[Input] = Idx;
2861       if (Idx < MinRange[Input])
2862         MinRange[Input] = Idx;
2863     }
2864 
2865     // Check if the access is smaller than the vector size and can we find
2866     // a reasonable extract index.
2867     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2868                                  // Extract.
2869     int StartIdx[2];  // StartIdx to extract from
2870     for (int Input=0; Input < 2; ++Input) {
2871       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2872         RangeUse[Input] = 0; // Unused
2873         StartIdx[Input] = 0;
2874       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2875         // Fits within range but we should see if we can find a good
2876         // start index that is a multiple of the mask length.
2877         if (MaxRange[Input] < (int)MaskNumElts) {
2878           RangeUse[Input] = 1; // Extract from beginning of the vector
2879           StartIdx[Input] = 0;
2880         } else {
2881           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2882           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2883               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2884             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2885         }
2886       }
2887     }
2888 
2889     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2890       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2891       return;
2892     }
2893     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2894       // Extract appropriate subvector and generate a vector shuffle
2895       for (int Input=0; Input < 2; ++Input) {
2896         SDValue &Src = Input == 0 ? Src1 : Src2;
2897         if (RangeUse[Input] == 0)
2898           Src = DAG.getUNDEF(VT);
2899         else
2900           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2901                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2902       }
2903 
2904       // Calculate new mask.
2905       SmallVector<int, 8> MappedOps;
2906       for (unsigned i = 0; i != MaskNumElts; ++i) {
2907         int Idx = Mask[i];
2908         if (Idx < 0)
2909           MappedOps.push_back(Idx);
2910         else if (Idx < (int)SrcNumElts)
2911           MappedOps.push_back(Idx - StartIdx[0]);
2912         else
2913           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2914       }
2915 
2916       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2917                                         &MappedOps[0]));
2918       return;
2919     }
2920   }
2921 
2922   // We can't use either concat vectors or extract subvectors so fall back to
2923   // replacing the shuffle with extract and build vector.
2924   // to insert and build vector.
2925   EVT EltVT = VT.getVectorElementType();
2926   EVT PtrVT = TLI.getPointerTy();
2927   SmallVector<SDValue,8> Ops;
2928   for (unsigned i = 0; i != MaskNumElts; ++i) {
2929     if (Mask[i] < 0) {
2930       Ops.push_back(DAG.getUNDEF(EltVT));
2931     } else {
2932       int Idx = Mask[i];
2933       SDValue Res;
2934 
2935       if (Idx < (int)SrcNumElts)
2936         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2937                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2938       else
2939         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2940                           EltVT, Src2,
2941                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2942 
2943       Ops.push_back(Res);
2944     }
2945   }
2946 
2947   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2948                            VT, &Ops[0], Ops.size()));
2949 }
2950 
2951 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2952   const Value *Op0 = I.getOperand(0);
2953   const Value *Op1 = I.getOperand(1);
2954   Type *AggTy = I.getType();
2955   Type *ValTy = Op1->getType();
2956   bool IntoUndef = isa<UndefValue>(Op0);
2957   bool FromUndef = isa<UndefValue>(Op1);
2958 
2959   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2960 
2961   SmallVector<EVT, 4> AggValueVTs;
2962   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2963   SmallVector<EVT, 4> ValValueVTs;
2964   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2965 
2966   unsigned NumAggValues = AggValueVTs.size();
2967   unsigned NumValValues = ValValueVTs.size();
2968   SmallVector<SDValue, 4> Values(NumAggValues);
2969 
2970   SDValue Agg = getValue(Op0);
2971   unsigned i = 0;
2972   // Copy the beginning value(s) from the original aggregate.
2973   for (; i != LinearIndex; ++i)
2974     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2975                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2976   // Copy values from the inserted value(s).
2977   if (NumValValues) {
2978     SDValue Val = getValue(Op1);
2979     for (; i != LinearIndex + NumValValues; ++i)
2980       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2981                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2982   }
2983   // Copy remaining value(s) from the original aggregate.
2984   for (; i != NumAggValues; ++i)
2985     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2986                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2987 
2988   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2989                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2990                            &Values[0], NumAggValues));
2991 }
2992 
2993 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2994   const Value *Op0 = I.getOperand(0);
2995   Type *AggTy = Op0->getType();
2996   Type *ValTy = I.getType();
2997   bool OutOfUndef = isa<UndefValue>(Op0);
2998 
2999   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3000 
3001   SmallVector<EVT, 4> ValValueVTs;
3002   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3003 
3004   unsigned NumValValues = ValValueVTs.size();
3005 
3006   // Ignore a extractvalue that produces an empty object
3007   if (!NumValValues) {
3008     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3009     return;
3010   }
3011 
3012   SmallVector<SDValue, 4> Values(NumValValues);
3013 
3014   SDValue Agg = getValue(Op0);
3015   // Copy out the selected value(s).
3016   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3017     Values[i - LinearIndex] =
3018       OutOfUndef ?
3019         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3020         SDValue(Agg.getNode(), Agg.getResNo() + i);
3021 
3022   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3023                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3024                            &Values[0], NumValValues));
3025 }
3026 
3027 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3028   SDValue N = getValue(I.getOperand(0));
3029   Type *Ty = I.getOperand(0)->getType();
3030 
3031   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3032        OI != E; ++OI) {
3033     const Value *Idx = *OI;
3034     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3035       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3036       if (Field) {
3037         // N = N + Offset
3038         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3039         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3040                         DAG.getIntPtrConstant(Offset));
3041       }
3042 
3043       Ty = StTy->getElementType(Field);
3044     } else {
3045       Ty = cast<SequentialType>(Ty)->getElementType();
3046 
3047       // If this is a constant subscript, handle it quickly.
3048       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3049         if (CI->isZero()) continue;
3050         uint64_t Offs =
3051             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3052         SDValue OffsVal;
3053         EVT PTy = TLI.getPointerTy();
3054         unsigned PtrBits = PTy.getSizeInBits();
3055         if (PtrBits < 64)
3056           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3057                                 TLI.getPointerTy(),
3058                                 DAG.getConstant(Offs, MVT::i64));
3059         else
3060           OffsVal = DAG.getIntPtrConstant(Offs);
3061 
3062         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3063                         OffsVal);
3064         continue;
3065       }
3066 
3067       // N = N + Idx * ElementSize;
3068       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3069                                 TD->getTypeAllocSize(Ty));
3070       SDValue IdxN = getValue(Idx);
3071 
3072       // If the index is smaller or larger than intptr_t, truncate or extend
3073       // it.
3074       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3075 
3076       // If this is a multiply by a power of two, turn it into a shl
3077       // immediately.  This is a very common case.
3078       if (ElementSize != 1) {
3079         if (ElementSize.isPowerOf2()) {
3080           unsigned Amt = ElementSize.logBase2();
3081           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3082                              N.getValueType(), IdxN,
3083                              DAG.getConstant(Amt, TLI.getPointerTy()));
3084         } else {
3085           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3086           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3087                              N.getValueType(), IdxN, Scale);
3088         }
3089       }
3090 
3091       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3092                       N.getValueType(), N, IdxN);
3093     }
3094   }
3095 
3096   setValue(&I, N);
3097 }
3098 
3099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3100   // If this is a fixed sized alloca in the entry block of the function,
3101   // allocate it statically on the stack.
3102   if (FuncInfo.StaticAllocaMap.count(&I))
3103     return;   // getValue will auto-populate this.
3104 
3105   Type *Ty = I.getAllocatedType();
3106   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3107   unsigned Align =
3108     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3109              I.getAlignment());
3110 
3111   SDValue AllocSize = getValue(I.getArraySize());
3112 
3113   EVT IntPtr = TLI.getPointerTy();
3114   if (AllocSize.getValueType() != IntPtr)
3115     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3116 
3117   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3118                           AllocSize,
3119                           DAG.getConstant(TySize, IntPtr));
3120 
3121   // Handle alignment.  If the requested alignment is less than or equal to
3122   // the stack alignment, ignore it.  If the size is greater than or equal to
3123   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3124   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3125   if (Align <= StackAlign)
3126     Align = 0;
3127 
3128   // Round the size of the allocation up to the stack alignment size
3129   // by add SA-1 to the size.
3130   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131                           AllocSize.getValueType(), AllocSize,
3132                           DAG.getIntPtrConstant(StackAlign-1));
3133 
3134   // Mask out the low bits for alignment purposes.
3135   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3136                           AllocSize.getValueType(), AllocSize,
3137                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3138 
3139   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3140   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3141   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3142                             VTs, Ops, 3);
3143   setValue(&I, DSA);
3144   DAG.setRoot(DSA.getValue(1));
3145 
3146   // Inform the Frame Information that we have just allocated a variable-sized
3147   // object.
3148   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3149 }
3150 
3151 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3152   if (I.isAtomic())
3153     return visitAtomicLoad(I);
3154 
3155   const Value *SV = I.getOperand(0);
3156   SDValue Ptr = getValue(SV);
3157 
3158   Type *Ty = I.getType();
3159 
3160   bool isVolatile = I.isVolatile();
3161   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3162   unsigned Alignment = I.getAlignment();
3163   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3164 
3165   SmallVector<EVT, 4> ValueVTs;
3166   SmallVector<uint64_t, 4> Offsets;
3167   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3168   unsigned NumValues = ValueVTs.size();
3169   if (NumValues == 0)
3170     return;
3171 
3172   SDValue Root;
3173   bool ConstantMemory = false;
3174   if (I.isVolatile() || NumValues > MaxParallelChains)
3175     // Serialize volatile loads with other side effects.
3176     Root = getRoot();
3177   else if (AA->pointsToConstantMemory(
3178              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3179     // Do not serialize (non-volatile) loads of constant memory with anything.
3180     Root = DAG.getEntryNode();
3181     ConstantMemory = true;
3182   } else {
3183     // Do not serialize non-volatile loads against each other.
3184     Root = DAG.getRoot();
3185   }
3186 
3187   SmallVector<SDValue, 4> Values(NumValues);
3188   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3189                                           NumValues));
3190   EVT PtrVT = Ptr.getValueType();
3191   unsigned ChainI = 0;
3192   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3193     // Serializing loads here may result in excessive register pressure, and
3194     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3195     // could recover a bit by hoisting nodes upward in the chain by recognizing
3196     // they are side-effect free or do not alias. The optimizer should really
3197     // avoid this case by converting large object/array copies to llvm.memcpy
3198     // (MaxParallelChains should always remain as failsafe).
3199     if (ChainI == MaxParallelChains) {
3200       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3201       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3202                                   MVT::Other, &Chains[0], ChainI);
3203       Root = Chain;
3204       ChainI = 0;
3205     }
3206     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3207                             PtrVT, Ptr,
3208                             DAG.getConstant(Offsets[i], PtrVT));
3209     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3210                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3211                             isNonTemporal, Alignment, TBAAInfo);
3212 
3213     Values[i] = L;
3214     Chains[ChainI] = L.getValue(1);
3215   }
3216 
3217   if (!ConstantMemory) {
3218     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3219                                 MVT::Other, &Chains[0], ChainI);
3220     if (isVolatile)
3221       DAG.setRoot(Chain);
3222     else
3223       PendingLoads.push_back(Chain);
3224   }
3225 
3226   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3227                            DAG.getVTList(&ValueVTs[0], NumValues),
3228                            &Values[0], NumValues));
3229 }
3230 
3231 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3232   if (I.isAtomic())
3233     return visitAtomicStore(I);
3234 
3235   const Value *SrcV = I.getOperand(0);
3236   const Value *PtrV = I.getOperand(1);
3237 
3238   SmallVector<EVT, 4> ValueVTs;
3239   SmallVector<uint64_t, 4> Offsets;
3240   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3241   unsigned NumValues = ValueVTs.size();
3242   if (NumValues == 0)
3243     return;
3244 
3245   // Get the lowered operands. Note that we do this after
3246   // checking if NumResults is zero, because with zero results
3247   // the operands won't have values in the map.
3248   SDValue Src = getValue(SrcV);
3249   SDValue Ptr = getValue(PtrV);
3250 
3251   SDValue Root = getRoot();
3252   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3253                                           NumValues));
3254   EVT PtrVT = Ptr.getValueType();
3255   bool isVolatile = I.isVolatile();
3256   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3257   unsigned Alignment = I.getAlignment();
3258   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3259 
3260   unsigned ChainI = 0;
3261   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3262     // See visitLoad comments.
3263     if (ChainI == MaxParallelChains) {
3264       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3265                                   MVT::Other, &Chains[0], ChainI);
3266       Root = Chain;
3267       ChainI = 0;
3268     }
3269     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3270                               DAG.getConstant(Offsets[i], PtrVT));
3271     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3272                               SDValue(Src.getNode(), Src.getResNo() + i),
3273                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3274                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3275     Chains[ChainI] = St;
3276   }
3277 
3278   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3279                                   MVT::Other, &Chains[0], ChainI);
3280   ++SDNodeOrder;
3281   AssignOrderingToNode(StoreNode.getNode());
3282   DAG.setRoot(StoreNode);
3283 }
3284 
3285 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3286                                     SynchronizationScope Scope,
3287                                     bool Before, DebugLoc dl,
3288                                     SelectionDAG &DAG,
3289                                     const TargetLowering &TLI) {
3290   // Fence, if necessary
3291   if (Before) {
3292     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3293       Order = Release;
3294     else if (Order == Acquire || Order == Monotonic)
3295       return Chain;
3296   } else {
3297     if (Order == AcquireRelease)
3298       Order = Acquire;
3299     else if (Order == Release || Order == Monotonic)
3300       return Chain;
3301   }
3302   SDValue Ops[3];
3303   Ops[0] = Chain;
3304   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3305   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3306   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3307 }
3308 
3309 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3310   DebugLoc dl = getCurDebugLoc();
3311   AtomicOrdering Order = I.getOrdering();
3312   SynchronizationScope Scope = I.getSynchScope();
3313 
3314   SDValue InChain = getRoot();
3315 
3316   if (TLI.getInsertFencesForAtomic())
3317     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3318                                    DAG, TLI);
3319 
3320   SDValue L =
3321     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3322                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3323                   InChain,
3324                   getValue(I.getPointerOperand()),
3325                   getValue(I.getCompareOperand()),
3326                   getValue(I.getNewValOperand()),
3327                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3328                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3329                   Scope);
3330 
3331   SDValue OutChain = L.getValue(1);
3332 
3333   if (TLI.getInsertFencesForAtomic())
3334     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3335                                     DAG, TLI);
3336 
3337   setValue(&I, L);
3338   DAG.setRoot(OutChain);
3339 }
3340 
3341 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3342   DebugLoc dl = getCurDebugLoc();
3343   ISD::NodeType NT;
3344   switch (I.getOperation()) {
3345   default: llvm_unreachable("Unknown atomicrmw operation"); return;
3346   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3347   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3348   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3349   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3350   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3351   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3352   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3353   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3354   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3355   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3356   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3357   }
3358   AtomicOrdering Order = I.getOrdering();
3359   SynchronizationScope Scope = I.getSynchScope();
3360 
3361   SDValue InChain = getRoot();
3362 
3363   if (TLI.getInsertFencesForAtomic())
3364     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3365                                    DAG, TLI);
3366 
3367   SDValue L =
3368     DAG.getAtomic(NT, dl,
3369                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3370                   InChain,
3371                   getValue(I.getPointerOperand()),
3372                   getValue(I.getValOperand()),
3373                   I.getPointerOperand(), 0 /* Alignment */,
3374                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3375                   Scope);
3376 
3377   SDValue OutChain = L.getValue(1);
3378 
3379   if (TLI.getInsertFencesForAtomic())
3380     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3381                                     DAG, TLI);
3382 
3383   setValue(&I, L);
3384   DAG.setRoot(OutChain);
3385 }
3386 
3387 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3388   DebugLoc dl = getCurDebugLoc();
3389   SDValue Ops[3];
3390   Ops[0] = getRoot();
3391   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3392   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3393   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3394 }
3395 
3396 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3397   DebugLoc dl = getCurDebugLoc();
3398   AtomicOrdering Order = I.getOrdering();
3399   SynchronizationScope Scope = I.getSynchScope();
3400 
3401   SDValue InChain = getRoot();
3402 
3403   EVT VT = EVT::getEVT(I.getType());
3404 
3405   SDValue L =
3406     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3407                   getValue(I.getPointerOperand()),
3408                   I.getPointerOperand(), I.getAlignment(),
3409                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3410                   Scope);
3411 
3412   SDValue OutChain = L.getValue(1);
3413 
3414   if (TLI.getInsertFencesForAtomic())
3415     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3416                                     DAG, TLI);
3417 
3418   setValue(&I, L);
3419   DAG.setRoot(OutChain);
3420 }
3421 
3422 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3423   DebugLoc dl = getCurDebugLoc();
3424 
3425   AtomicOrdering Order = I.getOrdering();
3426   SynchronizationScope Scope = I.getSynchScope();
3427 
3428   SDValue InChain = getRoot();
3429 
3430   if (TLI.getInsertFencesForAtomic())
3431     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3432                                    DAG, TLI);
3433 
3434   SDValue OutChain =
3435     DAG.getAtomic(ISD::ATOMIC_STORE, dl,
3436                   getValue(I.getValueOperand()).getValueType().getSimpleVT(),
3437                   InChain,
3438                   getValue(I.getPointerOperand()),
3439                   getValue(I.getValueOperand()),
3440                   I.getPointerOperand(), I.getAlignment(),
3441                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3442                   Scope);
3443 
3444   if (TLI.getInsertFencesForAtomic())
3445     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3446                                     DAG, TLI);
3447 
3448   DAG.setRoot(OutChain);
3449 }
3450 
3451 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3452 /// node.
3453 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3454                                                unsigned Intrinsic) {
3455   bool HasChain = !I.doesNotAccessMemory();
3456   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3457 
3458   // Build the operand list.
3459   SmallVector<SDValue, 8> Ops;
3460   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3461     if (OnlyLoad) {
3462       // We don't need to serialize loads against other loads.
3463       Ops.push_back(DAG.getRoot());
3464     } else {
3465       Ops.push_back(getRoot());
3466     }
3467   }
3468 
3469   // Info is set by getTgtMemInstrinsic
3470   TargetLowering::IntrinsicInfo Info;
3471   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3472 
3473   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3474   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3475       Info.opc == ISD::INTRINSIC_W_CHAIN)
3476     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3477 
3478   // Add all operands of the call to the operand list.
3479   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3480     SDValue Op = getValue(I.getArgOperand(i));
3481     assert(TLI.isTypeLegal(Op.getValueType()) &&
3482            "Intrinsic uses a non-legal type?");
3483     Ops.push_back(Op);
3484   }
3485 
3486   SmallVector<EVT, 4> ValueVTs;
3487   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3488 #ifndef NDEBUG
3489   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3490     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3491            "Intrinsic uses a non-legal type?");
3492   }
3493 #endif // NDEBUG
3494 
3495   if (HasChain)
3496     ValueVTs.push_back(MVT::Other);
3497 
3498   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3499 
3500   // Create the node.
3501   SDValue Result;
3502   if (IsTgtIntrinsic) {
3503     // This is target intrinsic that touches memory
3504     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3505                                      VTs, &Ops[0], Ops.size(),
3506                                      Info.memVT,
3507                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3508                                      Info.align, Info.vol,
3509                                      Info.readMem, Info.writeMem);
3510   } else if (!HasChain) {
3511     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3512                          VTs, &Ops[0], Ops.size());
3513   } else if (!I.getType()->isVoidTy()) {
3514     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3515                          VTs, &Ops[0], Ops.size());
3516   } else {
3517     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3518                          VTs, &Ops[0], Ops.size());
3519   }
3520 
3521   if (HasChain) {
3522     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3523     if (OnlyLoad)
3524       PendingLoads.push_back(Chain);
3525     else
3526       DAG.setRoot(Chain);
3527   }
3528 
3529   if (!I.getType()->isVoidTy()) {
3530     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3531       EVT VT = TLI.getValueType(PTy);
3532       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3533     }
3534 
3535     setValue(&I, Result);
3536   }
3537 }
3538 
3539 /// GetSignificand - Get the significand and build it into a floating-point
3540 /// number with exponent of 1:
3541 ///
3542 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3543 ///
3544 /// where Op is the hexidecimal representation of floating point value.
3545 static SDValue
3546 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3547   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3548                            DAG.getConstant(0x007fffff, MVT::i32));
3549   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3550                            DAG.getConstant(0x3f800000, MVT::i32));
3551   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3552 }
3553 
3554 /// GetExponent - Get the exponent:
3555 ///
3556 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3557 ///
3558 /// where Op is the hexidecimal representation of floating point value.
3559 static SDValue
3560 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3561             DebugLoc dl) {
3562   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3563                            DAG.getConstant(0x7f800000, MVT::i32));
3564   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3565                            DAG.getConstant(23, TLI.getPointerTy()));
3566   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3567                            DAG.getConstant(127, MVT::i32));
3568   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3569 }
3570 
3571 /// getF32Constant - Get 32-bit floating point constant.
3572 static SDValue
3573 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3574   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3575 }
3576 
3577 /// Inlined utility function to implement binary input atomic intrinsics for
3578 /// visitIntrinsicCall: I is a call instruction
3579 ///                     Op is the associated NodeType for I
3580 const char *
3581 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3582                                            ISD::NodeType Op) {
3583   SDValue Root = getRoot();
3584   SDValue L =
3585     DAG.getAtomic(Op, getCurDebugLoc(),
3586                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3587                   Root,
3588                   getValue(I.getArgOperand(0)),
3589                   getValue(I.getArgOperand(1)),
3590                   I.getArgOperand(0), 0 /* Alignment */,
3591                   Monotonic, CrossThread);
3592   setValue(&I, L);
3593   DAG.setRoot(L.getValue(1));
3594   return 0;
3595 }
3596 
3597 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3598 const char *
3599 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3600   SDValue Op1 = getValue(I.getArgOperand(0));
3601   SDValue Op2 = getValue(I.getArgOperand(1));
3602 
3603   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3604   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3605   return 0;
3606 }
3607 
3608 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3609 /// limited-precision mode.
3610 void
3611 SelectionDAGBuilder::visitExp(const CallInst &I) {
3612   SDValue result;
3613   DebugLoc dl = getCurDebugLoc();
3614 
3615   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3616       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3617     SDValue Op = getValue(I.getArgOperand(0));
3618 
3619     // Put the exponent in the right bit position for later addition to the
3620     // final result:
3621     //
3622     //   #define LOG2OFe 1.4426950f
3623     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3624     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3625                              getF32Constant(DAG, 0x3fb8aa3b));
3626     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3627 
3628     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3629     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3630     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3631 
3632     //   IntegerPartOfX <<= 23;
3633     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3634                                  DAG.getConstant(23, TLI.getPointerTy()));
3635 
3636     if (LimitFloatPrecision <= 6) {
3637       // For floating-point precision of 6:
3638       //
3639       //   TwoToFractionalPartOfX =
3640       //     0.997535578f +
3641       //       (0.735607626f + 0.252464424f * x) * x;
3642       //
3643       // error 0.0144103317, which is 6 bits
3644       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3645                                getF32Constant(DAG, 0x3e814304));
3646       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3647                                getF32Constant(DAG, 0x3f3c50c8));
3648       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3649       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3650                                getF32Constant(DAG, 0x3f7f5e7e));
3651       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3652 
3653       // Add the exponent into the result in integer domain.
3654       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3655                                TwoToFracPartOfX, IntegerPartOfX);
3656 
3657       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3658     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3659       // For floating-point precision of 12:
3660       //
3661       //   TwoToFractionalPartOfX =
3662       //     0.999892986f +
3663       //       (0.696457318f +
3664       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3665       //
3666       // 0.000107046256 error, which is 13 to 14 bits
3667       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3668                                getF32Constant(DAG, 0x3da235e3));
3669       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3670                                getF32Constant(DAG, 0x3e65b8f3));
3671       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3672       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3673                                getF32Constant(DAG, 0x3f324b07));
3674       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3675       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3676                                getF32Constant(DAG, 0x3f7ff8fd));
3677       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3678 
3679       // Add the exponent into the result in integer domain.
3680       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3681                                TwoToFracPartOfX, IntegerPartOfX);
3682 
3683       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3684     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3685       // For floating-point precision of 18:
3686       //
3687       //   TwoToFractionalPartOfX =
3688       //     0.999999982f +
3689       //       (0.693148872f +
3690       //         (0.240227044f +
3691       //           (0.554906021e-1f +
3692       //             (0.961591928e-2f +
3693       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3694       //
3695       // error 2.47208000*10^(-7), which is better than 18 bits
3696       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3697                                getF32Constant(DAG, 0x3924b03e));
3698       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3699                                getF32Constant(DAG, 0x3ab24b87));
3700       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3701       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3702                                getF32Constant(DAG, 0x3c1d8c17));
3703       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3704       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3705                                getF32Constant(DAG, 0x3d634a1d));
3706       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3707       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3708                                getF32Constant(DAG, 0x3e75fe14));
3709       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3710       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3711                                 getF32Constant(DAG, 0x3f317234));
3712       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3713       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3714                                 getF32Constant(DAG, 0x3f800000));
3715       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3716                                              MVT::i32, t13);
3717 
3718       // Add the exponent into the result in integer domain.
3719       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3720                                 TwoToFracPartOfX, IntegerPartOfX);
3721 
3722       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3723     }
3724   } else {
3725     // No special expansion.
3726     result = DAG.getNode(ISD::FEXP, dl,
3727                          getValue(I.getArgOperand(0)).getValueType(),
3728                          getValue(I.getArgOperand(0)));
3729   }
3730 
3731   setValue(&I, result);
3732 }
3733 
3734 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3735 /// limited-precision mode.
3736 void
3737 SelectionDAGBuilder::visitLog(const CallInst &I) {
3738   SDValue result;
3739   DebugLoc dl = getCurDebugLoc();
3740 
3741   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3742       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3743     SDValue Op = getValue(I.getArgOperand(0));
3744     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3745 
3746     // Scale the exponent by log(2) [0.69314718f].
3747     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3748     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3749                                         getF32Constant(DAG, 0x3f317218));
3750 
3751     // Get the significand and build it into a floating-point number with
3752     // exponent of 1.
3753     SDValue X = GetSignificand(DAG, Op1, dl);
3754 
3755     if (LimitFloatPrecision <= 6) {
3756       // For floating-point precision of 6:
3757       //
3758       //   LogofMantissa =
3759       //     -1.1609546f +
3760       //       (1.4034025f - 0.23903021f * x) * x;
3761       //
3762       // error 0.0034276066, which is better than 8 bits
3763       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                                getF32Constant(DAG, 0xbe74c456));
3765       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3766                                getF32Constant(DAG, 0x3fb3a2b1));
3767       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3769                                           getF32Constant(DAG, 0x3f949a29));
3770 
3771       result = DAG.getNode(ISD::FADD, dl,
3772                            MVT::f32, LogOfExponent, LogOfMantissa);
3773     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3774       // For floating-point precision of 12:
3775       //
3776       //   LogOfMantissa =
3777       //     -1.7417939f +
3778       //       (2.8212026f +
3779       //         (-1.4699568f +
3780       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3781       //
3782       // error 0.000061011436, which is 14 bits
3783       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3784                                getF32Constant(DAG, 0xbd67b6d6));
3785       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3786                                getF32Constant(DAG, 0x3ee4f4b8));
3787       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3788       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3789                                getF32Constant(DAG, 0x3fbc278b));
3790       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                                getF32Constant(DAG, 0x40348e95));
3793       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3795                                           getF32Constant(DAG, 0x3fdef31a));
3796 
3797       result = DAG.getNode(ISD::FADD, dl,
3798                            MVT::f32, LogOfExponent, LogOfMantissa);
3799     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3800       // For floating-point precision of 18:
3801       //
3802       //   LogOfMantissa =
3803       //     -2.1072184f +
3804       //       (4.2372794f +
3805       //         (-3.7029485f +
3806       //           (2.2781945f +
3807       //             (-0.87823314f +
3808       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3809       //
3810       // error 0.0000023660568, which is better than 18 bits
3811       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3812                                getF32Constant(DAG, 0xbc91e5ac));
3813       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3814                                getF32Constant(DAG, 0x3e4350aa));
3815       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3816       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3817                                getF32Constant(DAG, 0x3f60d3e3));
3818       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3819       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3820                                getF32Constant(DAG, 0x4011cdf0));
3821       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3822       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3823                                getF32Constant(DAG, 0x406cfd1c));
3824       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3825       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3826                                getF32Constant(DAG, 0x408797cb));
3827       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3828       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3829                                           getF32Constant(DAG, 0x4006dcab));
3830 
3831       result = DAG.getNode(ISD::FADD, dl,
3832                            MVT::f32, LogOfExponent, LogOfMantissa);
3833     }
3834   } else {
3835     // No special expansion.
3836     result = DAG.getNode(ISD::FLOG, dl,
3837                          getValue(I.getArgOperand(0)).getValueType(),
3838                          getValue(I.getArgOperand(0)));
3839   }
3840 
3841   setValue(&I, result);
3842 }
3843 
3844 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3845 /// limited-precision mode.
3846 void
3847 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3848   SDValue result;
3849   DebugLoc dl = getCurDebugLoc();
3850 
3851   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3852       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3853     SDValue Op = getValue(I.getArgOperand(0));
3854     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3855 
3856     // Get the exponent.
3857     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3858 
3859     // Get the significand and build it into a floating-point number with
3860     // exponent of 1.
3861     SDValue X = GetSignificand(DAG, Op1, dl);
3862 
3863     // Different possible minimax approximations of significand in
3864     // floating-point for various degrees of accuracy over [1,2].
3865     if (LimitFloatPrecision <= 6) {
3866       // For floating-point precision of 6:
3867       //
3868       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3869       //
3870       // error 0.0049451742, which is more than 7 bits
3871       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                                getF32Constant(DAG, 0xbeb08fe0));
3873       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874                                getF32Constant(DAG, 0x40019463));
3875       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877                                            getF32Constant(DAG, 0x3fd6633d));
3878 
3879       result = DAG.getNode(ISD::FADD, dl,
3880                            MVT::f32, LogOfExponent, Log2ofMantissa);
3881     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3882       // For floating-point precision of 12:
3883       //
3884       //   Log2ofMantissa =
3885       //     -2.51285454f +
3886       //       (4.07009056f +
3887       //         (-2.12067489f +
3888       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3889       //
3890       // error 0.0000876136000, which is better than 13 bits
3891       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3892                                getF32Constant(DAG, 0xbda7262e));
3893       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3894                                getF32Constant(DAG, 0x3f25280b));
3895       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3896       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3897                                getF32Constant(DAG, 0x4007b923));
3898       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3899       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3900                                getF32Constant(DAG, 0x40823e2f));
3901       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3902       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3903                                            getF32Constant(DAG, 0x4020d29c));
3904 
3905       result = DAG.getNode(ISD::FADD, dl,
3906                            MVT::f32, LogOfExponent, Log2ofMantissa);
3907     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3908       // For floating-point precision of 18:
3909       //
3910       //   Log2ofMantissa =
3911       //     -3.0400495f +
3912       //       (6.1129976f +
3913       //         (-5.3420409f +
3914       //           (3.2865683f +
3915       //             (-1.2669343f +
3916       //               (0.27515199f -
3917       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3918       //
3919       // error 0.0000018516, which is better than 18 bits
3920       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3921                                getF32Constant(DAG, 0xbcd2769e));
3922       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3923                                getF32Constant(DAG, 0x3e8ce0b9));
3924       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3925       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3926                                getF32Constant(DAG, 0x3fa22ae7));
3927       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3928       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3929                                getF32Constant(DAG, 0x40525723));
3930       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3931       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3932                                getF32Constant(DAG, 0x40aaf200));
3933       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3934       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3935                                getF32Constant(DAG, 0x40c39dad));
3936       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3937       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3938                                            getF32Constant(DAG, 0x4042902c));
3939 
3940       result = DAG.getNode(ISD::FADD, dl,
3941                            MVT::f32, LogOfExponent, Log2ofMantissa);
3942     }
3943   } else {
3944     // No special expansion.
3945     result = DAG.getNode(ISD::FLOG2, dl,
3946                          getValue(I.getArgOperand(0)).getValueType(),
3947                          getValue(I.getArgOperand(0)));
3948   }
3949 
3950   setValue(&I, result);
3951 }
3952 
3953 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3954 /// limited-precision mode.
3955 void
3956 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3957   SDValue result;
3958   DebugLoc dl = getCurDebugLoc();
3959 
3960   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3961       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3962     SDValue Op = getValue(I.getArgOperand(0));
3963     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3964 
3965     // Scale the exponent by log10(2) [0.30102999f].
3966     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3967     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3968                                         getF32Constant(DAG, 0x3e9a209a));
3969 
3970     // Get the significand and build it into a floating-point number with
3971     // exponent of 1.
3972     SDValue X = GetSignificand(DAG, Op1, dl);
3973 
3974     if (LimitFloatPrecision <= 6) {
3975       // For floating-point precision of 6:
3976       //
3977       //   Log10ofMantissa =
3978       //     -0.50419619f +
3979       //       (0.60948995f - 0.10380950f * x) * x;
3980       //
3981       // error 0.0014886165, which is 6 bits
3982       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3983                                getF32Constant(DAG, 0xbdd49a13));
3984       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3985                                getF32Constant(DAG, 0x3f1c0789));
3986       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3987       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3988                                             getF32Constant(DAG, 0x3f011300));
3989 
3990       result = DAG.getNode(ISD::FADD, dl,
3991                            MVT::f32, LogOfExponent, Log10ofMantissa);
3992     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3993       // For floating-point precision of 12:
3994       //
3995       //   Log10ofMantissa =
3996       //     -0.64831180f +
3997       //       (0.91751397f +
3998       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3999       //
4000       // error 0.00019228036, which is better than 12 bits
4001       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4002                                getF32Constant(DAG, 0x3d431f31));
4003       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4004                                getF32Constant(DAG, 0x3ea21fb2));
4005       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4006       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4007                                getF32Constant(DAG, 0x3f6ae232));
4008       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4009       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4010                                             getF32Constant(DAG, 0x3f25f7c3));
4011 
4012       result = DAG.getNode(ISD::FADD, dl,
4013                            MVT::f32, LogOfExponent, Log10ofMantissa);
4014     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4015       // For floating-point precision of 18:
4016       //
4017       //   Log10ofMantissa =
4018       //     -0.84299375f +
4019       //       (1.5327582f +
4020       //         (-1.0688956f +
4021       //           (0.49102474f +
4022       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4023       //
4024       // error 0.0000037995730, which is better than 18 bits
4025       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026                                getF32Constant(DAG, 0x3c5d51ce));
4027       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4028                                getF32Constant(DAG, 0x3e00685a));
4029       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4030       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4031                                getF32Constant(DAG, 0x3efb6798));
4032       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4034                                getF32Constant(DAG, 0x3f88d192));
4035       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4036       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4037                                getF32Constant(DAG, 0x3fc4316c));
4038       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4039       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4040                                             getF32Constant(DAG, 0x3f57ce70));
4041 
4042       result = DAG.getNode(ISD::FADD, dl,
4043                            MVT::f32, LogOfExponent, Log10ofMantissa);
4044     }
4045   } else {
4046     // No special expansion.
4047     result = DAG.getNode(ISD::FLOG10, dl,
4048                          getValue(I.getArgOperand(0)).getValueType(),
4049                          getValue(I.getArgOperand(0)));
4050   }
4051 
4052   setValue(&I, result);
4053 }
4054 
4055 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4056 /// limited-precision mode.
4057 void
4058 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4059   SDValue result;
4060   DebugLoc dl = getCurDebugLoc();
4061 
4062   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4063       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4064     SDValue Op = getValue(I.getArgOperand(0));
4065 
4066     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4067 
4068     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4069     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4070     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4071 
4072     //   IntegerPartOfX <<= 23;
4073     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4074                                  DAG.getConstant(23, TLI.getPointerTy()));
4075 
4076     if (LimitFloatPrecision <= 6) {
4077       // For floating-point precision of 6:
4078       //
4079       //   TwoToFractionalPartOfX =
4080       //     0.997535578f +
4081       //       (0.735607626f + 0.252464424f * x) * x;
4082       //
4083       // error 0.0144103317, which is 6 bits
4084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4085                                getF32Constant(DAG, 0x3e814304));
4086       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4087                                getF32Constant(DAG, 0x3f3c50c8));
4088       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4089       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4090                                getF32Constant(DAG, 0x3f7f5e7e));
4091       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4092       SDValue TwoToFractionalPartOfX =
4093         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4094 
4095       result = DAG.getNode(ISD::BITCAST, dl,
4096                            MVT::f32, TwoToFractionalPartOfX);
4097     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4098       // For floating-point precision of 12:
4099       //
4100       //   TwoToFractionalPartOfX =
4101       //     0.999892986f +
4102       //       (0.696457318f +
4103       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4104       //
4105       // error 0.000107046256, which is 13 to 14 bits
4106       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4107                                getF32Constant(DAG, 0x3da235e3));
4108       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4109                                getF32Constant(DAG, 0x3e65b8f3));
4110       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                                getF32Constant(DAG, 0x3f324b07));
4113       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4114       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4115                                getF32Constant(DAG, 0x3f7ff8fd));
4116       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4117       SDValue TwoToFractionalPartOfX =
4118         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4119 
4120       result = DAG.getNode(ISD::BITCAST, dl,
4121                            MVT::f32, TwoToFractionalPartOfX);
4122     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4123       // For floating-point precision of 18:
4124       //
4125       //   TwoToFractionalPartOfX =
4126       //     0.999999982f +
4127       //       (0.693148872f +
4128       //         (0.240227044f +
4129       //           (0.554906021e-1f +
4130       //             (0.961591928e-2f +
4131       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4132       // error 2.47208000*10^(-7), which is better than 18 bits
4133       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4134                                getF32Constant(DAG, 0x3924b03e));
4135       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                                getF32Constant(DAG, 0x3ab24b87));
4137       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                                getF32Constant(DAG, 0x3c1d8c17));
4140       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4142                                getF32Constant(DAG, 0x3d634a1d));
4143       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4144       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4145                                getF32Constant(DAG, 0x3e75fe14));
4146       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4147       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4148                                 getF32Constant(DAG, 0x3f317234));
4149       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4150       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4151                                 getF32Constant(DAG, 0x3f800000));
4152       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4153       SDValue TwoToFractionalPartOfX =
4154         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4155 
4156       result = DAG.getNode(ISD::BITCAST, dl,
4157                            MVT::f32, TwoToFractionalPartOfX);
4158     }
4159   } else {
4160     // No special expansion.
4161     result = DAG.getNode(ISD::FEXP2, dl,
4162                          getValue(I.getArgOperand(0)).getValueType(),
4163                          getValue(I.getArgOperand(0)));
4164   }
4165 
4166   setValue(&I, result);
4167 }
4168 
4169 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4170 /// limited-precision mode with x == 10.0f.
4171 void
4172 SelectionDAGBuilder::visitPow(const CallInst &I) {
4173   SDValue result;
4174   const Value *Val = I.getArgOperand(0);
4175   DebugLoc dl = getCurDebugLoc();
4176   bool IsExp10 = false;
4177 
4178   if (getValue(Val).getValueType() == MVT::f32 &&
4179       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4180       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4181     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4182       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4183         APFloat Ten(10.0f);
4184         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4185       }
4186     }
4187   }
4188 
4189   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4190     SDValue Op = getValue(I.getArgOperand(1));
4191 
4192     // Put the exponent in the right bit position for later addition to the
4193     // final result:
4194     //
4195     //   #define LOG2OF10 3.3219281f
4196     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4197     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4198                              getF32Constant(DAG, 0x40549a78));
4199     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4200 
4201     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4202     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4203     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4204 
4205     //   IntegerPartOfX <<= 23;
4206     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4207                                  DAG.getConstant(23, TLI.getPointerTy()));
4208 
4209     if (LimitFloatPrecision <= 6) {
4210       // For floating-point precision of 6:
4211       //
4212       //   twoToFractionalPartOfX =
4213       //     0.997535578f +
4214       //       (0.735607626f + 0.252464424f * x) * x;
4215       //
4216       // error 0.0144103317, which is 6 bits
4217       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218                                getF32Constant(DAG, 0x3e814304));
4219       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220                                getF32Constant(DAG, 0x3f3c50c8));
4221       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223                                getF32Constant(DAG, 0x3f7f5e7e));
4224       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4225       SDValue TwoToFractionalPartOfX =
4226         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4227 
4228       result = DAG.getNode(ISD::BITCAST, dl,
4229                            MVT::f32, TwoToFractionalPartOfX);
4230     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4231       // For floating-point precision of 12:
4232       //
4233       //   TwoToFractionalPartOfX =
4234       //     0.999892986f +
4235       //       (0.696457318f +
4236       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4237       //
4238       // error 0.000107046256, which is 13 to 14 bits
4239       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4240                                getF32Constant(DAG, 0x3da235e3));
4241       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4242                                getF32Constant(DAG, 0x3e65b8f3));
4243       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4244       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4245                                getF32Constant(DAG, 0x3f324b07));
4246       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4247       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4248                                getF32Constant(DAG, 0x3f7ff8fd));
4249       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4250       SDValue TwoToFractionalPartOfX =
4251         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4252 
4253       result = DAG.getNode(ISD::BITCAST, dl,
4254                            MVT::f32, TwoToFractionalPartOfX);
4255     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4256       // For floating-point precision of 18:
4257       //
4258       //   TwoToFractionalPartOfX =
4259       //     0.999999982f +
4260       //       (0.693148872f +
4261       //         (0.240227044f +
4262       //           (0.554906021e-1f +
4263       //             (0.961591928e-2f +
4264       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4265       // error 2.47208000*10^(-7), which is better than 18 bits
4266       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4267                                getF32Constant(DAG, 0x3924b03e));
4268       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4269                                getF32Constant(DAG, 0x3ab24b87));
4270       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4271       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4272                                getF32Constant(DAG, 0x3c1d8c17));
4273       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4274       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4275                                getF32Constant(DAG, 0x3d634a1d));
4276       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4277       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4278                                getF32Constant(DAG, 0x3e75fe14));
4279       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4280       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4281                                 getF32Constant(DAG, 0x3f317234));
4282       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4283       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4284                                 getF32Constant(DAG, 0x3f800000));
4285       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4286       SDValue TwoToFractionalPartOfX =
4287         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4288 
4289       result = DAG.getNode(ISD::BITCAST, dl,
4290                            MVT::f32, TwoToFractionalPartOfX);
4291     }
4292   } else {
4293     // No special expansion.
4294     result = DAG.getNode(ISD::FPOW, dl,
4295                          getValue(I.getArgOperand(0)).getValueType(),
4296                          getValue(I.getArgOperand(0)),
4297                          getValue(I.getArgOperand(1)));
4298   }
4299 
4300   setValue(&I, result);
4301 }
4302 
4303 
4304 /// ExpandPowI - Expand a llvm.powi intrinsic.
4305 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4306                           SelectionDAG &DAG) {
4307   // If RHS is a constant, we can expand this out to a multiplication tree,
4308   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4309   // optimizing for size, we only want to do this if the expansion would produce
4310   // a small number of multiplies, otherwise we do the full expansion.
4311   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4312     // Get the exponent as a positive value.
4313     unsigned Val = RHSC->getSExtValue();
4314     if ((int)Val < 0) Val = -Val;
4315 
4316     // powi(x, 0) -> 1.0
4317     if (Val == 0)
4318       return DAG.getConstantFP(1.0, LHS.getValueType());
4319 
4320     const Function *F = DAG.getMachineFunction().getFunction();
4321     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4322         // If optimizing for size, don't insert too many multiplies.  This
4323         // inserts up to 5 multiplies.
4324         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4325       // We use the simple binary decomposition method to generate the multiply
4326       // sequence.  There are more optimal ways to do this (for example,
4327       // powi(x,15) generates one more multiply than it should), but this has
4328       // the benefit of being both really simple and much better than a libcall.
4329       SDValue Res;  // Logically starts equal to 1.0
4330       SDValue CurSquare = LHS;
4331       while (Val) {
4332         if (Val & 1) {
4333           if (Res.getNode())
4334             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4335           else
4336             Res = CurSquare;  // 1.0*CurSquare.
4337         }
4338 
4339         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4340                                 CurSquare, CurSquare);
4341         Val >>= 1;
4342       }
4343 
4344       // If the original was negative, invert the result, producing 1/(x*x*x).
4345       if (RHSC->getSExtValue() < 0)
4346         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4347                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4348       return Res;
4349     }
4350   }
4351 
4352   // Otherwise, expand to a libcall.
4353   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4354 }
4355 
4356 // getTruncatedArgReg - Find underlying register used for an truncated
4357 // argument.
4358 static unsigned getTruncatedArgReg(const SDValue &N) {
4359   if (N.getOpcode() != ISD::TRUNCATE)
4360     return 0;
4361 
4362   const SDValue &Ext = N.getOperand(0);
4363   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4364     const SDValue &CFR = Ext.getOperand(0);
4365     if (CFR.getOpcode() == ISD::CopyFromReg)
4366       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4367     else
4368       if (CFR.getOpcode() == ISD::TRUNCATE)
4369         return getTruncatedArgReg(CFR);
4370   }
4371   return 0;
4372 }
4373 
4374 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4375 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4376 /// At the end of instruction selection, they will be inserted to the entry BB.
4377 bool
4378 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4379                                               int64_t Offset,
4380                                               const SDValue &N) {
4381   const Argument *Arg = dyn_cast<Argument>(V);
4382   if (!Arg)
4383     return false;
4384 
4385   MachineFunction &MF = DAG.getMachineFunction();
4386   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4387   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4388 
4389   // Ignore inlined function arguments here.
4390   DIVariable DV(Variable);
4391   if (DV.isInlinedFnArgument(MF.getFunction()))
4392     return false;
4393 
4394   unsigned Reg = 0;
4395   if (Arg->hasByValAttr()) {
4396     // Byval arguments' frame index is recorded during argument lowering.
4397     // Use this info directly.
4398     Reg = TRI->getFrameRegister(MF);
4399     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4400     // If byval argument ofset is not recorded then ignore this.
4401     if (!Offset)
4402       Reg = 0;
4403   }
4404 
4405   if (N.getNode()) {
4406     if (N.getOpcode() == ISD::CopyFromReg)
4407       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4408     else
4409       Reg = getTruncatedArgReg(N);
4410     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4411       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4412       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4413       if (PR)
4414         Reg = PR;
4415     }
4416   }
4417 
4418   if (!Reg) {
4419     // Check if ValueMap has reg number.
4420     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4421     if (VMI != FuncInfo.ValueMap.end())
4422       Reg = VMI->second;
4423   }
4424 
4425   if (!Reg && N.getNode()) {
4426     // Check if frame index is available.
4427     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4428       if (FrameIndexSDNode *FINode =
4429           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4430         Reg = TRI->getFrameRegister(MF);
4431         Offset = FINode->getIndex();
4432       }
4433   }
4434 
4435   if (!Reg)
4436     return false;
4437 
4438   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4439                                     TII->get(TargetOpcode::DBG_VALUE))
4440     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4441   FuncInfo.ArgDbgValues.push_back(&*MIB);
4442   return true;
4443 }
4444 
4445 // VisualStudio defines setjmp as _setjmp
4446 #if defined(_MSC_VER) && defined(setjmp) && \
4447                          !defined(setjmp_undefined_for_msvc)
4448 #  pragma push_macro("setjmp")
4449 #  undef setjmp
4450 #  define setjmp_undefined_for_msvc
4451 #endif
4452 
4453 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4454 /// we want to emit this as a call to a named external function, return the name
4455 /// otherwise lower it and return null.
4456 const char *
4457 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4458   DebugLoc dl = getCurDebugLoc();
4459   SDValue Res;
4460 
4461   switch (Intrinsic) {
4462   default:
4463     // By default, turn this into a target intrinsic node.
4464     visitTargetIntrinsic(I, Intrinsic);
4465     return 0;
4466   case Intrinsic::vastart:  visitVAStart(I); return 0;
4467   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4468   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4469   case Intrinsic::returnaddress:
4470     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4471                              getValue(I.getArgOperand(0))));
4472     return 0;
4473   case Intrinsic::frameaddress:
4474     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4475                              getValue(I.getArgOperand(0))));
4476     return 0;
4477   case Intrinsic::setjmp:
4478     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4479   case Intrinsic::longjmp:
4480     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4481   case Intrinsic::memcpy: {
4482     // Assert for address < 256 since we support only user defined address
4483     // spaces.
4484     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4485            < 256 &&
4486            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4487            < 256 &&
4488            "Unknown address space");
4489     SDValue Op1 = getValue(I.getArgOperand(0));
4490     SDValue Op2 = getValue(I.getArgOperand(1));
4491     SDValue Op3 = getValue(I.getArgOperand(2));
4492     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4493     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4494     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4495                               MachinePointerInfo(I.getArgOperand(0)),
4496                               MachinePointerInfo(I.getArgOperand(1))));
4497     return 0;
4498   }
4499   case Intrinsic::memset: {
4500     // Assert for address < 256 since we support only user defined address
4501     // spaces.
4502     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4503            < 256 &&
4504            "Unknown address space");
4505     SDValue Op1 = getValue(I.getArgOperand(0));
4506     SDValue Op2 = getValue(I.getArgOperand(1));
4507     SDValue Op3 = getValue(I.getArgOperand(2));
4508     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4509     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4510     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4511                               MachinePointerInfo(I.getArgOperand(0))));
4512     return 0;
4513   }
4514   case Intrinsic::memmove: {
4515     // Assert for address < 256 since we support only user defined address
4516     // spaces.
4517     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4518            < 256 &&
4519            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4520            < 256 &&
4521            "Unknown address space");
4522     SDValue Op1 = getValue(I.getArgOperand(0));
4523     SDValue Op2 = getValue(I.getArgOperand(1));
4524     SDValue Op3 = getValue(I.getArgOperand(2));
4525     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4526     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4527     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4528                                MachinePointerInfo(I.getArgOperand(0)),
4529                                MachinePointerInfo(I.getArgOperand(1))));
4530     return 0;
4531   }
4532   case Intrinsic::dbg_declare: {
4533     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4534     MDNode *Variable = DI.getVariable();
4535     const Value *Address = DI.getAddress();
4536     if (!Address || !DIVariable(DI.getVariable()).Verify())
4537       return 0;
4538 
4539     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4540     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4541     // absolute, but not relative, values are different depending on whether
4542     // debug info exists.
4543     ++SDNodeOrder;
4544 
4545     // Check if address has undef value.
4546     if (isa<UndefValue>(Address) ||
4547         (Address->use_empty() && !isa<Argument>(Address))) {
4548       DEBUG(dbgs() << "Dropping debug info for " << DI);
4549       return 0;
4550     }
4551 
4552     SDValue &N = NodeMap[Address];
4553     if (!N.getNode() && isa<Argument>(Address))
4554       // Check unused arguments map.
4555       N = UnusedArgNodeMap[Address];
4556     SDDbgValue *SDV;
4557     if (N.getNode()) {
4558       // Parameters are handled specially.
4559       bool isParameter =
4560         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4561       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4562         Address = BCI->getOperand(0);
4563       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4564 
4565       if (isParameter && !AI) {
4566         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4567         if (FINode)
4568           // Byval parameter.  We have a frame index at this point.
4569           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4570                                 0, dl, SDNodeOrder);
4571         else {
4572           // Address is an argument, so try to emit its dbg value using
4573           // virtual register info from the FuncInfo.ValueMap.
4574           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4575           return 0;
4576         }
4577       } else if (AI)
4578         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4579                               0, dl, SDNodeOrder);
4580       else {
4581         // Can't do anything with other non-AI cases yet.
4582         DEBUG(dbgs() << "Dropping debug info for " << DI);
4583         return 0;
4584       }
4585       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4586     } else {
4587       // If Address is an argument then try to emit its dbg value using
4588       // virtual register info from the FuncInfo.ValueMap.
4589       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4590         // If variable is pinned by a alloca in dominating bb then
4591         // use StaticAllocaMap.
4592         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4593           if (AI->getParent() != DI.getParent()) {
4594             DenseMap<const AllocaInst*, int>::iterator SI =
4595               FuncInfo.StaticAllocaMap.find(AI);
4596             if (SI != FuncInfo.StaticAllocaMap.end()) {
4597               SDV = DAG.getDbgValue(Variable, SI->second,
4598                                     0, dl, SDNodeOrder);
4599               DAG.AddDbgValue(SDV, 0, false);
4600               return 0;
4601             }
4602           }
4603         }
4604         DEBUG(dbgs() << "Dropping debug info for " << DI);
4605       }
4606     }
4607     return 0;
4608   }
4609   case Intrinsic::dbg_value: {
4610     const DbgValueInst &DI = cast<DbgValueInst>(I);
4611     if (!DIVariable(DI.getVariable()).Verify())
4612       return 0;
4613 
4614     MDNode *Variable = DI.getVariable();
4615     uint64_t Offset = DI.getOffset();
4616     const Value *V = DI.getValue();
4617     if (!V)
4618       return 0;
4619 
4620     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4621     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4622     // absolute, but not relative, values are different depending on whether
4623     // debug info exists.
4624     ++SDNodeOrder;
4625     SDDbgValue *SDV;
4626     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4627       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4628       DAG.AddDbgValue(SDV, 0, false);
4629     } else {
4630       // Do not use getValue() in here; we don't want to generate code at
4631       // this point if it hasn't been done yet.
4632       SDValue N = NodeMap[V];
4633       if (!N.getNode() && isa<Argument>(V))
4634         // Check unused arguments map.
4635         N = UnusedArgNodeMap[V];
4636       if (N.getNode()) {
4637         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4638           SDV = DAG.getDbgValue(Variable, N.getNode(),
4639                                 N.getResNo(), Offset, dl, SDNodeOrder);
4640           DAG.AddDbgValue(SDV, N.getNode(), false);
4641         }
4642       } else if (!V->use_empty() ) {
4643         // Do not call getValue(V) yet, as we don't want to generate code.
4644         // Remember it for later.
4645         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4646         DanglingDebugInfoMap[V] = DDI;
4647       } else {
4648         // We may expand this to cover more cases.  One case where we have no
4649         // data available is an unreferenced parameter.
4650         DEBUG(dbgs() << "Dropping debug info for " << DI);
4651       }
4652     }
4653 
4654     // Build a debug info table entry.
4655     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4656       V = BCI->getOperand(0);
4657     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4658     // Don't handle byval struct arguments or VLAs, for example.
4659     if (!AI)
4660       return 0;
4661     DenseMap<const AllocaInst*, int>::iterator SI =
4662       FuncInfo.StaticAllocaMap.find(AI);
4663     if (SI == FuncInfo.StaticAllocaMap.end())
4664       return 0; // VLAs.
4665     int FI = SI->second;
4666 
4667     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4668     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4669       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4670     return 0;
4671   }
4672   case Intrinsic::eh_exception: {
4673     // Insert the EXCEPTIONADDR instruction.
4674     assert(FuncInfo.MBB->isLandingPad() &&
4675            "Call to eh.exception not in landing pad!");
4676     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4677     SDValue Ops[1];
4678     Ops[0] = DAG.getRoot();
4679     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4680     setValue(&I, Op);
4681     DAG.setRoot(Op.getValue(1));
4682     return 0;
4683   }
4684 
4685   case Intrinsic::eh_selector: {
4686     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4687     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4688     if (CallMBB->isLandingPad())
4689       AddCatchInfo(I, &MMI, CallMBB);
4690     else {
4691 #ifndef NDEBUG
4692       FuncInfo.CatchInfoLost.insert(&I);
4693 #endif
4694       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4695       unsigned Reg = TLI.getExceptionSelectorRegister();
4696       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4697     }
4698 
4699     // Insert the EHSELECTION instruction.
4700     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4701     SDValue Ops[2];
4702     Ops[0] = getValue(I.getArgOperand(0));
4703     Ops[1] = getRoot();
4704     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4705     DAG.setRoot(Op.getValue(1));
4706     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4707     return 0;
4708   }
4709 
4710   case Intrinsic::eh_typeid_for: {
4711     // Find the type id for the given typeinfo.
4712     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4713     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4714     Res = DAG.getConstant(TypeID, MVT::i32);
4715     setValue(&I, Res);
4716     return 0;
4717   }
4718 
4719   case Intrinsic::eh_return_i32:
4720   case Intrinsic::eh_return_i64:
4721     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4722     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4723                             MVT::Other,
4724                             getControlRoot(),
4725                             getValue(I.getArgOperand(0)),
4726                             getValue(I.getArgOperand(1))));
4727     return 0;
4728   case Intrinsic::eh_unwind_init:
4729     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4730     return 0;
4731   case Intrinsic::eh_dwarf_cfa: {
4732     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4733                                         TLI.getPointerTy());
4734     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4735                                  TLI.getPointerTy(),
4736                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4737                                              TLI.getPointerTy()),
4738                                  CfaArg);
4739     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4740                              TLI.getPointerTy(),
4741                              DAG.getConstant(0, TLI.getPointerTy()));
4742     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4743                              FA, Offset));
4744     return 0;
4745   }
4746   case Intrinsic::eh_sjlj_callsite: {
4747     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4748     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4749     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4750     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4751 
4752     MMI.setCurrentCallSite(CI->getZExtValue());
4753     return 0;
4754   }
4755   case Intrinsic::eh_sjlj_setjmp: {
4756     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4757                              getValue(I.getArgOperand(0))));
4758     return 0;
4759   }
4760   case Intrinsic::eh_sjlj_longjmp: {
4761     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4762                             getRoot(), getValue(I.getArgOperand(0))));
4763     return 0;
4764   }
4765   case Intrinsic::eh_sjlj_dispatch_setup: {
4766     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4767                             getRoot(), getValue(I.getArgOperand(0))));
4768     return 0;
4769   }
4770 
4771   case Intrinsic::x86_mmx_pslli_w:
4772   case Intrinsic::x86_mmx_pslli_d:
4773   case Intrinsic::x86_mmx_pslli_q:
4774   case Intrinsic::x86_mmx_psrli_w:
4775   case Intrinsic::x86_mmx_psrli_d:
4776   case Intrinsic::x86_mmx_psrli_q:
4777   case Intrinsic::x86_mmx_psrai_w:
4778   case Intrinsic::x86_mmx_psrai_d: {
4779     SDValue ShAmt = getValue(I.getArgOperand(1));
4780     if (isa<ConstantSDNode>(ShAmt)) {
4781       visitTargetIntrinsic(I, Intrinsic);
4782       return 0;
4783     }
4784     unsigned NewIntrinsic = 0;
4785     EVT ShAmtVT = MVT::v2i32;
4786     switch (Intrinsic) {
4787     case Intrinsic::x86_mmx_pslli_w:
4788       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4789       break;
4790     case Intrinsic::x86_mmx_pslli_d:
4791       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4792       break;
4793     case Intrinsic::x86_mmx_pslli_q:
4794       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4795       break;
4796     case Intrinsic::x86_mmx_psrli_w:
4797       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4798       break;
4799     case Intrinsic::x86_mmx_psrli_d:
4800       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4801       break;
4802     case Intrinsic::x86_mmx_psrli_q:
4803       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4804       break;
4805     case Intrinsic::x86_mmx_psrai_w:
4806       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4807       break;
4808     case Intrinsic::x86_mmx_psrai_d:
4809       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4810       break;
4811     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4812     }
4813 
4814     // The vector shift intrinsics with scalars uses 32b shift amounts but
4815     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4816     // to be zero.
4817     // We must do this early because v2i32 is not a legal type.
4818     DebugLoc dl = getCurDebugLoc();
4819     SDValue ShOps[2];
4820     ShOps[0] = ShAmt;
4821     ShOps[1] = DAG.getConstant(0, MVT::i32);
4822     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4823     EVT DestVT = TLI.getValueType(I.getType());
4824     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4825     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4826                        DAG.getConstant(NewIntrinsic, MVT::i32),
4827                        getValue(I.getArgOperand(0)), ShAmt);
4828     setValue(&I, Res);
4829     return 0;
4830   }
4831   case Intrinsic::convertff:
4832   case Intrinsic::convertfsi:
4833   case Intrinsic::convertfui:
4834   case Intrinsic::convertsif:
4835   case Intrinsic::convertuif:
4836   case Intrinsic::convertss:
4837   case Intrinsic::convertsu:
4838   case Intrinsic::convertus:
4839   case Intrinsic::convertuu: {
4840     ISD::CvtCode Code = ISD::CVT_INVALID;
4841     switch (Intrinsic) {
4842     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4843     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4844     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4845     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4846     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4847     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4848     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4849     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4850     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4851     }
4852     EVT DestVT = TLI.getValueType(I.getType());
4853     const Value *Op1 = I.getArgOperand(0);
4854     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4855                                DAG.getValueType(DestVT),
4856                                DAG.getValueType(getValue(Op1).getValueType()),
4857                                getValue(I.getArgOperand(1)),
4858                                getValue(I.getArgOperand(2)),
4859                                Code);
4860     setValue(&I, Res);
4861     return 0;
4862   }
4863   case Intrinsic::sqrt:
4864     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4865                              getValue(I.getArgOperand(0)).getValueType(),
4866                              getValue(I.getArgOperand(0))));
4867     return 0;
4868   case Intrinsic::powi:
4869     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4870                             getValue(I.getArgOperand(1)), DAG));
4871     return 0;
4872   case Intrinsic::sin:
4873     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4874                              getValue(I.getArgOperand(0)).getValueType(),
4875                              getValue(I.getArgOperand(0))));
4876     return 0;
4877   case Intrinsic::cos:
4878     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4879                              getValue(I.getArgOperand(0)).getValueType(),
4880                              getValue(I.getArgOperand(0))));
4881     return 0;
4882   case Intrinsic::log:
4883     visitLog(I);
4884     return 0;
4885   case Intrinsic::log2:
4886     visitLog2(I);
4887     return 0;
4888   case Intrinsic::log10:
4889     visitLog10(I);
4890     return 0;
4891   case Intrinsic::exp:
4892     visitExp(I);
4893     return 0;
4894   case Intrinsic::exp2:
4895     visitExp2(I);
4896     return 0;
4897   case Intrinsic::pow:
4898     visitPow(I);
4899     return 0;
4900   case Intrinsic::fma:
4901     setValue(&I, DAG.getNode(ISD::FMA, dl,
4902                              getValue(I.getArgOperand(0)).getValueType(),
4903                              getValue(I.getArgOperand(0)),
4904                              getValue(I.getArgOperand(1)),
4905                              getValue(I.getArgOperand(2))));
4906     return 0;
4907   case Intrinsic::convert_to_fp16:
4908     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4909                              MVT::i16, getValue(I.getArgOperand(0))));
4910     return 0;
4911   case Intrinsic::convert_from_fp16:
4912     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4913                              MVT::f32, getValue(I.getArgOperand(0))));
4914     return 0;
4915   case Intrinsic::pcmarker: {
4916     SDValue Tmp = getValue(I.getArgOperand(0));
4917     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4918     return 0;
4919   }
4920   case Intrinsic::readcyclecounter: {
4921     SDValue Op = getRoot();
4922     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4923                       DAG.getVTList(MVT::i64, MVT::Other),
4924                       &Op, 1);
4925     setValue(&I, Res);
4926     DAG.setRoot(Res.getValue(1));
4927     return 0;
4928   }
4929   case Intrinsic::bswap:
4930     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4931                              getValue(I.getArgOperand(0)).getValueType(),
4932                              getValue(I.getArgOperand(0))));
4933     return 0;
4934   case Intrinsic::cttz: {
4935     SDValue Arg = getValue(I.getArgOperand(0));
4936     EVT Ty = Arg.getValueType();
4937     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4938     return 0;
4939   }
4940   case Intrinsic::ctlz: {
4941     SDValue Arg = getValue(I.getArgOperand(0));
4942     EVT Ty = Arg.getValueType();
4943     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4944     return 0;
4945   }
4946   case Intrinsic::ctpop: {
4947     SDValue Arg = getValue(I.getArgOperand(0));
4948     EVT Ty = Arg.getValueType();
4949     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4950     return 0;
4951   }
4952   case Intrinsic::stacksave: {
4953     SDValue Op = getRoot();
4954     Res = DAG.getNode(ISD::STACKSAVE, dl,
4955                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4956     setValue(&I, Res);
4957     DAG.setRoot(Res.getValue(1));
4958     return 0;
4959   }
4960   case Intrinsic::stackrestore: {
4961     Res = getValue(I.getArgOperand(0));
4962     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4963     return 0;
4964   }
4965   case Intrinsic::stackprotector: {
4966     // Emit code into the DAG to store the stack guard onto the stack.
4967     MachineFunction &MF = DAG.getMachineFunction();
4968     MachineFrameInfo *MFI = MF.getFrameInfo();
4969     EVT PtrTy = TLI.getPointerTy();
4970 
4971     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4972     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4973 
4974     int FI = FuncInfo.StaticAllocaMap[Slot];
4975     MFI->setStackProtectorIndex(FI);
4976 
4977     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4978 
4979     // Store the stack protector onto the stack.
4980     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4981                        MachinePointerInfo::getFixedStack(FI),
4982                        true, false, 0);
4983     setValue(&I, Res);
4984     DAG.setRoot(Res);
4985     return 0;
4986   }
4987   case Intrinsic::objectsize: {
4988     // If we don't know by now, we're never going to know.
4989     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4990 
4991     assert(CI && "Non-constant type in __builtin_object_size?");
4992 
4993     SDValue Arg = getValue(I.getCalledValue());
4994     EVT Ty = Arg.getValueType();
4995 
4996     if (CI->isZero())
4997       Res = DAG.getConstant(-1ULL, Ty);
4998     else
4999       Res = DAG.getConstant(0, Ty);
5000 
5001     setValue(&I, Res);
5002     return 0;
5003   }
5004   case Intrinsic::var_annotation:
5005     // Discard annotate attributes
5006     return 0;
5007 
5008   case Intrinsic::init_trampoline: {
5009     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5010 
5011     SDValue Ops[6];
5012     Ops[0] = getRoot();
5013     Ops[1] = getValue(I.getArgOperand(0));
5014     Ops[2] = getValue(I.getArgOperand(1));
5015     Ops[3] = getValue(I.getArgOperand(2));
5016     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5017     Ops[5] = DAG.getSrcValue(F);
5018 
5019     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
5020                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
5021                       Ops, 6);
5022 
5023     setValue(&I, Res);
5024     DAG.setRoot(Res.getValue(1));
5025     return 0;
5026   }
5027   case Intrinsic::gcroot:
5028     if (GFI) {
5029       const Value *Alloca = I.getArgOperand(0);
5030       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5031 
5032       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5033       GFI->addStackRoot(FI->getIndex(), TypeMap);
5034     }
5035     return 0;
5036   case Intrinsic::gcread:
5037   case Intrinsic::gcwrite:
5038     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5039     return 0;
5040   case Intrinsic::flt_rounds:
5041     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5042     return 0;
5043 
5044   case Intrinsic::expect: {
5045     // Just replace __builtin_expect(exp, c) with EXP.
5046     setValue(&I, getValue(I.getArgOperand(0)));
5047     return 0;
5048   }
5049 
5050   case Intrinsic::trap: {
5051     StringRef TrapFuncName = getTrapFunctionName();
5052     if (TrapFuncName.empty()) {
5053       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5054       return 0;
5055     }
5056     TargetLowering::ArgListTy Args;
5057     std::pair<SDValue, SDValue> Result =
5058       TLI.LowerCallTo(getRoot(), I.getType(),
5059                  false, false, false, false, 0, CallingConv::C,
5060                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5061                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5062                  Args, DAG, getCurDebugLoc());
5063     DAG.setRoot(Result.second);
5064     return 0;
5065   }
5066   case Intrinsic::uadd_with_overflow:
5067     return implVisitAluOverflow(I, ISD::UADDO);
5068   case Intrinsic::sadd_with_overflow:
5069     return implVisitAluOverflow(I, ISD::SADDO);
5070   case Intrinsic::usub_with_overflow:
5071     return implVisitAluOverflow(I, ISD::USUBO);
5072   case Intrinsic::ssub_with_overflow:
5073     return implVisitAluOverflow(I, ISD::SSUBO);
5074   case Intrinsic::umul_with_overflow:
5075     return implVisitAluOverflow(I, ISD::UMULO);
5076   case Intrinsic::smul_with_overflow:
5077     return implVisitAluOverflow(I, ISD::SMULO);
5078 
5079   case Intrinsic::prefetch: {
5080     SDValue Ops[5];
5081     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5082     Ops[0] = getRoot();
5083     Ops[1] = getValue(I.getArgOperand(0));
5084     Ops[2] = getValue(I.getArgOperand(1));
5085     Ops[3] = getValue(I.getArgOperand(2));
5086     Ops[4] = getValue(I.getArgOperand(3));
5087     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5088                                         DAG.getVTList(MVT::Other),
5089                                         &Ops[0], 5,
5090                                         EVT::getIntegerVT(*Context, 8),
5091                                         MachinePointerInfo(I.getArgOperand(0)),
5092                                         0, /* align */
5093                                         false, /* volatile */
5094                                         rw==0, /* read */
5095                                         rw==1)); /* write */
5096     return 0;
5097   }
5098   case Intrinsic::memory_barrier: {
5099     SDValue Ops[6];
5100     Ops[0] = getRoot();
5101     for (int x = 1; x < 6; ++x)
5102       Ops[x] = getValue(I.getArgOperand(x - 1));
5103 
5104     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
5105     return 0;
5106   }
5107   case Intrinsic::atomic_cmp_swap: {
5108     SDValue Root = getRoot();
5109     SDValue L =
5110       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
5111                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
5112                     Root,
5113                     getValue(I.getArgOperand(0)),
5114                     getValue(I.getArgOperand(1)),
5115                     getValue(I.getArgOperand(2)),
5116                     MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
5117                     Monotonic, CrossThread);
5118     setValue(&I, L);
5119     DAG.setRoot(L.getValue(1));
5120     return 0;
5121   }
5122   case Intrinsic::atomic_load_add:
5123     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
5124   case Intrinsic::atomic_load_sub:
5125     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
5126   case Intrinsic::atomic_load_or:
5127     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
5128   case Intrinsic::atomic_load_xor:
5129     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
5130   case Intrinsic::atomic_load_and:
5131     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
5132   case Intrinsic::atomic_load_nand:
5133     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
5134   case Intrinsic::atomic_load_max:
5135     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
5136   case Intrinsic::atomic_load_min:
5137     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
5138   case Intrinsic::atomic_load_umin:
5139     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5140   case Intrinsic::atomic_load_umax:
5141     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5142   case Intrinsic::atomic_swap:
5143     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5144 
5145   case Intrinsic::invariant_start:
5146   case Intrinsic::lifetime_start:
5147     // Discard region information.
5148     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5149     return 0;
5150   case Intrinsic::invariant_end:
5151   case Intrinsic::lifetime_end:
5152     // Discard region information.
5153     return 0;
5154   }
5155 }
5156 
5157 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5158                                       bool isTailCall,
5159                                       MachineBasicBlock *LandingPad) {
5160   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5161   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5162   Type *RetTy = FTy->getReturnType();
5163   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5164   MCSymbol *BeginLabel = 0;
5165 
5166   TargetLowering::ArgListTy Args;
5167   TargetLowering::ArgListEntry Entry;
5168   Args.reserve(CS.arg_size());
5169 
5170   // Check whether the function can return without sret-demotion.
5171   SmallVector<ISD::OutputArg, 4> Outs;
5172   SmallVector<uint64_t, 4> Offsets;
5173   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5174                 Outs, TLI, &Offsets);
5175 
5176   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5177 					   DAG.getMachineFunction(),
5178 					   FTy->isVarArg(), Outs,
5179 					   FTy->getContext());
5180 
5181   SDValue DemoteStackSlot;
5182   int DemoteStackIdx = -100;
5183 
5184   if (!CanLowerReturn) {
5185     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5186                       FTy->getReturnType());
5187     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5188                       FTy->getReturnType());
5189     MachineFunction &MF = DAG.getMachineFunction();
5190     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5191     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5192 
5193     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5194     Entry.Node = DemoteStackSlot;
5195     Entry.Ty = StackSlotPtrType;
5196     Entry.isSExt = false;
5197     Entry.isZExt = false;
5198     Entry.isInReg = false;
5199     Entry.isSRet = true;
5200     Entry.isNest = false;
5201     Entry.isByVal = false;
5202     Entry.Alignment = Align;
5203     Args.push_back(Entry);
5204     RetTy = Type::getVoidTy(FTy->getContext());
5205   }
5206 
5207   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5208        i != e; ++i) {
5209     const Value *V = *i;
5210 
5211     // Skip empty types
5212     if (V->getType()->isEmptyTy())
5213       continue;
5214 
5215     SDValue ArgNode = getValue(V);
5216     Entry.Node = ArgNode; Entry.Ty = V->getType();
5217 
5218     unsigned attrInd = i - CS.arg_begin() + 1;
5219     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5220     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5221     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5222     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5223     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5224     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5225     Entry.Alignment = CS.getParamAlignment(attrInd);
5226     Args.push_back(Entry);
5227   }
5228 
5229   if (LandingPad) {
5230     // Insert a label before the invoke call to mark the try range.  This can be
5231     // used to detect deletion of the invoke via the MachineModuleInfo.
5232     BeginLabel = MMI.getContext().CreateTempSymbol();
5233 
5234     // For SjLj, keep track of which landing pads go with which invokes
5235     // so as to maintain the ordering of pads in the LSDA.
5236     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5237     if (CallSiteIndex) {
5238       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5239       // Now that the call site is handled, stop tracking it.
5240       MMI.setCurrentCallSite(0);
5241     }
5242 
5243     // Both PendingLoads and PendingExports must be flushed here;
5244     // this call might not return.
5245     (void)getRoot();
5246     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5247   }
5248 
5249   // Check if target-independent constraints permit a tail call here.
5250   // Target-dependent constraints are checked within TLI.LowerCallTo.
5251   if (isTailCall &&
5252       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5253     isTailCall = false;
5254 
5255   // If there's a possibility that fast-isel has already selected some amount
5256   // of the current basic block, don't emit a tail call.
5257   if (isTailCall && EnableFastISel)
5258     isTailCall = false;
5259 
5260   std::pair<SDValue,SDValue> Result =
5261     TLI.LowerCallTo(getRoot(), RetTy,
5262                     CS.paramHasAttr(0, Attribute::SExt),
5263                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5264                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5265                     CS.getCallingConv(),
5266                     isTailCall,
5267                     !CS.getInstruction()->use_empty(),
5268                     Callee, Args, DAG, getCurDebugLoc());
5269   assert((isTailCall || Result.second.getNode()) &&
5270          "Non-null chain expected with non-tail call!");
5271   assert((Result.second.getNode() || !Result.first.getNode()) &&
5272          "Null value expected with tail call!");
5273   if (Result.first.getNode()) {
5274     setValue(CS.getInstruction(), Result.first);
5275   } else if (!CanLowerReturn && Result.second.getNode()) {
5276     // The instruction result is the result of loading from the
5277     // hidden sret parameter.
5278     SmallVector<EVT, 1> PVTs;
5279     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5280 
5281     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5282     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5283     EVT PtrVT = PVTs[0];
5284     unsigned NumValues = Outs.size();
5285     SmallVector<SDValue, 4> Values(NumValues);
5286     SmallVector<SDValue, 4> Chains(NumValues);
5287 
5288     for (unsigned i = 0; i < NumValues; ++i) {
5289       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5290                                 DemoteStackSlot,
5291                                 DAG.getConstant(Offsets[i], PtrVT));
5292       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5293                               Add,
5294                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5295                               false, false, 1);
5296       Values[i] = L;
5297       Chains[i] = L.getValue(1);
5298     }
5299 
5300     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5301                                 MVT::Other, &Chains[0], NumValues);
5302     PendingLoads.push_back(Chain);
5303 
5304     // Collect the legal value parts into potentially illegal values
5305     // that correspond to the original function's return values.
5306     SmallVector<EVT, 4> RetTys;
5307     RetTy = FTy->getReturnType();
5308     ComputeValueVTs(TLI, RetTy, RetTys);
5309     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5310     SmallVector<SDValue, 4> ReturnValues;
5311     unsigned CurReg = 0;
5312     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5313       EVT VT = RetTys[I];
5314       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5315       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5316 
5317       SDValue ReturnValue =
5318         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5319                          RegisterVT, VT, AssertOp);
5320       ReturnValues.push_back(ReturnValue);
5321       CurReg += NumRegs;
5322     }
5323 
5324     setValue(CS.getInstruction(),
5325              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5326                          DAG.getVTList(&RetTys[0], RetTys.size()),
5327                          &ReturnValues[0], ReturnValues.size()));
5328   }
5329 
5330   // Assign order to nodes here. If the call does not produce a result, it won't
5331   // be mapped to a SDNode and visit() will not assign it an order number.
5332   if (!Result.second.getNode()) {
5333     // As a special case, a null chain means that a tail call has been emitted and
5334     // the DAG root is already updated.
5335     HasTailCall = true;
5336     ++SDNodeOrder;
5337     AssignOrderingToNode(DAG.getRoot().getNode());
5338   } else {
5339     DAG.setRoot(Result.second);
5340     ++SDNodeOrder;
5341     AssignOrderingToNode(Result.second.getNode());
5342   }
5343 
5344   if (LandingPad) {
5345     // Insert a label at the end of the invoke call to mark the try range.  This
5346     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5347     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5348     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5349 
5350     // Inform MachineModuleInfo of range.
5351     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5352   }
5353 }
5354 
5355 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5356 /// value is equal or not-equal to zero.
5357 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5358   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5359        UI != E; ++UI) {
5360     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5361       if (IC->isEquality())
5362         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5363           if (C->isNullValue())
5364             continue;
5365     // Unknown instruction.
5366     return false;
5367   }
5368   return true;
5369 }
5370 
5371 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5372                              Type *LoadTy,
5373                              SelectionDAGBuilder &Builder) {
5374 
5375   // Check to see if this load can be trivially constant folded, e.g. if the
5376   // input is from a string literal.
5377   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5378     // Cast pointer to the type we really want to load.
5379     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5380                                          PointerType::getUnqual(LoadTy));
5381 
5382     if (const Constant *LoadCst =
5383           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5384                                        Builder.TD))
5385       return Builder.getValue(LoadCst);
5386   }
5387 
5388   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5389   // still constant memory, the input chain can be the entry node.
5390   SDValue Root;
5391   bool ConstantMemory = false;
5392 
5393   // Do not serialize (non-volatile) loads of constant memory with anything.
5394   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5395     Root = Builder.DAG.getEntryNode();
5396     ConstantMemory = true;
5397   } else {
5398     // Do not serialize non-volatile loads against each other.
5399     Root = Builder.DAG.getRoot();
5400   }
5401 
5402   SDValue Ptr = Builder.getValue(PtrVal);
5403   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5404                                         Ptr, MachinePointerInfo(PtrVal),
5405                                         false /*volatile*/,
5406                                         false /*nontemporal*/, 1 /* align=1 */);
5407 
5408   if (!ConstantMemory)
5409     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5410   return LoadVal;
5411 }
5412 
5413 
5414 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5415 /// If so, return true and lower it, otherwise return false and it will be
5416 /// lowered like a normal call.
5417 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5418   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5419   if (I.getNumArgOperands() != 3)
5420     return false;
5421 
5422   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5423   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5424       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5425       !I.getType()->isIntegerTy())
5426     return false;
5427 
5428   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5429 
5430   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5431   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5432   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5433     bool ActuallyDoIt = true;
5434     MVT LoadVT;
5435     Type *LoadTy;
5436     switch (Size->getZExtValue()) {
5437     default:
5438       LoadVT = MVT::Other;
5439       LoadTy = 0;
5440       ActuallyDoIt = false;
5441       break;
5442     case 2:
5443       LoadVT = MVT::i16;
5444       LoadTy = Type::getInt16Ty(Size->getContext());
5445       break;
5446     case 4:
5447       LoadVT = MVT::i32;
5448       LoadTy = Type::getInt32Ty(Size->getContext());
5449       break;
5450     case 8:
5451       LoadVT = MVT::i64;
5452       LoadTy = Type::getInt64Ty(Size->getContext());
5453       break;
5454         /*
5455     case 16:
5456       LoadVT = MVT::v4i32;
5457       LoadTy = Type::getInt32Ty(Size->getContext());
5458       LoadTy = VectorType::get(LoadTy, 4);
5459       break;
5460          */
5461     }
5462 
5463     // This turns into unaligned loads.  We only do this if the target natively
5464     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5465     // we'll only produce a small number of byte loads.
5466 
5467     // Require that we can find a legal MVT, and only do this if the target
5468     // supports unaligned loads of that type.  Expanding into byte loads would
5469     // bloat the code.
5470     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5471       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5472       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5473       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5474         ActuallyDoIt = false;
5475     }
5476 
5477     if (ActuallyDoIt) {
5478       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5479       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5480 
5481       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5482                                  ISD::SETNE);
5483       EVT CallVT = TLI.getValueType(I.getType(), true);
5484       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5485       return true;
5486     }
5487   }
5488 
5489 
5490   return false;
5491 }
5492 
5493 
5494 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5495   // Handle inline assembly differently.
5496   if (isa<InlineAsm>(I.getCalledValue())) {
5497     visitInlineAsm(&I);
5498     return;
5499   }
5500 
5501   // See if any floating point values are being passed to this function. This is
5502   // used to emit an undefined reference to fltused on Windows.
5503   FunctionType *FT =
5504     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5505   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5506   if (FT->isVarArg() &&
5507       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5508     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5509       Type* T = I.getArgOperand(i)->getType();
5510       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5511            i != e; ++i) {
5512         if (!i->isFloatingPointTy()) continue;
5513         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5514         break;
5515       }
5516     }
5517   }
5518 
5519   const char *RenameFn = 0;
5520   if (Function *F = I.getCalledFunction()) {
5521     if (F->isDeclaration()) {
5522       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5523         if (unsigned IID = II->getIntrinsicID(F)) {
5524           RenameFn = visitIntrinsicCall(I, IID);
5525           if (!RenameFn)
5526             return;
5527         }
5528       }
5529       if (unsigned IID = F->getIntrinsicID()) {
5530         RenameFn = visitIntrinsicCall(I, IID);
5531         if (!RenameFn)
5532           return;
5533       }
5534     }
5535 
5536     // Check for well-known libc/libm calls.  If the function is internal, it
5537     // can't be a library call.
5538     if (!F->hasLocalLinkage() && F->hasName()) {
5539       StringRef Name = F->getName();
5540       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5541         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5542             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5543             I.getType() == I.getArgOperand(0)->getType() &&
5544             I.getType() == I.getArgOperand(1)->getType()) {
5545           SDValue LHS = getValue(I.getArgOperand(0));
5546           SDValue RHS = getValue(I.getArgOperand(1));
5547           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5548                                    LHS.getValueType(), LHS, RHS));
5549           return;
5550         }
5551       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5552         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5553             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5554             I.getType() == I.getArgOperand(0)->getType()) {
5555           SDValue Tmp = getValue(I.getArgOperand(0));
5556           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5557                                    Tmp.getValueType(), Tmp));
5558           return;
5559         }
5560       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5561         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5562             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5563             I.getType() == I.getArgOperand(0)->getType() &&
5564             I.onlyReadsMemory()) {
5565           SDValue Tmp = getValue(I.getArgOperand(0));
5566           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5567                                    Tmp.getValueType(), Tmp));
5568           return;
5569         }
5570       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5571         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5572             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5573             I.getType() == I.getArgOperand(0)->getType() &&
5574             I.onlyReadsMemory()) {
5575           SDValue Tmp = getValue(I.getArgOperand(0));
5576           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5577                                    Tmp.getValueType(), Tmp));
5578           return;
5579         }
5580       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5581         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5582             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5583             I.getType() == I.getArgOperand(0)->getType() &&
5584             I.onlyReadsMemory()) {
5585           SDValue Tmp = getValue(I.getArgOperand(0));
5586           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5587                                    Tmp.getValueType(), Tmp));
5588           return;
5589         }
5590       } else if (Name == "memcmp") {
5591         if (visitMemCmpCall(I))
5592           return;
5593       }
5594     }
5595   }
5596 
5597   SDValue Callee;
5598   if (!RenameFn)
5599     Callee = getValue(I.getCalledValue());
5600   else
5601     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5602 
5603   // Check if we can potentially perform a tail call. More detailed checking is
5604   // be done within LowerCallTo, after more information about the call is known.
5605   LowerCallTo(&I, Callee, I.isTailCall());
5606 }
5607 
5608 namespace {
5609 
5610 /// AsmOperandInfo - This contains information for each constraint that we are
5611 /// lowering.
5612 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5613 public:
5614   /// CallOperand - If this is the result output operand or a clobber
5615   /// this is null, otherwise it is the incoming operand to the CallInst.
5616   /// This gets modified as the asm is processed.
5617   SDValue CallOperand;
5618 
5619   /// AssignedRegs - If this is a register or register class operand, this
5620   /// contains the set of register corresponding to the operand.
5621   RegsForValue AssignedRegs;
5622 
5623   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5624     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5625   }
5626 
5627   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5628   /// busy in OutputRegs/InputRegs.
5629   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5630                          std::set<unsigned> &OutputRegs,
5631                          std::set<unsigned> &InputRegs,
5632                          const TargetRegisterInfo &TRI) const {
5633     if (isOutReg) {
5634       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5635         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5636     }
5637     if (isInReg) {
5638       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5639         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5640     }
5641   }
5642 
5643   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5644   /// corresponds to.  If there is no Value* for this operand, it returns
5645   /// MVT::Other.
5646   EVT getCallOperandValEVT(LLVMContext &Context,
5647                            const TargetLowering &TLI,
5648                            const TargetData *TD) const {
5649     if (CallOperandVal == 0) return MVT::Other;
5650 
5651     if (isa<BasicBlock>(CallOperandVal))
5652       return TLI.getPointerTy();
5653 
5654     llvm::Type *OpTy = CallOperandVal->getType();
5655 
5656     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5657     // If this is an indirect operand, the operand is a pointer to the
5658     // accessed type.
5659     if (isIndirect) {
5660       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5661       if (!PtrTy)
5662         report_fatal_error("Indirect operand for inline asm not a pointer!");
5663       OpTy = PtrTy->getElementType();
5664     }
5665 
5666     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5667     if (StructType *STy = dyn_cast<StructType>(OpTy))
5668       if (STy->getNumElements() == 1)
5669         OpTy = STy->getElementType(0);
5670 
5671     // If OpTy is not a single value, it may be a struct/union that we
5672     // can tile with integers.
5673     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5674       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5675       switch (BitSize) {
5676       default: break;
5677       case 1:
5678       case 8:
5679       case 16:
5680       case 32:
5681       case 64:
5682       case 128:
5683         OpTy = IntegerType::get(Context, BitSize);
5684         break;
5685       }
5686     }
5687 
5688     return TLI.getValueType(OpTy, true);
5689   }
5690 
5691 private:
5692   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5693   /// specified set.
5694   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5695                                 const TargetRegisterInfo &TRI) {
5696     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5697     Regs.insert(Reg);
5698     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5699       for (; *Aliases; ++Aliases)
5700         Regs.insert(*Aliases);
5701   }
5702 };
5703 
5704 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5705 
5706 } // end anonymous namespace
5707 
5708 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5709 /// specified operand.  We prefer to assign virtual registers, to allow the
5710 /// register allocator to handle the assignment process.  However, if the asm
5711 /// uses features that we can't model on machineinstrs, we have SDISel do the
5712 /// allocation.  This produces generally horrible, but correct, code.
5713 ///
5714 ///   OpInfo describes the operand.
5715 ///   Input and OutputRegs are the set of already allocated physical registers.
5716 ///
5717 static void GetRegistersForValue(SelectionDAG &DAG,
5718                                  const TargetLowering &TLI,
5719                                  DebugLoc DL,
5720                                  SDISelAsmOperandInfo &OpInfo,
5721                                  std::set<unsigned> &OutputRegs,
5722                                  std::set<unsigned> &InputRegs) {
5723   LLVMContext &Context = *DAG.getContext();
5724 
5725   // Compute whether this value requires an input register, an output register,
5726   // or both.
5727   bool isOutReg = false;
5728   bool isInReg = false;
5729   switch (OpInfo.Type) {
5730   case InlineAsm::isOutput:
5731     isOutReg = true;
5732 
5733     // If there is an input constraint that matches this, we need to reserve
5734     // the input register so no other inputs allocate to it.
5735     isInReg = OpInfo.hasMatchingInput();
5736     break;
5737   case InlineAsm::isInput:
5738     isInReg = true;
5739     isOutReg = false;
5740     break;
5741   case InlineAsm::isClobber:
5742     isOutReg = true;
5743     isInReg = true;
5744     break;
5745   }
5746 
5747 
5748   MachineFunction &MF = DAG.getMachineFunction();
5749   SmallVector<unsigned, 4> Regs;
5750 
5751   // If this is a constraint for a single physreg, or a constraint for a
5752   // register class, find it.
5753   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5754     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5755                                      OpInfo.ConstraintVT);
5756 
5757   unsigned NumRegs = 1;
5758   if (OpInfo.ConstraintVT != MVT::Other) {
5759     // If this is a FP input in an integer register (or visa versa) insert a bit
5760     // cast of the input value.  More generally, handle any case where the input
5761     // value disagrees with the register class we plan to stick this in.
5762     if (OpInfo.Type == InlineAsm::isInput &&
5763         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5764       // Try to convert to the first EVT that the reg class contains.  If the
5765       // types are identical size, use a bitcast to convert (e.g. two differing
5766       // vector types).
5767       EVT RegVT = *PhysReg.second->vt_begin();
5768       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5769         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5770                                          RegVT, OpInfo.CallOperand);
5771         OpInfo.ConstraintVT = RegVT;
5772       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5773         // If the input is a FP value and we want it in FP registers, do a
5774         // bitcast to the corresponding integer type.  This turns an f64 value
5775         // into i64, which can be passed with two i32 values on a 32-bit
5776         // machine.
5777         RegVT = EVT::getIntegerVT(Context,
5778                                   OpInfo.ConstraintVT.getSizeInBits());
5779         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5780                                          RegVT, OpInfo.CallOperand);
5781         OpInfo.ConstraintVT = RegVT;
5782       }
5783     }
5784 
5785     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5786   }
5787 
5788   EVT RegVT;
5789   EVT ValueVT = OpInfo.ConstraintVT;
5790 
5791   // If this is a constraint for a specific physical register, like {r17},
5792   // assign it now.
5793   if (unsigned AssignedReg = PhysReg.first) {
5794     const TargetRegisterClass *RC = PhysReg.second;
5795     if (OpInfo.ConstraintVT == MVT::Other)
5796       ValueVT = *RC->vt_begin();
5797 
5798     // Get the actual register value type.  This is important, because the user
5799     // may have asked for (e.g.) the AX register in i32 type.  We need to
5800     // remember that AX is actually i16 to get the right extension.
5801     RegVT = *RC->vt_begin();
5802 
5803     // This is a explicit reference to a physical register.
5804     Regs.push_back(AssignedReg);
5805 
5806     // If this is an expanded reference, add the rest of the regs to Regs.
5807     if (NumRegs != 1) {
5808       TargetRegisterClass::iterator I = RC->begin();
5809       for (; *I != AssignedReg; ++I)
5810         assert(I != RC->end() && "Didn't find reg!");
5811 
5812       // Already added the first reg.
5813       --NumRegs; ++I;
5814       for (; NumRegs; --NumRegs, ++I) {
5815         assert(I != RC->end() && "Ran out of registers to allocate!");
5816         Regs.push_back(*I);
5817       }
5818     }
5819 
5820     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5821     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5822     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5823     return;
5824   }
5825 
5826   // Otherwise, if this was a reference to an LLVM register class, create vregs
5827   // for this reference.
5828   if (const TargetRegisterClass *RC = PhysReg.second) {
5829     RegVT = *RC->vt_begin();
5830     if (OpInfo.ConstraintVT == MVT::Other)
5831       ValueVT = RegVT;
5832 
5833     // Create the appropriate number of virtual registers.
5834     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5835     for (; NumRegs; --NumRegs)
5836       Regs.push_back(RegInfo.createVirtualRegister(RC));
5837 
5838     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5839     return;
5840   }
5841 
5842   // Otherwise, we couldn't allocate enough registers for this.
5843 }
5844 
5845 /// visitInlineAsm - Handle a call to an InlineAsm object.
5846 ///
5847 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5848   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5849 
5850   /// ConstraintOperands - Information about all of the constraints.
5851   SDISelAsmOperandInfoVector ConstraintOperands;
5852 
5853   std::set<unsigned> OutputRegs, InputRegs;
5854 
5855   TargetLowering::AsmOperandInfoVector
5856     TargetConstraints = TLI.ParseConstraints(CS);
5857 
5858   bool hasMemory = false;
5859 
5860   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5861   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5862   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5863     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5864     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5865 
5866     EVT OpVT = MVT::Other;
5867 
5868     // Compute the value type for each operand.
5869     switch (OpInfo.Type) {
5870     case InlineAsm::isOutput:
5871       // Indirect outputs just consume an argument.
5872       if (OpInfo.isIndirect) {
5873         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5874         break;
5875       }
5876 
5877       // The return value of the call is this value.  As such, there is no
5878       // corresponding argument.
5879       assert(!CS.getType()->isVoidTy() &&
5880              "Bad inline asm!");
5881       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5882         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5883       } else {
5884         assert(ResNo == 0 && "Asm only has one result!");
5885         OpVT = TLI.getValueType(CS.getType());
5886       }
5887       ++ResNo;
5888       break;
5889     case InlineAsm::isInput:
5890       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5891       break;
5892     case InlineAsm::isClobber:
5893       // Nothing to do.
5894       break;
5895     }
5896 
5897     // If this is an input or an indirect output, process the call argument.
5898     // BasicBlocks are labels, currently appearing only in asm's.
5899     if (OpInfo.CallOperandVal) {
5900       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5901         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5902       } else {
5903         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5904       }
5905 
5906       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5907     }
5908 
5909     OpInfo.ConstraintVT = OpVT;
5910 
5911     // Indirect operand accesses access memory.
5912     if (OpInfo.isIndirect)
5913       hasMemory = true;
5914     else {
5915       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5916         TargetLowering::ConstraintType
5917           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5918         if (CType == TargetLowering::C_Memory) {
5919           hasMemory = true;
5920           break;
5921         }
5922       }
5923     }
5924   }
5925 
5926   SDValue Chain, Flag;
5927 
5928   // We won't need to flush pending loads if this asm doesn't touch
5929   // memory and is nonvolatile.
5930   if (hasMemory || IA->hasSideEffects())
5931     Chain = getRoot();
5932   else
5933     Chain = DAG.getRoot();
5934 
5935   // Second pass over the constraints: compute which constraint option to use
5936   // and assign registers to constraints that want a specific physreg.
5937   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5938     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5939 
5940     // If this is an output operand with a matching input operand, look up the
5941     // matching input. If their types mismatch, e.g. one is an integer, the
5942     // other is floating point, or their sizes are different, flag it as an
5943     // error.
5944     if (OpInfo.hasMatchingInput()) {
5945       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5946 
5947       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5948 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5949 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5950                                            OpInfo.ConstraintVT);
5951 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5952 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5953                                            Input.ConstraintVT);
5954         if ((OpInfo.ConstraintVT.isInteger() !=
5955              Input.ConstraintVT.isInteger()) ||
5956             (MatchRC.second != InputRC.second)) {
5957           report_fatal_error("Unsupported asm: input constraint"
5958                              " with a matching output constraint of"
5959                              " incompatible type!");
5960         }
5961         Input.ConstraintVT = OpInfo.ConstraintVT;
5962       }
5963     }
5964 
5965     // Compute the constraint code and ConstraintType to use.
5966     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5967 
5968     // If this is a memory input, and if the operand is not indirect, do what we
5969     // need to to provide an address for the memory input.
5970     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5971         !OpInfo.isIndirect) {
5972       assert((OpInfo.isMultipleAlternative ||
5973               (OpInfo.Type == InlineAsm::isInput)) &&
5974              "Can only indirectify direct input operands!");
5975 
5976       // Memory operands really want the address of the value.  If we don't have
5977       // an indirect input, put it in the constpool if we can, otherwise spill
5978       // it to a stack slot.
5979       // TODO: This isn't quite right. We need to handle these according to
5980       // the addressing mode that the constraint wants. Also, this may take
5981       // an additional register for the computation and we don't want that
5982       // either.
5983 
5984       // If the operand is a float, integer, or vector constant, spill to a
5985       // constant pool entry to get its address.
5986       const Value *OpVal = OpInfo.CallOperandVal;
5987       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5988           isa<ConstantVector>(OpVal)) {
5989         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5990                                                  TLI.getPointerTy());
5991       } else {
5992         // Otherwise, create a stack slot and emit a store to it before the
5993         // asm.
5994         Type *Ty = OpVal->getType();
5995         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5996         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5997         MachineFunction &MF = DAG.getMachineFunction();
5998         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5999         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6000         Chain = DAG.getStore(Chain, getCurDebugLoc(),
6001                              OpInfo.CallOperand, StackSlot,
6002                              MachinePointerInfo::getFixedStack(SSFI),
6003                              false, false, 0);
6004         OpInfo.CallOperand = StackSlot;
6005       }
6006 
6007       // There is no longer a Value* corresponding to this operand.
6008       OpInfo.CallOperandVal = 0;
6009 
6010       // It is now an indirect operand.
6011       OpInfo.isIndirect = true;
6012     }
6013 
6014     // If this constraint is for a specific register, allocate it before
6015     // anything else.
6016     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6017       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6018                            InputRegs);
6019   }
6020 
6021   // Second pass - Loop over all of the operands, assigning virtual or physregs
6022   // to register class operands.
6023   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6024     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6025 
6026     // C_Register operands have already been allocated, Other/Memory don't need
6027     // to be.
6028     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6029       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6030                            InputRegs);
6031   }
6032 
6033   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6034   std::vector<SDValue> AsmNodeOperands;
6035   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6036   AsmNodeOperands.push_back(
6037           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6038                                       TLI.getPointerTy()));
6039 
6040   // If we have a !srcloc metadata node associated with it, we want to attach
6041   // this to the ultimately generated inline asm machineinstr.  To do this, we
6042   // pass in the third operand as this (potentially null) inline asm MDNode.
6043   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6044   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6045 
6046   // Remember the HasSideEffect and AlignStack bits as operand 3.
6047   unsigned ExtraInfo = 0;
6048   if (IA->hasSideEffects())
6049     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6050   if (IA->isAlignStack())
6051     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6052   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6053                                                   TLI.getPointerTy()));
6054 
6055   // Loop over all of the inputs, copying the operand values into the
6056   // appropriate registers and processing the output regs.
6057   RegsForValue RetValRegs;
6058 
6059   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6060   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6061 
6062   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6063     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6064 
6065     switch (OpInfo.Type) {
6066     case InlineAsm::isOutput: {
6067       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6068           OpInfo.ConstraintType != TargetLowering::C_Register) {
6069         // Memory output, or 'other' output (e.g. 'X' constraint).
6070         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6071 
6072         // Add information to the INLINEASM node to know about this output.
6073         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6074         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6075                                                         TLI.getPointerTy()));
6076         AsmNodeOperands.push_back(OpInfo.CallOperand);
6077         break;
6078       }
6079 
6080       // Otherwise, this is a register or register class output.
6081 
6082       // Copy the output from the appropriate register.  Find a register that
6083       // we can use.
6084       if (OpInfo.AssignedRegs.Regs.empty())
6085         report_fatal_error("Couldn't allocate output reg for constraint '" +
6086                            Twine(OpInfo.ConstraintCode) + "'!");
6087 
6088       // If this is an indirect operand, store through the pointer after the
6089       // asm.
6090       if (OpInfo.isIndirect) {
6091         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6092                                                       OpInfo.CallOperandVal));
6093       } else {
6094         // This is the result value of the call.
6095         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6096         // Concatenate this output onto the outputs list.
6097         RetValRegs.append(OpInfo.AssignedRegs);
6098       }
6099 
6100       // Add information to the INLINEASM node to know that this register is
6101       // set.
6102       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6103                                            InlineAsm::Kind_RegDefEarlyClobber :
6104                                                InlineAsm::Kind_RegDef,
6105                                                false,
6106                                                0,
6107                                                DAG,
6108                                                AsmNodeOperands);
6109       break;
6110     }
6111     case InlineAsm::isInput: {
6112       SDValue InOperandVal = OpInfo.CallOperand;
6113 
6114       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6115         // If this is required to match an output register we have already set,
6116         // just use its register.
6117         unsigned OperandNo = OpInfo.getMatchedOperand();
6118 
6119         // Scan until we find the definition we already emitted of this operand.
6120         // When we find it, create a RegsForValue operand.
6121         unsigned CurOp = InlineAsm::Op_FirstOperand;
6122         for (; OperandNo; --OperandNo) {
6123           // Advance to the next operand.
6124           unsigned OpFlag =
6125             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6126           assert((InlineAsm::isRegDefKind(OpFlag) ||
6127                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6128                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6129           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6130         }
6131 
6132         unsigned OpFlag =
6133           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6134         if (InlineAsm::isRegDefKind(OpFlag) ||
6135             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6136           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6137           if (OpInfo.isIndirect) {
6138             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6139             LLVMContext &Ctx = *DAG.getContext();
6140             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6141                           " don't know how to handle tied "
6142                           "indirect register inputs");
6143           }
6144 
6145           RegsForValue MatchedRegs;
6146           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6147           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6148           MatchedRegs.RegVTs.push_back(RegVT);
6149           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6150           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6151                i != e; ++i)
6152             MatchedRegs.Regs.push_back
6153               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6154 
6155           // Use the produced MatchedRegs object to
6156           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6157                                     Chain, &Flag);
6158           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6159                                            true, OpInfo.getMatchedOperand(),
6160                                            DAG, AsmNodeOperands);
6161           break;
6162         }
6163 
6164         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6165         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6166                "Unexpected number of operands");
6167         // Add information to the INLINEASM node to know about this input.
6168         // See InlineAsm.h isUseOperandTiedToDef.
6169         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6170                                                     OpInfo.getMatchedOperand());
6171         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6172                                                         TLI.getPointerTy()));
6173         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6174         break;
6175       }
6176 
6177       // Treat indirect 'X' constraint as memory.
6178       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6179           OpInfo.isIndirect)
6180         OpInfo.ConstraintType = TargetLowering::C_Memory;
6181 
6182       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6183         std::vector<SDValue> Ops;
6184         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6185                                          Ops, DAG);
6186         if (Ops.empty())
6187           report_fatal_error("Invalid operand for inline asm constraint '" +
6188                              Twine(OpInfo.ConstraintCode) + "'!");
6189 
6190         // Add information to the INLINEASM node to know about this input.
6191         unsigned ResOpType =
6192           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6193         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6194                                                         TLI.getPointerTy()));
6195         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6196         break;
6197       }
6198 
6199       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6200         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6201         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6202                "Memory operands expect pointer values");
6203 
6204         // Add information to the INLINEASM node to know about this input.
6205         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6206         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6207                                                         TLI.getPointerTy()));
6208         AsmNodeOperands.push_back(InOperandVal);
6209         break;
6210       }
6211 
6212       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6213               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6214              "Unknown constraint type!");
6215       assert(!OpInfo.isIndirect &&
6216              "Don't know how to handle indirect register inputs yet!");
6217 
6218       // Copy the input into the appropriate registers.
6219       if (OpInfo.AssignedRegs.Regs.empty())
6220         report_fatal_error("Couldn't allocate input reg for constraint '" +
6221                            Twine(OpInfo.ConstraintCode) + "'!");
6222 
6223       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6224                                         Chain, &Flag);
6225 
6226       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6227                                                DAG, AsmNodeOperands);
6228       break;
6229     }
6230     case InlineAsm::isClobber: {
6231       // Add the clobbered value to the operand list, so that the register
6232       // allocator is aware that the physreg got clobbered.
6233       if (!OpInfo.AssignedRegs.Regs.empty())
6234         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6235                                                  false, 0, DAG,
6236                                                  AsmNodeOperands);
6237       break;
6238     }
6239     }
6240   }
6241 
6242   // Finish up input operands.  Set the input chain and add the flag last.
6243   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6244   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6245 
6246   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6247                       DAG.getVTList(MVT::Other, MVT::Glue),
6248                       &AsmNodeOperands[0], AsmNodeOperands.size());
6249   Flag = Chain.getValue(1);
6250 
6251   // If this asm returns a register value, copy the result from that register
6252   // and set it as the value of the call.
6253   if (!RetValRegs.Regs.empty()) {
6254     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6255                                              Chain, &Flag);
6256 
6257     // FIXME: Why don't we do this for inline asms with MRVs?
6258     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6259       EVT ResultType = TLI.getValueType(CS.getType());
6260 
6261       // If any of the results of the inline asm is a vector, it may have the
6262       // wrong width/num elts.  This can happen for register classes that can
6263       // contain multiple different value types.  The preg or vreg allocated may
6264       // not have the same VT as was expected.  Convert it to the right type
6265       // with bit_convert.
6266       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6267         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6268                           ResultType, Val);
6269 
6270       } else if (ResultType != Val.getValueType() &&
6271                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6272         // If a result value was tied to an input value, the computed result may
6273         // have a wider width than the expected result.  Extract the relevant
6274         // portion.
6275         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6276       }
6277 
6278       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6279     }
6280 
6281     setValue(CS.getInstruction(), Val);
6282     // Don't need to use this as a chain in this case.
6283     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6284       return;
6285   }
6286 
6287   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6288 
6289   // Process indirect outputs, first output all of the flagged copies out of
6290   // physregs.
6291   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6292     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6293     const Value *Ptr = IndirectStoresToEmit[i].second;
6294     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6295                                              Chain, &Flag);
6296     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6297   }
6298 
6299   // Emit the non-flagged stores from the physregs.
6300   SmallVector<SDValue, 8> OutChains;
6301   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6302     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6303                                StoresToEmit[i].first,
6304                                getValue(StoresToEmit[i].second),
6305                                MachinePointerInfo(StoresToEmit[i].second),
6306                                false, false, 0);
6307     OutChains.push_back(Val);
6308   }
6309 
6310   if (!OutChains.empty())
6311     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6312                         &OutChains[0], OutChains.size());
6313 
6314   DAG.setRoot(Chain);
6315 }
6316 
6317 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6318   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6319                           MVT::Other, getRoot(),
6320                           getValue(I.getArgOperand(0)),
6321                           DAG.getSrcValue(I.getArgOperand(0))));
6322 }
6323 
6324 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6325   const TargetData &TD = *TLI.getTargetData();
6326   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6327                            getRoot(), getValue(I.getOperand(0)),
6328                            DAG.getSrcValue(I.getOperand(0)),
6329                            TD.getABITypeAlignment(I.getType()));
6330   setValue(&I, V);
6331   DAG.setRoot(V.getValue(1));
6332 }
6333 
6334 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6335   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6336                           MVT::Other, getRoot(),
6337                           getValue(I.getArgOperand(0)),
6338                           DAG.getSrcValue(I.getArgOperand(0))));
6339 }
6340 
6341 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6342   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6343                           MVT::Other, getRoot(),
6344                           getValue(I.getArgOperand(0)),
6345                           getValue(I.getArgOperand(1)),
6346                           DAG.getSrcValue(I.getArgOperand(0)),
6347                           DAG.getSrcValue(I.getArgOperand(1))));
6348 }
6349 
6350 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6351 /// implementation, which just calls LowerCall.
6352 /// FIXME: When all targets are
6353 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6354 std::pair<SDValue, SDValue>
6355 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6356                             bool RetSExt, bool RetZExt, bool isVarArg,
6357                             bool isInreg, unsigned NumFixedArgs,
6358                             CallingConv::ID CallConv, bool isTailCall,
6359                             bool isReturnValueUsed,
6360                             SDValue Callee,
6361                             ArgListTy &Args, SelectionDAG &DAG,
6362                             DebugLoc dl) const {
6363   // Handle all of the outgoing arguments.
6364   SmallVector<ISD::OutputArg, 32> Outs;
6365   SmallVector<SDValue, 32> OutVals;
6366   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6367     SmallVector<EVT, 4> ValueVTs;
6368     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6369     for (unsigned Value = 0, NumValues = ValueVTs.size();
6370          Value != NumValues; ++Value) {
6371       EVT VT = ValueVTs[Value];
6372       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6373       SDValue Op = SDValue(Args[i].Node.getNode(),
6374                            Args[i].Node.getResNo() + Value);
6375       ISD::ArgFlagsTy Flags;
6376       unsigned OriginalAlignment =
6377         getTargetData()->getABITypeAlignment(ArgTy);
6378 
6379       if (Args[i].isZExt)
6380         Flags.setZExt();
6381       if (Args[i].isSExt)
6382         Flags.setSExt();
6383       if (Args[i].isInReg)
6384         Flags.setInReg();
6385       if (Args[i].isSRet)
6386         Flags.setSRet();
6387       if (Args[i].isByVal) {
6388         Flags.setByVal();
6389         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6390         Type *ElementTy = Ty->getElementType();
6391         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6392         // For ByVal, alignment should come from FE.  BE will guess if this
6393         // info is not there but there are cases it cannot get right.
6394         unsigned FrameAlign;
6395         if (Args[i].Alignment)
6396           FrameAlign = Args[i].Alignment;
6397         else
6398           FrameAlign = getByValTypeAlignment(ElementTy);
6399         Flags.setByValAlign(FrameAlign);
6400       }
6401       if (Args[i].isNest)
6402         Flags.setNest();
6403       Flags.setOrigAlign(OriginalAlignment);
6404 
6405       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6406       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6407       SmallVector<SDValue, 4> Parts(NumParts);
6408       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6409 
6410       if (Args[i].isSExt)
6411         ExtendKind = ISD::SIGN_EXTEND;
6412       else if (Args[i].isZExt)
6413         ExtendKind = ISD::ZERO_EXTEND;
6414 
6415       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6416                      PartVT, ExtendKind);
6417 
6418       for (unsigned j = 0; j != NumParts; ++j) {
6419         // if it isn't first piece, alignment must be 1
6420         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6421                                i < NumFixedArgs);
6422         if (NumParts > 1 && j == 0)
6423           MyFlags.Flags.setSplit();
6424         else if (j != 0)
6425           MyFlags.Flags.setOrigAlign(1);
6426 
6427         Outs.push_back(MyFlags);
6428         OutVals.push_back(Parts[j]);
6429       }
6430     }
6431   }
6432 
6433   // Handle the incoming return values from the call.
6434   SmallVector<ISD::InputArg, 32> Ins;
6435   SmallVector<EVT, 4> RetTys;
6436   ComputeValueVTs(*this, RetTy, RetTys);
6437   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6438     EVT VT = RetTys[I];
6439     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6440     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6441     for (unsigned i = 0; i != NumRegs; ++i) {
6442       ISD::InputArg MyFlags;
6443       MyFlags.VT = RegisterVT.getSimpleVT();
6444       MyFlags.Used = isReturnValueUsed;
6445       if (RetSExt)
6446         MyFlags.Flags.setSExt();
6447       if (RetZExt)
6448         MyFlags.Flags.setZExt();
6449       if (isInreg)
6450         MyFlags.Flags.setInReg();
6451       Ins.push_back(MyFlags);
6452     }
6453   }
6454 
6455   SmallVector<SDValue, 4> InVals;
6456   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6457                     Outs, OutVals, Ins, dl, DAG, InVals);
6458 
6459   // Verify that the target's LowerCall behaved as expected.
6460   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6461          "LowerCall didn't return a valid chain!");
6462   assert((!isTailCall || InVals.empty()) &&
6463          "LowerCall emitted a return value for a tail call!");
6464   assert((isTailCall || InVals.size() == Ins.size()) &&
6465          "LowerCall didn't emit the correct number of values!");
6466 
6467   // For a tail call, the return value is merely live-out and there aren't
6468   // any nodes in the DAG representing it. Return a special value to
6469   // indicate that a tail call has been emitted and no more Instructions
6470   // should be processed in the current block.
6471   if (isTailCall) {
6472     DAG.setRoot(Chain);
6473     return std::make_pair(SDValue(), SDValue());
6474   }
6475 
6476   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6477           assert(InVals[i].getNode() &&
6478                  "LowerCall emitted a null value!");
6479           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6480                  "LowerCall emitted a value with the wrong type!");
6481         });
6482 
6483   // Collect the legal value parts into potentially illegal values
6484   // that correspond to the original function's return values.
6485   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6486   if (RetSExt)
6487     AssertOp = ISD::AssertSext;
6488   else if (RetZExt)
6489     AssertOp = ISD::AssertZext;
6490   SmallVector<SDValue, 4> ReturnValues;
6491   unsigned CurReg = 0;
6492   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6493     EVT VT = RetTys[I];
6494     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6495     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6496 
6497     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6498                                             NumRegs, RegisterVT, VT,
6499                                             AssertOp));
6500     CurReg += NumRegs;
6501   }
6502 
6503   // For a function returning void, there is no return value. We can't create
6504   // such a node, so we just return a null return value in that case. In
6505   // that case, nothing will actually look at the value.
6506   if (ReturnValues.empty())
6507     return std::make_pair(SDValue(), Chain);
6508 
6509   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6510                             DAG.getVTList(&RetTys[0], RetTys.size()),
6511                             &ReturnValues[0], ReturnValues.size());
6512   return std::make_pair(Res, Chain);
6513 }
6514 
6515 void TargetLowering::LowerOperationWrapper(SDNode *N,
6516                                            SmallVectorImpl<SDValue> &Results,
6517                                            SelectionDAG &DAG) const {
6518   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6519   if (Res.getNode())
6520     Results.push_back(Res);
6521 }
6522 
6523 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6524   llvm_unreachable("LowerOperation not implemented for this target!");
6525   return SDValue();
6526 }
6527 
6528 void
6529 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6530   SDValue Op = getNonRegisterValue(V);
6531   assert((Op.getOpcode() != ISD::CopyFromReg ||
6532           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6533          "Copy from a reg to the same reg!");
6534   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6535 
6536   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6537   SDValue Chain = DAG.getEntryNode();
6538   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6539   PendingExports.push_back(Chain);
6540 }
6541 
6542 #include "llvm/CodeGen/SelectionDAGISel.h"
6543 
6544 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6545 /// entry block, return true.  This includes arguments used by switches, since
6546 /// the switch may expand into multiple basic blocks.
6547 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6548   // With FastISel active, we may be splitting blocks, so force creation
6549   // of virtual registers for all non-dead arguments.
6550   if (EnableFastISel)
6551     return A->use_empty();
6552 
6553   const BasicBlock *Entry = A->getParent()->begin();
6554   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6555        UI != E; ++UI) {
6556     const User *U = *UI;
6557     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6558       return false;  // Use not in entry block.
6559   }
6560   return true;
6561 }
6562 
6563 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6564   // If this is the entry block, emit arguments.
6565   const Function &F = *LLVMBB->getParent();
6566   SelectionDAG &DAG = SDB->DAG;
6567   DebugLoc dl = SDB->getCurDebugLoc();
6568   const TargetData *TD = TLI.getTargetData();
6569   SmallVector<ISD::InputArg, 16> Ins;
6570 
6571   // Check whether the function can return without sret-demotion.
6572   SmallVector<ISD::OutputArg, 4> Outs;
6573   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6574                 Outs, TLI);
6575 
6576   if (!FuncInfo->CanLowerReturn) {
6577     // Put in an sret pointer parameter before all the other parameters.
6578     SmallVector<EVT, 1> ValueVTs;
6579     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6580 
6581     // NOTE: Assuming that a pointer will never break down to more than one VT
6582     // or one register.
6583     ISD::ArgFlagsTy Flags;
6584     Flags.setSRet();
6585     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6586     ISD::InputArg RetArg(Flags, RegisterVT, true);
6587     Ins.push_back(RetArg);
6588   }
6589 
6590   // Set up the incoming argument description vector.
6591   unsigned Idx = 1;
6592   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6593        I != E; ++I, ++Idx) {
6594     SmallVector<EVT, 4> ValueVTs;
6595     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6596     bool isArgValueUsed = !I->use_empty();
6597     for (unsigned Value = 0, NumValues = ValueVTs.size();
6598          Value != NumValues; ++Value) {
6599       EVT VT = ValueVTs[Value];
6600       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6601       ISD::ArgFlagsTy Flags;
6602       unsigned OriginalAlignment =
6603         TD->getABITypeAlignment(ArgTy);
6604 
6605       if (F.paramHasAttr(Idx, Attribute::ZExt))
6606         Flags.setZExt();
6607       if (F.paramHasAttr(Idx, Attribute::SExt))
6608         Flags.setSExt();
6609       if (F.paramHasAttr(Idx, Attribute::InReg))
6610         Flags.setInReg();
6611       if (F.paramHasAttr(Idx, Attribute::StructRet))
6612         Flags.setSRet();
6613       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6614         Flags.setByVal();
6615         PointerType *Ty = cast<PointerType>(I->getType());
6616         Type *ElementTy = Ty->getElementType();
6617         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6618         // For ByVal, alignment should be passed from FE.  BE will guess if
6619         // this info is not there but there are cases it cannot get right.
6620         unsigned FrameAlign;
6621         if (F.getParamAlignment(Idx))
6622           FrameAlign = F.getParamAlignment(Idx);
6623         else
6624           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6625         Flags.setByValAlign(FrameAlign);
6626       }
6627       if (F.paramHasAttr(Idx, Attribute::Nest))
6628         Flags.setNest();
6629       Flags.setOrigAlign(OriginalAlignment);
6630 
6631       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6632       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6633       for (unsigned i = 0; i != NumRegs; ++i) {
6634         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6635         if (NumRegs > 1 && i == 0)
6636           MyFlags.Flags.setSplit();
6637         // if it isn't first piece, alignment must be 1
6638         else if (i > 0)
6639           MyFlags.Flags.setOrigAlign(1);
6640         Ins.push_back(MyFlags);
6641       }
6642     }
6643   }
6644 
6645   // Call the target to set up the argument values.
6646   SmallVector<SDValue, 8> InVals;
6647   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6648                                              F.isVarArg(), Ins,
6649                                              dl, DAG, InVals);
6650 
6651   // Verify that the target's LowerFormalArguments behaved as expected.
6652   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6653          "LowerFormalArguments didn't return a valid chain!");
6654   assert(InVals.size() == Ins.size() &&
6655          "LowerFormalArguments didn't emit the correct number of values!");
6656   DEBUG({
6657       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6658         assert(InVals[i].getNode() &&
6659                "LowerFormalArguments emitted a null value!");
6660         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6661                "LowerFormalArguments emitted a value with the wrong type!");
6662       }
6663     });
6664 
6665   // Update the DAG with the new chain value resulting from argument lowering.
6666   DAG.setRoot(NewRoot);
6667 
6668   // Set up the argument values.
6669   unsigned i = 0;
6670   Idx = 1;
6671   if (!FuncInfo->CanLowerReturn) {
6672     // Create a virtual register for the sret pointer, and put in a copy
6673     // from the sret argument into it.
6674     SmallVector<EVT, 1> ValueVTs;
6675     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6676     EVT VT = ValueVTs[0];
6677     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6678     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6679     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6680                                         RegVT, VT, AssertOp);
6681 
6682     MachineFunction& MF = SDB->DAG.getMachineFunction();
6683     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6684     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6685     FuncInfo->DemoteRegister = SRetReg;
6686     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6687                                     SRetReg, ArgValue);
6688     DAG.setRoot(NewRoot);
6689 
6690     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6691     // Idx indexes LLVM arguments.  Don't touch it.
6692     ++i;
6693   }
6694 
6695   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6696       ++I, ++Idx) {
6697     SmallVector<SDValue, 4> ArgValues;
6698     SmallVector<EVT, 4> ValueVTs;
6699     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6700     unsigned NumValues = ValueVTs.size();
6701 
6702     // If this argument is unused then remember its value. It is used to generate
6703     // debugging information.
6704     if (I->use_empty() && NumValues)
6705       SDB->setUnusedArgValue(I, InVals[i]);
6706 
6707     for (unsigned Val = 0; Val != NumValues; ++Val) {
6708       EVT VT = ValueVTs[Val];
6709       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6710       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6711 
6712       if (!I->use_empty()) {
6713         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6714         if (F.paramHasAttr(Idx, Attribute::SExt))
6715           AssertOp = ISD::AssertSext;
6716         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6717           AssertOp = ISD::AssertZext;
6718 
6719         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6720                                              NumParts, PartVT, VT,
6721                                              AssertOp));
6722       }
6723 
6724       i += NumParts;
6725     }
6726 
6727     // We don't need to do anything else for unused arguments.
6728     if (ArgValues.empty())
6729       continue;
6730 
6731     // Note down frame index for byval arguments.
6732     if (I->hasByValAttr())
6733       if (FrameIndexSDNode *FI =
6734           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6735         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6736 
6737     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6738                                      SDB->getCurDebugLoc());
6739     SDB->setValue(I, Res);
6740 
6741     // If this argument is live outside of the entry block, insert a copy from
6742     // wherever we got it to the vreg that other BB's will reference it as.
6743     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6744       // If we can, though, try to skip creating an unnecessary vreg.
6745       // FIXME: This isn't very clean... it would be nice to make this more
6746       // general.  It's also subtly incompatible with the hacks FastISel
6747       // uses with vregs.
6748       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6749       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6750         FuncInfo->ValueMap[I] = Reg;
6751         continue;
6752       }
6753     }
6754     if (!isOnlyUsedInEntryBlock(I)) {
6755       FuncInfo->InitializeRegForValue(I);
6756       SDB->CopyToExportRegsIfNeeded(I);
6757     }
6758   }
6759 
6760   assert(i == InVals.size() && "Argument register count mismatch!");
6761 
6762   // Finally, if the target has anything special to do, allow it to do so.
6763   // FIXME: this should insert code into the DAG!
6764   EmitFunctionEntryCode();
6765 }
6766 
6767 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6768 /// ensure constants are generated when needed.  Remember the virtual registers
6769 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6770 /// directly add them, because expansion might result in multiple MBB's for one
6771 /// BB.  As such, the start of the BB might correspond to a different MBB than
6772 /// the end.
6773 ///
6774 void
6775 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6776   const TerminatorInst *TI = LLVMBB->getTerminator();
6777 
6778   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6779 
6780   // Check successor nodes' PHI nodes that expect a constant to be available
6781   // from this block.
6782   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6783     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6784     if (!isa<PHINode>(SuccBB->begin())) continue;
6785     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6786 
6787     // If this terminator has multiple identical successors (common for
6788     // switches), only handle each succ once.
6789     if (!SuccsHandled.insert(SuccMBB)) continue;
6790 
6791     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6792 
6793     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6794     // nodes and Machine PHI nodes, but the incoming operands have not been
6795     // emitted yet.
6796     for (BasicBlock::const_iterator I = SuccBB->begin();
6797          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6798       // Ignore dead phi's.
6799       if (PN->use_empty()) continue;
6800 
6801       // Skip empty types
6802       if (PN->getType()->isEmptyTy())
6803         continue;
6804 
6805       unsigned Reg;
6806       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6807 
6808       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6809         unsigned &RegOut = ConstantsOut[C];
6810         if (RegOut == 0) {
6811           RegOut = FuncInfo.CreateRegs(C->getType());
6812           CopyValueToVirtualRegister(C, RegOut);
6813         }
6814         Reg = RegOut;
6815       } else {
6816         DenseMap<const Value *, unsigned>::iterator I =
6817           FuncInfo.ValueMap.find(PHIOp);
6818         if (I != FuncInfo.ValueMap.end())
6819           Reg = I->second;
6820         else {
6821           assert(isa<AllocaInst>(PHIOp) &&
6822                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6823                  "Didn't codegen value into a register!??");
6824           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6825           CopyValueToVirtualRegister(PHIOp, Reg);
6826         }
6827       }
6828 
6829       // Remember that this register needs to added to the machine PHI node as
6830       // the input for this MBB.
6831       SmallVector<EVT, 4> ValueVTs;
6832       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6833       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6834         EVT VT = ValueVTs[vti];
6835         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6836         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6837           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6838         Reg += NumRegisters;
6839       }
6840     }
6841   }
6842   ConstantsOut.clear();
6843 }
6844