1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, unsigned Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg += NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<unsigned, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1250 addDanglingDebugInfo(Vals, 1251 FnVarLocs->getDILocalVariable(It->VariableID), 1252 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1253 } 1254 } 1255 } 1256 1257 // We must skip DbgVariableRecords if they've already been processed above as 1258 // we have just emitted the debug values resulting from assignment tracking 1259 // analysis, making any existing DbgVariableRecords redundant (and probably 1260 // less correct). We still need to process DbgLabelRecords. This does sink 1261 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1262 // be important as it does so deterministcally and ordering between 1263 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1264 // printing). 1265 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1266 // Is there is any debug-info attached to this instruction, in the form of 1267 // DbgRecord non-instruction debug-info records. 1268 for (DbgRecord &DR : I.getDbgRecordRange()) { 1269 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1270 assert(DLR->getLabel() && "Missing label"); 1271 SDDbgLabel *SDV = 1272 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1273 DAG.AddDbgLabel(SDV); 1274 continue; 1275 } 1276 1277 if (SkipDbgVariableRecords) 1278 continue; 1279 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1280 DILocalVariable *Variable = DVR.getVariable(); 1281 DIExpression *Expression = DVR.getExpression(); 1282 dropDanglingDebugInfo(Variable, Expression); 1283 1284 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1285 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1286 continue; 1287 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1288 << "\n"); 1289 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1290 DVR.getDebugLoc()); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with no locations is a kill location. 1295 SmallVector<Value *, 4> Values(DVR.location_ops()); 1296 if (Values.empty()) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 // A DbgVariableRecord with an undef or absent location is also a kill 1303 // location. 1304 if (llvm::any_of(Values, 1305 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1306 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1307 SDNodeOrder); 1308 continue; 1309 } 1310 1311 bool IsVariadic = DVR.hasArgList(); 1312 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1313 SDNodeOrder, IsVariadic)) { 1314 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1315 DVR.getDebugLoc(), SDNodeOrder); 1316 } 1317 } 1318 } 1319 1320 void SelectionDAGBuilder::visit(const Instruction &I) { 1321 visitDbgInfo(I); 1322 1323 // Set up outgoing PHI node register values before emitting the terminator. 1324 if (I.isTerminator()) { 1325 HandlePHINodesInSuccessorBlocks(I.getParent()); 1326 } 1327 1328 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1329 if (!isa<DbgInfoIntrinsic>(I)) 1330 ++SDNodeOrder; 1331 1332 CurInst = &I; 1333 1334 // Set inserted listener only if required. 1335 bool NodeInserted = false; 1336 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1337 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1338 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1339 if (PCSectionsMD || MMRA) { 1340 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1341 DAG, [&](SDNode *) { NodeInserted = true; }); 1342 } 1343 1344 visit(I.getOpcode(), I); 1345 1346 if (!I.isTerminator() && !HasTailCall && 1347 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1348 CopyToExportRegsIfNeeded(&I); 1349 1350 // Handle metadata. 1351 if (PCSectionsMD || MMRA) { 1352 auto It = NodeMap.find(&I); 1353 if (It != NodeMap.end()) { 1354 if (PCSectionsMD) 1355 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1356 if (MMRA) 1357 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1358 } else if (NodeInserted) { 1359 // This should not happen; if it does, don't let it go unnoticed so we can 1360 // fix it. Relevant visit*() function is probably missing a setValue(). 1361 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1362 << I.getModule()->getName() << "]\n"; 1363 LLVM_DEBUG(I.dump()); 1364 assert(false); 1365 } 1366 } 1367 1368 CurInst = nullptr; 1369 } 1370 1371 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1372 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1373 } 1374 1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1376 // Note: this doesn't use InstVisitor, because it has to work with 1377 // ConstantExpr's in addition to instructions. 1378 switch (Opcode) { 1379 default: llvm_unreachable("Unknown instruction type encountered!"); 1380 // Build the switch statement using the Instruction.def file. 1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1382 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1383 #include "llvm/IR/Instruction.def" 1384 } 1385 } 1386 1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1388 DILocalVariable *Variable, 1389 DebugLoc DL, unsigned Order, 1390 SmallVectorImpl<Value *> &Values, 1391 DIExpression *Expression) { 1392 // For variadic dbg_values we will now insert an undef. 1393 // FIXME: We can potentially recover these! 1394 SmallVector<SDDbgOperand, 2> Locs; 1395 for (const Value *V : Values) { 1396 auto *Undef = UndefValue::get(V->getType()); 1397 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1398 } 1399 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1400 /*IsIndirect=*/false, DL, Order, 1401 /*IsVariadic=*/true); 1402 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1403 return true; 1404 } 1405 1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1407 DILocalVariable *Var, 1408 DIExpression *Expr, 1409 bool IsVariadic, DebugLoc DL, 1410 unsigned Order) { 1411 if (IsVariadic) { 1412 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1413 return; 1414 } 1415 // TODO: Dangling debug info will eventually either be resolved or produce 1416 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1417 // between the original dbg.value location and its resolved DBG_VALUE, 1418 // which we should ideally fill with an extra Undef DBG_VALUE. 1419 assert(Values.size() == 1); 1420 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1421 } 1422 1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1424 const DIExpression *Expr) { 1425 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1426 DIVariable *DanglingVariable = DDI.getVariable(); 1427 DIExpression *DanglingExpr = DDI.getExpression(); 1428 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1429 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1430 << printDDI(nullptr, DDI) << "\n"); 1431 return true; 1432 } 1433 return false; 1434 }; 1435 1436 for (auto &DDIMI : DanglingDebugInfoMap) { 1437 DanglingDebugInfoVector &DDIV = DDIMI.second; 1438 1439 // If debug info is to be dropped, run it through final checks to see 1440 // whether it can be salvaged. 1441 for (auto &DDI : DDIV) 1442 if (isMatchingDbgValue(DDI)) 1443 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1444 1445 erase_if(DDIV, isMatchingDbgValue); 1446 } 1447 } 1448 1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1450 // generate the debug data structures now that we've seen its definition. 1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1452 SDValue Val) { 1453 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1454 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1455 return; 1456 1457 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1458 for (auto &DDI : DDIV) { 1459 DebugLoc DL = DDI.getDebugLoc(); 1460 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1461 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1462 DILocalVariable *Variable = DDI.getVariable(); 1463 DIExpression *Expr = DDI.getExpression(); 1464 assert(Variable->isValidLocationForIntrinsic(DL) && 1465 "Expected inlined-at fields to agree"); 1466 SDDbgValue *SDV; 1467 if (Val.getNode()) { 1468 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1469 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1470 // we couldn't resolve it directly when examining the DbgValue intrinsic 1471 // in the first place we should not be more successful here). Unless we 1472 // have some test case that prove this to be correct we should avoid 1473 // calling EmitFuncArgumentDbgValue here. 1474 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1475 FuncArgumentDbgValueKind::Value, Val)) { 1476 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1477 << printDDI(V, DDI) << "\n"); 1478 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1479 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1480 // inserted after the definition of Val when emitting the instructions 1481 // after ISel. An alternative could be to teach 1482 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1483 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1484 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1485 << ValSDNodeOrder << "\n"); 1486 SDV = getDbgValue(Val, Variable, Expr, DL, 1487 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1488 DAG.AddDbgValue(SDV, false); 1489 } else 1490 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1491 << printDDI(V, DDI) 1492 << " in EmitFuncArgumentDbgValue\n"); 1493 } else { 1494 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1495 << "\n"); 1496 auto Undef = UndefValue::get(V->getType()); 1497 auto SDV = 1498 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1499 DAG.AddDbgValue(SDV, false); 1500 } 1501 } 1502 DDIV.clear(); 1503 } 1504 1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1506 DanglingDebugInfo &DDI) { 1507 // TODO: For the variadic implementation, instead of only checking the fail 1508 // state of `handleDebugValue`, we need know specifically which values were 1509 // invalid, so that we attempt to salvage only those values when processing 1510 // a DIArgList. 1511 const Value *OrigV = V; 1512 DILocalVariable *Var = DDI.getVariable(); 1513 DIExpression *Expr = DDI.getExpression(); 1514 DebugLoc DL = DDI.getDebugLoc(); 1515 unsigned SDOrder = DDI.getSDNodeOrder(); 1516 1517 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1518 // that DW_OP_stack_value is desired. 1519 bool StackValue = true; 1520 1521 // Can this Value can be encoded without any further work? 1522 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1523 return; 1524 1525 // Attempt to salvage back through as many instructions as possible. Bail if 1526 // a non-instruction is seen, such as a constant expression or global 1527 // variable. FIXME: Further work could recover those too. 1528 while (isa<Instruction>(V)) { 1529 const Instruction &VAsInst = *cast<const Instruction>(V); 1530 // Temporary "0", awaiting real implementation. 1531 SmallVector<uint64_t, 16> Ops; 1532 SmallVector<Value *, 4> AdditionalValues; 1533 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1534 Expr->getNumLocationOperands(), Ops, 1535 AdditionalValues); 1536 // If we cannot salvage any further, and haven't yet found a suitable debug 1537 // expression, bail out. 1538 if (!V) 1539 break; 1540 1541 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1542 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1543 // here for variadic dbg_values, remove that condition. 1544 if (!AdditionalValues.empty()) 1545 break; 1546 1547 // New value and expr now represent this debuginfo. 1548 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1549 1550 // Some kind of simplification occurred: check whether the operand of the 1551 // salvaged debug expression can be encoded in this DAG. 1552 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1553 LLVM_DEBUG( 1554 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1555 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1556 return; 1557 } 1558 } 1559 1560 // This was the final opportunity to salvage this debug information, and it 1561 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1562 // any earlier variable location. 1563 assert(OrigV && "V shouldn't be null"); 1564 auto *Undef = UndefValue::get(OrigV->getType()); 1565 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1566 DAG.AddDbgValue(SDV, false); 1567 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1568 << printDDI(OrigV, DDI) << "\n"); 1569 } 1570 1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1572 DIExpression *Expr, 1573 DebugLoc DbgLoc, 1574 unsigned Order) { 1575 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1576 DIExpression *NewExpr = 1577 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1578 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1579 /*IsVariadic*/ false); 1580 } 1581 1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1583 DILocalVariable *Var, 1584 DIExpression *Expr, DebugLoc DbgLoc, 1585 unsigned Order, bool IsVariadic) { 1586 if (Values.empty()) 1587 return true; 1588 1589 // Filter EntryValue locations out early. 1590 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1591 return true; 1592 1593 SmallVector<SDDbgOperand> LocationOps; 1594 SmallVector<SDNode *> Dependencies; 1595 for (const Value *V : Values) { 1596 // Constant value. 1597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1598 isa<ConstantPointerNull>(V)) { 1599 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1600 continue; 1601 } 1602 1603 // Look through IntToPtr constants. 1604 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1605 if (CE->getOpcode() == Instruction::IntToPtr) { 1606 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1607 continue; 1608 } 1609 1610 // If the Value is a frame index, we can create a FrameIndex debug value 1611 // without relying on the DAG at all. 1612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1613 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1614 if (SI != FuncInfo.StaticAllocaMap.end()) { 1615 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1616 continue; 1617 } 1618 } 1619 1620 // Do not use getValue() in here; we don't want to generate code at 1621 // this point if it hasn't been done yet. 1622 SDValue N = NodeMap[V]; 1623 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1624 N = UnusedArgNodeMap[V]; 1625 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 unsigned DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 2288 for (unsigned i = 0; i < NumParts; ++i) { 2289 Outs.push_back(ISD::OutputArg(Flags, 2290 Parts[i].getValueType().getSimpleVT(), 2291 VT, /*isfixed=*/true, 0, 0)); 2292 OutVals.push_back(Parts[i]); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Push in swifterror virtual register as the last element of Outs. This makes 2299 // sure swifterror virtual register will be returned in the swifterror 2300 // physical register. 2301 const Function *F = I.getParent()->getParent(); 2302 if (TLI.supportSwiftError() && 2303 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2304 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2305 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2306 Flags.setSwiftError(); 2307 Outs.push_back(ISD::OutputArg( 2308 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2309 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2310 // Create SDNode for the swifterror virtual register. 2311 OutVals.push_back( 2312 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2313 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2314 EVT(TLI.getPointerTy(DL)))); 2315 } 2316 2317 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2318 CallingConv::ID CallConv = 2319 DAG.getMachineFunction().getFunction().getCallingConv(); 2320 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2321 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2322 2323 // Verify that the target's LowerReturn behaved as expected. 2324 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2325 "LowerReturn didn't return a valid chain!"); 2326 2327 // Update the DAG with the new chain value resulting from return lowering. 2328 DAG.setRoot(Chain); 2329 } 2330 2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2332 /// created for it, emit nodes to copy the value into the virtual 2333 /// registers. 2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2335 // Skip empty types 2336 if (V->getType()->isEmptyTy()) 2337 return; 2338 2339 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2340 if (VMI != FuncInfo.ValueMap.end()) { 2341 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2342 "Unused value assigned virtual registers!"); 2343 CopyValueToVirtualRegister(V, VMI->second); 2344 } 2345 } 2346 2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2348 /// the current basic block, add it to ValueMap now so that we'll get a 2349 /// CopyTo/FromReg. 2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2351 // No need to export constants. 2352 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2353 2354 // Already exported? 2355 if (FuncInfo.isExportedInst(V)) return; 2356 2357 Register Reg = FuncInfo.InitializeRegForValue(V); 2358 CopyValueToVirtualRegister(V, Reg); 2359 } 2360 2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2362 const BasicBlock *FromBB) { 2363 // The operands of the setcc have to be in this block. We don't know 2364 // how to export them from some other block. 2365 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2366 // Can export from current BB. 2367 if (VI->getParent() == FromBB) 2368 return true; 2369 2370 // Is already exported, noop. 2371 return FuncInfo.isExportedInst(V); 2372 } 2373 2374 // If this is an argument, we can export it if the BB is the entry block or 2375 // if it is already exported. 2376 if (isa<Argument>(V)) { 2377 if (FromBB->isEntryBlock()) 2378 return true; 2379 2380 // Otherwise, can only export this if it is already exported. 2381 return FuncInfo.isExportedInst(V); 2382 } 2383 2384 // Otherwise, constants can always be exported. 2385 return true; 2386 } 2387 2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2389 BranchProbability 2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2391 const MachineBasicBlock *Dst) const { 2392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2393 const BasicBlock *SrcBB = Src->getBasicBlock(); 2394 const BasicBlock *DstBB = Dst->getBasicBlock(); 2395 if (!BPI) { 2396 // If BPI is not available, set the default probability as 1 / N, where N is 2397 // the number of successors. 2398 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2399 return BranchProbability(1, SuccSize); 2400 } 2401 return BPI->getEdgeProbability(SrcBB, DstBB); 2402 } 2403 2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2405 MachineBasicBlock *Dst, 2406 BranchProbability Prob) { 2407 if (!FuncInfo.BPI) 2408 Src->addSuccessorWithoutProb(Dst); 2409 else { 2410 if (Prob.isUnknown()) 2411 Prob = getEdgeProbability(Src, Dst); 2412 Src->addSuccessor(Dst, Prob); 2413 } 2414 } 2415 2416 static bool InBlock(const Value *V, const BasicBlock *BB) { 2417 if (const Instruction *I = dyn_cast<Instruction>(V)) 2418 return I->getParent() == BB; 2419 return true; 2420 } 2421 2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2423 /// This function emits a branch and is used at the leaves of an OR or an 2424 /// AND operator tree. 2425 void 2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2427 MachineBasicBlock *TBB, 2428 MachineBasicBlock *FBB, 2429 MachineBasicBlock *CurBB, 2430 MachineBasicBlock *SwitchBB, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 const BasicBlock *BB = CurBB->getBasicBlock(); 2435 2436 // If the leaf of the tree is a comparison, merge the condition into 2437 // the caseblock. 2438 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2439 // The operands of the cmp have to be in this block. We don't know 2440 // how to export them from some other block. If this is the first block 2441 // of the sequence, no exporting is needed. 2442 if (CurBB == SwitchBB || 2443 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2444 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2445 ISD::CondCode Condition; 2446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2447 ICmpInst::Predicate Pred = 2448 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2449 Condition = getICmpCondCode(Pred); 2450 } else { 2451 const FCmpInst *FC = cast<FCmpInst>(Cond); 2452 FCmpInst::Predicate Pred = 2453 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2454 Condition = getFCmpCondCode(Pred); 2455 if (TM.Options.NoNaNsFPMath) 2456 Condition = getFCmpCodeWithoutNaN(Condition); 2457 } 2458 2459 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2460 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2461 SL->SwitchCases.push_back(CB); 2462 return; 2463 } 2464 } 2465 2466 // Create a CaseBlock record representing this branch. 2467 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2468 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2469 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2470 SL->SwitchCases.push_back(CB); 2471 } 2472 2473 // Collect dependencies on V recursively. This is used for the cost analysis in 2474 // `shouldKeepJumpConditionsTogether`. 2475 static bool collectInstructionDeps( 2476 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2477 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2478 unsigned Depth = 0) { 2479 // Return false if we have an incomplete count. 2480 if (Depth >= SelectionDAG::MaxRecursionDepth) 2481 return false; 2482 2483 auto *I = dyn_cast<Instruction>(V); 2484 if (I == nullptr) 2485 return true; 2486 2487 if (Necessary != nullptr) { 2488 // This instruction is necessary for the other side of the condition so 2489 // don't count it. 2490 if (Necessary->contains(I)) 2491 return true; 2492 } 2493 2494 // Already added this dep. 2495 if (!Deps->try_emplace(I, false).second) 2496 return true; 2497 2498 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2499 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2500 Depth + 1)) 2501 return false; 2502 return true; 2503 } 2504 2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2506 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2507 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2508 TargetLoweringBase::CondMergingParams Params) const { 2509 if (I.getNumSuccessors() != 2) 2510 return false; 2511 2512 if (!I.isConditional()) 2513 return false; 2514 2515 if (Params.BaseCost < 0) 2516 return false; 2517 2518 // Baseline cost. 2519 InstructionCost CostThresh = Params.BaseCost; 2520 2521 BranchProbabilityInfo *BPI = nullptr; 2522 if (Params.LikelyBias || Params.UnlikelyBias) 2523 BPI = FuncInfo.BPI; 2524 if (BPI != nullptr) { 2525 // See if we are either likely to get an early out or compute both lhs/rhs 2526 // of the condition. 2527 BasicBlock *IfFalse = I.getSuccessor(0); 2528 BasicBlock *IfTrue = I.getSuccessor(1); 2529 2530 std::optional<bool> Likely; 2531 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2532 Likely = true; 2533 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2534 Likely = false; 2535 2536 if (Likely) { 2537 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2538 // Its likely we will have to compute both lhs and rhs of condition 2539 CostThresh += Params.LikelyBias; 2540 else { 2541 if (Params.UnlikelyBias < 0) 2542 return false; 2543 // Its likely we will get an early out. 2544 CostThresh -= Params.UnlikelyBias; 2545 } 2546 } 2547 } 2548 2549 if (CostThresh <= 0) 2550 return false; 2551 2552 // Collect "all" instructions that lhs condition is dependent on. 2553 // Use map for stable iteration (to avoid non-determanism of iteration of 2554 // SmallPtrSet). The `bool` value is just a dummy. 2555 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2556 collectInstructionDeps(&LhsDeps, Lhs); 2557 // Collect "all" instructions that rhs condition is dependent on AND are 2558 // dependencies of lhs. This gives us an estimate on which instructions we 2559 // stand to save by splitting the condition. 2560 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2561 return false; 2562 // Add the compare instruction itself unless its a dependency on the LHS. 2563 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2564 if (!LhsDeps.contains(RhsI)) 2565 RhsDeps.try_emplace(RhsI, false); 2566 2567 const auto &TLI = DAG.getTargetLoweringInfo(); 2568 const auto &TTI = 2569 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2570 2571 InstructionCost CostOfIncluding = 0; 2572 // See if this instruction will need to computed independently of whether RHS 2573 // is. 2574 Value *BrCond = I.getCondition(); 2575 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2576 for (const auto *U : Ins->users()) { 2577 // If user is independent of RHS calculation we don't need to count it. 2578 if (auto *UIns = dyn_cast<Instruction>(U)) 2579 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2580 return false; 2581 } 2582 return true; 2583 }; 2584 2585 // Prune instructions from RHS Deps that are dependencies of unrelated 2586 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2587 // arbitrary and just meant to cap the how much time we spend in the pruning 2588 // loop. Its highly unlikely to come into affect. 2589 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2590 // Stop after a certain point. No incorrectness from including too many 2591 // instructions. 2592 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2593 const Instruction *ToDrop = nullptr; 2594 for (const auto &InsPair : RhsDeps) { 2595 if (!ShouldCountInsn(InsPair.first)) { 2596 ToDrop = InsPair.first; 2597 break; 2598 } 2599 } 2600 if (ToDrop == nullptr) 2601 break; 2602 RhsDeps.erase(ToDrop); 2603 } 2604 2605 for (const auto &InsPair : RhsDeps) { 2606 // Finally accumulate latency that we can only attribute to computing the 2607 // RHS condition. Use latency because we are essentially trying to calculate 2608 // the cost of the dependency chain. 2609 // Possible TODO: We could try to estimate ILP and make this more precise. 2610 CostOfIncluding += 2611 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2612 2613 if (CostOfIncluding > CostThresh) 2614 return false; 2615 } 2616 return true; 2617 } 2618 2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2620 MachineBasicBlock *TBB, 2621 MachineBasicBlock *FBB, 2622 MachineBasicBlock *CurBB, 2623 MachineBasicBlock *SwitchBB, 2624 Instruction::BinaryOps Opc, 2625 BranchProbability TProb, 2626 BranchProbability FProb, 2627 bool InvertCond) { 2628 // Skip over not part of the tree and remember to invert op and operands at 2629 // next level. 2630 Value *NotCond; 2631 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2632 InBlock(NotCond, CurBB->getBasicBlock())) { 2633 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2634 !InvertCond); 2635 return; 2636 } 2637 2638 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2639 const Value *BOpOp0, *BOpOp1; 2640 // Compute the effective opcode for Cond, taking into account whether it needs 2641 // to be inverted, e.g. 2642 // and (not (or A, B)), C 2643 // gets lowered as 2644 // and (and (not A, not B), C) 2645 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2646 if (BOp) { 2647 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2648 ? Instruction::And 2649 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::Or 2651 : (Instruction::BinaryOps)0); 2652 if (InvertCond) { 2653 if (BOpc == Instruction::And) 2654 BOpc = Instruction::Or; 2655 else if (BOpc == Instruction::Or) 2656 BOpc = Instruction::And; 2657 } 2658 } 2659 2660 // If this node is not part of the or/and tree, emit it as a branch. 2661 // Note that all nodes in the tree should have same opcode. 2662 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2663 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2664 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2665 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2666 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2667 TProb, FProb, InvertCond); 2668 return; 2669 } 2670 2671 // Create TmpBB after CurBB. 2672 MachineFunction::iterator BBI(CurBB); 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2675 CurBB->getParent()->insert(++BBI, TmpBB); 2676 2677 if (Opc == Instruction::Or) { 2678 // Codegen X | Y as: 2679 // BB1: 2680 // jmp_if_X TBB 2681 // jmp TmpBB 2682 // TmpBB: 2683 // jmp_if_Y TBB 2684 // jmp FBB 2685 // 2686 2687 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2688 // The requirement is that 2689 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2690 // = TrueProb for original BB. 2691 // Assuming the original probabilities are A and B, one choice is to set 2692 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2693 // A/(1+B) and 2B/(1+B). This choice assumes that 2694 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2695 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2696 // TmpBB, but the math is more complicated. 2697 2698 auto NewTrueProb = TProb / 2; 2699 auto NewFalseProb = TProb / 2 + FProb; 2700 // Emit the LHS condition. 2701 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2702 NewFalseProb, InvertCond); 2703 2704 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2705 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2706 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2707 // Emit the RHS condition into TmpBB. 2708 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2709 Probs[1], InvertCond); 2710 } else { 2711 assert(Opc == Instruction::And && "Unknown merge op!"); 2712 // Codegen X & Y as: 2713 // BB1: 2714 // jmp_if_X TmpBB 2715 // jmp FBB 2716 // TmpBB: 2717 // jmp_if_Y TBB 2718 // jmp FBB 2719 // 2720 // This requires creation of TmpBB after CurBB. 2721 2722 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2723 // The requirement is that 2724 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2725 // = FalseProb for original BB. 2726 // Assuming the original probabilities are A and B, one choice is to set 2727 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2728 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2729 // TrueProb for BB1 * FalseProb for TmpBB. 2730 2731 auto NewTrueProb = TProb + FProb / 2; 2732 auto NewFalseProb = FProb / 2; 2733 // Emit the LHS condition. 2734 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2735 NewFalseProb, InvertCond); 2736 2737 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2738 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2739 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2740 // Emit the RHS condition into TmpBB. 2741 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2742 Probs[1], InvertCond); 2743 } 2744 } 2745 2746 /// If the set of cases should be emitted as a series of branches, return true. 2747 /// If we should emit this as a bunch of and/or'd together conditions, return 2748 /// false. 2749 bool 2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2751 if (Cases.size() != 2) return true; 2752 2753 // If this is two comparisons of the same values or'd or and'd together, they 2754 // will get folded into a single comparison, so don't emit two blocks. 2755 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2756 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2757 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2758 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2759 return false; 2760 } 2761 2762 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2763 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2764 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2765 Cases[0].CC == Cases[1].CC && 2766 isa<Constant>(Cases[0].CmpRHS) && 2767 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2768 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2769 return false; 2770 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2771 return false; 2772 } 2773 2774 return true; 2775 } 2776 2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2778 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2779 2780 // Update machine-CFG edges. 2781 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2782 2783 if (I.isUnconditional()) { 2784 // Update machine-CFG edges. 2785 BrMBB->addSuccessor(Succ0MBB); 2786 2787 // If this is not a fall-through branch or optimizations are switched off, 2788 // emit the branch. 2789 if (Succ0MBB != NextBlock(BrMBB) || 2790 TM.getOptLevel() == CodeGenOptLevel::None) { 2791 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2792 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2793 setValue(&I, Br); 2794 DAG.setRoot(Br); 2795 } 2796 2797 return; 2798 } 2799 2800 // If this condition is one of the special cases we handle, do special stuff 2801 // now. 2802 const Value *CondVal = I.getCondition(); 2803 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2804 2805 // If this is a series of conditions that are or'd or and'd together, emit 2806 // this as a sequence of branches instead of setcc's with and/or operations. 2807 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2808 // unpredictable branches, and vector extracts because those jumps are likely 2809 // expensive for any target), this should improve performance. 2810 // For example, instead of something like: 2811 // cmp A, B 2812 // C = seteq 2813 // cmp D, E 2814 // F = setle 2815 // or C, F 2816 // jnz foo 2817 // Emit: 2818 // cmp A, B 2819 // je foo 2820 // cmp D, E 2821 // jle foo 2822 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2823 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2825 BOp->hasOneUse() && !IsUnpredictable) { 2826 Value *Vec; 2827 const Value *BOp0, *BOp1; 2828 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2829 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2830 Opcode = Instruction::And; 2831 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::Or; 2833 2834 if (Opcode && 2835 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2836 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2837 !shouldKeepJumpConditionsTogether( 2838 FuncInfo, I, Opcode, BOp0, BOp1, 2839 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2840 Opcode, BOp0, BOp1))) { 2841 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2842 getEdgeProbability(BrMBB, Succ0MBB), 2843 getEdgeProbability(BrMBB, Succ1MBB), 2844 /*InvertCond=*/false); 2845 // If the compares in later blocks need to use values not currently 2846 // exported from this block, export them now. This block should always 2847 // be the first entry. 2848 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2849 2850 // Allow some cases to be rejected. 2851 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2852 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2854 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2855 } 2856 2857 // Emit the branch for this block. 2858 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2859 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2860 return; 2861 } 2862 2863 // Okay, we decided not to do this, remove any inserted MBB's and clear 2864 // SwitchCases. 2865 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2866 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2867 2868 SL->SwitchCases.clear(); 2869 } 2870 } 2871 2872 // Create a CaseBlock record representing this branch. 2873 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2874 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2875 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2876 IsUnpredictable); 2877 2878 // Use visitSwitchCase to actually insert the fast branch sequence for this 2879 // cond branch. 2880 visitSwitchCase(CB, BrMBB); 2881 } 2882 2883 /// visitSwitchCase - Emits the necessary code to represent a single node in 2884 /// the binary search tree resulting from lowering a switch instruction. 2885 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2886 MachineBasicBlock *SwitchBB) { 2887 SDValue Cond; 2888 SDValue CondLHS = getValue(CB.CmpLHS); 2889 SDLoc dl = CB.DL; 2890 2891 if (CB.CC == ISD::SETTRUE) { 2892 // Branch or fall through to TrueBB. 2893 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2894 SwitchBB->normalizeSuccProbs(); 2895 if (CB.TrueBB != NextBlock(SwitchBB)) { 2896 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2897 DAG.getBasicBlock(CB.TrueBB))); 2898 } 2899 return; 2900 } 2901 2902 auto &TLI = DAG.getTargetLoweringInfo(); 2903 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2904 2905 // Build the setcc now. 2906 if (!CB.CmpMHS) { 2907 // Fold "(X == true)" to X and "(X == false)" to !X to 2908 // handle common cases produced by branch lowering. 2909 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) 2911 Cond = CondLHS; 2912 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2913 CB.CC == ISD::SETEQ) { 2914 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2915 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2916 } else { 2917 SDValue CondRHS = getValue(CB.CmpRHS); 2918 2919 // If a pointer's DAG type is larger than its memory type then the DAG 2920 // values are zero-extended. This breaks signed comparisons so truncate 2921 // back to the underlying type before doing the compare. 2922 if (CondLHS.getValueType() != MemVT) { 2923 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2924 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2925 } 2926 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2927 } 2928 } else { 2929 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2930 2931 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2932 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2933 2934 SDValue CmpOp = getValue(CB.CmpMHS); 2935 EVT VT = CmpOp.getValueType(); 2936 2937 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2938 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2939 ISD::SETLE); 2940 } else { 2941 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2942 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2943 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2944 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2945 } 2946 } 2947 2948 // Update successor info 2949 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2950 // TrueBB and FalseBB are always different unless the incoming IR is 2951 // degenerate. This only happens when running llc on weird IR. 2952 if (CB.TrueBB != CB.FalseBB) 2953 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2954 SwitchBB->normalizeSuccProbs(); 2955 2956 // If the lhs block is the next block, invert the condition so that we can 2957 // fall through to the lhs instead of the rhs block. 2958 if (CB.TrueBB == NextBlock(SwitchBB)) { 2959 std::swap(CB.TrueBB, CB.FalseBB); 2960 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2961 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2962 } 2963 2964 SDNodeFlags Flags; 2965 Flags.setUnpredictable(CB.IsUnpredictable); 2966 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2967 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2968 2969 setValue(CurInst, BrCond); 2970 2971 // Insert the false branch. Do this even if it's a fall through branch, 2972 // this makes it easier to do DAG optimizations which require inverting 2973 // the branch condition. 2974 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2975 DAG.getBasicBlock(CB.FalseBB)); 2976 2977 DAG.setRoot(BrCond); 2978 } 2979 2980 /// visitJumpTable - Emit JumpTable node in the current MBB 2981 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2982 // Emit the code for the jump table 2983 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2984 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2985 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2986 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2987 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2988 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2989 Index.getValue(1), Table, Index); 2990 DAG.setRoot(BrJumpTable); 2991 } 2992 2993 /// visitJumpTableHeader - This function emits necessary code to produce index 2994 /// in the JumpTable from switch case. 2995 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2996 JumpTableHeader &JTH, 2997 MachineBasicBlock *SwitchBB) { 2998 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2999 const SDLoc &dl = *JT.SL; 3000 3001 // Subtract the lowest switch case value from the value being switched on. 3002 SDValue SwitchOp = getValue(JTH.SValue); 3003 EVT VT = SwitchOp.getValueType(); 3004 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3005 DAG.getConstant(JTH.First, dl, VT)); 3006 3007 // The SDNode we just created, which holds the value being switched on minus 3008 // the smallest case value, needs to be copied to a virtual register so it 3009 // can be used as an index into the jump table in a subsequent basic block. 3010 // This value may be smaller or larger than the target's pointer type, and 3011 // therefore require extension or truncating. 3012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3013 SwitchOp = 3014 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3015 3016 unsigned JumpTableReg = 3017 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3018 SDValue CopyTo = 3019 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3020 JT.Reg = JumpTableReg; 3021 3022 if (!JTH.FallthroughUnreachable) { 3023 // Emit the range check for the jump table, and branch to the default block 3024 // for the switch statement if the value being switched on exceeds the 3025 // largest case in the switch. 3026 SDValue CMP = DAG.getSetCC( 3027 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3028 Sub.getValueType()), 3029 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3030 3031 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3032 MVT::Other, CopyTo, CMP, 3033 DAG.getBasicBlock(JT.Default)); 3034 3035 // Avoid emitting unnecessary branches to the next block. 3036 if (JT.MBB != NextBlock(SwitchBB)) 3037 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3038 DAG.getBasicBlock(JT.MBB)); 3039 3040 DAG.setRoot(BrCond); 3041 } else { 3042 // Avoid emitting unnecessary branches to the next block. 3043 if (JT.MBB != NextBlock(SwitchBB)) 3044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3045 DAG.getBasicBlock(JT.MBB))); 3046 else 3047 DAG.setRoot(CopyTo); 3048 } 3049 } 3050 3051 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3052 /// variable if there exists one. 3053 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3054 SDValue &Chain) { 3055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3056 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3057 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3058 MachineFunction &MF = DAG.getMachineFunction(); 3059 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3060 MachineSDNode *Node = 3061 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3062 if (Global) { 3063 MachinePointerInfo MPInfo(Global); 3064 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3065 MachineMemOperand::MODereferenceable; 3066 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3067 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3068 DAG.getEVTAlign(PtrTy)); 3069 DAG.setNodeMemRefs(Node, {MemRef}); 3070 } 3071 if (PtrTy != PtrMemTy) 3072 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3073 return SDValue(Node, 0); 3074 } 3075 3076 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3077 /// tail spliced into a stack protector check success bb. 3078 /// 3079 /// For a high level explanation of how this fits into the stack protector 3080 /// generation see the comment on the declaration of class 3081 /// StackProtectorDescriptor. 3082 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3083 MachineBasicBlock *ParentBB) { 3084 3085 // First create the loads to the guard/stack slot for the comparison. 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3088 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3089 3090 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3091 int FI = MFI.getStackProtectorIndex(); 3092 3093 SDValue Guard; 3094 SDLoc dl = getCurSDLoc(); 3095 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3096 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3097 Align Align = 3098 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3099 3100 // Generate code to load the content of the guard slot. 3101 SDValue GuardVal = DAG.getLoad( 3102 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3103 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3104 MachineMemOperand::MOVolatile); 3105 3106 if (TLI.useStackGuardXorFP()) 3107 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3108 3109 // Retrieve guard check function, nullptr if instrumentation is inlined. 3110 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3111 // The target provides a guard check function to validate the guard value. 3112 // Generate a call to that function with the content of the guard slot as 3113 // argument. 3114 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3115 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3116 3117 TargetLowering::ArgListTy Args; 3118 TargetLowering::ArgListEntry Entry; 3119 Entry.Node = GuardVal; 3120 Entry.Ty = FnTy->getParamType(0); 3121 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3122 Entry.IsInReg = true; 3123 Args.push_back(Entry); 3124 3125 TargetLowering::CallLoweringInfo CLI(DAG); 3126 CLI.setDebugLoc(getCurSDLoc()) 3127 .setChain(DAG.getEntryNode()) 3128 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3129 getValue(GuardCheckFn), std::move(Args)); 3130 3131 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3132 DAG.setRoot(Result.second); 3133 return; 3134 } 3135 3136 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3137 // Otherwise, emit a volatile load to retrieve the stack guard value. 3138 SDValue Chain = DAG.getEntryNode(); 3139 if (TLI.useLoadStackGuardNode()) { 3140 Guard = getLoadStackGuard(DAG, dl, Chain); 3141 } else { 3142 const Value *IRGuard = TLI.getSDagStackGuard(M); 3143 SDValue GuardPtr = getValue(IRGuard); 3144 3145 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3146 MachinePointerInfo(IRGuard, 0), Align, 3147 MachineMemOperand::MOVolatile); 3148 } 3149 3150 // Perform the comparison via a getsetcc. 3151 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3152 *DAG.getContext(), 3153 Guard.getValueType()), 3154 Guard, GuardVal, ISD::SETNE); 3155 3156 // If the guard/stackslot do not equal, branch to failure MBB. 3157 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3158 MVT::Other, GuardVal.getOperand(0), 3159 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3160 // Otherwise branch to success MBB. 3161 SDValue Br = DAG.getNode(ISD::BR, dl, 3162 MVT::Other, BrCond, 3163 DAG.getBasicBlock(SPD.getSuccessMBB())); 3164 3165 DAG.setRoot(Br); 3166 } 3167 3168 /// Codegen the failure basic block for a stack protector check. 3169 /// 3170 /// A failure stack protector machine basic block consists simply of a call to 3171 /// __stack_chk_fail(). 3172 /// 3173 /// For a high level explanation of how this fits into the stack protector 3174 /// generation see the comment on the declaration of class 3175 /// StackProtectorDescriptor. 3176 void 3177 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3179 TargetLowering::MakeLibCallOptions CallOptions; 3180 CallOptions.setDiscardResult(true); 3181 SDValue Chain = 3182 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3183 std::nullopt, CallOptions, getCurSDLoc()) 3184 .second; 3185 // On PS4/PS5, the "return address" must still be within the calling 3186 // function, even if it's at the very end, so emit an explicit TRAP here. 3187 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3188 if (TM.getTargetTriple().isPS()) 3189 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3190 // WebAssembly needs an unreachable instruction after a non-returning call, 3191 // because the function return type can be different from __stack_chk_fail's 3192 // return type (void). 3193 if (TM.getTargetTriple().isWasm()) 3194 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3195 3196 DAG.setRoot(Chain); 3197 } 3198 3199 /// visitBitTestHeader - This function emits necessary code to produce value 3200 /// suitable for "bit tests" 3201 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3202 MachineBasicBlock *SwitchBB) { 3203 SDLoc dl = getCurSDLoc(); 3204 3205 // Subtract the minimum value. 3206 SDValue SwitchOp = getValue(B.SValue); 3207 EVT VT = SwitchOp.getValueType(); 3208 SDValue RangeSub = 3209 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3210 3211 // Determine the type of the test operands. 3212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3213 bool UsePtrType = false; 3214 if (!TLI.isTypeLegal(VT)) { 3215 UsePtrType = true; 3216 } else { 3217 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3218 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3219 // Switch table case range are encoded into series of masks. 3220 // Just use pointer type, it's guaranteed to fit. 3221 UsePtrType = true; 3222 break; 3223 } 3224 } 3225 SDValue Sub = RangeSub; 3226 if (UsePtrType) { 3227 VT = TLI.getPointerTy(DAG.getDataLayout()); 3228 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3229 } 3230 3231 B.RegVT = VT.getSimpleVT(); 3232 B.Reg = FuncInfo.CreateReg(B.RegVT); 3233 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3234 3235 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3236 3237 if (!B.FallthroughUnreachable) 3238 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3239 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3240 SwitchBB->normalizeSuccProbs(); 3241 3242 SDValue Root = CopyTo; 3243 if (!B.FallthroughUnreachable) { 3244 // Conditional branch to the default block. 3245 SDValue RangeCmp = DAG.getSetCC(dl, 3246 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3247 RangeSub.getValueType()), 3248 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3249 ISD::SETUGT); 3250 3251 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3252 DAG.getBasicBlock(B.Default)); 3253 } 3254 3255 // Avoid emitting unnecessary branches to the next block. 3256 if (MBB != NextBlock(SwitchBB)) 3257 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3258 3259 DAG.setRoot(Root); 3260 } 3261 3262 /// visitBitTestCase - this function produces one "bit test" 3263 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3264 MachineBasicBlock* NextMBB, 3265 BranchProbability BranchProbToNext, 3266 unsigned Reg, 3267 BitTestCase &B, 3268 MachineBasicBlock *SwitchBB) { 3269 SDLoc dl = getCurSDLoc(); 3270 MVT VT = BB.RegVT; 3271 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3272 SDValue Cmp; 3273 unsigned PopCount = llvm::popcount(B.Mask); 3274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3275 if (PopCount == 1) { 3276 // Testing for a single bit; just compare the shift count with what it 3277 // would need to be to shift a 1 bit in that position. 3278 Cmp = DAG.getSetCC( 3279 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3280 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3281 ISD::SETEQ); 3282 } else if (PopCount == BB.Range) { 3283 // There is only one zero bit in the range, test for it directly. 3284 Cmp = DAG.getSetCC( 3285 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3286 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3287 } else { 3288 // Make desired shift 3289 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3290 DAG.getConstant(1, dl, VT), ShiftOp); 3291 3292 // Emit bit tests and jumps 3293 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3294 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3295 Cmp = DAG.getSetCC( 3296 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3297 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3298 } 3299 3300 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3301 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3302 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3303 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3304 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3305 // one as they are relative probabilities (and thus work more like weights), 3306 // and hence we need to normalize them to let the sum of them become one. 3307 SwitchBB->normalizeSuccProbs(); 3308 3309 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3310 MVT::Other, getControlRoot(), 3311 Cmp, DAG.getBasicBlock(B.TargetBB)); 3312 3313 // Avoid emitting unnecessary branches to the next block. 3314 if (NextMBB != NextBlock(SwitchBB)) 3315 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3316 DAG.getBasicBlock(NextMBB)); 3317 3318 DAG.setRoot(BrAnd); 3319 } 3320 3321 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3322 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3323 3324 // Retrieve successors. Look through artificial IR level blocks like 3325 // catchswitch for successors. 3326 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3327 const BasicBlock *EHPadBB = I.getSuccessor(1); 3328 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3329 3330 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3331 // have to do anything here to lower funclet bundles. 3332 assert(!I.hasOperandBundlesOtherThan( 3333 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3334 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3335 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3336 LLVMContext::OB_clang_arc_attachedcall}) && 3337 "Cannot lower invokes with arbitrary operand bundles yet!"); 3338 3339 const Value *Callee(I.getCalledOperand()); 3340 const Function *Fn = dyn_cast<Function>(Callee); 3341 if (isa<InlineAsm>(Callee)) 3342 visitInlineAsm(I, EHPadBB); 3343 else if (Fn && Fn->isIntrinsic()) { 3344 switch (Fn->getIntrinsicID()) { 3345 default: 3346 llvm_unreachable("Cannot invoke this intrinsic"); 3347 case Intrinsic::donothing: 3348 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3349 case Intrinsic::seh_try_begin: 3350 case Intrinsic::seh_scope_begin: 3351 case Intrinsic::seh_try_end: 3352 case Intrinsic::seh_scope_end: 3353 if (EHPadMBB) 3354 // a block referenced by EH table 3355 // so dtor-funclet not removed by opts 3356 EHPadMBB->setMachineBlockAddressTaken(); 3357 break; 3358 case Intrinsic::experimental_patchpoint_void: 3359 case Intrinsic::experimental_patchpoint: 3360 visitPatchpoint(I, EHPadBB); 3361 break; 3362 case Intrinsic::experimental_gc_statepoint: 3363 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3364 break; 3365 case Intrinsic::wasm_rethrow: { 3366 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3367 // special because it can be invoked, so we manually lower it to a DAG 3368 // node here. 3369 SmallVector<SDValue, 8> Ops; 3370 Ops.push_back(getControlRoot()); // inchain for the terminator node 3371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3372 Ops.push_back( 3373 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3374 TLI.getPointerTy(DAG.getDataLayout()))); 3375 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3376 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3377 break; 3378 } 3379 } 3380 } else if (I.hasDeoptState()) { 3381 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3382 // Eventually we will support lowering the @llvm.experimental.deoptimize 3383 // intrinsic, and right now there are no plans to support other intrinsics 3384 // with deopt state. 3385 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3386 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3387 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3388 } else { 3389 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3390 } 3391 3392 // If the value of the invoke is used outside of its defining block, make it 3393 // available as a virtual register. 3394 // We already took care of the exported value for the statepoint instruction 3395 // during call to the LowerStatepoint. 3396 if (!isa<GCStatepointInst>(I)) { 3397 CopyToExportRegsIfNeeded(&I); 3398 } 3399 3400 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3401 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3402 BranchProbability EHPadBBProb = 3403 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3404 : BranchProbability::getZero(); 3405 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3406 3407 // Update successor info. 3408 addSuccessorWithProb(InvokeMBB, Return); 3409 for (auto &UnwindDest : UnwindDests) { 3410 UnwindDest.first->setIsEHPad(); 3411 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3412 } 3413 InvokeMBB->normalizeSuccProbs(); 3414 3415 // Drop into normal successor. 3416 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3417 DAG.getBasicBlock(Return))); 3418 } 3419 3420 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3421 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3422 3423 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3424 // have to do anything here to lower funclet bundles. 3425 assert(!I.hasOperandBundlesOtherThan( 3426 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3427 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3428 3429 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3430 visitInlineAsm(I); 3431 CopyToExportRegsIfNeeded(&I); 3432 3433 // Retrieve successors. 3434 SmallPtrSet<BasicBlock *, 8> Dests; 3435 Dests.insert(I.getDefaultDest()); 3436 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3437 3438 // Update successor info. 3439 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3440 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3441 BasicBlock *Dest = I.getIndirectDest(i); 3442 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3443 Target->setIsInlineAsmBrIndirectTarget(); 3444 Target->setMachineBlockAddressTaken(); 3445 Target->setLabelMustBeEmitted(); 3446 // Don't add duplicate machine successors. 3447 if (Dests.insert(Dest).second) 3448 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3449 } 3450 CallBrMBB->normalizeSuccProbs(); 3451 3452 // Drop into default successor. 3453 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3454 MVT::Other, getControlRoot(), 3455 DAG.getBasicBlock(Return))); 3456 } 3457 3458 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3459 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3460 } 3461 3462 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3463 assert(FuncInfo.MBB->isEHPad() && 3464 "Call to landingpad not in landing pad!"); 3465 3466 // If there aren't registers to copy the values into (e.g., during SjLj 3467 // exceptions), then don't bother to create these DAG nodes. 3468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3469 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3470 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3471 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3472 return; 3473 3474 // If landingpad's return type is token type, we don't create DAG nodes 3475 // for its exception pointer and selector value. The extraction of exception 3476 // pointer or selector value from token type landingpads is not currently 3477 // supported. 3478 if (LP.getType()->isTokenTy()) 3479 return; 3480 3481 SmallVector<EVT, 2> ValueVTs; 3482 SDLoc dl = getCurSDLoc(); 3483 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3484 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3485 3486 // Get the two live-in registers as SDValues. The physregs have already been 3487 // copied into virtual registers. 3488 SDValue Ops[2]; 3489 if (FuncInfo.ExceptionPointerVirtReg) { 3490 Ops[0] = DAG.getZExtOrTrunc( 3491 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3492 FuncInfo.ExceptionPointerVirtReg, 3493 TLI.getPointerTy(DAG.getDataLayout())), 3494 dl, ValueVTs[0]); 3495 } else { 3496 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3497 } 3498 Ops[1] = DAG.getZExtOrTrunc( 3499 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3500 FuncInfo.ExceptionSelectorVirtReg, 3501 TLI.getPointerTy(DAG.getDataLayout())), 3502 dl, ValueVTs[1]); 3503 3504 // Merge into one. 3505 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3506 DAG.getVTList(ValueVTs), Ops); 3507 setValue(&LP, Res); 3508 } 3509 3510 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3511 MachineBasicBlock *Last) { 3512 // Update JTCases. 3513 for (JumpTableBlock &JTB : SL->JTCases) 3514 if (JTB.first.HeaderBB == First) 3515 JTB.first.HeaderBB = Last; 3516 3517 // Update BitTestCases. 3518 for (BitTestBlock &BTB : SL->BitTestCases) 3519 if (BTB.Parent == First) 3520 BTB.Parent = Last; 3521 } 3522 3523 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3524 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3525 3526 // Update machine-CFG edges with unique successors. 3527 SmallSet<BasicBlock*, 32> Done; 3528 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3529 BasicBlock *BB = I.getSuccessor(i); 3530 bool Inserted = Done.insert(BB).second; 3531 if (!Inserted) 3532 continue; 3533 3534 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3535 addSuccessorWithProb(IndirectBrMBB, Succ); 3536 } 3537 IndirectBrMBB->normalizeSuccProbs(); 3538 3539 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3540 MVT::Other, getControlRoot(), 3541 getValue(I.getAddress()))); 3542 } 3543 3544 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3545 if (!DAG.getTarget().Options.TrapUnreachable) 3546 return; 3547 3548 // We may be able to ignore unreachable behind a noreturn call. 3549 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3550 Call && Call->doesNotReturn()) { 3551 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3552 return; 3553 // Do not emit an additional trap instruction. 3554 if (Call->isNonContinuableTrap()) 3555 return; 3556 } 3557 3558 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3559 } 3560 3561 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3562 SDNodeFlags Flags; 3563 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3564 Flags.copyFMF(*FPOp); 3565 3566 SDValue Op = getValue(I.getOperand(0)); 3567 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3568 Op, Flags); 3569 setValue(&I, UnNodeValue); 3570 } 3571 3572 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3573 SDNodeFlags Flags; 3574 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3575 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3576 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3577 } 3578 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3579 Flags.setExact(ExactOp->isExact()); 3580 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3581 Flags.setDisjoint(DisjointOp->isDisjoint()); 3582 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3583 Flags.copyFMF(*FPOp); 3584 3585 SDValue Op1 = getValue(I.getOperand(0)); 3586 SDValue Op2 = getValue(I.getOperand(1)); 3587 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3588 Op1, Op2, Flags); 3589 setValue(&I, BinNodeValue); 3590 } 3591 3592 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3593 SDValue Op1 = getValue(I.getOperand(0)); 3594 SDValue Op2 = getValue(I.getOperand(1)); 3595 3596 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3597 Op1.getValueType(), DAG.getDataLayout()); 3598 3599 // Coerce the shift amount to the right type if we can. This exposes the 3600 // truncate or zext to optimization early. 3601 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3602 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3603 "Unexpected shift type"); 3604 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3605 } 3606 3607 bool nuw = false; 3608 bool nsw = false; 3609 bool exact = false; 3610 3611 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3612 3613 if (const OverflowingBinaryOperator *OFBinOp = 3614 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3615 nuw = OFBinOp->hasNoUnsignedWrap(); 3616 nsw = OFBinOp->hasNoSignedWrap(); 3617 } 3618 if (const PossiblyExactOperator *ExactOp = 3619 dyn_cast<const PossiblyExactOperator>(&I)) 3620 exact = ExactOp->isExact(); 3621 } 3622 SDNodeFlags Flags; 3623 Flags.setExact(exact); 3624 Flags.setNoSignedWrap(nsw); 3625 Flags.setNoUnsignedWrap(nuw); 3626 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3627 Flags); 3628 setValue(&I, Res); 3629 } 3630 3631 void SelectionDAGBuilder::visitSDiv(const User &I) { 3632 SDValue Op1 = getValue(I.getOperand(0)); 3633 SDValue Op2 = getValue(I.getOperand(1)); 3634 3635 SDNodeFlags Flags; 3636 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3637 cast<PossiblyExactOperator>(&I)->isExact()); 3638 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3639 Op2, Flags)); 3640 } 3641 3642 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3643 ICmpInst::Predicate predicate = I.getPredicate(); 3644 SDValue Op1 = getValue(I.getOperand(0)); 3645 SDValue Op2 = getValue(I.getOperand(1)); 3646 ISD::CondCode Opcode = getICmpCondCode(predicate); 3647 3648 auto &TLI = DAG.getTargetLoweringInfo(); 3649 EVT MemVT = 3650 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3651 3652 // If a pointer's DAG type is larger than its memory type then the DAG values 3653 // are zero-extended. This breaks signed comparisons so truncate back to the 3654 // underlying type before doing the compare. 3655 if (Op1.getValueType() != MemVT) { 3656 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3657 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3658 } 3659 3660 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3661 I.getType()); 3662 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3663 } 3664 3665 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3666 FCmpInst::Predicate predicate = I.getPredicate(); 3667 SDValue Op1 = getValue(I.getOperand(0)); 3668 SDValue Op2 = getValue(I.getOperand(1)); 3669 3670 ISD::CondCode Condition = getFCmpCondCode(predicate); 3671 auto *FPMO = cast<FPMathOperator>(&I); 3672 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3673 Condition = getFCmpCodeWithoutNaN(Condition); 3674 3675 SDNodeFlags Flags; 3676 Flags.copyFMF(*FPMO); 3677 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3678 3679 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3680 I.getType()); 3681 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3682 } 3683 3684 // Check if the condition of the select has one use or two users that are both 3685 // selects with the same condition. 3686 static bool hasOnlySelectUsers(const Value *Cond) { 3687 return llvm::all_of(Cond->users(), [](const Value *V) { 3688 return isa<SelectInst>(V); 3689 }); 3690 } 3691 3692 void SelectionDAGBuilder::visitSelect(const User &I) { 3693 SmallVector<EVT, 4> ValueVTs; 3694 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3695 ValueVTs); 3696 unsigned NumValues = ValueVTs.size(); 3697 if (NumValues == 0) return; 3698 3699 SmallVector<SDValue, 4> Values(NumValues); 3700 SDValue Cond = getValue(I.getOperand(0)); 3701 SDValue LHSVal = getValue(I.getOperand(1)); 3702 SDValue RHSVal = getValue(I.getOperand(2)); 3703 SmallVector<SDValue, 1> BaseOps(1, Cond); 3704 ISD::NodeType OpCode = 3705 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3706 3707 bool IsUnaryAbs = false; 3708 bool Negate = false; 3709 3710 SDNodeFlags Flags; 3711 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3712 Flags.copyFMF(*FPOp); 3713 3714 Flags.setUnpredictable( 3715 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3716 3717 // Min/max matching is only viable if all output VTs are the same. 3718 if (all_equal(ValueVTs)) { 3719 EVT VT = ValueVTs[0]; 3720 LLVMContext &Ctx = *DAG.getContext(); 3721 auto &TLI = DAG.getTargetLoweringInfo(); 3722 3723 // We care about the legality of the operation after it has been type 3724 // legalized. 3725 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3726 VT = TLI.getTypeToTransformTo(Ctx, VT); 3727 3728 // If the vselect is legal, assume we want to leave this as a vector setcc + 3729 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3730 // min/max is legal on the scalar type. 3731 bool UseScalarMinMax = VT.isVector() && 3732 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3733 3734 // ValueTracking's select pattern matching does not account for -0.0, 3735 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3736 // -0.0 is less than +0.0. 3737 const Value *LHS, *RHS; 3738 auto SPR = matchSelectPattern(&I, LHS, RHS); 3739 ISD::NodeType Opc = ISD::DELETED_NODE; 3740 switch (SPR.Flavor) { 3741 case SPF_UMAX: Opc = ISD::UMAX; break; 3742 case SPF_UMIN: Opc = ISD::UMIN; break; 3743 case SPF_SMAX: Opc = ISD::SMAX; break; 3744 case SPF_SMIN: Opc = ISD::SMIN; break; 3745 case SPF_FMINNUM: 3746 switch (SPR.NaNBehavior) { 3747 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3748 case SPNB_RETURNS_NAN: break; 3749 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3750 case SPNB_RETURNS_ANY: 3751 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3752 (UseScalarMinMax && 3753 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3754 Opc = ISD::FMINNUM; 3755 break; 3756 } 3757 break; 3758 case SPF_FMAXNUM: 3759 switch (SPR.NaNBehavior) { 3760 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3761 case SPNB_RETURNS_NAN: break; 3762 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3763 case SPNB_RETURNS_ANY: 3764 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3765 (UseScalarMinMax && 3766 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3767 Opc = ISD::FMAXNUM; 3768 break; 3769 } 3770 break; 3771 case SPF_NABS: 3772 Negate = true; 3773 [[fallthrough]]; 3774 case SPF_ABS: 3775 IsUnaryAbs = true; 3776 Opc = ISD::ABS; 3777 break; 3778 default: break; 3779 } 3780 3781 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3782 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3783 (UseScalarMinMax && 3784 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3785 // If the underlying comparison instruction is used by any other 3786 // instruction, the consumed instructions won't be destroyed, so it is 3787 // not profitable to convert to a min/max. 3788 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3789 OpCode = Opc; 3790 LHSVal = getValue(LHS); 3791 RHSVal = getValue(RHS); 3792 BaseOps.clear(); 3793 } 3794 3795 if (IsUnaryAbs) { 3796 OpCode = Opc; 3797 LHSVal = getValue(LHS); 3798 BaseOps.clear(); 3799 } 3800 } 3801 3802 if (IsUnaryAbs) { 3803 for (unsigned i = 0; i != NumValues; ++i) { 3804 SDLoc dl = getCurSDLoc(); 3805 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3806 Values[i] = 3807 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3808 if (Negate) 3809 Values[i] = DAG.getNegative(Values[i], dl, VT); 3810 } 3811 } else { 3812 for (unsigned i = 0; i != NumValues; ++i) { 3813 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3814 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3815 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3816 Values[i] = DAG.getNode( 3817 OpCode, getCurSDLoc(), 3818 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3819 } 3820 } 3821 3822 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3823 DAG.getVTList(ValueVTs), Values)); 3824 } 3825 3826 void SelectionDAGBuilder::visitTrunc(const User &I) { 3827 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3828 SDValue N = getValue(I.getOperand(0)); 3829 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3830 I.getType()); 3831 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3832 } 3833 3834 void SelectionDAGBuilder::visitZExt(const User &I) { 3835 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3836 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3837 SDValue N = getValue(I.getOperand(0)); 3838 auto &TLI = DAG.getTargetLoweringInfo(); 3839 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3840 3841 SDNodeFlags Flags; 3842 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3843 Flags.setNonNeg(PNI->hasNonNeg()); 3844 3845 // Eagerly use nonneg information to canonicalize towards sign_extend if 3846 // that is the target's preference. 3847 // TODO: Let the target do this later. 3848 if (Flags.hasNonNeg() && 3849 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3850 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3851 return; 3852 } 3853 3854 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3855 } 3856 3857 void SelectionDAGBuilder::visitSExt(const User &I) { 3858 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3859 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3860 SDValue N = getValue(I.getOperand(0)); 3861 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3862 I.getType()); 3863 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3864 } 3865 3866 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3867 // FPTrunc is never a no-op cast, no need to check 3868 SDValue N = getValue(I.getOperand(0)); 3869 SDLoc dl = getCurSDLoc(); 3870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3871 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3872 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3873 DAG.getTargetConstant( 3874 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3875 } 3876 3877 void SelectionDAGBuilder::visitFPExt(const User &I) { 3878 // FPExt is never a no-op cast, no need to check 3879 SDValue N = getValue(I.getOperand(0)); 3880 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3881 I.getType()); 3882 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3883 } 3884 3885 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3886 // FPToUI is never a no-op cast, no need to check 3887 SDValue N = getValue(I.getOperand(0)); 3888 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3889 I.getType()); 3890 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3891 } 3892 3893 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3894 // FPToSI is never a no-op cast, no need to check 3895 SDValue N = getValue(I.getOperand(0)); 3896 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3897 I.getType()); 3898 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3899 } 3900 3901 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3902 // UIToFP is never a no-op cast, no need to check 3903 SDValue N = getValue(I.getOperand(0)); 3904 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3905 I.getType()); 3906 SDNodeFlags Flags; 3907 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3908 Flags.setNonNeg(PNI->hasNonNeg()); 3909 3910 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3911 } 3912 3913 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3914 // SIToFP is never a no-op cast, no need to check 3915 SDValue N = getValue(I.getOperand(0)); 3916 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3917 I.getType()); 3918 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3919 } 3920 3921 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3922 // What to do depends on the size of the integer and the size of the pointer. 3923 // We can either truncate, zero extend, or no-op, accordingly. 3924 SDValue N = getValue(I.getOperand(0)); 3925 auto &TLI = DAG.getTargetLoweringInfo(); 3926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3927 I.getType()); 3928 EVT PtrMemVT = 3929 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3930 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3931 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3932 setValue(&I, N); 3933 } 3934 3935 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3936 // What to do depends on the size of the integer and the size of the pointer. 3937 // We can either truncate, zero extend, or no-op, accordingly. 3938 SDValue N = getValue(I.getOperand(0)); 3939 auto &TLI = DAG.getTargetLoweringInfo(); 3940 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3941 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3942 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3943 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3944 setValue(&I, N); 3945 } 3946 3947 void SelectionDAGBuilder::visitBitCast(const User &I) { 3948 SDValue N = getValue(I.getOperand(0)); 3949 SDLoc dl = getCurSDLoc(); 3950 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3951 I.getType()); 3952 3953 // BitCast assures us that source and destination are the same size so this is 3954 // either a BITCAST or a no-op. 3955 if (DestVT != N.getValueType()) 3956 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3957 DestVT, N)); // convert types. 3958 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3959 // might fold any kind of constant expression to an integer constant and that 3960 // is not what we are looking for. Only recognize a bitcast of a genuine 3961 // constant integer as an opaque constant. 3962 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3963 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3964 /*isOpaque*/true)); 3965 else 3966 setValue(&I, N); // noop cast. 3967 } 3968 3969 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3971 const Value *SV = I.getOperand(0); 3972 SDValue N = getValue(SV); 3973 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3974 3975 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3976 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3977 3978 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3979 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3980 3981 setValue(&I, N); 3982 } 3983 3984 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3986 SDValue InVec = getValue(I.getOperand(0)); 3987 SDValue InVal = getValue(I.getOperand(1)); 3988 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3989 TLI.getVectorIdxTy(DAG.getDataLayout())); 3990 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3991 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3992 InVec, InVal, InIdx)); 3993 } 3994 3995 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3997 SDValue InVec = getValue(I.getOperand(0)); 3998 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3999 TLI.getVectorIdxTy(DAG.getDataLayout())); 4000 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 4001 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4002 InVec, InIdx)); 4003 } 4004 4005 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4006 SDValue Src1 = getValue(I.getOperand(0)); 4007 SDValue Src2 = getValue(I.getOperand(1)); 4008 ArrayRef<int> Mask; 4009 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4010 Mask = SVI->getShuffleMask(); 4011 else 4012 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4013 SDLoc DL = getCurSDLoc(); 4014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4015 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4016 EVT SrcVT = Src1.getValueType(); 4017 4018 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4019 VT.isScalableVector()) { 4020 // Canonical splat form of first element of first input vector. 4021 SDValue FirstElt = 4022 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4023 DAG.getVectorIdxConstant(0, DL)); 4024 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4025 return; 4026 } 4027 4028 // For now, we only handle splats for scalable vectors. 4029 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4030 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4031 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4032 4033 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4034 unsigned MaskNumElts = Mask.size(); 4035 4036 if (SrcNumElts == MaskNumElts) { 4037 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4038 return; 4039 } 4040 4041 // Normalize the shuffle vector since mask and vector length don't match. 4042 if (SrcNumElts < MaskNumElts) { 4043 // Mask is longer than the source vectors. We can use concatenate vector to 4044 // make the mask and vectors lengths match. 4045 4046 if (MaskNumElts % SrcNumElts == 0) { 4047 // Mask length is a multiple of the source vector length. 4048 // Check if the shuffle is some kind of concatenation of the input 4049 // vectors. 4050 unsigned NumConcat = MaskNumElts / SrcNumElts; 4051 bool IsConcat = true; 4052 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4053 for (unsigned i = 0; i != MaskNumElts; ++i) { 4054 int Idx = Mask[i]; 4055 if (Idx < 0) 4056 continue; 4057 // Ensure the indices in each SrcVT sized piece are sequential and that 4058 // the same source is used for the whole piece. 4059 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4060 (ConcatSrcs[i / SrcNumElts] >= 0 && 4061 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4062 IsConcat = false; 4063 break; 4064 } 4065 // Remember which source this index came from. 4066 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4067 } 4068 4069 // The shuffle is concatenating multiple vectors together. Just emit 4070 // a CONCAT_VECTORS operation. 4071 if (IsConcat) { 4072 SmallVector<SDValue, 8> ConcatOps; 4073 for (auto Src : ConcatSrcs) { 4074 if (Src < 0) 4075 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4076 else if (Src == 0) 4077 ConcatOps.push_back(Src1); 4078 else 4079 ConcatOps.push_back(Src2); 4080 } 4081 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4082 return; 4083 } 4084 } 4085 4086 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4087 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4088 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4089 PaddedMaskNumElts); 4090 4091 // Pad both vectors with undefs to make them the same length as the mask. 4092 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4093 4094 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4095 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4096 MOps1[0] = Src1; 4097 MOps2[0] = Src2; 4098 4099 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4100 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4101 4102 // Readjust mask for new input vector length. 4103 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4104 for (unsigned i = 0; i != MaskNumElts; ++i) { 4105 int Idx = Mask[i]; 4106 if (Idx >= (int)SrcNumElts) 4107 Idx -= SrcNumElts - PaddedMaskNumElts; 4108 MappedOps[i] = Idx; 4109 } 4110 4111 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4112 4113 // If the concatenated vector was padded, extract a subvector with the 4114 // correct number of elements. 4115 if (MaskNumElts != PaddedMaskNumElts) 4116 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4117 DAG.getVectorIdxConstant(0, DL)); 4118 4119 setValue(&I, Result); 4120 return; 4121 } 4122 4123 if (SrcNumElts > MaskNumElts) { 4124 // Analyze the access pattern of the vector to see if we can extract 4125 // two subvectors and do the shuffle. 4126 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4127 bool CanExtract = true; 4128 for (int Idx : Mask) { 4129 unsigned Input = 0; 4130 if (Idx < 0) 4131 continue; 4132 4133 if (Idx >= (int)SrcNumElts) { 4134 Input = 1; 4135 Idx -= SrcNumElts; 4136 } 4137 4138 // If all the indices come from the same MaskNumElts sized portion of 4139 // the sources we can use extract. Also make sure the extract wouldn't 4140 // extract past the end of the source. 4141 int NewStartIdx = alignDown(Idx, MaskNumElts); 4142 if (NewStartIdx + MaskNumElts > SrcNumElts || 4143 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4144 CanExtract = false; 4145 // Make sure we always update StartIdx as we use it to track if all 4146 // elements are undef. 4147 StartIdx[Input] = NewStartIdx; 4148 } 4149 4150 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4151 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4152 return; 4153 } 4154 if (CanExtract) { 4155 // Extract appropriate subvector and generate a vector shuffle 4156 for (unsigned Input = 0; Input < 2; ++Input) { 4157 SDValue &Src = Input == 0 ? Src1 : Src2; 4158 if (StartIdx[Input] < 0) 4159 Src = DAG.getUNDEF(VT); 4160 else { 4161 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4162 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4163 } 4164 } 4165 4166 // Calculate new mask. 4167 SmallVector<int, 8> MappedOps(Mask); 4168 for (int &Idx : MappedOps) { 4169 if (Idx >= (int)SrcNumElts) 4170 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4171 else if (Idx >= 0) 4172 Idx -= StartIdx[0]; 4173 } 4174 4175 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4176 return; 4177 } 4178 } 4179 4180 // We can't use either concat vectors or extract subvectors so fall back to 4181 // replacing the shuffle with extract and build vector. 4182 // to insert and build vector. 4183 EVT EltVT = VT.getVectorElementType(); 4184 SmallVector<SDValue,8> Ops; 4185 for (int Idx : Mask) { 4186 SDValue Res; 4187 4188 if (Idx < 0) { 4189 Res = DAG.getUNDEF(EltVT); 4190 } else { 4191 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4192 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4193 4194 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4195 DAG.getVectorIdxConstant(Idx, DL)); 4196 } 4197 4198 Ops.push_back(Res); 4199 } 4200 4201 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4202 } 4203 4204 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4205 ArrayRef<unsigned> Indices = I.getIndices(); 4206 const Value *Op0 = I.getOperand(0); 4207 const Value *Op1 = I.getOperand(1); 4208 Type *AggTy = I.getType(); 4209 Type *ValTy = Op1->getType(); 4210 bool IntoUndef = isa<UndefValue>(Op0); 4211 bool FromUndef = isa<UndefValue>(Op1); 4212 4213 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4214 4215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4216 SmallVector<EVT, 4> AggValueVTs; 4217 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4218 SmallVector<EVT, 4> ValValueVTs; 4219 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4220 4221 unsigned NumAggValues = AggValueVTs.size(); 4222 unsigned NumValValues = ValValueVTs.size(); 4223 SmallVector<SDValue, 4> Values(NumAggValues); 4224 4225 // Ignore an insertvalue that produces an empty object 4226 if (!NumAggValues) { 4227 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4228 return; 4229 } 4230 4231 SDValue Agg = getValue(Op0); 4232 unsigned i = 0; 4233 // Copy the beginning value(s) from the original aggregate. 4234 for (; i != LinearIndex; ++i) 4235 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4236 SDValue(Agg.getNode(), Agg.getResNo() + i); 4237 // Copy values from the inserted value(s). 4238 if (NumValValues) { 4239 SDValue Val = getValue(Op1); 4240 for (; i != LinearIndex + NumValValues; ++i) 4241 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4242 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4243 } 4244 // Copy remaining value(s) from the original aggregate. 4245 for (; i != NumAggValues; ++i) 4246 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4247 SDValue(Agg.getNode(), Agg.getResNo() + i); 4248 4249 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4250 DAG.getVTList(AggValueVTs), Values)); 4251 } 4252 4253 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4254 ArrayRef<unsigned> Indices = I.getIndices(); 4255 const Value *Op0 = I.getOperand(0); 4256 Type *AggTy = Op0->getType(); 4257 Type *ValTy = I.getType(); 4258 bool OutOfUndef = isa<UndefValue>(Op0); 4259 4260 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4261 4262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4263 SmallVector<EVT, 4> ValValueVTs; 4264 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4265 4266 unsigned NumValValues = ValValueVTs.size(); 4267 4268 // Ignore a extractvalue that produces an empty object 4269 if (!NumValValues) { 4270 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4271 return; 4272 } 4273 4274 SmallVector<SDValue, 4> Values(NumValValues); 4275 4276 SDValue Agg = getValue(Op0); 4277 // Copy out the selected value(s). 4278 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4279 Values[i - LinearIndex] = 4280 OutOfUndef ? 4281 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4282 SDValue(Agg.getNode(), Agg.getResNo() + i); 4283 4284 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4285 DAG.getVTList(ValValueVTs), Values)); 4286 } 4287 4288 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4289 Value *Op0 = I.getOperand(0); 4290 // Note that the pointer operand may be a vector of pointers. Take the scalar 4291 // element which holds a pointer. 4292 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4293 SDValue N = getValue(Op0); 4294 SDLoc dl = getCurSDLoc(); 4295 auto &TLI = DAG.getTargetLoweringInfo(); 4296 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4297 4298 // Normalize Vector GEP - all scalar operands should be converted to the 4299 // splat vector. 4300 bool IsVectorGEP = I.getType()->isVectorTy(); 4301 ElementCount VectorElementCount = 4302 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4303 : ElementCount::getFixed(0); 4304 4305 if (IsVectorGEP && !N.getValueType().isVector()) { 4306 LLVMContext &Context = *DAG.getContext(); 4307 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4308 N = DAG.getSplat(VT, dl, N); 4309 } 4310 4311 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4312 GTI != E; ++GTI) { 4313 const Value *Idx = GTI.getOperand(); 4314 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4315 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4316 if (Field) { 4317 // N = N + Offset 4318 uint64_t Offset = 4319 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4320 4321 // In an inbounds GEP with an offset that is nonnegative even when 4322 // interpreted as signed, assume there is no unsigned overflow. 4323 SDNodeFlags Flags; 4324 if (NW.hasNoUnsignedWrap() || 4325 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4326 Flags.setNoUnsignedWrap(true); 4327 4328 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4329 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4330 } 4331 } else { 4332 // IdxSize is the width of the arithmetic according to IR semantics. 4333 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4334 // (and fix up the result later). 4335 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4336 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4337 TypeSize ElementSize = 4338 GTI.getSequentialElementStride(DAG.getDataLayout()); 4339 // We intentionally mask away the high bits here; ElementSize may not 4340 // fit in IdxTy. 4341 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4342 bool ElementScalable = ElementSize.isScalable(); 4343 4344 // If this is a scalar constant or a splat vector of constants, 4345 // handle it quickly. 4346 const auto *C = dyn_cast<Constant>(Idx); 4347 if (C && isa<VectorType>(C->getType())) 4348 C = C->getSplatValue(); 4349 4350 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4351 if (CI && CI->isZero()) 4352 continue; 4353 if (CI && !ElementScalable) { 4354 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4355 LLVMContext &Context = *DAG.getContext(); 4356 SDValue OffsVal; 4357 if (IsVectorGEP) 4358 OffsVal = DAG.getConstant( 4359 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4360 else 4361 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4362 4363 // In an inbounds GEP with an offset that is nonnegative even when 4364 // interpreted as signed, assume there is no unsigned overflow. 4365 SDNodeFlags Flags; 4366 if (NW.hasNoUnsignedWrap() || 4367 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4368 Flags.setNoUnsignedWrap(true); 4369 4370 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4371 4372 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4373 continue; 4374 } 4375 4376 // N = N + Idx * ElementMul; 4377 SDValue IdxN = getValue(Idx); 4378 4379 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4380 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4381 VectorElementCount); 4382 IdxN = DAG.getSplat(VT, dl, IdxN); 4383 } 4384 4385 // If the index is smaller or larger than intptr_t, truncate or extend 4386 // it. 4387 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4388 4389 if (ElementScalable) { 4390 EVT VScaleTy = N.getValueType().getScalarType(); 4391 SDValue VScale = DAG.getNode( 4392 ISD::VSCALE, dl, VScaleTy, 4393 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4394 if (IsVectorGEP) 4395 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4396 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4397 } else { 4398 // If this is a multiply by a power of two, turn it into a shl 4399 // immediately. This is a very common case. 4400 if (ElementMul != 1) { 4401 if (ElementMul.isPowerOf2()) { 4402 unsigned Amt = ElementMul.logBase2(); 4403 IdxN = DAG.getNode(ISD::SHL, dl, 4404 N.getValueType(), IdxN, 4405 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4406 } else { 4407 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4408 IdxN.getValueType()); 4409 IdxN = DAG.getNode(ISD::MUL, dl, 4410 N.getValueType(), IdxN, Scale); 4411 } 4412 } 4413 } 4414 4415 N = DAG.getNode(ISD::ADD, dl, 4416 N.getValueType(), N, IdxN); 4417 } 4418 } 4419 4420 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4421 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4422 if (IsVectorGEP) { 4423 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4424 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4425 } 4426 4427 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4428 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4429 4430 setValue(&I, N); 4431 } 4432 4433 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4434 // If this is a fixed sized alloca in the entry block of the function, 4435 // allocate it statically on the stack. 4436 if (FuncInfo.StaticAllocaMap.count(&I)) 4437 return; // getValue will auto-populate this. 4438 4439 SDLoc dl = getCurSDLoc(); 4440 Type *Ty = I.getAllocatedType(); 4441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4442 auto &DL = DAG.getDataLayout(); 4443 TypeSize TySize = DL.getTypeAllocSize(Ty); 4444 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4445 4446 SDValue AllocSize = getValue(I.getArraySize()); 4447 4448 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4449 if (AllocSize.getValueType() != IntPtr) 4450 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4451 4452 if (TySize.isScalable()) 4453 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4454 DAG.getVScale(dl, IntPtr, 4455 APInt(IntPtr.getScalarSizeInBits(), 4456 TySize.getKnownMinValue()))); 4457 else { 4458 SDValue TySizeValue = 4459 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4460 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4461 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4462 } 4463 4464 // Handle alignment. If the requested alignment is less than or equal to 4465 // the stack alignment, ignore it. If the size is greater than or equal to 4466 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4467 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4468 if (*Alignment <= StackAlign) 4469 Alignment = std::nullopt; 4470 4471 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4472 // Round the size of the allocation up to the stack alignment size 4473 // by add SA-1 to the size. This doesn't overflow because we're computing 4474 // an address inside an alloca. 4475 SDNodeFlags Flags; 4476 Flags.setNoUnsignedWrap(true); 4477 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4478 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4479 4480 // Mask out the low bits for alignment purposes. 4481 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4482 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4483 4484 SDValue Ops[] = { 4485 getRoot(), AllocSize, 4486 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4487 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4488 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4489 setValue(&I, DSA); 4490 DAG.setRoot(DSA.getValue(1)); 4491 4492 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4493 } 4494 4495 static const MDNode *getRangeMetadata(const Instruction &I) { 4496 // If !noundef is not present, then !range violation results in a poison 4497 // value rather than immediate undefined behavior. In theory, transferring 4498 // these annotations to SDAG is fine, but in practice there are key SDAG 4499 // transforms that are known not to be poison-safe, such as folding logical 4500 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4501 // also present. 4502 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4503 return nullptr; 4504 return I.getMetadata(LLVMContext::MD_range); 4505 } 4506 4507 static std::optional<ConstantRange> getRange(const Instruction &I) { 4508 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4509 // see comment in getRangeMetadata about this check 4510 if (CB->hasRetAttr(Attribute::NoUndef)) 4511 return CB->getRange(); 4512 } 4513 if (const MDNode *Range = getRangeMetadata(I)) 4514 return getConstantRangeFromMetadata(*Range); 4515 return std::nullopt; 4516 } 4517 4518 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4519 if (I.isAtomic()) 4520 return visitAtomicLoad(I); 4521 4522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4523 const Value *SV = I.getOperand(0); 4524 if (TLI.supportSwiftError()) { 4525 // Swifterror values can come from either a function parameter with 4526 // swifterror attribute or an alloca with swifterror attribute. 4527 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4528 if (Arg->hasSwiftErrorAttr()) 4529 return visitLoadFromSwiftError(I); 4530 } 4531 4532 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4533 if (Alloca->isSwiftError()) 4534 return visitLoadFromSwiftError(I); 4535 } 4536 } 4537 4538 SDValue Ptr = getValue(SV); 4539 4540 Type *Ty = I.getType(); 4541 SmallVector<EVT, 4> ValueVTs, MemVTs; 4542 SmallVector<TypeSize, 4> Offsets; 4543 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4544 unsigned NumValues = ValueVTs.size(); 4545 if (NumValues == 0) 4546 return; 4547 4548 Align Alignment = I.getAlign(); 4549 AAMDNodes AAInfo = I.getAAMetadata(); 4550 const MDNode *Ranges = getRangeMetadata(I); 4551 bool isVolatile = I.isVolatile(); 4552 MachineMemOperand::Flags MMOFlags = 4553 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4554 4555 SDValue Root; 4556 bool ConstantMemory = false; 4557 if (isVolatile) 4558 // Serialize volatile loads with other side effects. 4559 Root = getRoot(); 4560 else if (NumValues > MaxParallelChains) 4561 Root = getMemoryRoot(); 4562 else if (AA && 4563 AA->pointsToConstantMemory(MemoryLocation( 4564 SV, 4565 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4566 AAInfo))) { 4567 // Do not serialize (non-volatile) loads of constant memory with anything. 4568 Root = DAG.getEntryNode(); 4569 ConstantMemory = true; 4570 MMOFlags |= MachineMemOperand::MOInvariant; 4571 } else { 4572 // Do not serialize non-volatile loads against each other. 4573 Root = DAG.getRoot(); 4574 } 4575 4576 SDLoc dl = getCurSDLoc(); 4577 4578 if (isVolatile) 4579 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4580 4581 SmallVector<SDValue, 4> Values(NumValues); 4582 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4583 4584 unsigned ChainI = 0; 4585 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4586 // Serializing loads here may result in excessive register pressure, and 4587 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4588 // could recover a bit by hoisting nodes upward in the chain by recognizing 4589 // they are side-effect free or do not alias. The optimizer should really 4590 // avoid this case by converting large object/array copies to llvm.memcpy 4591 // (MaxParallelChains should always remain as failsafe). 4592 if (ChainI == MaxParallelChains) { 4593 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4594 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4595 ArrayRef(Chains.data(), ChainI)); 4596 Root = Chain; 4597 ChainI = 0; 4598 } 4599 4600 // TODO: MachinePointerInfo only supports a fixed length offset. 4601 MachinePointerInfo PtrInfo = 4602 !Offsets[i].isScalable() || Offsets[i].isZero() 4603 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4604 : MachinePointerInfo(); 4605 4606 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4607 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4608 MMOFlags, AAInfo, Ranges); 4609 Chains[ChainI] = L.getValue(1); 4610 4611 if (MemVTs[i] != ValueVTs[i]) 4612 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4613 4614 Values[i] = L; 4615 } 4616 4617 if (!ConstantMemory) { 4618 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4619 ArrayRef(Chains.data(), ChainI)); 4620 if (isVolatile) 4621 DAG.setRoot(Chain); 4622 else 4623 PendingLoads.push_back(Chain); 4624 } 4625 4626 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4627 DAG.getVTList(ValueVTs), Values)); 4628 } 4629 4630 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4631 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4632 "call visitStoreToSwiftError when backend supports swifterror"); 4633 4634 SmallVector<EVT, 4> ValueVTs; 4635 SmallVector<uint64_t, 4> Offsets; 4636 const Value *SrcV = I.getOperand(0); 4637 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4638 SrcV->getType(), ValueVTs, &Offsets, 0); 4639 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4640 "expect a single EVT for swifterror"); 4641 4642 SDValue Src = getValue(SrcV); 4643 // Create a virtual register, then update the virtual register. 4644 Register VReg = 4645 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4646 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4647 // Chain can be getRoot or getControlRoot. 4648 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4649 SDValue(Src.getNode(), Src.getResNo())); 4650 DAG.setRoot(CopyNode); 4651 } 4652 4653 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4654 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4655 "call visitLoadFromSwiftError when backend supports swifterror"); 4656 4657 assert(!I.isVolatile() && 4658 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4659 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4660 "Support volatile, non temporal, invariant for load_from_swift_error"); 4661 4662 const Value *SV = I.getOperand(0); 4663 Type *Ty = I.getType(); 4664 assert( 4665 (!AA || 4666 !AA->pointsToConstantMemory(MemoryLocation( 4667 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4668 I.getAAMetadata()))) && 4669 "load_from_swift_error should not be constant memory"); 4670 4671 SmallVector<EVT, 4> ValueVTs; 4672 SmallVector<uint64_t, 4> Offsets; 4673 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4674 ValueVTs, &Offsets, 0); 4675 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4676 "expect a single EVT for swifterror"); 4677 4678 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4679 SDValue L = DAG.getCopyFromReg( 4680 getRoot(), getCurSDLoc(), 4681 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4682 4683 setValue(&I, L); 4684 } 4685 4686 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4687 if (I.isAtomic()) 4688 return visitAtomicStore(I); 4689 4690 const Value *SrcV = I.getOperand(0); 4691 const Value *PtrV = I.getOperand(1); 4692 4693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4694 if (TLI.supportSwiftError()) { 4695 // Swifterror values can come from either a function parameter with 4696 // swifterror attribute or an alloca with swifterror attribute. 4697 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4698 if (Arg->hasSwiftErrorAttr()) 4699 return visitStoreToSwiftError(I); 4700 } 4701 4702 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4703 if (Alloca->isSwiftError()) 4704 return visitStoreToSwiftError(I); 4705 } 4706 } 4707 4708 SmallVector<EVT, 4> ValueVTs, MemVTs; 4709 SmallVector<TypeSize, 4> Offsets; 4710 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4711 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4712 unsigned NumValues = ValueVTs.size(); 4713 if (NumValues == 0) 4714 return; 4715 4716 // Get the lowered operands. Note that we do this after 4717 // checking if NumResults is zero, because with zero results 4718 // the operands won't have values in the map. 4719 SDValue Src = getValue(SrcV); 4720 SDValue Ptr = getValue(PtrV); 4721 4722 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4723 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4724 SDLoc dl = getCurSDLoc(); 4725 Align Alignment = I.getAlign(); 4726 AAMDNodes AAInfo = I.getAAMetadata(); 4727 4728 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4729 4730 unsigned ChainI = 0; 4731 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4732 // See visitLoad comments. 4733 if (ChainI == MaxParallelChains) { 4734 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4735 ArrayRef(Chains.data(), ChainI)); 4736 Root = Chain; 4737 ChainI = 0; 4738 } 4739 4740 // TODO: MachinePointerInfo only supports a fixed length offset. 4741 MachinePointerInfo PtrInfo = 4742 !Offsets[i].isScalable() || Offsets[i].isZero() 4743 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4744 : MachinePointerInfo(); 4745 4746 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4747 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4748 if (MemVTs[i] != ValueVTs[i]) 4749 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4750 SDValue St = 4751 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4752 Chains[ChainI] = St; 4753 } 4754 4755 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4756 ArrayRef(Chains.data(), ChainI)); 4757 setValue(&I, StoreNode); 4758 DAG.setRoot(StoreNode); 4759 } 4760 4761 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4762 bool IsCompressing) { 4763 SDLoc sdl = getCurSDLoc(); 4764 4765 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4766 Align &Alignment) { 4767 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4768 Src0 = I.getArgOperand(0); 4769 Ptr = I.getArgOperand(1); 4770 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4771 Mask = I.getArgOperand(3); 4772 }; 4773 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4774 Align &Alignment) { 4775 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4776 Src0 = I.getArgOperand(0); 4777 Ptr = I.getArgOperand(1); 4778 Mask = I.getArgOperand(2); 4779 Alignment = I.getParamAlign(1).valueOrOne(); 4780 }; 4781 4782 Value *PtrOperand, *MaskOperand, *Src0Operand; 4783 Align Alignment; 4784 if (IsCompressing) 4785 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4786 else 4787 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4788 4789 SDValue Ptr = getValue(PtrOperand); 4790 SDValue Src0 = getValue(Src0Operand); 4791 SDValue Mask = getValue(MaskOperand); 4792 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4793 4794 EVT VT = Src0.getValueType(); 4795 4796 auto MMOFlags = MachineMemOperand::MOStore; 4797 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4798 MMOFlags |= MachineMemOperand::MONonTemporal; 4799 4800 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4801 MachinePointerInfo(PtrOperand), MMOFlags, 4802 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4803 4804 const auto &TLI = DAG.getTargetLoweringInfo(); 4805 const auto &TTI = 4806 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4807 SDValue StoreNode = 4808 !IsCompressing && 4809 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4810 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4811 Mask) 4812 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4813 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4814 IsCompressing); 4815 DAG.setRoot(StoreNode); 4816 setValue(&I, StoreNode); 4817 } 4818 4819 // Get a uniform base for the Gather/Scatter intrinsic. 4820 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4821 // We try to represent it as a base pointer + vector of indices. 4822 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4823 // The first operand of the GEP may be a single pointer or a vector of pointers 4824 // Example: 4825 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4826 // or 4827 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4828 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4829 // 4830 // When the first GEP operand is a single pointer - it is the uniform base we 4831 // are looking for. If first operand of the GEP is a splat vector - we 4832 // extract the splat value and use it as a uniform base. 4833 // In all other cases the function returns 'false'. 4834 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4835 ISD::MemIndexType &IndexType, SDValue &Scale, 4836 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4837 uint64_t ElemSize) { 4838 SelectionDAG& DAG = SDB->DAG; 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 const DataLayout &DL = DAG.getDataLayout(); 4841 4842 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4843 4844 // Handle splat constant pointer. 4845 if (auto *C = dyn_cast<Constant>(Ptr)) { 4846 C = C->getSplatValue(); 4847 if (!C) 4848 return false; 4849 4850 Base = SDB->getValue(C); 4851 4852 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4853 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4854 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4855 IndexType = ISD::SIGNED_SCALED; 4856 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4857 return true; 4858 } 4859 4860 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4861 if (!GEP || GEP->getParent() != CurBB) 4862 return false; 4863 4864 if (GEP->getNumOperands() != 2) 4865 return false; 4866 4867 const Value *BasePtr = GEP->getPointerOperand(); 4868 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4869 4870 // Make sure the base is scalar and the index is a vector. 4871 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4872 return false; 4873 4874 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4875 if (ScaleVal.isScalable()) 4876 return false; 4877 4878 // Target may not support the required addressing mode. 4879 if (ScaleVal != 1 && 4880 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4881 return false; 4882 4883 Base = SDB->getValue(BasePtr); 4884 Index = SDB->getValue(IndexVal); 4885 IndexType = ISD::SIGNED_SCALED; 4886 4887 Scale = 4888 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4889 return true; 4890 } 4891 4892 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4893 SDLoc sdl = getCurSDLoc(); 4894 4895 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4896 const Value *Ptr = I.getArgOperand(1); 4897 SDValue Src0 = getValue(I.getArgOperand(0)); 4898 SDValue Mask = getValue(I.getArgOperand(3)); 4899 EVT VT = Src0.getValueType(); 4900 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4901 ->getMaybeAlignValue() 4902 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4904 4905 SDValue Base; 4906 SDValue Index; 4907 ISD::MemIndexType IndexType; 4908 SDValue Scale; 4909 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4910 I.getParent(), VT.getScalarStoreSize()); 4911 4912 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4913 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4914 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4915 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4916 if (!UniformBase) { 4917 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4918 Index = getValue(Ptr); 4919 IndexType = ISD::SIGNED_SCALED; 4920 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4921 } 4922 4923 EVT IdxVT = Index.getValueType(); 4924 EVT EltTy = IdxVT.getVectorElementType(); 4925 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4926 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4927 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4928 } 4929 4930 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4931 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4932 Ops, MMO, IndexType, false); 4933 DAG.setRoot(Scatter); 4934 setValue(&I, Scatter); 4935 } 4936 4937 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4938 SDLoc sdl = getCurSDLoc(); 4939 4940 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4941 Align &Alignment) { 4942 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4943 Ptr = I.getArgOperand(0); 4944 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4945 Mask = I.getArgOperand(2); 4946 Src0 = I.getArgOperand(3); 4947 }; 4948 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4949 Align &Alignment) { 4950 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4951 Ptr = I.getArgOperand(0); 4952 Alignment = I.getParamAlign(0).valueOrOne(); 4953 Mask = I.getArgOperand(1); 4954 Src0 = I.getArgOperand(2); 4955 }; 4956 4957 Value *PtrOperand, *MaskOperand, *Src0Operand; 4958 Align Alignment; 4959 if (IsExpanding) 4960 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4961 else 4962 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4963 4964 SDValue Ptr = getValue(PtrOperand); 4965 SDValue Src0 = getValue(Src0Operand); 4966 SDValue Mask = getValue(MaskOperand); 4967 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4968 4969 EVT VT = Src0.getValueType(); 4970 AAMDNodes AAInfo = I.getAAMetadata(); 4971 const MDNode *Ranges = getRangeMetadata(I); 4972 4973 // Do not serialize masked loads of constant memory with anything. 4974 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4975 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4976 4977 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4978 4979 auto MMOFlags = MachineMemOperand::MOLoad; 4980 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4981 MMOFlags |= MachineMemOperand::MONonTemporal; 4982 4983 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4984 MachinePointerInfo(PtrOperand), MMOFlags, 4985 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4986 4987 const auto &TLI = DAG.getTargetLoweringInfo(); 4988 const auto &TTI = 4989 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4990 // The Load/Res may point to different values and both of them are output 4991 // variables. 4992 SDValue Load; 4993 SDValue Res; 4994 if (!IsExpanding && 4995 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 4996 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4997 else 4998 Res = Load = 4999 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5000 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5001 if (AddToChain) 5002 PendingLoads.push_back(Load.getValue(1)); 5003 setValue(&I, Res); 5004 } 5005 5006 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5007 SDLoc sdl = getCurSDLoc(); 5008 5009 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5010 const Value *Ptr = I.getArgOperand(0); 5011 SDValue Src0 = getValue(I.getArgOperand(3)); 5012 SDValue Mask = getValue(I.getArgOperand(2)); 5013 5014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5015 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5016 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5017 ->getMaybeAlignValue() 5018 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5019 5020 const MDNode *Ranges = getRangeMetadata(I); 5021 5022 SDValue Root = DAG.getRoot(); 5023 SDValue Base; 5024 SDValue Index; 5025 ISD::MemIndexType IndexType; 5026 SDValue Scale; 5027 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5028 I.getParent(), VT.getScalarStoreSize()); 5029 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5030 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5031 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5032 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5033 Ranges); 5034 5035 if (!UniformBase) { 5036 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5037 Index = getValue(Ptr); 5038 IndexType = ISD::SIGNED_SCALED; 5039 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5040 } 5041 5042 EVT IdxVT = Index.getValueType(); 5043 EVT EltTy = IdxVT.getVectorElementType(); 5044 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5045 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5046 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5047 } 5048 5049 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5050 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5051 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5052 5053 PendingLoads.push_back(Gather.getValue(1)); 5054 setValue(&I, Gather); 5055 } 5056 5057 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5058 SDLoc dl = getCurSDLoc(); 5059 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5060 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5061 SyncScope::ID SSID = I.getSyncScopeID(); 5062 5063 SDValue InChain = getRoot(); 5064 5065 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5066 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5067 5068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5069 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5070 5071 MachineFunction &MF = DAG.getMachineFunction(); 5072 MachineMemOperand *MMO = MF.getMachineMemOperand( 5073 MachinePointerInfo(I.getPointerOperand()), Flags, 5074 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5075 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5076 5077 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5078 dl, MemVT, VTs, InChain, 5079 getValue(I.getPointerOperand()), 5080 getValue(I.getCompareOperand()), 5081 getValue(I.getNewValOperand()), MMO); 5082 5083 SDValue OutChain = L.getValue(2); 5084 5085 setValue(&I, L); 5086 DAG.setRoot(OutChain); 5087 } 5088 5089 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5090 SDLoc dl = getCurSDLoc(); 5091 ISD::NodeType NT; 5092 switch (I.getOperation()) { 5093 default: llvm_unreachable("Unknown atomicrmw operation"); 5094 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5095 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5096 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5097 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5098 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5099 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5100 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5101 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5102 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5103 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5104 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5105 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5106 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5107 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5108 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5109 case AtomicRMWInst::UIncWrap: 5110 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5111 break; 5112 case AtomicRMWInst::UDecWrap: 5113 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5114 break; 5115 } 5116 AtomicOrdering Ordering = I.getOrdering(); 5117 SyncScope::ID SSID = I.getSyncScopeID(); 5118 5119 SDValue InChain = getRoot(); 5120 5121 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5123 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5124 5125 MachineFunction &MF = DAG.getMachineFunction(); 5126 MachineMemOperand *MMO = MF.getMachineMemOperand( 5127 MachinePointerInfo(I.getPointerOperand()), Flags, 5128 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5129 AAMDNodes(), nullptr, SSID, Ordering); 5130 5131 SDValue L = 5132 DAG.getAtomic(NT, dl, MemVT, InChain, 5133 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5134 MMO); 5135 5136 SDValue OutChain = L.getValue(1); 5137 5138 setValue(&I, L); 5139 DAG.setRoot(OutChain); 5140 } 5141 5142 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5143 SDLoc dl = getCurSDLoc(); 5144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5145 SDValue Ops[3]; 5146 Ops[0] = getRoot(); 5147 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5148 TLI.getFenceOperandTy(DAG.getDataLayout())); 5149 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5150 TLI.getFenceOperandTy(DAG.getDataLayout())); 5151 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5152 setValue(&I, N); 5153 DAG.setRoot(N); 5154 } 5155 5156 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5157 SDLoc dl = getCurSDLoc(); 5158 AtomicOrdering Order = I.getOrdering(); 5159 SyncScope::ID SSID = I.getSyncScopeID(); 5160 5161 SDValue InChain = getRoot(); 5162 5163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5164 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5165 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5166 5167 if (!TLI.supportsUnalignedAtomics() && 5168 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5169 report_fatal_error("Cannot generate unaligned atomic load"); 5170 5171 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5172 5173 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5174 MachinePointerInfo(I.getPointerOperand()), Flags, 5175 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5176 nullptr, SSID, Order); 5177 5178 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5179 5180 SDValue Ptr = getValue(I.getPointerOperand()); 5181 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5182 Ptr, MMO); 5183 5184 SDValue OutChain = L.getValue(1); 5185 if (MemVT != VT) 5186 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5187 5188 setValue(&I, L); 5189 DAG.setRoot(OutChain); 5190 } 5191 5192 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5193 SDLoc dl = getCurSDLoc(); 5194 5195 AtomicOrdering Ordering = I.getOrdering(); 5196 SyncScope::ID SSID = I.getSyncScopeID(); 5197 5198 SDValue InChain = getRoot(); 5199 5200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5201 EVT MemVT = 5202 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5203 5204 if (!TLI.supportsUnalignedAtomics() && 5205 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5206 report_fatal_error("Cannot generate unaligned atomic store"); 5207 5208 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5209 5210 MachineFunction &MF = DAG.getMachineFunction(); 5211 MachineMemOperand *MMO = MF.getMachineMemOperand( 5212 MachinePointerInfo(I.getPointerOperand()), Flags, 5213 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5214 nullptr, SSID, Ordering); 5215 5216 SDValue Val = getValue(I.getValueOperand()); 5217 if (Val.getValueType() != MemVT) 5218 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5219 SDValue Ptr = getValue(I.getPointerOperand()); 5220 5221 SDValue OutChain = 5222 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5223 5224 setValue(&I, OutChain); 5225 DAG.setRoot(OutChain); 5226 } 5227 5228 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5229 /// node. 5230 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5231 unsigned Intrinsic) { 5232 // Ignore the callsite's attributes. A specific call site may be marked with 5233 // readnone, but the lowering code will expect the chain based on the 5234 // definition. 5235 const Function *F = I.getCalledFunction(); 5236 bool HasChain = !F->doesNotAccessMemory(); 5237 bool OnlyLoad = 5238 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5239 5240 // Build the operand list. 5241 SmallVector<SDValue, 8> Ops; 5242 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5243 if (OnlyLoad) { 5244 // We don't need to serialize loads against other loads. 5245 Ops.push_back(DAG.getRoot()); 5246 } else { 5247 Ops.push_back(getRoot()); 5248 } 5249 } 5250 5251 // Info is set by getTgtMemIntrinsic 5252 TargetLowering::IntrinsicInfo Info; 5253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5254 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5255 DAG.getMachineFunction(), 5256 Intrinsic); 5257 5258 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5259 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5260 Info.opc == ISD::INTRINSIC_W_CHAIN) 5261 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5262 TLI.getPointerTy(DAG.getDataLayout()))); 5263 5264 // Add all operands of the call to the operand list. 5265 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5266 const Value *Arg = I.getArgOperand(i); 5267 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5268 Ops.push_back(getValue(Arg)); 5269 continue; 5270 } 5271 5272 // Use TargetConstant instead of a regular constant for immarg. 5273 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5274 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5275 assert(CI->getBitWidth() <= 64 && 5276 "large intrinsic immediates not handled"); 5277 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5278 } else { 5279 Ops.push_back( 5280 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5281 } 5282 } 5283 5284 SmallVector<EVT, 4> ValueVTs; 5285 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5286 5287 if (HasChain) 5288 ValueVTs.push_back(MVT::Other); 5289 5290 SDVTList VTs = DAG.getVTList(ValueVTs); 5291 5292 // Propagate fast-math-flags from IR to node(s). 5293 SDNodeFlags Flags; 5294 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5295 Flags.copyFMF(*FPMO); 5296 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5297 5298 // Create the node. 5299 SDValue Result; 5300 5301 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5302 auto *Token = Bundle->Inputs[0].get(); 5303 SDValue ConvControlToken = getValue(Token); 5304 assert(Ops.back().getValueType() != MVT::Glue && 5305 "Did not expected another glue node here."); 5306 ConvControlToken = 5307 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5308 Ops.push_back(ConvControlToken); 5309 } 5310 5311 // In some cases, custom collection of operands from CallInst I may be needed. 5312 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5313 if (IsTgtIntrinsic) { 5314 // This is target intrinsic that touches memory 5315 // 5316 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5317 // didn't yield anything useful. 5318 MachinePointerInfo MPI; 5319 if (Info.ptrVal) 5320 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5321 else if (Info.fallbackAddressSpace) 5322 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5323 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5324 Info.memVT, MPI, Info.align, Info.flags, 5325 Info.size, I.getAAMetadata()); 5326 } else if (!HasChain) { 5327 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5328 } else if (!I.getType()->isVoidTy()) { 5329 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5330 } else { 5331 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5332 } 5333 5334 if (HasChain) { 5335 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5336 if (OnlyLoad) 5337 PendingLoads.push_back(Chain); 5338 else 5339 DAG.setRoot(Chain); 5340 } 5341 5342 if (!I.getType()->isVoidTy()) { 5343 if (!isa<VectorType>(I.getType())) 5344 Result = lowerRangeToAssertZExt(DAG, I, Result); 5345 5346 MaybeAlign Alignment = I.getRetAlign(); 5347 5348 // Insert `assertalign` node if there's an alignment. 5349 if (InsertAssertAlign && Alignment) { 5350 Result = 5351 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5352 } 5353 } 5354 5355 setValue(&I, Result); 5356 } 5357 5358 /// GetSignificand - Get the significand and build it into a floating-point 5359 /// number with exponent of 1: 5360 /// 5361 /// Op = (Op & 0x007fffff) | 0x3f800000; 5362 /// 5363 /// where Op is the hexadecimal representation of floating point value. 5364 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5365 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5366 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5367 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5368 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5369 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5370 } 5371 5372 /// GetExponent - Get the exponent: 5373 /// 5374 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5375 /// 5376 /// where Op is the hexadecimal representation of floating point value. 5377 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5378 const TargetLowering &TLI, const SDLoc &dl) { 5379 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5380 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5381 SDValue t1 = DAG.getNode( 5382 ISD::SRL, dl, MVT::i32, t0, 5383 DAG.getConstant(23, dl, 5384 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5385 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5386 DAG.getConstant(127, dl, MVT::i32)); 5387 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5388 } 5389 5390 /// getF32Constant - Get 32-bit floating point constant. 5391 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5392 const SDLoc &dl) { 5393 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5394 MVT::f32); 5395 } 5396 5397 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5398 SelectionDAG &DAG) { 5399 // TODO: What fast-math-flags should be set on the floating-point nodes? 5400 5401 // IntegerPartOfX = ((int32_t)(t0); 5402 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5403 5404 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5405 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5406 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5407 5408 // IntegerPartOfX <<= 23; 5409 IntegerPartOfX = 5410 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5411 DAG.getConstant(23, dl, 5412 DAG.getTargetLoweringInfo().getShiftAmountTy( 5413 MVT::i32, DAG.getDataLayout()))); 5414 5415 SDValue TwoToFractionalPartOfX; 5416 if (LimitFloatPrecision <= 6) { 5417 // For floating-point precision of 6: 5418 // 5419 // TwoToFractionalPartOfX = 5420 // 0.997535578f + 5421 // (0.735607626f + 0.252464424f * x) * x; 5422 // 5423 // error 0.0144103317, which is 6 bits 5424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5425 getF32Constant(DAG, 0x3e814304, dl)); 5426 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5427 getF32Constant(DAG, 0x3f3c50c8, dl)); 5428 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5429 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5430 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5431 } else if (LimitFloatPrecision <= 12) { 5432 // For floating-point precision of 12: 5433 // 5434 // TwoToFractionalPartOfX = 5435 // 0.999892986f + 5436 // (0.696457318f + 5437 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5438 // 5439 // error 0.000107046256, which is 13 to 14 bits 5440 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5441 getF32Constant(DAG, 0x3da235e3, dl)); 5442 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5443 getF32Constant(DAG, 0x3e65b8f3, dl)); 5444 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5445 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5446 getF32Constant(DAG, 0x3f324b07, dl)); 5447 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5448 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5449 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5450 } else { // LimitFloatPrecision <= 18 5451 // For floating-point precision of 18: 5452 // 5453 // TwoToFractionalPartOfX = 5454 // 0.999999982f + 5455 // (0.693148872f + 5456 // (0.240227044f + 5457 // (0.554906021e-1f + 5458 // (0.961591928e-2f + 5459 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5460 // error 2.47208000*10^(-7), which is better than 18 bits 5461 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5462 getF32Constant(DAG, 0x3924b03e, dl)); 5463 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5464 getF32Constant(DAG, 0x3ab24b87, dl)); 5465 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5466 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5467 getF32Constant(DAG, 0x3c1d8c17, dl)); 5468 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5469 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5470 getF32Constant(DAG, 0x3d634a1d, dl)); 5471 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5472 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5473 getF32Constant(DAG, 0x3e75fe14, dl)); 5474 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5475 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5476 getF32Constant(DAG, 0x3f317234, dl)); 5477 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5478 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5479 getF32Constant(DAG, 0x3f800000, dl)); 5480 } 5481 5482 // Add the exponent into the result in integer domain. 5483 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5484 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5485 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5486 } 5487 5488 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5489 /// limited-precision mode. 5490 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5491 const TargetLowering &TLI, SDNodeFlags Flags) { 5492 if (Op.getValueType() == MVT::f32 && 5493 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5494 5495 // Put the exponent in the right bit position for later addition to the 5496 // final result: 5497 // 5498 // t0 = Op * log2(e) 5499 5500 // TODO: What fast-math-flags should be set here? 5501 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5502 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5503 return getLimitedPrecisionExp2(t0, dl, DAG); 5504 } 5505 5506 // No special expansion. 5507 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5508 } 5509 5510 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5511 /// limited-precision mode. 5512 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5513 const TargetLowering &TLI, SDNodeFlags Flags) { 5514 // TODO: What fast-math-flags should be set on the floating-point nodes? 5515 5516 if (Op.getValueType() == MVT::f32 && 5517 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5518 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5519 5520 // Scale the exponent by log(2). 5521 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5522 SDValue LogOfExponent = 5523 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5524 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5525 5526 // Get the significand and build it into a floating-point number with 5527 // exponent of 1. 5528 SDValue X = GetSignificand(DAG, Op1, dl); 5529 5530 SDValue LogOfMantissa; 5531 if (LimitFloatPrecision <= 6) { 5532 // For floating-point precision of 6: 5533 // 5534 // LogofMantissa = 5535 // -1.1609546f + 5536 // (1.4034025f - 0.23903021f * x) * x; 5537 // 5538 // error 0.0034276066, which is better than 8 bits 5539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5540 getF32Constant(DAG, 0xbe74c456, dl)); 5541 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5542 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5544 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5545 getF32Constant(DAG, 0x3f949a29, dl)); 5546 } else if (LimitFloatPrecision <= 12) { 5547 // For floating-point precision of 12: 5548 // 5549 // LogOfMantissa = 5550 // -1.7417939f + 5551 // (2.8212026f + 5552 // (-1.4699568f + 5553 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5554 // 5555 // error 0.000061011436, which is 14 bits 5556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5557 getF32Constant(DAG, 0xbd67b6d6, dl)); 5558 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5559 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5561 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5562 getF32Constant(DAG, 0x3fbc278b, dl)); 5563 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5564 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5565 getF32Constant(DAG, 0x40348e95, dl)); 5566 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5567 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5568 getF32Constant(DAG, 0x3fdef31a, dl)); 5569 } else { // LimitFloatPrecision <= 18 5570 // For floating-point precision of 18: 5571 // 5572 // LogOfMantissa = 5573 // -2.1072184f + 5574 // (4.2372794f + 5575 // (-3.7029485f + 5576 // (2.2781945f + 5577 // (-0.87823314f + 5578 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5579 // 5580 // error 0.0000023660568, which is better than 18 bits 5581 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5582 getF32Constant(DAG, 0xbc91e5ac, dl)); 5583 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5584 getF32Constant(DAG, 0x3e4350aa, dl)); 5585 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5586 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5587 getF32Constant(DAG, 0x3f60d3e3, dl)); 5588 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5589 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5590 getF32Constant(DAG, 0x4011cdf0, dl)); 5591 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5592 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5593 getF32Constant(DAG, 0x406cfd1c, dl)); 5594 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5595 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5596 getF32Constant(DAG, 0x408797cb, dl)); 5597 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5598 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5599 getF32Constant(DAG, 0x4006dcab, dl)); 5600 } 5601 5602 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5603 } 5604 5605 // No special expansion. 5606 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5607 } 5608 5609 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5610 /// limited-precision mode. 5611 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5612 const TargetLowering &TLI, SDNodeFlags Flags) { 5613 // TODO: What fast-math-flags should be set on the floating-point nodes? 5614 5615 if (Op.getValueType() == MVT::f32 && 5616 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5617 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5618 5619 // Get the exponent. 5620 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5621 5622 // Get the significand and build it into a floating-point number with 5623 // exponent of 1. 5624 SDValue X = GetSignificand(DAG, Op1, dl); 5625 5626 // Different possible minimax approximations of significand in 5627 // floating-point for various degrees of accuracy over [1,2]. 5628 SDValue Log2ofMantissa; 5629 if (LimitFloatPrecision <= 6) { 5630 // For floating-point precision of 6: 5631 // 5632 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5633 // 5634 // error 0.0049451742, which is more than 7 bits 5635 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5636 getF32Constant(DAG, 0xbeb08fe0, dl)); 5637 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5638 getF32Constant(DAG, 0x40019463, dl)); 5639 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5640 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5641 getF32Constant(DAG, 0x3fd6633d, dl)); 5642 } else if (LimitFloatPrecision <= 12) { 5643 // For floating-point precision of 12: 5644 // 5645 // Log2ofMantissa = 5646 // -2.51285454f + 5647 // (4.07009056f + 5648 // (-2.12067489f + 5649 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5650 // 5651 // error 0.0000876136000, which is better than 13 bits 5652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5653 getF32Constant(DAG, 0xbda7262e, dl)); 5654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5655 getF32Constant(DAG, 0x3f25280b, dl)); 5656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5657 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5658 getF32Constant(DAG, 0x4007b923, dl)); 5659 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5660 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5661 getF32Constant(DAG, 0x40823e2f, dl)); 5662 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5663 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5664 getF32Constant(DAG, 0x4020d29c, dl)); 5665 } else { // LimitFloatPrecision <= 18 5666 // For floating-point precision of 18: 5667 // 5668 // Log2ofMantissa = 5669 // -3.0400495f + 5670 // (6.1129976f + 5671 // (-5.3420409f + 5672 // (3.2865683f + 5673 // (-1.2669343f + 5674 // (0.27515199f - 5675 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5676 // 5677 // error 0.0000018516, which is better than 18 bits 5678 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5679 getF32Constant(DAG, 0xbcd2769e, dl)); 5680 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5681 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5683 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5684 getF32Constant(DAG, 0x3fa22ae7, dl)); 5685 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5686 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5687 getF32Constant(DAG, 0x40525723, dl)); 5688 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5689 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5690 getF32Constant(DAG, 0x40aaf200, dl)); 5691 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5692 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5693 getF32Constant(DAG, 0x40c39dad, dl)); 5694 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5695 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5696 getF32Constant(DAG, 0x4042902c, dl)); 5697 } 5698 5699 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5700 } 5701 5702 // No special expansion. 5703 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5704 } 5705 5706 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5707 /// limited-precision mode. 5708 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5709 const TargetLowering &TLI, SDNodeFlags Flags) { 5710 // TODO: What fast-math-flags should be set on the floating-point nodes? 5711 5712 if (Op.getValueType() == MVT::f32 && 5713 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5714 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5715 5716 // Scale the exponent by log10(2) [0.30102999f]. 5717 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5718 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5719 getF32Constant(DAG, 0x3e9a209a, dl)); 5720 5721 // Get the significand and build it into a floating-point number with 5722 // exponent of 1. 5723 SDValue X = GetSignificand(DAG, Op1, dl); 5724 5725 SDValue Log10ofMantissa; 5726 if (LimitFloatPrecision <= 6) { 5727 // For floating-point precision of 6: 5728 // 5729 // Log10ofMantissa = 5730 // -0.50419619f + 5731 // (0.60948995f - 0.10380950f * x) * x; 5732 // 5733 // error 0.0014886165, which is 6 bits 5734 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5735 getF32Constant(DAG, 0xbdd49a13, dl)); 5736 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5737 getF32Constant(DAG, 0x3f1c0789, dl)); 5738 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5739 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5740 getF32Constant(DAG, 0x3f011300, dl)); 5741 } else if (LimitFloatPrecision <= 12) { 5742 // For floating-point precision of 12: 5743 // 5744 // Log10ofMantissa = 5745 // -0.64831180f + 5746 // (0.91751397f + 5747 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5748 // 5749 // error 0.00019228036, which is better than 12 bits 5750 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5751 getF32Constant(DAG, 0x3d431f31, dl)); 5752 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5753 getF32Constant(DAG, 0x3ea21fb2, dl)); 5754 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5755 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5756 getF32Constant(DAG, 0x3f6ae232, dl)); 5757 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5758 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5759 getF32Constant(DAG, 0x3f25f7c3, dl)); 5760 } else { // LimitFloatPrecision <= 18 5761 // For floating-point precision of 18: 5762 // 5763 // Log10ofMantissa = 5764 // -0.84299375f + 5765 // (1.5327582f + 5766 // (-1.0688956f + 5767 // (0.49102474f + 5768 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5769 // 5770 // error 0.0000037995730, which is better than 18 bits 5771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5772 getF32Constant(DAG, 0x3c5d51ce, dl)); 5773 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5774 getF32Constant(DAG, 0x3e00685a, dl)); 5775 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5776 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5777 getF32Constant(DAG, 0x3efb6798, dl)); 5778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5779 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5780 getF32Constant(DAG, 0x3f88d192, dl)); 5781 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5782 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5783 getF32Constant(DAG, 0x3fc4316c, dl)); 5784 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5785 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5786 getF32Constant(DAG, 0x3f57ce70, dl)); 5787 } 5788 5789 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5790 } 5791 5792 // No special expansion. 5793 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5794 } 5795 5796 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5797 /// limited-precision mode. 5798 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5799 const TargetLowering &TLI, SDNodeFlags Flags) { 5800 if (Op.getValueType() == MVT::f32 && 5801 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5802 return getLimitedPrecisionExp2(Op, dl, DAG); 5803 5804 // No special expansion. 5805 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5806 } 5807 5808 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5809 /// limited-precision mode with x == 10.0f. 5810 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5811 SelectionDAG &DAG, const TargetLowering &TLI, 5812 SDNodeFlags Flags) { 5813 bool IsExp10 = false; 5814 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5815 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5816 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5817 APFloat Ten(10.0f); 5818 IsExp10 = LHSC->isExactlyValue(Ten); 5819 } 5820 } 5821 5822 // TODO: What fast-math-flags should be set on the FMUL node? 5823 if (IsExp10) { 5824 // Put the exponent in the right bit position for later addition to the 5825 // final result: 5826 // 5827 // #define LOG2OF10 3.3219281f 5828 // t0 = Op * LOG2OF10; 5829 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5830 getF32Constant(DAG, 0x40549a78, dl)); 5831 return getLimitedPrecisionExp2(t0, dl, DAG); 5832 } 5833 5834 // No special expansion. 5835 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5836 } 5837 5838 /// ExpandPowI - Expand a llvm.powi intrinsic. 5839 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5840 SelectionDAG &DAG) { 5841 // If RHS is a constant, we can expand this out to a multiplication tree if 5842 // it's beneficial on the target, otherwise we end up lowering to a call to 5843 // __powidf2 (for example). 5844 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5845 unsigned Val = RHSC->getSExtValue(); 5846 5847 // powi(x, 0) -> 1.0 5848 if (Val == 0) 5849 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5850 5851 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5852 Val, DAG.shouldOptForSize())) { 5853 // Get the exponent as a positive value. 5854 if ((int)Val < 0) 5855 Val = -Val; 5856 // We use the simple binary decomposition method to generate the multiply 5857 // sequence. There are more optimal ways to do this (for example, 5858 // powi(x,15) generates one more multiply than it should), but this has 5859 // the benefit of being both really simple and much better than a libcall. 5860 SDValue Res; // Logically starts equal to 1.0 5861 SDValue CurSquare = LHS; 5862 // TODO: Intrinsics should have fast-math-flags that propagate to these 5863 // nodes. 5864 while (Val) { 5865 if (Val & 1) { 5866 if (Res.getNode()) 5867 Res = 5868 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5869 else 5870 Res = CurSquare; // 1.0*CurSquare. 5871 } 5872 5873 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5874 CurSquare, CurSquare); 5875 Val >>= 1; 5876 } 5877 5878 // If the original was negative, invert the result, producing 1/(x*x*x). 5879 if (RHSC->getSExtValue() < 0) 5880 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5881 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5882 return Res; 5883 } 5884 } 5885 5886 // Otherwise, expand to a libcall. 5887 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5888 } 5889 5890 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5891 SDValue LHS, SDValue RHS, SDValue Scale, 5892 SelectionDAG &DAG, const TargetLowering &TLI) { 5893 EVT VT = LHS.getValueType(); 5894 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5895 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5896 LLVMContext &Ctx = *DAG.getContext(); 5897 5898 // If the type is legal but the operation isn't, this node might survive all 5899 // the way to operation legalization. If we end up there and we do not have 5900 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5901 // node. 5902 5903 // Coax the legalizer into expanding the node during type legalization instead 5904 // by bumping the size by one bit. This will force it to Promote, enabling the 5905 // early expansion and avoiding the need to expand later. 5906 5907 // We don't have to do this if Scale is 0; that can always be expanded, unless 5908 // it's a saturating signed operation. Those can experience true integer 5909 // division overflow, a case which we must avoid. 5910 5911 // FIXME: We wouldn't have to do this (or any of the early 5912 // expansion/promotion) if it was possible to expand a libcall of an 5913 // illegal type during operation legalization. But it's not, so things 5914 // get a bit hacky. 5915 unsigned ScaleInt = Scale->getAsZExtVal(); 5916 if ((ScaleInt > 0 || (Saturating && Signed)) && 5917 (TLI.isTypeLegal(VT) || 5918 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5919 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5920 Opcode, VT, ScaleInt); 5921 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5922 EVT PromVT; 5923 if (VT.isScalarInteger()) 5924 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5925 else if (VT.isVector()) { 5926 PromVT = VT.getVectorElementType(); 5927 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5928 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5929 } else 5930 llvm_unreachable("Wrong VT for DIVFIX?"); 5931 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5932 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5933 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5934 // For saturating operations, we need to shift up the LHS to get the 5935 // proper saturation width, and then shift down again afterwards. 5936 if (Saturating) 5937 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5938 DAG.getConstant(1, DL, ShiftTy)); 5939 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5940 if (Saturating) 5941 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5942 DAG.getConstant(1, DL, ShiftTy)); 5943 return DAG.getZExtOrTrunc(Res, DL, VT); 5944 } 5945 } 5946 5947 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5948 } 5949 5950 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5951 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5952 static void 5953 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5954 const SDValue &N) { 5955 switch (N.getOpcode()) { 5956 case ISD::CopyFromReg: { 5957 SDValue Op = N.getOperand(1); 5958 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5959 Op.getValueType().getSizeInBits()); 5960 return; 5961 } 5962 case ISD::BITCAST: 5963 case ISD::AssertZext: 5964 case ISD::AssertSext: 5965 case ISD::TRUNCATE: 5966 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5967 return; 5968 case ISD::BUILD_PAIR: 5969 case ISD::BUILD_VECTOR: 5970 case ISD::CONCAT_VECTORS: 5971 for (SDValue Op : N->op_values()) 5972 getUnderlyingArgRegs(Regs, Op); 5973 return; 5974 default: 5975 return; 5976 } 5977 } 5978 5979 /// If the DbgValueInst is a dbg_value of a function argument, create the 5980 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5981 /// instruction selection, they will be inserted to the entry BB. 5982 /// We don't currently support this for variadic dbg_values, as they shouldn't 5983 /// appear for function arguments or in the prologue. 5984 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5985 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5986 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5987 const Argument *Arg = dyn_cast<Argument>(V); 5988 if (!Arg) 5989 return false; 5990 5991 MachineFunction &MF = DAG.getMachineFunction(); 5992 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5993 5994 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5995 // we've been asked to pursue. 5996 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5997 bool Indirect) { 5998 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5999 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6000 // pointing at the VReg, which will be patched up later. 6001 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6002 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6003 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6004 /* isKill */ false, /* isDead */ false, 6005 /* isUndef */ false, /* isEarlyClobber */ false, 6006 /* SubReg */ 0, /* isDebug */ true)}); 6007 6008 auto *NewDIExpr = FragExpr; 6009 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6010 // the DIExpression. 6011 if (Indirect) 6012 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6013 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6014 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6015 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6016 } else { 6017 // Create a completely standard DBG_VALUE. 6018 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6019 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6020 } 6021 }; 6022 6023 if (Kind == FuncArgumentDbgValueKind::Value) { 6024 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6025 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6026 // the entry block. 6027 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6028 if (!IsInEntryBlock) 6029 return false; 6030 6031 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6032 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6033 // variable that also is a param. 6034 // 6035 // Although, if we are at the top of the entry block already, we can still 6036 // emit using ArgDbgValue. This might catch some situations when the 6037 // dbg.value refers to an argument that isn't used in the entry block, so 6038 // any CopyToReg node would be optimized out and the only way to express 6039 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6040 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6041 // we should only emit as ArgDbgValue if the Variable is an argument to the 6042 // current function, and the dbg.value intrinsic is found in the entry 6043 // block. 6044 bool VariableIsFunctionInputArg = Variable->isParameter() && 6045 !DL->getInlinedAt(); 6046 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6047 if (!IsInPrologue && !VariableIsFunctionInputArg) 6048 return false; 6049 6050 // Here we assume that a function argument on IR level only can be used to 6051 // describe one input parameter on source level. If we for example have 6052 // source code like this 6053 // 6054 // struct A { long x, y; }; 6055 // void foo(struct A a, long b) { 6056 // ... 6057 // b = a.x; 6058 // ... 6059 // } 6060 // 6061 // and IR like this 6062 // 6063 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6064 // entry: 6065 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6066 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6067 // call void @llvm.dbg.value(metadata i32 %b, "b", 6068 // ... 6069 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6070 // ... 6071 // 6072 // then the last dbg.value is describing a parameter "b" using a value that 6073 // is an argument. But since we already has used %a1 to describe a parameter 6074 // we should not handle that last dbg.value here (that would result in an 6075 // incorrect hoisting of the DBG_VALUE to the function entry). 6076 // Notice that we allow one dbg.value per IR level argument, to accommodate 6077 // for the situation with fragments above. 6078 // If there is no node for the value being handled, we return true to skip 6079 // the normal generation of debug info, as it would kill existing debug 6080 // info for the parameter in case of duplicates. 6081 if (VariableIsFunctionInputArg) { 6082 unsigned ArgNo = Arg->getArgNo(); 6083 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6084 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6085 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6086 return !NodeMap[V].getNode(); 6087 FuncInfo.DescribedArgs.set(ArgNo); 6088 } 6089 } 6090 6091 bool IsIndirect = false; 6092 std::optional<MachineOperand> Op; 6093 // Some arguments' frame index is recorded during argument lowering. 6094 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6095 if (FI != std::numeric_limits<int>::max()) 6096 Op = MachineOperand::CreateFI(FI); 6097 6098 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6099 if (!Op && N.getNode()) { 6100 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6101 Register Reg; 6102 if (ArgRegsAndSizes.size() == 1) 6103 Reg = ArgRegsAndSizes.front().first; 6104 6105 if (Reg && Reg.isVirtual()) { 6106 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6107 Register PR = RegInfo.getLiveInPhysReg(Reg); 6108 if (PR) 6109 Reg = PR; 6110 } 6111 if (Reg) { 6112 Op = MachineOperand::CreateReg(Reg, false); 6113 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6114 } 6115 } 6116 6117 if (!Op && N.getNode()) { 6118 // Check if frame index is available. 6119 SDValue LCandidate = peekThroughBitcasts(N); 6120 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6121 if (FrameIndexSDNode *FINode = 6122 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6123 Op = MachineOperand::CreateFI(FINode->getIndex()); 6124 } 6125 6126 if (!Op) { 6127 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6128 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6129 SplitRegs) { 6130 unsigned Offset = 0; 6131 for (const auto &RegAndSize : SplitRegs) { 6132 // If the expression is already a fragment, the current register 6133 // offset+size might extend beyond the fragment. In this case, only 6134 // the register bits that are inside the fragment are relevant. 6135 int RegFragmentSizeInBits = RegAndSize.second; 6136 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6137 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6138 // The register is entirely outside the expression fragment, 6139 // so is irrelevant for debug info. 6140 if (Offset >= ExprFragmentSizeInBits) 6141 break; 6142 // The register is partially outside the expression fragment, only 6143 // the low bits within the fragment are relevant for debug info. 6144 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6145 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6146 } 6147 } 6148 6149 auto FragmentExpr = DIExpression::createFragmentExpression( 6150 Expr, Offset, RegFragmentSizeInBits); 6151 Offset += RegAndSize.second; 6152 // If a valid fragment expression cannot be created, the variable's 6153 // correct value cannot be determined and so it is set as Undef. 6154 if (!FragmentExpr) { 6155 SDDbgValue *SDV = DAG.getConstantDbgValue( 6156 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6157 DAG.AddDbgValue(SDV, false); 6158 continue; 6159 } 6160 MachineInstr *NewMI = 6161 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6162 Kind != FuncArgumentDbgValueKind::Value); 6163 FuncInfo.ArgDbgValues.push_back(NewMI); 6164 } 6165 }; 6166 6167 // Check if ValueMap has reg number. 6168 DenseMap<const Value *, Register>::const_iterator 6169 VMI = FuncInfo.ValueMap.find(V); 6170 if (VMI != FuncInfo.ValueMap.end()) { 6171 const auto &TLI = DAG.getTargetLoweringInfo(); 6172 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6173 V->getType(), std::nullopt); 6174 if (RFV.occupiesMultipleRegs()) { 6175 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6176 return true; 6177 } 6178 6179 Op = MachineOperand::CreateReg(VMI->second, false); 6180 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6181 } else if (ArgRegsAndSizes.size() > 1) { 6182 // This was split due to the calling convention, and no virtual register 6183 // mapping exists for the value. 6184 splitMultiRegDbgValue(ArgRegsAndSizes); 6185 return true; 6186 } 6187 } 6188 6189 if (!Op) 6190 return false; 6191 6192 assert(Variable->isValidLocationForIntrinsic(DL) && 6193 "Expected inlined-at fields to agree"); 6194 MachineInstr *NewMI = nullptr; 6195 6196 if (Op->isReg()) 6197 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6198 else 6199 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6200 Variable, Expr); 6201 6202 // Otherwise, use ArgDbgValues. 6203 FuncInfo.ArgDbgValues.push_back(NewMI); 6204 return true; 6205 } 6206 6207 /// Return the appropriate SDDbgValue based on N. 6208 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6209 DILocalVariable *Variable, 6210 DIExpression *Expr, 6211 const DebugLoc &dl, 6212 unsigned DbgSDNodeOrder) { 6213 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6214 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6215 // stack slot locations. 6216 // 6217 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6218 // debug values here after optimization: 6219 // 6220 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6221 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6222 // 6223 // Both describe the direct values of their associated variables. 6224 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6225 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6226 } 6227 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6228 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6229 } 6230 6231 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6232 switch (Intrinsic) { 6233 case Intrinsic::smul_fix: 6234 return ISD::SMULFIX; 6235 case Intrinsic::umul_fix: 6236 return ISD::UMULFIX; 6237 case Intrinsic::smul_fix_sat: 6238 return ISD::SMULFIXSAT; 6239 case Intrinsic::umul_fix_sat: 6240 return ISD::UMULFIXSAT; 6241 case Intrinsic::sdiv_fix: 6242 return ISD::SDIVFIX; 6243 case Intrinsic::udiv_fix: 6244 return ISD::UDIVFIX; 6245 case Intrinsic::sdiv_fix_sat: 6246 return ISD::SDIVFIXSAT; 6247 case Intrinsic::udiv_fix_sat: 6248 return ISD::UDIVFIXSAT; 6249 default: 6250 llvm_unreachable("Unhandled fixed point intrinsic"); 6251 } 6252 } 6253 6254 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6255 const char *FunctionName) { 6256 assert(FunctionName && "FunctionName must not be nullptr"); 6257 SDValue Callee = DAG.getExternalSymbol( 6258 FunctionName, 6259 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6260 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6261 } 6262 6263 /// Given a @llvm.call.preallocated.setup, return the corresponding 6264 /// preallocated call. 6265 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6266 assert(cast<CallBase>(PreallocatedSetup) 6267 ->getCalledFunction() 6268 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6269 "expected call_preallocated_setup Value"); 6270 for (const auto *U : PreallocatedSetup->users()) { 6271 auto *UseCall = cast<CallBase>(U); 6272 const Function *Fn = UseCall->getCalledFunction(); 6273 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6274 return UseCall; 6275 } 6276 } 6277 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6278 } 6279 6280 /// If DI is a debug value with an EntryValue expression, lower it using the 6281 /// corresponding physical register of the associated Argument value 6282 /// (guaranteed to exist by the verifier). 6283 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6284 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6285 DIExpression *Expr, DebugLoc DbgLoc) { 6286 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6287 return false; 6288 6289 // These properties are guaranteed by the verifier. 6290 const Argument *Arg = cast<Argument>(Values[0]); 6291 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6292 6293 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6294 if (ArgIt == FuncInfo.ValueMap.end()) { 6295 LLVM_DEBUG( 6296 dbgs() << "Dropping dbg.value: expression is entry_value but " 6297 "couldn't find an associated register for the Argument\n"); 6298 return true; 6299 } 6300 Register ArgVReg = ArgIt->getSecond(); 6301 6302 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6303 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6304 SDDbgValue *SDV = DAG.getVRegDbgValue( 6305 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6306 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6307 return true; 6308 } 6309 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6310 "couldn't find a physical register\n"); 6311 return true; 6312 } 6313 6314 /// Lower the call to the specified intrinsic function. 6315 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6316 unsigned Intrinsic) { 6317 SDLoc sdl = getCurSDLoc(); 6318 switch (Intrinsic) { 6319 case Intrinsic::experimental_convergence_anchor: 6320 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6321 break; 6322 case Intrinsic::experimental_convergence_entry: 6323 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6324 break; 6325 case Intrinsic::experimental_convergence_loop: { 6326 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6327 auto *Token = Bundle->Inputs[0].get(); 6328 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6329 getValue(Token))); 6330 break; 6331 } 6332 } 6333 } 6334 6335 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6336 unsigned IntrinsicID) { 6337 // For now, we're only lowering an 'add' histogram. 6338 // We can add others later, e.g. saturating adds, min/max. 6339 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6340 "Tried to lower unsupported histogram type"); 6341 SDLoc sdl = getCurSDLoc(); 6342 Value *Ptr = I.getOperand(0); 6343 SDValue Inc = getValue(I.getOperand(1)); 6344 SDValue Mask = getValue(I.getOperand(2)); 6345 6346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6347 DataLayout TargetDL = DAG.getDataLayout(); 6348 EVT VT = Inc.getValueType(); 6349 Align Alignment = DAG.getEVTAlign(VT); 6350 6351 const MDNode *Ranges = getRangeMetadata(I); 6352 6353 SDValue Root = DAG.getRoot(); 6354 SDValue Base; 6355 SDValue Index; 6356 ISD::MemIndexType IndexType; 6357 SDValue Scale; 6358 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6359 I.getParent(), VT.getScalarStoreSize()); 6360 6361 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6362 6363 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6364 MachinePointerInfo(AS), 6365 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6366 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6367 6368 if (!UniformBase) { 6369 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6370 Index = getValue(Ptr); 6371 IndexType = ISD::SIGNED_SCALED; 6372 Scale = 6373 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6374 } 6375 6376 EVT IdxVT = Index.getValueType(); 6377 EVT EltTy = IdxVT.getVectorElementType(); 6378 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6379 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6380 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6381 } 6382 6383 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6384 6385 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6386 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6387 Ops, MMO, IndexType); 6388 6389 setValue(&I, Histogram); 6390 DAG.setRoot(Histogram); 6391 } 6392 6393 /// Lower the call to the specified intrinsic function. 6394 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6395 unsigned Intrinsic) { 6396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6397 SDLoc sdl = getCurSDLoc(); 6398 DebugLoc dl = getCurDebugLoc(); 6399 SDValue Res; 6400 6401 SDNodeFlags Flags; 6402 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6403 Flags.copyFMF(*FPOp); 6404 6405 switch (Intrinsic) { 6406 default: 6407 // By default, turn this into a target intrinsic node. 6408 visitTargetIntrinsic(I, Intrinsic); 6409 return; 6410 case Intrinsic::vscale: { 6411 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6412 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6413 return; 6414 } 6415 case Intrinsic::vastart: visitVAStart(I); return; 6416 case Intrinsic::vaend: visitVAEnd(I); return; 6417 case Intrinsic::vacopy: visitVACopy(I); return; 6418 case Intrinsic::returnaddress: 6419 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6420 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6421 getValue(I.getArgOperand(0)))); 6422 return; 6423 case Intrinsic::addressofreturnaddress: 6424 setValue(&I, 6425 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6426 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6427 return; 6428 case Intrinsic::sponentry: 6429 setValue(&I, 6430 DAG.getNode(ISD::SPONENTRY, sdl, 6431 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6432 return; 6433 case Intrinsic::frameaddress: 6434 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6435 TLI.getFrameIndexTy(DAG.getDataLayout()), 6436 getValue(I.getArgOperand(0)))); 6437 return; 6438 case Intrinsic::read_volatile_register: 6439 case Intrinsic::read_register: { 6440 Value *Reg = I.getArgOperand(0); 6441 SDValue Chain = getRoot(); 6442 SDValue RegName = 6443 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6445 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6446 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6447 setValue(&I, Res); 6448 DAG.setRoot(Res.getValue(1)); 6449 return; 6450 } 6451 case Intrinsic::write_register: { 6452 Value *Reg = I.getArgOperand(0); 6453 Value *RegValue = I.getArgOperand(1); 6454 SDValue Chain = getRoot(); 6455 SDValue RegName = 6456 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6457 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6458 RegName, getValue(RegValue))); 6459 return; 6460 } 6461 case Intrinsic::memcpy: { 6462 const auto &MCI = cast<MemCpyInst>(I); 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 SDValue Op3 = getValue(I.getArgOperand(2)); 6466 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6467 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6468 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6469 Align Alignment = std::min(DstAlign, SrcAlign); 6470 bool isVol = MCI.isVolatile(); 6471 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6472 // node. 6473 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6474 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6475 /* AlwaysInline */ false, &I, std::nullopt, 6476 MachinePointerInfo(I.getArgOperand(0)), 6477 MachinePointerInfo(I.getArgOperand(1)), 6478 I.getAAMetadata(), AA); 6479 updateDAGForMaybeTailCall(MC); 6480 return; 6481 } 6482 case Intrinsic::memcpy_inline: { 6483 const auto &MCI = cast<MemCpyInlineInst>(I); 6484 SDValue Dst = getValue(I.getArgOperand(0)); 6485 SDValue Src = getValue(I.getArgOperand(1)); 6486 SDValue Size = getValue(I.getArgOperand(2)); 6487 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6488 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6489 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6490 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6491 Align Alignment = std::min(DstAlign, SrcAlign); 6492 bool isVol = MCI.isVolatile(); 6493 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6494 // node. 6495 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6496 /* AlwaysInline */ true, &I, std::nullopt, 6497 MachinePointerInfo(I.getArgOperand(0)), 6498 MachinePointerInfo(I.getArgOperand(1)), 6499 I.getAAMetadata(), AA); 6500 updateDAGForMaybeTailCall(MC); 6501 return; 6502 } 6503 case Intrinsic::memset: { 6504 const auto &MSI = cast<MemSetInst>(I); 6505 SDValue Op1 = getValue(I.getArgOperand(0)); 6506 SDValue Op2 = getValue(I.getArgOperand(1)); 6507 SDValue Op3 = getValue(I.getArgOperand(2)); 6508 // @llvm.memset defines 0 and 1 to both mean no alignment. 6509 Align Alignment = MSI.getDestAlign().valueOrOne(); 6510 bool isVol = MSI.isVolatile(); 6511 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6512 SDValue MS = DAG.getMemset( 6513 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6514 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6515 updateDAGForMaybeTailCall(MS); 6516 return; 6517 } 6518 case Intrinsic::memset_inline: { 6519 const auto &MSII = cast<MemSetInlineInst>(I); 6520 SDValue Dst = getValue(I.getArgOperand(0)); 6521 SDValue Value = getValue(I.getArgOperand(1)); 6522 SDValue Size = getValue(I.getArgOperand(2)); 6523 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6524 // @llvm.memset defines 0 and 1 to both mean no alignment. 6525 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6526 bool isVol = MSII.isVolatile(); 6527 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6528 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6529 /* AlwaysInline */ true, &I, 6530 MachinePointerInfo(I.getArgOperand(0)), 6531 I.getAAMetadata()); 6532 updateDAGForMaybeTailCall(MC); 6533 return; 6534 } 6535 case Intrinsic::memmove: { 6536 const auto &MMI = cast<MemMoveInst>(I); 6537 SDValue Op1 = getValue(I.getArgOperand(0)); 6538 SDValue Op2 = getValue(I.getArgOperand(1)); 6539 SDValue Op3 = getValue(I.getArgOperand(2)); 6540 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6541 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6542 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6543 Align Alignment = std::min(DstAlign, SrcAlign); 6544 bool isVol = MMI.isVolatile(); 6545 // FIXME: Support passing different dest/src alignments to the memmove DAG 6546 // node. 6547 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6548 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6549 /* OverrideTailCall */ std::nullopt, 6550 MachinePointerInfo(I.getArgOperand(0)), 6551 MachinePointerInfo(I.getArgOperand(1)), 6552 I.getAAMetadata(), AA); 6553 updateDAGForMaybeTailCall(MM); 6554 return; 6555 } 6556 case Intrinsic::memcpy_element_unordered_atomic: { 6557 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6558 SDValue Dst = getValue(MI.getRawDest()); 6559 SDValue Src = getValue(MI.getRawSource()); 6560 SDValue Length = getValue(MI.getLength()); 6561 6562 Type *LengthTy = MI.getLength()->getType(); 6563 unsigned ElemSz = MI.getElementSizeInBytes(); 6564 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6565 SDValue MC = 6566 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6567 isTC, MachinePointerInfo(MI.getRawDest()), 6568 MachinePointerInfo(MI.getRawSource())); 6569 updateDAGForMaybeTailCall(MC); 6570 return; 6571 } 6572 case Intrinsic::memmove_element_unordered_atomic: { 6573 auto &MI = cast<AtomicMemMoveInst>(I); 6574 SDValue Dst = getValue(MI.getRawDest()); 6575 SDValue Src = getValue(MI.getRawSource()); 6576 SDValue Length = getValue(MI.getLength()); 6577 6578 Type *LengthTy = MI.getLength()->getType(); 6579 unsigned ElemSz = MI.getElementSizeInBytes(); 6580 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6581 SDValue MC = 6582 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6583 isTC, MachinePointerInfo(MI.getRawDest()), 6584 MachinePointerInfo(MI.getRawSource())); 6585 updateDAGForMaybeTailCall(MC); 6586 return; 6587 } 6588 case Intrinsic::memset_element_unordered_atomic: { 6589 auto &MI = cast<AtomicMemSetInst>(I); 6590 SDValue Dst = getValue(MI.getRawDest()); 6591 SDValue Val = getValue(MI.getValue()); 6592 SDValue Length = getValue(MI.getLength()); 6593 6594 Type *LengthTy = MI.getLength()->getType(); 6595 unsigned ElemSz = MI.getElementSizeInBytes(); 6596 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6597 SDValue MC = 6598 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6599 isTC, MachinePointerInfo(MI.getRawDest())); 6600 updateDAGForMaybeTailCall(MC); 6601 return; 6602 } 6603 case Intrinsic::call_preallocated_setup: { 6604 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6605 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6606 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6607 getRoot(), SrcValue); 6608 setValue(&I, Res); 6609 DAG.setRoot(Res); 6610 return; 6611 } 6612 case Intrinsic::call_preallocated_arg: { 6613 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6614 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6615 SDValue Ops[3]; 6616 Ops[0] = getRoot(); 6617 Ops[1] = SrcValue; 6618 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6619 MVT::i32); // arg index 6620 SDValue Res = DAG.getNode( 6621 ISD::PREALLOCATED_ARG, sdl, 6622 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6623 setValue(&I, Res); 6624 DAG.setRoot(Res.getValue(1)); 6625 return; 6626 } 6627 case Intrinsic::dbg_declare: { 6628 const auto &DI = cast<DbgDeclareInst>(I); 6629 // Debug intrinsics are handled separately in assignment tracking mode. 6630 // Some intrinsics are handled right after Argument lowering. 6631 if (AssignmentTrackingEnabled || 6632 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6633 return; 6634 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6635 DILocalVariable *Variable = DI.getVariable(); 6636 DIExpression *Expression = DI.getExpression(); 6637 dropDanglingDebugInfo(Variable, Expression); 6638 // Assume dbg.declare can not currently use DIArgList, i.e. 6639 // it is non-variadic. 6640 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6641 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6642 DI.getDebugLoc()); 6643 return; 6644 } 6645 case Intrinsic::dbg_label: { 6646 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6647 DILabel *Label = DI.getLabel(); 6648 assert(Label && "Missing label"); 6649 6650 SDDbgLabel *SDV; 6651 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6652 DAG.AddDbgLabel(SDV); 6653 return; 6654 } 6655 case Intrinsic::dbg_assign: { 6656 // Debug intrinsics are handled separately in assignment tracking mode. 6657 if (AssignmentTrackingEnabled) 6658 return; 6659 // If assignment tracking hasn't been enabled then fall through and treat 6660 // the dbg.assign as a dbg.value. 6661 [[fallthrough]]; 6662 } 6663 case Intrinsic::dbg_value: { 6664 // Debug intrinsics are handled separately in assignment tracking mode. 6665 if (AssignmentTrackingEnabled) 6666 return; 6667 const DbgValueInst &DI = cast<DbgValueInst>(I); 6668 assert(DI.getVariable() && "Missing variable"); 6669 6670 DILocalVariable *Variable = DI.getVariable(); 6671 DIExpression *Expression = DI.getExpression(); 6672 dropDanglingDebugInfo(Variable, Expression); 6673 6674 if (DI.isKillLocation()) { 6675 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6676 return; 6677 } 6678 6679 SmallVector<Value *, 4> Values(DI.getValues()); 6680 if (Values.empty()) 6681 return; 6682 6683 bool IsVariadic = DI.hasArgList(); 6684 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6685 SDNodeOrder, IsVariadic)) 6686 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6687 DI.getDebugLoc(), SDNodeOrder); 6688 return; 6689 } 6690 6691 case Intrinsic::eh_typeid_for: { 6692 // Find the type id for the given typeinfo. 6693 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6694 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6695 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6696 setValue(&I, Res); 6697 return; 6698 } 6699 6700 case Intrinsic::eh_return_i32: 6701 case Intrinsic::eh_return_i64: 6702 DAG.getMachineFunction().setCallsEHReturn(true); 6703 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6704 MVT::Other, 6705 getControlRoot(), 6706 getValue(I.getArgOperand(0)), 6707 getValue(I.getArgOperand(1)))); 6708 return; 6709 case Intrinsic::eh_unwind_init: 6710 DAG.getMachineFunction().setCallsUnwindInit(true); 6711 return; 6712 case Intrinsic::eh_dwarf_cfa: 6713 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6714 TLI.getPointerTy(DAG.getDataLayout()), 6715 getValue(I.getArgOperand(0)))); 6716 return; 6717 case Intrinsic::eh_sjlj_callsite: { 6718 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6719 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6720 6721 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6722 return; 6723 } 6724 case Intrinsic::eh_sjlj_functioncontext: { 6725 // Get and store the index of the function context. 6726 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6727 AllocaInst *FnCtx = 6728 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6729 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6730 MFI.setFunctionContextIndex(FI); 6731 return; 6732 } 6733 case Intrinsic::eh_sjlj_setjmp: { 6734 SDValue Ops[2]; 6735 Ops[0] = getRoot(); 6736 Ops[1] = getValue(I.getArgOperand(0)); 6737 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6738 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6739 setValue(&I, Op.getValue(0)); 6740 DAG.setRoot(Op.getValue(1)); 6741 return; 6742 } 6743 case Intrinsic::eh_sjlj_longjmp: 6744 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6745 getRoot(), getValue(I.getArgOperand(0)))); 6746 return; 6747 case Intrinsic::eh_sjlj_setup_dispatch: 6748 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6749 getRoot())); 6750 return; 6751 case Intrinsic::masked_gather: 6752 visitMaskedGather(I); 6753 return; 6754 case Intrinsic::masked_load: 6755 visitMaskedLoad(I); 6756 return; 6757 case Intrinsic::masked_scatter: 6758 visitMaskedScatter(I); 6759 return; 6760 case Intrinsic::masked_store: 6761 visitMaskedStore(I); 6762 return; 6763 case Intrinsic::masked_expandload: 6764 visitMaskedLoad(I, true /* IsExpanding */); 6765 return; 6766 case Intrinsic::masked_compressstore: 6767 visitMaskedStore(I, true /* IsCompressing */); 6768 return; 6769 case Intrinsic::powi: 6770 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6771 getValue(I.getArgOperand(1)), DAG)); 6772 return; 6773 case Intrinsic::log: 6774 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6775 return; 6776 case Intrinsic::log2: 6777 setValue(&I, 6778 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6779 return; 6780 case Intrinsic::log10: 6781 setValue(&I, 6782 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6783 return; 6784 case Intrinsic::exp: 6785 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6786 return; 6787 case Intrinsic::exp2: 6788 setValue(&I, 6789 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6790 return; 6791 case Intrinsic::pow: 6792 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6793 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6794 return; 6795 case Intrinsic::sqrt: 6796 case Intrinsic::fabs: 6797 case Intrinsic::sin: 6798 case Intrinsic::cos: 6799 case Intrinsic::tan: 6800 case Intrinsic::asin: 6801 case Intrinsic::acos: 6802 case Intrinsic::atan: 6803 case Intrinsic::sinh: 6804 case Intrinsic::cosh: 6805 case Intrinsic::tanh: 6806 case Intrinsic::exp10: 6807 case Intrinsic::floor: 6808 case Intrinsic::ceil: 6809 case Intrinsic::trunc: 6810 case Intrinsic::rint: 6811 case Intrinsic::nearbyint: 6812 case Intrinsic::round: 6813 case Intrinsic::roundeven: 6814 case Intrinsic::canonicalize: { 6815 unsigned Opcode; 6816 // clang-format off 6817 switch (Intrinsic) { 6818 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6819 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6820 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6821 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6822 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6823 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6824 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6825 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6826 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6827 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6828 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6829 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6830 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6831 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6832 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6833 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6834 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6835 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6836 case Intrinsic::round: Opcode = ISD::FROUND; break; 6837 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6838 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6839 } 6840 // clang-format on 6841 6842 setValue(&I, DAG.getNode(Opcode, sdl, 6843 getValue(I.getArgOperand(0)).getValueType(), 6844 getValue(I.getArgOperand(0)), Flags)); 6845 return; 6846 } 6847 case Intrinsic::lround: 6848 case Intrinsic::llround: 6849 case Intrinsic::lrint: 6850 case Intrinsic::llrint: { 6851 unsigned Opcode; 6852 // clang-format off 6853 switch (Intrinsic) { 6854 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6855 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6856 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6857 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6858 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6859 } 6860 // clang-format on 6861 6862 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6863 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6864 getValue(I.getArgOperand(0)))); 6865 return; 6866 } 6867 case Intrinsic::minnum: 6868 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6869 getValue(I.getArgOperand(0)).getValueType(), 6870 getValue(I.getArgOperand(0)), 6871 getValue(I.getArgOperand(1)), Flags)); 6872 return; 6873 case Intrinsic::maxnum: 6874 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6875 getValue(I.getArgOperand(0)).getValueType(), 6876 getValue(I.getArgOperand(0)), 6877 getValue(I.getArgOperand(1)), Flags)); 6878 return; 6879 case Intrinsic::minimum: 6880 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6881 getValue(I.getArgOperand(0)).getValueType(), 6882 getValue(I.getArgOperand(0)), 6883 getValue(I.getArgOperand(1)), Flags)); 6884 return; 6885 case Intrinsic::maximum: 6886 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6887 getValue(I.getArgOperand(0)).getValueType(), 6888 getValue(I.getArgOperand(0)), 6889 getValue(I.getArgOperand(1)), Flags)); 6890 return; 6891 case Intrinsic::minimumnum: 6892 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6893 getValue(I.getArgOperand(0)).getValueType(), 6894 getValue(I.getArgOperand(0)), 6895 getValue(I.getArgOperand(1)), Flags)); 6896 return; 6897 case Intrinsic::maximumnum: 6898 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6899 getValue(I.getArgOperand(0)).getValueType(), 6900 getValue(I.getArgOperand(0)), 6901 getValue(I.getArgOperand(1)), Flags)); 6902 return; 6903 case Intrinsic::copysign: 6904 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6905 getValue(I.getArgOperand(0)).getValueType(), 6906 getValue(I.getArgOperand(0)), 6907 getValue(I.getArgOperand(1)), Flags)); 6908 return; 6909 case Intrinsic::ldexp: 6910 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6911 getValue(I.getArgOperand(0)).getValueType(), 6912 getValue(I.getArgOperand(0)), 6913 getValue(I.getArgOperand(1)), Flags)); 6914 return; 6915 case Intrinsic::frexp: { 6916 SmallVector<EVT, 2> ValueVTs; 6917 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6918 SDVTList VTs = DAG.getVTList(ValueVTs); 6919 setValue(&I, 6920 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6921 return; 6922 } 6923 case Intrinsic::arithmetic_fence: { 6924 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6925 getValue(I.getArgOperand(0)).getValueType(), 6926 getValue(I.getArgOperand(0)), Flags)); 6927 return; 6928 } 6929 case Intrinsic::fma: 6930 setValue(&I, DAG.getNode( 6931 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6932 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6933 getValue(I.getArgOperand(2)), Flags)); 6934 return; 6935 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6936 case Intrinsic::INTRINSIC: 6937 #include "llvm/IR/ConstrainedOps.def" 6938 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6939 return; 6940 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6941 #include "llvm/IR/VPIntrinsics.def" 6942 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6943 return; 6944 case Intrinsic::fptrunc_round: { 6945 // Get the last argument, the metadata and convert it to an integer in the 6946 // call 6947 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6948 std::optional<RoundingMode> RoundMode = 6949 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6950 6951 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6952 6953 // Propagate fast-math-flags from IR to node(s). 6954 SDNodeFlags Flags; 6955 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6956 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6957 6958 SDValue Result; 6959 Result = DAG.getNode( 6960 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6961 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 6962 setValue(&I, Result); 6963 6964 return; 6965 } 6966 case Intrinsic::fmuladd: { 6967 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6968 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6969 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6970 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6971 getValue(I.getArgOperand(0)).getValueType(), 6972 getValue(I.getArgOperand(0)), 6973 getValue(I.getArgOperand(1)), 6974 getValue(I.getArgOperand(2)), Flags)); 6975 } else { 6976 // TODO: Intrinsic calls should have fast-math-flags. 6977 SDValue Mul = DAG.getNode( 6978 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6979 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6980 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6981 getValue(I.getArgOperand(0)).getValueType(), 6982 Mul, getValue(I.getArgOperand(2)), Flags); 6983 setValue(&I, Add); 6984 } 6985 return; 6986 } 6987 case Intrinsic::convert_to_fp16: 6988 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6989 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6990 getValue(I.getArgOperand(0)), 6991 DAG.getTargetConstant(0, sdl, 6992 MVT::i32)))); 6993 return; 6994 case Intrinsic::convert_from_fp16: 6995 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6996 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6997 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6998 getValue(I.getArgOperand(0))))); 6999 return; 7000 case Intrinsic::fptosi_sat: { 7001 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7002 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7003 getValue(I.getArgOperand(0)), 7004 DAG.getValueType(VT.getScalarType()))); 7005 return; 7006 } 7007 case Intrinsic::fptoui_sat: { 7008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7009 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7010 getValue(I.getArgOperand(0)), 7011 DAG.getValueType(VT.getScalarType()))); 7012 return; 7013 } 7014 case Intrinsic::set_rounding: 7015 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7016 {getRoot(), getValue(I.getArgOperand(0))}); 7017 setValue(&I, Res); 7018 DAG.setRoot(Res.getValue(0)); 7019 return; 7020 case Intrinsic::is_fpclass: { 7021 const DataLayout DLayout = DAG.getDataLayout(); 7022 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7023 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7024 FPClassTest Test = static_cast<FPClassTest>( 7025 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7026 MachineFunction &MF = DAG.getMachineFunction(); 7027 const Function &F = MF.getFunction(); 7028 SDValue Op = getValue(I.getArgOperand(0)); 7029 SDNodeFlags Flags; 7030 Flags.setNoFPExcept( 7031 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7032 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7033 // expansion can use illegal types. Making expansion early allows 7034 // legalizing these types prior to selection. 7035 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7036 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7037 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7038 setValue(&I, Result); 7039 return; 7040 } 7041 7042 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7043 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7044 setValue(&I, V); 7045 return; 7046 } 7047 case Intrinsic::get_fpenv: { 7048 const DataLayout DLayout = DAG.getDataLayout(); 7049 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7050 Align TempAlign = DAG.getEVTAlign(EnvVT); 7051 SDValue Chain = getRoot(); 7052 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7053 // and temporary storage in stack. 7054 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7055 Res = DAG.getNode( 7056 ISD::GET_FPENV, sdl, 7057 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7058 MVT::Other), 7059 Chain); 7060 } else { 7061 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7062 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7063 auto MPI = 7064 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7065 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7066 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7067 TempAlign); 7068 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7069 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7070 } 7071 setValue(&I, Res); 7072 DAG.setRoot(Res.getValue(1)); 7073 return; 7074 } 7075 case Intrinsic::set_fpenv: { 7076 const DataLayout DLayout = DAG.getDataLayout(); 7077 SDValue Env = getValue(I.getArgOperand(0)); 7078 EVT EnvVT = Env.getValueType(); 7079 Align TempAlign = DAG.getEVTAlign(EnvVT); 7080 SDValue Chain = getRoot(); 7081 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7082 // environment from memory. 7083 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7084 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7085 } else { 7086 // Allocate space in stack, copy environment bits into it and use this 7087 // memory in SET_FPENV_MEM. 7088 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7089 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7090 auto MPI = 7091 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7092 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7093 MachineMemOperand::MOStore); 7094 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7095 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7096 TempAlign); 7097 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7098 } 7099 DAG.setRoot(Chain); 7100 return; 7101 } 7102 case Intrinsic::reset_fpenv: 7103 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7104 return; 7105 case Intrinsic::get_fpmode: 7106 Res = DAG.getNode( 7107 ISD::GET_FPMODE, sdl, 7108 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7109 MVT::Other), 7110 DAG.getRoot()); 7111 setValue(&I, Res); 7112 DAG.setRoot(Res.getValue(1)); 7113 return; 7114 case Intrinsic::set_fpmode: 7115 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7116 getValue(I.getArgOperand(0))); 7117 DAG.setRoot(Res); 7118 return; 7119 case Intrinsic::reset_fpmode: { 7120 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7121 DAG.setRoot(Res); 7122 return; 7123 } 7124 case Intrinsic::pcmarker: { 7125 SDValue Tmp = getValue(I.getArgOperand(0)); 7126 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7127 return; 7128 } 7129 case Intrinsic::readcyclecounter: { 7130 SDValue Op = getRoot(); 7131 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7132 DAG.getVTList(MVT::i64, MVT::Other), Op); 7133 setValue(&I, Res); 7134 DAG.setRoot(Res.getValue(1)); 7135 return; 7136 } 7137 case Intrinsic::readsteadycounter: { 7138 SDValue Op = getRoot(); 7139 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7140 DAG.getVTList(MVT::i64, MVT::Other), Op); 7141 setValue(&I, Res); 7142 DAG.setRoot(Res.getValue(1)); 7143 return; 7144 } 7145 case Intrinsic::bitreverse: 7146 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7147 getValue(I.getArgOperand(0)).getValueType(), 7148 getValue(I.getArgOperand(0)))); 7149 return; 7150 case Intrinsic::bswap: 7151 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7152 getValue(I.getArgOperand(0)).getValueType(), 7153 getValue(I.getArgOperand(0)))); 7154 return; 7155 case Intrinsic::cttz: { 7156 SDValue Arg = getValue(I.getArgOperand(0)); 7157 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7158 EVT Ty = Arg.getValueType(); 7159 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7160 sdl, Ty, Arg)); 7161 return; 7162 } 7163 case Intrinsic::ctlz: { 7164 SDValue Arg = getValue(I.getArgOperand(0)); 7165 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7166 EVT Ty = Arg.getValueType(); 7167 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7168 sdl, Ty, Arg)); 7169 return; 7170 } 7171 case Intrinsic::ctpop: { 7172 SDValue Arg = getValue(I.getArgOperand(0)); 7173 EVT Ty = Arg.getValueType(); 7174 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7175 return; 7176 } 7177 case Intrinsic::fshl: 7178 case Intrinsic::fshr: { 7179 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7180 SDValue X = getValue(I.getArgOperand(0)); 7181 SDValue Y = getValue(I.getArgOperand(1)); 7182 SDValue Z = getValue(I.getArgOperand(2)); 7183 EVT VT = X.getValueType(); 7184 7185 if (X == Y) { 7186 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7187 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7188 } else { 7189 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7190 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7191 } 7192 return; 7193 } 7194 case Intrinsic::sadd_sat: { 7195 SDValue Op1 = getValue(I.getArgOperand(0)); 7196 SDValue Op2 = getValue(I.getArgOperand(1)); 7197 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7198 return; 7199 } 7200 case Intrinsic::uadd_sat: { 7201 SDValue Op1 = getValue(I.getArgOperand(0)); 7202 SDValue Op2 = getValue(I.getArgOperand(1)); 7203 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7204 return; 7205 } 7206 case Intrinsic::ssub_sat: { 7207 SDValue Op1 = getValue(I.getArgOperand(0)); 7208 SDValue Op2 = getValue(I.getArgOperand(1)); 7209 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7210 return; 7211 } 7212 case Intrinsic::usub_sat: { 7213 SDValue Op1 = getValue(I.getArgOperand(0)); 7214 SDValue Op2 = getValue(I.getArgOperand(1)); 7215 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7216 return; 7217 } 7218 case Intrinsic::sshl_sat: { 7219 SDValue Op1 = getValue(I.getArgOperand(0)); 7220 SDValue Op2 = getValue(I.getArgOperand(1)); 7221 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7222 return; 7223 } 7224 case Intrinsic::ushl_sat: { 7225 SDValue Op1 = getValue(I.getArgOperand(0)); 7226 SDValue Op2 = getValue(I.getArgOperand(1)); 7227 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7228 return; 7229 } 7230 case Intrinsic::smul_fix: 7231 case Intrinsic::umul_fix: 7232 case Intrinsic::smul_fix_sat: 7233 case Intrinsic::umul_fix_sat: { 7234 SDValue Op1 = getValue(I.getArgOperand(0)); 7235 SDValue Op2 = getValue(I.getArgOperand(1)); 7236 SDValue Op3 = getValue(I.getArgOperand(2)); 7237 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7238 Op1.getValueType(), Op1, Op2, Op3)); 7239 return; 7240 } 7241 case Intrinsic::sdiv_fix: 7242 case Intrinsic::udiv_fix: 7243 case Intrinsic::sdiv_fix_sat: 7244 case Intrinsic::udiv_fix_sat: { 7245 SDValue Op1 = getValue(I.getArgOperand(0)); 7246 SDValue Op2 = getValue(I.getArgOperand(1)); 7247 SDValue Op3 = getValue(I.getArgOperand(2)); 7248 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7249 Op1, Op2, Op3, DAG, TLI)); 7250 return; 7251 } 7252 case Intrinsic::smax: { 7253 SDValue Op1 = getValue(I.getArgOperand(0)); 7254 SDValue Op2 = getValue(I.getArgOperand(1)); 7255 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7256 return; 7257 } 7258 case Intrinsic::smin: { 7259 SDValue Op1 = getValue(I.getArgOperand(0)); 7260 SDValue Op2 = getValue(I.getArgOperand(1)); 7261 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7262 return; 7263 } 7264 case Intrinsic::umax: { 7265 SDValue Op1 = getValue(I.getArgOperand(0)); 7266 SDValue Op2 = getValue(I.getArgOperand(1)); 7267 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7268 return; 7269 } 7270 case Intrinsic::umin: { 7271 SDValue Op1 = getValue(I.getArgOperand(0)); 7272 SDValue Op2 = getValue(I.getArgOperand(1)); 7273 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7274 return; 7275 } 7276 case Intrinsic::abs: { 7277 // TODO: Preserve "int min is poison" arg in SDAG? 7278 SDValue Op1 = getValue(I.getArgOperand(0)); 7279 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7280 return; 7281 } 7282 case Intrinsic::scmp: { 7283 SDValue Op1 = getValue(I.getArgOperand(0)); 7284 SDValue Op2 = getValue(I.getArgOperand(1)); 7285 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7286 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7287 break; 7288 } 7289 case Intrinsic::ucmp: { 7290 SDValue Op1 = getValue(I.getArgOperand(0)); 7291 SDValue Op2 = getValue(I.getArgOperand(1)); 7292 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7293 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7294 break; 7295 } 7296 case Intrinsic::stacksave: { 7297 SDValue Op = getRoot(); 7298 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7299 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7300 setValue(&I, Res); 7301 DAG.setRoot(Res.getValue(1)); 7302 return; 7303 } 7304 case Intrinsic::stackrestore: 7305 Res = getValue(I.getArgOperand(0)); 7306 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7307 return; 7308 case Intrinsic::get_dynamic_area_offset: { 7309 SDValue Op = getRoot(); 7310 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7311 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7312 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7313 // target. 7314 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7315 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7316 " intrinsic!"); 7317 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7318 Op); 7319 DAG.setRoot(Op); 7320 setValue(&I, Res); 7321 return; 7322 } 7323 case Intrinsic::stackguard: { 7324 MachineFunction &MF = DAG.getMachineFunction(); 7325 const Module &M = *MF.getFunction().getParent(); 7326 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7327 SDValue Chain = getRoot(); 7328 if (TLI.useLoadStackGuardNode()) { 7329 Res = getLoadStackGuard(DAG, sdl, Chain); 7330 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7331 } else { 7332 const Value *Global = TLI.getSDagStackGuard(M); 7333 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7334 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7335 MachinePointerInfo(Global, 0), Align, 7336 MachineMemOperand::MOVolatile); 7337 } 7338 if (TLI.useStackGuardXorFP()) 7339 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7340 DAG.setRoot(Chain); 7341 setValue(&I, Res); 7342 return; 7343 } 7344 case Intrinsic::stackprotector: { 7345 // Emit code into the DAG to store the stack guard onto the stack. 7346 MachineFunction &MF = DAG.getMachineFunction(); 7347 MachineFrameInfo &MFI = MF.getFrameInfo(); 7348 SDValue Src, Chain = getRoot(); 7349 7350 if (TLI.useLoadStackGuardNode()) 7351 Src = getLoadStackGuard(DAG, sdl, Chain); 7352 else 7353 Src = getValue(I.getArgOperand(0)); // The guard's value. 7354 7355 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7356 7357 int FI = FuncInfo.StaticAllocaMap[Slot]; 7358 MFI.setStackProtectorIndex(FI); 7359 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7360 7361 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7362 7363 // Store the stack protector onto the stack. 7364 Res = DAG.getStore( 7365 Chain, sdl, Src, FIN, 7366 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7367 MaybeAlign(), MachineMemOperand::MOVolatile); 7368 setValue(&I, Res); 7369 DAG.setRoot(Res); 7370 return; 7371 } 7372 case Intrinsic::objectsize: 7373 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7374 7375 case Intrinsic::is_constant: 7376 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7377 7378 case Intrinsic::annotation: 7379 case Intrinsic::ptr_annotation: 7380 case Intrinsic::launder_invariant_group: 7381 case Intrinsic::strip_invariant_group: 7382 // Drop the intrinsic, but forward the value 7383 setValue(&I, getValue(I.getOperand(0))); 7384 return; 7385 7386 case Intrinsic::assume: 7387 case Intrinsic::experimental_noalias_scope_decl: 7388 case Intrinsic::var_annotation: 7389 case Intrinsic::sideeffect: 7390 // Discard annotate attributes, noalias scope declarations, assumptions, and 7391 // artificial side-effects. 7392 return; 7393 7394 case Intrinsic::codeview_annotation: { 7395 // Emit a label associated with this metadata. 7396 MachineFunction &MF = DAG.getMachineFunction(); 7397 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7398 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7399 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7400 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7401 DAG.setRoot(Res); 7402 return; 7403 } 7404 7405 case Intrinsic::init_trampoline: { 7406 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7407 7408 SDValue Ops[6]; 7409 Ops[0] = getRoot(); 7410 Ops[1] = getValue(I.getArgOperand(0)); 7411 Ops[2] = getValue(I.getArgOperand(1)); 7412 Ops[3] = getValue(I.getArgOperand(2)); 7413 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7414 Ops[5] = DAG.getSrcValue(F); 7415 7416 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7417 7418 DAG.setRoot(Res); 7419 return; 7420 } 7421 case Intrinsic::adjust_trampoline: 7422 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7423 TLI.getPointerTy(DAG.getDataLayout()), 7424 getValue(I.getArgOperand(0)))); 7425 return; 7426 case Intrinsic::gcroot: { 7427 assert(DAG.getMachineFunction().getFunction().hasGC() && 7428 "only valid in functions with gc specified, enforced by Verifier"); 7429 assert(GFI && "implied by previous"); 7430 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7431 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7432 7433 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7434 GFI->addStackRoot(FI->getIndex(), TypeMap); 7435 return; 7436 } 7437 case Intrinsic::gcread: 7438 case Intrinsic::gcwrite: 7439 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7440 case Intrinsic::get_rounding: 7441 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7442 setValue(&I, Res); 7443 DAG.setRoot(Res.getValue(1)); 7444 return; 7445 7446 case Intrinsic::expect: 7447 // Just replace __builtin_expect(exp, c) with EXP. 7448 setValue(&I, getValue(I.getArgOperand(0))); 7449 return; 7450 7451 case Intrinsic::ubsantrap: 7452 case Intrinsic::debugtrap: 7453 case Intrinsic::trap: { 7454 StringRef TrapFuncName = 7455 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7456 if (TrapFuncName.empty()) { 7457 switch (Intrinsic) { 7458 case Intrinsic::trap: 7459 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7460 break; 7461 case Intrinsic::debugtrap: 7462 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7463 break; 7464 case Intrinsic::ubsantrap: 7465 DAG.setRoot(DAG.getNode( 7466 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7467 DAG.getTargetConstant( 7468 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7469 MVT::i32))); 7470 break; 7471 default: llvm_unreachable("unknown trap intrinsic"); 7472 } 7473 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7474 I.hasFnAttr(Attribute::NoMerge)); 7475 return; 7476 } 7477 TargetLowering::ArgListTy Args; 7478 if (Intrinsic == Intrinsic::ubsantrap) { 7479 Args.push_back(TargetLoweringBase::ArgListEntry()); 7480 Args[0].Val = I.getArgOperand(0); 7481 Args[0].Node = getValue(Args[0].Val); 7482 Args[0].Ty = Args[0].Val->getType(); 7483 } 7484 7485 TargetLowering::CallLoweringInfo CLI(DAG); 7486 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7487 CallingConv::C, I.getType(), 7488 DAG.getExternalSymbol(TrapFuncName.data(), 7489 TLI.getPointerTy(DAG.getDataLayout())), 7490 std::move(Args)); 7491 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7492 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7493 DAG.setRoot(Result.second); 7494 return; 7495 } 7496 7497 case Intrinsic::allow_runtime_check: 7498 case Intrinsic::allow_ubsan_check: 7499 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7500 return; 7501 7502 case Intrinsic::uadd_with_overflow: 7503 case Intrinsic::sadd_with_overflow: 7504 case Intrinsic::usub_with_overflow: 7505 case Intrinsic::ssub_with_overflow: 7506 case Intrinsic::umul_with_overflow: 7507 case Intrinsic::smul_with_overflow: { 7508 ISD::NodeType Op; 7509 switch (Intrinsic) { 7510 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7511 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7512 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7513 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7514 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7515 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7516 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7517 } 7518 SDValue Op1 = getValue(I.getArgOperand(0)); 7519 SDValue Op2 = getValue(I.getArgOperand(1)); 7520 7521 EVT ResultVT = Op1.getValueType(); 7522 EVT OverflowVT = MVT::i1; 7523 if (ResultVT.isVector()) 7524 OverflowVT = EVT::getVectorVT( 7525 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7526 7527 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7528 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7529 return; 7530 } 7531 case Intrinsic::prefetch: { 7532 SDValue Ops[5]; 7533 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7534 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7535 Ops[0] = DAG.getRoot(); 7536 Ops[1] = getValue(I.getArgOperand(0)); 7537 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7538 MVT::i32); 7539 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7540 MVT::i32); 7541 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7542 MVT::i32); 7543 SDValue Result = DAG.getMemIntrinsicNode( 7544 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7545 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7546 /* align */ std::nullopt, Flags); 7547 7548 // Chain the prefetch in parallel with any pending loads, to stay out of 7549 // the way of later optimizations. 7550 PendingLoads.push_back(Result); 7551 Result = getRoot(); 7552 DAG.setRoot(Result); 7553 return; 7554 } 7555 case Intrinsic::lifetime_start: 7556 case Intrinsic::lifetime_end: { 7557 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7558 // Stack coloring is not enabled in O0, discard region information. 7559 if (TM.getOptLevel() == CodeGenOptLevel::None) 7560 return; 7561 7562 const int64_t ObjectSize = 7563 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7564 Value *const ObjectPtr = I.getArgOperand(1); 7565 SmallVector<const Value *, 4> Allocas; 7566 getUnderlyingObjects(ObjectPtr, Allocas); 7567 7568 for (const Value *Alloca : Allocas) { 7569 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7570 7571 // Could not find an Alloca. 7572 if (!LifetimeObject) 7573 continue; 7574 7575 // First check that the Alloca is static, otherwise it won't have a 7576 // valid frame index. 7577 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7578 if (SI == FuncInfo.StaticAllocaMap.end()) 7579 return; 7580 7581 const int FrameIndex = SI->second; 7582 int64_t Offset; 7583 if (GetPointerBaseWithConstantOffset( 7584 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7585 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7586 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7587 Offset); 7588 DAG.setRoot(Res); 7589 } 7590 return; 7591 } 7592 case Intrinsic::pseudoprobe: { 7593 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7594 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7595 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7596 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7597 DAG.setRoot(Res); 7598 return; 7599 } 7600 case Intrinsic::invariant_start: 7601 // Discard region information. 7602 setValue(&I, 7603 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7604 return; 7605 case Intrinsic::invariant_end: 7606 // Discard region information. 7607 return; 7608 case Intrinsic::clear_cache: { 7609 SDValue InputChain = DAG.getRoot(); 7610 SDValue StartVal = getValue(I.getArgOperand(0)); 7611 SDValue EndVal = getValue(I.getArgOperand(1)); 7612 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7613 {InputChain, StartVal, EndVal}); 7614 setValue(&I, Res); 7615 DAG.setRoot(Res); 7616 return; 7617 } 7618 case Intrinsic::donothing: 7619 case Intrinsic::seh_try_begin: 7620 case Intrinsic::seh_scope_begin: 7621 case Intrinsic::seh_try_end: 7622 case Intrinsic::seh_scope_end: 7623 // ignore 7624 return; 7625 case Intrinsic::experimental_stackmap: 7626 visitStackmap(I); 7627 return; 7628 case Intrinsic::experimental_patchpoint_void: 7629 case Intrinsic::experimental_patchpoint: 7630 visitPatchpoint(I); 7631 return; 7632 case Intrinsic::experimental_gc_statepoint: 7633 LowerStatepoint(cast<GCStatepointInst>(I)); 7634 return; 7635 case Intrinsic::experimental_gc_result: 7636 visitGCResult(cast<GCResultInst>(I)); 7637 return; 7638 case Intrinsic::experimental_gc_relocate: 7639 visitGCRelocate(cast<GCRelocateInst>(I)); 7640 return; 7641 case Intrinsic::instrprof_cover: 7642 llvm_unreachable("instrprof failed to lower a cover"); 7643 case Intrinsic::instrprof_increment: 7644 llvm_unreachable("instrprof failed to lower an increment"); 7645 case Intrinsic::instrprof_timestamp: 7646 llvm_unreachable("instrprof failed to lower a timestamp"); 7647 case Intrinsic::instrprof_value_profile: 7648 llvm_unreachable("instrprof failed to lower a value profiling call"); 7649 case Intrinsic::instrprof_mcdc_parameters: 7650 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7651 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7652 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7653 case Intrinsic::localescape: { 7654 MachineFunction &MF = DAG.getMachineFunction(); 7655 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7656 7657 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7658 // is the same on all targets. 7659 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7660 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7661 if (isa<ConstantPointerNull>(Arg)) 7662 continue; // Skip null pointers. They represent a hole in index space. 7663 AllocaInst *Slot = cast<AllocaInst>(Arg); 7664 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7665 "can only escape static allocas"); 7666 int FI = FuncInfo.StaticAllocaMap[Slot]; 7667 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7668 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7670 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7671 .addSym(FrameAllocSym) 7672 .addFrameIndex(FI); 7673 } 7674 7675 return; 7676 } 7677 7678 case Intrinsic::localrecover: { 7679 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7680 MachineFunction &MF = DAG.getMachineFunction(); 7681 7682 // Get the symbol that defines the frame offset. 7683 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7684 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7685 unsigned IdxVal = 7686 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7687 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7688 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7689 7690 Value *FP = I.getArgOperand(1); 7691 SDValue FPVal = getValue(FP); 7692 EVT PtrVT = FPVal.getValueType(); 7693 7694 // Create a MCSymbol for the label to avoid any target lowering 7695 // that would make this PC relative. 7696 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7697 SDValue OffsetVal = 7698 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7699 7700 // Add the offset to the FP. 7701 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7702 setValue(&I, Add); 7703 7704 return; 7705 } 7706 7707 case Intrinsic::fake_use: { 7708 Value *V = I.getArgOperand(0); 7709 SDValue Ops[2]; 7710 // For Values not declared or previously used in this basic block, the 7711 // NodeMap will not have an entry, and `getValue` will assert if V has no 7712 // valid register value. 7713 auto FakeUseValue = [&]() -> SDValue { 7714 SDValue &N = NodeMap[V]; 7715 if (N.getNode()) 7716 return N; 7717 7718 // If there's a virtual register allocated and initialized for this 7719 // value, use it. 7720 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7721 return copyFromReg; 7722 // FIXME: Do we want to preserve constants? It seems pointless. 7723 if (isa<Constant>(V)) 7724 return getValue(V); 7725 return SDValue(); 7726 }(); 7727 if (!FakeUseValue || FakeUseValue.isUndef()) 7728 return; 7729 Ops[0] = getRoot(); 7730 Ops[1] = FakeUseValue; 7731 // Also, do not translate a fake use with an undef operand, or any other 7732 // empty SDValues. 7733 if (!Ops[1] || Ops[1].isUndef()) 7734 return; 7735 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7736 return; 7737 } 7738 7739 case Intrinsic::eh_exceptionpointer: 7740 case Intrinsic::eh_exceptioncode: { 7741 // Get the exception pointer vreg, copy from it, and resize it to fit. 7742 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7743 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7744 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7745 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7746 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7747 if (Intrinsic == Intrinsic::eh_exceptioncode) 7748 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7749 setValue(&I, N); 7750 return; 7751 } 7752 case Intrinsic::xray_customevent: { 7753 // Here we want to make sure that the intrinsic behaves as if it has a 7754 // specific calling convention. 7755 const auto &Triple = DAG.getTarget().getTargetTriple(); 7756 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7757 return; 7758 7759 SmallVector<SDValue, 8> Ops; 7760 7761 // We want to say that we always want the arguments in registers. 7762 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7763 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7764 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7765 SDValue Chain = getRoot(); 7766 Ops.push_back(LogEntryVal); 7767 Ops.push_back(StrSizeVal); 7768 Ops.push_back(Chain); 7769 7770 // We need to enforce the calling convention for the callsite, so that 7771 // argument ordering is enforced correctly, and that register allocation can 7772 // see that some registers may be assumed clobbered and have to preserve 7773 // them across calls to the intrinsic. 7774 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7775 sdl, NodeTys, Ops); 7776 SDValue patchableNode = SDValue(MN, 0); 7777 DAG.setRoot(patchableNode); 7778 setValue(&I, patchableNode); 7779 return; 7780 } 7781 case Intrinsic::xray_typedevent: { 7782 // Here we want to make sure that the intrinsic behaves as if it has a 7783 // specific calling convention. 7784 const auto &Triple = DAG.getTarget().getTargetTriple(); 7785 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7786 return; 7787 7788 SmallVector<SDValue, 8> Ops; 7789 7790 // We want to say that we always want the arguments in registers. 7791 // It's unclear to me how manipulating the selection DAG here forces callers 7792 // to provide arguments in registers instead of on the stack. 7793 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7794 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7795 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7796 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7797 SDValue Chain = getRoot(); 7798 Ops.push_back(LogTypeId); 7799 Ops.push_back(LogEntryVal); 7800 Ops.push_back(StrSizeVal); 7801 Ops.push_back(Chain); 7802 7803 // We need to enforce the calling convention for the callsite, so that 7804 // argument ordering is enforced correctly, and that register allocation can 7805 // see that some registers may be assumed clobbered and have to preserve 7806 // them across calls to the intrinsic. 7807 MachineSDNode *MN = DAG.getMachineNode( 7808 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7809 SDValue patchableNode = SDValue(MN, 0); 7810 DAG.setRoot(patchableNode); 7811 setValue(&I, patchableNode); 7812 return; 7813 } 7814 case Intrinsic::experimental_deoptimize: 7815 LowerDeoptimizeCall(&I); 7816 return; 7817 case Intrinsic::stepvector: 7818 visitStepVector(I); 7819 return; 7820 case Intrinsic::vector_reduce_fadd: 7821 case Intrinsic::vector_reduce_fmul: 7822 case Intrinsic::vector_reduce_add: 7823 case Intrinsic::vector_reduce_mul: 7824 case Intrinsic::vector_reduce_and: 7825 case Intrinsic::vector_reduce_or: 7826 case Intrinsic::vector_reduce_xor: 7827 case Intrinsic::vector_reduce_smax: 7828 case Intrinsic::vector_reduce_smin: 7829 case Intrinsic::vector_reduce_umax: 7830 case Intrinsic::vector_reduce_umin: 7831 case Intrinsic::vector_reduce_fmax: 7832 case Intrinsic::vector_reduce_fmin: 7833 case Intrinsic::vector_reduce_fmaximum: 7834 case Intrinsic::vector_reduce_fminimum: 7835 visitVectorReduce(I, Intrinsic); 7836 return; 7837 7838 case Intrinsic::icall_branch_funnel: { 7839 SmallVector<SDValue, 16> Ops; 7840 Ops.push_back(getValue(I.getArgOperand(0))); 7841 7842 int64_t Offset; 7843 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7844 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7845 if (!Base) 7846 report_fatal_error( 7847 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7848 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7849 7850 struct BranchFunnelTarget { 7851 int64_t Offset; 7852 SDValue Target; 7853 }; 7854 SmallVector<BranchFunnelTarget, 8> Targets; 7855 7856 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7857 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7858 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7859 if (ElemBase != Base) 7860 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7861 "to the same GlobalValue"); 7862 7863 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7864 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7865 if (!GA) 7866 report_fatal_error( 7867 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7868 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7869 GA->getGlobal(), sdl, Val.getValueType(), 7870 GA->getOffset())}); 7871 } 7872 llvm::sort(Targets, 7873 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7874 return T1.Offset < T2.Offset; 7875 }); 7876 7877 for (auto &T : Targets) { 7878 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7879 Ops.push_back(T.Target); 7880 } 7881 7882 Ops.push_back(DAG.getRoot()); // Chain 7883 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7884 MVT::Other, Ops), 7885 0); 7886 DAG.setRoot(N); 7887 setValue(&I, N); 7888 HasTailCall = true; 7889 return; 7890 } 7891 7892 case Intrinsic::wasm_landingpad_index: 7893 // Information this intrinsic contained has been transferred to 7894 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7895 // delete it now. 7896 return; 7897 7898 case Intrinsic::aarch64_settag: 7899 case Intrinsic::aarch64_settag_zero: { 7900 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7901 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7902 SDValue Val = TSI.EmitTargetCodeForSetTag( 7903 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7904 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7905 ZeroMemory); 7906 DAG.setRoot(Val); 7907 setValue(&I, Val); 7908 return; 7909 } 7910 case Intrinsic::amdgcn_cs_chain: { 7911 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7912 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7913 "Non-zero flags not supported yet"); 7914 7915 // At this point we don't care if it's amdgpu_cs_chain or 7916 // amdgpu_cs_chain_preserve. 7917 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7918 7919 Type *RetTy = I.getType(); 7920 assert(RetTy->isVoidTy() && "Should not return"); 7921 7922 SDValue Callee = getValue(I.getOperand(0)); 7923 7924 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7925 // We'll also tack the value of the EXEC mask at the end. 7926 TargetLowering::ArgListTy Args; 7927 Args.reserve(3); 7928 7929 for (unsigned Idx : {2, 3, 1}) { 7930 TargetLowering::ArgListEntry Arg; 7931 Arg.Node = getValue(I.getOperand(Idx)); 7932 Arg.Ty = I.getOperand(Idx)->getType(); 7933 Arg.setAttributes(&I, Idx); 7934 Args.push_back(Arg); 7935 } 7936 7937 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7938 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7939 Args[2].IsInReg = true; // EXEC should be inreg 7940 7941 TargetLowering::CallLoweringInfo CLI(DAG); 7942 CLI.setDebugLoc(getCurSDLoc()) 7943 .setChain(getRoot()) 7944 .setCallee(CC, RetTy, Callee, std::move(Args)) 7945 .setNoReturn(true) 7946 .setTailCall(true) 7947 .setConvergent(I.isConvergent()); 7948 CLI.CB = &I; 7949 std::pair<SDValue, SDValue> Result = 7950 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7951 (void)Result; 7952 assert(!Result.first.getNode() && !Result.second.getNode() && 7953 "Should've lowered as tail call"); 7954 7955 HasTailCall = true; 7956 return; 7957 } 7958 case Intrinsic::ptrmask: { 7959 SDValue Ptr = getValue(I.getOperand(0)); 7960 SDValue Mask = getValue(I.getOperand(1)); 7961 7962 // On arm64_32, pointers are 32 bits when stored in memory, but 7963 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7964 // match the index type, but the pointer is 64 bits, so the the mask must be 7965 // zero-extended up to 64 bits to match the pointer. 7966 EVT PtrVT = 7967 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7968 EVT MemVT = 7969 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7970 assert(PtrVT == Ptr.getValueType()); 7971 assert(MemVT == Mask.getValueType()); 7972 if (MemVT != PtrVT) 7973 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7974 7975 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7976 return; 7977 } 7978 case Intrinsic::threadlocal_address: { 7979 setValue(&I, getValue(I.getOperand(0))); 7980 return; 7981 } 7982 case Intrinsic::get_active_lane_mask: { 7983 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7984 SDValue Index = getValue(I.getOperand(0)); 7985 EVT ElementVT = Index.getValueType(); 7986 7987 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7988 visitTargetIntrinsic(I, Intrinsic); 7989 return; 7990 } 7991 7992 SDValue TripCount = getValue(I.getOperand(1)); 7993 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7994 CCVT.getVectorElementCount()); 7995 7996 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7997 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7998 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7999 SDValue VectorInduction = DAG.getNode( 8000 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8001 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8002 VectorTripCount, ISD::CondCode::SETULT); 8003 setValue(&I, SetCC); 8004 return; 8005 } 8006 case Intrinsic::experimental_get_vector_length: { 8007 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8008 "Expected positive VF"); 8009 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8010 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8011 8012 SDValue Count = getValue(I.getOperand(0)); 8013 EVT CountVT = Count.getValueType(); 8014 8015 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8016 visitTargetIntrinsic(I, Intrinsic); 8017 return; 8018 } 8019 8020 // Expand to a umin between the trip count and the maximum elements the type 8021 // can hold. 8022 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8023 8024 // Extend the trip count to at least the result VT. 8025 if (CountVT.bitsLT(VT)) { 8026 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8027 CountVT = VT; 8028 } 8029 8030 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8031 ElementCount::get(VF, IsScalable)); 8032 8033 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8034 // Clip to the result type if needed. 8035 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8036 8037 setValue(&I, Trunc); 8038 return; 8039 } 8040 case Intrinsic::experimental_vector_partial_reduce_add: { 8041 8042 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8043 visitTargetIntrinsic(I, Intrinsic); 8044 return; 8045 } 8046 8047 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8048 getValue(I.getOperand(0)), 8049 getValue(I.getOperand(1)))); 8050 return; 8051 } 8052 case Intrinsic::experimental_cttz_elts: { 8053 auto DL = getCurSDLoc(); 8054 SDValue Op = getValue(I.getOperand(0)); 8055 EVT OpVT = Op.getValueType(); 8056 8057 if (!TLI.shouldExpandCttzElements(OpVT)) { 8058 visitTargetIntrinsic(I, Intrinsic); 8059 return; 8060 } 8061 8062 if (OpVT.getScalarType() != MVT::i1) { 8063 // Compare the input vector elements to zero & use to count trailing zeros 8064 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8065 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8066 OpVT.getVectorElementCount()); 8067 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8068 } 8069 8070 // If the zero-is-poison flag is set, we can assume the upper limit 8071 // of the result is VF-1. 8072 bool ZeroIsPoison = 8073 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8074 ConstantRange VScaleRange(1, true); // Dummy value. 8075 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8076 VScaleRange = getVScaleRange(I.getCaller(), 64); 8077 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8078 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8079 8080 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8081 8082 // Create the new vector type & get the vector length 8083 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8084 OpVT.getVectorElementCount()); 8085 8086 SDValue VL = 8087 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8088 8089 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8090 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8091 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8092 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8093 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8094 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8095 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8096 8097 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8098 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8099 8100 setValue(&I, Ret); 8101 return; 8102 } 8103 case Intrinsic::vector_insert: { 8104 SDValue Vec = getValue(I.getOperand(0)); 8105 SDValue SubVec = getValue(I.getOperand(1)); 8106 SDValue Index = getValue(I.getOperand(2)); 8107 8108 // The intrinsic's index type is i64, but the SDNode requires an index type 8109 // suitable for the target. Convert the index as required. 8110 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8111 if (Index.getValueType() != VectorIdxTy) 8112 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8113 8114 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8115 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8116 Index)); 8117 return; 8118 } 8119 case Intrinsic::vector_extract: { 8120 SDValue Vec = getValue(I.getOperand(0)); 8121 SDValue Index = getValue(I.getOperand(1)); 8122 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8123 8124 // The intrinsic's index type is i64, but the SDNode requires an index type 8125 // suitable for the target. Convert the index as required. 8126 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8127 if (Index.getValueType() != VectorIdxTy) 8128 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8129 8130 setValue(&I, 8131 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8132 return; 8133 } 8134 case Intrinsic::vector_reverse: 8135 visitVectorReverse(I); 8136 return; 8137 case Intrinsic::vector_splice: 8138 visitVectorSplice(I); 8139 return; 8140 case Intrinsic::callbr_landingpad: 8141 visitCallBrLandingPad(I); 8142 return; 8143 case Intrinsic::vector_interleave2: 8144 visitVectorInterleave(I); 8145 return; 8146 case Intrinsic::vector_deinterleave2: 8147 visitVectorDeinterleave(I); 8148 return; 8149 case Intrinsic::experimental_vector_compress: 8150 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8151 getValue(I.getArgOperand(0)).getValueType(), 8152 getValue(I.getArgOperand(0)), 8153 getValue(I.getArgOperand(1)), 8154 getValue(I.getArgOperand(2)), Flags)); 8155 return; 8156 case Intrinsic::experimental_convergence_anchor: 8157 case Intrinsic::experimental_convergence_entry: 8158 case Intrinsic::experimental_convergence_loop: 8159 visitConvergenceControl(I, Intrinsic); 8160 return; 8161 case Intrinsic::experimental_vector_histogram_add: { 8162 visitVectorHistogram(I, Intrinsic); 8163 return; 8164 } 8165 } 8166 } 8167 8168 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8169 const ConstrainedFPIntrinsic &FPI) { 8170 SDLoc sdl = getCurSDLoc(); 8171 8172 // We do not need to serialize constrained FP intrinsics against 8173 // each other or against (nonvolatile) loads, so they can be 8174 // chained like loads. 8175 SDValue Chain = DAG.getRoot(); 8176 SmallVector<SDValue, 4> Opers; 8177 Opers.push_back(Chain); 8178 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8179 Opers.push_back(getValue(FPI.getArgOperand(I))); 8180 8181 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8182 assert(Result.getNode()->getNumValues() == 2); 8183 8184 // Push node to the appropriate list so that future instructions can be 8185 // chained up correctly. 8186 SDValue OutChain = Result.getValue(1); 8187 switch (EB) { 8188 case fp::ExceptionBehavior::ebIgnore: 8189 // The only reason why ebIgnore nodes still need to be chained is that 8190 // they might depend on the current rounding mode, and therefore must 8191 // not be moved across instruction that may change that mode. 8192 [[fallthrough]]; 8193 case fp::ExceptionBehavior::ebMayTrap: 8194 // These must not be moved across calls or instructions that may change 8195 // floating-point exception masks. 8196 PendingConstrainedFP.push_back(OutChain); 8197 break; 8198 case fp::ExceptionBehavior::ebStrict: 8199 // These must not be moved across calls or instructions that may change 8200 // floating-point exception masks or read floating-point exception flags. 8201 // In addition, they cannot be optimized out even if unused. 8202 PendingConstrainedFPStrict.push_back(OutChain); 8203 break; 8204 } 8205 }; 8206 8207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8208 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8209 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8210 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8211 8212 SDNodeFlags Flags; 8213 if (EB == fp::ExceptionBehavior::ebIgnore) 8214 Flags.setNoFPExcept(true); 8215 8216 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8217 Flags.copyFMF(*FPOp); 8218 8219 unsigned Opcode; 8220 switch (FPI.getIntrinsicID()) { 8221 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8222 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8223 case Intrinsic::INTRINSIC: \ 8224 Opcode = ISD::STRICT_##DAGN; \ 8225 break; 8226 #include "llvm/IR/ConstrainedOps.def" 8227 case Intrinsic::experimental_constrained_fmuladd: { 8228 Opcode = ISD::STRICT_FMA; 8229 // Break fmuladd into fmul and fadd. 8230 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8231 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8232 Opers.pop_back(); 8233 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8234 pushOutChain(Mul, EB); 8235 Opcode = ISD::STRICT_FADD; 8236 Opers.clear(); 8237 Opers.push_back(Mul.getValue(1)); 8238 Opers.push_back(Mul.getValue(0)); 8239 Opers.push_back(getValue(FPI.getArgOperand(2))); 8240 } 8241 break; 8242 } 8243 } 8244 8245 // A few strict DAG nodes carry additional operands that are not 8246 // set up by the default code above. 8247 switch (Opcode) { 8248 default: break; 8249 case ISD::STRICT_FP_ROUND: 8250 Opers.push_back( 8251 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8252 break; 8253 case ISD::STRICT_FSETCC: 8254 case ISD::STRICT_FSETCCS: { 8255 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8256 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8257 if (TM.Options.NoNaNsFPMath) 8258 Condition = getFCmpCodeWithoutNaN(Condition); 8259 Opers.push_back(DAG.getCondCode(Condition)); 8260 break; 8261 } 8262 } 8263 8264 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8265 pushOutChain(Result, EB); 8266 8267 SDValue FPResult = Result.getValue(0); 8268 setValue(&FPI, FPResult); 8269 } 8270 8271 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8272 std::optional<unsigned> ResOPC; 8273 switch (VPIntrin.getIntrinsicID()) { 8274 case Intrinsic::vp_ctlz: { 8275 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8276 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8277 break; 8278 } 8279 case Intrinsic::vp_cttz: { 8280 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8281 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8282 break; 8283 } 8284 case Intrinsic::vp_cttz_elts: { 8285 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8286 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8287 break; 8288 } 8289 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8290 case Intrinsic::VPID: \ 8291 ResOPC = ISD::VPSD; \ 8292 break; 8293 #include "llvm/IR/VPIntrinsics.def" 8294 } 8295 8296 if (!ResOPC) 8297 llvm_unreachable( 8298 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8299 8300 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8301 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8302 if (VPIntrin.getFastMathFlags().allowReassoc()) 8303 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8304 : ISD::VP_REDUCE_FMUL; 8305 } 8306 8307 return *ResOPC; 8308 } 8309 8310 void SelectionDAGBuilder::visitVPLoad( 8311 const VPIntrinsic &VPIntrin, EVT VT, 8312 const SmallVectorImpl<SDValue> &OpValues) { 8313 SDLoc DL = getCurSDLoc(); 8314 Value *PtrOperand = VPIntrin.getArgOperand(0); 8315 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8316 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8317 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8318 SDValue LD; 8319 // Do not serialize variable-length loads of constant memory with 8320 // anything. 8321 if (!Alignment) 8322 Alignment = DAG.getEVTAlign(VT); 8323 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8324 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8325 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8326 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8327 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8328 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8329 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8330 MMO, false /*IsExpanding */); 8331 if (AddToChain) 8332 PendingLoads.push_back(LD.getValue(1)); 8333 setValue(&VPIntrin, LD); 8334 } 8335 8336 void SelectionDAGBuilder::visitVPGather( 8337 const VPIntrinsic &VPIntrin, EVT VT, 8338 const SmallVectorImpl<SDValue> &OpValues) { 8339 SDLoc DL = getCurSDLoc(); 8340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8341 Value *PtrOperand = VPIntrin.getArgOperand(0); 8342 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8343 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8344 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8345 SDValue LD; 8346 if (!Alignment) 8347 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8348 unsigned AS = 8349 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8350 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8351 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8352 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8353 SDValue Base, Index, Scale; 8354 ISD::MemIndexType IndexType; 8355 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8356 this, VPIntrin.getParent(), 8357 VT.getScalarStoreSize()); 8358 if (!UniformBase) { 8359 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8360 Index = getValue(PtrOperand); 8361 IndexType = ISD::SIGNED_SCALED; 8362 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8363 } 8364 EVT IdxVT = Index.getValueType(); 8365 EVT EltTy = IdxVT.getVectorElementType(); 8366 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8367 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8368 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8369 } 8370 LD = DAG.getGatherVP( 8371 DAG.getVTList(VT, MVT::Other), VT, DL, 8372 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8373 IndexType); 8374 PendingLoads.push_back(LD.getValue(1)); 8375 setValue(&VPIntrin, LD); 8376 } 8377 8378 void SelectionDAGBuilder::visitVPStore( 8379 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8380 SDLoc DL = getCurSDLoc(); 8381 Value *PtrOperand = VPIntrin.getArgOperand(1); 8382 EVT VT = OpValues[0].getValueType(); 8383 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8384 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8385 SDValue ST; 8386 if (!Alignment) 8387 Alignment = DAG.getEVTAlign(VT); 8388 SDValue Ptr = OpValues[1]; 8389 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8390 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8391 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8392 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8393 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8394 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8395 /* IsTruncating */ false, /*IsCompressing*/ false); 8396 DAG.setRoot(ST); 8397 setValue(&VPIntrin, ST); 8398 } 8399 8400 void SelectionDAGBuilder::visitVPScatter( 8401 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8402 SDLoc DL = getCurSDLoc(); 8403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8404 Value *PtrOperand = VPIntrin.getArgOperand(1); 8405 EVT VT = OpValues[0].getValueType(); 8406 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8407 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8408 SDValue ST; 8409 if (!Alignment) 8410 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8411 unsigned AS = 8412 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8413 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8414 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8415 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8416 SDValue Base, Index, Scale; 8417 ISD::MemIndexType IndexType; 8418 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8419 this, VPIntrin.getParent(), 8420 VT.getScalarStoreSize()); 8421 if (!UniformBase) { 8422 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8423 Index = getValue(PtrOperand); 8424 IndexType = ISD::SIGNED_SCALED; 8425 Scale = 8426 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8427 } 8428 EVT IdxVT = Index.getValueType(); 8429 EVT EltTy = IdxVT.getVectorElementType(); 8430 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8431 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8432 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8433 } 8434 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8435 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8436 OpValues[2], OpValues[3]}, 8437 MMO, IndexType); 8438 DAG.setRoot(ST); 8439 setValue(&VPIntrin, ST); 8440 } 8441 8442 void SelectionDAGBuilder::visitVPStridedLoad( 8443 const VPIntrinsic &VPIntrin, EVT VT, 8444 const SmallVectorImpl<SDValue> &OpValues) { 8445 SDLoc DL = getCurSDLoc(); 8446 Value *PtrOperand = VPIntrin.getArgOperand(0); 8447 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8448 if (!Alignment) 8449 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8450 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8451 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8452 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8453 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8454 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8455 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8456 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8457 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8458 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8459 8460 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8461 OpValues[2], OpValues[3], MMO, 8462 false /*IsExpanding*/); 8463 8464 if (AddToChain) 8465 PendingLoads.push_back(LD.getValue(1)); 8466 setValue(&VPIntrin, LD); 8467 } 8468 8469 void SelectionDAGBuilder::visitVPStridedStore( 8470 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8471 SDLoc DL = getCurSDLoc(); 8472 Value *PtrOperand = VPIntrin.getArgOperand(1); 8473 EVT VT = OpValues[0].getValueType(); 8474 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8475 if (!Alignment) 8476 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8477 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8478 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8479 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8480 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8481 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8482 8483 SDValue ST = DAG.getStridedStoreVP( 8484 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8485 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8486 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8487 /*IsCompressing*/ false); 8488 8489 DAG.setRoot(ST); 8490 setValue(&VPIntrin, ST); 8491 } 8492 8493 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8495 SDLoc DL = getCurSDLoc(); 8496 8497 ISD::CondCode Condition; 8498 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8499 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8500 if (IsFP) { 8501 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8502 // flags, but calls that don't return floating-point types can't be 8503 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8504 Condition = getFCmpCondCode(CondCode); 8505 if (TM.Options.NoNaNsFPMath) 8506 Condition = getFCmpCodeWithoutNaN(Condition); 8507 } else { 8508 Condition = getICmpCondCode(CondCode); 8509 } 8510 8511 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8512 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8513 // #2 is the condition code 8514 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8515 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8516 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8517 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8518 "Unexpected target EVL type"); 8519 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8520 8521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8522 VPIntrin.getType()); 8523 setValue(&VPIntrin, 8524 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8525 } 8526 8527 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8528 const VPIntrinsic &VPIntrin) { 8529 SDLoc DL = getCurSDLoc(); 8530 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8531 8532 auto IID = VPIntrin.getIntrinsicID(); 8533 8534 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8535 return visitVPCmp(*CmpI); 8536 8537 SmallVector<EVT, 4> ValueVTs; 8538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8539 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8540 SDVTList VTs = DAG.getVTList(ValueVTs); 8541 8542 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8543 8544 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8545 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8546 "Unexpected target EVL type"); 8547 8548 // Request operands. 8549 SmallVector<SDValue, 7> OpValues; 8550 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8551 auto Op = getValue(VPIntrin.getArgOperand(I)); 8552 if (I == EVLParamPos) 8553 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8554 OpValues.push_back(Op); 8555 } 8556 8557 switch (Opcode) { 8558 default: { 8559 SDNodeFlags SDFlags; 8560 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8561 SDFlags.copyFMF(*FPMO); 8562 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8563 setValue(&VPIntrin, Result); 8564 break; 8565 } 8566 case ISD::VP_LOAD: 8567 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8568 break; 8569 case ISD::VP_GATHER: 8570 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8571 break; 8572 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8573 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8574 break; 8575 case ISD::VP_STORE: 8576 visitVPStore(VPIntrin, OpValues); 8577 break; 8578 case ISD::VP_SCATTER: 8579 visitVPScatter(VPIntrin, OpValues); 8580 break; 8581 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8582 visitVPStridedStore(VPIntrin, OpValues); 8583 break; 8584 case ISD::VP_FMULADD: { 8585 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8586 SDNodeFlags SDFlags; 8587 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8588 SDFlags.copyFMF(*FPMO); 8589 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8590 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8591 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8592 } else { 8593 SDValue Mul = DAG.getNode( 8594 ISD::VP_FMUL, DL, VTs, 8595 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8596 SDValue Add = 8597 DAG.getNode(ISD::VP_FADD, DL, VTs, 8598 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8599 setValue(&VPIntrin, Add); 8600 } 8601 break; 8602 } 8603 case ISD::VP_IS_FPCLASS: { 8604 const DataLayout DLayout = DAG.getDataLayout(); 8605 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8606 auto Constant = OpValues[1]->getAsZExtVal(); 8607 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8608 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8609 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8610 setValue(&VPIntrin, V); 8611 return; 8612 } 8613 case ISD::VP_INTTOPTR: { 8614 SDValue N = OpValues[0]; 8615 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8616 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8617 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8618 OpValues[2]); 8619 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8620 OpValues[2]); 8621 setValue(&VPIntrin, N); 8622 break; 8623 } 8624 case ISD::VP_PTRTOINT: { 8625 SDValue N = OpValues[0]; 8626 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8627 VPIntrin.getType()); 8628 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8629 VPIntrin.getOperand(0)->getType()); 8630 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8631 OpValues[2]); 8632 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8633 OpValues[2]); 8634 setValue(&VPIntrin, N); 8635 break; 8636 } 8637 case ISD::VP_ABS: 8638 case ISD::VP_CTLZ: 8639 case ISD::VP_CTLZ_ZERO_UNDEF: 8640 case ISD::VP_CTTZ: 8641 case ISD::VP_CTTZ_ZERO_UNDEF: 8642 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8643 case ISD::VP_CTTZ_ELTS: { 8644 SDValue Result = 8645 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8646 setValue(&VPIntrin, Result); 8647 break; 8648 } 8649 } 8650 } 8651 8652 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8653 const BasicBlock *EHPadBB, 8654 MCSymbol *&BeginLabel) { 8655 MachineFunction &MF = DAG.getMachineFunction(); 8656 8657 // Insert a label before the invoke call to mark the try range. This can be 8658 // used to detect deletion of the invoke via the MachineModuleInfo. 8659 BeginLabel = MF.getContext().createTempSymbol(); 8660 8661 // For SjLj, keep track of which landing pads go with which invokes 8662 // so as to maintain the ordering of pads in the LSDA. 8663 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8664 if (CallSiteIndex) { 8665 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8666 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8667 8668 // Now that the call site is handled, stop tracking it. 8669 FuncInfo.setCurrentCallSite(0); 8670 } 8671 8672 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8673 } 8674 8675 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8676 const BasicBlock *EHPadBB, 8677 MCSymbol *BeginLabel) { 8678 assert(BeginLabel && "BeginLabel should've been set"); 8679 8680 MachineFunction &MF = DAG.getMachineFunction(); 8681 8682 // Insert a label at the end of the invoke call to mark the try range. This 8683 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8684 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8685 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8686 8687 // Inform MachineModuleInfo of range. 8688 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8689 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8690 // actually use outlined funclets and their LSDA info style. 8691 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8692 assert(II && "II should've been set"); 8693 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8694 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8695 } else if (!isScopedEHPersonality(Pers)) { 8696 assert(EHPadBB); 8697 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8698 } 8699 8700 return Chain; 8701 } 8702 8703 std::pair<SDValue, SDValue> 8704 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8705 const BasicBlock *EHPadBB) { 8706 MCSymbol *BeginLabel = nullptr; 8707 8708 if (EHPadBB) { 8709 // Both PendingLoads and PendingExports must be flushed here; 8710 // this call might not return. 8711 (void)getRoot(); 8712 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8713 CLI.setChain(getRoot()); 8714 } 8715 8716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8717 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8718 8719 assert((CLI.IsTailCall || Result.second.getNode()) && 8720 "Non-null chain expected with non-tail call!"); 8721 assert((Result.second.getNode() || !Result.first.getNode()) && 8722 "Null value expected with tail call!"); 8723 8724 if (!Result.second.getNode()) { 8725 // As a special case, a null chain means that a tail call has been emitted 8726 // and the DAG root is already updated. 8727 HasTailCall = true; 8728 8729 // Since there's no actual continuation from this block, nothing can be 8730 // relying on us setting vregs for them. 8731 PendingExports.clear(); 8732 } else { 8733 DAG.setRoot(Result.second); 8734 } 8735 8736 if (EHPadBB) { 8737 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8738 BeginLabel)); 8739 Result.second = getRoot(); 8740 } 8741 8742 return Result; 8743 } 8744 8745 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8746 bool isTailCall, bool isMustTailCall, 8747 const BasicBlock *EHPadBB, 8748 const TargetLowering::PtrAuthInfo *PAI) { 8749 auto &DL = DAG.getDataLayout(); 8750 FunctionType *FTy = CB.getFunctionType(); 8751 Type *RetTy = CB.getType(); 8752 8753 TargetLowering::ArgListTy Args; 8754 Args.reserve(CB.arg_size()); 8755 8756 const Value *SwiftErrorVal = nullptr; 8757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8758 8759 if (isTailCall) { 8760 // Avoid emitting tail calls in functions with the disable-tail-calls 8761 // attribute. 8762 auto *Caller = CB.getParent()->getParent(); 8763 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8764 "true" && !isMustTailCall) 8765 isTailCall = false; 8766 8767 // We can't tail call inside a function with a swifterror argument. Lowering 8768 // does not support this yet. It would have to move into the swifterror 8769 // register before the call. 8770 if (TLI.supportSwiftError() && 8771 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8772 isTailCall = false; 8773 } 8774 8775 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8776 TargetLowering::ArgListEntry Entry; 8777 const Value *V = *I; 8778 8779 // Skip empty types 8780 if (V->getType()->isEmptyTy()) 8781 continue; 8782 8783 SDValue ArgNode = getValue(V); 8784 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8785 8786 Entry.setAttributes(&CB, I - CB.arg_begin()); 8787 8788 // Use swifterror virtual register as input to the call. 8789 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8790 SwiftErrorVal = V; 8791 // We find the virtual register for the actual swifterror argument. 8792 // Instead of using the Value, we use the virtual register instead. 8793 Entry.Node = 8794 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8795 EVT(TLI.getPointerTy(DL))); 8796 } 8797 8798 Args.push_back(Entry); 8799 8800 // If we have an explicit sret argument that is an Instruction, (i.e., it 8801 // might point to function-local memory), we can't meaningfully tail-call. 8802 if (Entry.IsSRet && isa<Instruction>(V)) 8803 isTailCall = false; 8804 } 8805 8806 // If call site has a cfguardtarget operand bundle, create and add an 8807 // additional ArgListEntry. 8808 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8809 TargetLowering::ArgListEntry Entry; 8810 Value *V = Bundle->Inputs[0]; 8811 SDValue ArgNode = getValue(V); 8812 Entry.Node = ArgNode; 8813 Entry.Ty = V->getType(); 8814 Entry.IsCFGuardTarget = true; 8815 Args.push_back(Entry); 8816 } 8817 8818 // Check if target-independent constraints permit a tail call here. 8819 // Target-dependent constraints are checked within TLI->LowerCallTo. 8820 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8821 isTailCall = false; 8822 8823 // Disable tail calls if there is an swifterror argument. Targets have not 8824 // been updated to support tail calls. 8825 if (TLI.supportSwiftError() && SwiftErrorVal) 8826 isTailCall = false; 8827 8828 ConstantInt *CFIType = nullptr; 8829 if (CB.isIndirectCall()) { 8830 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8831 if (!TLI.supportKCFIBundles()) 8832 report_fatal_error( 8833 "Target doesn't support calls with kcfi operand bundles."); 8834 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8835 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8836 } 8837 } 8838 8839 SDValue ConvControlToken; 8840 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8841 auto *Token = Bundle->Inputs[0].get(); 8842 ConvControlToken = getValue(Token); 8843 } 8844 8845 TargetLowering::CallLoweringInfo CLI(DAG); 8846 CLI.setDebugLoc(getCurSDLoc()) 8847 .setChain(getRoot()) 8848 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8849 .setTailCall(isTailCall) 8850 .setConvergent(CB.isConvergent()) 8851 .setIsPreallocated( 8852 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8853 .setCFIType(CFIType) 8854 .setConvergenceControlToken(ConvControlToken); 8855 8856 // Set the pointer authentication info if we have it. 8857 if (PAI) { 8858 if (!TLI.supportPtrAuthBundles()) 8859 report_fatal_error( 8860 "This target doesn't support calls with ptrauth operand bundles."); 8861 CLI.setPtrAuth(*PAI); 8862 } 8863 8864 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8865 8866 if (Result.first.getNode()) { 8867 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8868 setValue(&CB, Result.first); 8869 } 8870 8871 // The last element of CLI.InVals has the SDValue for swifterror return. 8872 // Here we copy it to a virtual register and update SwiftErrorMap for 8873 // book-keeping. 8874 if (SwiftErrorVal && TLI.supportSwiftError()) { 8875 // Get the last element of InVals. 8876 SDValue Src = CLI.InVals.back(); 8877 Register VReg = 8878 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8879 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8880 DAG.setRoot(CopyNode); 8881 } 8882 } 8883 8884 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8885 SelectionDAGBuilder &Builder) { 8886 // Check to see if this load can be trivially constant folded, e.g. if the 8887 // input is from a string literal. 8888 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8889 // Cast pointer to the type we really want to load. 8890 Type *LoadTy = 8891 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8892 if (LoadVT.isVector()) 8893 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8894 8895 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8896 PointerType::getUnqual(LoadTy)); 8897 8898 if (const Constant *LoadCst = 8899 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8900 LoadTy, Builder.DAG.getDataLayout())) 8901 return Builder.getValue(LoadCst); 8902 } 8903 8904 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8905 // still constant memory, the input chain can be the entry node. 8906 SDValue Root; 8907 bool ConstantMemory = false; 8908 8909 // Do not serialize (non-volatile) loads of constant memory with anything. 8910 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8911 Root = Builder.DAG.getEntryNode(); 8912 ConstantMemory = true; 8913 } else { 8914 // Do not serialize non-volatile loads against each other. 8915 Root = Builder.DAG.getRoot(); 8916 } 8917 8918 SDValue Ptr = Builder.getValue(PtrVal); 8919 SDValue LoadVal = 8920 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8921 MachinePointerInfo(PtrVal), Align(1)); 8922 8923 if (!ConstantMemory) 8924 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8925 return LoadVal; 8926 } 8927 8928 /// Record the value for an instruction that produces an integer result, 8929 /// converting the type where necessary. 8930 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8931 SDValue Value, 8932 bool IsSigned) { 8933 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8934 I.getType(), true); 8935 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8936 setValue(&I, Value); 8937 } 8938 8939 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8940 /// true and lower it. Otherwise return false, and it will be lowered like a 8941 /// normal call. 8942 /// The caller already checked that \p I calls the appropriate LibFunc with a 8943 /// correct prototype. 8944 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8945 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8946 const Value *Size = I.getArgOperand(2); 8947 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8948 if (CSize && CSize->getZExtValue() == 0) { 8949 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8950 I.getType(), true); 8951 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8952 return true; 8953 } 8954 8955 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8956 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8957 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8958 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8959 if (Res.first.getNode()) { 8960 processIntegerCallValue(I, Res.first, true); 8961 PendingLoads.push_back(Res.second); 8962 return true; 8963 } 8964 8965 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8966 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8967 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8968 return false; 8969 8970 // If the target has a fast compare for the given size, it will return a 8971 // preferred load type for that size. Require that the load VT is legal and 8972 // that the target supports unaligned loads of that type. Otherwise, return 8973 // INVALID. 8974 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8976 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8977 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8978 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8979 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8980 // TODO: Check alignment of src and dest ptrs. 8981 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8982 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8983 if (!TLI.isTypeLegal(LVT) || 8984 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8985 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8986 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8987 } 8988 8989 return LVT; 8990 }; 8991 8992 // This turns into unaligned loads. We only do this if the target natively 8993 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8994 // we'll only produce a small number of byte loads. 8995 MVT LoadVT; 8996 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8997 switch (NumBitsToCompare) { 8998 default: 8999 return false; 9000 case 16: 9001 LoadVT = MVT::i16; 9002 break; 9003 case 32: 9004 LoadVT = MVT::i32; 9005 break; 9006 case 64: 9007 case 128: 9008 case 256: 9009 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9010 break; 9011 } 9012 9013 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9014 return false; 9015 9016 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9017 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9018 9019 // Bitcast to a wide integer type if the loads are vectors. 9020 if (LoadVT.isVector()) { 9021 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9022 LoadL = DAG.getBitcast(CmpVT, LoadL); 9023 LoadR = DAG.getBitcast(CmpVT, LoadR); 9024 } 9025 9026 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9027 processIntegerCallValue(I, Cmp, false); 9028 return true; 9029 } 9030 9031 /// See if we can lower a memchr call into an optimized form. If so, return 9032 /// true and lower it. Otherwise return false, and it will be lowered like a 9033 /// normal call. 9034 /// The caller already checked that \p I calls the appropriate LibFunc with a 9035 /// correct prototype. 9036 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9037 const Value *Src = I.getArgOperand(0); 9038 const Value *Char = I.getArgOperand(1); 9039 const Value *Length = I.getArgOperand(2); 9040 9041 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9042 std::pair<SDValue, SDValue> Res = 9043 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9044 getValue(Src), getValue(Char), getValue(Length), 9045 MachinePointerInfo(Src)); 9046 if (Res.first.getNode()) { 9047 setValue(&I, Res.first); 9048 PendingLoads.push_back(Res.second); 9049 return true; 9050 } 9051 9052 return false; 9053 } 9054 9055 /// See if we can lower a mempcpy call into an optimized form. If so, return 9056 /// true and lower it. Otherwise return false, and it will be lowered like a 9057 /// normal call. 9058 /// The caller already checked that \p I calls the appropriate LibFunc with a 9059 /// correct prototype. 9060 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9061 SDValue Dst = getValue(I.getArgOperand(0)); 9062 SDValue Src = getValue(I.getArgOperand(1)); 9063 SDValue Size = getValue(I.getArgOperand(2)); 9064 9065 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9066 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9067 // DAG::getMemcpy needs Alignment to be defined. 9068 Align Alignment = std::min(DstAlign, SrcAlign); 9069 9070 SDLoc sdl = getCurSDLoc(); 9071 9072 // In the mempcpy context we need to pass in a false value for isTailCall 9073 // because the return pointer needs to be adjusted by the size of 9074 // the copied memory. 9075 SDValue Root = getMemoryRoot(); 9076 SDValue MC = DAG.getMemcpy( 9077 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9078 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9079 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9080 assert(MC.getNode() != nullptr && 9081 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9082 DAG.setRoot(MC); 9083 9084 // Check if Size needs to be truncated or extended. 9085 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9086 9087 // Adjust return pointer to point just past the last dst byte. 9088 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9089 Dst, Size); 9090 setValue(&I, DstPlusSize); 9091 return true; 9092 } 9093 9094 /// See if we can lower a strcpy call into an optimized form. If so, return 9095 /// true and lower it, otherwise return false and it will be lowered like a 9096 /// normal call. 9097 /// The caller already checked that \p I calls the appropriate LibFunc with a 9098 /// correct prototype. 9099 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9100 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9101 9102 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9103 std::pair<SDValue, SDValue> Res = 9104 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9105 getValue(Arg0), getValue(Arg1), 9106 MachinePointerInfo(Arg0), 9107 MachinePointerInfo(Arg1), isStpcpy); 9108 if (Res.first.getNode()) { 9109 setValue(&I, Res.first); 9110 DAG.setRoot(Res.second); 9111 return true; 9112 } 9113 9114 return false; 9115 } 9116 9117 /// See if we can lower a strcmp call into an optimized form. If so, return 9118 /// true and lower it, otherwise return false and it will be lowered like a 9119 /// normal call. 9120 /// The caller already checked that \p I calls the appropriate LibFunc with a 9121 /// correct prototype. 9122 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9123 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9124 9125 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9126 std::pair<SDValue, SDValue> Res = 9127 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9128 getValue(Arg0), getValue(Arg1), 9129 MachinePointerInfo(Arg0), 9130 MachinePointerInfo(Arg1)); 9131 if (Res.first.getNode()) { 9132 processIntegerCallValue(I, Res.first, true); 9133 PendingLoads.push_back(Res.second); 9134 return true; 9135 } 9136 9137 return false; 9138 } 9139 9140 /// See if we can lower a strlen call into an optimized form. If so, return 9141 /// true and lower it, otherwise return false and it will be lowered like a 9142 /// normal call. 9143 /// The caller already checked that \p I calls the appropriate LibFunc with a 9144 /// correct prototype. 9145 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9146 const Value *Arg0 = I.getArgOperand(0); 9147 9148 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9149 std::pair<SDValue, SDValue> Res = 9150 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9151 getValue(Arg0), MachinePointerInfo(Arg0)); 9152 if (Res.first.getNode()) { 9153 processIntegerCallValue(I, Res.first, false); 9154 PendingLoads.push_back(Res.second); 9155 return true; 9156 } 9157 9158 return false; 9159 } 9160 9161 /// See if we can lower a strnlen call into an optimized form. If so, return 9162 /// true and lower it, otherwise return false and it will be lowered like a 9163 /// normal call. 9164 /// The caller already checked that \p I calls the appropriate LibFunc with a 9165 /// correct prototype. 9166 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9167 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9168 9169 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9170 std::pair<SDValue, SDValue> Res = 9171 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9172 getValue(Arg0), getValue(Arg1), 9173 MachinePointerInfo(Arg0)); 9174 if (Res.first.getNode()) { 9175 processIntegerCallValue(I, Res.first, false); 9176 PendingLoads.push_back(Res.second); 9177 return true; 9178 } 9179 9180 return false; 9181 } 9182 9183 /// See if we can lower a unary floating-point operation into an SDNode with 9184 /// the specified Opcode. If so, return true and lower it, otherwise return 9185 /// false and it will be lowered like a normal call. 9186 /// The caller already checked that \p I calls the appropriate LibFunc with a 9187 /// correct prototype. 9188 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9189 unsigned Opcode) { 9190 // We already checked this call's prototype; verify it doesn't modify errno. 9191 if (!I.onlyReadsMemory()) 9192 return false; 9193 9194 SDNodeFlags Flags; 9195 Flags.copyFMF(cast<FPMathOperator>(I)); 9196 9197 SDValue Tmp = getValue(I.getArgOperand(0)); 9198 setValue(&I, 9199 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9200 return true; 9201 } 9202 9203 /// See if we can lower a binary floating-point operation into an SDNode with 9204 /// the specified Opcode. If so, return true and lower it. Otherwise return 9205 /// false, and it will be lowered like a normal call. 9206 /// The caller already checked that \p I calls the appropriate LibFunc with a 9207 /// correct prototype. 9208 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9209 unsigned Opcode) { 9210 // We already checked this call's prototype; verify it doesn't modify errno. 9211 if (!I.onlyReadsMemory()) 9212 return false; 9213 9214 SDNodeFlags Flags; 9215 Flags.copyFMF(cast<FPMathOperator>(I)); 9216 9217 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9218 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9219 EVT VT = Tmp0.getValueType(); 9220 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9221 return true; 9222 } 9223 9224 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9225 // Handle inline assembly differently. 9226 if (I.isInlineAsm()) { 9227 visitInlineAsm(I); 9228 return; 9229 } 9230 9231 diagnoseDontCall(I); 9232 9233 if (Function *F = I.getCalledFunction()) { 9234 if (F->isDeclaration()) { 9235 // Is this an LLVM intrinsic or a target-specific intrinsic? 9236 unsigned IID = F->getIntrinsicID(); 9237 if (!IID) 9238 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9239 IID = II->getIntrinsicID(F); 9240 9241 if (IID) { 9242 visitIntrinsicCall(I, IID); 9243 return; 9244 } 9245 } 9246 9247 // Check for well-known libc/libm calls. If the function is internal, it 9248 // can't be a library call. Don't do the check if marked as nobuiltin for 9249 // some reason or the call site requires strict floating point semantics. 9250 LibFunc Func; 9251 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9252 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9253 LibInfo->hasOptimizedCodeGen(Func)) { 9254 switch (Func) { 9255 default: break; 9256 case LibFunc_bcmp: 9257 if (visitMemCmpBCmpCall(I)) 9258 return; 9259 break; 9260 case LibFunc_copysign: 9261 case LibFunc_copysignf: 9262 case LibFunc_copysignl: 9263 // We already checked this call's prototype; verify it doesn't modify 9264 // errno. 9265 if (I.onlyReadsMemory()) { 9266 SDValue LHS = getValue(I.getArgOperand(0)); 9267 SDValue RHS = getValue(I.getArgOperand(1)); 9268 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9269 LHS.getValueType(), LHS, RHS)); 9270 return; 9271 } 9272 break; 9273 case LibFunc_fabs: 9274 case LibFunc_fabsf: 9275 case LibFunc_fabsl: 9276 if (visitUnaryFloatCall(I, ISD::FABS)) 9277 return; 9278 break; 9279 case LibFunc_fmin: 9280 case LibFunc_fminf: 9281 case LibFunc_fminl: 9282 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9283 return; 9284 break; 9285 case LibFunc_fmax: 9286 case LibFunc_fmaxf: 9287 case LibFunc_fmaxl: 9288 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9289 return; 9290 break; 9291 case LibFunc_fminimum_num: 9292 case LibFunc_fminimum_numf: 9293 case LibFunc_fminimum_numl: 9294 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9295 return; 9296 break; 9297 case LibFunc_fmaximum_num: 9298 case LibFunc_fmaximum_numf: 9299 case LibFunc_fmaximum_numl: 9300 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9301 return; 9302 break; 9303 case LibFunc_sin: 9304 case LibFunc_sinf: 9305 case LibFunc_sinl: 9306 if (visitUnaryFloatCall(I, ISD::FSIN)) 9307 return; 9308 break; 9309 case LibFunc_cos: 9310 case LibFunc_cosf: 9311 case LibFunc_cosl: 9312 if (visitUnaryFloatCall(I, ISD::FCOS)) 9313 return; 9314 break; 9315 case LibFunc_tan: 9316 case LibFunc_tanf: 9317 case LibFunc_tanl: 9318 if (visitUnaryFloatCall(I, ISD::FTAN)) 9319 return; 9320 break; 9321 case LibFunc_asin: 9322 case LibFunc_asinf: 9323 case LibFunc_asinl: 9324 if (visitUnaryFloatCall(I, ISD::FASIN)) 9325 return; 9326 break; 9327 case LibFunc_acos: 9328 case LibFunc_acosf: 9329 case LibFunc_acosl: 9330 if (visitUnaryFloatCall(I, ISD::FACOS)) 9331 return; 9332 break; 9333 case LibFunc_atan: 9334 case LibFunc_atanf: 9335 case LibFunc_atanl: 9336 if (visitUnaryFloatCall(I, ISD::FATAN)) 9337 return; 9338 break; 9339 case LibFunc_sinh: 9340 case LibFunc_sinhf: 9341 case LibFunc_sinhl: 9342 if (visitUnaryFloatCall(I, ISD::FSINH)) 9343 return; 9344 break; 9345 case LibFunc_cosh: 9346 case LibFunc_coshf: 9347 case LibFunc_coshl: 9348 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9349 return; 9350 break; 9351 case LibFunc_tanh: 9352 case LibFunc_tanhf: 9353 case LibFunc_tanhl: 9354 if (visitUnaryFloatCall(I, ISD::FTANH)) 9355 return; 9356 break; 9357 case LibFunc_sqrt: 9358 case LibFunc_sqrtf: 9359 case LibFunc_sqrtl: 9360 case LibFunc_sqrt_finite: 9361 case LibFunc_sqrtf_finite: 9362 case LibFunc_sqrtl_finite: 9363 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9364 return; 9365 break; 9366 case LibFunc_floor: 9367 case LibFunc_floorf: 9368 case LibFunc_floorl: 9369 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9370 return; 9371 break; 9372 case LibFunc_nearbyint: 9373 case LibFunc_nearbyintf: 9374 case LibFunc_nearbyintl: 9375 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9376 return; 9377 break; 9378 case LibFunc_ceil: 9379 case LibFunc_ceilf: 9380 case LibFunc_ceill: 9381 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9382 return; 9383 break; 9384 case LibFunc_rint: 9385 case LibFunc_rintf: 9386 case LibFunc_rintl: 9387 if (visitUnaryFloatCall(I, ISD::FRINT)) 9388 return; 9389 break; 9390 case LibFunc_round: 9391 case LibFunc_roundf: 9392 case LibFunc_roundl: 9393 if (visitUnaryFloatCall(I, ISD::FROUND)) 9394 return; 9395 break; 9396 case LibFunc_trunc: 9397 case LibFunc_truncf: 9398 case LibFunc_truncl: 9399 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9400 return; 9401 break; 9402 case LibFunc_log2: 9403 case LibFunc_log2f: 9404 case LibFunc_log2l: 9405 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9406 return; 9407 break; 9408 case LibFunc_exp2: 9409 case LibFunc_exp2f: 9410 case LibFunc_exp2l: 9411 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9412 return; 9413 break; 9414 case LibFunc_exp10: 9415 case LibFunc_exp10f: 9416 case LibFunc_exp10l: 9417 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9418 return; 9419 break; 9420 case LibFunc_ldexp: 9421 case LibFunc_ldexpf: 9422 case LibFunc_ldexpl: 9423 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9424 return; 9425 break; 9426 case LibFunc_memcmp: 9427 if (visitMemCmpBCmpCall(I)) 9428 return; 9429 break; 9430 case LibFunc_mempcpy: 9431 if (visitMemPCpyCall(I)) 9432 return; 9433 break; 9434 case LibFunc_memchr: 9435 if (visitMemChrCall(I)) 9436 return; 9437 break; 9438 case LibFunc_strcpy: 9439 if (visitStrCpyCall(I, false)) 9440 return; 9441 break; 9442 case LibFunc_stpcpy: 9443 if (visitStrCpyCall(I, true)) 9444 return; 9445 break; 9446 case LibFunc_strcmp: 9447 if (visitStrCmpCall(I)) 9448 return; 9449 break; 9450 case LibFunc_strlen: 9451 if (visitStrLenCall(I)) 9452 return; 9453 break; 9454 case LibFunc_strnlen: 9455 if (visitStrNLenCall(I)) 9456 return; 9457 break; 9458 } 9459 } 9460 } 9461 9462 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9463 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9464 return; 9465 } 9466 9467 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9468 // have to do anything here to lower funclet bundles. 9469 // CFGuardTarget bundles are lowered in LowerCallTo. 9470 assert(!I.hasOperandBundlesOtherThan( 9471 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9472 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9473 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9474 LLVMContext::OB_convergencectrl}) && 9475 "Cannot lower calls with arbitrary operand bundles!"); 9476 9477 SDValue Callee = getValue(I.getCalledOperand()); 9478 9479 if (I.hasDeoptState()) 9480 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9481 else 9482 // Check if we can potentially perform a tail call. More detailed checking 9483 // is be done within LowerCallTo, after more information about the call is 9484 // known. 9485 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9486 } 9487 9488 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9489 const CallBase &CB, const BasicBlock *EHPadBB) { 9490 auto PAB = CB.getOperandBundle("ptrauth"); 9491 const Value *CalleeV = CB.getCalledOperand(); 9492 9493 // Gather the call ptrauth data from the operand bundle: 9494 // [ i32 <key>, i64 <discriminator> ] 9495 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9496 const Value *Discriminator = PAB->Inputs[1]; 9497 9498 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9499 assert(Discriminator->getType()->isIntegerTy(64) && 9500 "Invalid ptrauth discriminator"); 9501 9502 // Look through ptrauth constants to find the raw callee. 9503 // Do a direct unauthenticated call if we found it and everything matches. 9504 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9505 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9506 DAG.getDataLayout())) 9507 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9508 CB.isMustTailCall(), EHPadBB); 9509 9510 // Functions should never be ptrauth-called directly. 9511 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9512 9513 // Otherwise, do an authenticated indirect call. 9514 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9515 getValue(Discriminator)}; 9516 9517 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9518 EHPadBB, &PAI); 9519 } 9520 9521 namespace { 9522 9523 /// AsmOperandInfo - This contains information for each constraint that we are 9524 /// lowering. 9525 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9526 public: 9527 /// CallOperand - If this is the result output operand or a clobber 9528 /// this is null, otherwise it is the incoming operand to the CallInst. 9529 /// This gets modified as the asm is processed. 9530 SDValue CallOperand; 9531 9532 /// AssignedRegs - If this is a register or register class operand, this 9533 /// contains the set of register corresponding to the operand. 9534 RegsForValue AssignedRegs; 9535 9536 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9537 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9538 } 9539 9540 /// Whether or not this operand accesses memory 9541 bool hasMemory(const TargetLowering &TLI) const { 9542 // Indirect operand accesses access memory. 9543 if (isIndirect) 9544 return true; 9545 9546 for (const auto &Code : Codes) 9547 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9548 return true; 9549 9550 return false; 9551 } 9552 }; 9553 9554 9555 } // end anonymous namespace 9556 9557 /// Make sure that the output operand \p OpInfo and its corresponding input 9558 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9559 /// out). 9560 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9561 SDISelAsmOperandInfo &MatchingOpInfo, 9562 SelectionDAG &DAG) { 9563 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9564 return; 9565 9566 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9567 const auto &TLI = DAG.getTargetLoweringInfo(); 9568 9569 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9570 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9571 OpInfo.ConstraintVT); 9572 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9573 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9574 MatchingOpInfo.ConstraintVT); 9575 const bool OutOpIsIntOrFP = 9576 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9577 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9578 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9579 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9580 // FIXME: error out in a more elegant fashion 9581 report_fatal_error("Unsupported asm: input constraint" 9582 " with a matching output constraint of" 9583 " incompatible type!"); 9584 } 9585 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9586 } 9587 9588 /// Get a direct memory input to behave well as an indirect operand. 9589 /// This may introduce stores, hence the need for a \p Chain. 9590 /// \return The (possibly updated) chain. 9591 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9592 SDISelAsmOperandInfo &OpInfo, 9593 SelectionDAG &DAG) { 9594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9595 9596 // If we don't have an indirect input, put it in the constpool if we can, 9597 // otherwise spill it to a stack slot. 9598 // TODO: This isn't quite right. We need to handle these according to 9599 // the addressing mode that the constraint wants. Also, this may take 9600 // an additional register for the computation and we don't want that 9601 // either. 9602 9603 // If the operand is a float, integer, or vector constant, spill to a 9604 // constant pool entry to get its address. 9605 const Value *OpVal = OpInfo.CallOperandVal; 9606 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9607 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9608 OpInfo.CallOperand = DAG.getConstantPool( 9609 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9610 return Chain; 9611 } 9612 9613 // Otherwise, create a stack slot and emit a store to it before the asm. 9614 Type *Ty = OpVal->getType(); 9615 auto &DL = DAG.getDataLayout(); 9616 TypeSize TySize = DL.getTypeAllocSize(Ty); 9617 MachineFunction &MF = DAG.getMachineFunction(); 9618 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9619 int StackID = 0; 9620 if (TySize.isScalable()) 9621 StackID = TFI->getStackIDForScalableVectors(); 9622 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9623 DL.getPrefTypeAlign(Ty), false, 9624 nullptr, StackID); 9625 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9626 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9627 MachinePointerInfo::getFixedStack(MF, SSFI), 9628 TLI.getMemValueType(DL, Ty)); 9629 OpInfo.CallOperand = StackSlot; 9630 9631 return Chain; 9632 } 9633 9634 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9635 /// specified operand. We prefer to assign virtual registers, to allow the 9636 /// register allocator to handle the assignment process. However, if the asm 9637 /// uses features that we can't model on machineinstrs, we have SDISel do the 9638 /// allocation. This produces generally horrible, but correct, code. 9639 /// 9640 /// OpInfo describes the operand 9641 /// RefOpInfo describes the matching operand if any, the operand otherwise 9642 static std::optional<unsigned> 9643 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9644 SDISelAsmOperandInfo &OpInfo, 9645 SDISelAsmOperandInfo &RefOpInfo) { 9646 LLVMContext &Context = *DAG.getContext(); 9647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9648 9649 MachineFunction &MF = DAG.getMachineFunction(); 9650 SmallVector<unsigned, 4> Regs; 9651 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9652 9653 // No work to do for memory/address operands. 9654 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9655 OpInfo.ConstraintType == TargetLowering::C_Address) 9656 return std::nullopt; 9657 9658 // If this is a constraint for a single physreg, or a constraint for a 9659 // register class, find it. 9660 unsigned AssignedReg; 9661 const TargetRegisterClass *RC; 9662 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9663 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9664 // RC is unset only on failure. Return immediately. 9665 if (!RC) 9666 return std::nullopt; 9667 9668 // Get the actual register value type. This is important, because the user 9669 // may have asked for (e.g.) the AX register in i32 type. We need to 9670 // remember that AX is actually i16 to get the right extension. 9671 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9672 9673 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9674 // If this is an FP operand in an integer register (or visa versa), or more 9675 // generally if the operand value disagrees with the register class we plan 9676 // to stick it in, fix the operand type. 9677 // 9678 // If this is an input value, the bitcast to the new type is done now. 9679 // Bitcast for output value is done at the end of visitInlineAsm(). 9680 if ((OpInfo.Type == InlineAsm::isOutput || 9681 OpInfo.Type == InlineAsm::isInput) && 9682 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9683 // Try to convert to the first EVT that the reg class contains. If the 9684 // types are identical size, use a bitcast to convert (e.g. two differing 9685 // vector types). Note: output bitcast is done at the end of 9686 // visitInlineAsm(). 9687 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9688 // Exclude indirect inputs while they are unsupported because the code 9689 // to perform the load is missing and thus OpInfo.CallOperand still 9690 // refers to the input address rather than the pointed-to value. 9691 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9692 OpInfo.CallOperand = 9693 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9694 OpInfo.ConstraintVT = RegVT; 9695 // If the operand is an FP value and we want it in integer registers, 9696 // use the corresponding integer type. This turns an f64 value into 9697 // i64, which can be passed with two i32 values on a 32-bit machine. 9698 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9699 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9700 if (OpInfo.Type == InlineAsm::isInput) 9701 OpInfo.CallOperand = 9702 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9703 OpInfo.ConstraintVT = VT; 9704 } 9705 } 9706 } 9707 9708 // No need to allocate a matching input constraint since the constraint it's 9709 // matching to has already been allocated. 9710 if (OpInfo.isMatchingInputConstraint()) 9711 return std::nullopt; 9712 9713 EVT ValueVT = OpInfo.ConstraintVT; 9714 if (OpInfo.ConstraintVT == MVT::Other) 9715 ValueVT = RegVT; 9716 9717 // Initialize NumRegs. 9718 unsigned NumRegs = 1; 9719 if (OpInfo.ConstraintVT != MVT::Other) 9720 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9721 9722 // If this is a constraint for a specific physical register, like {r17}, 9723 // assign it now. 9724 9725 // If this associated to a specific register, initialize iterator to correct 9726 // place. If virtual, make sure we have enough registers 9727 9728 // Initialize iterator if necessary 9729 TargetRegisterClass::iterator I = RC->begin(); 9730 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9731 9732 // Do not check for single registers. 9733 if (AssignedReg) { 9734 I = std::find(I, RC->end(), AssignedReg); 9735 if (I == RC->end()) { 9736 // RC does not contain the selected register, which indicates a 9737 // mismatch between the register and the required type/bitwidth. 9738 return {AssignedReg}; 9739 } 9740 } 9741 9742 for (; NumRegs; --NumRegs, ++I) { 9743 assert(I != RC->end() && "Ran out of registers to allocate!"); 9744 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9745 Regs.push_back(R); 9746 } 9747 9748 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9749 return std::nullopt; 9750 } 9751 9752 static unsigned 9753 findMatchingInlineAsmOperand(unsigned OperandNo, 9754 const std::vector<SDValue> &AsmNodeOperands) { 9755 // Scan until we find the definition we already emitted of this operand. 9756 unsigned CurOp = InlineAsm::Op_FirstOperand; 9757 for (; OperandNo; --OperandNo) { 9758 // Advance to the next operand. 9759 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9760 const InlineAsm::Flag F(OpFlag); 9761 assert( 9762 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9763 "Skipped past definitions?"); 9764 CurOp += F.getNumOperandRegisters() + 1; 9765 } 9766 return CurOp; 9767 } 9768 9769 namespace { 9770 9771 class ExtraFlags { 9772 unsigned Flags = 0; 9773 9774 public: 9775 explicit ExtraFlags(const CallBase &Call) { 9776 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9777 if (IA->hasSideEffects()) 9778 Flags |= InlineAsm::Extra_HasSideEffects; 9779 if (IA->isAlignStack()) 9780 Flags |= InlineAsm::Extra_IsAlignStack; 9781 if (Call.isConvergent()) 9782 Flags |= InlineAsm::Extra_IsConvergent; 9783 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9784 } 9785 9786 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9787 // Ideally, we would only check against memory constraints. However, the 9788 // meaning of an Other constraint can be target-specific and we can't easily 9789 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9790 // for Other constraints as well. 9791 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9792 OpInfo.ConstraintType == TargetLowering::C_Other) { 9793 if (OpInfo.Type == InlineAsm::isInput) 9794 Flags |= InlineAsm::Extra_MayLoad; 9795 else if (OpInfo.Type == InlineAsm::isOutput) 9796 Flags |= InlineAsm::Extra_MayStore; 9797 else if (OpInfo.Type == InlineAsm::isClobber) 9798 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9799 } 9800 } 9801 9802 unsigned get() const { return Flags; } 9803 }; 9804 9805 } // end anonymous namespace 9806 9807 static bool isFunction(SDValue Op) { 9808 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9809 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9810 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9811 9812 // In normal "call dllimport func" instruction (non-inlineasm) it force 9813 // indirect access by specifing call opcode. And usually specially print 9814 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9815 // not do in this way now. (In fact, this is similar with "Data Access" 9816 // action). So here we ignore dllimport function. 9817 if (Fn && !Fn->hasDLLImportStorageClass()) 9818 return true; 9819 } 9820 } 9821 return false; 9822 } 9823 9824 /// visitInlineAsm - Handle a call to an InlineAsm object. 9825 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9826 const BasicBlock *EHPadBB) { 9827 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9828 9829 /// ConstraintOperands - Information about all of the constraints. 9830 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9831 9832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9833 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9834 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9835 9836 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9837 // AsmDialect, MayLoad, MayStore). 9838 bool HasSideEffect = IA->hasSideEffects(); 9839 ExtraFlags ExtraInfo(Call); 9840 9841 for (auto &T : TargetConstraints) { 9842 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9843 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9844 9845 if (OpInfo.CallOperandVal) 9846 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9847 9848 if (!HasSideEffect) 9849 HasSideEffect = OpInfo.hasMemory(TLI); 9850 9851 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9852 // FIXME: Could we compute this on OpInfo rather than T? 9853 9854 // Compute the constraint code and ConstraintType to use. 9855 TLI.ComputeConstraintToUse(T, SDValue()); 9856 9857 if (T.ConstraintType == TargetLowering::C_Immediate && 9858 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9859 // We've delayed emitting a diagnostic like the "n" constraint because 9860 // inlining could cause an integer showing up. 9861 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9862 "' expects an integer constant " 9863 "expression"); 9864 9865 ExtraInfo.update(T); 9866 } 9867 9868 // We won't need to flush pending loads if this asm doesn't touch 9869 // memory and is nonvolatile. 9870 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9871 9872 bool EmitEHLabels = isa<InvokeInst>(Call); 9873 if (EmitEHLabels) { 9874 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9875 } 9876 bool IsCallBr = isa<CallBrInst>(Call); 9877 9878 if (IsCallBr || EmitEHLabels) { 9879 // If this is a callbr or invoke we need to flush pending exports since 9880 // inlineasm_br and invoke are terminators. 9881 // We need to do this before nodes are glued to the inlineasm_br node. 9882 Chain = getControlRoot(); 9883 } 9884 9885 MCSymbol *BeginLabel = nullptr; 9886 if (EmitEHLabels) { 9887 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9888 } 9889 9890 int OpNo = -1; 9891 SmallVector<StringRef> AsmStrs; 9892 IA->collectAsmStrs(AsmStrs); 9893 9894 // Second pass over the constraints: compute which constraint option to use. 9895 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9896 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9897 OpNo++; 9898 9899 // If this is an output operand with a matching input operand, look up the 9900 // matching input. If their types mismatch, e.g. one is an integer, the 9901 // other is floating point, or their sizes are different, flag it as an 9902 // error. 9903 if (OpInfo.hasMatchingInput()) { 9904 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9905 patchMatchingInput(OpInfo, Input, DAG); 9906 } 9907 9908 // Compute the constraint code and ConstraintType to use. 9909 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9910 9911 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9912 OpInfo.Type == InlineAsm::isClobber) || 9913 OpInfo.ConstraintType == TargetLowering::C_Address) 9914 continue; 9915 9916 // In Linux PIC model, there are 4 cases about value/label addressing: 9917 // 9918 // 1: Function call or Label jmp inside the module. 9919 // 2: Data access (such as global variable, static variable) inside module. 9920 // 3: Function call or Label jmp outside the module. 9921 // 4: Data access (such as global variable) outside the module. 9922 // 9923 // Due to current llvm inline asm architecture designed to not "recognize" 9924 // the asm code, there are quite troubles for us to treat mem addressing 9925 // differently for same value/adress used in different instuctions. 9926 // For example, in pic model, call a func may in plt way or direclty 9927 // pc-related, but lea/mov a function adress may use got. 9928 // 9929 // Here we try to "recognize" function call for the case 1 and case 3 in 9930 // inline asm. And try to adjust the constraint for them. 9931 // 9932 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9933 // label, so here we don't handle jmp function label now, but we need to 9934 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9935 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9936 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9937 TM.getCodeModel() != CodeModel::Large) { 9938 OpInfo.isIndirect = false; 9939 OpInfo.ConstraintType = TargetLowering::C_Address; 9940 } 9941 9942 // If this is a memory input, and if the operand is not indirect, do what we 9943 // need to provide an address for the memory input. 9944 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9945 !OpInfo.isIndirect) { 9946 assert((OpInfo.isMultipleAlternative || 9947 (OpInfo.Type == InlineAsm::isInput)) && 9948 "Can only indirectify direct input operands!"); 9949 9950 // Memory operands really want the address of the value. 9951 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9952 9953 // There is no longer a Value* corresponding to this operand. 9954 OpInfo.CallOperandVal = nullptr; 9955 9956 // It is now an indirect operand. 9957 OpInfo.isIndirect = true; 9958 } 9959 9960 } 9961 9962 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9963 std::vector<SDValue> AsmNodeOperands; 9964 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9965 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9966 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9967 9968 // If we have a !srcloc metadata node associated with it, we want to attach 9969 // this to the ultimately generated inline asm machineinstr. To do this, we 9970 // pass in the third operand as this (potentially null) inline asm MDNode. 9971 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9972 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9973 9974 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9975 // bits as operand 3. 9976 AsmNodeOperands.push_back(DAG.getTargetConstant( 9977 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9978 9979 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9980 // this, assign virtual and physical registers for inputs and otput. 9981 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9982 // Assign Registers. 9983 SDISelAsmOperandInfo &RefOpInfo = 9984 OpInfo.isMatchingInputConstraint() 9985 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9986 : OpInfo; 9987 const auto RegError = 9988 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9989 if (RegError) { 9990 const MachineFunction &MF = DAG.getMachineFunction(); 9991 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9992 const char *RegName = TRI.getName(*RegError); 9993 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9994 "' allocated for constraint '" + 9995 Twine(OpInfo.ConstraintCode) + 9996 "' does not match required type"); 9997 return; 9998 } 9999 10000 auto DetectWriteToReservedRegister = [&]() { 10001 const MachineFunction &MF = DAG.getMachineFunction(); 10002 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10003 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10004 if (Register::isPhysicalRegister(Reg) && 10005 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10006 const char *RegName = TRI.getName(Reg); 10007 emitInlineAsmError(Call, "write to reserved register '" + 10008 Twine(RegName) + "'"); 10009 return true; 10010 } 10011 } 10012 return false; 10013 }; 10014 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10015 (OpInfo.Type == InlineAsm::isInput && 10016 !OpInfo.isMatchingInputConstraint())) && 10017 "Only address as input operand is allowed."); 10018 10019 switch (OpInfo.Type) { 10020 case InlineAsm::isOutput: 10021 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10022 const InlineAsm::ConstraintCode ConstraintID = 10023 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10024 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10025 "Failed to convert memory constraint code to constraint id."); 10026 10027 // Add information to the INLINEASM node to know about this output. 10028 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10029 OpFlags.setMemConstraint(ConstraintID); 10030 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10031 MVT::i32)); 10032 AsmNodeOperands.push_back(OpInfo.CallOperand); 10033 } else { 10034 // Otherwise, this outputs to a register (directly for C_Register / 10035 // C_RegisterClass, and a target-defined fashion for 10036 // C_Immediate/C_Other). Find a register that we can use. 10037 if (OpInfo.AssignedRegs.Regs.empty()) { 10038 emitInlineAsmError( 10039 Call, "couldn't allocate output register for constraint '" + 10040 Twine(OpInfo.ConstraintCode) + "'"); 10041 return; 10042 } 10043 10044 if (DetectWriteToReservedRegister()) 10045 return; 10046 10047 // Add information to the INLINEASM node to know that this register is 10048 // set. 10049 OpInfo.AssignedRegs.AddInlineAsmOperands( 10050 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10051 : InlineAsm::Kind::RegDef, 10052 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10053 } 10054 break; 10055 10056 case InlineAsm::isInput: 10057 case InlineAsm::isLabel: { 10058 SDValue InOperandVal = OpInfo.CallOperand; 10059 10060 if (OpInfo.isMatchingInputConstraint()) { 10061 // If this is required to match an output register we have already set, 10062 // just use its register. 10063 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10064 AsmNodeOperands); 10065 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10066 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10067 if (OpInfo.isIndirect) { 10068 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10069 emitInlineAsmError(Call, "inline asm not supported yet: " 10070 "don't know how to handle tied " 10071 "indirect register inputs"); 10072 return; 10073 } 10074 10075 SmallVector<unsigned, 4> Regs; 10076 MachineFunction &MF = DAG.getMachineFunction(); 10077 MachineRegisterInfo &MRI = MF.getRegInfo(); 10078 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10079 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10080 Register TiedReg = R->getReg(); 10081 MVT RegVT = R->getSimpleValueType(0); 10082 const TargetRegisterClass *RC = 10083 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10084 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10085 : TRI.getMinimalPhysRegClass(TiedReg); 10086 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10087 Regs.push_back(MRI.createVirtualRegister(RC)); 10088 10089 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10090 10091 SDLoc dl = getCurSDLoc(); 10092 // Use the produced MatchedRegs object to 10093 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10094 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10095 OpInfo.getMatchedOperand(), dl, DAG, 10096 AsmNodeOperands); 10097 break; 10098 } 10099 10100 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10101 assert(Flag.getNumOperandRegisters() == 1 && 10102 "Unexpected number of operands"); 10103 // Add information to the INLINEASM node to know about this input. 10104 // See InlineAsm.h isUseOperandTiedToDef. 10105 Flag.clearMemConstraint(); 10106 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10107 AsmNodeOperands.push_back(DAG.getTargetConstant( 10108 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10109 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10110 break; 10111 } 10112 10113 // Treat indirect 'X' constraint as memory. 10114 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10115 OpInfo.isIndirect) 10116 OpInfo.ConstraintType = TargetLowering::C_Memory; 10117 10118 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10119 OpInfo.ConstraintType == TargetLowering::C_Other) { 10120 std::vector<SDValue> Ops; 10121 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10122 Ops, DAG); 10123 if (Ops.empty()) { 10124 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10125 if (isa<ConstantSDNode>(InOperandVal)) { 10126 emitInlineAsmError(Call, "value out of range for constraint '" + 10127 Twine(OpInfo.ConstraintCode) + "'"); 10128 return; 10129 } 10130 10131 emitInlineAsmError(Call, 10132 "invalid operand for inline asm constraint '" + 10133 Twine(OpInfo.ConstraintCode) + "'"); 10134 return; 10135 } 10136 10137 // Add information to the INLINEASM node to know about this input. 10138 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10139 AsmNodeOperands.push_back(DAG.getTargetConstant( 10140 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10141 llvm::append_range(AsmNodeOperands, Ops); 10142 break; 10143 } 10144 10145 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10146 assert((OpInfo.isIndirect || 10147 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10148 "Operand must be indirect to be a mem!"); 10149 assert(InOperandVal.getValueType() == 10150 TLI.getPointerTy(DAG.getDataLayout()) && 10151 "Memory operands expect pointer values"); 10152 10153 const InlineAsm::ConstraintCode ConstraintID = 10154 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10155 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10156 "Failed to convert memory constraint code to constraint id."); 10157 10158 // Add information to the INLINEASM node to know about this input. 10159 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10160 ResOpType.setMemConstraint(ConstraintID); 10161 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10162 getCurSDLoc(), 10163 MVT::i32)); 10164 AsmNodeOperands.push_back(InOperandVal); 10165 break; 10166 } 10167 10168 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10169 const InlineAsm::ConstraintCode ConstraintID = 10170 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10171 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10172 "Failed to convert memory constraint code to constraint id."); 10173 10174 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10175 10176 SDValue AsmOp = InOperandVal; 10177 if (isFunction(InOperandVal)) { 10178 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10179 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10180 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10181 InOperandVal.getValueType(), 10182 GA->getOffset()); 10183 } 10184 10185 // Add information to the INLINEASM node to know about this input. 10186 ResOpType.setMemConstraint(ConstraintID); 10187 10188 AsmNodeOperands.push_back( 10189 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10190 10191 AsmNodeOperands.push_back(AsmOp); 10192 break; 10193 } 10194 10195 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10196 OpInfo.ConstraintType != TargetLowering::C_Register) { 10197 emitInlineAsmError(Call, "unknown asm constraint '" + 10198 Twine(OpInfo.ConstraintCode) + "'"); 10199 return; 10200 } 10201 10202 // TODO: Support this. 10203 if (OpInfo.isIndirect) { 10204 emitInlineAsmError( 10205 Call, "Don't know how to handle indirect register inputs yet " 10206 "for constraint '" + 10207 Twine(OpInfo.ConstraintCode) + "'"); 10208 return; 10209 } 10210 10211 // Copy the input into the appropriate registers. 10212 if (OpInfo.AssignedRegs.Regs.empty()) { 10213 emitInlineAsmError(Call, 10214 "couldn't allocate input reg for constraint '" + 10215 Twine(OpInfo.ConstraintCode) + "'"); 10216 return; 10217 } 10218 10219 if (DetectWriteToReservedRegister()) 10220 return; 10221 10222 SDLoc dl = getCurSDLoc(); 10223 10224 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10225 &Call); 10226 10227 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10228 0, dl, DAG, AsmNodeOperands); 10229 break; 10230 } 10231 case InlineAsm::isClobber: 10232 // Add the clobbered value to the operand list, so that the register 10233 // allocator is aware that the physreg got clobbered. 10234 if (!OpInfo.AssignedRegs.Regs.empty()) 10235 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10236 false, 0, getCurSDLoc(), DAG, 10237 AsmNodeOperands); 10238 break; 10239 } 10240 } 10241 10242 // Finish up input operands. Set the input chain and add the flag last. 10243 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10244 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10245 10246 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10247 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10248 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10249 Glue = Chain.getValue(1); 10250 10251 // Do additional work to generate outputs. 10252 10253 SmallVector<EVT, 1> ResultVTs; 10254 SmallVector<SDValue, 1> ResultValues; 10255 SmallVector<SDValue, 8> OutChains; 10256 10257 llvm::Type *CallResultType = Call.getType(); 10258 ArrayRef<Type *> ResultTypes; 10259 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10260 ResultTypes = StructResult->elements(); 10261 else if (!CallResultType->isVoidTy()) 10262 ResultTypes = ArrayRef(CallResultType); 10263 10264 auto CurResultType = ResultTypes.begin(); 10265 auto handleRegAssign = [&](SDValue V) { 10266 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10267 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10268 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10269 ++CurResultType; 10270 // If the type of the inline asm call site return value is different but has 10271 // same size as the type of the asm output bitcast it. One example of this 10272 // is for vectors with different width / number of elements. This can 10273 // happen for register classes that can contain multiple different value 10274 // types. The preg or vreg allocated may not have the same VT as was 10275 // expected. 10276 // 10277 // This can also happen for a return value that disagrees with the register 10278 // class it is put in, eg. a double in a general-purpose register on a 10279 // 32-bit machine. 10280 if (ResultVT != V.getValueType() && 10281 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10282 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10283 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10284 V.getValueType().isInteger()) { 10285 // If a result value was tied to an input value, the computed result 10286 // may have a wider width than the expected result. Extract the 10287 // relevant portion. 10288 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10289 } 10290 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10291 ResultVTs.push_back(ResultVT); 10292 ResultValues.push_back(V); 10293 }; 10294 10295 // Deal with output operands. 10296 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10297 if (OpInfo.Type == InlineAsm::isOutput) { 10298 SDValue Val; 10299 // Skip trivial output operands. 10300 if (OpInfo.AssignedRegs.Regs.empty()) 10301 continue; 10302 10303 switch (OpInfo.ConstraintType) { 10304 case TargetLowering::C_Register: 10305 case TargetLowering::C_RegisterClass: 10306 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10307 Chain, &Glue, &Call); 10308 break; 10309 case TargetLowering::C_Immediate: 10310 case TargetLowering::C_Other: 10311 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10312 OpInfo, DAG); 10313 break; 10314 case TargetLowering::C_Memory: 10315 break; // Already handled. 10316 case TargetLowering::C_Address: 10317 break; // Silence warning. 10318 case TargetLowering::C_Unknown: 10319 assert(false && "Unexpected unknown constraint"); 10320 } 10321 10322 // Indirect output manifest as stores. Record output chains. 10323 if (OpInfo.isIndirect) { 10324 const Value *Ptr = OpInfo.CallOperandVal; 10325 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10326 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10327 MachinePointerInfo(Ptr)); 10328 OutChains.push_back(Store); 10329 } else { 10330 // generate CopyFromRegs to associated registers. 10331 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10332 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10333 for (const SDValue &V : Val->op_values()) 10334 handleRegAssign(V); 10335 } else 10336 handleRegAssign(Val); 10337 } 10338 } 10339 } 10340 10341 // Set results. 10342 if (!ResultValues.empty()) { 10343 assert(CurResultType == ResultTypes.end() && 10344 "Mismatch in number of ResultTypes"); 10345 assert(ResultValues.size() == ResultTypes.size() && 10346 "Mismatch in number of output operands in asm result"); 10347 10348 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10349 DAG.getVTList(ResultVTs), ResultValues); 10350 setValue(&Call, V); 10351 } 10352 10353 // Collect store chains. 10354 if (!OutChains.empty()) 10355 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10356 10357 if (EmitEHLabels) { 10358 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10359 } 10360 10361 // Only Update Root if inline assembly has a memory effect. 10362 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10363 EmitEHLabels) 10364 DAG.setRoot(Chain); 10365 } 10366 10367 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10368 const Twine &Message) { 10369 LLVMContext &Ctx = *DAG.getContext(); 10370 Ctx.emitError(&Call, Message); 10371 10372 // Make sure we leave the DAG in a valid state 10373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10374 SmallVector<EVT, 1> ValueVTs; 10375 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10376 10377 if (ValueVTs.empty()) 10378 return; 10379 10380 SmallVector<SDValue, 1> Ops; 10381 for (const EVT &VT : ValueVTs) 10382 Ops.push_back(DAG.getUNDEF(VT)); 10383 10384 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10385 } 10386 10387 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10388 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10389 MVT::Other, getRoot(), 10390 getValue(I.getArgOperand(0)), 10391 DAG.getSrcValue(I.getArgOperand(0)))); 10392 } 10393 10394 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10396 const DataLayout &DL = DAG.getDataLayout(); 10397 SDValue V = DAG.getVAArg( 10398 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10399 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10400 DL.getABITypeAlign(I.getType()).value()); 10401 DAG.setRoot(V.getValue(1)); 10402 10403 if (I.getType()->isPointerTy()) 10404 V = DAG.getPtrExtOrTrunc( 10405 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10406 setValue(&I, V); 10407 } 10408 10409 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10410 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10411 MVT::Other, getRoot(), 10412 getValue(I.getArgOperand(0)), 10413 DAG.getSrcValue(I.getArgOperand(0)))); 10414 } 10415 10416 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10417 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10418 MVT::Other, getRoot(), 10419 getValue(I.getArgOperand(0)), 10420 getValue(I.getArgOperand(1)), 10421 DAG.getSrcValue(I.getArgOperand(0)), 10422 DAG.getSrcValue(I.getArgOperand(1)))); 10423 } 10424 10425 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10426 const Instruction &I, 10427 SDValue Op) { 10428 std::optional<ConstantRange> CR = getRange(I); 10429 10430 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10431 return Op; 10432 10433 APInt Lo = CR->getUnsignedMin(); 10434 if (!Lo.isMinValue()) 10435 return Op; 10436 10437 APInt Hi = CR->getUnsignedMax(); 10438 unsigned Bits = std::max(Hi.getActiveBits(), 10439 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10440 10441 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10442 10443 SDLoc SL = getCurSDLoc(); 10444 10445 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10446 DAG.getValueType(SmallVT)); 10447 unsigned NumVals = Op.getNode()->getNumValues(); 10448 if (NumVals == 1) 10449 return ZExt; 10450 10451 SmallVector<SDValue, 4> Ops; 10452 10453 Ops.push_back(ZExt); 10454 for (unsigned I = 1; I != NumVals; ++I) 10455 Ops.push_back(Op.getValue(I)); 10456 10457 return DAG.getMergeValues(Ops, SL); 10458 } 10459 10460 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10461 /// the call being lowered. 10462 /// 10463 /// This is a helper for lowering intrinsics that follow a target calling 10464 /// convention or require stack pointer adjustment. Only a subset of the 10465 /// intrinsic's operands need to participate in the calling convention. 10466 void SelectionDAGBuilder::populateCallLoweringInfo( 10467 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10468 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10469 AttributeSet RetAttrs, bool IsPatchPoint) { 10470 TargetLowering::ArgListTy Args; 10471 Args.reserve(NumArgs); 10472 10473 // Populate the argument list. 10474 // Attributes for args start at offset 1, after the return attribute. 10475 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10476 ArgI != ArgE; ++ArgI) { 10477 const Value *V = Call->getOperand(ArgI); 10478 10479 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10480 10481 TargetLowering::ArgListEntry Entry; 10482 Entry.Node = getValue(V); 10483 Entry.Ty = V->getType(); 10484 Entry.setAttributes(Call, ArgI); 10485 Args.push_back(Entry); 10486 } 10487 10488 CLI.setDebugLoc(getCurSDLoc()) 10489 .setChain(getRoot()) 10490 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10491 RetAttrs) 10492 .setDiscardResult(Call->use_empty()) 10493 .setIsPatchPoint(IsPatchPoint) 10494 .setIsPreallocated( 10495 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10496 } 10497 10498 /// Add a stack map intrinsic call's live variable operands to a stackmap 10499 /// or patchpoint target node's operand list. 10500 /// 10501 /// Constants are converted to TargetConstants purely as an optimization to 10502 /// avoid constant materialization and register allocation. 10503 /// 10504 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10505 /// generate addess computation nodes, and so FinalizeISel can convert the 10506 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10507 /// address materialization and register allocation, but may also be required 10508 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10509 /// alloca in the entry block, then the runtime may assume that the alloca's 10510 /// StackMap location can be read immediately after compilation and that the 10511 /// location is valid at any point during execution (this is similar to the 10512 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10513 /// only available in a register, then the runtime would need to trap when 10514 /// execution reaches the StackMap in order to read the alloca's location. 10515 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10516 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10517 SelectionDAGBuilder &Builder) { 10518 SelectionDAG &DAG = Builder.DAG; 10519 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10520 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10521 10522 // Things on the stack are pointer-typed, meaning that they are already 10523 // legal and can be emitted directly to target nodes. 10524 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10525 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10526 } else { 10527 // Otherwise emit a target independent node to be legalised. 10528 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10529 } 10530 } 10531 } 10532 10533 /// Lower llvm.experimental.stackmap. 10534 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10535 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10536 // [live variables...]) 10537 10538 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10539 10540 SDValue Chain, InGlue, Callee; 10541 SmallVector<SDValue, 32> Ops; 10542 10543 SDLoc DL = getCurSDLoc(); 10544 Callee = getValue(CI.getCalledOperand()); 10545 10546 // The stackmap intrinsic only records the live variables (the arguments 10547 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10548 // intrinsic, this won't be lowered to a function call. This means we don't 10549 // have to worry about calling conventions and target specific lowering code. 10550 // Instead we perform the call lowering right here. 10551 // 10552 // chain, flag = CALLSEQ_START(chain, 0, 0) 10553 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10554 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10555 // 10556 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10557 InGlue = Chain.getValue(1); 10558 10559 // Add the STACKMAP operands, starting with DAG house-keeping. 10560 Ops.push_back(Chain); 10561 Ops.push_back(InGlue); 10562 10563 // Add the <id>, <numShadowBytes> operands. 10564 // 10565 // These do not require legalisation, and can be emitted directly to target 10566 // constant nodes. 10567 SDValue ID = getValue(CI.getArgOperand(0)); 10568 assert(ID.getValueType() == MVT::i64); 10569 SDValue IDConst = 10570 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10571 Ops.push_back(IDConst); 10572 10573 SDValue Shad = getValue(CI.getArgOperand(1)); 10574 assert(Shad.getValueType() == MVT::i32); 10575 SDValue ShadConst = 10576 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10577 Ops.push_back(ShadConst); 10578 10579 // Add the live variables. 10580 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10581 10582 // Create the STACKMAP node. 10583 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10584 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10585 InGlue = Chain.getValue(1); 10586 10587 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10588 10589 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10590 10591 // Set the root to the target-lowered call chain. 10592 DAG.setRoot(Chain); 10593 10594 // Inform the Frame Information that we have a stackmap in this function. 10595 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10596 } 10597 10598 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10599 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10600 const BasicBlock *EHPadBB) { 10601 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10602 // i32 <numBytes>, 10603 // i8* <target>, 10604 // i32 <numArgs>, 10605 // [Args...], 10606 // [live variables...]) 10607 10608 CallingConv::ID CC = CB.getCallingConv(); 10609 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10610 bool HasDef = !CB.getType()->isVoidTy(); 10611 SDLoc dl = getCurSDLoc(); 10612 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10613 10614 // Handle immediate and symbolic callees. 10615 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10616 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10617 /*isTarget=*/true); 10618 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10619 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10620 SDLoc(SymbolicCallee), 10621 SymbolicCallee->getValueType(0)); 10622 10623 // Get the real number of arguments participating in the call <numArgs> 10624 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10625 unsigned NumArgs = NArgVal->getAsZExtVal(); 10626 10627 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10628 // Intrinsics include all meta-operands up to but not including CC. 10629 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10630 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10631 "Not enough arguments provided to the patchpoint intrinsic"); 10632 10633 // For AnyRegCC the arguments are lowered later on manually. 10634 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10635 Type *ReturnTy = 10636 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10637 10638 TargetLowering::CallLoweringInfo CLI(DAG); 10639 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10640 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10641 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10642 10643 SDNode *CallEnd = Result.second.getNode(); 10644 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10645 CallEnd = CallEnd->getOperand(0).getNode(); 10646 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10647 CallEnd = CallEnd->getOperand(0).getNode(); 10648 10649 /// Get a call instruction from the call sequence chain. 10650 /// Tail calls are not allowed. 10651 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10652 "Expected a callseq node."); 10653 SDNode *Call = CallEnd->getOperand(0).getNode(); 10654 bool HasGlue = Call->getGluedNode(); 10655 10656 // Replace the target specific call node with the patchable intrinsic. 10657 SmallVector<SDValue, 8> Ops; 10658 10659 // Push the chain. 10660 Ops.push_back(*(Call->op_begin())); 10661 10662 // Optionally, push the glue (if any). 10663 if (HasGlue) 10664 Ops.push_back(*(Call->op_end() - 1)); 10665 10666 // Push the register mask info. 10667 if (HasGlue) 10668 Ops.push_back(*(Call->op_end() - 2)); 10669 else 10670 Ops.push_back(*(Call->op_end() - 1)); 10671 10672 // Add the <id> and <numBytes> constants. 10673 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10674 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10675 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10676 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10677 10678 // Add the callee. 10679 Ops.push_back(Callee); 10680 10681 // Adjust <numArgs> to account for any arguments that have been passed on the 10682 // stack instead. 10683 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10684 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10685 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10686 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10687 10688 // Add the calling convention 10689 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10690 10691 // Add the arguments we omitted previously. The register allocator should 10692 // place these in any free register. 10693 if (IsAnyRegCC) 10694 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10695 Ops.push_back(getValue(CB.getArgOperand(i))); 10696 10697 // Push the arguments from the call instruction. 10698 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10699 Ops.append(Call->op_begin() + 2, e); 10700 10701 // Push live variables for the stack map. 10702 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10703 10704 SDVTList NodeTys; 10705 if (IsAnyRegCC && HasDef) { 10706 // Create the return types based on the intrinsic definition 10707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10708 SmallVector<EVT, 3> ValueVTs; 10709 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10710 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10711 10712 // There is always a chain and a glue type at the end 10713 ValueVTs.push_back(MVT::Other); 10714 ValueVTs.push_back(MVT::Glue); 10715 NodeTys = DAG.getVTList(ValueVTs); 10716 } else 10717 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10718 10719 // Replace the target specific call node with a PATCHPOINT node. 10720 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10721 10722 // Update the NodeMap. 10723 if (HasDef) { 10724 if (IsAnyRegCC) 10725 setValue(&CB, SDValue(PPV.getNode(), 0)); 10726 else 10727 setValue(&CB, Result.first); 10728 } 10729 10730 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10731 // call sequence. Furthermore the location of the chain and glue can change 10732 // when the AnyReg calling convention is used and the intrinsic returns a 10733 // value. 10734 if (IsAnyRegCC && HasDef) { 10735 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10736 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10737 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10738 } else 10739 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10740 DAG.DeleteNode(Call); 10741 10742 // Inform the Frame Information that we have a patchpoint in this function. 10743 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10744 } 10745 10746 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10747 unsigned Intrinsic) { 10748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10749 SDValue Op1 = getValue(I.getArgOperand(0)); 10750 SDValue Op2; 10751 if (I.arg_size() > 1) 10752 Op2 = getValue(I.getArgOperand(1)); 10753 SDLoc dl = getCurSDLoc(); 10754 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10755 SDValue Res; 10756 SDNodeFlags SDFlags; 10757 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10758 SDFlags.copyFMF(*FPMO); 10759 10760 switch (Intrinsic) { 10761 case Intrinsic::vector_reduce_fadd: 10762 if (SDFlags.hasAllowReassociation()) 10763 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10764 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10765 SDFlags); 10766 else 10767 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10768 break; 10769 case Intrinsic::vector_reduce_fmul: 10770 if (SDFlags.hasAllowReassociation()) 10771 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10772 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10773 SDFlags); 10774 else 10775 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10776 break; 10777 case Intrinsic::vector_reduce_add: 10778 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10779 break; 10780 case Intrinsic::vector_reduce_mul: 10781 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10782 break; 10783 case Intrinsic::vector_reduce_and: 10784 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10785 break; 10786 case Intrinsic::vector_reduce_or: 10787 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10788 break; 10789 case Intrinsic::vector_reduce_xor: 10790 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10791 break; 10792 case Intrinsic::vector_reduce_smax: 10793 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10794 break; 10795 case Intrinsic::vector_reduce_smin: 10796 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10797 break; 10798 case Intrinsic::vector_reduce_umax: 10799 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10800 break; 10801 case Intrinsic::vector_reduce_umin: 10802 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10803 break; 10804 case Intrinsic::vector_reduce_fmax: 10805 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10806 break; 10807 case Intrinsic::vector_reduce_fmin: 10808 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10809 break; 10810 case Intrinsic::vector_reduce_fmaximum: 10811 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10812 break; 10813 case Intrinsic::vector_reduce_fminimum: 10814 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10815 break; 10816 default: 10817 llvm_unreachable("Unhandled vector reduce intrinsic"); 10818 } 10819 setValue(&I, Res); 10820 } 10821 10822 /// Returns an AttributeList representing the attributes applied to the return 10823 /// value of the given call. 10824 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10825 SmallVector<Attribute::AttrKind, 2> Attrs; 10826 if (CLI.RetSExt) 10827 Attrs.push_back(Attribute::SExt); 10828 if (CLI.RetZExt) 10829 Attrs.push_back(Attribute::ZExt); 10830 if (CLI.IsInReg) 10831 Attrs.push_back(Attribute::InReg); 10832 10833 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10834 Attrs); 10835 } 10836 10837 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10838 /// implementation, which just calls LowerCall. 10839 /// FIXME: When all targets are 10840 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10841 std::pair<SDValue, SDValue> 10842 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10843 // Handle the incoming return values from the call. 10844 CLI.Ins.clear(); 10845 Type *OrigRetTy = CLI.RetTy; 10846 SmallVector<EVT, 4> RetTys; 10847 SmallVector<TypeSize, 4> Offsets; 10848 auto &DL = CLI.DAG.getDataLayout(); 10849 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10850 10851 if (CLI.IsPostTypeLegalization) { 10852 // If we are lowering a libcall after legalization, split the return type. 10853 SmallVector<EVT, 4> OldRetTys; 10854 SmallVector<TypeSize, 4> OldOffsets; 10855 RetTys.swap(OldRetTys); 10856 Offsets.swap(OldOffsets); 10857 10858 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10859 EVT RetVT = OldRetTys[i]; 10860 uint64_t Offset = OldOffsets[i]; 10861 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10862 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10863 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10864 RetTys.append(NumRegs, RegisterVT); 10865 for (unsigned j = 0; j != NumRegs; ++j) 10866 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10867 } 10868 } 10869 10870 SmallVector<ISD::OutputArg, 4> Outs; 10871 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10872 10873 bool CanLowerReturn = 10874 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10875 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10876 10877 SDValue DemoteStackSlot; 10878 int DemoteStackIdx = -100; 10879 if (!CanLowerReturn) { 10880 // FIXME: equivalent assert? 10881 // assert(!CS.hasInAllocaArgument() && 10882 // "sret demotion is incompatible with inalloca"); 10883 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10884 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10885 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10886 DemoteStackIdx = 10887 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10888 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10889 DL.getAllocaAddrSpace()); 10890 10891 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10892 ArgListEntry Entry; 10893 Entry.Node = DemoteStackSlot; 10894 Entry.Ty = StackSlotPtrType; 10895 Entry.IsSExt = false; 10896 Entry.IsZExt = false; 10897 Entry.IsInReg = false; 10898 Entry.IsSRet = true; 10899 Entry.IsNest = false; 10900 Entry.IsByVal = false; 10901 Entry.IsByRef = false; 10902 Entry.IsReturned = false; 10903 Entry.IsSwiftSelf = false; 10904 Entry.IsSwiftAsync = false; 10905 Entry.IsSwiftError = false; 10906 Entry.IsCFGuardTarget = false; 10907 Entry.Alignment = Alignment; 10908 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10909 CLI.NumFixedArgs += 1; 10910 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10911 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10912 10913 // sret demotion isn't compatible with tail-calls, since the sret argument 10914 // points into the callers stack frame. 10915 CLI.IsTailCall = false; 10916 } else { 10917 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10918 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10919 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10920 ISD::ArgFlagsTy Flags; 10921 if (NeedsRegBlock) { 10922 Flags.setInConsecutiveRegs(); 10923 if (I == RetTys.size() - 1) 10924 Flags.setInConsecutiveRegsLast(); 10925 } 10926 EVT VT = RetTys[I]; 10927 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10928 CLI.CallConv, VT); 10929 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10930 CLI.CallConv, VT); 10931 for (unsigned i = 0; i != NumRegs; ++i) { 10932 ISD::InputArg MyFlags; 10933 MyFlags.Flags = Flags; 10934 MyFlags.VT = RegisterVT; 10935 MyFlags.ArgVT = VT; 10936 MyFlags.Used = CLI.IsReturnValueUsed; 10937 if (CLI.RetTy->isPointerTy()) { 10938 MyFlags.Flags.setPointer(); 10939 MyFlags.Flags.setPointerAddrSpace( 10940 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10941 } 10942 if (CLI.RetSExt) 10943 MyFlags.Flags.setSExt(); 10944 if (CLI.RetZExt) 10945 MyFlags.Flags.setZExt(); 10946 if (CLI.IsInReg) 10947 MyFlags.Flags.setInReg(); 10948 CLI.Ins.push_back(MyFlags); 10949 } 10950 } 10951 } 10952 10953 // We push in swifterror return as the last element of CLI.Ins. 10954 ArgListTy &Args = CLI.getArgs(); 10955 if (supportSwiftError()) { 10956 for (const ArgListEntry &Arg : Args) { 10957 if (Arg.IsSwiftError) { 10958 ISD::InputArg MyFlags; 10959 MyFlags.VT = getPointerTy(DL); 10960 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10961 MyFlags.Flags.setSwiftError(); 10962 CLI.Ins.push_back(MyFlags); 10963 } 10964 } 10965 } 10966 10967 // Handle all of the outgoing arguments. 10968 CLI.Outs.clear(); 10969 CLI.OutVals.clear(); 10970 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10971 SmallVector<EVT, 4> ValueVTs; 10972 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10973 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10974 Type *FinalType = Args[i].Ty; 10975 if (Args[i].IsByVal) 10976 FinalType = Args[i].IndirectType; 10977 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10978 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10979 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10980 ++Value) { 10981 EVT VT = ValueVTs[Value]; 10982 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10983 SDValue Op = SDValue(Args[i].Node.getNode(), 10984 Args[i].Node.getResNo() + Value); 10985 ISD::ArgFlagsTy Flags; 10986 10987 // Certain targets (such as MIPS), may have a different ABI alignment 10988 // for a type depending on the context. Give the target a chance to 10989 // specify the alignment it wants. 10990 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10991 Flags.setOrigAlign(OriginalAlignment); 10992 10993 if (Args[i].Ty->isPointerTy()) { 10994 Flags.setPointer(); 10995 Flags.setPointerAddrSpace( 10996 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10997 } 10998 if (Args[i].IsZExt) 10999 Flags.setZExt(); 11000 if (Args[i].IsSExt) 11001 Flags.setSExt(); 11002 if (Args[i].IsInReg) { 11003 // If we are using vectorcall calling convention, a structure that is 11004 // passed InReg - is surely an HVA 11005 if (CLI.CallConv == CallingConv::X86_VectorCall && 11006 isa<StructType>(FinalType)) { 11007 // The first value of a structure is marked 11008 if (0 == Value) 11009 Flags.setHvaStart(); 11010 Flags.setHva(); 11011 } 11012 // Set InReg Flag 11013 Flags.setInReg(); 11014 } 11015 if (Args[i].IsSRet) 11016 Flags.setSRet(); 11017 if (Args[i].IsSwiftSelf) 11018 Flags.setSwiftSelf(); 11019 if (Args[i].IsSwiftAsync) 11020 Flags.setSwiftAsync(); 11021 if (Args[i].IsSwiftError) 11022 Flags.setSwiftError(); 11023 if (Args[i].IsCFGuardTarget) 11024 Flags.setCFGuardTarget(); 11025 if (Args[i].IsByVal) 11026 Flags.setByVal(); 11027 if (Args[i].IsByRef) 11028 Flags.setByRef(); 11029 if (Args[i].IsPreallocated) { 11030 Flags.setPreallocated(); 11031 // Set the byval flag for CCAssignFn callbacks that don't know about 11032 // preallocated. This way we can know how many bytes we should've 11033 // allocated and how many bytes a callee cleanup function will pop. If 11034 // we port preallocated to more targets, we'll have to add custom 11035 // preallocated handling in the various CC lowering callbacks. 11036 Flags.setByVal(); 11037 } 11038 if (Args[i].IsInAlloca) { 11039 Flags.setInAlloca(); 11040 // Set the byval flag for CCAssignFn callbacks that don't know about 11041 // inalloca. This way we can know how many bytes we should've allocated 11042 // and how many bytes a callee cleanup function will pop. If we port 11043 // inalloca to more targets, we'll have to add custom inalloca handling 11044 // in the various CC lowering callbacks. 11045 Flags.setByVal(); 11046 } 11047 Align MemAlign; 11048 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11049 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11050 Flags.setByValSize(FrameSize); 11051 11052 // info is not there but there are cases it cannot get right. 11053 if (auto MA = Args[i].Alignment) 11054 MemAlign = *MA; 11055 else 11056 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11057 } else if (auto MA = Args[i].Alignment) { 11058 MemAlign = *MA; 11059 } else { 11060 MemAlign = OriginalAlignment; 11061 } 11062 Flags.setMemAlign(MemAlign); 11063 if (Args[i].IsNest) 11064 Flags.setNest(); 11065 if (NeedsRegBlock) 11066 Flags.setInConsecutiveRegs(); 11067 11068 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11069 CLI.CallConv, VT); 11070 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11071 CLI.CallConv, VT); 11072 SmallVector<SDValue, 4> Parts(NumParts); 11073 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11074 11075 if (Args[i].IsSExt) 11076 ExtendKind = ISD::SIGN_EXTEND; 11077 else if (Args[i].IsZExt) 11078 ExtendKind = ISD::ZERO_EXTEND; 11079 11080 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11081 // for now. 11082 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11083 CanLowerReturn) { 11084 assert((CLI.RetTy == Args[i].Ty || 11085 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11086 CLI.RetTy->getPointerAddressSpace() == 11087 Args[i].Ty->getPointerAddressSpace())) && 11088 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11089 // Before passing 'returned' to the target lowering code, ensure that 11090 // either the register MVT and the actual EVT are the same size or that 11091 // the return value and argument are extended in the same way; in these 11092 // cases it's safe to pass the argument register value unchanged as the 11093 // return register value (although it's at the target's option whether 11094 // to do so) 11095 // TODO: allow code generation to take advantage of partially preserved 11096 // registers rather than clobbering the entire register when the 11097 // parameter extension method is not compatible with the return 11098 // extension method 11099 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11100 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11101 CLI.RetZExt == Args[i].IsZExt)) 11102 Flags.setReturned(); 11103 } 11104 11105 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11106 CLI.CallConv, ExtendKind); 11107 11108 for (unsigned j = 0; j != NumParts; ++j) { 11109 // if it isn't first piece, alignment must be 1 11110 // For scalable vectors the scalable part is currently handled 11111 // by individual targets, so we just use the known minimum size here. 11112 ISD::OutputArg MyFlags( 11113 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11114 i < CLI.NumFixedArgs, i, 11115 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11116 if (NumParts > 1 && j == 0) 11117 MyFlags.Flags.setSplit(); 11118 else if (j != 0) { 11119 MyFlags.Flags.setOrigAlign(Align(1)); 11120 if (j == NumParts - 1) 11121 MyFlags.Flags.setSplitEnd(); 11122 } 11123 11124 CLI.Outs.push_back(MyFlags); 11125 CLI.OutVals.push_back(Parts[j]); 11126 } 11127 11128 if (NeedsRegBlock && Value == NumValues - 1) 11129 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11130 } 11131 } 11132 11133 SmallVector<SDValue, 4> InVals; 11134 CLI.Chain = LowerCall(CLI, InVals); 11135 11136 // Update CLI.InVals to use outside of this function. 11137 CLI.InVals = InVals; 11138 11139 // Verify that the target's LowerCall behaved as expected. 11140 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11141 "LowerCall didn't return a valid chain!"); 11142 assert((!CLI.IsTailCall || InVals.empty()) && 11143 "LowerCall emitted a return value for a tail call!"); 11144 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11145 "LowerCall didn't emit the correct number of values!"); 11146 11147 // For a tail call, the return value is merely live-out and there aren't 11148 // any nodes in the DAG representing it. Return a special value to 11149 // indicate that a tail call has been emitted and no more Instructions 11150 // should be processed in the current block. 11151 if (CLI.IsTailCall) { 11152 CLI.DAG.setRoot(CLI.Chain); 11153 return std::make_pair(SDValue(), SDValue()); 11154 } 11155 11156 #ifndef NDEBUG 11157 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11158 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11159 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11160 "LowerCall emitted a value with the wrong type!"); 11161 } 11162 #endif 11163 11164 SmallVector<SDValue, 4> ReturnValues; 11165 if (!CanLowerReturn) { 11166 // The instruction result is the result of loading from the 11167 // hidden sret parameter. 11168 SmallVector<EVT, 1> PVTs; 11169 Type *PtrRetTy = 11170 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11171 11172 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11173 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11174 EVT PtrVT = PVTs[0]; 11175 11176 unsigned NumValues = RetTys.size(); 11177 ReturnValues.resize(NumValues); 11178 SmallVector<SDValue, 4> Chains(NumValues); 11179 11180 // An aggregate return value cannot wrap around the address space, so 11181 // offsets to its parts don't wrap either. 11182 SDNodeFlags Flags; 11183 Flags.setNoUnsignedWrap(true); 11184 11185 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11186 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11187 for (unsigned i = 0; i < NumValues; ++i) { 11188 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11189 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11190 PtrVT), Flags); 11191 SDValue L = CLI.DAG.getLoad( 11192 RetTys[i], CLI.DL, CLI.Chain, Add, 11193 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11194 DemoteStackIdx, Offsets[i]), 11195 HiddenSRetAlign); 11196 ReturnValues[i] = L; 11197 Chains[i] = L.getValue(1); 11198 } 11199 11200 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11201 } else { 11202 // Collect the legal value parts into potentially illegal values 11203 // that correspond to the original function's return values. 11204 std::optional<ISD::NodeType> AssertOp; 11205 if (CLI.RetSExt) 11206 AssertOp = ISD::AssertSext; 11207 else if (CLI.RetZExt) 11208 AssertOp = ISD::AssertZext; 11209 unsigned CurReg = 0; 11210 for (EVT VT : RetTys) { 11211 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11212 CLI.CallConv, VT); 11213 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11214 CLI.CallConv, VT); 11215 11216 ReturnValues.push_back(getCopyFromParts( 11217 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11218 CLI.Chain, CLI.CallConv, AssertOp)); 11219 CurReg += NumRegs; 11220 } 11221 11222 // For a function returning void, there is no return value. We can't create 11223 // such a node, so we just return a null return value in that case. In 11224 // that case, nothing will actually look at the value. 11225 if (ReturnValues.empty()) 11226 return std::make_pair(SDValue(), CLI.Chain); 11227 } 11228 11229 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11230 CLI.DAG.getVTList(RetTys), ReturnValues); 11231 return std::make_pair(Res, CLI.Chain); 11232 } 11233 11234 /// Places new result values for the node in Results (their number 11235 /// and types must exactly match those of the original return values of 11236 /// the node), or leaves Results empty, which indicates that the node is not 11237 /// to be custom lowered after all. 11238 void TargetLowering::LowerOperationWrapper(SDNode *N, 11239 SmallVectorImpl<SDValue> &Results, 11240 SelectionDAG &DAG) const { 11241 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11242 11243 if (!Res.getNode()) 11244 return; 11245 11246 // If the original node has one result, take the return value from 11247 // LowerOperation as is. It might not be result number 0. 11248 if (N->getNumValues() == 1) { 11249 Results.push_back(Res); 11250 return; 11251 } 11252 11253 // If the original node has multiple results, then the return node should 11254 // have the same number of results. 11255 assert((N->getNumValues() == Res->getNumValues()) && 11256 "Lowering returned the wrong number of results!"); 11257 11258 // Places new result values base on N result number. 11259 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11260 Results.push_back(Res.getValue(I)); 11261 } 11262 11263 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11264 llvm_unreachable("LowerOperation not implemented for this target!"); 11265 } 11266 11267 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11268 unsigned Reg, 11269 ISD::NodeType ExtendType) { 11270 SDValue Op = getNonRegisterValue(V); 11271 assert((Op.getOpcode() != ISD::CopyFromReg || 11272 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11273 "Copy from a reg to the same reg!"); 11274 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11275 11276 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11277 // If this is an InlineAsm we have to match the registers required, not the 11278 // notional registers required by the type. 11279 11280 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11281 std::nullopt); // This is not an ABI copy. 11282 SDValue Chain = DAG.getEntryNode(); 11283 11284 if (ExtendType == ISD::ANY_EXTEND) { 11285 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11286 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11287 ExtendType = PreferredExtendIt->second; 11288 } 11289 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11290 PendingExports.push_back(Chain); 11291 } 11292 11293 #include "llvm/CodeGen/SelectionDAGISel.h" 11294 11295 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11296 /// entry block, return true. This includes arguments used by switches, since 11297 /// the switch may expand into multiple basic blocks. 11298 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11299 // With FastISel active, we may be splitting blocks, so force creation 11300 // of virtual registers for all non-dead arguments. 11301 if (FastISel) 11302 return A->use_empty(); 11303 11304 const BasicBlock &Entry = A->getParent()->front(); 11305 for (const User *U : A->users()) 11306 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11307 return false; // Use not in entry block. 11308 11309 return true; 11310 } 11311 11312 using ArgCopyElisionMapTy = 11313 DenseMap<const Argument *, 11314 std::pair<const AllocaInst *, const StoreInst *>>; 11315 11316 /// Scan the entry block of the function in FuncInfo for arguments that look 11317 /// like copies into a local alloca. Record any copied arguments in 11318 /// ArgCopyElisionCandidates. 11319 static void 11320 findArgumentCopyElisionCandidates(const DataLayout &DL, 11321 FunctionLoweringInfo *FuncInfo, 11322 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11323 // Record the state of every static alloca used in the entry block. Argument 11324 // allocas are all used in the entry block, so we need approximately as many 11325 // entries as we have arguments. 11326 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11327 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11328 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11329 StaticAllocas.reserve(NumArgs * 2); 11330 11331 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11332 if (!V) 11333 return nullptr; 11334 V = V->stripPointerCasts(); 11335 const auto *AI = dyn_cast<AllocaInst>(V); 11336 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11337 return nullptr; 11338 auto Iter = StaticAllocas.insert({AI, Unknown}); 11339 return &Iter.first->second; 11340 }; 11341 11342 // Look for stores of arguments to static allocas. Look through bitcasts and 11343 // GEPs to handle type coercions, as long as the alloca is fully initialized 11344 // by the store. Any non-store use of an alloca escapes it and any subsequent 11345 // unanalyzed store might write it. 11346 // FIXME: Handle structs initialized with multiple stores. 11347 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11348 // Look for stores, and handle non-store uses conservatively. 11349 const auto *SI = dyn_cast<StoreInst>(&I); 11350 if (!SI) { 11351 // We will look through cast uses, so ignore them completely. 11352 if (I.isCast()) 11353 continue; 11354 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11355 // to allocas. 11356 if (I.isDebugOrPseudoInst()) 11357 continue; 11358 // This is an unknown instruction. Assume it escapes or writes to all 11359 // static alloca operands. 11360 for (const Use &U : I.operands()) { 11361 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11362 *Info = StaticAllocaInfo::Clobbered; 11363 } 11364 continue; 11365 } 11366 11367 // If the stored value is a static alloca, mark it as escaped. 11368 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11369 *Info = StaticAllocaInfo::Clobbered; 11370 11371 // Check if the destination is a static alloca. 11372 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11373 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11374 if (!Info) 11375 continue; 11376 const AllocaInst *AI = cast<AllocaInst>(Dst); 11377 11378 // Skip allocas that have been initialized or clobbered. 11379 if (*Info != StaticAllocaInfo::Unknown) 11380 continue; 11381 11382 // Check if the stored value is an argument, and that this store fully 11383 // initializes the alloca. 11384 // If the argument type has padding bits we can't directly forward a pointer 11385 // as the upper bits may contain garbage. 11386 // Don't elide copies from the same argument twice. 11387 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11388 const auto *Arg = dyn_cast<Argument>(Val); 11389 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11390 Arg->getType()->isEmptyTy() || 11391 DL.getTypeStoreSize(Arg->getType()) != 11392 DL.getTypeAllocSize(AI->getAllocatedType()) || 11393 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11394 ArgCopyElisionCandidates.count(Arg)) { 11395 *Info = StaticAllocaInfo::Clobbered; 11396 continue; 11397 } 11398 11399 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11400 << '\n'); 11401 11402 // Mark this alloca and store for argument copy elision. 11403 *Info = StaticAllocaInfo::Elidable; 11404 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11405 11406 // Stop scanning if we've seen all arguments. This will happen early in -O0 11407 // builds, which is useful, because -O0 builds have large entry blocks and 11408 // many allocas. 11409 if (ArgCopyElisionCandidates.size() == NumArgs) 11410 break; 11411 } 11412 } 11413 11414 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11415 /// ArgVal is a load from a suitable fixed stack object. 11416 static void tryToElideArgumentCopy( 11417 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11418 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11419 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11420 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11421 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11422 // Check if this is a load from a fixed stack object. 11423 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11424 if (!LNode) 11425 return; 11426 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11427 if (!FINode) 11428 return; 11429 11430 // Check that the fixed stack object is the right size and alignment. 11431 // Look at the alignment that the user wrote on the alloca instead of looking 11432 // at the stack object. 11433 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11434 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11435 const AllocaInst *AI = ArgCopyIter->second.first; 11436 int FixedIndex = FINode->getIndex(); 11437 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11438 int OldIndex = AllocaIndex; 11439 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11440 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11441 LLVM_DEBUG( 11442 dbgs() << " argument copy elision failed due to bad fixed stack " 11443 "object size\n"); 11444 return; 11445 } 11446 Align RequiredAlignment = AI->getAlign(); 11447 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11448 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11449 "greater than stack argument alignment (" 11450 << DebugStr(RequiredAlignment) << " vs " 11451 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11452 return; 11453 } 11454 11455 // Perform the elision. Delete the old stack object and replace its only use 11456 // in the variable info map. Mark the stack object as mutable and aliased. 11457 LLVM_DEBUG({ 11458 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11459 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11460 << '\n'; 11461 }); 11462 MFI.RemoveStackObject(OldIndex); 11463 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11464 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11465 AllocaIndex = FixedIndex; 11466 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11467 for (SDValue ArgVal : ArgVals) 11468 Chains.push_back(ArgVal.getValue(1)); 11469 11470 // Avoid emitting code for the store implementing the copy. 11471 const StoreInst *SI = ArgCopyIter->second.second; 11472 ElidedArgCopyInstrs.insert(SI); 11473 11474 // Check for uses of the argument again so that we can avoid exporting ArgVal 11475 // if it is't used by anything other than the store. 11476 for (const Value *U : Arg.users()) { 11477 if (U != SI) { 11478 ArgHasUses = true; 11479 break; 11480 } 11481 } 11482 } 11483 11484 void SelectionDAGISel::LowerArguments(const Function &F) { 11485 SelectionDAG &DAG = SDB->DAG; 11486 SDLoc dl = SDB->getCurSDLoc(); 11487 const DataLayout &DL = DAG.getDataLayout(); 11488 SmallVector<ISD::InputArg, 16> Ins; 11489 11490 // In Naked functions we aren't going to save any registers. 11491 if (F.hasFnAttribute(Attribute::Naked)) 11492 return; 11493 11494 if (!FuncInfo->CanLowerReturn) { 11495 // Put in an sret pointer parameter before all the other parameters. 11496 SmallVector<EVT, 1> ValueVTs; 11497 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11498 PointerType::get(F.getContext(), 11499 DAG.getDataLayout().getAllocaAddrSpace()), 11500 ValueVTs); 11501 11502 // NOTE: Assuming that a pointer will never break down to more than one VT 11503 // or one register. 11504 ISD::ArgFlagsTy Flags; 11505 Flags.setSRet(); 11506 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11507 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11508 ISD::InputArg::NoArgIndex, 0); 11509 Ins.push_back(RetArg); 11510 } 11511 11512 // Look for stores of arguments to static allocas. Mark such arguments with a 11513 // flag to ask the target to give us the memory location of that argument if 11514 // available. 11515 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11516 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11517 ArgCopyElisionCandidates); 11518 11519 // Set up the incoming argument description vector. 11520 for (const Argument &Arg : F.args()) { 11521 unsigned ArgNo = Arg.getArgNo(); 11522 SmallVector<EVT, 4> ValueVTs; 11523 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11524 bool isArgValueUsed = !Arg.use_empty(); 11525 unsigned PartBase = 0; 11526 Type *FinalType = Arg.getType(); 11527 if (Arg.hasAttribute(Attribute::ByVal)) 11528 FinalType = Arg.getParamByValType(); 11529 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11530 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11531 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11532 Value != NumValues; ++Value) { 11533 EVT VT = ValueVTs[Value]; 11534 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11535 ISD::ArgFlagsTy Flags; 11536 11537 11538 if (Arg.getType()->isPointerTy()) { 11539 Flags.setPointer(); 11540 Flags.setPointerAddrSpace( 11541 cast<PointerType>(Arg.getType())->getAddressSpace()); 11542 } 11543 if (Arg.hasAttribute(Attribute::ZExt)) 11544 Flags.setZExt(); 11545 if (Arg.hasAttribute(Attribute::SExt)) 11546 Flags.setSExt(); 11547 if (Arg.hasAttribute(Attribute::InReg)) { 11548 // If we are using vectorcall calling convention, a structure that is 11549 // passed InReg - is surely an HVA 11550 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11551 isa<StructType>(Arg.getType())) { 11552 // The first value of a structure is marked 11553 if (0 == Value) 11554 Flags.setHvaStart(); 11555 Flags.setHva(); 11556 } 11557 // Set InReg Flag 11558 Flags.setInReg(); 11559 } 11560 if (Arg.hasAttribute(Attribute::StructRet)) 11561 Flags.setSRet(); 11562 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11563 Flags.setSwiftSelf(); 11564 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11565 Flags.setSwiftAsync(); 11566 if (Arg.hasAttribute(Attribute::SwiftError)) 11567 Flags.setSwiftError(); 11568 if (Arg.hasAttribute(Attribute::ByVal)) 11569 Flags.setByVal(); 11570 if (Arg.hasAttribute(Attribute::ByRef)) 11571 Flags.setByRef(); 11572 if (Arg.hasAttribute(Attribute::InAlloca)) { 11573 Flags.setInAlloca(); 11574 // Set the byval flag for CCAssignFn callbacks that don't know about 11575 // inalloca. This way we can know how many bytes we should've allocated 11576 // and how many bytes a callee cleanup function will pop. If we port 11577 // inalloca to more targets, we'll have to add custom inalloca handling 11578 // in the various CC lowering callbacks. 11579 Flags.setByVal(); 11580 } 11581 if (Arg.hasAttribute(Attribute::Preallocated)) { 11582 Flags.setPreallocated(); 11583 // Set the byval flag for CCAssignFn callbacks that don't know about 11584 // preallocated. This way we can know how many bytes we should've 11585 // allocated and how many bytes a callee cleanup function will pop. If 11586 // we port preallocated to more targets, we'll have to add custom 11587 // preallocated handling in the various CC lowering callbacks. 11588 Flags.setByVal(); 11589 } 11590 11591 // Certain targets (such as MIPS), may have a different ABI alignment 11592 // for a type depending on the context. Give the target a chance to 11593 // specify the alignment it wants. 11594 const Align OriginalAlignment( 11595 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11596 Flags.setOrigAlign(OriginalAlignment); 11597 11598 Align MemAlign; 11599 Type *ArgMemTy = nullptr; 11600 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11601 Flags.isByRef()) { 11602 if (!ArgMemTy) 11603 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11604 11605 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11606 11607 // For in-memory arguments, size and alignment should be passed from FE. 11608 // BE will guess if this info is not there but there are cases it cannot 11609 // get right. 11610 if (auto ParamAlign = Arg.getParamStackAlign()) 11611 MemAlign = *ParamAlign; 11612 else if ((ParamAlign = Arg.getParamAlign())) 11613 MemAlign = *ParamAlign; 11614 else 11615 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11616 if (Flags.isByRef()) 11617 Flags.setByRefSize(MemSize); 11618 else 11619 Flags.setByValSize(MemSize); 11620 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11621 MemAlign = *ParamAlign; 11622 } else { 11623 MemAlign = OriginalAlignment; 11624 } 11625 Flags.setMemAlign(MemAlign); 11626 11627 if (Arg.hasAttribute(Attribute::Nest)) 11628 Flags.setNest(); 11629 if (NeedsRegBlock) 11630 Flags.setInConsecutiveRegs(); 11631 if (ArgCopyElisionCandidates.count(&Arg)) 11632 Flags.setCopyElisionCandidate(); 11633 if (Arg.hasAttribute(Attribute::Returned)) 11634 Flags.setReturned(); 11635 11636 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11637 *CurDAG->getContext(), F.getCallingConv(), VT); 11638 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11639 *CurDAG->getContext(), F.getCallingConv(), VT); 11640 for (unsigned i = 0; i != NumRegs; ++i) { 11641 // For scalable vectors, use the minimum size; individual targets 11642 // are responsible for handling scalable vector arguments and 11643 // return values. 11644 ISD::InputArg MyFlags( 11645 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11646 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11647 if (NumRegs > 1 && i == 0) 11648 MyFlags.Flags.setSplit(); 11649 // if it isn't first piece, alignment must be 1 11650 else if (i > 0) { 11651 MyFlags.Flags.setOrigAlign(Align(1)); 11652 if (i == NumRegs - 1) 11653 MyFlags.Flags.setSplitEnd(); 11654 } 11655 Ins.push_back(MyFlags); 11656 } 11657 if (NeedsRegBlock && Value == NumValues - 1) 11658 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11659 PartBase += VT.getStoreSize().getKnownMinValue(); 11660 } 11661 } 11662 11663 // Call the target to set up the argument values. 11664 SmallVector<SDValue, 8> InVals; 11665 SDValue NewRoot = TLI->LowerFormalArguments( 11666 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11667 11668 // Verify that the target's LowerFormalArguments behaved as expected. 11669 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11670 "LowerFormalArguments didn't return a valid chain!"); 11671 assert(InVals.size() == Ins.size() && 11672 "LowerFormalArguments didn't emit the correct number of values!"); 11673 LLVM_DEBUG({ 11674 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11675 assert(InVals[i].getNode() && 11676 "LowerFormalArguments emitted a null value!"); 11677 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11678 "LowerFormalArguments emitted a value with the wrong type!"); 11679 } 11680 }); 11681 11682 // Update the DAG with the new chain value resulting from argument lowering. 11683 DAG.setRoot(NewRoot); 11684 11685 // Set up the argument values. 11686 unsigned i = 0; 11687 if (!FuncInfo->CanLowerReturn) { 11688 // Create a virtual register for the sret pointer, and put in a copy 11689 // from the sret argument into it. 11690 SmallVector<EVT, 1> ValueVTs; 11691 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11692 PointerType::get(F.getContext(), 11693 DAG.getDataLayout().getAllocaAddrSpace()), 11694 ValueVTs); 11695 MVT VT = ValueVTs[0].getSimpleVT(); 11696 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11697 std::optional<ISD::NodeType> AssertOp; 11698 SDValue ArgValue = 11699 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11700 F.getCallingConv(), AssertOp); 11701 11702 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11703 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11704 Register SRetReg = 11705 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11706 FuncInfo->DemoteRegister = SRetReg; 11707 NewRoot = 11708 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11709 DAG.setRoot(NewRoot); 11710 11711 // i indexes lowered arguments. Bump it past the hidden sret argument. 11712 ++i; 11713 } 11714 11715 SmallVector<SDValue, 4> Chains; 11716 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11717 for (const Argument &Arg : F.args()) { 11718 SmallVector<SDValue, 4> ArgValues; 11719 SmallVector<EVT, 4> ValueVTs; 11720 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11721 unsigned NumValues = ValueVTs.size(); 11722 if (NumValues == 0) 11723 continue; 11724 11725 bool ArgHasUses = !Arg.use_empty(); 11726 11727 // Elide the copying store if the target loaded this argument from a 11728 // suitable fixed stack object. 11729 if (Ins[i].Flags.isCopyElisionCandidate()) { 11730 unsigned NumParts = 0; 11731 for (EVT VT : ValueVTs) 11732 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11733 F.getCallingConv(), VT); 11734 11735 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11736 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11737 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11738 } 11739 11740 // If this argument is unused then remember its value. It is used to generate 11741 // debugging information. 11742 bool isSwiftErrorArg = 11743 TLI->supportSwiftError() && 11744 Arg.hasAttribute(Attribute::SwiftError); 11745 if (!ArgHasUses && !isSwiftErrorArg) { 11746 SDB->setUnusedArgValue(&Arg, InVals[i]); 11747 11748 // Also remember any frame index for use in FastISel. 11749 if (FrameIndexSDNode *FI = 11750 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11751 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11752 } 11753 11754 for (unsigned Val = 0; Val != NumValues; ++Val) { 11755 EVT VT = ValueVTs[Val]; 11756 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11757 F.getCallingConv(), VT); 11758 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11759 *CurDAG->getContext(), F.getCallingConv(), VT); 11760 11761 // Even an apparent 'unused' swifterror argument needs to be returned. So 11762 // we do generate a copy for it that can be used on return from the 11763 // function. 11764 if (ArgHasUses || isSwiftErrorArg) { 11765 std::optional<ISD::NodeType> AssertOp; 11766 if (Arg.hasAttribute(Attribute::SExt)) 11767 AssertOp = ISD::AssertSext; 11768 else if (Arg.hasAttribute(Attribute::ZExt)) 11769 AssertOp = ISD::AssertZext; 11770 11771 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11772 PartVT, VT, nullptr, NewRoot, 11773 F.getCallingConv(), AssertOp)); 11774 } 11775 11776 i += NumParts; 11777 } 11778 11779 // We don't need to do anything else for unused arguments. 11780 if (ArgValues.empty()) 11781 continue; 11782 11783 // Note down frame index. 11784 if (FrameIndexSDNode *FI = 11785 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11786 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11787 11788 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11789 SDB->getCurSDLoc()); 11790 11791 SDB->setValue(&Arg, Res); 11792 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11793 // We want to associate the argument with the frame index, among 11794 // involved operands, that correspond to the lowest address. The 11795 // getCopyFromParts function, called earlier, is swapping the order of 11796 // the operands to BUILD_PAIR depending on endianness. The result of 11797 // that swapping is that the least significant bits of the argument will 11798 // be in the first operand of the BUILD_PAIR node, and the most 11799 // significant bits will be in the second operand. 11800 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11801 if (LoadSDNode *LNode = 11802 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11803 if (FrameIndexSDNode *FI = 11804 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11805 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11806 } 11807 11808 // Analyses past this point are naive and don't expect an assertion. 11809 if (Res.getOpcode() == ISD::AssertZext) 11810 Res = Res.getOperand(0); 11811 11812 // Update the SwiftErrorVRegDefMap. 11813 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11814 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11815 if (Register::isVirtualRegister(Reg)) 11816 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11817 Reg); 11818 } 11819 11820 // If this argument is live outside of the entry block, insert a copy from 11821 // wherever we got it to the vreg that other BB's will reference it as. 11822 if (Res.getOpcode() == ISD::CopyFromReg) { 11823 // If we can, though, try to skip creating an unnecessary vreg. 11824 // FIXME: This isn't very clean... it would be nice to make this more 11825 // general. 11826 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11827 if (Register::isVirtualRegister(Reg)) { 11828 FuncInfo->ValueMap[&Arg] = Reg; 11829 continue; 11830 } 11831 } 11832 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11833 FuncInfo->InitializeRegForValue(&Arg); 11834 SDB->CopyToExportRegsIfNeeded(&Arg); 11835 } 11836 } 11837 11838 if (!Chains.empty()) { 11839 Chains.push_back(NewRoot); 11840 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11841 } 11842 11843 DAG.setRoot(NewRoot); 11844 11845 assert(i == InVals.size() && "Argument register count mismatch!"); 11846 11847 // If any argument copy elisions occurred and we have debug info, update the 11848 // stale frame indices used in the dbg.declare variable info table. 11849 if (!ArgCopyElisionFrameIndexMap.empty()) { 11850 for (MachineFunction::VariableDbgInfo &VI : 11851 MF->getInStackSlotVariableDbgInfo()) { 11852 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11853 if (I != ArgCopyElisionFrameIndexMap.end()) 11854 VI.updateStackSlot(I->second); 11855 } 11856 } 11857 11858 // Finally, if the target has anything special to do, allow it to do so. 11859 emitFunctionEntryCode(); 11860 } 11861 11862 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11863 /// ensure constants are generated when needed. Remember the virtual registers 11864 /// that need to be added to the Machine PHI nodes as input. We cannot just 11865 /// directly add them, because expansion might result in multiple MBB's for one 11866 /// BB. As such, the start of the BB might correspond to a different MBB than 11867 /// the end. 11868 void 11869 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11871 11872 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11873 11874 // Check PHI nodes in successors that expect a value to be available from this 11875 // block. 11876 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11877 if (!isa<PHINode>(SuccBB->begin())) continue; 11878 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11879 11880 // If this terminator has multiple identical successors (common for 11881 // switches), only handle each succ once. 11882 if (!SuccsHandled.insert(SuccMBB).second) 11883 continue; 11884 11885 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11886 11887 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11888 // nodes and Machine PHI nodes, but the incoming operands have not been 11889 // emitted yet. 11890 for (const PHINode &PN : SuccBB->phis()) { 11891 // Ignore dead phi's. 11892 if (PN.use_empty()) 11893 continue; 11894 11895 // Skip empty types 11896 if (PN.getType()->isEmptyTy()) 11897 continue; 11898 11899 unsigned Reg; 11900 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11901 11902 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11903 unsigned &RegOut = ConstantsOut[C]; 11904 if (RegOut == 0) { 11905 RegOut = FuncInfo.CreateRegs(C); 11906 // We need to zero/sign extend ConstantInt phi operands to match 11907 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11908 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11909 if (auto *CI = dyn_cast<ConstantInt>(C)) 11910 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11911 : ISD::ZERO_EXTEND; 11912 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11913 } 11914 Reg = RegOut; 11915 } else { 11916 DenseMap<const Value *, Register>::iterator I = 11917 FuncInfo.ValueMap.find(PHIOp); 11918 if (I != FuncInfo.ValueMap.end()) 11919 Reg = I->second; 11920 else { 11921 assert(isa<AllocaInst>(PHIOp) && 11922 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11923 "Didn't codegen value into a register!??"); 11924 Reg = FuncInfo.CreateRegs(PHIOp); 11925 CopyValueToVirtualRegister(PHIOp, Reg); 11926 } 11927 } 11928 11929 // Remember that this register needs to added to the machine PHI node as 11930 // the input for this MBB. 11931 SmallVector<EVT, 4> ValueVTs; 11932 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11933 for (EVT VT : ValueVTs) { 11934 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11935 for (unsigned i = 0; i != NumRegisters; ++i) 11936 FuncInfo.PHINodesToUpdate.push_back( 11937 std::make_pair(&*MBBI++, Reg + i)); 11938 Reg += NumRegisters; 11939 } 11940 } 11941 } 11942 11943 ConstantsOut.clear(); 11944 } 11945 11946 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11947 MachineFunction::iterator I(MBB); 11948 if (++I == FuncInfo.MF->end()) 11949 return nullptr; 11950 return &*I; 11951 } 11952 11953 /// During lowering new call nodes can be created (such as memset, etc.). 11954 /// Those will become new roots of the current DAG, but complications arise 11955 /// when they are tail calls. In such cases, the call lowering will update 11956 /// the root, but the builder still needs to know that a tail call has been 11957 /// lowered in order to avoid generating an additional return. 11958 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11959 // If the node is null, we do have a tail call. 11960 if (MaybeTC.getNode() != nullptr) 11961 DAG.setRoot(MaybeTC); 11962 else 11963 HasTailCall = true; 11964 } 11965 11966 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11967 MachineBasicBlock *SwitchMBB, 11968 MachineBasicBlock *DefaultMBB) { 11969 MachineFunction *CurMF = FuncInfo.MF; 11970 MachineBasicBlock *NextMBB = nullptr; 11971 MachineFunction::iterator BBI(W.MBB); 11972 if (++BBI != FuncInfo.MF->end()) 11973 NextMBB = &*BBI; 11974 11975 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11976 11977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11978 11979 if (Size == 2 && W.MBB == SwitchMBB) { 11980 // If any two of the cases has the same destination, and if one value 11981 // is the same as the other, but has one bit unset that the other has set, 11982 // use bit manipulation to do two compares at once. For example: 11983 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11984 // TODO: This could be extended to merge any 2 cases in switches with 3 11985 // cases. 11986 // TODO: Handle cases where W.CaseBB != SwitchBB. 11987 CaseCluster &Small = *W.FirstCluster; 11988 CaseCluster &Big = *W.LastCluster; 11989 11990 if (Small.Low == Small.High && Big.Low == Big.High && 11991 Small.MBB == Big.MBB) { 11992 const APInt &SmallValue = Small.Low->getValue(); 11993 const APInt &BigValue = Big.Low->getValue(); 11994 11995 // Check that there is only one bit different. 11996 APInt CommonBit = BigValue ^ SmallValue; 11997 if (CommonBit.isPowerOf2()) { 11998 SDValue CondLHS = getValue(Cond); 11999 EVT VT = CondLHS.getValueType(); 12000 SDLoc DL = getCurSDLoc(); 12001 12002 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12003 DAG.getConstant(CommonBit, DL, VT)); 12004 SDValue Cond = DAG.getSetCC( 12005 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12006 ISD::SETEQ); 12007 12008 // Update successor info. 12009 // Both Small and Big will jump to Small.BB, so we sum up the 12010 // probabilities. 12011 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12012 if (BPI) 12013 addSuccessorWithProb( 12014 SwitchMBB, DefaultMBB, 12015 // The default destination is the first successor in IR. 12016 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12017 else 12018 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12019 12020 // Insert the true branch. 12021 SDValue BrCond = 12022 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12023 DAG.getBasicBlock(Small.MBB)); 12024 // Insert the false branch. 12025 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12026 DAG.getBasicBlock(DefaultMBB)); 12027 12028 DAG.setRoot(BrCond); 12029 return; 12030 } 12031 } 12032 } 12033 12034 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12035 // Here, we order cases by probability so the most likely case will be 12036 // checked first. However, two clusters can have the same probability in 12037 // which case their relative ordering is non-deterministic. So we use Low 12038 // as a tie-breaker as clusters are guaranteed to never overlap. 12039 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12040 [](const CaseCluster &a, const CaseCluster &b) { 12041 return a.Prob != b.Prob ? 12042 a.Prob > b.Prob : 12043 a.Low->getValue().slt(b.Low->getValue()); 12044 }); 12045 12046 // Rearrange the case blocks so that the last one falls through if possible 12047 // without changing the order of probabilities. 12048 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12049 --I; 12050 if (I->Prob > W.LastCluster->Prob) 12051 break; 12052 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12053 std::swap(*I, *W.LastCluster); 12054 break; 12055 } 12056 } 12057 } 12058 12059 // Compute total probability. 12060 BranchProbability DefaultProb = W.DefaultProb; 12061 BranchProbability UnhandledProbs = DefaultProb; 12062 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12063 UnhandledProbs += I->Prob; 12064 12065 MachineBasicBlock *CurMBB = W.MBB; 12066 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12067 bool FallthroughUnreachable = false; 12068 MachineBasicBlock *Fallthrough; 12069 if (I == W.LastCluster) { 12070 // For the last cluster, fall through to the default destination. 12071 Fallthrough = DefaultMBB; 12072 FallthroughUnreachable = isa<UnreachableInst>( 12073 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12074 } else { 12075 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12076 CurMF->insert(BBI, Fallthrough); 12077 // Put Cond in a virtual register to make it available from the new blocks. 12078 ExportFromCurrentBlock(Cond); 12079 } 12080 UnhandledProbs -= I->Prob; 12081 12082 switch (I->Kind) { 12083 case CC_JumpTable: { 12084 // FIXME: Optimize away range check based on pivot comparisons. 12085 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12086 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12087 12088 // The jump block hasn't been inserted yet; insert it here. 12089 MachineBasicBlock *JumpMBB = JT->MBB; 12090 CurMF->insert(BBI, JumpMBB); 12091 12092 auto JumpProb = I->Prob; 12093 auto FallthroughProb = UnhandledProbs; 12094 12095 // If the default statement is a target of the jump table, we evenly 12096 // distribute the default probability to successors of CurMBB. Also 12097 // update the probability on the edge from JumpMBB to Fallthrough. 12098 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12099 SE = JumpMBB->succ_end(); 12100 SI != SE; ++SI) { 12101 if (*SI == DefaultMBB) { 12102 JumpProb += DefaultProb / 2; 12103 FallthroughProb -= DefaultProb / 2; 12104 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12105 JumpMBB->normalizeSuccProbs(); 12106 break; 12107 } 12108 } 12109 12110 // If the default clause is unreachable, propagate that knowledge into 12111 // JTH->FallthroughUnreachable which will use it to suppress the range 12112 // check. 12113 // 12114 // However, don't do this if we're doing branch target enforcement, 12115 // because a table branch _without_ a range check can be a tempting JOP 12116 // gadget - out-of-bounds inputs that are impossible in correct 12117 // execution become possible again if an attacker can influence the 12118 // control flow. So if an attacker doesn't already have a BTI bypass 12119 // available, we don't want them to be able to get one out of this 12120 // table branch. 12121 if (FallthroughUnreachable) { 12122 Function &CurFunc = CurMF->getFunction(); 12123 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12124 JTH->FallthroughUnreachable = true; 12125 } 12126 12127 if (!JTH->FallthroughUnreachable) 12128 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12129 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12130 CurMBB->normalizeSuccProbs(); 12131 12132 // The jump table header will be inserted in our current block, do the 12133 // range check, and fall through to our fallthrough block. 12134 JTH->HeaderBB = CurMBB; 12135 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12136 12137 // If we're in the right place, emit the jump table header right now. 12138 if (CurMBB == SwitchMBB) { 12139 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12140 JTH->Emitted = true; 12141 } 12142 break; 12143 } 12144 case CC_BitTests: { 12145 // FIXME: Optimize away range check based on pivot comparisons. 12146 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12147 12148 // The bit test blocks haven't been inserted yet; insert them here. 12149 for (BitTestCase &BTC : BTB->Cases) 12150 CurMF->insert(BBI, BTC.ThisBB); 12151 12152 // Fill in fields of the BitTestBlock. 12153 BTB->Parent = CurMBB; 12154 BTB->Default = Fallthrough; 12155 12156 BTB->DefaultProb = UnhandledProbs; 12157 // If the cases in bit test don't form a contiguous range, we evenly 12158 // distribute the probability on the edge to Fallthrough to two 12159 // successors of CurMBB. 12160 if (!BTB->ContiguousRange) { 12161 BTB->Prob += DefaultProb / 2; 12162 BTB->DefaultProb -= DefaultProb / 2; 12163 } 12164 12165 if (FallthroughUnreachable) 12166 BTB->FallthroughUnreachable = true; 12167 12168 // If we're in the right place, emit the bit test header right now. 12169 if (CurMBB == SwitchMBB) { 12170 visitBitTestHeader(*BTB, SwitchMBB); 12171 BTB->Emitted = true; 12172 } 12173 break; 12174 } 12175 case CC_Range: { 12176 const Value *RHS, *LHS, *MHS; 12177 ISD::CondCode CC; 12178 if (I->Low == I->High) { 12179 // Check Cond == I->Low. 12180 CC = ISD::SETEQ; 12181 LHS = Cond; 12182 RHS=I->Low; 12183 MHS = nullptr; 12184 } else { 12185 // Check I->Low <= Cond <= I->High. 12186 CC = ISD::SETLE; 12187 LHS = I->Low; 12188 MHS = Cond; 12189 RHS = I->High; 12190 } 12191 12192 // If Fallthrough is unreachable, fold away the comparison. 12193 if (FallthroughUnreachable) 12194 CC = ISD::SETTRUE; 12195 12196 // The false probability is the sum of all unhandled cases. 12197 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12198 getCurSDLoc(), I->Prob, UnhandledProbs); 12199 12200 if (CurMBB == SwitchMBB) 12201 visitSwitchCase(CB, SwitchMBB); 12202 else 12203 SL->SwitchCases.push_back(CB); 12204 12205 break; 12206 } 12207 } 12208 CurMBB = Fallthrough; 12209 } 12210 } 12211 12212 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12213 const SwitchWorkListItem &W, 12214 Value *Cond, 12215 MachineBasicBlock *SwitchMBB) { 12216 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12217 "Clusters not sorted?"); 12218 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12219 12220 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12221 SL->computeSplitWorkItemInfo(W); 12222 12223 // Use the first element on the right as pivot since we will make less-than 12224 // comparisons against it. 12225 CaseClusterIt PivotCluster = FirstRight; 12226 assert(PivotCluster > W.FirstCluster); 12227 assert(PivotCluster <= W.LastCluster); 12228 12229 CaseClusterIt FirstLeft = W.FirstCluster; 12230 CaseClusterIt LastRight = W.LastCluster; 12231 12232 const ConstantInt *Pivot = PivotCluster->Low; 12233 12234 // New blocks will be inserted immediately after the current one. 12235 MachineFunction::iterator BBI(W.MBB); 12236 ++BBI; 12237 12238 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12239 // we can branch to its destination directly if it's squeezed exactly in 12240 // between the known lower bound and Pivot - 1. 12241 MachineBasicBlock *LeftMBB; 12242 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12243 FirstLeft->Low == W.GE && 12244 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12245 LeftMBB = FirstLeft->MBB; 12246 } else { 12247 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12248 FuncInfo.MF->insert(BBI, LeftMBB); 12249 WorkList.push_back( 12250 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12251 // Put Cond in a virtual register to make it available from the new blocks. 12252 ExportFromCurrentBlock(Cond); 12253 } 12254 12255 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12256 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12257 // directly if RHS.High equals the current upper bound. 12258 MachineBasicBlock *RightMBB; 12259 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12260 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12261 RightMBB = FirstRight->MBB; 12262 } else { 12263 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12264 FuncInfo.MF->insert(BBI, RightMBB); 12265 WorkList.push_back( 12266 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12267 // Put Cond in a virtual register to make it available from the new blocks. 12268 ExportFromCurrentBlock(Cond); 12269 } 12270 12271 // Create the CaseBlock record that will be used to lower the branch. 12272 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12273 getCurSDLoc(), LeftProb, RightProb); 12274 12275 if (W.MBB == SwitchMBB) 12276 visitSwitchCase(CB, SwitchMBB); 12277 else 12278 SL->SwitchCases.push_back(CB); 12279 } 12280 12281 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12282 // from the swith statement. 12283 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12284 BranchProbability PeeledCaseProb) { 12285 if (PeeledCaseProb == BranchProbability::getOne()) 12286 return BranchProbability::getZero(); 12287 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12288 12289 uint32_t Numerator = CaseProb.getNumerator(); 12290 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12291 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12292 } 12293 12294 // Try to peel the top probability case if it exceeds the threshold. 12295 // Return current MachineBasicBlock for the switch statement if the peeling 12296 // does not occur. 12297 // If the peeling is performed, return the newly created MachineBasicBlock 12298 // for the peeled switch statement. Also update Clusters to remove the peeled 12299 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12300 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12301 const SwitchInst &SI, CaseClusterVector &Clusters, 12302 BranchProbability &PeeledCaseProb) { 12303 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12304 // Don't perform if there is only one cluster or optimizing for size. 12305 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12306 TM.getOptLevel() == CodeGenOptLevel::None || 12307 SwitchMBB->getParent()->getFunction().hasMinSize()) 12308 return SwitchMBB; 12309 12310 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12311 unsigned PeeledCaseIndex = 0; 12312 bool SwitchPeeled = false; 12313 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12314 CaseCluster &CC = Clusters[Index]; 12315 if (CC.Prob < TopCaseProb) 12316 continue; 12317 TopCaseProb = CC.Prob; 12318 PeeledCaseIndex = Index; 12319 SwitchPeeled = true; 12320 } 12321 if (!SwitchPeeled) 12322 return SwitchMBB; 12323 12324 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12325 << TopCaseProb << "\n"); 12326 12327 // Record the MBB for the peeled switch statement. 12328 MachineFunction::iterator BBI(SwitchMBB); 12329 ++BBI; 12330 MachineBasicBlock *PeeledSwitchMBB = 12331 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12332 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12333 12334 ExportFromCurrentBlock(SI.getCondition()); 12335 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12336 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12337 nullptr, nullptr, TopCaseProb.getCompl()}; 12338 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12339 12340 Clusters.erase(PeeledCaseIt); 12341 for (CaseCluster &CC : Clusters) { 12342 LLVM_DEBUG( 12343 dbgs() << "Scale the probablity for one cluster, before scaling: " 12344 << CC.Prob << "\n"); 12345 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12346 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12347 } 12348 PeeledCaseProb = TopCaseProb; 12349 return PeeledSwitchMBB; 12350 } 12351 12352 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12353 // Extract cases from the switch. 12354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12355 CaseClusterVector Clusters; 12356 Clusters.reserve(SI.getNumCases()); 12357 for (auto I : SI.cases()) { 12358 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12359 const ConstantInt *CaseVal = I.getCaseValue(); 12360 BranchProbability Prob = 12361 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12362 : BranchProbability(1, SI.getNumCases() + 1); 12363 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12364 } 12365 12366 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12367 12368 // Cluster adjacent cases with the same destination. We do this at all 12369 // optimization levels because it's cheap to do and will make codegen faster 12370 // if there are many clusters. 12371 sortAndRangeify(Clusters); 12372 12373 // The branch probablity of the peeled case. 12374 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12375 MachineBasicBlock *PeeledSwitchMBB = 12376 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12377 12378 // If there is only the default destination, jump there directly. 12379 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12380 if (Clusters.empty()) { 12381 assert(PeeledSwitchMBB == SwitchMBB); 12382 SwitchMBB->addSuccessor(DefaultMBB); 12383 if (DefaultMBB != NextBlock(SwitchMBB)) { 12384 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12385 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12386 } 12387 return; 12388 } 12389 12390 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12391 DAG.getBFI()); 12392 SL->findBitTestClusters(Clusters, &SI); 12393 12394 LLVM_DEBUG({ 12395 dbgs() << "Case clusters: "; 12396 for (const CaseCluster &C : Clusters) { 12397 if (C.Kind == CC_JumpTable) 12398 dbgs() << "JT:"; 12399 if (C.Kind == CC_BitTests) 12400 dbgs() << "BT:"; 12401 12402 C.Low->getValue().print(dbgs(), true); 12403 if (C.Low != C.High) { 12404 dbgs() << '-'; 12405 C.High->getValue().print(dbgs(), true); 12406 } 12407 dbgs() << ' '; 12408 } 12409 dbgs() << '\n'; 12410 }); 12411 12412 assert(!Clusters.empty()); 12413 SwitchWorkList WorkList; 12414 CaseClusterIt First = Clusters.begin(); 12415 CaseClusterIt Last = Clusters.end() - 1; 12416 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12417 // Scale the branchprobability for DefaultMBB if the peel occurs and 12418 // DefaultMBB is not replaced. 12419 if (PeeledCaseProb != BranchProbability::getZero() && 12420 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12421 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12422 WorkList.push_back( 12423 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12424 12425 while (!WorkList.empty()) { 12426 SwitchWorkListItem W = WorkList.pop_back_val(); 12427 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12428 12429 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12430 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12431 // For optimized builds, lower large range as a balanced binary tree. 12432 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12433 continue; 12434 } 12435 12436 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12437 } 12438 } 12439 12440 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12442 auto DL = getCurSDLoc(); 12443 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12444 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12445 } 12446 12447 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12449 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12450 12451 SDLoc DL = getCurSDLoc(); 12452 SDValue V = getValue(I.getOperand(0)); 12453 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12454 12455 if (VT.isScalableVector()) { 12456 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12457 return; 12458 } 12459 12460 // Use VECTOR_SHUFFLE for the fixed-length vector 12461 // to maintain existing behavior. 12462 SmallVector<int, 8> Mask; 12463 unsigned NumElts = VT.getVectorMinNumElements(); 12464 for (unsigned i = 0; i != NumElts; ++i) 12465 Mask.push_back(NumElts - 1 - i); 12466 12467 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12468 } 12469 12470 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12471 auto DL = getCurSDLoc(); 12472 SDValue InVec = getValue(I.getOperand(0)); 12473 EVT OutVT = 12474 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12475 12476 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12477 12478 // ISD Node needs the input vectors split into two equal parts 12479 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12480 DAG.getVectorIdxConstant(0, DL)); 12481 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12482 DAG.getVectorIdxConstant(OutNumElts, DL)); 12483 12484 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12485 // legalisation and combines. 12486 if (OutVT.isFixedLengthVector()) { 12487 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12488 createStrideMask(0, 2, OutNumElts)); 12489 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12490 createStrideMask(1, 2, OutNumElts)); 12491 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12492 setValue(&I, Res); 12493 return; 12494 } 12495 12496 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12497 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12498 setValue(&I, Res); 12499 } 12500 12501 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12502 auto DL = getCurSDLoc(); 12503 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12504 SDValue InVec0 = getValue(I.getOperand(0)); 12505 SDValue InVec1 = getValue(I.getOperand(1)); 12506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12507 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12508 12509 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12510 // legalisation and combines. 12511 if (OutVT.isFixedLengthVector()) { 12512 unsigned NumElts = InVT.getVectorMinNumElements(); 12513 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12514 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12515 createInterleaveMask(NumElts, 2))); 12516 return; 12517 } 12518 12519 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12520 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12521 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12522 Res.getValue(1)); 12523 setValue(&I, Res); 12524 } 12525 12526 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12527 SmallVector<EVT, 4> ValueVTs; 12528 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12529 ValueVTs); 12530 unsigned NumValues = ValueVTs.size(); 12531 if (NumValues == 0) return; 12532 12533 SmallVector<SDValue, 4> Values(NumValues); 12534 SDValue Op = getValue(I.getOperand(0)); 12535 12536 for (unsigned i = 0; i != NumValues; ++i) 12537 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12538 SDValue(Op.getNode(), Op.getResNo() + i)); 12539 12540 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12541 DAG.getVTList(ValueVTs), Values)); 12542 } 12543 12544 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12546 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12547 12548 SDLoc DL = getCurSDLoc(); 12549 SDValue V1 = getValue(I.getOperand(0)); 12550 SDValue V2 = getValue(I.getOperand(1)); 12551 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12552 12553 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12554 if (VT.isScalableVector()) { 12555 setValue( 12556 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12557 DAG.getSignedConstant( 12558 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12559 return; 12560 } 12561 12562 unsigned NumElts = VT.getVectorNumElements(); 12563 12564 uint64_t Idx = (NumElts + Imm) % NumElts; 12565 12566 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12567 SmallVector<int, 8> Mask; 12568 for (unsigned i = 0; i < NumElts; ++i) 12569 Mask.push_back(Idx + i); 12570 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12571 } 12572 12573 // Consider the following MIR after SelectionDAG, which produces output in 12574 // phyregs in the first case or virtregs in the second case. 12575 // 12576 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12577 // %5:gr32 = COPY $ebx 12578 // %6:gr32 = COPY $edx 12579 // %1:gr32 = COPY %6:gr32 12580 // %0:gr32 = COPY %5:gr32 12581 // 12582 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12583 // %1:gr32 = COPY %6:gr32 12584 // %0:gr32 = COPY %5:gr32 12585 // 12586 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12587 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12588 // 12589 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12590 // to a single virtreg (such as %0). The remaining outputs monotonically 12591 // increase in virtreg number from there. If a callbr has no outputs, then it 12592 // should not have a corresponding callbr landingpad; in fact, the callbr 12593 // landingpad would not even be able to refer to such a callbr. 12594 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12595 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12596 // There is definitely at least one copy. 12597 assert(MI->getOpcode() == TargetOpcode::COPY && 12598 "start of copy chain MUST be COPY"); 12599 Reg = MI->getOperand(1).getReg(); 12600 MI = MRI.def_begin(Reg)->getParent(); 12601 // There may be an optional second copy. 12602 if (MI->getOpcode() == TargetOpcode::COPY) { 12603 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12604 Reg = MI->getOperand(1).getReg(); 12605 assert(Reg.isPhysical() && "expected COPY of physical register"); 12606 MI = MRI.def_begin(Reg)->getParent(); 12607 } 12608 // The start of the chain must be an INLINEASM_BR. 12609 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12610 "end of copy chain MUST be INLINEASM_BR"); 12611 return Reg; 12612 } 12613 12614 // We must do this walk rather than the simpler 12615 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12616 // otherwise we will end up with copies of virtregs only valid along direct 12617 // edges. 12618 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12619 SmallVector<EVT, 8> ResultVTs; 12620 SmallVector<SDValue, 8> ResultValues; 12621 const auto *CBR = 12622 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12623 12624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12625 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12626 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12627 12628 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12629 SDValue Chain = DAG.getRoot(); 12630 12631 // Re-parse the asm constraints string. 12632 TargetLowering::AsmOperandInfoVector TargetConstraints = 12633 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12634 for (auto &T : TargetConstraints) { 12635 SDISelAsmOperandInfo OpInfo(T); 12636 if (OpInfo.Type != InlineAsm::isOutput) 12637 continue; 12638 12639 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12640 // individual constraint. 12641 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12642 12643 switch (OpInfo.ConstraintType) { 12644 case TargetLowering::C_Register: 12645 case TargetLowering::C_RegisterClass: { 12646 // Fill in OpInfo.AssignedRegs.Regs. 12647 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12648 12649 // getRegistersForValue may produce 1 to many registers based on whether 12650 // the OpInfo.ConstraintVT is legal on the target or not. 12651 for (unsigned &Reg : OpInfo.AssignedRegs.Regs) { 12652 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12653 if (Register::isPhysicalRegister(OriginalDef)) 12654 FuncInfo.MBB->addLiveIn(OriginalDef); 12655 // Update the assigned registers to use the original defs. 12656 Reg = OriginalDef; 12657 } 12658 12659 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12660 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12661 ResultValues.push_back(V); 12662 ResultVTs.push_back(OpInfo.ConstraintVT); 12663 break; 12664 } 12665 case TargetLowering::C_Other: { 12666 SDValue Flag; 12667 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12668 OpInfo, DAG); 12669 ++InitialDef; 12670 ResultValues.push_back(V); 12671 ResultVTs.push_back(OpInfo.ConstraintVT); 12672 break; 12673 } 12674 default: 12675 break; 12676 } 12677 } 12678 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12679 DAG.getVTList(ResultVTs), ResultValues); 12680 setValue(&I, V); 12681 } 12682