1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 bool Smaller = ValueVT.bitsLE(PartEVT); 323 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 324 DL, ValueVT, Val); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) { 343 bool Smaller = ValueVT.bitsLE(PartEVT); 344 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 345 DL, ValueVT.getScalarType(), Val); 346 } 347 348 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 349 } 350 351 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V); 354 355 /// getCopyToParts - Create a series of nodes that contain the specified value 356 /// split into legal parts. If the parts contain more bits than Val, then, for 357 /// integers, ExtendKind can be used to specify how to generate the extra bits. 358 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 359 SDValue Val, SDValue *Parts, unsigned NumParts, 360 MVT PartVT, const Value *V, 361 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 362 EVT ValueVT = Val.getValueType(); 363 364 // Handle the vector case separately. 365 if (ValueVT.isVector()) 366 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 367 368 unsigned PartBits = PartVT.getSizeInBits(); 369 unsigned OrigNumParts = NumParts; 370 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 371 "Copying to an illegal type!"); 372 373 if (NumParts == 0) 374 return; 375 376 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 377 EVT PartEVT = PartVT; 378 if (PartEVT == ValueVT) { 379 assert(NumParts == 1 && "No-op copy with multiple parts!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 385 // If the parts cover more bits than the value has, promote the value. 386 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 387 assert(NumParts == 1 && "Do not know what to promote to!"); 388 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 389 } else { 390 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 391 ValueVT.isInteger() && 392 "Unknown mismatch!"); 393 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 394 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 395 if (PartVT == MVT::x86mmx) 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } 398 } else if (PartBits == ValueVT.getSizeInBits()) { 399 // Different types of the same size. 400 assert(NumParts == 1 && PartEVT != ValueVT); 401 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 402 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 403 // If the parts cover less bits than value has, truncate the value. 404 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 405 ValueVT.isInteger() && 406 "Unknown mismatch!"); 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 if (PartVT == MVT::x86mmx) 410 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 411 } 412 413 // The value may have changed - recompute ValueVT. 414 ValueVT = Val.getValueType(); 415 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 416 "Failed to tile the value with PartVT!"); 417 418 if (NumParts == 1) { 419 if (PartEVT != ValueVT) 420 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 421 "scalar-to-vector conversion failed"); 422 423 Parts[0] = Val; 424 return; 425 } 426 427 // Expand the value into multiple parts. 428 if (NumParts & (NumParts - 1)) { 429 // The number of parts is not a power of 2. Split off and copy the tail. 430 assert(PartVT.isInteger() && ValueVT.isInteger() && 431 "Do not know what to expand to!"); 432 unsigned RoundParts = 1 << Log2_32(NumParts); 433 unsigned RoundBits = RoundParts * PartBits; 434 unsigned OddParts = NumParts - RoundParts; 435 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 436 DAG.getIntPtrConstant(RoundBits, DL)); 437 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 438 439 if (DAG.getDataLayout().isBigEndian()) 440 // The odd parts were reversed by getCopyToParts - unreverse them. 441 std::reverse(Parts + RoundParts, Parts + NumParts); 442 443 NumParts = RoundParts; 444 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 445 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 446 } 447 448 // The number of parts is a power of 2. Repeatedly bisect the value using 449 // EXTRACT_ELEMENT. 450 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 451 EVT::getIntegerVT(*DAG.getContext(), 452 ValueVT.getSizeInBits()), 453 Val); 454 455 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 456 for (unsigned i = 0; i < NumParts; i += StepSize) { 457 unsigned ThisBits = StepSize * PartBits / 2; 458 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 459 SDValue &Part0 = Parts[i]; 460 SDValue &Part1 = Parts[i+StepSize/2]; 461 462 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 463 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 464 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 465 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 466 467 if (ThisBits == PartBits && ThisVT != PartVT) { 468 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 469 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 470 } 471 } 472 } 473 474 if (DAG.getDataLayout().isBigEndian()) 475 std::reverse(Parts, Parts + OrigNumParts); 476 } 477 478 479 /// getCopyToPartsVector - Create a series of nodes that contain the specified 480 /// value split into legal parts. 481 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 482 SDValue Val, SDValue *Parts, unsigned NumParts, 483 MVT PartVT, const Value *V) { 484 EVT ValueVT = Val.getValueType(); 485 assert(ValueVT.isVector() && "Not a vector"); 486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 487 488 if (NumParts == 1) { 489 EVT PartEVT = PartVT; 490 if (PartEVT == ValueVT) { 491 // Nothing to do. 492 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 493 // Bitconvert vector->vector case. 494 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 495 } else if (PartVT.isVector() && 496 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 497 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 498 EVT ElementVT = PartVT.getVectorElementType(); 499 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 500 // undef elements. 501 SmallVector<SDValue, 16> Ops; 502 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 503 Ops.push_back(DAG.getNode( 504 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 505 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 506 507 for (unsigned i = ValueVT.getVectorNumElements(), 508 e = PartVT.getVectorNumElements(); i != e; ++i) 509 Ops.push_back(DAG.getUNDEF(ElementVT)); 510 511 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 512 513 // FIXME: Use CONCAT for 2x -> 4x. 514 515 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 516 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 517 } else if (PartVT.isVector() && 518 PartEVT.getVectorElementType().bitsGE( 519 ValueVT.getVectorElementType()) && 520 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 521 522 // Promoted vector extract 523 bool Smaller = PartEVT.bitsLE(ValueVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } else{ 527 // Vector -> scalar conversion. 528 assert(ValueVT.getVectorNumElements() == 1 && 529 "Only trivial vector-to-scalar conversions should get here!"); 530 Val = DAG.getNode( 531 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 532 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 533 534 bool Smaller = ValueVT.bitsLE(PartVT); 535 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 536 DL, PartVT, Val); 537 } 538 539 Parts[0] = Val; 540 return; 541 } 542 543 // Handle a multi-element vector. 544 EVT IntermediateVT; 545 MVT RegisterVT; 546 unsigned NumIntermediates; 547 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 548 IntermediateVT, 549 NumIntermediates, RegisterVT); 550 unsigned NumElements = ValueVT.getVectorNumElements(); 551 552 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 553 NumParts = NumRegs; // Silence a compiler warning. 554 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 555 556 // Split the vector into intermediate operands. 557 SmallVector<SDValue, 8> Ops(NumIntermediates); 558 for (unsigned i = 0; i != NumIntermediates; ++i) { 559 if (IntermediateVT.isVector()) 560 Ops[i] = 561 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 562 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 563 TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 else 565 Ops[i] = DAG.getNode( 566 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 567 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 568 } 569 570 // Split the intermediate operands into legal parts. 571 if (NumParts == NumIntermediates) { 572 // If the register was not expanded, promote or copy the value, 573 // as appropriate. 574 for (unsigned i = 0; i != NumParts; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 576 } else if (NumParts > 0) { 577 // If the intermediate type was expanded, split each the value into 578 // legal parts. 579 assert(NumIntermediates != 0 && "division by zero"); 580 assert(NumParts % NumIntermediates == 0 && 581 "Must expand into a divisible number of parts!"); 582 unsigned Factor = NumParts / NumIntermediates; 583 for (unsigned i = 0; i != NumIntermediates; ++i) 584 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 585 } 586 } 587 588 RegsForValue::RegsForValue() {} 589 590 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 591 EVT valuevt) 592 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 593 594 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 595 const DataLayout &DL, unsigned Reg, Type *Ty) { 596 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 597 598 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 599 EVT ValueVT = ValueVTs[Value]; 600 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 601 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 602 for (unsigned i = 0; i != NumRegs; ++i) 603 Regs.push_back(Reg + i); 604 RegVTs.push_back(RegisterVT); 605 Reg += NumRegs; 606 } 607 } 608 609 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 610 /// this value and returns the result as a ValueVT value. This uses 611 /// Chain/Flag as the input and updates them for the output Chain/Flag. 612 /// If the Flag pointer is NULL, no flag is used. 613 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 614 FunctionLoweringInfo &FuncInfo, 615 SDLoc dl, 616 SDValue &Chain, SDValue *Flag, 617 const Value *V) const { 618 // A Value with type {} or [0 x %t] needs no registers. 619 if (ValueVTs.empty()) 620 return SDValue(); 621 622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 623 624 // Assemble the legal parts into the final values. 625 SmallVector<SDValue, 4> Values(ValueVTs.size()); 626 SmallVector<SDValue, 8> Parts; 627 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 628 // Copy the legal parts from the registers. 629 EVT ValueVT = ValueVTs[Value]; 630 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 631 MVT RegisterVT = RegVTs[Value]; 632 633 Parts.resize(NumRegs); 634 for (unsigned i = 0; i != NumRegs; ++i) { 635 SDValue P; 636 if (!Flag) { 637 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 638 } else { 639 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 640 *Flag = P.getValue(2); 641 } 642 643 Chain = P.getValue(1); 644 Parts[i] = P; 645 646 // If the source register was virtual and if we know something about it, 647 // add an assert node. 648 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 649 !RegisterVT.isInteger() || RegisterVT.isVector()) 650 continue; 651 652 const FunctionLoweringInfo::LiveOutInfo *LOI = 653 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 654 if (!LOI) 655 continue; 656 657 unsigned RegSize = RegisterVT.getSizeInBits(); 658 unsigned NumSignBits = LOI->NumSignBits; 659 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 660 661 if (NumZeroBits == RegSize) { 662 // The current value is a zero. 663 // Explicitly express that as it would be easier for 664 // optimizations to kick in. 665 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 666 continue; 667 } 668 669 // FIXME: We capture more information than the dag can represent. For 670 // now, just use the tightest assertzext/assertsext possible. 671 bool isSExt = true; 672 EVT FromVT(MVT::Other); 673 if (NumSignBits == RegSize) 674 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 675 else if (NumZeroBits >= RegSize-1) 676 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 677 else if (NumSignBits > RegSize-8) 678 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 679 else if (NumZeroBits >= RegSize-8) 680 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 681 else if (NumSignBits > RegSize-16) 682 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 683 else if (NumZeroBits >= RegSize-16) 684 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 685 else if (NumSignBits > RegSize-32) 686 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 687 else if (NumZeroBits >= RegSize-32) 688 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 689 else 690 continue; 691 692 // Add an assertion node. 693 assert(FromVT != MVT::Other); 694 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 695 RegisterVT, P, DAG.getValueType(FromVT)); 696 } 697 698 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 699 NumRegs, RegisterVT, ValueVT, V); 700 Part += NumRegs; 701 Parts.clear(); 702 } 703 704 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 705 } 706 707 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 708 /// specified value into the registers specified by this object. This uses 709 /// Chain/Flag as the input and updates them for the output Chain/Flag. 710 /// If the Flag pointer is NULL, no flag is used. 711 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 712 SDValue &Chain, SDValue *Flag, const Value *V, 713 ISD::NodeType PreferredExtendType) const { 714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 715 ISD::NodeType ExtendKind = PreferredExtendType; 716 717 // Get the list of the values's legal parts. 718 unsigned NumRegs = Regs.size(); 719 SmallVector<SDValue, 8> Parts(NumRegs); 720 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 721 EVT ValueVT = ValueVTs[Value]; 722 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 723 MVT RegisterVT = RegVTs[Value]; 724 725 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 726 ExtendKind = ISD::ZERO_EXTEND; 727 728 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 729 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 730 Part += NumParts; 731 } 732 733 // Copy the parts into the registers. 734 SmallVector<SDValue, 8> Chains(NumRegs); 735 for (unsigned i = 0; i != NumRegs; ++i) { 736 SDValue Part; 737 if (!Flag) { 738 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 739 } else { 740 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 741 *Flag = Part.getValue(1); 742 } 743 744 Chains[i] = Part.getValue(0); 745 } 746 747 if (NumRegs == 1 || Flag) 748 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 749 // flagged to it. That is the CopyToReg nodes and the user are considered 750 // a single scheduling unit. If we create a TokenFactor and return it as 751 // chain, then the TokenFactor is both a predecessor (operand) of the 752 // user as well as a successor (the TF operands are flagged to the user). 753 // c1, f1 = CopyToReg 754 // c2, f2 = CopyToReg 755 // c3 = TokenFactor c1, c2 756 // ... 757 // = op c3, ..., f2 758 Chain = Chains[NumRegs-1]; 759 else 760 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 761 } 762 763 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 764 /// operand list. This adds the code marker and includes the number of 765 /// values added into it. 766 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 767 unsigned MatchingIdx, SDLoc dl, 768 SelectionDAG &DAG, 769 std::vector<SDValue> &Ops) const { 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 773 if (HasMatching) 774 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 775 else if (!Regs.empty() && 776 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 777 // Put the register class of the virtual registers in the flag word. That 778 // way, later passes can recompute register class constraints for inline 779 // assembly as well as normal instructions. 780 // Don't do this for tied operands that can use the regclass information 781 // from the def. 782 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 783 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 784 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 785 } 786 787 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 788 Ops.push_back(Res); 789 790 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 791 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 792 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 793 MVT RegisterVT = RegVTs[Value]; 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 796 unsigned TheReg = Regs[Reg++]; 797 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 798 799 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 800 // If we clobbered the stack pointer, MFI should know about it. 801 assert(DAG.getMachineFunction().getFrameInfo()-> 802 hasOpaqueSPAdjustment()); 803 } 804 } 805 } 806 } 807 808 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 809 const TargetLibraryInfo *li) { 810 AA = &aa; 811 GFI = gfi; 812 LibInfo = li; 813 DL = &DAG.getDataLayout(); 814 Context = DAG.getContext(); 815 LPadToCallSiteMap.clear(); 816 } 817 818 /// clear - Clear out the current SelectionDAG and the associated 819 /// state and prepare this SelectionDAGBuilder object to be used 820 /// for a new block. This doesn't clear out information about 821 /// additional blocks that are needed to complete switch lowering 822 /// or PHI node updating; that information is cleared out as it is 823 /// consumed. 824 void SelectionDAGBuilder::clear() { 825 NodeMap.clear(); 826 UnusedArgNodeMap.clear(); 827 PendingLoads.clear(); 828 PendingExports.clear(); 829 CurInst = nullptr; 830 HasTailCall = false; 831 SDNodeOrder = LowestSDNodeOrder; 832 StatepointLowering.clear(); 833 } 834 835 /// clearDanglingDebugInfo - Clear the dangling debug information 836 /// map. This function is separated from the clear so that debug 837 /// information that is dangling in a basic block can be properly 838 /// resolved in a different basic block. This allows the 839 /// SelectionDAG to resolve dangling debug information attached 840 /// to PHI nodes. 841 void SelectionDAGBuilder::clearDanglingDebugInfo() { 842 DanglingDebugInfoMap.clear(); 843 } 844 845 /// getRoot - Return the current virtual root of the Selection DAG, 846 /// flushing any PendingLoad items. This must be done before emitting 847 /// a store or any other node that may need to be ordered after any 848 /// prior load instructions. 849 /// 850 SDValue SelectionDAGBuilder::getRoot() { 851 if (PendingLoads.empty()) 852 return DAG.getRoot(); 853 854 if (PendingLoads.size() == 1) { 855 SDValue Root = PendingLoads[0]; 856 DAG.setRoot(Root); 857 PendingLoads.clear(); 858 return Root; 859 } 860 861 // Otherwise, we have to make a token factor node. 862 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 863 PendingLoads); 864 PendingLoads.clear(); 865 DAG.setRoot(Root); 866 return Root; 867 } 868 869 /// getControlRoot - Similar to getRoot, but instead of flushing all the 870 /// PendingLoad items, flush all the PendingExports items. It is necessary 871 /// to do this before emitting a terminator instruction. 872 /// 873 SDValue SelectionDAGBuilder::getControlRoot() { 874 SDValue Root = DAG.getRoot(); 875 876 if (PendingExports.empty()) 877 return Root; 878 879 // Turn all of the CopyToReg chains into one factored node. 880 if (Root.getOpcode() != ISD::EntryToken) { 881 unsigned i = 0, e = PendingExports.size(); 882 for (; i != e; ++i) { 883 assert(PendingExports[i].getNode()->getNumOperands() > 1); 884 if (PendingExports[i].getNode()->getOperand(0) == Root) 885 break; // Don't add the root if we already indirectly depend on it. 886 } 887 888 if (i == e) 889 PendingExports.push_back(Root); 890 } 891 892 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 893 PendingExports); 894 PendingExports.clear(); 895 DAG.setRoot(Root); 896 return Root; 897 } 898 899 void SelectionDAGBuilder::visit(const Instruction &I) { 900 // Set up outgoing PHI node register values before emitting the terminator. 901 if (isa<TerminatorInst>(&I)) 902 HandlePHINodesInSuccessorBlocks(I.getParent()); 903 904 ++SDNodeOrder; 905 906 CurInst = &I; 907 908 visit(I.getOpcode(), I); 909 910 if (!isa<TerminatorInst>(&I) && !HasTailCall) 911 CopyToExportRegsIfNeeded(&I); 912 913 CurInst = nullptr; 914 } 915 916 void SelectionDAGBuilder::visitPHI(const PHINode &) { 917 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 918 } 919 920 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 921 // Note: this doesn't use InstVisitor, because it has to work with 922 // ConstantExpr's in addition to instructions. 923 switch (Opcode) { 924 default: llvm_unreachable("Unknown instruction type encountered!"); 925 // Build the switch statement using the Instruction.def file. 926 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 927 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 928 #include "llvm/IR/Instruction.def" 929 } 930 } 931 932 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 933 // generate the debug data structures now that we've seen its definition. 934 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 935 SDValue Val) { 936 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 937 if (DDI.getDI()) { 938 const DbgValueInst *DI = DDI.getDI(); 939 DebugLoc dl = DDI.getdl(); 940 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 941 DILocalVariable *Variable = DI->getVariable(); 942 DIExpression *Expr = DI->getExpression(); 943 assert(Variable->isValidLocationForIntrinsic(dl) && 944 "Expected inlined-at fields to agree"); 945 uint64_t Offset = DI->getOffset(); 946 // A dbg.value for an alloca is always indirect. 947 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 948 SDDbgValue *SDV; 949 if (Val.getNode()) { 950 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 951 Val)) { 952 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 953 IsIndirect, Offset, dl, DbgSDNodeOrder); 954 DAG.AddDbgValue(SDV, Val.getNode(), false); 955 } 956 } else 957 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 958 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 959 } 960 } 961 962 /// getCopyFromRegs - If there was virtual register allocated for the value V 963 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 964 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 965 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 966 SDValue Result; 967 968 if (It != FuncInfo.ValueMap.end()) { 969 unsigned InReg = It->second; 970 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 971 DAG.getDataLayout(), InReg, Ty); 972 SDValue Chain = DAG.getEntryNode(); 973 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 974 resolveDanglingDebugInfo(V, Result); 975 } 976 977 return Result; 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 991 if (copyFromReg.getNode()) { 992 return copyFromReg; 993 } 994 995 // Otherwise create a new SDValue and remember it. 996 SDValue Val = getValueImpl(V); 997 NodeMap[V] = Val; 998 resolveDanglingDebugInfo(V, Val); 999 return Val; 1000 } 1001 1002 // Return true if SDValue exists for the given Value 1003 bool SelectionDAGBuilder::findValue(const Value *V) const { 1004 return (NodeMap.find(V) != NodeMap.end()) || 1005 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1006 } 1007 1008 /// getNonRegisterValue - Return an SDValue for the given Value, but 1009 /// don't look in FuncInfo.ValueMap for a virtual register. 1010 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) { 1014 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1015 // Remove the debug location from the node as the node is about to be used 1016 // in a location which may differ from the original debug location. This 1017 // is relevant to Constant and ConstantFP nodes because they can appear 1018 // as constant expressions inside PHI nodes. 1019 N->setDebugLoc(DebugLoc()); 1020 } 1021 return N; 1022 } 1023 1024 // Otherwise create a new SDValue and remember it. 1025 SDValue Val = getValueImpl(V); 1026 NodeMap[V] = Val; 1027 resolveDanglingDebugInfo(V, Val); 1028 return Val; 1029 } 1030 1031 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1032 /// Create an SDValue for the given value. 1033 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1035 1036 if (const Constant *C = dyn_cast<Constant>(V)) { 1037 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1038 1039 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1040 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1041 1042 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1043 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1044 1045 if (isa<ConstantPointerNull>(C)) { 1046 unsigned AS = V->getType()->getPointerAddressSpace(); 1047 return DAG.getConstant(0, getCurSDLoc(), 1048 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1049 } 1050 1051 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1052 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1053 1054 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1055 return DAG.getUNDEF(VT); 1056 1057 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1058 visit(CE->getOpcode(), *CE); 1059 SDValue N1 = NodeMap[V]; 1060 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1061 return N1; 1062 } 1063 1064 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1065 SmallVector<SDValue, 4> Constants; 1066 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1067 OI != OE; ++OI) { 1068 SDNode *Val = getValue(*OI).getNode(); 1069 // If the operand is an empty aggregate, there are no values. 1070 if (!Val) continue; 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Constants.push_back(SDValue(Val, i)); 1075 } 1076 1077 return DAG.getMergeValues(Constants, getCurSDLoc()); 1078 } 1079 1080 if (const ConstantDataSequential *CDS = 1081 dyn_cast<ConstantDataSequential>(C)) { 1082 SmallVector<SDValue, 4> Ops; 1083 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1084 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1085 // Add each leaf value from the operand to the Constants list 1086 // to form a flattened list of all the values. 1087 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1088 Ops.push_back(SDValue(Val, i)); 1089 } 1090 1091 if (isa<ArrayType>(CDS->getType())) 1092 return DAG.getMergeValues(Ops, getCurSDLoc()); 1093 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1094 VT, Ops); 1095 } 1096 1097 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1098 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1099 "Unknown struct or array constant!"); 1100 1101 SmallVector<EVT, 4> ValueVTs; 1102 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1103 unsigned NumElts = ValueVTs.size(); 1104 if (NumElts == 0) 1105 return SDValue(); // empty struct 1106 SmallVector<SDValue, 4> Constants(NumElts); 1107 for (unsigned i = 0; i != NumElts; ++i) { 1108 EVT EltVT = ValueVTs[i]; 1109 if (isa<UndefValue>(C)) 1110 Constants[i] = DAG.getUNDEF(EltVT); 1111 else if (EltVT.isFloatingPoint()) 1112 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1113 else 1114 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1115 } 1116 1117 return DAG.getMergeValues(Constants, getCurSDLoc()); 1118 } 1119 1120 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1121 return DAG.getBlockAddress(BA, VT); 1122 1123 VectorType *VecTy = cast<VectorType>(V->getType()); 1124 unsigned NumElements = VecTy->getNumElements(); 1125 1126 // Now that we know the number and type of the elements, get that number of 1127 // elements into the Ops array based on what kind of constant it is. 1128 SmallVector<SDValue, 16> Ops; 1129 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1130 for (unsigned i = 0; i != NumElements; ++i) 1131 Ops.push_back(getValue(CV->getOperand(i))); 1132 } else { 1133 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1134 EVT EltVT = 1135 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1136 1137 SDValue Op; 1138 if (EltVT.isFloatingPoint()) 1139 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1140 else 1141 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1142 Ops.assign(NumElements, Op); 1143 } 1144 1145 // Create a BUILD_VECTOR node. 1146 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1147 } 1148 1149 // If this is a static alloca, generate it as the frameindex instead of 1150 // computation. 1151 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1152 DenseMap<const AllocaInst*, int>::iterator SI = 1153 FuncInfo.StaticAllocaMap.find(AI); 1154 if (SI != FuncInfo.StaticAllocaMap.end()) 1155 return DAG.getFrameIndex(SI->second, 1156 TLI.getPointerTy(DAG.getDataLayout())); 1157 } 1158 1159 // If this is an instruction which fast-isel has deferred, select it now. 1160 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1161 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1162 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1163 Inst->getType()); 1164 SDValue Chain = DAG.getEntryNode(); 1165 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1166 } 1167 1168 llvm_unreachable("Can't get register for value!"); 1169 } 1170 1171 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1173 auto &DL = DAG.getDataLayout(); 1174 SDValue Chain = getControlRoot(); 1175 SmallVector<ISD::OutputArg, 8> Outs; 1176 SmallVector<SDValue, 8> OutVals; 1177 1178 if (!FuncInfo.CanLowerReturn) { 1179 unsigned DemoteReg = FuncInfo.DemoteRegister; 1180 const Function *F = I.getParent()->getParent(); 1181 1182 // Emit a store of the return value through the virtual register. 1183 // Leave Outs empty so that LowerReturn won't try to load return 1184 // registers the usual way. 1185 SmallVector<EVT, 1> PtrValueVTs; 1186 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1187 PtrValueVTs); 1188 1189 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1190 SDValue RetOp = getValue(I.getOperand(0)); 1191 1192 SmallVector<EVT, 4> ValueVTs; 1193 SmallVector<uint64_t, 4> Offsets; 1194 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1195 unsigned NumValues = ValueVTs.size(); 1196 1197 SmallVector<SDValue, 4> Chains(NumValues); 1198 for (unsigned i = 0; i != NumValues; ++i) { 1199 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1200 RetPtr.getValueType(), RetPtr, 1201 DAG.getIntPtrConstant(Offsets[i], 1202 getCurSDLoc())); 1203 Chains[i] = 1204 DAG.getStore(Chain, getCurSDLoc(), 1205 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1206 // FIXME: better loc info would be nice. 1207 Add, MachinePointerInfo(), false, false, 0); 1208 } 1209 1210 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1211 MVT::Other, Chains); 1212 } else if (I.getNumOperands() != 0) { 1213 SmallVector<EVT, 4> ValueVTs; 1214 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1215 unsigned NumValues = ValueVTs.size(); 1216 if (NumValues) { 1217 SDValue RetOp = getValue(I.getOperand(0)); 1218 1219 const Function *F = I.getParent()->getParent(); 1220 1221 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1222 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1223 Attribute::SExt)) 1224 ExtendKind = ISD::SIGN_EXTEND; 1225 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1226 Attribute::ZExt)) 1227 ExtendKind = ISD::ZERO_EXTEND; 1228 1229 LLVMContext &Context = F->getContext(); 1230 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1231 Attribute::InReg); 1232 1233 for (unsigned j = 0; j != NumValues; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1237 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1238 1239 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1240 MVT PartVT = TLI.getRegisterType(Context, VT); 1241 SmallVector<SDValue, 4> Parts(NumParts); 1242 getCopyToParts(DAG, getCurSDLoc(), 1243 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1244 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1245 1246 // 'inreg' on function refers to return value 1247 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1248 if (RetInReg) 1249 Flags.setInReg(); 1250 1251 // Propagate extension type if any 1252 if (ExtendKind == ISD::SIGN_EXTEND) 1253 Flags.setSExt(); 1254 else if (ExtendKind == ISD::ZERO_EXTEND) 1255 Flags.setZExt(); 1256 1257 for (unsigned i = 0; i < NumParts; ++i) { 1258 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1259 VT, /*isfixed=*/true, 0, 0)); 1260 OutVals.push_back(Parts[i]); 1261 } 1262 } 1263 } 1264 } 1265 1266 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1267 CallingConv::ID CallConv = 1268 DAG.getMachineFunction().getFunction()->getCallingConv(); 1269 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1270 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1271 1272 // Verify that the target's LowerReturn behaved as expected. 1273 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1274 "LowerReturn didn't return a valid chain!"); 1275 1276 // Update the DAG with the new chain value resulting from return lowering. 1277 DAG.setRoot(Chain); 1278 } 1279 1280 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1281 /// created for it, emit nodes to copy the value into the virtual 1282 /// registers. 1283 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1284 // Skip empty types 1285 if (V->getType()->isEmptyTy()) 1286 return; 1287 1288 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1289 if (VMI != FuncInfo.ValueMap.end()) { 1290 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1291 CopyValueToVirtualRegister(V, VMI->second); 1292 } 1293 } 1294 1295 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1296 /// the current basic block, add it to ValueMap now so that we'll get a 1297 /// CopyTo/FromReg. 1298 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1299 // No need to export constants. 1300 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1301 1302 // Already exported? 1303 if (FuncInfo.isExportedInst(V)) return; 1304 1305 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1306 CopyValueToVirtualRegister(V, Reg); 1307 } 1308 1309 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1310 const BasicBlock *FromBB) { 1311 // The operands of the setcc have to be in this block. We don't know 1312 // how to export them from some other block. 1313 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1314 // Can export from current BB. 1315 if (VI->getParent() == FromBB) 1316 return true; 1317 1318 // Is already exported, noop. 1319 return FuncInfo.isExportedInst(V); 1320 } 1321 1322 // If this is an argument, we can export it if the BB is the entry block or 1323 // if it is already exported. 1324 if (isa<Argument>(V)) { 1325 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1326 return true; 1327 1328 // Otherwise, can only export this if it is already exported. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // Otherwise, constants can always be exported. 1333 return true; 1334 } 1335 1336 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1337 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1338 const MachineBasicBlock *Dst) const { 1339 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1340 if (!BPI) 1341 return 0; 1342 const BasicBlock *SrcBB = Src->getBasicBlock(); 1343 const BasicBlock *DstBB = Dst->getBasicBlock(); 1344 return BPI->getEdgeWeight(SrcBB, DstBB); 1345 } 1346 1347 void SelectionDAGBuilder:: 1348 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1349 uint32_t Weight /* = 0 */) { 1350 if (!Weight) 1351 Weight = getEdgeWeight(Src, Dst); 1352 Src->addSuccessor(Dst, Weight); 1353 } 1354 1355 1356 static bool InBlock(const Value *V, const BasicBlock *BB) { 1357 if (const Instruction *I = dyn_cast<Instruction>(V)) 1358 return I->getParent() == BB; 1359 return true; 1360 } 1361 1362 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1363 /// This function emits a branch and is used at the leaves of an OR or an 1364 /// AND operator tree. 1365 /// 1366 void 1367 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1368 MachineBasicBlock *TBB, 1369 MachineBasicBlock *FBB, 1370 MachineBasicBlock *CurBB, 1371 MachineBasicBlock *SwitchBB, 1372 uint32_t TWeight, 1373 uint32_t FWeight) { 1374 const BasicBlock *BB = CurBB->getBasicBlock(); 1375 1376 // If the leaf of the tree is a comparison, merge the condition into 1377 // the caseblock. 1378 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1379 // The operands of the cmp have to be in this block. We don't know 1380 // how to export them from some other block. If this is the first block 1381 // of the sequence, no exporting is needed. 1382 if (CurBB == SwitchBB || 1383 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1384 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1385 ISD::CondCode Condition; 1386 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1387 Condition = getICmpCondCode(IC->getPredicate()); 1388 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1389 Condition = getFCmpCondCode(FC->getPredicate()); 1390 if (TM.Options.NoNaNsFPMath) 1391 Condition = getFCmpCodeWithoutNaN(Condition); 1392 } else { 1393 (void)Condition; // silence warning. 1394 llvm_unreachable("Unknown compare instruction"); 1395 } 1396 1397 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1398 TBB, FBB, CurBB, TWeight, FWeight); 1399 SwitchCases.push_back(CB); 1400 return; 1401 } 1402 } 1403 1404 // Create a CaseBlock record representing this branch. 1405 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1406 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1407 SwitchCases.push_back(CB); 1408 } 1409 1410 /// Scale down both weights to fit into uint32_t. 1411 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1412 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1413 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1414 NewTrue = NewTrue / Scale; 1415 NewFalse = NewFalse / Scale; 1416 } 1417 1418 /// FindMergedConditions - If Cond is an expression like 1419 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1420 MachineBasicBlock *TBB, 1421 MachineBasicBlock *FBB, 1422 MachineBasicBlock *CurBB, 1423 MachineBasicBlock *SwitchBB, 1424 unsigned Opc, uint32_t TWeight, 1425 uint32_t FWeight) { 1426 // If this node is not part of the or/and tree, emit it as a branch. 1427 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1428 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1429 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1430 BOp->getParent() != CurBB->getBasicBlock() || 1431 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1432 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1433 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1434 TWeight, FWeight); 1435 return; 1436 } 1437 1438 // Create TmpBB after CurBB. 1439 MachineFunction::iterator BBI = CurBB; 1440 MachineFunction &MF = DAG.getMachineFunction(); 1441 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1442 CurBB->getParent()->insert(++BBI, TmpBB); 1443 1444 if (Opc == Instruction::Or) { 1445 // Codegen X | Y as: 1446 // BB1: 1447 // jmp_if_X TBB 1448 // jmp TmpBB 1449 // TmpBB: 1450 // jmp_if_Y TBB 1451 // jmp FBB 1452 // 1453 1454 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1455 // The requirement is that 1456 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1457 // = TrueProb for original BB. 1458 // Assuming the original weights are A and B, one choice is to set BB1's 1459 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1460 // assumes that 1461 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1462 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1463 // TmpBB, but the math is more complicated. 1464 1465 uint64_t NewTrueWeight = TWeight; 1466 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1467 ScaleWeights(NewTrueWeight, NewFalseWeight); 1468 // Emit the LHS condition. 1469 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1470 NewTrueWeight, NewFalseWeight); 1471 1472 NewTrueWeight = TWeight; 1473 NewFalseWeight = 2 * (uint64_t)FWeight; 1474 ScaleWeights(NewTrueWeight, NewFalseWeight); 1475 // Emit the RHS condition into TmpBB. 1476 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1477 NewTrueWeight, NewFalseWeight); 1478 } else { 1479 assert(Opc == Instruction::And && "Unknown merge op!"); 1480 // Codegen X & Y as: 1481 // BB1: 1482 // jmp_if_X TmpBB 1483 // jmp FBB 1484 // TmpBB: 1485 // jmp_if_Y TBB 1486 // jmp FBB 1487 // 1488 // This requires creation of TmpBB after CurBB. 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1493 // = FalseProb for original BB. 1494 // Assuming the original weights are A and B, one choice is to set BB1's 1495 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1496 // assumes that 1497 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1498 1499 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1500 uint64_t NewFalseWeight = FWeight; 1501 ScaleWeights(NewTrueWeight, NewFalseWeight); 1502 // Emit the LHS condition. 1503 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1504 NewTrueWeight, NewFalseWeight); 1505 1506 NewTrueWeight = 2 * (uint64_t)TWeight; 1507 NewFalseWeight = FWeight; 1508 ScaleWeights(NewTrueWeight, NewFalseWeight); 1509 // Emit the RHS condition into TmpBB. 1510 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1511 NewTrueWeight, NewFalseWeight); 1512 } 1513 } 1514 1515 /// If the set of cases should be emitted as a series of branches, return true. 1516 /// If we should emit this as a bunch of and/or'd together conditions, return 1517 /// false. 1518 bool 1519 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1520 if (Cases.size() != 2) return true; 1521 1522 // If this is two comparisons of the same values or'd or and'd together, they 1523 // will get folded into a single comparison, so don't emit two blocks. 1524 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1525 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1526 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1527 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1528 return false; 1529 } 1530 1531 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1532 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1533 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1534 Cases[0].CC == Cases[1].CC && 1535 isa<Constant>(Cases[0].CmpRHS) && 1536 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1537 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1538 return false; 1539 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1540 return false; 1541 } 1542 1543 return true; 1544 } 1545 1546 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1547 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1548 1549 // Update machine-CFG edges. 1550 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1551 1552 if (I.isUnconditional()) { 1553 // Update machine-CFG edges. 1554 BrMBB->addSuccessor(Succ0MBB); 1555 1556 // If this is not a fall-through branch or optimizations are switched off, 1557 // emit the branch. 1558 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1559 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1560 MVT::Other, getControlRoot(), 1561 DAG.getBasicBlock(Succ0MBB))); 1562 1563 return; 1564 } 1565 1566 // If this condition is one of the special cases we handle, do special stuff 1567 // now. 1568 const Value *CondVal = I.getCondition(); 1569 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1570 1571 // If this is a series of conditions that are or'd or and'd together, emit 1572 // this as a sequence of branches instead of setcc's with and/or operations. 1573 // As long as jumps are not expensive, this should improve performance. 1574 // For example, instead of something like: 1575 // cmp A, B 1576 // C = seteq 1577 // cmp D, E 1578 // F = setle 1579 // or C, F 1580 // jnz foo 1581 // Emit: 1582 // cmp A, B 1583 // je foo 1584 // cmp D, E 1585 // jle foo 1586 // 1587 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1588 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1589 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1590 BOp->getOpcode() == Instruction::Or)) { 1591 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1592 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1593 getEdgeWeight(BrMBB, Succ1MBB)); 1594 // If the compares in later blocks need to use values not currently 1595 // exported from this block, export them now. This block should always 1596 // be the first entry. 1597 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1598 1599 // Allow some cases to be rejected. 1600 if (ShouldEmitAsBranches(SwitchCases)) { 1601 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1602 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1603 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1604 } 1605 1606 // Emit the branch for this block. 1607 visitSwitchCase(SwitchCases[0], BrMBB); 1608 SwitchCases.erase(SwitchCases.begin()); 1609 return; 1610 } 1611 1612 // Okay, we decided not to do this, remove any inserted MBB's and clear 1613 // SwitchCases. 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1615 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1616 1617 SwitchCases.clear(); 1618 } 1619 } 1620 1621 // Create a CaseBlock record representing this branch. 1622 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1623 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1624 1625 // Use visitSwitchCase to actually insert the fast branch sequence for this 1626 // cond branch. 1627 visitSwitchCase(CB, BrMBB); 1628 } 1629 1630 /// visitSwitchCase - Emits the necessary code to represent a single node in 1631 /// the binary search tree resulting from lowering a switch instruction. 1632 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1633 MachineBasicBlock *SwitchBB) { 1634 SDValue Cond; 1635 SDValue CondLHS = getValue(CB.CmpLHS); 1636 SDLoc dl = getCurSDLoc(); 1637 1638 // Build the setcc now. 1639 if (!CB.CmpMHS) { 1640 // Fold "(X == true)" to X and "(X == false)" to !X to 1641 // handle common cases produced by branch lowering. 1642 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1643 CB.CC == ISD::SETEQ) 1644 Cond = CondLHS; 1645 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1646 CB.CC == ISD::SETEQ) { 1647 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1648 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1649 } else 1650 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1651 } else { 1652 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1653 1654 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1655 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1656 1657 SDValue CmpOp = getValue(CB.CmpMHS); 1658 EVT VT = CmpOp.getValueType(); 1659 1660 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1661 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1662 ISD::SETLE); 1663 } else { 1664 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1665 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1666 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1667 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1668 } 1669 } 1670 1671 // Update successor info 1672 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1673 // TrueBB and FalseBB are always different unless the incoming IR is 1674 // degenerate. This only happens when running llc on weird IR. 1675 if (CB.TrueBB != CB.FalseBB) 1676 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1677 1678 // If the lhs block is the next block, invert the condition so that we can 1679 // fall through to the lhs instead of the rhs block. 1680 if (CB.TrueBB == NextBlock(SwitchBB)) { 1681 std::swap(CB.TrueBB, CB.FalseBB); 1682 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1683 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1684 } 1685 1686 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1687 MVT::Other, getControlRoot(), Cond, 1688 DAG.getBasicBlock(CB.TrueBB)); 1689 1690 // Insert the false branch. Do this even if it's a fall through branch, 1691 // this makes it easier to do DAG optimizations which require inverting 1692 // the branch condition. 1693 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1694 DAG.getBasicBlock(CB.FalseBB)); 1695 1696 DAG.setRoot(BrCond); 1697 } 1698 1699 /// visitJumpTable - Emit JumpTable node in the current MBB 1700 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1701 // Emit the code for the jump table 1702 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1703 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1704 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1705 JT.Reg, PTy); 1706 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1707 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1708 MVT::Other, Index.getValue(1), 1709 Table, Index); 1710 DAG.setRoot(BrJumpTable); 1711 } 1712 1713 /// visitJumpTableHeader - This function emits necessary code to produce index 1714 /// in the JumpTable from switch case. 1715 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1716 JumpTableHeader &JTH, 1717 MachineBasicBlock *SwitchBB) { 1718 SDLoc dl = getCurSDLoc(); 1719 1720 // Subtract the lowest switch case value from the value being switched on and 1721 // conditional branch to default mbb if the result is greater than the 1722 // difference between smallest and largest cases. 1723 SDValue SwitchOp = getValue(JTH.SValue); 1724 EVT VT = SwitchOp.getValueType(); 1725 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1726 DAG.getConstant(JTH.First, dl, VT)); 1727 1728 // The SDNode we just created, which holds the value being switched on minus 1729 // the smallest case value, needs to be copied to a virtual register so it 1730 // can be used as an index into the jump table in a subsequent basic block. 1731 // This value may be smaller or larger than the target's pointer type, and 1732 // therefore require extension or truncating. 1733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1734 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1735 1736 unsigned JumpTableReg = 1737 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1738 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1739 JumpTableReg, SwitchOp); 1740 JT.Reg = JumpTableReg; 1741 1742 // Emit the range check for the jump table, and branch to the default block 1743 // for the switch statement if the value being switched on exceeds the largest 1744 // case in the switch. 1745 SDValue CMP = DAG.getSetCC( 1746 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1747 Sub.getValueType()), 1748 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1749 1750 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1751 MVT::Other, CopyTo, CMP, 1752 DAG.getBasicBlock(JT.Default)); 1753 1754 // Avoid emitting unnecessary branches to the next block. 1755 if (JT.MBB != NextBlock(SwitchBB)) 1756 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1757 DAG.getBasicBlock(JT.MBB)); 1758 1759 DAG.setRoot(BrCond); 1760 } 1761 1762 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1763 /// tail spliced into a stack protector check success bb. 1764 /// 1765 /// For a high level explanation of how this fits into the stack protector 1766 /// generation see the comment on the declaration of class 1767 /// StackProtectorDescriptor. 1768 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1769 MachineBasicBlock *ParentBB) { 1770 1771 // First create the loads to the guard/stack slot for the comparison. 1772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1773 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1774 1775 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1776 int FI = MFI->getStackProtectorIndex(); 1777 1778 const Value *IRGuard = SPD.getGuard(); 1779 SDValue GuardPtr = getValue(IRGuard); 1780 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1781 1782 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1783 1784 SDValue Guard; 1785 SDLoc dl = getCurSDLoc(); 1786 1787 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1788 // guard value from the virtual register holding the value. Otherwise, emit a 1789 // volatile load to retrieve the stack guard value. 1790 unsigned GuardReg = SPD.getGuardReg(); 1791 1792 if (GuardReg && TLI.useLoadStackGuardNode()) 1793 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1794 PtrTy); 1795 else 1796 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1797 GuardPtr, MachinePointerInfo(IRGuard, 0), 1798 true, false, false, Align); 1799 1800 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1801 StackSlotPtr, 1802 MachinePointerInfo::getFixedStack(FI), 1803 true, false, false, Align); 1804 1805 // Perform the comparison via a subtract/getsetcc. 1806 EVT VT = Guard.getValueType(); 1807 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1808 1809 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1810 *DAG.getContext(), 1811 Sub.getValueType()), 1812 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1813 1814 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1815 // branch to failure MBB. 1816 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1817 MVT::Other, StackSlot.getOperand(0), 1818 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1819 // Otherwise branch to success MBB. 1820 SDValue Br = DAG.getNode(ISD::BR, dl, 1821 MVT::Other, BrCond, 1822 DAG.getBasicBlock(SPD.getSuccessMBB())); 1823 1824 DAG.setRoot(Br); 1825 } 1826 1827 /// Codegen the failure basic block for a stack protector check. 1828 /// 1829 /// A failure stack protector machine basic block consists simply of a call to 1830 /// __stack_chk_fail(). 1831 /// 1832 /// For a high level explanation of how this fits into the stack protector 1833 /// generation see the comment on the declaration of class 1834 /// StackProtectorDescriptor. 1835 void 1836 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1838 SDValue Chain = 1839 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1840 nullptr, 0, false, getCurSDLoc(), false, false).second; 1841 DAG.setRoot(Chain); 1842 } 1843 1844 /// visitBitTestHeader - This function emits necessary code to produce value 1845 /// suitable for "bit tests" 1846 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1847 MachineBasicBlock *SwitchBB) { 1848 SDLoc dl = getCurSDLoc(); 1849 1850 // Subtract the minimum value 1851 SDValue SwitchOp = getValue(B.SValue); 1852 EVT VT = SwitchOp.getValueType(); 1853 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1854 DAG.getConstant(B.First, dl, VT)); 1855 1856 // Check range 1857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1858 SDValue RangeCmp = DAG.getSetCC( 1859 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1860 Sub.getValueType()), 1861 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1862 1863 // Determine the type of the test operands. 1864 bool UsePtrType = false; 1865 if (!TLI.isTypeLegal(VT)) 1866 UsePtrType = true; 1867 else { 1868 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1869 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1870 // Switch table case range are encoded into series of masks. 1871 // Just use pointer type, it's guaranteed to fit. 1872 UsePtrType = true; 1873 break; 1874 } 1875 } 1876 if (UsePtrType) { 1877 VT = TLI.getPointerTy(DAG.getDataLayout()); 1878 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1879 } 1880 1881 B.RegVT = VT.getSimpleVT(); 1882 B.Reg = FuncInfo.CreateReg(B.RegVT); 1883 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1884 1885 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1886 1887 addSuccessorWithWeight(SwitchBB, B.Default); 1888 addSuccessorWithWeight(SwitchBB, MBB); 1889 1890 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1891 MVT::Other, CopyTo, RangeCmp, 1892 DAG.getBasicBlock(B.Default)); 1893 1894 // Avoid emitting unnecessary branches to the next block. 1895 if (MBB != NextBlock(SwitchBB)) 1896 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1897 DAG.getBasicBlock(MBB)); 1898 1899 DAG.setRoot(BrRange); 1900 } 1901 1902 /// visitBitTestCase - this function produces one "bit test" 1903 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1904 MachineBasicBlock* NextMBB, 1905 uint32_t BranchWeightToNext, 1906 unsigned Reg, 1907 BitTestCase &B, 1908 MachineBasicBlock *SwitchBB) { 1909 SDLoc dl = getCurSDLoc(); 1910 MVT VT = BB.RegVT; 1911 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1912 SDValue Cmp; 1913 unsigned PopCount = countPopulation(B.Mask); 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 if (PopCount == 1) { 1916 // Testing for a single bit; just compare the shift count with what it 1917 // would need to be to shift a 1 bit in that position. 1918 Cmp = DAG.getSetCC( 1919 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1920 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1921 ISD::SETEQ); 1922 } else if (PopCount == BB.Range) { 1923 // There is only one zero bit in the range, test for it directly. 1924 Cmp = DAG.getSetCC( 1925 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1926 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1927 ISD::SETNE); 1928 } else { 1929 // Make desired shift 1930 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1931 DAG.getConstant(1, dl, VT), ShiftOp); 1932 1933 // Emit bit tests and jumps 1934 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1935 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1936 Cmp = DAG.getSetCC( 1937 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1938 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1939 } 1940 1941 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1942 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1943 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1944 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1945 1946 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1947 MVT::Other, getControlRoot(), 1948 Cmp, DAG.getBasicBlock(B.TargetBB)); 1949 1950 // Avoid emitting unnecessary branches to the next block. 1951 if (NextMBB != NextBlock(SwitchBB)) 1952 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1953 DAG.getBasicBlock(NextMBB)); 1954 1955 DAG.setRoot(BrAnd); 1956 } 1957 1958 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1959 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1960 1961 // Retrieve successors. 1962 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1963 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1964 1965 const Value *Callee(I.getCalledValue()); 1966 const Function *Fn = dyn_cast<Function>(Callee); 1967 if (isa<InlineAsm>(Callee)) 1968 visitInlineAsm(&I); 1969 else if (Fn && Fn->isIntrinsic()) { 1970 switch (Fn->getIntrinsicID()) { 1971 default: 1972 llvm_unreachable("Cannot invoke this intrinsic"); 1973 case Intrinsic::donothing: 1974 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1975 break; 1976 case Intrinsic::experimental_patchpoint_void: 1977 case Intrinsic::experimental_patchpoint_i64: 1978 visitPatchpoint(&I, LandingPad); 1979 break; 1980 case Intrinsic::experimental_gc_statepoint: 1981 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1982 break; 1983 } 1984 } else 1985 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1986 1987 // If the value of the invoke is used outside of its defining block, make it 1988 // available as a virtual register. 1989 // We already took care of the exported value for the statepoint instruction 1990 // during call to the LowerStatepoint. 1991 if (!isStatepoint(I)) { 1992 CopyToExportRegsIfNeeded(&I); 1993 } 1994 1995 // Update successor info 1996 addSuccessorWithWeight(InvokeMBB, Return); 1997 addSuccessorWithWeight(InvokeMBB, LandingPad); 1998 1999 // Drop into normal successor. 2000 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2001 MVT::Other, getControlRoot(), 2002 DAG.getBasicBlock(Return))); 2003 } 2004 2005 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2006 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2007 } 2008 2009 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2010 assert(FuncInfo.MBB->isLandingPad() && 2011 "Call to landingpad not in landing pad!"); 2012 2013 MachineBasicBlock *MBB = FuncInfo.MBB; 2014 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2015 AddLandingPadInfo(LP, MMI, MBB); 2016 2017 // If there aren't registers to copy the values into (e.g., during SjLj 2018 // exceptions), then don't bother to create these DAG nodes. 2019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2020 if (TLI.getExceptionPointerRegister() == 0 && 2021 TLI.getExceptionSelectorRegister() == 0) 2022 return; 2023 2024 SmallVector<EVT, 2> ValueVTs; 2025 SDLoc dl = getCurSDLoc(); 2026 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2027 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2028 2029 // Get the two live-in registers as SDValues. The physregs have already been 2030 // copied into virtual registers. 2031 SDValue Ops[2]; 2032 if (FuncInfo.ExceptionPointerVirtReg) { 2033 Ops[0] = DAG.getZExtOrTrunc( 2034 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2035 FuncInfo.ExceptionPointerVirtReg, 2036 TLI.getPointerTy(DAG.getDataLayout())), 2037 dl, ValueVTs[0]); 2038 } else { 2039 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2040 } 2041 Ops[1] = DAG.getZExtOrTrunc( 2042 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2043 FuncInfo.ExceptionSelectorVirtReg, 2044 TLI.getPointerTy(DAG.getDataLayout())), 2045 dl, ValueVTs[1]); 2046 2047 // Merge into one. 2048 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2049 DAG.getVTList(ValueVTs), Ops); 2050 setValue(&LP, Res); 2051 } 2052 2053 unsigned 2054 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2055 MachineBasicBlock *LPadBB) { 2056 SDValue Chain = getControlRoot(); 2057 SDLoc dl = getCurSDLoc(); 2058 2059 // Get the typeid that we will dispatch on later. 2060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2061 const TargetRegisterClass *RC = 2062 TLI.getRegClassFor(TLI.getPointerTy(DAG.getDataLayout())); 2063 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2064 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2065 SDValue Sel = 2066 DAG.getConstant(TypeID, dl, TLI.getPointerTy(DAG.getDataLayout())); 2067 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2068 2069 // Branch to the main landing pad block. 2070 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2071 ClauseMBB->addSuccessor(LPadBB); 2072 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2073 DAG.getBasicBlock(LPadBB))); 2074 return VReg; 2075 } 2076 2077 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2078 #ifndef NDEBUG 2079 for (const CaseCluster &CC : Clusters) 2080 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2081 #endif 2082 2083 std::sort(Clusters.begin(), Clusters.end(), 2084 [](const CaseCluster &a, const CaseCluster &b) { 2085 return a.Low->getValue().slt(b.Low->getValue()); 2086 }); 2087 2088 // Merge adjacent clusters with the same destination. 2089 const unsigned N = Clusters.size(); 2090 unsigned DstIndex = 0; 2091 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2092 CaseCluster &CC = Clusters[SrcIndex]; 2093 const ConstantInt *CaseVal = CC.Low; 2094 MachineBasicBlock *Succ = CC.MBB; 2095 2096 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2097 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2098 // If this case has the same successor and is a neighbour, merge it into 2099 // the previous cluster. 2100 Clusters[DstIndex - 1].High = CaseVal; 2101 Clusters[DstIndex - 1].Weight += CC.Weight; 2102 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2103 } else { 2104 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2105 sizeof(Clusters[SrcIndex])); 2106 } 2107 } 2108 Clusters.resize(DstIndex); 2109 } 2110 2111 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2112 MachineBasicBlock *Last) { 2113 // Update JTCases. 2114 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2115 if (JTCases[i].first.HeaderBB == First) 2116 JTCases[i].first.HeaderBB = Last; 2117 2118 // Update BitTestCases. 2119 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2120 if (BitTestCases[i].Parent == First) 2121 BitTestCases[i].Parent = Last; 2122 } 2123 2124 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2125 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2126 2127 // Update machine-CFG edges with unique successors. 2128 SmallSet<BasicBlock*, 32> Done; 2129 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2130 BasicBlock *BB = I.getSuccessor(i); 2131 bool Inserted = Done.insert(BB).second; 2132 if (!Inserted) 2133 continue; 2134 2135 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2136 addSuccessorWithWeight(IndirectBrMBB, Succ); 2137 } 2138 2139 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2140 MVT::Other, getControlRoot(), 2141 getValue(I.getAddress()))); 2142 } 2143 2144 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2145 if (DAG.getTarget().Options.TrapUnreachable) 2146 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2147 } 2148 2149 void SelectionDAGBuilder::visitFSub(const User &I) { 2150 // -0.0 - X --> fneg 2151 Type *Ty = I.getType(); 2152 if (isa<Constant>(I.getOperand(0)) && 2153 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2156 Op2.getValueType(), Op2)); 2157 return; 2158 } 2159 2160 visitBinary(I, ISD::FSUB); 2161 } 2162 2163 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2164 SDValue Op1 = getValue(I.getOperand(0)); 2165 SDValue Op2 = getValue(I.getOperand(1)); 2166 2167 bool nuw = false; 2168 bool nsw = false; 2169 bool exact = false; 2170 FastMathFlags FMF; 2171 2172 if (const OverflowingBinaryOperator *OFBinOp = 2173 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2174 nuw = OFBinOp->hasNoUnsignedWrap(); 2175 nsw = OFBinOp->hasNoSignedWrap(); 2176 } 2177 if (const PossiblyExactOperator *ExactOp = 2178 dyn_cast<const PossiblyExactOperator>(&I)) 2179 exact = ExactOp->isExact(); 2180 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2181 FMF = FPOp->getFastMathFlags(); 2182 2183 SDNodeFlags Flags; 2184 Flags.setExact(exact); 2185 Flags.setNoSignedWrap(nsw); 2186 Flags.setNoUnsignedWrap(nuw); 2187 if (EnableFMFInDAG) { 2188 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2189 Flags.setNoInfs(FMF.noInfs()); 2190 Flags.setNoNaNs(FMF.noNaNs()); 2191 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2192 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2193 } 2194 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2195 Op1, Op2, &Flags); 2196 setValue(&I, BinNodeValue); 2197 } 2198 2199 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2200 SDValue Op1 = getValue(I.getOperand(0)); 2201 SDValue Op2 = getValue(I.getOperand(1)); 2202 2203 EVT ShiftTy = 2204 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2205 2206 // Coerce the shift amount to the right type if we can. 2207 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2208 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2209 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2210 SDLoc DL = getCurSDLoc(); 2211 2212 // If the operand is smaller than the shift count type, promote it. 2213 if (ShiftSize > Op2Size) 2214 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2215 2216 // If the operand is larger than the shift count type but the shift 2217 // count type has enough bits to represent any shift value, truncate 2218 // it now. This is a common case and it exposes the truncate to 2219 // optimization early. 2220 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2221 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2222 // Otherwise we'll need to temporarily settle for some other convenient 2223 // type. Type legalization will make adjustments once the shiftee is split. 2224 else 2225 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2226 } 2227 2228 bool nuw = false; 2229 bool nsw = false; 2230 bool exact = false; 2231 2232 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2233 2234 if (const OverflowingBinaryOperator *OFBinOp = 2235 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2236 nuw = OFBinOp->hasNoUnsignedWrap(); 2237 nsw = OFBinOp->hasNoSignedWrap(); 2238 } 2239 if (const PossiblyExactOperator *ExactOp = 2240 dyn_cast<const PossiblyExactOperator>(&I)) 2241 exact = ExactOp->isExact(); 2242 } 2243 SDNodeFlags Flags; 2244 Flags.setExact(exact); 2245 Flags.setNoSignedWrap(nsw); 2246 Flags.setNoUnsignedWrap(nuw); 2247 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2248 &Flags); 2249 setValue(&I, Res); 2250 } 2251 2252 void SelectionDAGBuilder::visitSDiv(const User &I) { 2253 SDValue Op1 = getValue(I.getOperand(0)); 2254 SDValue Op2 = getValue(I.getOperand(1)); 2255 2256 SDNodeFlags Flags; 2257 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2258 cast<PossiblyExactOperator>(&I)->isExact()); 2259 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2260 Op2, &Flags)); 2261 } 2262 2263 void SelectionDAGBuilder::visitICmp(const User &I) { 2264 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2265 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2266 predicate = IC->getPredicate(); 2267 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2268 predicate = ICmpInst::Predicate(IC->getPredicate()); 2269 SDValue Op1 = getValue(I.getOperand(0)); 2270 SDValue Op2 = getValue(I.getOperand(1)); 2271 ISD::CondCode Opcode = getICmpCondCode(predicate); 2272 2273 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2274 I.getType()); 2275 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2276 } 2277 2278 void SelectionDAGBuilder::visitFCmp(const User &I) { 2279 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2280 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2281 predicate = FC->getPredicate(); 2282 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2283 predicate = FCmpInst::Predicate(FC->getPredicate()); 2284 SDValue Op1 = getValue(I.getOperand(0)); 2285 SDValue Op2 = getValue(I.getOperand(1)); 2286 ISD::CondCode Condition = getFCmpCondCode(predicate); 2287 if (TM.Options.NoNaNsFPMath) 2288 Condition = getFCmpCodeWithoutNaN(Condition); 2289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2290 I.getType()); 2291 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2292 } 2293 2294 void SelectionDAGBuilder::visitSelect(const User &I) { 2295 SmallVector<EVT, 4> ValueVTs; 2296 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2297 ValueVTs); 2298 unsigned NumValues = ValueVTs.size(); 2299 if (NumValues == 0) return; 2300 2301 SmallVector<SDValue, 4> Values(NumValues); 2302 SDValue Cond = getValue(I.getOperand(0)); 2303 SDValue LHSVal = getValue(I.getOperand(1)); 2304 SDValue RHSVal = getValue(I.getOperand(2)); 2305 auto BaseOps = {Cond}; 2306 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2307 ISD::VSELECT : ISD::SELECT; 2308 2309 // Min/max matching is only viable if all output VTs are the same. 2310 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2311 Value *LHS, *RHS; 2312 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2313 ISD::NodeType Opc = ISD::DELETED_NODE; 2314 switch (SPF) { 2315 case SPF_UMAX: Opc = ISD::UMAX; break; 2316 case SPF_UMIN: Opc = ISD::UMIN; break; 2317 case SPF_SMAX: Opc = ISD::SMAX; break; 2318 case SPF_SMIN: Opc = ISD::SMIN; break; 2319 default: break; 2320 } 2321 2322 EVT VT = ValueVTs[0]; 2323 LLVMContext &Ctx = *DAG.getContext(); 2324 auto &TLI = DAG.getTargetLoweringInfo(); 2325 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2326 VT = TLI.getTypeToTransformTo(Ctx, VT); 2327 2328 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2329 // If the underlying comparison instruction is used by any other instruction, 2330 // the consumed instructions won't be destroyed, so it is not profitable 2331 // to convert to a min/max. 2332 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2333 OpCode = Opc; 2334 LHSVal = getValue(LHS); 2335 RHSVal = getValue(RHS); 2336 BaseOps = {}; 2337 } 2338 } 2339 2340 for (unsigned i = 0; i != NumValues; ++i) { 2341 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2342 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2343 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2344 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2345 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2346 Ops); 2347 } 2348 2349 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2350 DAG.getVTList(ValueVTs), Values)); 2351 } 2352 2353 void SelectionDAGBuilder::visitTrunc(const User &I) { 2354 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2355 SDValue N = getValue(I.getOperand(0)); 2356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2357 I.getType()); 2358 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2359 } 2360 2361 void SelectionDAGBuilder::visitZExt(const User &I) { 2362 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2363 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2364 SDValue N = getValue(I.getOperand(0)); 2365 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2366 I.getType()); 2367 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2368 } 2369 2370 void SelectionDAGBuilder::visitSExt(const User &I) { 2371 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2372 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2375 I.getType()); 2376 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2377 } 2378 2379 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2380 // FPTrunc is never a no-op cast, no need to check 2381 SDValue N = getValue(I.getOperand(0)); 2382 SDLoc dl = getCurSDLoc(); 2383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2384 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2385 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2386 DAG.getTargetConstant( 2387 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2388 } 2389 2390 void SelectionDAGBuilder::visitFPExt(const User &I) { 2391 // FPExt is never a no-op cast, no need to check 2392 SDValue N = getValue(I.getOperand(0)); 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2394 I.getType()); 2395 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2396 } 2397 2398 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2399 // FPToUI is never a no-op cast, no need to check 2400 SDValue N = getValue(I.getOperand(0)); 2401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2402 I.getType()); 2403 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2404 } 2405 2406 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2407 // FPToSI is never a no-op cast, no need to check 2408 SDValue N = getValue(I.getOperand(0)); 2409 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2410 I.getType()); 2411 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2412 } 2413 2414 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2415 // UIToFP is never a no-op cast, no need to check 2416 SDValue N = getValue(I.getOperand(0)); 2417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2418 I.getType()); 2419 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2420 } 2421 2422 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2423 // SIToFP is never a no-op cast, no need to check 2424 SDValue N = getValue(I.getOperand(0)); 2425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2426 I.getType()); 2427 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2428 } 2429 2430 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2431 // What to do depends on the size of the integer and the size of the pointer. 2432 // We can either truncate, zero extend, or no-op, accordingly. 2433 SDValue N = getValue(I.getOperand(0)); 2434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2435 I.getType()); 2436 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2437 } 2438 2439 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2440 // What to do depends on the size of the integer and the size of the pointer. 2441 // We can either truncate, zero extend, or no-op, accordingly. 2442 SDValue N = getValue(I.getOperand(0)); 2443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2444 I.getType()); 2445 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2446 } 2447 2448 void SelectionDAGBuilder::visitBitCast(const User &I) { 2449 SDValue N = getValue(I.getOperand(0)); 2450 SDLoc dl = getCurSDLoc(); 2451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2452 I.getType()); 2453 2454 // BitCast assures us that source and destination are the same size so this is 2455 // either a BITCAST or a no-op. 2456 if (DestVT != N.getValueType()) 2457 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2458 DestVT, N)); // convert types. 2459 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2460 // might fold any kind of constant expression to an integer constant and that 2461 // is not what we are looking for. Only regcognize a bitcast of a genuine 2462 // constant integer as an opaque constant. 2463 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2464 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2465 /*isOpaque*/true)); 2466 else 2467 setValue(&I, N); // noop cast. 2468 } 2469 2470 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2472 const Value *SV = I.getOperand(0); 2473 SDValue N = getValue(SV); 2474 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2475 2476 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2477 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2478 2479 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2480 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2481 2482 setValue(&I, N); 2483 } 2484 2485 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2487 SDValue InVec = getValue(I.getOperand(0)); 2488 SDValue InVal = getValue(I.getOperand(1)); 2489 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2490 TLI.getVectorIdxTy(DAG.getDataLayout())); 2491 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2492 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2493 InVec, InVal, InIdx)); 2494 } 2495 2496 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2498 SDValue InVec = getValue(I.getOperand(0)); 2499 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2500 TLI.getVectorIdxTy(DAG.getDataLayout())); 2501 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2502 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2503 InVec, InIdx)); 2504 } 2505 2506 // Utility for visitShuffleVector - Return true if every element in Mask, 2507 // beginning from position Pos and ending in Pos+Size, falls within the 2508 // specified sequential range [L, L+Pos). or is undef. 2509 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2510 unsigned Pos, unsigned Size, int Low) { 2511 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2512 if (Mask[i] >= 0 && Mask[i] != Low) 2513 return false; 2514 return true; 2515 } 2516 2517 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2518 SDValue Src1 = getValue(I.getOperand(0)); 2519 SDValue Src2 = getValue(I.getOperand(1)); 2520 2521 SmallVector<int, 8> Mask; 2522 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2523 unsigned MaskNumElts = Mask.size(); 2524 2525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2526 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2527 EVT SrcVT = Src1.getValueType(); 2528 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2529 2530 if (SrcNumElts == MaskNumElts) { 2531 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2532 &Mask[0])); 2533 return; 2534 } 2535 2536 // Normalize the shuffle vector since mask and vector length don't match. 2537 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2538 // Mask is longer than the source vectors and is a multiple of the source 2539 // vectors. We can use concatenate vector to make the mask and vectors 2540 // lengths match. 2541 if (SrcNumElts*2 == MaskNumElts) { 2542 // First check for Src1 in low and Src2 in high 2543 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2544 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2545 // The shuffle is concatenating two vectors together. 2546 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2547 VT, Src1, Src2)); 2548 return; 2549 } 2550 // Then check for Src2 in low and Src1 in high 2551 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2552 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2553 // The shuffle is concatenating two vectors together. 2554 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2555 VT, Src2, Src1)); 2556 return; 2557 } 2558 } 2559 2560 // Pad both vectors with undefs to make them the same length as the mask. 2561 unsigned NumConcat = MaskNumElts / SrcNumElts; 2562 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2563 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2564 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2565 2566 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2567 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2568 MOps1[0] = Src1; 2569 MOps2[0] = Src2; 2570 2571 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2572 getCurSDLoc(), VT, MOps1); 2573 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2574 getCurSDLoc(), VT, MOps2); 2575 2576 // Readjust mask for new input vector length. 2577 SmallVector<int, 8> MappedOps; 2578 for (unsigned i = 0; i != MaskNumElts; ++i) { 2579 int Idx = Mask[i]; 2580 if (Idx >= (int)SrcNumElts) 2581 Idx -= SrcNumElts - MaskNumElts; 2582 MappedOps.push_back(Idx); 2583 } 2584 2585 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2586 &MappedOps[0])); 2587 return; 2588 } 2589 2590 if (SrcNumElts > MaskNumElts) { 2591 // Analyze the access pattern of the vector to see if we can extract 2592 // two subvectors and do the shuffle. The analysis is done by calculating 2593 // the range of elements the mask access on both vectors. 2594 int MinRange[2] = { static_cast<int>(SrcNumElts), 2595 static_cast<int>(SrcNumElts)}; 2596 int MaxRange[2] = {-1, -1}; 2597 2598 for (unsigned i = 0; i != MaskNumElts; ++i) { 2599 int Idx = Mask[i]; 2600 unsigned Input = 0; 2601 if (Idx < 0) 2602 continue; 2603 2604 if (Idx >= (int)SrcNumElts) { 2605 Input = 1; 2606 Idx -= SrcNumElts; 2607 } 2608 if (Idx > MaxRange[Input]) 2609 MaxRange[Input] = Idx; 2610 if (Idx < MinRange[Input]) 2611 MinRange[Input] = Idx; 2612 } 2613 2614 // Check if the access is smaller than the vector size and can we find 2615 // a reasonable extract index. 2616 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2617 // Extract. 2618 int StartIdx[2]; // StartIdx to extract from 2619 for (unsigned Input = 0; Input < 2; ++Input) { 2620 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2621 RangeUse[Input] = 0; // Unused 2622 StartIdx[Input] = 0; 2623 continue; 2624 } 2625 2626 // Find a good start index that is a multiple of the mask length. Then 2627 // see if the rest of the elements are in range. 2628 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2629 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2630 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2631 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2632 } 2633 2634 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2635 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2636 return; 2637 } 2638 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2639 // Extract appropriate subvector and generate a vector shuffle 2640 for (unsigned Input = 0; Input < 2; ++Input) { 2641 SDValue &Src = Input == 0 ? Src1 : Src2; 2642 if (RangeUse[Input] == 0) 2643 Src = DAG.getUNDEF(VT); 2644 else { 2645 SDLoc dl = getCurSDLoc(); 2646 Src = DAG.getNode( 2647 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2648 DAG.getConstant(StartIdx[Input], dl, 2649 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2650 } 2651 } 2652 2653 // Calculate new mask. 2654 SmallVector<int, 8> MappedOps; 2655 for (unsigned i = 0; i != MaskNumElts; ++i) { 2656 int Idx = Mask[i]; 2657 if (Idx >= 0) { 2658 if (Idx < (int)SrcNumElts) 2659 Idx -= StartIdx[0]; 2660 else 2661 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2662 } 2663 MappedOps.push_back(Idx); 2664 } 2665 2666 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2667 &MappedOps[0])); 2668 return; 2669 } 2670 } 2671 2672 // We can't use either concat vectors or extract subvectors so fall back to 2673 // replacing the shuffle with extract and build vector. 2674 // to insert and build vector. 2675 EVT EltVT = VT.getVectorElementType(); 2676 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2677 SDLoc dl = getCurSDLoc(); 2678 SmallVector<SDValue,8> Ops; 2679 for (unsigned i = 0; i != MaskNumElts; ++i) { 2680 int Idx = Mask[i]; 2681 SDValue Res; 2682 2683 if (Idx < 0) { 2684 Res = DAG.getUNDEF(EltVT); 2685 } else { 2686 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2687 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2688 2689 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2690 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2691 } 2692 2693 Ops.push_back(Res); 2694 } 2695 2696 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2697 } 2698 2699 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2700 const Value *Op0 = I.getOperand(0); 2701 const Value *Op1 = I.getOperand(1); 2702 Type *AggTy = I.getType(); 2703 Type *ValTy = Op1->getType(); 2704 bool IntoUndef = isa<UndefValue>(Op0); 2705 bool FromUndef = isa<UndefValue>(Op1); 2706 2707 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2708 2709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2710 SmallVector<EVT, 4> AggValueVTs; 2711 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2712 SmallVector<EVT, 4> ValValueVTs; 2713 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2714 2715 unsigned NumAggValues = AggValueVTs.size(); 2716 unsigned NumValValues = ValValueVTs.size(); 2717 SmallVector<SDValue, 4> Values(NumAggValues); 2718 2719 // Ignore an insertvalue that produces an empty object 2720 if (!NumAggValues) { 2721 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2722 return; 2723 } 2724 2725 SDValue Agg = getValue(Op0); 2726 unsigned i = 0; 2727 // Copy the beginning value(s) from the original aggregate. 2728 for (; i != LinearIndex; ++i) 2729 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2730 SDValue(Agg.getNode(), Agg.getResNo() + i); 2731 // Copy values from the inserted value(s). 2732 if (NumValValues) { 2733 SDValue Val = getValue(Op1); 2734 for (; i != LinearIndex + NumValValues; ++i) 2735 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2736 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2737 } 2738 // Copy remaining value(s) from the original aggregate. 2739 for (; i != NumAggValues; ++i) 2740 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2741 SDValue(Agg.getNode(), Agg.getResNo() + i); 2742 2743 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2744 DAG.getVTList(AggValueVTs), Values)); 2745 } 2746 2747 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2748 const Value *Op0 = I.getOperand(0); 2749 Type *AggTy = Op0->getType(); 2750 Type *ValTy = I.getType(); 2751 bool OutOfUndef = isa<UndefValue>(Op0); 2752 2753 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2754 2755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2756 SmallVector<EVT, 4> ValValueVTs; 2757 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2758 2759 unsigned NumValValues = ValValueVTs.size(); 2760 2761 // Ignore a extractvalue that produces an empty object 2762 if (!NumValValues) { 2763 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2764 return; 2765 } 2766 2767 SmallVector<SDValue, 4> Values(NumValValues); 2768 2769 SDValue Agg = getValue(Op0); 2770 // Copy out the selected value(s). 2771 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2772 Values[i - LinearIndex] = 2773 OutOfUndef ? 2774 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2775 SDValue(Agg.getNode(), Agg.getResNo() + i); 2776 2777 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2778 DAG.getVTList(ValValueVTs), Values)); 2779 } 2780 2781 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2782 Value *Op0 = I.getOperand(0); 2783 // Note that the pointer operand may be a vector of pointers. Take the scalar 2784 // element which holds a pointer. 2785 Type *Ty = Op0->getType()->getScalarType(); 2786 unsigned AS = Ty->getPointerAddressSpace(); 2787 SDValue N = getValue(Op0); 2788 SDLoc dl = getCurSDLoc(); 2789 2790 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2791 OI != E; ++OI) { 2792 const Value *Idx = *OI; 2793 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2794 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2795 if (Field) { 2796 // N = N + Offset 2797 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2798 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2799 DAG.getConstant(Offset, dl, N.getValueType())); 2800 } 2801 2802 Ty = StTy->getElementType(Field); 2803 } else { 2804 Ty = cast<SequentialType>(Ty)->getElementType(); 2805 MVT PtrTy = 2806 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2807 unsigned PtrSize = PtrTy.getSizeInBits(); 2808 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2809 2810 // If this is a constant subscript, handle it quickly. 2811 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2812 if (CI->isZero()) 2813 continue; 2814 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2815 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2816 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2817 continue; 2818 } 2819 2820 // N = N + Idx * ElementSize; 2821 SDValue IdxN = getValue(Idx); 2822 2823 // If the index is smaller or larger than intptr_t, truncate or extend 2824 // it. 2825 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2826 2827 // If this is a multiply by a power of two, turn it into a shl 2828 // immediately. This is a very common case. 2829 if (ElementSize != 1) { 2830 if (ElementSize.isPowerOf2()) { 2831 unsigned Amt = ElementSize.logBase2(); 2832 IdxN = DAG.getNode(ISD::SHL, dl, 2833 N.getValueType(), IdxN, 2834 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2835 } else { 2836 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2837 IdxN = DAG.getNode(ISD::MUL, dl, 2838 N.getValueType(), IdxN, Scale); 2839 } 2840 } 2841 2842 N = DAG.getNode(ISD::ADD, dl, 2843 N.getValueType(), N, IdxN); 2844 } 2845 } 2846 2847 setValue(&I, N); 2848 } 2849 2850 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2851 // If this is a fixed sized alloca in the entry block of the function, 2852 // allocate it statically on the stack. 2853 if (FuncInfo.StaticAllocaMap.count(&I)) 2854 return; // getValue will auto-populate this. 2855 2856 SDLoc dl = getCurSDLoc(); 2857 Type *Ty = I.getAllocatedType(); 2858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2859 auto &DL = DAG.getDataLayout(); 2860 uint64_t TySize = DL.getTypeAllocSize(Ty); 2861 unsigned Align = 2862 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2863 2864 SDValue AllocSize = getValue(I.getArraySize()); 2865 2866 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2867 if (AllocSize.getValueType() != IntPtr) 2868 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2869 2870 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2871 AllocSize, 2872 DAG.getConstant(TySize, dl, IntPtr)); 2873 2874 // Handle alignment. If the requested alignment is less than or equal to 2875 // the stack alignment, ignore it. If the size is greater than or equal to 2876 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2877 unsigned StackAlign = 2878 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2879 if (Align <= StackAlign) 2880 Align = 0; 2881 2882 // Round the size of the allocation up to the stack alignment size 2883 // by add SA-1 to the size. 2884 AllocSize = DAG.getNode(ISD::ADD, dl, 2885 AllocSize.getValueType(), AllocSize, 2886 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2887 2888 // Mask out the low bits for alignment purposes. 2889 AllocSize = DAG.getNode(ISD::AND, dl, 2890 AllocSize.getValueType(), AllocSize, 2891 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2892 dl)); 2893 2894 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2895 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2896 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2897 setValue(&I, DSA); 2898 DAG.setRoot(DSA.getValue(1)); 2899 2900 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2901 } 2902 2903 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2904 if (I.isAtomic()) 2905 return visitAtomicLoad(I); 2906 2907 const Value *SV = I.getOperand(0); 2908 SDValue Ptr = getValue(SV); 2909 2910 Type *Ty = I.getType(); 2911 2912 bool isVolatile = I.isVolatile(); 2913 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2914 2915 // The IR notion of invariant_load only guarantees that all *non-faulting* 2916 // invariant loads result in the same value. The MI notion of invariant load 2917 // guarantees that the load can be legally moved to any location within its 2918 // containing function. The MI notion of invariant_load is stronger than the 2919 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2920 // with a guarantee that the location being loaded from is dereferenceable 2921 // throughout the function's lifetime. 2922 2923 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2924 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2925 unsigned Alignment = I.getAlignment(); 2926 2927 AAMDNodes AAInfo; 2928 I.getAAMetadata(AAInfo); 2929 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2930 2931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2932 SmallVector<EVT, 4> ValueVTs; 2933 SmallVector<uint64_t, 4> Offsets; 2934 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2935 unsigned NumValues = ValueVTs.size(); 2936 if (NumValues == 0) 2937 return; 2938 2939 SDValue Root; 2940 bool ConstantMemory = false; 2941 if (isVolatile || NumValues > MaxParallelChains) 2942 // Serialize volatile loads with other side effects. 2943 Root = getRoot(); 2944 else if (AA->pointsToConstantMemory( 2945 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2946 // Do not serialize (non-volatile) loads of constant memory with anything. 2947 Root = DAG.getEntryNode(); 2948 ConstantMemory = true; 2949 } else { 2950 // Do not serialize non-volatile loads against each other. 2951 Root = DAG.getRoot(); 2952 } 2953 2954 SDLoc dl = getCurSDLoc(); 2955 2956 if (isVolatile) 2957 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2958 2959 SmallVector<SDValue, 4> Values(NumValues); 2960 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2961 EVT PtrVT = Ptr.getValueType(); 2962 unsigned ChainI = 0; 2963 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2964 // Serializing loads here may result in excessive register pressure, and 2965 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2966 // could recover a bit by hoisting nodes upward in the chain by recognizing 2967 // they are side-effect free or do not alias. The optimizer should really 2968 // avoid this case by converting large object/array copies to llvm.memcpy 2969 // (MaxParallelChains should always remain as failsafe). 2970 if (ChainI == MaxParallelChains) { 2971 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2972 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2973 makeArrayRef(Chains.data(), ChainI)); 2974 Root = Chain; 2975 ChainI = 0; 2976 } 2977 SDValue A = DAG.getNode(ISD::ADD, dl, 2978 PtrVT, Ptr, 2979 DAG.getConstant(Offsets[i], dl, PtrVT)); 2980 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2981 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2982 isNonTemporal, isInvariant, Alignment, AAInfo, 2983 Ranges); 2984 2985 Values[i] = L; 2986 Chains[ChainI] = L.getValue(1); 2987 } 2988 2989 if (!ConstantMemory) { 2990 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2991 makeArrayRef(Chains.data(), ChainI)); 2992 if (isVolatile) 2993 DAG.setRoot(Chain); 2994 else 2995 PendingLoads.push_back(Chain); 2996 } 2997 2998 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2999 DAG.getVTList(ValueVTs), Values)); 3000 } 3001 3002 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3003 if (I.isAtomic()) 3004 return visitAtomicStore(I); 3005 3006 const Value *SrcV = I.getOperand(0); 3007 const Value *PtrV = I.getOperand(1); 3008 3009 SmallVector<EVT, 4> ValueVTs; 3010 SmallVector<uint64_t, 4> Offsets; 3011 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3012 SrcV->getType(), ValueVTs, &Offsets); 3013 unsigned NumValues = ValueVTs.size(); 3014 if (NumValues == 0) 3015 return; 3016 3017 // Get the lowered operands. Note that we do this after 3018 // checking if NumResults is zero, because with zero results 3019 // the operands won't have values in the map. 3020 SDValue Src = getValue(SrcV); 3021 SDValue Ptr = getValue(PtrV); 3022 3023 SDValue Root = getRoot(); 3024 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3025 EVT PtrVT = Ptr.getValueType(); 3026 bool isVolatile = I.isVolatile(); 3027 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3028 unsigned Alignment = I.getAlignment(); 3029 SDLoc dl = getCurSDLoc(); 3030 3031 AAMDNodes AAInfo; 3032 I.getAAMetadata(AAInfo); 3033 3034 unsigned ChainI = 0; 3035 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3036 // See visitLoad comments. 3037 if (ChainI == MaxParallelChains) { 3038 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3039 makeArrayRef(Chains.data(), ChainI)); 3040 Root = Chain; 3041 ChainI = 0; 3042 } 3043 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3044 DAG.getConstant(Offsets[i], dl, PtrVT)); 3045 SDValue St = DAG.getStore(Root, dl, 3046 SDValue(Src.getNode(), Src.getResNo() + i), 3047 Add, MachinePointerInfo(PtrV, Offsets[i]), 3048 isVolatile, isNonTemporal, Alignment, AAInfo); 3049 Chains[ChainI] = St; 3050 } 3051 3052 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3053 makeArrayRef(Chains.data(), ChainI)); 3054 DAG.setRoot(StoreNode); 3055 } 3056 3057 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3058 SDLoc sdl = getCurSDLoc(); 3059 3060 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3061 Value *PtrOperand = I.getArgOperand(1); 3062 SDValue Ptr = getValue(PtrOperand); 3063 SDValue Src0 = getValue(I.getArgOperand(0)); 3064 SDValue Mask = getValue(I.getArgOperand(3)); 3065 EVT VT = Src0.getValueType(); 3066 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3067 if (!Alignment) 3068 Alignment = DAG.getEVTAlignment(VT); 3069 3070 AAMDNodes AAInfo; 3071 I.getAAMetadata(AAInfo); 3072 3073 MachineMemOperand *MMO = 3074 DAG.getMachineFunction(). 3075 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3076 MachineMemOperand::MOStore, VT.getStoreSize(), 3077 Alignment, AAInfo); 3078 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3079 MMO, false); 3080 DAG.setRoot(StoreNode); 3081 setValue(&I, StoreNode); 3082 } 3083 3084 // Gather/scatter receive a vector of pointers. 3085 // This vector of pointers may be represented as a base pointer + vector of 3086 // indices, it depends on GEP and instruction preceeding GEP 3087 // that calculates indices 3088 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3089 SelectionDAGBuilder* SDB) { 3090 3091 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3092 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3093 if (!Gep || Gep->getNumOperands() > 2) 3094 return false; 3095 ShuffleVectorInst *ShuffleInst = 3096 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3097 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3098 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3099 Instruction::InsertElement) 3100 return false; 3101 3102 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3103 3104 SelectionDAG& DAG = SDB->DAG; 3105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3106 // Check is the Ptr is inside current basic block 3107 // If not, look for the shuffle instruction 3108 if (SDB->findValue(Ptr)) 3109 Base = SDB->getValue(Ptr); 3110 else if (SDB->findValue(ShuffleInst)) { 3111 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3112 SDLoc sdl = ShuffleNode; 3113 Base = DAG.getNode( 3114 ISD::EXTRACT_VECTOR_ELT, sdl, 3115 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3116 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3117 SDB->setValue(Ptr, Base); 3118 } 3119 else 3120 return false; 3121 3122 Value *IndexVal = Gep->getOperand(1); 3123 if (SDB->findValue(IndexVal)) { 3124 Index = SDB->getValue(IndexVal); 3125 3126 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3127 IndexVal = Sext->getOperand(0); 3128 if (SDB->findValue(IndexVal)) 3129 Index = SDB->getValue(IndexVal); 3130 } 3131 return true; 3132 } 3133 return false; 3134 } 3135 3136 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3137 SDLoc sdl = getCurSDLoc(); 3138 3139 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3140 Value *Ptr = I.getArgOperand(1); 3141 SDValue Src0 = getValue(I.getArgOperand(0)); 3142 SDValue Mask = getValue(I.getArgOperand(3)); 3143 EVT VT = Src0.getValueType(); 3144 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3145 if (!Alignment) 3146 Alignment = DAG.getEVTAlignment(VT); 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 3149 AAMDNodes AAInfo; 3150 I.getAAMetadata(AAInfo); 3151 3152 SDValue Base; 3153 SDValue Index; 3154 Value *BasePtr = Ptr; 3155 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3156 3157 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3158 MachineMemOperand *MMO = DAG.getMachineFunction(). 3159 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3160 MachineMemOperand::MOStore, VT.getStoreSize(), 3161 Alignment, AAInfo); 3162 if (!UniformBase) { 3163 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3164 Index = getValue(Ptr); 3165 } 3166 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3167 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3168 Ops, MMO); 3169 DAG.setRoot(Scatter); 3170 setValue(&I, Scatter); 3171 } 3172 3173 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3174 SDLoc sdl = getCurSDLoc(); 3175 3176 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3177 Value *PtrOperand = I.getArgOperand(0); 3178 SDValue Ptr = getValue(PtrOperand); 3179 SDValue Src0 = getValue(I.getArgOperand(3)); 3180 SDValue Mask = getValue(I.getArgOperand(2)); 3181 3182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3183 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3184 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3185 if (!Alignment) 3186 Alignment = DAG.getEVTAlignment(VT); 3187 3188 AAMDNodes AAInfo; 3189 I.getAAMetadata(AAInfo); 3190 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3191 3192 SDValue InChain = DAG.getRoot(); 3193 if (AA->pointsToConstantMemory(MemoryLocation( 3194 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3195 // Do not serialize (non-volatile) loads of constant memory with anything. 3196 InChain = DAG.getEntryNode(); 3197 } 3198 3199 MachineMemOperand *MMO = 3200 DAG.getMachineFunction(). 3201 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3202 MachineMemOperand::MOLoad, VT.getStoreSize(), 3203 Alignment, AAInfo, Ranges); 3204 3205 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3206 ISD::NON_EXTLOAD); 3207 SDValue OutChain = Load.getValue(1); 3208 DAG.setRoot(OutChain); 3209 setValue(&I, Load); 3210 } 3211 3212 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3213 SDLoc sdl = getCurSDLoc(); 3214 3215 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3216 Value *Ptr = I.getArgOperand(0); 3217 SDValue Src0 = getValue(I.getArgOperand(3)); 3218 SDValue Mask = getValue(I.getArgOperand(2)); 3219 3220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3221 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3222 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3223 if (!Alignment) 3224 Alignment = DAG.getEVTAlignment(VT); 3225 3226 AAMDNodes AAInfo; 3227 I.getAAMetadata(AAInfo); 3228 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3229 3230 SDValue Root = DAG.getRoot(); 3231 SDValue Base; 3232 SDValue Index; 3233 Value *BasePtr = Ptr; 3234 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3235 bool ConstantMemory = false; 3236 if (UniformBase && 3237 AA->pointsToConstantMemory( 3238 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3239 // Do not serialize (non-volatile) loads of constant memory with anything. 3240 Root = DAG.getEntryNode(); 3241 ConstantMemory = true; 3242 } 3243 3244 MachineMemOperand *MMO = 3245 DAG.getMachineFunction(). 3246 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3247 MachineMemOperand::MOLoad, VT.getStoreSize(), 3248 Alignment, AAInfo, Ranges); 3249 3250 if (!UniformBase) { 3251 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3252 Index = getValue(Ptr); 3253 } 3254 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3255 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3256 Ops, MMO); 3257 3258 SDValue OutChain = Gather.getValue(1); 3259 if (!ConstantMemory) 3260 PendingLoads.push_back(OutChain); 3261 setValue(&I, Gather); 3262 } 3263 3264 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3265 SDLoc dl = getCurSDLoc(); 3266 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3267 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3268 SynchronizationScope Scope = I.getSynchScope(); 3269 3270 SDValue InChain = getRoot(); 3271 3272 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3273 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3274 SDValue L = DAG.getAtomicCmpSwap( 3275 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3276 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3277 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3278 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3279 3280 SDValue OutChain = L.getValue(2); 3281 3282 setValue(&I, L); 3283 DAG.setRoot(OutChain); 3284 } 3285 3286 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3287 SDLoc dl = getCurSDLoc(); 3288 ISD::NodeType NT; 3289 switch (I.getOperation()) { 3290 default: llvm_unreachable("Unknown atomicrmw operation"); 3291 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3292 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3293 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3294 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3295 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3296 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3297 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3298 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3299 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3300 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3301 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3302 } 3303 AtomicOrdering Order = I.getOrdering(); 3304 SynchronizationScope Scope = I.getSynchScope(); 3305 3306 SDValue InChain = getRoot(); 3307 3308 SDValue L = 3309 DAG.getAtomic(NT, dl, 3310 getValue(I.getValOperand()).getSimpleValueType(), 3311 InChain, 3312 getValue(I.getPointerOperand()), 3313 getValue(I.getValOperand()), 3314 I.getPointerOperand(), 3315 /* Alignment=*/ 0, Order, Scope); 3316 3317 SDValue OutChain = L.getValue(1); 3318 3319 setValue(&I, L); 3320 DAG.setRoot(OutChain); 3321 } 3322 3323 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3324 SDLoc dl = getCurSDLoc(); 3325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3326 SDValue Ops[3]; 3327 Ops[0] = getRoot(); 3328 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3329 TLI.getPointerTy(DAG.getDataLayout())); 3330 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3331 TLI.getPointerTy(DAG.getDataLayout())); 3332 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3333 } 3334 3335 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3336 SDLoc dl = getCurSDLoc(); 3337 AtomicOrdering Order = I.getOrdering(); 3338 SynchronizationScope Scope = I.getSynchScope(); 3339 3340 SDValue InChain = getRoot(); 3341 3342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3343 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3344 3345 if (I.getAlignment() < VT.getSizeInBits() / 8) 3346 report_fatal_error("Cannot generate unaligned atomic load"); 3347 3348 MachineMemOperand *MMO = 3349 DAG.getMachineFunction(). 3350 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3351 MachineMemOperand::MOVolatile | 3352 MachineMemOperand::MOLoad, 3353 VT.getStoreSize(), 3354 I.getAlignment() ? I.getAlignment() : 3355 DAG.getEVTAlignment(VT)); 3356 3357 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3358 SDValue L = 3359 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3360 getValue(I.getPointerOperand()), MMO, 3361 Order, Scope); 3362 3363 SDValue OutChain = L.getValue(1); 3364 3365 setValue(&I, L); 3366 DAG.setRoot(OutChain); 3367 } 3368 3369 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3370 SDLoc dl = getCurSDLoc(); 3371 3372 AtomicOrdering Order = I.getOrdering(); 3373 SynchronizationScope Scope = I.getSynchScope(); 3374 3375 SDValue InChain = getRoot(); 3376 3377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3378 EVT VT = 3379 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3380 3381 if (I.getAlignment() < VT.getSizeInBits() / 8) 3382 report_fatal_error("Cannot generate unaligned atomic store"); 3383 3384 SDValue OutChain = 3385 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3386 InChain, 3387 getValue(I.getPointerOperand()), 3388 getValue(I.getValueOperand()), 3389 I.getPointerOperand(), I.getAlignment(), 3390 Order, Scope); 3391 3392 DAG.setRoot(OutChain); 3393 } 3394 3395 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3396 /// node. 3397 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3398 unsigned Intrinsic) { 3399 bool HasChain = !I.doesNotAccessMemory(); 3400 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3401 3402 // Build the operand list. 3403 SmallVector<SDValue, 8> Ops; 3404 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3405 if (OnlyLoad) { 3406 // We don't need to serialize loads against other loads. 3407 Ops.push_back(DAG.getRoot()); 3408 } else { 3409 Ops.push_back(getRoot()); 3410 } 3411 } 3412 3413 // Info is set by getTgtMemInstrinsic 3414 TargetLowering::IntrinsicInfo Info; 3415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3416 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3417 3418 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3419 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3420 Info.opc == ISD::INTRINSIC_W_CHAIN) 3421 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3422 TLI.getPointerTy(DAG.getDataLayout()))); 3423 3424 // Add all operands of the call to the operand list. 3425 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3426 SDValue Op = getValue(I.getArgOperand(i)); 3427 Ops.push_back(Op); 3428 } 3429 3430 SmallVector<EVT, 4> ValueVTs; 3431 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3432 3433 if (HasChain) 3434 ValueVTs.push_back(MVT::Other); 3435 3436 SDVTList VTs = DAG.getVTList(ValueVTs); 3437 3438 // Create the node. 3439 SDValue Result; 3440 if (IsTgtIntrinsic) { 3441 // This is target intrinsic that touches memory 3442 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3443 VTs, Ops, Info.memVT, 3444 MachinePointerInfo(Info.ptrVal, Info.offset), 3445 Info.align, Info.vol, 3446 Info.readMem, Info.writeMem, Info.size); 3447 } else if (!HasChain) { 3448 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3449 } else if (!I.getType()->isVoidTy()) { 3450 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3451 } else { 3452 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3453 } 3454 3455 if (HasChain) { 3456 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3457 if (OnlyLoad) 3458 PendingLoads.push_back(Chain); 3459 else 3460 DAG.setRoot(Chain); 3461 } 3462 3463 if (!I.getType()->isVoidTy()) { 3464 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3465 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3466 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3467 } 3468 3469 setValue(&I, Result); 3470 } 3471 } 3472 3473 /// GetSignificand - Get the significand and build it into a floating-point 3474 /// number with exponent of 1: 3475 /// 3476 /// Op = (Op & 0x007fffff) | 0x3f800000; 3477 /// 3478 /// where Op is the hexadecimal representation of floating point value. 3479 static SDValue 3480 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3481 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3482 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3483 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3484 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3485 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3486 } 3487 3488 /// GetExponent - Get the exponent: 3489 /// 3490 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3491 /// 3492 /// where Op is the hexadecimal representation of floating point value. 3493 static SDValue 3494 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3495 SDLoc dl) { 3496 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3497 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3498 SDValue t1 = DAG.getNode( 3499 ISD::SRL, dl, MVT::i32, t0, 3500 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3501 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3502 DAG.getConstant(127, dl, MVT::i32)); 3503 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3504 } 3505 3506 /// getF32Constant - Get 32-bit floating point constant. 3507 static SDValue 3508 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3509 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3510 MVT::f32); 3511 } 3512 3513 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3514 SelectionDAG &DAG) { 3515 // IntegerPartOfX = ((int32_t)(t0); 3516 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3517 3518 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3519 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3520 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3521 3522 // IntegerPartOfX <<= 23; 3523 IntegerPartOfX = DAG.getNode( 3524 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3525 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3526 DAG.getDataLayout()))); 3527 3528 SDValue TwoToFractionalPartOfX; 3529 if (LimitFloatPrecision <= 6) { 3530 // For floating-point precision of 6: 3531 // 3532 // TwoToFractionalPartOfX = 3533 // 0.997535578f + 3534 // (0.735607626f + 0.252464424f * x) * x; 3535 // 3536 // error 0.0144103317, which is 6 bits 3537 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3538 getF32Constant(DAG, 0x3e814304, dl)); 3539 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3540 getF32Constant(DAG, 0x3f3c50c8, dl)); 3541 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3542 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3543 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3544 } else if (LimitFloatPrecision <= 12) { 3545 // For floating-point precision of 12: 3546 // 3547 // TwoToFractionalPartOfX = 3548 // 0.999892986f + 3549 // (0.696457318f + 3550 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3551 // 3552 // error 0.000107046256, which is 13 to 14 bits 3553 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3554 getF32Constant(DAG, 0x3da235e3, dl)); 3555 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3556 getF32Constant(DAG, 0x3e65b8f3, dl)); 3557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3558 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3559 getF32Constant(DAG, 0x3f324b07, dl)); 3560 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3561 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3562 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3563 } else { // LimitFloatPrecision <= 18 3564 // For floating-point precision of 18: 3565 // 3566 // TwoToFractionalPartOfX = 3567 // 0.999999982f + 3568 // (0.693148872f + 3569 // (0.240227044f + 3570 // (0.554906021e-1f + 3571 // (0.961591928e-2f + 3572 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3573 // error 2.47208000*10^(-7), which is better than 18 bits 3574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3575 getF32Constant(DAG, 0x3924b03e, dl)); 3576 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3577 getF32Constant(DAG, 0x3ab24b87, dl)); 3578 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3579 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3580 getF32Constant(DAG, 0x3c1d8c17, dl)); 3581 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3582 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3583 getF32Constant(DAG, 0x3d634a1d, dl)); 3584 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3585 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3586 getF32Constant(DAG, 0x3e75fe14, dl)); 3587 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3588 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3589 getF32Constant(DAG, 0x3f317234, dl)); 3590 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3591 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3592 getF32Constant(DAG, 0x3f800000, dl)); 3593 } 3594 3595 // Add the exponent into the result in integer domain. 3596 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3597 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3598 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3599 } 3600 3601 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3602 /// limited-precision mode. 3603 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3604 const TargetLowering &TLI) { 3605 if (Op.getValueType() == MVT::f32 && 3606 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3607 3608 // Put the exponent in the right bit position for later addition to the 3609 // final result: 3610 // 3611 // #define LOG2OFe 1.4426950f 3612 // t0 = Op * LOG2OFe 3613 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3614 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3615 return getLimitedPrecisionExp2(t0, dl, DAG); 3616 } 3617 3618 // No special expansion. 3619 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3620 } 3621 3622 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3623 /// limited-precision mode. 3624 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3625 const TargetLowering &TLI) { 3626 if (Op.getValueType() == MVT::f32 && 3627 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3628 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3629 3630 // Scale the exponent by log(2) [0.69314718f]. 3631 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3632 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3633 getF32Constant(DAG, 0x3f317218, dl)); 3634 3635 // Get the significand and build it into a floating-point number with 3636 // exponent of 1. 3637 SDValue X = GetSignificand(DAG, Op1, dl); 3638 3639 SDValue LogOfMantissa; 3640 if (LimitFloatPrecision <= 6) { 3641 // For floating-point precision of 6: 3642 // 3643 // LogofMantissa = 3644 // -1.1609546f + 3645 // (1.4034025f - 0.23903021f * x) * x; 3646 // 3647 // error 0.0034276066, which is better than 8 bits 3648 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3649 getF32Constant(DAG, 0xbe74c456, dl)); 3650 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3651 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3652 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3653 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3654 getF32Constant(DAG, 0x3f949a29, dl)); 3655 } else if (LimitFloatPrecision <= 12) { 3656 // For floating-point precision of 12: 3657 // 3658 // LogOfMantissa = 3659 // -1.7417939f + 3660 // (2.8212026f + 3661 // (-1.4699568f + 3662 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3663 // 3664 // error 0.000061011436, which is 14 bits 3665 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3666 getF32Constant(DAG, 0xbd67b6d6, dl)); 3667 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3668 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3669 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3670 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3671 getF32Constant(DAG, 0x3fbc278b, dl)); 3672 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3673 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3674 getF32Constant(DAG, 0x40348e95, dl)); 3675 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3676 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3677 getF32Constant(DAG, 0x3fdef31a, dl)); 3678 } else { // LimitFloatPrecision <= 18 3679 // For floating-point precision of 18: 3680 // 3681 // LogOfMantissa = 3682 // -2.1072184f + 3683 // (4.2372794f + 3684 // (-3.7029485f + 3685 // (2.2781945f + 3686 // (-0.87823314f + 3687 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3688 // 3689 // error 0.0000023660568, which is better than 18 bits 3690 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3691 getF32Constant(DAG, 0xbc91e5ac, dl)); 3692 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3693 getF32Constant(DAG, 0x3e4350aa, dl)); 3694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3695 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3696 getF32Constant(DAG, 0x3f60d3e3, dl)); 3697 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3698 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3699 getF32Constant(DAG, 0x4011cdf0, dl)); 3700 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3701 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3702 getF32Constant(DAG, 0x406cfd1c, dl)); 3703 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3704 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3705 getF32Constant(DAG, 0x408797cb, dl)); 3706 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3707 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3708 getF32Constant(DAG, 0x4006dcab, dl)); 3709 } 3710 3711 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3712 } 3713 3714 // No special expansion. 3715 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3716 } 3717 3718 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3719 /// limited-precision mode. 3720 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3721 const TargetLowering &TLI) { 3722 if (Op.getValueType() == MVT::f32 && 3723 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3724 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3725 3726 // Get the exponent. 3727 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3728 3729 // Get the significand and build it into a floating-point number with 3730 // exponent of 1. 3731 SDValue X = GetSignificand(DAG, Op1, dl); 3732 3733 // Different possible minimax approximations of significand in 3734 // floating-point for various degrees of accuracy over [1,2]. 3735 SDValue Log2ofMantissa; 3736 if (LimitFloatPrecision <= 6) { 3737 // For floating-point precision of 6: 3738 // 3739 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3740 // 3741 // error 0.0049451742, which is more than 7 bits 3742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3743 getF32Constant(DAG, 0xbeb08fe0, dl)); 3744 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3745 getF32Constant(DAG, 0x40019463, dl)); 3746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3747 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3748 getF32Constant(DAG, 0x3fd6633d, dl)); 3749 } else if (LimitFloatPrecision <= 12) { 3750 // For floating-point precision of 12: 3751 // 3752 // Log2ofMantissa = 3753 // -2.51285454f + 3754 // (4.07009056f + 3755 // (-2.12067489f + 3756 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3757 // 3758 // error 0.0000876136000, which is better than 13 bits 3759 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3760 getF32Constant(DAG, 0xbda7262e, dl)); 3761 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3762 getF32Constant(DAG, 0x3f25280b, dl)); 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3764 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3765 getF32Constant(DAG, 0x4007b923, dl)); 3766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3767 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3768 getF32Constant(DAG, 0x40823e2f, dl)); 3769 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3770 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3771 getF32Constant(DAG, 0x4020d29c, dl)); 3772 } else { // LimitFloatPrecision <= 18 3773 // For floating-point precision of 18: 3774 // 3775 // Log2ofMantissa = 3776 // -3.0400495f + 3777 // (6.1129976f + 3778 // (-5.3420409f + 3779 // (3.2865683f + 3780 // (-1.2669343f + 3781 // (0.27515199f - 3782 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3783 // 3784 // error 0.0000018516, which is better than 18 bits 3785 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3786 getF32Constant(DAG, 0xbcd2769e, dl)); 3787 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3788 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3789 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3790 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3791 getF32Constant(DAG, 0x3fa22ae7, dl)); 3792 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3793 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3794 getF32Constant(DAG, 0x40525723, dl)); 3795 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3796 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3797 getF32Constant(DAG, 0x40aaf200, dl)); 3798 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3799 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3800 getF32Constant(DAG, 0x40c39dad, dl)); 3801 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3802 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3803 getF32Constant(DAG, 0x4042902c, dl)); 3804 } 3805 3806 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3807 } 3808 3809 // No special expansion. 3810 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3811 } 3812 3813 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3814 /// limited-precision mode. 3815 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3816 const TargetLowering &TLI) { 3817 if (Op.getValueType() == MVT::f32 && 3818 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3819 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3820 3821 // Scale the exponent by log10(2) [0.30102999f]. 3822 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3823 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3824 getF32Constant(DAG, 0x3e9a209a, dl)); 3825 3826 // Get the significand and build it into a floating-point number with 3827 // exponent of 1. 3828 SDValue X = GetSignificand(DAG, Op1, dl); 3829 3830 SDValue Log10ofMantissa; 3831 if (LimitFloatPrecision <= 6) { 3832 // For floating-point precision of 6: 3833 // 3834 // Log10ofMantissa = 3835 // -0.50419619f + 3836 // (0.60948995f - 0.10380950f * x) * x; 3837 // 3838 // error 0.0014886165, which is 6 bits 3839 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3840 getF32Constant(DAG, 0xbdd49a13, dl)); 3841 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3842 getF32Constant(DAG, 0x3f1c0789, dl)); 3843 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3844 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3845 getF32Constant(DAG, 0x3f011300, dl)); 3846 } else if (LimitFloatPrecision <= 12) { 3847 // For floating-point precision of 12: 3848 // 3849 // Log10ofMantissa = 3850 // -0.64831180f + 3851 // (0.91751397f + 3852 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3853 // 3854 // error 0.00019228036, which is better than 12 bits 3855 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3856 getF32Constant(DAG, 0x3d431f31, dl)); 3857 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3858 getF32Constant(DAG, 0x3ea21fb2, dl)); 3859 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3860 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3861 getF32Constant(DAG, 0x3f6ae232, dl)); 3862 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3863 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3864 getF32Constant(DAG, 0x3f25f7c3, dl)); 3865 } else { // LimitFloatPrecision <= 18 3866 // For floating-point precision of 18: 3867 // 3868 // Log10ofMantissa = 3869 // -0.84299375f + 3870 // (1.5327582f + 3871 // (-1.0688956f + 3872 // (0.49102474f + 3873 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3874 // 3875 // error 0.0000037995730, which is better than 18 bits 3876 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3877 getF32Constant(DAG, 0x3c5d51ce, dl)); 3878 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3879 getF32Constant(DAG, 0x3e00685a, dl)); 3880 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3881 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3882 getF32Constant(DAG, 0x3efb6798, dl)); 3883 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3884 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3885 getF32Constant(DAG, 0x3f88d192, dl)); 3886 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3887 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3888 getF32Constant(DAG, 0x3fc4316c, dl)); 3889 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3890 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3891 getF32Constant(DAG, 0x3f57ce70, dl)); 3892 } 3893 3894 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3895 } 3896 3897 // No special expansion. 3898 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3899 } 3900 3901 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3902 /// limited-precision mode. 3903 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3904 const TargetLowering &TLI) { 3905 if (Op.getValueType() == MVT::f32 && 3906 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3907 return getLimitedPrecisionExp2(Op, dl, DAG); 3908 3909 // No special expansion. 3910 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3911 } 3912 3913 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3914 /// limited-precision mode with x == 10.0f. 3915 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3916 SelectionDAG &DAG, const TargetLowering &TLI) { 3917 bool IsExp10 = false; 3918 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3919 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3920 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3921 APFloat Ten(10.0f); 3922 IsExp10 = LHSC->isExactlyValue(Ten); 3923 } 3924 } 3925 3926 if (IsExp10) { 3927 // Put the exponent in the right bit position for later addition to the 3928 // final result: 3929 // 3930 // #define LOG2OF10 3.3219281f 3931 // t0 = Op * LOG2OF10; 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3933 getF32Constant(DAG, 0x40549a78, dl)); 3934 return getLimitedPrecisionExp2(t0, dl, DAG); 3935 } 3936 3937 // No special expansion. 3938 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3939 } 3940 3941 3942 /// ExpandPowI - Expand a llvm.powi intrinsic. 3943 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3944 SelectionDAG &DAG) { 3945 // If RHS is a constant, we can expand this out to a multiplication tree, 3946 // otherwise we end up lowering to a call to __powidf2 (for example). When 3947 // optimizing for size, we only want to do this if the expansion would produce 3948 // a small number of multiplies, otherwise we do the full expansion. 3949 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3950 // Get the exponent as a positive value. 3951 unsigned Val = RHSC->getSExtValue(); 3952 if ((int)Val < 0) Val = -Val; 3953 3954 // powi(x, 0) -> 1.0 3955 if (Val == 0) 3956 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3957 3958 const Function *F = DAG.getMachineFunction().getFunction(); 3959 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3960 // If optimizing for size, don't insert too many multiplies. This 3961 // inserts up to 5 multiplies. 3962 countPopulation(Val) + Log2_32(Val) < 7) { 3963 // We use the simple binary decomposition method to generate the multiply 3964 // sequence. There are more optimal ways to do this (for example, 3965 // powi(x,15) generates one more multiply than it should), but this has 3966 // the benefit of being both really simple and much better than a libcall. 3967 SDValue Res; // Logically starts equal to 1.0 3968 SDValue CurSquare = LHS; 3969 while (Val) { 3970 if (Val & 1) { 3971 if (Res.getNode()) 3972 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3973 else 3974 Res = CurSquare; // 1.0*CurSquare. 3975 } 3976 3977 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3978 CurSquare, CurSquare); 3979 Val >>= 1; 3980 } 3981 3982 // If the original was negative, invert the result, producing 1/(x*x*x). 3983 if (RHSC->getSExtValue() < 0) 3984 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3985 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3986 return Res; 3987 } 3988 } 3989 3990 // Otherwise, expand to a libcall. 3991 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3992 } 3993 3994 // getTruncatedArgReg - Find underlying register used for an truncated 3995 // argument. 3996 static unsigned getTruncatedArgReg(const SDValue &N) { 3997 if (N.getOpcode() != ISD::TRUNCATE) 3998 return 0; 3999 4000 const SDValue &Ext = N.getOperand(0); 4001 if (Ext.getOpcode() == ISD::AssertZext || 4002 Ext.getOpcode() == ISD::AssertSext) { 4003 const SDValue &CFR = Ext.getOperand(0); 4004 if (CFR.getOpcode() == ISD::CopyFromReg) 4005 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4006 if (CFR.getOpcode() == ISD::TRUNCATE) 4007 return getTruncatedArgReg(CFR); 4008 } 4009 return 0; 4010 } 4011 4012 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4013 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4014 /// At the end of instruction selection, they will be inserted to the entry BB. 4015 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4016 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4017 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4018 const Argument *Arg = dyn_cast<Argument>(V); 4019 if (!Arg) 4020 return false; 4021 4022 MachineFunction &MF = DAG.getMachineFunction(); 4023 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4024 4025 // Ignore inlined function arguments here. 4026 // 4027 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4028 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4029 return false; 4030 4031 Optional<MachineOperand> Op; 4032 // Some arguments' frame index is recorded during argument lowering. 4033 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4034 Op = MachineOperand::CreateFI(FI); 4035 4036 if (!Op && N.getNode()) { 4037 unsigned Reg; 4038 if (N.getOpcode() == ISD::CopyFromReg) 4039 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4040 else 4041 Reg = getTruncatedArgReg(N); 4042 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4043 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4044 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4045 if (PR) 4046 Reg = PR; 4047 } 4048 if (Reg) 4049 Op = MachineOperand::CreateReg(Reg, false); 4050 } 4051 4052 if (!Op) { 4053 // Check if ValueMap has reg number. 4054 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4055 if (VMI != FuncInfo.ValueMap.end()) 4056 Op = MachineOperand::CreateReg(VMI->second, false); 4057 } 4058 4059 if (!Op && N.getNode()) 4060 // Check if frame index is available. 4061 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4062 if (FrameIndexSDNode *FINode = 4063 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4064 Op = MachineOperand::CreateFI(FINode->getIndex()); 4065 4066 if (!Op) 4067 return false; 4068 4069 assert(Variable->isValidLocationForIntrinsic(DL) && 4070 "Expected inlined-at fields to agree"); 4071 if (Op->isReg()) 4072 FuncInfo.ArgDbgValues.push_back( 4073 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4074 Op->getReg(), Offset, Variable, Expr)); 4075 else 4076 FuncInfo.ArgDbgValues.push_back( 4077 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4078 .addOperand(*Op) 4079 .addImm(Offset) 4080 .addMetadata(Variable) 4081 .addMetadata(Expr)); 4082 4083 return true; 4084 } 4085 4086 // VisualStudio defines setjmp as _setjmp 4087 #if defined(_MSC_VER) && defined(setjmp) && \ 4088 !defined(setjmp_undefined_for_msvc) 4089 # pragma push_macro("setjmp") 4090 # undef setjmp 4091 # define setjmp_undefined_for_msvc 4092 #endif 4093 4094 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4095 /// we want to emit this as a call to a named external function, return the name 4096 /// otherwise lower it and return null. 4097 const char * 4098 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4100 SDLoc sdl = getCurSDLoc(); 4101 DebugLoc dl = getCurDebugLoc(); 4102 SDValue Res; 4103 4104 switch (Intrinsic) { 4105 default: 4106 // By default, turn this into a target intrinsic node. 4107 visitTargetIntrinsic(I, Intrinsic); 4108 return nullptr; 4109 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4110 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4111 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4112 case Intrinsic::returnaddress: 4113 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4114 TLI.getPointerTy(DAG.getDataLayout()), 4115 getValue(I.getArgOperand(0)))); 4116 return nullptr; 4117 case Intrinsic::frameaddress: 4118 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4119 TLI.getPointerTy(DAG.getDataLayout()), 4120 getValue(I.getArgOperand(0)))); 4121 return nullptr; 4122 case Intrinsic::read_register: { 4123 Value *Reg = I.getArgOperand(0); 4124 SDValue Chain = getRoot(); 4125 SDValue RegName = 4126 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4127 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4128 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4129 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4130 setValue(&I, Res); 4131 DAG.setRoot(Res.getValue(1)); 4132 return nullptr; 4133 } 4134 case Intrinsic::write_register: { 4135 Value *Reg = I.getArgOperand(0); 4136 Value *RegValue = I.getArgOperand(1); 4137 SDValue Chain = getRoot(); 4138 SDValue RegName = 4139 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4140 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4141 RegName, getValue(RegValue))); 4142 return nullptr; 4143 } 4144 case Intrinsic::setjmp: 4145 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4146 case Intrinsic::longjmp: 4147 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4148 case Intrinsic::memcpy: { 4149 // FIXME: this definition of "user defined address space" is x86-specific 4150 // Assert for address < 256 since we support only user defined address 4151 // spaces. 4152 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4153 < 256 && 4154 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4155 < 256 && 4156 "Unknown address space"); 4157 SDValue Op1 = getValue(I.getArgOperand(0)); 4158 SDValue Op2 = getValue(I.getArgOperand(1)); 4159 SDValue Op3 = getValue(I.getArgOperand(2)); 4160 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4161 if (!Align) 4162 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4163 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4164 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4165 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4166 false, isTC, 4167 MachinePointerInfo(I.getArgOperand(0)), 4168 MachinePointerInfo(I.getArgOperand(1))); 4169 updateDAGForMaybeTailCall(MC); 4170 return nullptr; 4171 } 4172 case Intrinsic::memset: { 4173 // FIXME: this definition of "user defined address space" is x86-specific 4174 // Assert for address < 256 since we support only user defined address 4175 // spaces. 4176 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4177 < 256 && 4178 "Unknown address space"); 4179 SDValue Op1 = getValue(I.getArgOperand(0)); 4180 SDValue Op2 = getValue(I.getArgOperand(1)); 4181 SDValue Op3 = getValue(I.getArgOperand(2)); 4182 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4183 if (!Align) 4184 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4185 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4186 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4187 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4188 isTC, MachinePointerInfo(I.getArgOperand(0))); 4189 updateDAGForMaybeTailCall(MS); 4190 return nullptr; 4191 } 4192 case Intrinsic::memmove: { 4193 // FIXME: this definition of "user defined address space" is x86-specific 4194 // Assert for address < 256 since we support only user defined address 4195 // spaces. 4196 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4197 < 256 && 4198 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4199 < 256 && 4200 "Unknown address space"); 4201 SDValue Op1 = getValue(I.getArgOperand(0)); 4202 SDValue Op2 = getValue(I.getArgOperand(1)); 4203 SDValue Op3 = getValue(I.getArgOperand(2)); 4204 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4205 if (!Align) 4206 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4207 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4208 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4209 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4210 isTC, MachinePointerInfo(I.getArgOperand(0)), 4211 MachinePointerInfo(I.getArgOperand(1))); 4212 updateDAGForMaybeTailCall(MM); 4213 return nullptr; 4214 } 4215 case Intrinsic::dbg_declare: { 4216 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4217 DILocalVariable *Variable = DI.getVariable(); 4218 DIExpression *Expression = DI.getExpression(); 4219 const Value *Address = DI.getAddress(); 4220 assert(Variable && "Missing variable"); 4221 if (!Address) { 4222 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4223 return nullptr; 4224 } 4225 4226 // Check if address has undef value. 4227 if (isa<UndefValue>(Address) || 4228 (Address->use_empty() && !isa<Argument>(Address))) { 4229 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4230 return nullptr; 4231 } 4232 4233 SDValue &N = NodeMap[Address]; 4234 if (!N.getNode() && isa<Argument>(Address)) 4235 // Check unused arguments map. 4236 N = UnusedArgNodeMap[Address]; 4237 SDDbgValue *SDV; 4238 if (N.getNode()) { 4239 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4240 Address = BCI->getOperand(0); 4241 // Parameters are handled specially. 4242 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4243 isa<Argument>(Address); 4244 4245 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4246 4247 if (isParameter && !AI) { 4248 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4249 if (FINode) 4250 // Byval parameter. We have a frame index at this point. 4251 SDV = DAG.getFrameIndexDbgValue( 4252 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4253 else { 4254 // Address is an argument, so try to emit its dbg value using 4255 // virtual register info from the FuncInfo.ValueMap. 4256 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4257 N); 4258 return nullptr; 4259 } 4260 } else if (AI) 4261 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4262 true, 0, dl, SDNodeOrder); 4263 else { 4264 // Can't do anything with other non-AI cases yet. 4265 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4266 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4267 DEBUG(Address->dump()); 4268 return nullptr; 4269 } 4270 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4271 } else { 4272 // If Address is an argument then try to emit its dbg value using 4273 // virtual register info from the FuncInfo.ValueMap. 4274 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4275 N)) { 4276 // If variable is pinned by a alloca in dominating bb then 4277 // use StaticAllocaMap. 4278 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4279 if (AI->getParent() != DI.getParent()) { 4280 DenseMap<const AllocaInst*, int>::iterator SI = 4281 FuncInfo.StaticAllocaMap.find(AI); 4282 if (SI != FuncInfo.StaticAllocaMap.end()) { 4283 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4284 0, dl, SDNodeOrder); 4285 DAG.AddDbgValue(SDV, nullptr, false); 4286 return nullptr; 4287 } 4288 } 4289 } 4290 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4291 } 4292 } 4293 return nullptr; 4294 } 4295 case Intrinsic::dbg_value: { 4296 const DbgValueInst &DI = cast<DbgValueInst>(I); 4297 assert(DI.getVariable() && "Missing variable"); 4298 4299 DILocalVariable *Variable = DI.getVariable(); 4300 DIExpression *Expression = DI.getExpression(); 4301 uint64_t Offset = DI.getOffset(); 4302 const Value *V = DI.getValue(); 4303 if (!V) 4304 return nullptr; 4305 4306 SDDbgValue *SDV; 4307 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4308 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4309 SDNodeOrder); 4310 DAG.AddDbgValue(SDV, nullptr, false); 4311 } else { 4312 // Do not use getValue() in here; we don't want to generate code at 4313 // this point if it hasn't been done yet. 4314 SDValue N = NodeMap[V]; 4315 if (!N.getNode() && isa<Argument>(V)) 4316 // Check unused arguments map. 4317 N = UnusedArgNodeMap[V]; 4318 if (N.getNode()) { 4319 // A dbg.value for an alloca is always indirect. 4320 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4321 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4322 IsIndirect, N)) { 4323 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4324 IsIndirect, Offset, dl, SDNodeOrder); 4325 DAG.AddDbgValue(SDV, N.getNode(), false); 4326 } 4327 } else if (!V->use_empty() ) { 4328 // Do not call getValue(V) yet, as we don't want to generate code. 4329 // Remember it for later. 4330 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4331 DanglingDebugInfoMap[V] = DDI; 4332 } else { 4333 // We may expand this to cover more cases. One case where we have no 4334 // data available is an unreferenced parameter. 4335 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4336 } 4337 } 4338 4339 // Build a debug info table entry. 4340 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4341 V = BCI->getOperand(0); 4342 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4343 // Don't handle byval struct arguments or VLAs, for example. 4344 if (!AI) { 4345 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4346 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4347 return nullptr; 4348 } 4349 DenseMap<const AllocaInst*, int>::iterator SI = 4350 FuncInfo.StaticAllocaMap.find(AI); 4351 if (SI == FuncInfo.StaticAllocaMap.end()) 4352 return nullptr; // VLAs. 4353 return nullptr; 4354 } 4355 4356 case Intrinsic::eh_typeid_for: { 4357 // Find the type id for the given typeinfo. 4358 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4359 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4360 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4361 setValue(&I, Res); 4362 return nullptr; 4363 } 4364 4365 case Intrinsic::eh_return_i32: 4366 case Intrinsic::eh_return_i64: 4367 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4368 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4369 MVT::Other, 4370 getControlRoot(), 4371 getValue(I.getArgOperand(0)), 4372 getValue(I.getArgOperand(1)))); 4373 return nullptr; 4374 case Intrinsic::eh_unwind_init: 4375 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4376 return nullptr; 4377 case Intrinsic::eh_dwarf_cfa: { 4378 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4379 TLI.getPointerTy(DAG.getDataLayout())); 4380 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4381 CfaArg.getValueType(), 4382 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4383 CfaArg.getValueType()), 4384 CfaArg); 4385 SDValue FA = DAG.getNode( 4386 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4387 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4388 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4389 FA, Offset)); 4390 return nullptr; 4391 } 4392 case Intrinsic::eh_sjlj_callsite: { 4393 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4394 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4395 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4396 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4397 4398 MMI.setCurrentCallSite(CI->getZExtValue()); 4399 return nullptr; 4400 } 4401 case Intrinsic::eh_sjlj_functioncontext: { 4402 // Get and store the index of the function context. 4403 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4404 AllocaInst *FnCtx = 4405 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4406 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4407 MFI->setFunctionContextIndex(FI); 4408 return nullptr; 4409 } 4410 case Intrinsic::eh_sjlj_setjmp: { 4411 SDValue Ops[2]; 4412 Ops[0] = getRoot(); 4413 Ops[1] = getValue(I.getArgOperand(0)); 4414 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4415 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4416 setValue(&I, Op.getValue(0)); 4417 DAG.setRoot(Op.getValue(1)); 4418 return nullptr; 4419 } 4420 case Intrinsic::eh_sjlj_longjmp: { 4421 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4422 getRoot(), getValue(I.getArgOperand(0)))); 4423 return nullptr; 4424 } 4425 4426 case Intrinsic::masked_gather: 4427 visitMaskedGather(I); 4428 return nullptr; 4429 case Intrinsic::masked_load: 4430 visitMaskedLoad(I); 4431 return nullptr; 4432 case Intrinsic::masked_scatter: 4433 visitMaskedScatter(I); 4434 return nullptr; 4435 case Intrinsic::masked_store: 4436 visitMaskedStore(I); 4437 return nullptr; 4438 case Intrinsic::x86_mmx_pslli_w: 4439 case Intrinsic::x86_mmx_pslli_d: 4440 case Intrinsic::x86_mmx_pslli_q: 4441 case Intrinsic::x86_mmx_psrli_w: 4442 case Intrinsic::x86_mmx_psrli_d: 4443 case Intrinsic::x86_mmx_psrli_q: 4444 case Intrinsic::x86_mmx_psrai_w: 4445 case Intrinsic::x86_mmx_psrai_d: { 4446 SDValue ShAmt = getValue(I.getArgOperand(1)); 4447 if (isa<ConstantSDNode>(ShAmt)) { 4448 visitTargetIntrinsic(I, Intrinsic); 4449 return nullptr; 4450 } 4451 unsigned NewIntrinsic = 0; 4452 EVT ShAmtVT = MVT::v2i32; 4453 switch (Intrinsic) { 4454 case Intrinsic::x86_mmx_pslli_w: 4455 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4456 break; 4457 case Intrinsic::x86_mmx_pslli_d: 4458 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4459 break; 4460 case Intrinsic::x86_mmx_pslli_q: 4461 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4462 break; 4463 case Intrinsic::x86_mmx_psrli_w: 4464 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4465 break; 4466 case Intrinsic::x86_mmx_psrli_d: 4467 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4468 break; 4469 case Intrinsic::x86_mmx_psrli_q: 4470 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4471 break; 4472 case Intrinsic::x86_mmx_psrai_w: 4473 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4474 break; 4475 case Intrinsic::x86_mmx_psrai_d: 4476 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4477 break; 4478 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4479 } 4480 4481 // The vector shift intrinsics with scalars uses 32b shift amounts but 4482 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4483 // to be zero. 4484 // We must do this early because v2i32 is not a legal type. 4485 SDValue ShOps[2]; 4486 ShOps[0] = ShAmt; 4487 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4488 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4489 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4490 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4491 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4492 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4493 getValue(I.getArgOperand(0)), ShAmt); 4494 setValue(&I, Res); 4495 return nullptr; 4496 } 4497 case Intrinsic::convertff: 4498 case Intrinsic::convertfsi: 4499 case Intrinsic::convertfui: 4500 case Intrinsic::convertsif: 4501 case Intrinsic::convertuif: 4502 case Intrinsic::convertss: 4503 case Intrinsic::convertsu: 4504 case Intrinsic::convertus: 4505 case Intrinsic::convertuu: { 4506 ISD::CvtCode Code = ISD::CVT_INVALID; 4507 switch (Intrinsic) { 4508 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4509 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4510 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4511 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4512 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4513 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4514 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4515 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4516 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4517 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4518 } 4519 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4520 const Value *Op1 = I.getArgOperand(0); 4521 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4522 DAG.getValueType(DestVT), 4523 DAG.getValueType(getValue(Op1).getValueType()), 4524 getValue(I.getArgOperand(1)), 4525 getValue(I.getArgOperand(2)), 4526 Code); 4527 setValue(&I, Res); 4528 return nullptr; 4529 } 4530 case Intrinsic::powi: 4531 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4532 getValue(I.getArgOperand(1)), DAG)); 4533 return nullptr; 4534 case Intrinsic::log: 4535 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4536 return nullptr; 4537 case Intrinsic::log2: 4538 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4539 return nullptr; 4540 case Intrinsic::log10: 4541 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4542 return nullptr; 4543 case Intrinsic::exp: 4544 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4545 return nullptr; 4546 case Intrinsic::exp2: 4547 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4548 return nullptr; 4549 case Intrinsic::pow: 4550 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4551 getValue(I.getArgOperand(1)), DAG, TLI)); 4552 return nullptr; 4553 case Intrinsic::sqrt: 4554 case Intrinsic::fabs: 4555 case Intrinsic::sin: 4556 case Intrinsic::cos: 4557 case Intrinsic::floor: 4558 case Intrinsic::ceil: 4559 case Intrinsic::trunc: 4560 case Intrinsic::rint: 4561 case Intrinsic::nearbyint: 4562 case Intrinsic::round: { 4563 unsigned Opcode; 4564 switch (Intrinsic) { 4565 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4566 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4567 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4568 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4569 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4570 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4571 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4572 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4573 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4574 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4575 case Intrinsic::round: Opcode = ISD::FROUND; break; 4576 } 4577 4578 setValue(&I, DAG.getNode(Opcode, sdl, 4579 getValue(I.getArgOperand(0)).getValueType(), 4580 getValue(I.getArgOperand(0)))); 4581 return nullptr; 4582 } 4583 case Intrinsic::minnum: 4584 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4585 getValue(I.getArgOperand(0)).getValueType(), 4586 getValue(I.getArgOperand(0)), 4587 getValue(I.getArgOperand(1)))); 4588 return nullptr; 4589 case Intrinsic::maxnum: 4590 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4591 getValue(I.getArgOperand(0)).getValueType(), 4592 getValue(I.getArgOperand(0)), 4593 getValue(I.getArgOperand(1)))); 4594 return nullptr; 4595 case Intrinsic::copysign: 4596 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4597 getValue(I.getArgOperand(0)).getValueType(), 4598 getValue(I.getArgOperand(0)), 4599 getValue(I.getArgOperand(1)))); 4600 return nullptr; 4601 case Intrinsic::fma: 4602 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4603 getValue(I.getArgOperand(0)).getValueType(), 4604 getValue(I.getArgOperand(0)), 4605 getValue(I.getArgOperand(1)), 4606 getValue(I.getArgOperand(2)))); 4607 return nullptr; 4608 case Intrinsic::fmuladd: { 4609 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4610 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4611 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4612 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4613 getValue(I.getArgOperand(0)).getValueType(), 4614 getValue(I.getArgOperand(0)), 4615 getValue(I.getArgOperand(1)), 4616 getValue(I.getArgOperand(2)))); 4617 } else { 4618 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4619 getValue(I.getArgOperand(0)).getValueType(), 4620 getValue(I.getArgOperand(0)), 4621 getValue(I.getArgOperand(1))); 4622 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4623 getValue(I.getArgOperand(0)).getValueType(), 4624 Mul, 4625 getValue(I.getArgOperand(2))); 4626 setValue(&I, Add); 4627 } 4628 return nullptr; 4629 } 4630 case Intrinsic::convert_to_fp16: 4631 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4632 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4633 getValue(I.getArgOperand(0)), 4634 DAG.getTargetConstant(0, sdl, 4635 MVT::i32)))); 4636 return nullptr; 4637 case Intrinsic::convert_from_fp16: 4638 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4639 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4640 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4641 getValue(I.getArgOperand(0))))); 4642 return nullptr; 4643 case Intrinsic::pcmarker: { 4644 SDValue Tmp = getValue(I.getArgOperand(0)); 4645 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4646 return nullptr; 4647 } 4648 case Intrinsic::readcyclecounter: { 4649 SDValue Op = getRoot(); 4650 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4651 DAG.getVTList(MVT::i64, MVT::Other), Op); 4652 setValue(&I, Res); 4653 DAG.setRoot(Res.getValue(1)); 4654 return nullptr; 4655 } 4656 case Intrinsic::bswap: 4657 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4658 getValue(I.getArgOperand(0)).getValueType(), 4659 getValue(I.getArgOperand(0)))); 4660 return nullptr; 4661 case Intrinsic::cttz: { 4662 SDValue Arg = getValue(I.getArgOperand(0)); 4663 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4664 EVT Ty = Arg.getValueType(); 4665 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4666 sdl, Ty, Arg)); 4667 return nullptr; 4668 } 4669 case Intrinsic::ctlz: { 4670 SDValue Arg = getValue(I.getArgOperand(0)); 4671 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4672 EVT Ty = Arg.getValueType(); 4673 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4674 sdl, Ty, Arg)); 4675 return nullptr; 4676 } 4677 case Intrinsic::ctpop: { 4678 SDValue Arg = getValue(I.getArgOperand(0)); 4679 EVT Ty = Arg.getValueType(); 4680 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4681 return nullptr; 4682 } 4683 case Intrinsic::stacksave: { 4684 SDValue Op = getRoot(); 4685 Res = DAG.getNode( 4686 ISD::STACKSAVE, sdl, 4687 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4688 setValue(&I, Res); 4689 DAG.setRoot(Res.getValue(1)); 4690 return nullptr; 4691 } 4692 case Intrinsic::stackrestore: { 4693 Res = getValue(I.getArgOperand(0)); 4694 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4695 return nullptr; 4696 } 4697 case Intrinsic::stackprotector: { 4698 // Emit code into the DAG to store the stack guard onto the stack. 4699 MachineFunction &MF = DAG.getMachineFunction(); 4700 MachineFrameInfo *MFI = MF.getFrameInfo(); 4701 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4702 SDValue Src, Chain = getRoot(); 4703 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4704 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4705 4706 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4707 // global variable __stack_chk_guard. 4708 if (!GV) 4709 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4710 if (BC->getOpcode() == Instruction::BitCast) 4711 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4712 4713 if (GV && TLI.useLoadStackGuardNode()) { 4714 // Emit a LOAD_STACK_GUARD node. 4715 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4716 sdl, PtrTy, Chain); 4717 MachinePointerInfo MPInfo(GV); 4718 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4719 unsigned Flags = MachineMemOperand::MOLoad | 4720 MachineMemOperand::MOInvariant; 4721 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4722 PtrTy.getSizeInBits() / 8, 4723 DAG.getEVTAlignment(PtrTy)); 4724 Node->setMemRefs(MemRefs, MemRefs + 1); 4725 4726 // Copy the guard value to a virtual register so that it can be 4727 // retrieved in the epilogue. 4728 Src = SDValue(Node, 0); 4729 const TargetRegisterClass *RC = 4730 TLI.getRegClassFor(Src.getSimpleValueType()); 4731 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4732 4733 SPDescriptor.setGuardReg(Reg); 4734 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4735 } else { 4736 Src = getValue(I.getArgOperand(0)); // The guard's value. 4737 } 4738 4739 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4740 4741 int FI = FuncInfo.StaticAllocaMap[Slot]; 4742 MFI->setStackProtectorIndex(FI); 4743 4744 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4745 4746 // Store the stack protector onto the stack. 4747 Res = DAG.getStore(Chain, sdl, Src, FIN, 4748 MachinePointerInfo::getFixedStack(FI), 4749 true, false, 0); 4750 setValue(&I, Res); 4751 DAG.setRoot(Res); 4752 return nullptr; 4753 } 4754 case Intrinsic::objectsize: { 4755 // If we don't know by now, we're never going to know. 4756 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4757 4758 assert(CI && "Non-constant type in __builtin_object_size?"); 4759 4760 SDValue Arg = getValue(I.getCalledValue()); 4761 EVT Ty = Arg.getValueType(); 4762 4763 if (CI->isZero()) 4764 Res = DAG.getConstant(-1ULL, sdl, Ty); 4765 else 4766 Res = DAG.getConstant(0, sdl, Ty); 4767 4768 setValue(&I, Res); 4769 return nullptr; 4770 } 4771 case Intrinsic::annotation: 4772 case Intrinsic::ptr_annotation: 4773 // Drop the intrinsic, but forward the value 4774 setValue(&I, getValue(I.getOperand(0))); 4775 return nullptr; 4776 case Intrinsic::assume: 4777 case Intrinsic::var_annotation: 4778 // Discard annotate attributes and assumptions 4779 return nullptr; 4780 4781 case Intrinsic::init_trampoline: { 4782 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4783 4784 SDValue Ops[6]; 4785 Ops[0] = getRoot(); 4786 Ops[1] = getValue(I.getArgOperand(0)); 4787 Ops[2] = getValue(I.getArgOperand(1)); 4788 Ops[3] = getValue(I.getArgOperand(2)); 4789 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4790 Ops[5] = DAG.getSrcValue(F); 4791 4792 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4793 4794 DAG.setRoot(Res); 4795 return nullptr; 4796 } 4797 case Intrinsic::adjust_trampoline: { 4798 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4799 TLI.getPointerTy(DAG.getDataLayout()), 4800 getValue(I.getArgOperand(0)))); 4801 return nullptr; 4802 } 4803 case Intrinsic::gcroot: 4804 if (GFI) { 4805 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4806 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4807 4808 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4809 GFI->addStackRoot(FI->getIndex(), TypeMap); 4810 } 4811 return nullptr; 4812 case Intrinsic::gcread: 4813 case Intrinsic::gcwrite: 4814 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4815 case Intrinsic::flt_rounds: 4816 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4817 return nullptr; 4818 4819 case Intrinsic::expect: { 4820 // Just replace __builtin_expect(exp, c) with EXP. 4821 setValue(&I, getValue(I.getArgOperand(0))); 4822 return nullptr; 4823 } 4824 4825 case Intrinsic::debugtrap: 4826 case Intrinsic::trap: { 4827 StringRef TrapFuncName = 4828 I.getAttributes() 4829 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4830 .getValueAsString(); 4831 if (TrapFuncName.empty()) { 4832 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4833 ISD::TRAP : ISD::DEBUGTRAP; 4834 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4835 return nullptr; 4836 } 4837 TargetLowering::ArgListTy Args; 4838 4839 TargetLowering::CallLoweringInfo CLI(DAG); 4840 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4841 CallingConv::C, I.getType(), 4842 DAG.getExternalSymbol(TrapFuncName.data(), 4843 TLI.getPointerTy(DAG.getDataLayout())), 4844 std::move(Args), 0); 4845 4846 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4847 DAG.setRoot(Result.second); 4848 return nullptr; 4849 } 4850 4851 case Intrinsic::uadd_with_overflow: 4852 case Intrinsic::sadd_with_overflow: 4853 case Intrinsic::usub_with_overflow: 4854 case Intrinsic::ssub_with_overflow: 4855 case Intrinsic::umul_with_overflow: 4856 case Intrinsic::smul_with_overflow: { 4857 ISD::NodeType Op; 4858 switch (Intrinsic) { 4859 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4860 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4861 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4862 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4863 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4864 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4865 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4866 } 4867 SDValue Op1 = getValue(I.getArgOperand(0)); 4868 SDValue Op2 = getValue(I.getArgOperand(1)); 4869 4870 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4871 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4872 return nullptr; 4873 } 4874 case Intrinsic::prefetch: { 4875 SDValue Ops[5]; 4876 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4877 Ops[0] = getRoot(); 4878 Ops[1] = getValue(I.getArgOperand(0)); 4879 Ops[2] = getValue(I.getArgOperand(1)); 4880 Ops[3] = getValue(I.getArgOperand(2)); 4881 Ops[4] = getValue(I.getArgOperand(3)); 4882 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4883 DAG.getVTList(MVT::Other), Ops, 4884 EVT::getIntegerVT(*Context, 8), 4885 MachinePointerInfo(I.getArgOperand(0)), 4886 0, /* align */ 4887 false, /* volatile */ 4888 rw==0, /* read */ 4889 rw==1)); /* write */ 4890 return nullptr; 4891 } 4892 case Intrinsic::lifetime_start: 4893 case Intrinsic::lifetime_end: { 4894 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4895 // Stack coloring is not enabled in O0, discard region information. 4896 if (TM.getOptLevel() == CodeGenOpt::None) 4897 return nullptr; 4898 4899 SmallVector<Value *, 4> Allocas; 4900 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4901 4902 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4903 E = Allocas.end(); Object != E; ++Object) { 4904 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4905 4906 // Could not find an Alloca. 4907 if (!LifetimeObject) 4908 continue; 4909 4910 // First check that the Alloca is static, otherwise it won't have a 4911 // valid frame index. 4912 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4913 if (SI == FuncInfo.StaticAllocaMap.end()) 4914 return nullptr; 4915 4916 int FI = SI->second; 4917 4918 SDValue Ops[2]; 4919 Ops[0] = getRoot(); 4920 Ops[1] = 4921 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4922 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4923 4924 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4925 DAG.setRoot(Res); 4926 } 4927 return nullptr; 4928 } 4929 case Intrinsic::invariant_start: 4930 // Discard region information. 4931 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4932 return nullptr; 4933 case Intrinsic::invariant_end: 4934 // Discard region information. 4935 return nullptr; 4936 case Intrinsic::stackprotectorcheck: { 4937 // Do not actually emit anything for this basic block. Instead we initialize 4938 // the stack protector descriptor and export the guard variable so we can 4939 // access it in FinishBasicBlock. 4940 const BasicBlock *BB = I.getParent(); 4941 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4942 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4943 4944 // Flush our exports since we are going to process a terminator. 4945 (void)getControlRoot(); 4946 return nullptr; 4947 } 4948 case Intrinsic::clear_cache: 4949 return TLI.getClearCacheBuiltinName(); 4950 case Intrinsic::eh_actions: 4951 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4952 return nullptr; 4953 case Intrinsic::donothing: 4954 // ignore 4955 return nullptr; 4956 case Intrinsic::experimental_stackmap: { 4957 visitStackmap(I); 4958 return nullptr; 4959 } 4960 case Intrinsic::experimental_patchpoint_void: 4961 case Intrinsic::experimental_patchpoint_i64: { 4962 visitPatchpoint(&I); 4963 return nullptr; 4964 } 4965 case Intrinsic::experimental_gc_statepoint: { 4966 visitStatepoint(I); 4967 return nullptr; 4968 } 4969 case Intrinsic::experimental_gc_result_int: 4970 case Intrinsic::experimental_gc_result_float: 4971 case Intrinsic::experimental_gc_result_ptr: 4972 case Intrinsic::experimental_gc_result: { 4973 visitGCResult(I); 4974 return nullptr; 4975 } 4976 case Intrinsic::experimental_gc_relocate: { 4977 visitGCRelocate(I); 4978 return nullptr; 4979 } 4980 case Intrinsic::instrprof_increment: 4981 llvm_unreachable("instrprof failed to lower an increment"); 4982 4983 case Intrinsic::localescape: { 4984 MachineFunction &MF = DAG.getMachineFunction(); 4985 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4986 4987 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4988 // is the same on all targets. 4989 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4990 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4991 if (isa<ConstantPointerNull>(Arg)) 4992 continue; // Skip null pointers. They represent a hole in index space. 4993 AllocaInst *Slot = cast<AllocaInst>(Arg); 4994 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4995 "can only escape static allocas"); 4996 int FI = FuncInfo.StaticAllocaMap[Slot]; 4997 MCSymbol *FrameAllocSym = 4998 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4999 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5001 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5002 .addSym(FrameAllocSym) 5003 .addFrameIndex(FI); 5004 } 5005 5006 return nullptr; 5007 } 5008 5009 case Intrinsic::localrecover: { 5010 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5011 MachineFunction &MF = DAG.getMachineFunction(); 5012 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5013 5014 // Get the symbol that defines the frame offset. 5015 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5016 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5017 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5018 MCSymbol *FrameAllocSym = 5019 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5020 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5021 5022 // Create a MCSymbol for the label to avoid any target lowering 5023 // that would make this PC relative. 5024 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5025 SDValue OffsetVal = 5026 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5027 5028 // Add the offset to the FP. 5029 Value *FP = I.getArgOperand(1); 5030 SDValue FPVal = getValue(FP); 5031 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5032 setValue(&I, Add); 5033 5034 return nullptr; 5035 } 5036 case Intrinsic::eh_begincatch: 5037 case Intrinsic::eh_endcatch: 5038 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5039 case Intrinsic::eh_exceptioncode: { 5040 unsigned Reg = TLI.getExceptionPointerRegister(); 5041 assert(Reg && "cannot get exception code on this platform"); 5042 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5043 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5044 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5045 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5046 SDValue N = 5047 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5048 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5049 setValue(&I, N); 5050 return nullptr; 5051 } 5052 } 5053 } 5054 5055 std::pair<SDValue, SDValue> 5056 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5057 MachineBasicBlock *LandingPad) { 5058 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5059 MCSymbol *BeginLabel = nullptr; 5060 5061 if (LandingPad) { 5062 // Insert a label before the invoke call to mark the try range. This can be 5063 // used to detect deletion of the invoke via the MachineModuleInfo. 5064 BeginLabel = MMI.getContext().createTempSymbol(); 5065 5066 // For SjLj, keep track of which landing pads go with which invokes 5067 // so as to maintain the ordering of pads in the LSDA. 5068 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5069 if (CallSiteIndex) { 5070 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5071 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5072 5073 // Now that the call site is handled, stop tracking it. 5074 MMI.setCurrentCallSite(0); 5075 } 5076 5077 // Both PendingLoads and PendingExports must be flushed here; 5078 // this call might not return. 5079 (void)getRoot(); 5080 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5081 5082 CLI.setChain(getRoot()); 5083 } 5084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5085 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5086 5087 assert((CLI.IsTailCall || Result.second.getNode()) && 5088 "Non-null chain expected with non-tail call!"); 5089 assert((Result.second.getNode() || !Result.first.getNode()) && 5090 "Null value expected with tail call!"); 5091 5092 if (!Result.second.getNode()) { 5093 // As a special case, a null chain means that a tail call has been emitted 5094 // and the DAG root is already updated. 5095 HasTailCall = true; 5096 5097 // Since there's no actual continuation from this block, nothing can be 5098 // relying on us setting vregs for them. 5099 PendingExports.clear(); 5100 } else { 5101 DAG.setRoot(Result.second); 5102 } 5103 5104 if (LandingPad) { 5105 // Insert a label at the end of the invoke call to mark the try range. This 5106 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5107 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5108 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5109 5110 // Inform MachineModuleInfo of range. 5111 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5112 } 5113 5114 return Result; 5115 } 5116 5117 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5118 bool isTailCall, 5119 MachineBasicBlock *LandingPad) { 5120 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5121 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5122 Type *RetTy = FTy->getReturnType(); 5123 5124 TargetLowering::ArgListTy Args; 5125 TargetLowering::ArgListEntry Entry; 5126 Args.reserve(CS.arg_size()); 5127 5128 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5129 i != e; ++i) { 5130 const Value *V = *i; 5131 5132 // Skip empty types 5133 if (V->getType()->isEmptyTy()) 5134 continue; 5135 5136 SDValue ArgNode = getValue(V); 5137 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5138 5139 // Skip the first return-type Attribute to get to params. 5140 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5141 Args.push_back(Entry); 5142 5143 // If we have an explicit sret argument that is an Instruction, (i.e., it 5144 // might point to function-local memory), we can't meaningfully tail-call. 5145 if (Entry.isSRet && isa<Instruction>(V)) 5146 isTailCall = false; 5147 } 5148 5149 // Check if target-independent constraints permit a tail call here. 5150 // Target-dependent constraints are checked within TLI->LowerCallTo. 5151 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5152 isTailCall = false; 5153 5154 TargetLowering::CallLoweringInfo CLI(DAG); 5155 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5156 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5157 .setTailCall(isTailCall); 5158 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5159 5160 if (Result.first.getNode()) 5161 setValue(CS.getInstruction(), Result.first); 5162 } 5163 5164 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5165 /// value is equal or not-equal to zero. 5166 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5167 for (const User *U : V->users()) { 5168 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5169 if (IC->isEquality()) 5170 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5171 if (C->isNullValue()) 5172 continue; 5173 // Unknown instruction. 5174 return false; 5175 } 5176 return true; 5177 } 5178 5179 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5180 Type *LoadTy, 5181 SelectionDAGBuilder &Builder) { 5182 5183 // Check to see if this load can be trivially constant folded, e.g. if the 5184 // input is from a string literal. 5185 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5186 // Cast pointer to the type we really want to load. 5187 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5188 PointerType::getUnqual(LoadTy)); 5189 5190 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5191 const_cast<Constant *>(LoadInput), *Builder.DL)) 5192 return Builder.getValue(LoadCst); 5193 } 5194 5195 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5196 // still constant memory, the input chain can be the entry node. 5197 SDValue Root; 5198 bool ConstantMemory = false; 5199 5200 // Do not serialize (non-volatile) loads of constant memory with anything. 5201 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5202 Root = Builder.DAG.getEntryNode(); 5203 ConstantMemory = true; 5204 } else { 5205 // Do not serialize non-volatile loads against each other. 5206 Root = Builder.DAG.getRoot(); 5207 } 5208 5209 SDValue Ptr = Builder.getValue(PtrVal); 5210 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5211 Ptr, MachinePointerInfo(PtrVal), 5212 false /*volatile*/, 5213 false /*nontemporal*/, 5214 false /*isinvariant*/, 1 /* align=1 */); 5215 5216 if (!ConstantMemory) 5217 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5218 return LoadVal; 5219 } 5220 5221 /// processIntegerCallValue - Record the value for an instruction that 5222 /// produces an integer result, converting the type where necessary. 5223 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5224 SDValue Value, 5225 bool IsSigned) { 5226 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5227 I.getType(), true); 5228 if (IsSigned) 5229 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5230 else 5231 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5232 setValue(&I, Value); 5233 } 5234 5235 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5236 /// If so, return true and lower it, otherwise return false and it will be 5237 /// lowered like a normal call. 5238 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5239 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5240 if (I.getNumArgOperands() != 3) 5241 return false; 5242 5243 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5244 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5245 !I.getArgOperand(2)->getType()->isIntegerTy() || 5246 !I.getType()->isIntegerTy()) 5247 return false; 5248 5249 const Value *Size = I.getArgOperand(2); 5250 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5251 if (CSize && CSize->getZExtValue() == 0) { 5252 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5253 I.getType(), true); 5254 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5255 return true; 5256 } 5257 5258 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5259 std::pair<SDValue, SDValue> Res = 5260 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5261 getValue(LHS), getValue(RHS), getValue(Size), 5262 MachinePointerInfo(LHS), 5263 MachinePointerInfo(RHS)); 5264 if (Res.first.getNode()) { 5265 processIntegerCallValue(I, Res.first, true); 5266 PendingLoads.push_back(Res.second); 5267 return true; 5268 } 5269 5270 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5271 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5272 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5273 bool ActuallyDoIt = true; 5274 MVT LoadVT; 5275 Type *LoadTy; 5276 switch (CSize->getZExtValue()) { 5277 default: 5278 LoadVT = MVT::Other; 5279 LoadTy = nullptr; 5280 ActuallyDoIt = false; 5281 break; 5282 case 2: 5283 LoadVT = MVT::i16; 5284 LoadTy = Type::getInt16Ty(CSize->getContext()); 5285 break; 5286 case 4: 5287 LoadVT = MVT::i32; 5288 LoadTy = Type::getInt32Ty(CSize->getContext()); 5289 break; 5290 case 8: 5291 LoadVT = MVT::i64; 5292 LoadTy = Type::getInt64Ty(CSize->getContext()); 5293 break; 5294 /* 5295 case 16: 5296 LoadVT = MVT::v4i32; 5297 LoadTy = Type::getInt32Ty(CSize->getContext()); 5298 LoadTy = VectorType::get(LoadTy, 4); 5299 break; 5300 */ 5301 } 5302 5303 // This turns into unaligned loads. We only do this if the target natively 5304 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5305 // we'll only produce a small number of byte loads. 5306 5307 // Require that we can find a legal MVT, and only do this if the target 5308 // supports unaligned loads of that type. Expanding into byte loads would 5309 // bloat the code. 5310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5311 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5312 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5313 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5314 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5315 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5316 // TODO: Check alignment of src and dest ptrs. 5317 if (!TLI.isTypeLegal(LoadVT) || 5318 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5319 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5320 ActuallyDoIt = false; 5321 } 5322 5323 if (ActuallyDoIt) { 5324 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5325 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5326 5327 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5328 ISD::SETNE); 5329 processIntegerCallValue(I, Res, false); 5330 return true; 5331 } 5332 } 5333 5334 5335 return false; 5336 } 5337 5338 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5339 /// form. If so, return true and lower it, otherwise return false and it 5340 /// will be lowered like a normal call. 5341 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5342 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5343 if (I.getNumArgOperands() != 3) 5344 return false; 5345 5346 const Value *Src = I.getArgOperand(0); 5347 const Value *Char = I.getArgOperand(1); 5348 const Value *Length = I.getArgOperand(2); 5349 if (!Src->getType()->isPointerTy() || 5350 !Char->getType()->isIntegerTy() || 5351 !Length->getType()->isIntegerTy() || 5352 !I.getType()->isPointerTy()) 5353 return false; 5354 5355 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5356 std::pair<SDValue, SDValue> Res = 5357 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5358 getValue(Src), getValue(Char), getValue(Length), 5359 MachinePointerInfo(Src)); 5360 if (Res.first.getNode()) { 5361 setValue(&I, Res.first); 5362 PendingLoads.push_back(Res.second); 5363 return true; 5364 } 5365 5366 return false; 5367 } 5368 5369 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5370 /// optimized form. If so, return true and lower it, otherwise return false 5371 /// and it will be lowered like a normal call. 5372 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5373 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5374 if (I.getNumArgOperands() != 2) 5375 return false; 5376 5377 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5378 if (!Arg0->getType()->isPointerTy() || 5379 !Arg1->getType()->isPointerTy() || 5380 !I.getType()->isPointerTy()) 5381 return false; 5382 5383 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5384 std::pair<SDValue, SDValue> Res = 5385 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5386 getValue(Arg0), getValue(Arg1), 5387 MachinePointerInfo(Arg0), 5388 MachinePointerInfo(Arg1), isStpcpy); 5389 if (Res.first.getNode()) { 5390 setValue(&I, Res.first); 5391 DAG.setRoot(Res.second); 5392 return true; 5393 } 5394 5395 return false; 5396 } 5397 5398 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5399 /// If so, return true and lower it, otherwise return false and it will be 5400 /// lowered like a normal call. 5401 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5402 // Verify that the prototype makes sense. int strcmp(void*,void*) 5403 if (I.getNumArgOperands() != 2) 5404 return false; 5405 5406 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5407 if (!Arg0->getType()->isPointerTy() || 5408 !Arg1->getType()->isPointerTy() || 5409 !I.getType()->isIntegerTy()) 5410 return false; 5411 5412 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5413 std::pair<SDValue, SDValue> Res = 5414 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5415 getValue(Arg0), getValue(Arg1), 5416 MachinePointerInfo(Arg0), 5417 MachinePointerInfo(Arg1)); 5418 if (Res.first.getNode()) { 5419 processIntegerCallValue(I, Res.first, true); 5420 PendingLoads.push_back(Res.second); 5421 return true; 5422 } 5423 5424 return false; 5425 } 5426 5427 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5428 /// form. If so, return true and lower it, otherwise return false and it 5429 /// will be lowered like a normal call. 5430 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5431 // Verify that the prototype makes sense. size_t strlen(char *) 5432 if (I.getNumArgOperands() != 1) 5433 return false; 5434 5435 const Value *Arg0 = I.getArgOperand(0); 5436 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5437 return false; 5438 5439 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5440 std::pair<SDValue, SDValue> Res = 5441 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5442 getValue(Arg0), MachinePointerInfo(Arg0)); 5443 if (Res.first.getNode()) { 5444 processIntegerCallValue(I, Res.first, false); 5445 PendingLoads.push_back(Res.second); 5446 return true; 5447 } 5448 5449 return false; 5450 } 5451 5452 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5453 /// form. If so, return true and lower it, otherwise return false and it 5454 /// will be lowered like a normal call. 5455 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5456 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5457 if (I.getNumArgOperands() != 2) 5458 return false; 5459 5460 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5461 if (!Arg0->getType()->isPointerTy() || 5462 !Arg1->getType()->isIntegerTy() || 5463 !I.getType()->isIntegerTy()) 5464 return false; 5465 5466 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5467 std::pair<SDValue, SDValue> Res = 5468 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5469 getValue(Arg0), getValue(Arg1), 5470 MachinePointerInfo(Arg0)); 5471 if (Res.first.getNode()) { 5472 processIntegerCallValue(I, Res.first, false); 5473 PendingLoads.push_back(Res.second); 5474 return true; 5475 } 5476 5477 return false; 5478 } 5479 5480 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5481 /// operation (as expected), translate it to an SDNode with the specified opcode 5482 /// and return true. 5483 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5484 unsigned Opcode) { 5485 // Sanity check that it really is a unary floating-point call. 5486 if (I.getNumArgOperands() != 1 || 5487 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5488 I.getType() != I.getArgOperand(0)->getType() || 5489 !I.onlyReadsMemory()) 5490 return false; 5491 5492 SDValue Tmp = getValue(I.getArgOperand(0)); 5493 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5494 return true; 5495 } 5496 5497 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5498 /// operation (as expected), translate it to an SDNode with the specified opcode 5499 /// and return true. 5500 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5501 unsigned Opcode) { 5502 // Sanity check that it really is a binary floating-point call. 5503 if (I.getNumArgOperands() != 2 || 5504 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5505 I.getType() != I.getArgOperand(0)->getType() || 5506 I.getType() != I.getArgOperand(1)->getType() || 5507 !I.onlyReadsMemory()) 5508 return false; 5509 5510 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5511 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5512 EVT VT = Tmp0.getValueType(); 5513 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5514 return true; 5515 } 5516 5517 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5518 // Handle inline assembly differently. 5519 if (isa<InlineAsm>(I.getCalledValue())) { 5520 visitInlineAsm(&I); 5521 return; 5522 } 5523 5524 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5525 ComputeUsesVAFloatArgument(I, &MMI); 5526 5527 const char *RenameFn = nullptr; 5528 if (Function *F = I.getCalledFunction()) { 5529 if (F->isDeclaration()) { 5530 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5531 if (unsigned IID = II->getIntrinsicID(F)) { 5532 RenameFn = visitIntrinsicCall(I, IID); 5533 if (!RenameFn) 5534 return; 5535 } 5536 } 5537 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5538 RenameFn = visitIntrinsicCall(I, IID); 5539 if (!RenameFn) 5540 return; 5541 } 5542 } 5543 5544 // Check for well-known libc/libm calls. If the function is internal, it 5545 // can't be a library call. 5546 LibFunc::Func Func; 5547 if (!F->hasLocalLinkage() && F->hasName() && 5548 LibInfo->getLibFunc(F->getName(), Func) && 5549 LibInfo->hasOptimizedCodeGen(Func)) { 5550 switch (Func) { 5551 default: break; 5552 case LibFunc::copysign: 5553 case LibFunc::copysignf: 5554 case LibFunc::copysignl: 5555 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5556 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5557 I.getType() == I.getArgOperand(0)->getType() && 5558 I.getType() == I.getArgOperand(1)->getType() && 5559 I.onlyReadsMemory()) { 5560 SDValue LHS = getValue(I.getArgOperand(0)); 5561 SDValue RHS = getValue(I.getArgOperand(1)); 5562 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5563 LHS.getValueType(), LHS, RHS)); 5564 return; 5565 } 5566 break; 5567 case LibFunc::fabs: 5568 case LibFunc::fabsf: 5569 case LibFunc::fabsl: 5570 if (visitUnaryFloatCall(I, ISD::FABS)) 5571 return; 5572 break; 5573 case LibFunc::fmin: 5574 case LibFunc::fminf: 5575 case LibFunc::fminl: 5576 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5577 return; 5578 break; 5579 case LibFunc::fmax: 5580 case LibFunc::fmaxf: 5581 case LibFunc::fmaxl: 5582 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5583 return; 5584 break; 5585 case LibFunc::sin: 5586 case LibFunc::sinf: 5587 case LibFunc::sinl: 5588 if (visitUnaryFloatCall(I, ISD::FSIN)) 5589 return; 5590 break; 5591 case LibFunc::cos: 5592 case LibFunc::cosf: 5593 case LibFunc::cosl: 5594 if (visitUnaryFloatCall(I, ISD::FCOS)) 5595 return; 5596 break; 5597 case LibFunc::sqrt: 5598 case LibFunc::sqrtf: 5599 case LibFunc::sqrtl: 5600 case LibFunc::sqrt_finite: 5601 case LibFunc::sqrtf_finite: 5602 case LibFunc::sqrtl_finite: 5603 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5604 return; 5605 break; 5606 case LibFunc::floor: 5607 case LibFunc::floorf: 5608 case LibFunc::floorl: 5609 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5610 return; 5611 break; 5612 case LibFunc::nearbyint: 5613 case LibFunc::nearbyintf: 5614 case LibFunc::nearbyintl: 5615 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5616 return; 5617 break; 5618 case LibFunc::ceil: 5619 case LibFunc::ceilf: 5620 case LibFunc::ceill: 5621 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5622 return; 5623 break; 5624 case LibFunc::rint: 5625 case LibFunc::rintf: 5626 case LibFunc::rintl: 5627 if (visitUnaryFloatCall(I, ISD::FRINT)) 5628 return; 5629 break; 5630 case LibFunc::round: 5631 case LibFunc::roundf: 5632 case LibFunc::roundl: 5633 if (visitUnaryFloatCall(I, ISD::FROUND)) 5634 return; 5635 break; 5636 case LibFunc::trunc: 5637 case LibFunc::truncf: 5638 case LibFunc::truncl: 5639 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5640 return; 5641 break; 5642 case LibFunc::log2: 5643 case LibFunc::log2f: 5644 case LibFunc::log2l: 5645 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5646 return; 5647 break; 5648 case LibFunc::exp2: 5649 case LibFunc::exp2f: 5650 case LibFunc::exp2l: 5651 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5652 return; 5653 break; 5654 case LibFunc::memcmp: 5655 if (visitMemCmpCall(I)) 5656 return; 5657 break; 5658 case LibFunc::memchr: 5659 if (visitMemChrCall(I)) 5660 return; 5661 break; 5662 case LibFunc::strcpy: 5663 if (visitStrCpyCall(I, false)) 5664 return; 5665 break; 5666 case LibFunc::stpcpy: 5667 if (visitStrCpyCall(I, true)) 5668 return; 5669 break; 5670 case LibFunc::strcmp: 5671 if (visitStrCmpCall(I)) 5672 return; 5673 break; 5674 case LibFunc::strlen: 5675 if (visitStrLenCall(I)) 5676 return; 5677 break; 5678 case LibFunc::strnlen: 5679 if (visitStrNLenCall(I)) 5680 return; 5681 break; 5682 } 5683 } 5684 } 5685 5686 SDValue Callee; 5687 if (!RenameFn) 5688 Callee = getValue(I.getCalledValue()); 5689 else 5690 Callee = DAG.getExternalSymbol( 5691 RenameFn, 5692 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5693 5694 // Check if we can potentially perform a tail call. More detailed checking is 5695 // be done within LowerCallTo, after more information about the call is known. 5696 LowerCallTo(&I, Callee, I.isTailCall()); 5697 } 5698 5699 namespace { 5700 5701 /// AsmOperandInfo - This contains information for each constraint that we are 5702 /// lowering. 5703 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5704 public: 5705 /// CallOperand - If this is the result output operand or a clobber 5706 /// this is null, otherwise it is the incoming operand to the CallInst. 5707 /// This gets modified as the asm is processed. 5708 SDValue CallOperand; 5709 5710 /// AssignedRegs - If this is a register or register class operand, this 5711 /// contains the set of register corresponding to the operand. 5712 RegsForValue AssignedRegs; 5713 5714 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5715 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5716 } 5717 5718 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5719 /// corresponds to. If there is no Value* for this operand, it returns 5720 /// MVT::Other. 5721 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5722 const DataLayout &DL) const { 5723 if (!CallOperandVal) return MVT::Other; 5724 5725 if (isa<BasicBlock>(CallOperandVal)) 5726 return TLI.getPointerTy(DL); 5727 5728 llvm::Type *OpTy = CallOperandVal->getType(); 5729 5730 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5731 // If this is an indirect operand, the operand is a pointer to the 5732 // accessed type. 5733 if (isIndirect) { 5734 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5735 if (!PtrTy) 5736 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5737 OpTy = PtrTy->getElementType(); 5738 } 5739 5740 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5741 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5742 if (STy->getNumElements() == 1) 5743 OpTy = STy->getElementType(0); 5744 5745 // If OpTy is not a single value, it may be a struct/union that we 5746 // can tile with integers. 5747 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5748 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5749 switch (BitSize) { 5750 default: break; 5751 case 1: 5752 case 8: 5753 case 16: 5754 case 32: 5755 case 64: 5756 case 128: 5757 OpTy = IntegerType::get(Context, BitSize); 5758 break; 5759 } 5760 } 5761 5762 return TLI.getValueType(DL, OpTy, true); 5763 } 5764 }; 5765 5766 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5767 5768 } // end anonymous namespace 5769 5770 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5771 /// specified operand. We prefer to assign virtual registers, to allow the 5772 /// register allocator to handle the assignment process. However, if the asm 5773 /// uses features that we can't model on machineinstrs, we have SDISel do the 5774 /// allocation. This produces generally horrible, but correct, code. 5775 /// 5776 /// OpInfo describes the operand. 5777 /// 5778 static void GetRegistersForValue(SelectionDAG &DAG, 5779 const TargetLowering &TLI, 5780 SDLoc DL, 5781 SDISelAsmOperandInfo &OpInfo) { 5782 LLVMContext &Context = *DAG.getContext(); 5783 5784 MachineFunction &MF = DAG.getMachineFunction(); 5785 SmallVector<unsigned, 4> Regs; 5786 5787 // If this is a constraint for a single physreg, or a constraint for a 5788 // register class, find it. 5789 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5790 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5791 OpInfo.ConstraintCode, 5792 OpInfo.ConstraintVT); 5793 5794 unsigned NumRegs = 1; 5795 if (OpInfo.ConstraintVT != MVT::Other) { 5796 // If this is a FP input in an integer register (or visa versa) insert a bit 5797 // cast of the input value. More generally, handle any case where the input 5798 // value disagrees with the register class we plan to stick this in. 5799 if (OpInfo.Type == InlineAsm::isInput && 5800 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5801 // Try to convert to the first EVT that the reg class contains. If the 5802 // types are identical size, use a bitcast to convert (e.g. two differing 5803 // vector types). 5804 MVT RegVT = *PhysReg.second->vt_begin(); 5805 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5806 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5807 RegVT, OpInfo.CallOperand); 5808 OpInfo.ConstraintVT = RegVT; 5809 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5810 // If the input is a FP value and we want it in FP registers, do a 5811 // bitcast to the corresponding integer type. This turns an f64 value 5812 // into i64, which can be passed with two i32 values on a 32-bit 5813 // machine. 5814 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5815 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5816 RegVT, OpInfo.CallOperand); 5817 OpInfo.ConstraintVT = RegVT; 5818 } 5819 } 5820 5821 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5822 } 5823 5824 MVT RegVT; 5825 EVT ValueVT = OpInfo.ConstraintVT; 5826 5827 // If this is a constraint for a specific physical register, like {r17}, 5828 // assign it now. 5829 if (unsigned AssignedReg = PhysReg.first) { 5830 const TargetRegisterClass *RC = PhysReg.second; 5831 if (OpInfo.ConstraintVT == MVT::Other) 5832 ValueVT = *RC->vt_begin(); 5833 5834 // Get the actual register value type. This is important, because the user 5835 // may have asked for (e.g.) the AX register in i32 type. We need to 5836 // remember that AX is actually i16 to get the right extension. 5837 RegVT = *RC->vt_begin(); 5838 5839 // This is a explicit reference to a physical register. 5840 Regs.push_back(AssignedReg); 5841 5842 // If this is an expanded reference, add the rest of the regs to Regs. 5843 if (NumRegs != 1) { 5844 TargetRegisterClass::iterator I = RC->begin(); 5845 for (; *I != AssignedReg; ++I) 5846 assert(I != RC->end() && "Didn't find reg!"); 5847 5848 // Already added the first reg. 5849 --NumRegs; ++I; 5850 for (; NumRegs; --NumRegs, ++I) { 5851 assert(I != RC->end() && "Ran out of registers to allocate!"); 5852 Regs.push_back(*I); 5853 } 5854 } 5855 5856 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5857 return; 5858 } 5859 5860 // Otherwise, if this was a reference to an LLVM register class, create vregs 5861 // for this reference. 5862 if (const TargetRegisterClass *RC = PhysReg.second) { 5863 RegVT = *RC->vt_begin(); 5864 if (OpInfo.ConstraintVT == MVT::Other) 5865 ValueVT = RegVT; 5866 5867 // Create the appropriate number of virtual registers. 5868 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5869 for (; NumRegs; --NumRegs) 5870 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5871 5872 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5873 return; 5874 } 5875 5876 // Otherwise, we couldn't allocate enough registers for this. 5877 } 5878 5879 /// visitInlineAsm - Handle a call to an InlineAsm object. 5880 /// 5881 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5882 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5883 5884 /// ConstraintOperands - Information about all of the constraints. 5885 SDISelAsmOperandInfoVector ConstraintOperands; 5886 5887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5888 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5889 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5890 5891 bool hasMemory = false; 5892 5893 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5894 unsigned ResNo = 0; // ResNo - The result number of the next output. 5895 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5896 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5897 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5898 5899 MVT OpVT = MVT::Other; 5900 5901 // Compute the value type for each operand. 5902 switch (OpInfo.Type) { 5903 case InlineAsm::isOutput: 5904 // Indirect outputs just consume an argument. 5905 if (OpInfo.isIndirect) { 5906 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5907 break; 5908 } 5909 5910 // The return value of the call is this value. As such, there is no 5911 // corresponding argument. 5912 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5913 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5914 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5915 STy->getElementType(ResNo)); 5916 } else { 5917 assert(ResNo == 0 && "Asm only has one result!"); 5918 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5919 } 5920 ++ResNo; 5921 break; 5922 case InlineAsm::isInput: 5923 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5924 break; 5925 case InlineAsm::isClobber: 5926 // Nothing to do. 5927 break; 5928 } 5929 5930 // If this is an input or an indirect output, process the call argument. 5931 // BasicBlocks are labels, currently appearing only in asm's. 5932 if (OpInfo.CallOperandVal) { 5933 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5934 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5935 } else { 5936 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5937 } 5938 5939 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5940 DAG.getDataLayout()).getSimpleVT(); 5941 } 5942 5943 OpInfo.ConstraintVT = OpVT; 5944 5945 // Indirect operand accesses access memory. 5946 if (OpInfo.isIndirect) 5947 hasMemory = true; 5948 else { 5949 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5950 TargetLowering::ConstraintType 5951 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5952 if (CType == TargetLowering::C_Memory) { 5953 hasMemory = true; 5954 break; 5955 } 5956 } 5957 } 5958 } 5959 5960 SDValue Chain, Flag; 5961 5962 // We won't need to flush pending loads if this asm doesn't touch 5963 // memory and is nonvolatile. 5964 if (hasMemory || IA->hasSideEffects()) 5965 Chain = getRoot(); 5966 else 5967 Chain = DAG.getRoot(); 5968 5969 // Second pass over the constraints: compute which constraint option to use 5970 // and assign registers to constraints that want a specific physreg. 5971 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5972 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5973 5974 // If this is an output operand with a matching input operand, look up the 5975 // matching input. If their types mismatch, e.g. one is an integer, the 5976 // other is floating point, or their sizes are different, flag it as an 5977 // error. 5978 if (OpInfo.hasMatchingInput()) { 5979 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5980 5981 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5982 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5983 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5984 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5985 OpInfo.ConstraintVT); 5986 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5987 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5988 Input.ConstraintVT); 5989 if ((OpInfo.ConstraintVT.isInteger() != 5990 Input.ConstraintVT.isInteger()) || 5991 (MatchRC.second != InputRC.second)) { 5992 report_fatal_error("Unsupported asm: input constraint" 5993 " with a matching output constraint of" 5994 " incompatible type!"); 5995 } 5996 Input.ConstraintVT = OpInfo.ConstraintVT; 5997 } 5998 } 5999 6000 // Compute the constraint code and ConstraintType to use. 6001 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6002 6003 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6004 OpInfo.Type == InlineAsm::isClobber) 6005 continue; 6006 6007 // If this is a memory input, and if the operand is not indirect, do what we 6008 // need to to provide an address for the memory input. 6009 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6010 !OpInfo.isIndirect) { 6011 assert((OpInfo.isMultipleAlternative || 6012 (OpInfo.Type == InlineAsm::isInput)) && 6013 "Can only indirectify direct input operands!"); 6014 6015 // Memory operands really want the address of the value. If we don't have 6016 // an indirect input, put it in the constpool if we can, otherwise spill 6017 // it to a stack slot. 6018 // TODO: This isn't quite right. We need to handle these according to 6019 // the addressing mode that the constraint wants. Also, this may take 6020 // an additional register for the computation and we don't want that 6021 // either. 6022 6023 // If the operand is a float, integer, or vector constant, spill to a 6024 // constant pool entry to get its address. 6025 const Value *OpVal = OpInfo.CallOperandVal; 6026 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6027 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6028 OpInfo.CallOperand = DAG.getConstantPool( 6029 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6030 } else { 6031 // Otherwise, create a stack slot and emit a store to it before the 6032 // asm. 6033 Type *Ty = OpVal->getType(); 6034 auto &DL = DAG.getDataLayout(); 6035 uint64_t TySize = DL.getTypeAllocSize(Ty); 6036 unsigned Align = DL.getPrefTypeAlignment(Ty); 6037 MachineFunction &MF = DAG.getMachineFunction(); 6038 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6039 SDValue StackSlot = 6040 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6041 Chain = DAG.getStore(Chain, getCurSDLoc(), 6042 OpInfo.CallOperand, StackSlot, 6043 MachinePointerInfo::getFixedStack(SSFI), 6044 false, false, 0); 6045 OpInfo.CallOperand = StackSlot; 6046 } 6047 6048 // There is no longer a Value* corresponding to this operand. 6049 OpInfo.CallOperandVal = nullptr; 6050 6051 // It is now an indirect operand. 6052 OpInfo.isIndirect = true; 6053 } 6054 6055 // If this constraint is for a specific register, allocate it before 6056 // anything else. 6057 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6058 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6059 } 6060 6061 // Second pass - Loop over all of the operands, assigning virtual or physregs 6062 // to register class operands. 6063 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6064 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6065 6066 // C_Register operands have already been allocated, Other/Memory don't need 6067 // to be. 6068 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6069 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6070 } 6071 6072 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6073 std::vector<SDValue> AsmNodeOperands; 6074 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6075 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6076 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6077 6078 // If we have a !srcloc metadata node associated with it, we want to attach 6079 // this to the ultimately generated inline asm machineinstr. To do this, we 6080 // pass in the third operand as this (potentially null) inline asm MDNode. 6081 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6082 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6083 6084 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6085 // bits as operand 3. 6086 unsigned ExtraInfo = 0; 6087 if (IA->hasSideEffects()) 6088 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6089 if (IA->isAlignStack()) 6090 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6091 // Set the asm dialect. 6092 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6093 6094 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6095 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6096 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6097 6098 // Compute the constraint code and ConstraintType to use. 6099 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6100 6101 // Ideally, we would only check against memory constraints. However, the 6102 // meaning of an other constraint can be target-specific and we can't easily 6103 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6104 // for other constriants as well. 6105 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6106 OpInfo.ConstraintType == TargetLowering::C_Other) { 6107 if (OpInfo.Type == InlineAsm::isInput) 6108 ExtraInfo |= InlineAsm::Extra_MayLoad; 6109 else if (OpInfo.Type == InlineAsm::isOutput) 6110 ExtraInfo |= InlineAsm::Extra_MayStore; 6111 else if (OpInfo.Type == InlineAsm::isClobber) 6112 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6113 } 6114 } 6115 6116 AsmNodeOperands.push_back(DAG.getTargetConstant( 6117 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6118 6119 // Loop over all of the inputs, copying the operand values into the 6120 // appropriate registers and processing the output regs. 6121 RegsForValue RetValRegs; 6122 6123 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6124 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6125 6126 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6127 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6128 6129 switch (OpInfo.Type) { 6130 case InlineAsm::isOutput: { 6131 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6132 OpInfo.ConstraintType != TargetLowering::C_Register) { 6133 // Memory output, or 'other' output (e.g. 'X' constraint). 6134 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6135 6136 unsigned ConstraintID = 6137 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6138 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6139 "Failed to convert memory constraint code to constraint id."); 6140 6141 // Add information to the INLINEASM node to know about this output. 6142 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6143 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6144 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6145 MVT::i32)); 6146 AsmNodeOperands.push_back(OpInfo.CallOperand); 6147 break; 6148 } 6149 6150 // Otherwise, this is a register or register class output. 6151 6152 // Copy the output from the appropriate register. Find a register that 6153 // we can use. 6154 if (OpInfo.AssignedRegs.Regs.empty()) { 6155 LLVMContext &Ctx = *DAG.getContext(); 6156 Ctx.emitError(CS.getInstruction(), 6157 "couldn't allocate output register for constraint '" + 6158 Twine(OpInfo.ConstraintCode) + "'"); 6159 return; 6160 } 6161 6162 // If this is an indirect operand, store through the pointer after the 6163 // asm. 6164 if (OpInfo.isIndirect) { 6165 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6166 OpInfo.CallOperandVal)); 6167 } else { 6168 // This is the result value of the call. 6169 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6170 // Concatenate this output onto the outputs list. 6171 RetValRegs.append(OpInfo.AssignedRegs); 6172 } 6173 6174 // Add information to the INLINEASM node to know that this register is 6175 // set. 6176 OpInfo.AssignedRegs 6177 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6178 ? InlineAsm::Kind_RegDefEarlyClobber 6179 : InlineAsm::Kind_RegDef, 6180 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6181 break; 6182 } 6183 case InlineAsm::isInput: { 6184 SDValue InOperandVal = OpInfo.CallOperand; 6185 6186 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6187 // If this is required to match an output register we have already set, 6188 // just use its register. 6189 unsigned OperandNo = OpInfo.getMatchedOperand(); 6190 6191 // Scan until we find the definition we already emitted of this operand. 6192 // When we find it, create a RegsForValue operand. 6193 unsigned CurOp = InlineAsm::Op_FirstOperand; 6194 for (; OperandNo; --OperandNo) { 6195 // Advance to the next operand. 6196 unsigned OpFlag = 6197 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6198 assert((InlineAsm::isRegDefKind(OpFlag) || 6199 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6200 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6201 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6202 } 6203 6204 unsigned OpFlag = 6205 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6206 if (InlineAsm::isRegDefKind(OpFlag) || 6207 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6208 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6209 if (OpInfo.isIndirect) { 6210 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6211 LLVMContext &Ctx = *DAG.getContext(); 6212 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6213 " don't know how to handle tied " 6214 "indirect register inputs"); 6215 return; 6216 } 6217 6218 RegsForValue MatchedRegs; 6219 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6220 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6221 MatchedRegs.RegVTs.push_back(RegVT); 6222 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6223 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6224 i != e; ++i) { 6225 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6226 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6227 else { 6228 LLVMContext &Ctx = *DAG.getContext(); 6229 Ctx.emitError(CS.getInstruction(), 6230 "inline asm error: This value" 6231 " type register class is not natively supported!"); 6232 return; 6233 } 6234 } 6235 SDLoc dl = getCurSDLoc(); 6236 // Use the produced MatchedRegs object to 6237 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6238 Chain, &Flag, CS.getInstruction()); 6239 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6240 true, OpInfo.getMatchedOperand(), dl, 6241 DAG, AsmNodeOperands); 6242 break; 6243 } 6244 6245 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6246 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6247 "Unexpected number of operands"); 6248 // Add information to the INLINEASM node to know about this input. 6249 // See InlineAsm.h isUseOperandTiedToDef. 6250 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6251 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6252 OpInfo.getMatchedOperand()); 6253 AsmNodeOperands.push_back(DAG.getTargetConstant( 6254 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6255 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6256 break; 6257 } 6258 6259 // Treat indirect 'X' constraint as memory. 6260 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6261 OpInfo.isIndirect) 6262 OpInfo.ConstraintType = TargetLowering::C_Memory; 6263 6264 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6265 std::vector<SDValue> Ops; 6266 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6267 Ops, DAG); 6268 if (Ops.empty()) { 6269 LLVMContext &Ctx = *DAG.getContext(); 6270 Ctx.emitError(CS.getInstruction(), 6271 "invalid operand for inline asm constraint '" + 6272 Twine(OpInfo.ConstraintCode) + "'"); 6273 return; 6274 } 6275 6276 // Add information to the INLINEASM node to know about this input. 6277 unsigned ResOpType = 6278 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6279 AsmNodeOperands.push_back(DAG.getTargetConstant( 6280 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6281 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6282 break; 6283 } 6284 6285 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6286 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6287 assert(InOperandVal.getValueType() == 6288 TLI.getPointerTy(DAG.getDataLayout()) && 6289 "Memory operands expect pointer values"); 6290 6291 unsigned ConstraintID = 6292 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6293 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6294 "Failed to convert memory constraint code to constraint id."); 6295 6296 // Add information to the INLINEASM node to know about this input. 6297 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6298 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6299 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6300 getCurSDLoc(), 6301 MVT::i32)); 6302 AsmNodeOperands.push_back(InOperandVal); 6303 break; 6304 } 6305 6306 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6307 OpInfo.ConstraintType == TargetLowering::C_Register) && 6308 "Unknown constraint type!"); 6309 6310 // TODO: Support this. 6311 if (OpInfo.isIndirect) { 6312 LLVMContext &Ctx = *DAG.getContext(); 6313 Ctx.emitError(CS.getInstruction(), 6314 "Don't know how to handle indirect register inputs yet " 6315 "for constraint '" + 6316 Twine(OpInfo.ConstraintCode) + "'"); 6317 return; 6318 } 6319 6320 // Copy the input into the appropriate registers. 6321 if (OpInfo.AssignedRegs.Regs.empty()) { 6322 LLVMContext &Ctx = *DAG.getContext(); 6323 Ctx.emitError(CS.getInstruction(), 6324 "couldn't allocate input reg for constraint '" + 6325 Twine(OpInfo.ConstraintCode) + "'"); 6326 return; 6327 } 6328 6329 SDLoc dl = getCurSDLoc(); 6330 6331 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6332 Chain, &Flag, CS.getInstruction()); 6333 6334 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6335 dl, DAG, AsmNodeOperands); 6336 break; 6337 } 6338 case InlineAsm::isClobber: { 6339 // Add the clobbered value to the operand list, so that the register 6340 // allocator is aware that the physreg got clobbered. 6341 if (!OpInfo.AssignedRegs.Regs.empty()) 6342 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6343 false, 0, getCurSDLoc(), DAG, 6344 AsmNodeOperands); 6345 break; 6346 } 6347 } 6348 } 6349 6350 // Finish up input operands. Set the input chain and add the flag last. 6351 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6352 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6353 6354 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6355 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6356 Flag = Chain.getValue(1); 6357 6358 // If this asm returns a register value, copy the result from that register 6359 // and set it as the value of the call. 6360 if (!RetValRegs.Regs.empty()) { 6361 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6362 Chain, &Flag, CS.getInstruction()); 6363 6364 // FIXME: Why don't we do this for inline asms with MRVs? 6365 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6366 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6367 6368 // If any of the results of the inline asm is a vector, it may have the 6369 // wrong width/num elts. This can happen for register classes that can 6370 // contain multiple different value types. The preg or vreg allocated may 6371 // not have the same VT as was expected. Convert it to the right type 6372 // with bit_convert. 6373 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6374 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6375 ResultType, Val); 6376 6377 } else if (ResultType != Val.getValueType() && 6378 ResultType.isInteger() && Val.getValueType().isInteger()) { 6379 // If a result value was tied to an input value, the computed result may 6380 // have a wider width than the expected result. Extract the relevant 6381 // portion. 6382 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6383 } 6384 6385 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6386 } 6387 6388 setValue(CS.getInstruction(), Val); 6389 // Don't need to use this as a chain in this case. 6390 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6391 return; 6392 } 6393 6394 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6395 6396 // Process indirect outputs, first output all of the flagged copies out of 6397 // physregs. 6398 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6399 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6400 const Value *Ptr = IndirectStoresToEmit[i].second; 6401 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6402 Chain, &Flag, IA); 6403 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6404 } 6405 6406 // Emit the non-flagged stores from the physregs. 6407 SmallVector<SDValue, 8> OutChains; 6408 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6409 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6410 StoresToEmit[i].first, 6411 getValue(StoresToEmit[i].second), 6412 MachinePointerInfo(StoresToEmit[i].second), 6413 false, false, 0); 6414 OutChains.push_back(Val); 6415 } 6416 6417 if (!OutChains.empty()) 6418 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6419 6420 DAG.setRoot(Chain); 6421 } 6422 6423 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6424 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6425 MVT::Other, getRoot(), 6426 getValue(I.getArgOperand(0)), 6427 DAG.getSrcValue(I.getArgOperand(0)))); 6428 } 6429 6430 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6432 const DataLayout &DL = DAG.getDataLayout(); 6433 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6434 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6435 DAG.getSrcValue(I.getOperand(0)), 6436 DL.getABITypeAlignment(I.getType())); 6437 setValue(&I, V); 6438 DAG.setRoot(V.getValue(1)); 6439 } 6440 6441 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6442 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6443 MVT::Other, getRoot(), 6444 getValue(I.getArgOperand(0)), 6445 DAG.getSrcValue(I.getArgOperand(0)))); 6446 } 6447 6448 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6449 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6450 MVT::Other, getRoot(), 6451 getValue(I.getArgOperand(0)), 6452 getValue(I.getArgOperand(1)), 6453 DAG.getSrcValue(I.getArgOperand(0)), 6454 DAG.getSrcValue(I.getArgOperand(1)))); 6455 } 6456 6457 /// \brief Lower an argument list according to the target calling convention. 6458 /// 6459 /// \return A tuple of <return-value, token-chain> 6460 /// 6461 /// This is a helper for lowering intrinsics that follow a target calling 6462 /// convention or require stack pointer adjustment. Only a subset of the 6463 /// intrinsic's operands need to participate in the calling convention. 6464 std::pair<SDValue, SDValue> 6465 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6466 unsigned NumArgs, SDValue Callee, 6467 Type *ReturnTy, 6468 MachineBasicBlock *LandingPad, 6469 bool IsPatchPoint) { 6470 TargetLowering::ArgListTy Args; 6471 Args.reserve(NumArgs); 6472 6473 // Populate the argument list. 6474 // Attributes for args start at offset 1, after the return attribute. 6475 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6476 ArgI != ArgE; ++ArgI) { 6477 const Value *V = CS->getOperand(ArgI); 6478 6479 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6480 6481 TargetLowering::ArgListEntry Entry; 6482 Entry.Node = getValue(V); 6483 Entry.Ty = V->getType(); 6484 Entry.setAttributes(&CS, AttrI); 6485 Args.push_back(Entry); 6486 } 6487 6488 TargetLowering::CallLoweringInfo CLI(DAG); 6489 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6490 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6491 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6492 6493 return lowerInvokable(CLI, LandingPad); 6494 } 6495 6496 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6497 /// or patchpoint target node's operand list. 6498 /// 6499 /// Constants are converted to TargetConstants purely as an optimization to 6500 /// avoid constant materialization and register allocation. 6501 /// 6502 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6503 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6504 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6505 /// address materialization and register allocation, but may also be required 6506 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6507 /// alloca in the entry block, then the runtime may assume that the alloca's 6508 /// StackMap location can be read immediately after compilation and that the 6509 /// location is valid at any point during execution (this is similar to the 6510 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6511 /// only available in a register, then the runtime would need to trap when 6512 /// execution reaches the StackMap in order to read the alloca's location. 6513 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6514 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6515 SelectionDAGBuilder &Builder) { 6516 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6517 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6518 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6519 Ops.push_back( 6520 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6521 Ops.push_back( 6522 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6523 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6524 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6525 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6526 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6527 } else 6528 Ops.push_back(OpVal); 6529 } 6530 } 6531 6532 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6533 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6534 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6535 // [live variables...]) 6536 6537 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6538 6539 SDValue Chain, InFlag, Callee, NullPtr; 6540 SmallVector<SDValue, 32> Ops; 6541 6542 SDLoc DL = getCurSDLoc(); 6543 Callee = getValue(CI.getCalledValue()); 6544 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6545 6546 // The stackmap intrinsic only records the live variables (the arguemnts 6547 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6548 // intrinsic, this won't be lowered to a function call. This means we don't 6549 // have to worry about calling conventions and target specific lowering code. 6550 // Instead we perform the call lowering right here. 6551 // 6552 // chain, flag = CALLSEQ_START(chain, 0) 6553 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6554 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6555 // 6556 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6557 InFlag = Chain.getValue(1); 6558 6559 // Add the <id> and <numBytes> constants. 6560 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6561 Ops.push_back(DAG.getTargetConstant( 6562 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6563 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6564 Ops.push_back(DAG.getTargetConstant( 6565 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6566 MVT::i32)); 6567 6568 // Push live variables for the stack map. 6569 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6570 6571 // We are not pushing any register mask info here on the operands list, 6572 // because the stackmap doesn't clobber anything. 6573 6574 // Push the chain and the glue flag. 6575 Ops.push_back(Chain); 6576 Ops.push_back(InFlag); 6577 6578 // Create the STACKMAP node. 6579 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6580 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6581 Chain = SDValue(SM, 0); 6582 InFlag = Chain.getValue(1); 6583 6584 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6585 6586 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6587 6588 // Set the root to the target-lowered call chain. 6589 DAG.setRoot(Chain); 6590 6591 // Inform the Frame Information that we have a stackmap in this function. 6592 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6593 } 6594 6595 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6596 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6597 MachineBasicBlock *LandingPad) { 6598 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6599 // i32 <numBytes>, 6600 // i8* <target>, 6601 // i32 <numArgs>, 6602 // [Args...], 6603 // [live variables...]) 6604 6605 CallingConv::ID CC = CS.getCallingConv(); 6606 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6607 bool HasDef = !CS->getType()->isVoidTy(); 6608 SDLoc dl = getCurSDLoc(); 6609 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6610 6611 // Handle immediate and symbolic callees. 6612 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6613 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6614 /*isTarget=*/true); 6615 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6616 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6617 SDLoc(SymbolicCallee), 6618 SymbolicCallee->getValueType(0)); 6619 6620 // Get the real number of arguments participating in the call <numArgs> 6621 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6622 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6623 6624 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6625 // Intrinsics include all meta-operands up to but not including CC. 6626 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6627 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6628 "Not enough arguments provided to the patchpoint intrinsic"); 6629 6630 // For AnyRegCC the arguments are lowered later on manually. 6631 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6632 Type *ReturnTy = 6633 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6634 std::pair<SDValue, SDValue> Result = 6635 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6636 LandingPad, true); 6637 6638 SDNode *CallEnd = Result.second.getNode(); 6639 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6640 CallEnd = CallEnd->getOperand(0).getNode(); 6641 6642 /// Get a call instruction from the call sequence chain. 6643 /// Tail calls are not allowed. 6644 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6645 "Expected a callseq node."); 6646 SDNode *Call = CallEnd->getOperand(0).getNode(); 6647 bool HasGlue = Call->getGluedNode(); 6648 6649 // Replace the target specific call node with the patchable intrinsic. 6650 SmallVector<SDValue, 8> Ops; 6651 6652 // Add the <id> and <numBytes> constants. 6653 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6654 Ops.push_back(DAG.getTargetConstant( 6655 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6656 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6657 Ops.push_back(DAG.getTargetConstant( 6658 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6659 MVT::i32)); 6660 6661 // Add the callee. 6662 Ops.push_back(Callee); 6663 6664 // Adjust <numArgs> to account for any arguments that have been passed on the 6665 // stack instead. 6666 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6667 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6668 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6669 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6670 6671 // Add the calling convention 6672 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6673 6674 // Add the arguments we omitted previously. The register allocator should 6675 // place these in any free register. 6676 if (IsAnyRegCC) 6677 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6678 Ops.push_back(getValue(CS.getArgument(i))); 6679 6680 // Push the arguments from the call instruction up to the register mask. 6681 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6682 Ops.append(Call->op_begin() + 2, e); 6683 6684 // Push live variables for the stack map. 6685 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6686 6687 // Push the register mask info. 6688 if (HasGlue) 6689 Ops.push_back(*(Call->op_end()-2)); 6690 else 6691 Ops.push_back(*(Call->op_end()-1)); 6692 6693 // Push the chain (this is originally the first operand of the call, but 6694 // becomes now the last or second to last operand). 6695 Ops.push_back(*(Call->op_begin())); 6696 6697 // Push the glue flag (last operand). 6698 if (HasGlue) 6699 Ops.push_back(*(Call->op_end()-1)); 6700 6701 SDVTList NodeTys; 6702 if (IsAnyRegCC && HasDef) { 6703 // Create the return types based on the intrinsic definition 6704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6705 SmallVector<EVT, 3> ValueVTs; 6706 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6707 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6708 6709 // There is always a chain and a glue type at the end 6710 ValueVTs.push_back(MVT::Other); 6711 ValueVTs.push_back(MVT::Glue); 6712 NodeTys = DAG.getVTList(ValueVTs); 6713 } else 6714 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6715 6716 // Replace the target specific call node with a PATCHPOINT node. 6717 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6718 dl, NodeTys, Ops); 6719 6720 // Update the NodeMap. 6721 if (HasDef) { 6722 if (IsAnyRegCC) 6723 setValue(CS.getInstruction(), SDValue(MN, 0)); 6724 else 6725 setValue(CS.getInstruction(), Result.first); 6726 } 6727 6728 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6729 // call sequence. Furthermore the location of the chain and glue can change 6730 // when the AnyReg calling convention is used and the intrinsic returns a 6731 // value. 6732 if (IsAnyRegCC && HasDef) { 6733 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6734 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6735 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6736 } else 6737 DAG.ReplaceAllUsesWith(Call, MN); 6738 DAG.DeleteNode(Call); 6739 6740 // Inform the Frame Information that we have a patchpoint in this function. 6741 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6742 } 6743 6744 /// Returns an AttributeSet representing the attributes applied to the return 6745 /// value of the given call. 6746 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6747 SmallVector<Attribute::AttrKind, 2> Attrs; 6748 if (CLI.RetSExt) 6749 Attrs.push_back(Attribute::SExt); 6750 if (CLI.RetZExt) 6751 Attrs.push_back(Attribute::ZExt); 6752 if (CLI.IsInReg) 6753 Attrs.push_back(Attribute::InReg); 6754 6755 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6756 Attrs); 6757 } 6758 6759 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6760 /// implementation, which just calls LowerCall. 6761 /// FIXME: When all targets are 6762 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6763 std::pair<SDValue, SDValue> 6764 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6765 // Handle the incoming return values from the call. 6766 CLI.Ins.clear(); 6767 Type *OrigRetTy = CLI.RetTy; 6768 SmallVector<EVT, 4> RetTys; 6769 SmallVector<uint64_t, 4> Offsets; 6770 auto &DL = CLI.DAG.getDataLayout(); 6771 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6772 6773 SmallVector<ISD::OutputArg, 4> Outs; 6774 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6775 6776 bool CanLowerReturn = 6777 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6778 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6779 6780 SDValue DemoteStackSlot; 6781 int DemoteStackIdx = -100; 6782 if (!CanLowerReturn) { 6783 // FIXME: equivalent assert? 6784 // assert(!CS.hasInAllocaArgument() && 6785 // "sret demotion is incompatible with inalloca"); 6786 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6787 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6788 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6789 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6790 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6791 6792 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6793 ArgListEntry Entry; 6794 Entry.Node = DemoteStackSlot; 6795 Entry.Ty = StackSlotPtrType; 6796 Entry.isSExt = false; 6797 Entry.isZExt = false; 6798 Entry.isInReg = false; 6799 Entry.isSRet = true; 6800 Entry.isNest = false; 6801 Entry.isByVal = false; 6802 Entry.isReturned = false; 6803 Entry.Alignment = Align; 6804 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6805 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6806 6807 // sret demotion isn't compatible with tail-calls, since the sret argument 6808 // points into the callers stack frame. 6809 CLI.IsTailCall = false; 6810 } else { 6811 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6812 EVT VT = RetTys[I]; 6813 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6814 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6815 for (unsigned i = 0; i != NumRegs; ++i) { 6816 ISD::InputArg MyFlags; 6817 MyFlags.VT = RegisterVT; 6818 MyFlags.ArgVT = VT; 6819 MyFlags.Used = CLI.IsReturnValueUsed; 6820 if (CLI.RetSExt) 6821 MyFlags.Flags.setSExt(); 6822 if (CLI.RetZExt) 6823 MyFlags.Flags.setZExt(); 6824 if (CLI.IsInReg) 6825 MyFlags.Flags.setInReg(); 6826 CLI.Ins.push_back(MyFlags); 6827 } 6828 } 6829 } 6830 6831 // Handle all of the outgoing arguments. 6832 CLI.Outs.clear(); 6833 CLI.OutVals.clear(); 6834 ArgListTy &Args = CLI.getArgs(); 6835 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6836 SmallVector<EVT, 4> ValueVTs; 6837 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6838 Type *FinalType = Args[i].Ty; 6839 if (Args[i].isByVal) 6840 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6841 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6842 FinalType, CLI.CallConv, CLI.IsVarArg); 6843 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6844 ++Value) { 6845 EVT VT = ValueVTs[Value]; 6846 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6847 SDValue Op = SDValue(Args[i].Node.getNode(), 6848 Args[i].Node.getResNo() + Value); 6849 ISD::ArgFlagsTy Flags; 6850 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6851 6852 if (Args[i].isZExt) 6853 Flags.setZExt(); 6854 if (Args[i].isSExt) 6855 Flags.setSExt(); 6856 if (Args[i].isInReg) 6857 Flags.setInReg(); 6858 if (Args[i].isSRet) 6859 Flags.setSRet(); 6860 if (Args[i].isByVal) 6861 Flags.setByVal(); 6862 if (Args[i].isInAlloca) { 6863 Flags.setInAlloca(); 6864 // Set the byval flag for CCAssignFn callbacks that don't know about 6865 // inalloca. This way we can know how many bytes we should've allocated 6866 // and how many bytes a callee cleanup function will pop. If we port 6867 // inalloca to more targets, we'll have to add custom inalloca handling 6868 // in the various CC lowering callbacks. 6869 Flags.setByVal(); 6870 } 6871 if (Args[i].isByVal || Args[i].isInAlloca) { 6872 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6873 Type *ElementTy = Ty->getElementType(); 6874 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6875 // For ByVal, alignment should come from FE. BE will guess if this 6876 // info is not there but there are cases it cannot get right. 6877 unsigned FrameAlign; 6878 if (Args[i].Alignment) 6879 FrameAlign = Args[i].Alignment; 6880 else 6881 FrameAlign = getByValTypeAlignment(ElementTy); 6882 Flags.setByValAlign(FrameAlign); 6883 } 6884 if (Args[i].isNest) 6885 Flags.setNest(); 6886 if (NeedsRegBlock) 6887 Flags.setInConsecutiveRegs(); 6888 Flags.setOrigAlign(OriginalAlignment); 6889 6890 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6891 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6892 SmallVector<SDValue, 4> Parts(NumParts); 6893 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6894 6895 if (Args[i].isSExt) 6896 ExtendKind = ISD::SIGN_EXTEND; 6897 else if (Args[i].isZExt) 6898 ExtendKind = ISD::ZERO_EXTEND; 6899 6900 // Conservatively only handle 'returned' on non-vectors for now 6901 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6902 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6903 "unexpected use of 'returned'"); 6904 // Before passing 'returned' to the target lowering code, ensure that 6905 // either the register MVT and the actual EVT are the same size or that 6906 // the return value and argument are extended in the same way; in these 6907 // cases it's safe to pass the argument register value unchanged as the 6908 // return register value (although it's at the target's option whether 6909 // to do so) 6910 // TODO: allow code generation to take advantage of partially preserved 6911 // registers rather than clobbering the entire register when the 6912 // parameter extension method is not compatible with the return 6913 // extension method 6914 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6915 (ExtendKind != ISD::ANY_EXTEND && 6916 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6917 Flags.setReturned(); 6918 } 6919 6920 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6921 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6922 6923 for (unsigned j = 0; j != NumParts; ++j) { 6924 // if it isn't first piece, alignment must be 1 6925 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6926 i < CLI.NumFixedArgs, 6927 i, j*Parts[j].getValueType().getStoreSize()); 6928 if (NumParts > 1 && j == 0) 6929 MyFlags.Flags.setSplit(); 6930 else if (j != 0) 6931 MyFlags.Flags.setOrigAlign(1); 6932 6933 CLI.Outs.push_back(MyFlags); 6934 CLI.OutVals.push_back(Parts[j]); 6935 } 6936 6937 if (NeedsRegBlock && Value == NumValues - 1) 6938 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6939 } 6940 } 6941 6942 SmallVector<SDValue, 4> InVals; 6943 CLI.Chain = LowerCall(CLI, InVals); 6944 6945 // Verify that the target's LowerCall behaved as expected. 6946 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6947 "LowerCall didn't return a valid chain!"); 6948 assert((!CLI.IsTailCall || InVals.empty()) && 6949 "LowerCall emitted a return value for a tail call!"); 6950 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6951 "LowerCall didn't emit the correct number of values!"); 6952 6953 // For a tail call, the return value is merely live-out and there aren't 6954 // any nodes in the DAG representing it. Return a special value to 6955 // indicate that a tail call has been emitted and no more Instructions 6956 // should be processed in the current block. 6957 if (CLI.IsTailCall) { 6958 CLI.DAG.setRoot(CLI.Chain); 6959 return std::make_pair(SDValue(), SDValue()); 6960 } 6961 6962 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6963 assert(InVals[i].getNode() && 6964 "LowerCall emitted a null value!"); 6965 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6966 "LowerCall emitted a value with the wrong type!"); 6967 }); 6968 6969 SmallVector<SDValue, 4> ReturnValues; 6970 if (!CanLowerReturn) { 6971 // The instruction result is the result of loading from the 6972 // hidden sret parameter. 6973 SmallVector<EVT, 1> PVTs; 6974 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6975 6976 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6977 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6978 EVT PtrVT = PVTs[0]; 6979 6980 unsigned NumValues = RetTys.size(); 6981 ReturnValues.resize(NumValues); 6982 SmallVector<SDValue, 4> Chains(NumValues); 6983 6984 for (unsigned i = 0; i < NumValues; ++i) { 6985 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6986 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6987 PtrVT)); 6988 SDValue L = CLI.DAG.getLoad( 6989 RetTys[i], CLI.DL, CLI.Chain, Add, 6990 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6991 false, false, 1); 6992 ReturnValues[i] = L; 6993 Chains[i] = L.getValue(1); 6994 } 6995 6996 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6997 } else { 6998 // Collect the legal value parts into potentially illegal values 6999 // that correspond to the original function's return values. 7000 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7001 if (CLI.RetSExt) 7002 AssertOp = ISD::AssertSext; 7003 else if (CLI.RetZExt) 7004 AssertOp = ISD::AssertZext; 7005 unsigned CurReg = 0; 7006 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7007 EVT VT = RetTys[I]; 7008 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7009 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7010 7011 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7012 NumRegs, RegisterVT, VT, nullptr, 7013 AssertOp)); 7014 CurReg += NumRegs; 7015 } 7016 7017 // For a function returning void, there is no return value. We can't create 7018 // such a node, so we just return a null return value in that case. In 7019 // that case, nothing will actually look at the value. 7020 if (ReturnValues.empty()) 7021 return std::make_pair(SDValue(), CLI.Chain); 7022 } 7023 7024 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7025 CLI.DAG.getVTList(RetTys), ReturnValues); 7026 return std::make_pair(Res, CLI.Chain); 7027 } 7028 7029 void TargetLowering::LowerOperationWrapper(SDNode *N, 7030 SmallVectorImpl<SDValue> &Results, 7031 SelectionDAG &DAG) const { 7032 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7033 if (Res.getNode()) 7034 Results.push_back(Res); 7035 } 7036 7037 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7038 llvm_unreachable("LowerOperation not implemented for this target!"); 7039 } 7040 7041 void 7042 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7043 SDValue Op = getNonRegisterValue(V); 7044 assert((Op.getOpcode() != ISD::CopyFromReg || 7045 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7046 "Copy from a reg to the same reg!"); 7047 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7048 7049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7050 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7051 V->getType()); 7052 SDValue Chain = DAG.getEntryNode(); 7053 7054 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7055 FuncInfo.PreferredExtendType.end()) 7056 ? ISD::ANY_EXTEND 7057 : FuncInfo.PreferredExtendType[V]; 7058 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7059 PendingExports.push_back(Chain); 7060 } 7061 7062 #include "llvm/CodeGen/SelectionDAGISel.h" 7063 7064 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7065 /// entry block, return true. This includes arguments used by switches, since 7066 /// the switch may expand into multiple basic blocks. 7067 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7068 // With FastISel active, we may be splitting blocks, so force creation 7069 // of virtual registers for all non-dead arguments. 7070 if (FastISel) 7071 return A->use_empty(); 7072 7073 const BasicBlock *Entry = A->getParent()->begin(); 7074 for (const User *U : A->users()) 7075 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7076 return false; // Use not in entry block. 7077 7078 return true; 7079 } 7080 7081 void SelectionDAGISel::LowerArguments(const Function &F) { 7082 SelectionDAG &DAG = SDB->DAG; 7083 SDLoc dl = SDB->getCurSDLoc(); 7084 const DataLayout &DL = DAG.getDataLayout(); 7085 SmallVector<ISD::InputArg, 16> Ins; 7086 7087 if (!FuncInfo->CanLowerReturn) { 7088 // Put in an sret pointer parameter before all the other parameters. 7089 SmallVector<EVT, 1> ValueVTs; 7090 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7091 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7092 7093 // NOTE: Assuming that a pointer will never break down to more than one VT 7094 // or one register. 7095 ISD::ArgFlagsTy Flags; 7096 Flags.setSRet(); 7097 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7098 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7099 ISD::InputArg::NoArgIndex, 0); 7100 Ins.push_back(RetArg); 7101 } 7102 7103 // Set up the incoming argument description vector. 7104 unsigned Idx = 1; 7105 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7106 I != E; ++I, ++Idx) { 7107 SmallVector<EVT, 4> ValueVTs; 7108 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7109 bool isArgValueUsed = !I->use_empty(); 7110 unsigned PartBase = 0; 7111 Type *FinalType = I->getType(); 7112 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7113 FinalType = cast<PointerType>(FinalType)->getElementType(); 7114 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7115 FinalType, F.getCallingConv(), F.isVarArg()); 7116 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7117 Value != NumValues; ++Value) { 7118 EVT VT = ValueVTs[Value]; 7119 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7120 ISD::ArgFlagsTy Flags; 7121 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7122 7123 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7124 Flags.setZExt(); 7125 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7126 Flags.setSExt(); 7127 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7128 Flags.setInReg(); 7129 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7130 Flags.setSRet(); 7131 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7132 Flags.setByVal(); 7133 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7134 Flags.setInAlloca(); 7135 // Set the byval flag for CCAssignFn callbacks that don't know about 7136 // inalloca. This way we can know how many bytes we should've allocated 7137 // and how many bytes a callee cleanup function will pop. If we port 7138 // inalloca to more targets, we'll have to add custom inalloca handling 7139 // in the various CC lowering callbacks. 7140 Flags.setByVal(); 7141 } 7142 if (Flags.isByVal() || Flags.isInAlloca()) { 7143 PointerType *Ty = cast<PointerType>(I->getType()); 7144 Type *ElementTy = Ty->getElementType(); 7145 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7146 // For ByVal, alignment should be passed from FE. BE will guess if 7147 // this info is not there but there are cases it cannot get right. 7148 unsigned FrameAlign; 7149 if (F.getParamAlignment(Idx)) 7150 FrameAlign = F.getParamAlignment(Idx); 7151 else 7152 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7153 Flags.setByValAlign(FrameAlign); 7154 } 7155 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7156 Flags.setNest(); 7157 if (NeedsRegBlock) 7158 Flags.setInConsecutiveRegs(); 7159 Flags.setOrigAlign(OriginalAlignment); 7160 7161 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7162 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7163 for (unsigned i = 0; i != NumRegs; ++i) { 7164 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7165 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7166 if (NumRegs > 1 && i == 0) 7167 MyFlags.Flags.setSplit(); 7168 // if it isn't first piece, alignment must be 1 7169 else if (i > 0) 7170 MyFlags.Flags.setOrigAlign(1); 7171 Ins.push_back(MyFlags); 7172 } 7173 if (NeedsRegBlock && Value == NumValues - 1) 7174 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7175 PartBase += VT.getStoreSize(); 7176 } 7177 } 7178 7179 // Call the target to set up the argument values. 7180 SmallVector<SDValue, 8> InVals; 7181 SDValue NewRoot = TLI->LowerFormalArguments( 7182 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7183 7184 // Verify that the target's LowerFormalArguments behaved as expected. 7185 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7186 "LowerFormalArguments didn't return a valid chain!"); 7187 assert(InVals.size() == Ins.size() && 7188 "LowerFormalArguments didn't emit the correct number of values!"); 7189 DEBUG({ 7190 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7191 assert(InVals[i].getNode() && 7192 "LowerFormalArguments emitted a null value!"); 7193 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7194 "LowerFormalArguments emitted a value with the wrong type!"); 7195 } 7196 }); 7197 7198 // Update the DAG with the new chain value resulting from argument lowering. 7199 DAG.setRoot(NewRoot); 7200 7201 // Set up the argument values. 7202 unsigned i = 0; 7203 Idx = 1; 7204 if (!FuncInfo->CanLowerReturn) { 7205 // Create a virtual register for the sret pointer, and put in a copy 7206 // from the sret argument into it. 7207 SmallVector<EVT, 1> ValueVTs; 7208 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7209 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7210 MVT VT = ValueVTs[0].getSimpleVT(); 7211 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7212 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7213 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7214 RegVT, VT, nullptr, AssertOp); 7215 7216 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7217 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7218 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7219 FuncInfo->DemoteRegister = SRetReg; 7220 NewRoot = 7221 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7222 DAG.setRoot(NewRoot); 7223 7224 // i indexes lowered arguments. Bump it past the hidden sret argument. 7225 // Idx indexes LLVM arguments. Don't touch it. 7226 ++i; 7227 } 7228 7229 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7230 ++I, ++Idx) { 7231 SmallVector<SDValue, 4> ArgValues; 7232 SmallVector<EVT, 4> ValueVTs; 7233 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7234 unsigned NumValues = ValueVTs.size(); 7235 7236 // If this argument is unused then remember its value. It is used to generate 7237 // debugging information. 7238 if (I->use_empty() && NumValues) { 7239 SDB->setUnusedArgValue(I, InVals[i]); 7240 7241 // Also remember any frame index for use in FastISel. 7242 if (FrameIndexSDNode *FI = 7243 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7244 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7245 } 7246 7247 for (unsigned Val = 0; Val != NumValues; ++Val) { 7248 EVT VT = ValueVTs[Val]; 7249 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7250 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7251 7252 if (!I->use_empty()) { 7253 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7254 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7255 AssertOp = ISD::AssertSext; 7256 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7257 AssertOp = ISD::AssertZext; 7258 7259 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7260 NumParts, PartVT, VT, 7261 nullptr, AssertOp)); 7262 } 7263 7264 i += NumParts; 7265 } 7266 7267 // We don't need to do anything else for unused arguments. 7268 if (ArgValues.empty()) 7269 continue; 7270 7271 // Note down frame index. 7272 if (FrameIndexSDNode *FI = 7273 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7274 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7275 7276 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7277 SDB->getCurSDLoc()); 7278 7279 SDB->setValue(I, Res); 7280 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7281 if (LoadSDNode *LNode = 7282 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7283 if (FrameIndexSDNode *FI = 7284 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7285 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7286 } 7287 7288 // If this argument is live outside of the entry block, insert a copy from 7289 // wherever we got it to the vreg that other BB's will reference it as. 7290 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7291 // If we can, though, try to skip creating an unnecessary vreg. 7292 // FIXME: This isn't very clean... it would be nice to make this more 7293 // general. It's also subtly incompatible with the hacks FastISel 7294 // uses with vregs. 7295 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7296 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7297 FuncInfo->ValueMap[I] = Reg; 7298 continue; 7299 } 7300 } 7301 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7302 FuncInfo->InitializeRegForValue(I); 7303 SDB->CopyToExportRegsIfNeeded(I); 7304 } 7305 } 7306 7307 assert(i == InVals.size() && "Argument register count mismatch!"); 7308 7309 // Finally, if the target has anything special to do, allow it to do so. 7310 EmitFunctionEntryCode(); 7311 } 7312 7313 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7314 /// ensure constants are generated when needed. Remember the virtual registers 7315 /// that need to be added to the Machine PHI nodes as input. We cannot just 7316 /// directly add them, because expansion might result in multiple MBB's for one 7317 /// BB. As such, the start of the BB might correspond to a different MBB than 7318 /// the end. 7319 /// 7320 void 7321 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7322 const TerminatorInst *TI = LLVMBB->getTerminator(); 7323 7324 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7325 7326 // Check PHI nodes in successors that expect a value to be available from this 7327 // block. 7328 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7329 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7330 if (!isa<PHINode>(SuccBB->begin())) continue; 7331 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7332 7333 // If this terminator has multiple identical successors (common for 7334 // switches), only handle each succ once. 7335 if (!SuccsHandled.insert(SuccMBB).second) 7336 continue; 7337 7338 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7339 7340 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7341 // nodes and Machine PHI nodes, but the incoming operands have not been 7342 // emitted yet. 7343 for (BasicBlock::const_iterator I = SuccBB->begin(); 7344 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7345 // Ignore dead phi's. 7346 if (PN->use_empty()) continue; 7347 7348 // Skip empty types 7349 if (PN->getType()->isEmptyTy()) 7350 continue; 7351 7352 unsigned Reg; 7353 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7354 7355 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7356 unsigned &RegOut = ConstantsOut[C]; 7357 if (RegOut == 0) { 7358 RegOut = FuncInfo.CreateRegs(C->getType()); 7359 CopyValueToVirtualRegister(C, RegOut); 7360 } 7361 Reg = RegOut; 7362 } else { 7363 DenseMap<const Value *, unsigned>::iterator I = 7364 FuncInfo.ValueMap.find(PHIOp); 7365 if (I != FuncInfo.ValueMap.end()) 7366 Reg = I->second; 7367 else { 7368 assert(isa<AllocaInst>(PHIOp) && 7369 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7370 "Didn't codegen value into a register!??"); 7371 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7372 CopyValueToVirtualRegister(PHIOp, Reg); 7373 } 7374 } 7375 7376 // Remember that this register needs to added to the machine PHI node as 7377 // the input for this MBB. 7378 SmallVector<EVT, 4> ValueVTs; 7379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7380 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7381 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7382 EVT VT = ValueVTs[vti]; 7383 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7384 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7385 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7386 Reg += NumRegisters; 7387 } 7388 } 7389 } 7390 7391 ConstantsOut.clear(); 7392 } 7393 7394 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7395 /// is 0. 7396 MachineBasicBlock * 7397 SelectionDAGBuilder::StackProtectorDescriptor:: 7398 AddSuccessorMBB(const BasicBlock *BB, 7399 MachineBasicBlock *ParentMBB, 7400 bool IsLikely, 7401 MachineBasicBlock *SuccMBB) { 7402 // If SuccBB has not been created yet, create it. 7403 if (!SuccMBB) { 7404 MachineFunction *MF = ParentMBB->getParent(); 7405 MachineFunction::iterator BBI = ParentMBB; 7406 SuccMBB = MF->CreateMachineBasicBlock(BB); 7407 MF->insert(++BBI, SuccMBB); 7408 } 7409 // Add it as a successor of ParentMBB. 7410 ParentMBB->addSuccessor( 7411 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7412 return SuccMBB; 7413 } 7414 7415 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7416 MachineFunction::iterator I = MBB; 7417 if (++I == FuncInfo.MF->end()) 7418 return nullptr; 7419 return I; 7420 } 7421 7422 /// During lowering new call nodes can be created (such as memset, etc.). 7423 /// Those will become new roots of the current DAG, but complications arise 7424 /// when they are tail calls. In such cases, the call lowering will update 7425 /// the root, but the builder still needs to know that a tail call has been 7426 /// lowered in order to avoid generating an additional return. 7427 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7428 // If the node is null, we do have a tail call. 7429 if (MaybeTC.getNode() != nullptr) 7430 DAG.setRoot(MaybeTC); 7431 else 7432 HasTailCall = true; 7433 } 7434 7435 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7436 unsigned *TotalCases, unsigned First, 7437 unsigned Last) { 7438 assert(Last >= First); 7439 assert(TotalCases[Last] >= TotalCases[First]); 7440 7441 APInt LowCase = Clusters[First].Low->getValue(); 7442 APInt HighCase = Clusters[Last].High->getValue(); 7443 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7444 7445 // FIXME: A range of consecutive cases has 100% density, but only requires one 7446 // comparison to lower. We should discriminate against such consecutive ranges 7447 // in jump tables. 7448 7449 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7450 uint64_t Range = Diff + 1; 7451 7452 uint64_t NumCases = 7453 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7454 7455 assert(NumCases < UINT64_MAX / 100); 7456 assert(Range >= NumCases); 7457 7458 return NumCases * 100 >= Range * MinJumpTableDensity; 7459 } 7460 7461 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7462 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7463 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7464 } 7465 7466 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7467 unsigned First, unsigned Last, 7468 const SwitchInst *SI, 7469 MachineBasicBlock *DefaultMBB, 7470 CaseCluster &JTCluster) { 7471 assert(First <= Last); 7472 7473 uint32_t Weight = 0; 7474 unsigned NumCmps = 0; 7475 std::vector<MachineBasicBlock*> Table; 7476 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7477 for (unsigned I = First; I <= Last; ++I) { 7478 assert(Clusters[I].Kind == CC_Range); 7479 Weight += Clusters[I].Weight; 7480 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7481 APInt Low = Clusters[I].Low->getValue(); 7482 APInt High = Clusters[I].High->getValue(); 7483 NumCmps += (Low == High) ? 1 : 2; 7484 if (I != First) { 7485 // Fill the gap between this and the previous cluster. 7486 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7487 assert(PreviousHigh.slt(Low)); 7488 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7489 for (uint64_t J = 0; J < Gap; J++) 7490 Table.push_back(DefaultMBB); 7491 } 7492 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7493 for (uint64_t J = 0; J < ClusterSize; ++J) 7494 Table.push_back(Clusters[I].MBB); 7495 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7496 } 7497 7498 unsigned NumDests = JTWeights.size(); 7499 if (isSuitableForBitTests(NumDests, NumCmps, 7500 Clusters[First].Low->getValue(), 7501 Clusters[Last].High->getValue())) { 7502 // Clusters[First..Last] should be lowered as bit tests instead. 7503 return false; 7504 } 7505 7506 // Create the MBB that will load from and jump through the table. 7507 // Note: We create it here, but it's not inserted into the function yet. 7508 MachineFunction *CurMF = FuncInfo.MF; 7509 MachineBasicBlock *JumpTableMBB = 7510 CurMF->CreateMachineBasicBlock(SI->getParent()); 7511 7512 // Add successors. Note: use table order for determinism. 7513 SmallPtrSet<MachineBasicBlock *, 8> Done; 7514 for (MachineBasicBlock *Succ : Table) { 7515 if (Done.count(Succ)) 7516 continue; 7517 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7518 Done.insert(Succ); 7519 } 7520 7521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7522 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7523 ->createJumpTableIndex(Table); 7524 7525 // Set up the jump table info. 7526 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7527 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7528 Clusters[Last].High->getValue(), SI->getCondition(), 7529 nullptr, false); 7530 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7531 7532 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7533 JTCases.size() - 1, Weight); 7534 return true; 7535 } 7536 7537 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7538 const SwitchInst *SI, 7539 MachineBasicBlock *DefaultMBB) { 7540 #ifndef NDEBUG 7541 // Clusters must be non-empty, sorted, and only contain Range clusters. 7542 assert(!Clusters.empty()); 7543 for (CaseCluster &C : Clusters) 7544 assert(C.Kind == CC_Range); 7545 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7546 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7547 #endif 7548 7549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7550 if (!areJTsAllowed(TLI)) 7551 return; 7552 7553 const int64_t N = Clusters.size(); 7554 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7555 7556 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7557 SmallVector<unsigned, 8> TotalCases(N); 7558 7559 for (unsigned i = 0; i < N; ++i) { 7560 APInt Hi = Clusters[i].High->getValue(); 7561 APInt Lo = Clusters[i].Low->getValue(); 7562 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7563 if (i != 0) 7564 TotalCases[i] += TotalCases[i - 1]; 7565 } 7566 7567 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7568 // Cheap case: the whole range might be suitable for jump table. 7569 CaseCluster JTCluster; 7570 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7571 Clusters[0] = JTCluster; 7572 Clusters.resize(1); 7573 return; 7574 } 7575 } 7576 7577 // The algorithm below is not suitable for -O0. 7578 if (TM.getOptLevel() == CodeGenOpt::None) 7579 return; 7580 7581 // Split Clusters into minimum number of dense partitions. The algorithm uses 7582 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7583 // for the Case Statement'" (1994), but builds the MinPartitions array in 7584 // reverse order to make it easier to reconstruct the partitions in ascending 7585 // order. In the choice between two optimal partitionings, it picks the one 7586 // which yields more jump tables. 7587 7588 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7589 SmallVector<unsigned, 8> MinPartitions(N); 7590 // LastElement[i] is the last element of the partition starting at i. 7591 SmallVector<unsigned, 8> LastElement(N); 7592 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7593 SmallVector<unsigned, 8> NumTables(N); 7594 7595 // Base case: There is only one way to partition Clusters[N-1]. 7596 MinPartitions[N - 1] = 1; 7597 LastElement[N - 1] = N - 1; 7598 assert(MinJumpTableSize > 1); 7599 NumTables[N - 1] = 0; 7600 7601 // Note: loop indexes are signed to avoid underflow. 7602 for (int64_t i = N - 2; i >= 0; i--) { 7603 // Find optimal partitioning of Clusters[i..N-1]. 7604 // Baseline: Put Clusters[i] into a partition on its own. 7605 MinPartitions[i] = MinPartitions[i + 1] + 1; 7606 LastElement[i] = i; 7607 NumTables[i] = NumTables[i + 1]; 7608 7609 // Search for a solution that results in fewer partitions. 7610 for (int64_t j = N - 1; j > i; j--) { 7611 // Try building a partition from Clusters[i..j]. 7612 if (isDense(Clusters, &TotalCases[0], i, j)) { 7613 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7614 bool IsTable = j - i + 1 >= MinJumpTableSize; 7615 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7616 7617 // If this j leads to fewer partitions, or same number of partitions 7618 // with more lookup tables, it is a better partitioning. 7619 if (NumPartitions < MinPartitions[i] || 7620 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7621 MinPartitions[i] = NumPartitions; 7622 LastElement[i] = j; 7623 NumTables[i] = Tables; 7624 } 7625 } 7626 } 7627 } 7628 7629 // Iterate over the partitions, replacing some with jump tables in-place. 7630 unsigned DstIndex = 0; 7631 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7632 Last = LastElement[First]; 7633 assert(Last >= First); 7634 assert(DstIndex <= First); 7635 unsigned NumClusters = Last - First + 1; 7636 7637 CaseCluster JTCluster; 7638 if (NumClusters >= MinJumpTableSize && 7639 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7640 Clusters[DstIndex++] = JTCluster; 7641 } else { 7642 for (unsigned I = First; I <= Last; ++I) 7643 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7644 } 7645 } 7646 Clusters.resize(DstIndex); 7647 } 7648 7649 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7650 // FIXME: Using the pointer type doesn't seem ideal. 7651 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7652 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7653 return Range <= BW; 7654 } 7655 7656 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7657 unsigned NumCmps, 7658 const APInt &Low, 7659 const APInt &High) { 7660 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7661 // range of cases both require only one branch to lower. Just looking at the 7662 // number of clusters and destinations should be enough to decide whether to 7663 // build bit tests. 7664 7665 // To lower a range with bit tests, the range must fit the bitwidth of a 7666 // machine word. 7667 if (!rangeFitsInWord(Low, High)) 7668 return false; 7669 7670 // Decide whether it's profitable to lower this range with bit tests. Each 7671 // destination requires a bit test and branch, and there is an overall range 7672 // check branch. For a small number of clusters, separate comparisons might be 7673 // cheaper, and for many destinations, splitting the range might be better. 7674 return (NumDests == 1 && NumCmps >= 3) || 7675 (NumDests == 2 && NumCmps >= 5) || 7676 (NumDests == 3 && NumCmps >= 6); 7677 } 7678 7679 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7680 unsigned First, unsigned Last, 7681 const SwitchInst *SI, 7682 CaseCluster &BTCluster) { 7683 assert(First <= Last); 7684 if (First == Last) 7685 return false; 7686 7687 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7688 unsigned NumCmps = 0; 7689 for (int64_t I = First; I <= Last; ++I) { 7690 assert(Clusters[I].Kind == CC_Range); 7691 Dests.set(Clusters[I].MBB->getNumber()); 7692 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7693 } 7694 unsigned NumDests = Dests.count(); 7695 7696 APInt Low = Clusters[First].Low->getValue(); 7697 APInt High = Clusters[Last].High->getValue(); 7698 assert(Low.slt(High)); 7699 7700 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7701 return false; 7702 7703 APInt LowBound; 7704 APInt CmpRange; 7705 7706 const int BitWidth = DAG.getTargetLoweringInfo() 7707 .getPointerTy(DAG.getDataLayout()) 7708 .getSizeInBits(); 7709 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7710 7711 if (Low.isNonNegative() && High.slt(BitWidth)) { 7712 // Optimize the case where all the case values fit in a 7713 // word without having to subtract minValue. In this case, 7714 // we can optimize away the subtraction. 7715 LowBound = APInt::getNullValue(Low.getBitWidth()); 7716 CmpRange = High; 7717 } else { 7718 LowBound = Low; 7719 CmpRange = High - Low; 7720 } 7721 7722 CaseBitsVector CBV; 7723 uint32_t TotalWeight = 0; 7724 for (unsigned i = First; i <= Last; ++i) { 7725 // Find the CaseBits for this destination. 7726 unsigned j; 7727 for (j = 0; j < CBV.size(); ++j) 7728 if (CBV[j].BB == Clusters[i].MBB) 7729 break; 7730 if (j == CBV.size()) 7731 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7732 CaseBits *CB = &CBV[j]; 7733 7734 // Update Mask, Bits and ExtraWeight. 7735 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7736 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7737 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7738 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7739 CB->Bits += Hi - Lo + 1; 7740 CB->ExtraWeight += Clusters[i].Weight; 7741 TotalWeight += Clusters[i].Weight; 7742 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7743 } 7744 7745 BitTestInfo BTI; 7746 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7747 // Sort by weight first, number of bits second. 7748 if (a.ExtraWeight != b.ExtraWeight) 7749 return a.ExtraWeight > b.ExtraWeight; 7750 return a.Bits > b.Bits; 7751 }); 7752 7753 for (auto &CB : CBV) { 7754 MachineBasicBlock *BitTestBB = 7755 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7756 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7757 } 7758 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7759 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7760 nullptr, std::move(BTI)); 7761 7762 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7763 BitTestCases.size() - 1, TotalWeight); 7764 return true; 7765 } 7766 7767 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7768 const SwitchInst *SI) { 7769 // Partition Clusters into as few subsets as possible, where each subset has a 7770 // range that fits in a machine word and has <= 3 unique destinations. 7771 7772 #ifndef NDEBUG 7773 // Clusters must be sorted and contain Range or JumpTable clusters. 7774 assert(!Clusters.empty()); 7775 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7776 for (const CaseCluster &C : Clusters) 7777 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7778 for (unsigned i = 1; i < Clusters.size(); ++i) 7779 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7780 #endif 7781 7782 // The algorithm below is not suitable for -O0. 7783 if (TM.getOptLevel() == CodeGenOpt::None) 7784 return; 7785 7786 // If target does not have legal shift left, do not emit bit tests at all. 7787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7788 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7789 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7790 return; 7791 7792 int BitWidth = PTy.getSizeInBits(); 7793 const int64_t N = Clusters.size(); 7794 7795 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7796 SmallVector<unsigned, 8> MinPartitions(N); 7797 // LastElement[i] is the last element of the partition starting at i. 7798 SmallVector<unsigned, 8> LastElement(N); 7799 7800 // FIXME: This might not be the best algorithm for finding bit test clusters. 7801 7802 // Base case: There is only one way to partition Clusters[N-1]. 7803 MinPartitions[N - 1] = 1; 7804 LastElement[N - 1] = N - 1; 7805 7806 // Note: loop indexes are signed to avoid underflow. 7807 for (int64_t i = N - 2; i >= 0; --i) { 7808 // Find optimal partitioning of Clusters[i..N-1]. 7809 // Baseline: Put Clusters[i] into a partition on its own. 7810 MinPartitions[i] = MinPartitions[i + 1] + 1; 7811 LastElement[i] = i; 7812 7813 // Search for a solution that results in fewer partitions. 7814 // Note: the search is limited by BitWidth, reducing time complexity. 7815 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7816 // Try building a partition from Clusters[i..j]. 7817 7818 // Check the range. 7819 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7820 Clusters[j].High->getValue())) 7821 continue; 7822 7823 // Check nbr of destinations and cluster types. 7824 // FIXME: This works, but doesn't seem very efficient. 7825 bool RangesOnly = true; 7826 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7827 for (int64_t k = i; k <= j; k++) { 7828 if (Clusters[k].Kind != CC_Range) { 7829 RangesOnly = false; 7830 break; 7831 } 7832 Dests.set(Clusters[k].MBB->getNumber()); 7833 } 7834 if (!RangesOnly || Dests.count() > 3) 7835 break; 7836 7837 // Check if it's a better partition. 7838 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7839 if (NumPartitions < MinPartitions[i]) { 7840 // Found a better partition. 7841 MinPartitions[i] = NumPartitions; 7842 LastElement[i] = j; 7843 } 7844 } 7845 } 7846 7847 // Iterate over the partitions, replacing with bit-test clusters in-place. 7848 unsigned DstIndex = 0; 7849 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7850 Last = LastElement[First]; 7851 assert(First <= Last); 7852 assert(DstIndex <= First); 7853 7854 CaseCluster BitTestCluster; 7855 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7856 Clusters[DstIndex++] = BitTestCluster; 7857 } else { 7858 size_t NumClusters = Last - First + 1; 7859 std::memmove(&Clusters[DstIndex], &Clusters[First], 7860 sizeof(Clusters[0]) * NumClusters); 7861 DstIndex += NumClusters; 7862 } 7863 } 7864 Clusters.resize(DstIndex); 7865 } 7866 7867 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7868 MachineBasicBlock *SwitchMBB, 7869 MachineBasicBlock *DefaultMBB) { 7870 MachineFunction *CurMF = FuncInfo.MF; 7871 MachineBasicBlock *NextMBB = nullptr; 7872 MachineFunction::iterator BBI = W.MBB; 7873 if (++BBI != FuncInfo.MF->end()) 7874 NextMBB = BBI; 7875 7876 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7877 7878 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7879 7880 if (Size == 2 && W.MBB == SwitchMBB) { 7881 // If any two of the cases has the same destination, and if one value 7882 // is the same as the other, but has one bit unset that the other has set, 7883 // use bit manipulation to do two compares at once. For example: 7884 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7885 // TODO: This could be extended to merge any 2 cases in switches with 3 7886 // cases. 7887 // TODO: Handle cases where W.CaseBB != SwitchBB. 7888 CaseCluster &Small = *W.FirstCluster; 7889 CaseCluster &Big = *W.LastCluster; 7890 7891 if (Small.Low == Small.High && Big.Low == Big.High && 7892 Small.MBB == Big.MBB) { 7893 const APInt &SmallValue = Small.Low->getValue(); 7894 const APInt &BigValue = Big.Low->getValue(); 7895 7896 // Check that there is only one bit different. 7897 APInt CommonBit = BigValue ^ SmallValue; 7898 if (CommonBit.isPowerOf2()) { 7899 SDValue CondLHS = getValue(Cond); 7900 EVT VT = CondLHS.getValueType(); 7901 SDLoc DL = getCurSDLoc(); 7902 7903 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7904 DAG.getConstant(CommonBit, DL, VT)); 7905 SDValue Cond = DAG.getSetCC( 7906 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7907 ISD::SETEQ); 7908 7909 // Update successor info. 7910 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7911 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7912 addSuccessorWithWeight( 7913 SwitchMBB, DefaultMBB, 7914 // The default destination is the first successor in IR. 7915 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7916 : 0); 7917 7918 // Insert the true branch. 7919 SDValue BrCond = 7920 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7921 DAG.getBasicBlock(Small.MBB)); 7922 // Insert the false branch. 7923 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7924 DAG.getBasicBlock(DefaultMBB)); 7925 7926 DAG.setRoot(BrCond); 7927 return; 7928 } 7929 } 7930 } 7931 7932 if (TM.getOptLevel() != CodeGenOpt::None) { 7933 // Order cases by weight so the most likely case will be checked first. 7934 std::sort(W.FirstCluster, W.LastCluster + 1, 7935 [](const CaseCluster &a, const CaseCluster &b) { 7936 return a.Weight > b.Weight; 7937 }); 7938 7939 // Rearrange the case blocks so that the last one falls through if possible 7940 // without without changing the order of weights. 7941 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7942 --I; 7943 if (I->Weight > W.LastCluster->Weight) 7944 break; 7945 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7946 std::swap(*I, *W.LastCluster); 7947 break; 7948 } 7949 } 7950 } 7951 7952 // Compute total weight. 7953 uint32_t UnhandledWeights = 0; 7954 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7955 UnhandledWeights += I->Weight; 7956 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7957 } 7958 7959 MachineBasicBlock *CurMBB = W.MBB; 7960 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7961 MachineBasicBlock *Fallthrough; 7962 if (I == W.LastCluster) { 7963 // For the last cluster, fall through to the default destination. 7964 Fallthrough = DefaultMBB; 7965 } else { 7966 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7967 CurMF->insert(BBI, Fallthrough); 7968 // Put Cond in a virtual register to make it available from the new blocks. 7969 ExportFromCurrentBlock(Cond); 7970 } 7971 7972 switch (I->Kind) { 7973 case CC_JumpTable: { 7974 // FIXME: Optimize away range check based on pivot comparisons. 7975 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7976 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7977 7978 // The jump block hasn't been inserted yet; insert it here. 7979 MachineBasicBlock *JumpMBB = JT->MBB; 7980 CurMF->insert(BBI, JumpMBB); 7981 addSuccessorWithWeight(CurMBB, Fallthrough); 7982 addSuccessorWithWeight(CurMBB, JumpMBB); 7983 7984 // The jump table header will be inserted in our current block, do the 7985 // range check, and fall through to our fallthrough block. 7986 JTH->HeaderBB = CurMBB; 7987 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7988 7989 // If we're in the right place, emit the jump table header right now. 7990 if (CurMBB == SwitchMBB) { 7991 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7992 JTH->Emitted = true; 7993 } 7994 break; 7995 } 7996 case CC_BitTests: { 7997 // FIXME: Optimize away range check based on pivot comparisons. 7998 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7999 8000 // The bit test blocks haven't been inserted yet; insert them here. 8001 for (BitTestCase &BTC : BTB->Cases) 8002 CurMF->insert(BBI, BTC.ThisBB); 8003 8004 // Fill in fields of the BitTestBlock. 8005 BTB->Parent = CurMBB; 8006 BTB->Default = Fallthrough; 8007 8008 // If we're in the right place, emit the bit test header header right now. 8009 if (CurMBB ==SwitchMBB) { 8010 visitBitTestHeader(*BTB, SwitchMBB); 8011 BTB->Emitted = true; 8012 } 8013 break; 8014 } 8015 case CC_Range: { 8016 const Value *RHS, *LHS, *MHS; 8017 ISD::CondCode CC; 8018 if (I->Low == I->High) { 8019 // Check Cond == I->Low. 8020 CC = ISD::SETEQ; 8021 LHS = Cond; 8022 RHS=I->Low; 8023 MHS = nullptr; 8024 } else { 8025 // Check I->Low <= Cond <= I->High. 8026 CC = ISD::SETLE; 8027 LHS = I->Low; 8028 MHS = Cond; 8029 RHS = I->High; 8030 } 8031 8032 // The false weight is the sum of all unhandled cases. 8033 UnhandledWeights -= I->Weight; 8034 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8035 UnhandledWeights); 8036 8037 if (CurMBB == SwitchMBB) 8038 visitSwitchCase(CB, SwitchMBB); 8039 else 8040 SwitchCases.push_back(CB); 8041 8042 break; 8043 } 8044 } 8045 CurMBB = Fallthrough; 8046 } 8047 } 8048 8049 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8050 CaseClusterIt First, 8051 CaseClusterIt Last) { 8052 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8053 if (X.Weight != CC.Weight) 8054 return X.Weight > CC.Weight; 8055 8056 // Ties are broken by comparing the case value. 8057 return X.Low->getValue().slt(CC.Low->getValue()); 8058 }); 8059 } 8060 8061 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8062 const SwitchWorkListItem &W, 8063 Value *Cond, 8064 MachineBasicBlock *SwitchMBB) { 8065 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8066 "Clusters not sorted?"); 8067 8068 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8069 8070 // Balance the tree based on branch weights to create a near-optimal (in terms 8071 // of search time given key frequency) binary search tree. See e.g. Kurt 8072 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8073 CaseClusterIt LastLeft = W.FirstCluster; 8074 CaseClusterIt FirstRight = W.LastCluster; 8075 uint32_t LeftWeight = LastLeft->Weight; 8076 uint32_t RightWeight = FirstRight->Weight; 8077 8078 // Move LastLeft and FirstRight towards each other from opposite directions to 8079 // find a partitioning of the clusters which balances the weight on both 8080 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8081 // taken to ensure 0-weight nodes are distributed evenly. 8082 unsigned I = 0; 8083 while (LastLeft + 1 < FirstRight) { 8084 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8085 LeftWeight += (++LastLeft)->Weight; 8086 else 8087 RightWeight += (--FirstRight)->Weight; 8088 I++; 8089 } 8090 8091 for (;;) { 8092 // Our binary search tree differs from a typical BST in that ours can have up 8093 // to three values in each leaf. The pivot selection above doesn't take that 8094 // into account, which means the tree might require more nodes and be less 8095 // efficient. We compensate for this here. 8096 8097 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8098 unsigned NumRight = W.LastCluster - FirstRight + 1; 8099 8100 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8101 // If one side has less than 3 clusters, and the other has more than 3, 8102 // consider taking a cluster from the other side. 8103 8104 if (NumLeft < NumRight) { 8105 // Consider moving the first cluster on the right to the left side. 8106 CaseCluster &CC = *FirstRight; 8107 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8108 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8109 if (LeftSideRank <= RightSideRank) { 8110 // Moving the cluster to the left does not demote it. 8111 ++LastLeft; 8112 ++FirstRight; 8113 continue; 8114 } 8115 } else { 8116 assert(NumRight < NumLeft); 8117 // Consider moving the last element on the left to the right side. 8118 CaseCluster &CC = *LastLeft; 8119 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8120 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8121 if (RightSideRank <= LeftSideRank) { 8122 // Moving the cluster to the right does not demot it. 8123 --LastLeft; 8124 --FirstRight; 8125 continue; 8126 } 8127 } 8128 } 8129 break; 8130 } 8131 8132 assert(LastLeft + 1 == FirstRight); 8133 assert(LastLeft >= W.FirstCluster); 8134 assert(FirstRight <= W.LastCluster); 8135 8136 // Use the first element on the right as pivot since we will make less-than 8137 // comparisons against it. 8138 CaseClusterIt PivotCluster = FirstRight; 8139 assert(PivotCluster > W.FirstCluster); 8140 assert(PivotCluster <= W.LastCluster); 8141 8142 CaseClusterIt FirstLeft = W.FirstCluster; 8143 CaseClusterIt LastRight = W.LastCluster; 8144 8145 const ConstantInt *Pivot = PivotCluster->Low; 8146 8147 // New blocks will be inserted immediately after the current one. 8148 MachineFunction::iterator BBI = W.MBB; 8149 ++BBI; 8150 8151 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8152 // we can branch to its destination directly if it's squeezed exactly in 8153 // between the known lower bound and Pivot - 1. 8154 MachineBasicBlock *LeftMBB; 8155 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8156 FirstLeft->Low == W.GE && 8157 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8158 LeftMBB = FirstLeft->MBB; 8159 } else { 8160 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8161 FuncInfo.MF->insert(BBI, LeftMBB); 8162 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8163 // Put Cond in a virtual register to make it available from the new blocks. 8164 ExportFromCurrentBlock(Cond); 8165 } 8166 8167 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8168 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8169 // directly if RHS.High equals the current upper bound. 8170 MachineBasicBlock *RightMBB; 8171 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8172 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8173 RightMBB = FirstRight->MBB; 8174 } else { 8175 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8176 FuncInfo.MF->insert(BBI, RightMBB); 8177 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8178 // Put Cond in a virtual register to make it available from the new blocks. 8179 ExportFromCurrentBlock(Cond); 8180 } 8181 8182 // Create the CaseBlock record that will be used to lower the branch. 8183 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8184 LeftWeight, RightWeight); 8185 8186 if (W.MBB == SwitchMBB) 8187 visitSwitchCase(CB, SwitchMBB); 8188 else 8189 SwitchCases.push_back(CB); 8190 } 8191 8192 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8193 // Extract cases from the switch. 8194 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8195 CaseClusterVector Clusters; 8196 Clusters.reserve(SI.getNumCases()); 8197 for (auto I : SI.cases()) { 8198 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8199 const ConstantInt *CaseVal = I.getCaseValue(); 8200 uint32_t Weight = 8201 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8202 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8203 } 8204 8205 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8206 8207 // Cluster adjacent cases with the same destination. We do this at all 8208 // optimization levels because it's cheap to do and will make codegen faster 8209 // if there are many clusters. 8210 sortAndRangeify(Clusters); 8211 8212 if (TM.getOptLevel() != CodeGenOpt::None) { 8213 // Replace an unreachable default with the most popular destination. 8214 // FIXME: Exploit unreachable default more aggressively. 8215 bool UnreachableDefault = 8216 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8217 if (UnreachableDefault && !Clusters.empty()) { 8218 DenseMap<const BasicBlock *, unsigned> Popularity; 8219 unsigned MaxPop = 0; 8220 const BasicBlock *MaxBB = nullptr; 8221 for (auto I : SI.cases()) { 8222 const BasicBlock *BB = I.getCaseSuccessor(); 8223 if (++Popularity[BB] > MaxPop) { 8224 MaxPop = Popularity[BB]; 8225 MaxBB = BB; 8226 } 8227 } 8228 // Set new default. 8229 assert(MaxPop > 0 && MaxBB); 8230 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8231 8232 // Remove cases that were pointing to the destination that is now the 8233 // default. 8234 CaseClusterVector New; 8235 New.reserve(Clusters.size()); 8236 for (CaseCluster &CC : Clusters) { 8237 if (CC.MBB != DefaultMBB) 8238 New.push_back(CC); 8239 } 8240 Clusters = std::move(New); 8241 } 8242 } 8243 8244 // If there is only the default destination, jump there directly. 8245 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8246 if (Clusters.empty()) { 8247 SwitchMBB->addSuccessor(DefaultMBB); 8248 if (DefaultMBB != NextBlock(SwitchMBB)) { 8249 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8250 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8251 } 8252 return; 8253 } 8254 8255 findJumpTables(Clusters, &SI, DefaultMBB); 8256 findBitTestClusters(Clusters, &SI); 8257 8258 DEBUG({ 8259 dbgs() << "Case clusters: "; 8260 for (const CaseCluster &C : Clusters) { 8261 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8262 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8263 8264 C.Low->getValue().print(dbgs(), true); 8265 if (C.Low != C.High) { 8266 dbgs() << '-'; 8267 C.High->getValue().print(dbgs(), true); 8268 } 8269 dbgs() << ' '; 8270 } 8271 dbgs() << '\n'; 8272 }); 8273 8274 assert(!Clusters.empty()); 8275 SwitchWorkList WorkList; 8276 CaseClusterIt First = Clusters.begin(); 8277 CaseClusterIt Last = Clusters.end() - 1; 8278 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8279 8280 while (!WorkList.empty()) { 8281 SwitchWorkListItem W = WorkList.back(); 8282 WorkList.pop_back(); 8283 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8284 8285 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8286 // For optimized builds, lower large range as a balanced binary tree. 8287 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8288 continue; 8289 } 8290 8291 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8292 } 8293 } 8294