1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "FunctionLoweringInfo.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Constants.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Function.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/InlineAsm.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/Intrinsics.h" 28 #include "llvm/IntrinsicInst.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/Module.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/GCStrategy.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/DwarfWriter.h" 43 #include "llvm/Analysis/DebugInfo.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetFrameInfo.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetIntrinsicInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 namespace { 72 /// RegsForValue - This struct represents the registers (physical or virtual) 73 /// that a particular set of values is assigned, and the type information about 74 /// the value. The most common situation is to represent one value at a time, 75 /// but struct or array values are handled element-wise as multiple values. 76 /// The splitting of aggregates is performed recursively, so that we never 77 /// have aggregate-typed registers. The values at this point do not necessarily 78 /// have legal types, so each value may require one or more registers of some 79 /// legal type. 80 /// 81 struct RegsForValue { 82 /// TLI - The TargetLowering object. 83 /// 84 const TargetLowering *TLI; 85 86 /// ValueVTs - The value types of the values, which may not be legal, and 87 /// may need be promoted or synthesized from one or more registers. 88 /// 89 SmallVector<EVT, 4> ValueVTs; 90 91 /// RegVTs - The value types of the registers. This is the same size as 92 /// ValueVTs and it records, for each value, what the type of the assigned 93 /// register or registers are. (Individual values are never synthesized 94 /// from more than one type of register.) 95 /// 96 /// With virtual registers, the contents of RegVTs is redundant with TLI's 97 /// getRegisterType member function, however when with physical registers 98 /// it is necessary to have a separate record of the types. 99 /// 100 SmallVector<EVT, 4> RegVTs; 101 102 /// Regs - This list holds the registers assigned to the values. 103 /// Each legal or promoted value requires one register, and each 104 /// expanded value requires multiple registers. 105 /// 106 SmallVector<unsigned, 4> Regs; 107 108 RegsForValue() : TLI(0) {} 109 110 RegsForValue(const TargetLowering &tli, 111 const SmallVector<unsigned, 4> ®s, 112 EVT regvt, EVT valuevt) 113 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 114 RegsForValue(const TargetLowering &tli, 115 const SmallVector<unsigned, 4> ®s, 116 const SmallVector<EVT, 4> ®vts, 117 const SmallVector<EVT, 4> &valuevts) 118 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 119 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 120 unsigned Reg, const Type *Ty) : TLI(&tli) { 121 ComputeValueVTs(tli, Ty, ValueVTs); 122 123 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 124 EVT ValueVT = ValueVTs[Value]; 125 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 126 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 127 for (unsigned i = 0; i != NumRegs; ++i) 128 Regs.push_back(Reg + i); 129 RegVTs.push_back(RegisterVT); 130 Reg += NumRegs; 131 } 132 } 133 134 /// append - Add the specified values to this one. 135 void append(const RegsForValue &RHS) { 136 TLI = RHS.TLI; 137 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 138 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 139 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 140 } 141 142 143 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 144 /// this value and returns the result as a ValueVTs value. This uses 145 /// Chain/Flag as the input and updates them for the output Chain/Flag. 146 /// If the Flag pointer is NULL, no flag is used. 147 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 148 SDValue &Chain, SDValue *Flag) const; 149 150 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 151 /// specified value into the registers specified by this object. This uses 152 /// Chain/Flag as the input and updates them for the output Chain/Flag. 153 /// If the Flag pointer is NULL, no flag is used. 154 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 155 SDValue &Chain, SDValue *Flag) const; 156 157 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 158 /// operand list. This adds the code marker, matching input operand index 159 /// (if applicable), and includes the number of values added into it. 160 void AddInlineAsmOperands(unsigned Code, 161 bool HasMatching, unsigned MatchingIdx, 162 SelectionDAG &DAG, std::vector<SDValue> &Ops) const; 163 }; 164 } 165 166 /// getCopyFromParts - Create a value that contains the specified legal parts 167 /// combined into the value they represent. If the parts combine to a type 168 /// larger then ValueVT then AssertOp can be used to specify whether the extra 169 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 170 /// (ISD::AssertSext). 171 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 172 const SDValue *Parts, 173 unsigned NumParts, EVT PartVT, EVT ValueVT, 174 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 175 assert(NumParts > 0 && "No parts to assemble!"); 176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 177 SDValue Val = Parts[0]; 178 179 if (NumParts > 1) { 180 // Assemble the value from multiple parts. 181 if (!ValueVT.isVector() && ValueVT.isInteger()) { 182 unsigned PartBits = PartVT.getSizeInBits(); 183 unsigned ValueBits = ValueVT.getSizeInBits(); 184 185 // Assemble the power of 2 part. 186 unsigned RoundParts = NumParts & (NumParts - 1) ? 187 1 << Log2_32(NumParts) : NumParts; 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); 197 Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, 198 PartVT, HalfVT); 199 } else { 200 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 201 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 202 } 203 if (TLI.isBigEndian()) 204 std::swap(Lo, Hi); 205 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, dl, 212 Parts+RoundParts, OddParts, PartVT, OddVT); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (TLI.isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueType().getSizeInBits(), 222 TLI.getPointerTy())); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 225 } 226 } else if (ValueVT.isVector()) { 227 // Handle a multi-element vector. 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate operands 249 // from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate 259 // operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 262 ValueVT, &Ops[0], NumIntermediates); 263 } else if (PartVT.isFloatingPoint()) { 264 // FP split into multiple FP parts (for ppcf128) 265 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 266 "Unexpected split"); 267 SDValue Lo, Hi; 268 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 269 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 270 if (TLI.isBigEndian()) 271 std::swap(Lo, Hi); 272 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 273 } else { 274 // FP split into integer parts (soft fp) 275 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 276 !PartVT.isVector() && "Unexpected split"); 277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 278 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 279 } 280 } 281 282 // There is now one part, held in Val. Correct it to match ValueVT. 283 PartVT = Val.getValueType(); 284 285 if (PartVT == ValueVT) 286 return Val; 287 288 if (PartVT.isVector()) { 289 assert(ValueVT.isVector() && "Unknown vector conversion!"); 290 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 291 } 292 293 if (ValueVT.isVector()) { 294 assert(ValueVT.getVectorElementType() == PartVT && 295 ValueVT.getVectorNumElements() == 1 && 296 "Only trivial scalar-to-vector conversions should get here!"); 297 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 298 } 299 300 if (PartVT.isInteger() && 301 ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp != ISD::DELETED_NODE) 307 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 310 } else { 311 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 312 } 313 } 314 315 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 if (ValueVT.bitsLT(Val.getValueType())) 317 // FP_ROUND's are always exact here. 318 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 319 DAG.getIntPtrConstant(1)); 320 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 321 } 322 323 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 324 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 325 326 llvm_unreachable("Unknown mismatch!"); 327 return SDValue(); 328 } 329 330 /// getCopyToParts - Create a series of nodes that contain the specified value 331 /// split into legal parts. If the parts contain more bits than Val, then, for 332 /// integers, ExtendKind can be used to specify how to generate the extra bits. 333 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, 334 SDValue *Parts, unsigned NumParts, EVT PartVT, 335 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 337 EVT PtrVT = TLI.getPointerTy(); 338 EVT ValueVT = Val.getValueType(); 339 unsigned PartBits = PartVT.getSizeInBits(); 340 unsigned OrigNumParts = NumParts; 341 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 342 343 if (!NumParts) 344 return; 345 346 if (!ValueVT.isVector()) { 347 if (PartVT == ValueVT) { 348 assert(NumParts == 1 && "No-op copy with multiple parts!"); 349 Parts[0] = Val; 350 return; 351 } 352 353 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 354 // If the parts cover more bits than the value has, promote the value. 355 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 356 assert(NumParts == 1 && "Do not know what to promote to!"); 357 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 358 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 361 } else { 362 llvm_unreachable("Unknown mismatch!"); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 if (PartVT.isInteger() && ValueVT.isInteger()) { 371 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 372 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 373 } else { 374 llvm_unreachable("Unknown mismatch!"); 375 } 376 } 377 378 // The value may have changed - recompute ValueVT. 379 ValueVT = Val.getValueType(); 380 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 381 "Failed to tile the value with PartVT!"); 382 383 if (NumParts == 1) { 384 assert(PartVT == ValueVT && "Type conversion failed!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 // Expand the value into multiple parts. 390 if (NumParts & (NumParts - 1)) { 391 // The number of parts is not a power of 2. Split off and copy the tail. 392 assert(PartVT.isInteger() && ValueVT.isInteger() && 393 "Do not know what to expand to!"); 394 unsigned RoundParts = 1 << Log2_32(NumParts); 395 unsigned RoundBits = RoundParts * PartBits; 396 unsigned OddParts = NumParts - RoundParts; 397 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 398 DAG.getConstant(RoundBits, 399 TLI.getPointerTy())); 400 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); 401 if (TLI.isBigEndian()) 402 // The odd parts were reversed by getCopyToParts - unreverse them. 403 std::reverse(Parts + RoundParts, Parts + NumParts); 404 NumParts = RoundParts; 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 407 } 408 409 // The number of parts is a power of 2. Repeatedly bisect the value using 410 // EXTRACT_ELEMENT. 411 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 412 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), 413 Val); 414 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 415 for (unsigned i = 0; i < NumParts; i += StepSize) { 416 unsigned ThisBits = StepSize * PartBits / 2; 417 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 418 SDValue &Part0 = Parts[i]; 419 SDValue &Part1 = Parts[i+StepSize/2]; 420 421 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 422 ThisVT, Part0, 423 DAG.getConstant(1, PtrVT)); 424 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 425 ThisVT, Part0, 426 DAG.getConstant(0, PtrVT)); 427 428 if (ThisBits == PartBits && ThisVT != PartVT) { 429 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 430 PartVT, Part0); 431 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 432 PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 440 return; 441 } 442 443 // Vector ValueVT. 444 if (NumParts == 1) { 445 if (PartVT != ValueVT) { 446 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 447 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 448 } else { 449 assert(ValueVT.getVectorElementType() == PartVT && 450 ValueVT.getVectorNumElements() == 1 && 451 "Only trivial vector-to-scalar conversions should get here!"); 452 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 453 PartVT, Val, 454 DAG.getConstant(0, PtrVT)); 455 } 456 } 457 458 Parts[0] = Val; 459 return; 460 } 461 462 // Handle a multi-element vector. 463 EVT IntermediateVT, RegisterVT; 464 unsigned NumIntermediates; 465 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 466 IntermediateVT, NumIntermediates, RegisterVT); 467 unsigned NumElements = ValueVT.getVectorNumElements(); 468 469 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 470 NumParts = NumRegs; // Silence a compiler warning. 471 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 472 473 // Split the vector into intermediate operands. 474 SmallVector<SDValue, 8> Ops(NumIntermediates); 475 for (unsigned i = 0; i != NumIntermediates; ++i) 476 if (IntermediateVT.isVector()) 477 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 478 IntermediateVT, Val, 479 DAG.getConstant(i * (NumElements / NumIntermediates), 480 PtrVT)); 481 else 482 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 483 IntermediateVT, Val, 484 DAG.getConstant(i, PtrVT)); 485 486 // Split the intermediate operands into legal parts. 487 if (NumParts == NumIntermediates) { 488 // If the register was not expanded, promote or copy the value, 489 // as appropriate. 490 for (unsigned i = 0; i != NumParts; ++i) 491 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 492 } else if (NumParts > 0) { 493 // If the intermediate type was expanded, split each the value into 494 // legal parts. 495 assert(NumParts % NumIntermediates == 0 && 496 "Must expand into a divisible number of parts!"); 497 unsigned Factor = NumParts / NumIntermediates; 498 for (unsigned i = 0; i != NumIntermediates; ++i) 499 getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); 500 } 501 } 502 503 504 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 505 AA = &aa; 506 GFI = gfi; 507 TD = DAG.getTarget().getTargetData(); 508 } 509 510 /// clear - Clear out the curret SelectionDAG and the associated 511 /// state and prepare this SelectionDAGBuilder object to be used 512 /// for a new block. This doesn't clear out information about 513 /// additional blocks that are needed to complete switch lowering 514 /// or PHI node updating; that information is cleared out as it is 515 /// consumed. 516 void SelectionDAGBuilder::clear() { 517 NodeMap.clear(); 518 PendingLoads.clear(); 519 PendingExports.clear(); 520 EdgeMapping.clear(); 521 DAG.clear(); 522 CurDebugLoc = DebugLoc::getUnknownLoc(); 523 HasTailCall = false; 524 } 525 526 /// getRoot - Return the current virtual root of the Selection DAG, 527 /// flushing any PendingLoad items. This must be done before emitting 528 /// a store or any other node that may need to be ordered after any 529 /// prior load instructions. 530 /// 531 SDValue SelectionDAGBuilder::getRoot() { 532 if (PendingLoads.empty()) 533 return DAG.getRoot(); 534 535 if (PendingLoads.size() == 1) { 536 SDValue Root = PendingLoads[0]; 537 DAG.setRoot(Root); 538 PendingLoads.clear(); 539 return Root; 540 } 541 542 // Otherwise, we have to make a token factor node. 543 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 544 &PendingLoads[0], PendingLoads.size()); 545 PendingLoads.clear(); 546 DAG.setRoot(Root); 547 return Root; 548 } 549 550 /// getControlRoot - Similar to getRoot, but instead of flushing all the 551 /// PendingLoad items, flush all the PendingExports items. It is necessary 552 /// to do this before emitting a terminator instruction. 553 /// 554 SDValue SelectionDAGBuilder::getControlRoot() { 555 SDValue Root = DAG.getRoot(); 556 557 if (PendingExports.empty()) 558 return Root; 559 560 // Turn all of the CopyToReg chains into one factored node. 561 if (Root.getOpcode() != ISD::EntryToken) { 562 unsigned i = 0, e = PendingExports.size(); 563 for (; i != e; ++i) { 564 assert(PendingExports[i].getNode()->getNumOperands() > 1); 565 if (PendingExports[i].getNode()->getOperand(0) == Root) 566 break; // Don't add the root if we already indirectly depend on it. 567 } 568 569 if (i == e) 570 PendingExports.push_back(Root); 571 } 572 573 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 574 &PendingExports[0], 575 PendingExports.size()); 576 PendingExports.clear(); 577 DAG.setRoot(Root); 578 return Root; 579 } 580 581 void SelectionDAGBuilder::visit(Instruction &I) { 582 visit(I.getOpcode(), I); 583 } 584 585 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 586 // We're processing a new instruction. 587 ++SDNodeOrder; 588 589 // Note: this doesn't use InstVisitor, because it has to work with 590 // ConstantExpr's in addition to instructions. 591 switch (Opcode) { 592 default: llvm_unreachable("Unknown instruction type encountered!"); 593 // Build the switch statement using the Instruction.def file. 594 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 595 case Instruction::OPCODE: return visit##OPCODE((CLASS&)I); 596 #include "llvm/Instruction.def" 597 } 598 } 599 600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 601 SDValue &N = NodeMap[V]; 602 if (N.getNode()) return N; 603 604 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 605 EVT VT = TLI.getValueType(V->getType(), true); 606 607 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 608 return N = DAG.getConstant(*CI, VT); 609 610 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 611 return N = DAG.getGlobalAddress(GV, VT); 612 613 if (isa<ConstantPointerNull>(C)) 614 return N = DAG.getConstant(0, TLI.getPointerTy()); 615 616 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 617 return N = DAG.getConstantFP(*CFP, VT); 618 619 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 620 return N = DAG.getUNDEF(VT); 621 622 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 623 visit(CE->getOpcode(), *CE); 624 SDValue N1 = NodeMap[V]; 625 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 626 return N1; 627 } 628 629 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 630 SmallVector<SDValue, 4> Constants; 631 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 632 OI != OE; ++OI) { 633 SDNode *Val = getValue(*OI).getNode(); 634 // If the operand is an empty aggregate, there are no values. 635 if (!Val) continue; 636 // Add each leaf value from the operand to the Constants list 637 // to form a flattened list of all the values. 638 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 639 Constants.push_back(SDValue(Val, i)); 640 } 641 return DAG.getMergeValues(&Constants[0], Constants.size(), 642 getCurDebugLoc()); 643 } 644 645 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 646 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 647 "Unknown struct or array constant!"); 648 649 SmallVector<EVT, 4> ValueVTs; 650 ComputeValueVTs(TLI, C->getType(), ValueVTs); 651 unsigned NumElts = ValueVTs.size(); 652 if (NumElts == 0) 653 return SDValue(); // empty struct 654 SmallVector<SDValue, 4> Constants(NumElts); 655 for (unsigned i = 0; i != NumElts; ++i) { 656 EVT EltVT = ValueVTs[i]; 657 if (isa<UndefValue>(C)) 658 Constants[i] = DAG.getUNDEF(EltVT); 659 else if (EltVT.isFloatingPoint()) 660 Constants[i] = DAG.getConstantFP(0, EltVT); 661 else 662 Constants[i] = DAG.getConstant(0, EltVT); 663 } 664 return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); 665 } 666 667 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 668 return DAG.getBlockAddress(BA, VT); 669 670 const VectorType *VecTy = cast<VectorType>(V->getType()); 671 unsigned NumElements = VecTy->getNumElements(); 672 673 // Now that we know the number and type of the elements, get that number of 674 // elements into the Ops array based on what kind of constant it is. 675 SmallVector<SDValue, 16> Ops; 676 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 677 for (unsigned i = 0; i != NumElements; ++i) 678 Ops.push_back(getValue(CP->getOperand(i))); 679 } else { 680 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 681 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 682 683 SDValue Op; 684 if (EltVT.isFloatingPoint()) 685 Op = DAG.getConstantFP(0, EltVT); 686 else 687 Op = DAG.getConstant(0, EltVT); 688 Ops.assign(NumElements, Op); 689 } 690 691 // Create a BUILD_VECTOR node. 692 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 693 VT, &Ops[0], Ops.size()); 694 } 695 696 // If this is a static alloca, generate it as the frameindex instead of 697 // computation. 698 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 699 DenseMap<const AllocaInst*, int>::iterator SI = 700 FuncInfo.StaticAllocaMap.find(AI); 701 if (SI != FuncInfo.StaticAllocaMap.end()) 702 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 703 } 704 705 unsigned InReg = FuncInfo.ValueMap[V]; 706 assert(InReg && "Value not in map!"); 707 708 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 709 SDValue Chain = DAG.getEntryNode(); 710 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 711 } 712 713 /// Get the EVTs and ArgFlags collections that represent the return type 714 /// of the given function. This does not require a DAG or a return value, and 715 /// is suitable for use before any DAGs for the function are constructed. 716 static void getReturnInfo(const Type* ReturnType, 717 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 718 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 719 TargetLowering &TLI, 720 SmallVectorImpl<uint64_t> *Offsets = 0) { 721 SmallVector<EVT, 4> ValueVTs; 722 ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); 723 unsigned NumValues = ValueVTs.size(); 724 if ( NumValues == 0 ) return; 725 726 for (unsigned j = 0, f = NumValues; j != f; ++j) { 727 EVT VT = ValueVTs[j]; 728 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 729 730 if (attr & Attribute::SExt) 731 ExtendKind = ISD::SIGN_EXTEND; 732 else if (attr & Attribute::ZExt) 733 ExtendKind = ISD::ZERO_EXTEND; 734 735 // FIXME: C calling convention requires the return type to be promoted to 736 // at least 32-bit. But this is not necessary for non-C calling 737 // conventions. The frontend should mark functions whose return values 738 // require promoting with signext or zeroext attributes. 739 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 740 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 741 if (VT.bitsLT(MinVT)) 742 VT = MinVT; 743 } 744 745 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 746 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 747 // 'inreg' on function refers to return value 748 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 749 if (attr & Attribute::InReg) 750 Flags.setInReg(); 751 752 // Propagate extension type if any 753 if (attr & Attribute::SExt) 754 Flags.setSExt(); 755 else if (attr & Attribute::ZExt) 756 Flags.setZExt(); 757 758 for (unsigned i = 0; i < NumParts; ++i) { 759 OutVTs.push_back(PartVT); 760 OutFlags.push_back(Flags); 761 } 762 } 763 } 764 765 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 766 SDValue Chain = getControlRoot(); 767 SmallVector<ISD::OutputArg, 8> Outs; 768 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 769 770 if (!FLI.CanLowerReturn) { 771 unsigned DemoteReg = FLI.DemoteRegister; 772 const Function *F = I.getParent()->getParent(); 773 774 // Emit a store of the return value through the virtual register. 775 // Leave Outs empty so that LowerReturn won't try to load return 776 // registers the usual way. 777 SmallVector<EVT, 1> PtrValueVTs; 778 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 779 PtrValueVTs); 780 781 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 782 SDValue RetOp = getValue(I.getOperand(0)); 783 784 SmallVector<EVT, 4> ValueVTs; 785 SmallVector<uint64_t, 4> Offsets; 786 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 787 unsigned NumValues = ValueVTs.size(); 788 789 SmallVector<SDValue, 4> Chains(NumValues); 790 EVT PtrVT = PtrValueVTs[0]; 791 for (unsigned i = 0; i != NumValues; ++i) 792 Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), 793 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 794 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 795 DAG.getConstant(Offsets[i], PtrVT)), 796 NULL, Offsets[i], false, 0); 797 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 798 MVT::Other, &Chains[0], NumValues); 799 } 800 else { 801 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 802 SmallVector<EVT, 4> ValueVTs; 803 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 804 unsigned NumValues = ValueVTs.size(); 805 if (NumValues == 0) continue; 806 807 SDValue RetOp = getValue(I.getOperand(i)); 808 for (unsigned j = 0, f = NumValues; j != f; ++j) { 809 EVT VT = ValueVTs[j]; 810 811 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 812 813 const Function *F = I.getParent()->getParent(); 814 if (F->paramHasAttr(0, Attribute::SExt)) 815 ExtendKind = ISD::SIGN_EXTEND; 816 else if (F->paramHasAttr(0, Attribute::ZExt)) 817 ExtendKind = ISD::ZERO_EXTEND; 818 819 // FIXME: C calling convention requires the return type to be promoted to 820 // at least 32-bit. But this is not necessary for non-C calling 821 // conventions. The frontend should mark functions whose return values 822 // require promoting with signext or zeroext attributes. 823 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 824 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 825 if (VT.bitsLT(MinVT)) 826 VT = MinVT; 827 } 828 829 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 830 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 831 SmallVector<SDValue, 4> Parts(NumParts); 832 getCopyToParts(DAG, getCurDebugLoc(), 833 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 834 &Parts[0], NumParts, PartVT, ExtendKind); 835 836 // 'inreg' on function refers to return value 837 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 838 if (F->paramHasAttr(0, Attribute::InReg)) 839 Flags.setInReg(); 840 841 // Propagate extension type if any 842 if (F->paramHasAttr(0, Attribute::SExt)) 843 Flags.setSExt(); 844 else if (F->paramHasAttr(0, Attribute::ZExt)) 845 Flags.setZExt(); 846 847 for (unsigned i = 0; i < NumParts; ++i) 848 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 849 } 850 } 851 } 852 853 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 854 CallingConv::ID CallConv = 855 DAG.getMachineFunction().getFunction()->getCallingConv(); 856 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 857 Outs, getCurDebugLoc(), DAG); 858 859 // Verify that the target's LowerReturn behaved as expected. 860 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 861 "LowerReturn didn't return a valid chain!"); 862 863 // Update the DAG with the new chain value resulting from return lowering. 864 DAG.setRoot(Chain); 865 } 866 867 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 868 /// created for it, emit nodes to copy the value into the virtual 869 /// registers. 870 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 871 if (!V->use_empty()) { 872 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 873 if (VMI != FuncInfo.ValueMap.end()) 874 CopyValueToVirtualRegister(V, VMI->second); 875 } 876 } 877 878 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 879 /// the current basic block, add it to ValueMap now so that we'll get a 880 /// CopyTo/FromReg. 881 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 882 // No need to export constants. 883 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 884 885 // Already exported? 886 if (FuncInfo.isExportedInst(V)) return; 887 888 unsigned Reg = FuncInfo.InitializeRegForValue(V); 889 CopyValueToVirtualRegister(V, Reg); 890 } 891 892 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 893 const BasicBlock *FromBB) { 894 // The operands of the setcc have to be in this block. We don't know 895 // how to export them from some other block. 896 if (Instruction *VI = dyn_cast<Instruction>(V)) { 897 // Can export from current BB. 898 if (VI->getParent() == FromBB) 899 return true; 900 901 // Is already exported, noop. 902 return FuncInfo.isExportedInst(V); 903 } 904 905 // If this is an argument, we can export it if the BB is the entry block or 906 // if it is already exported. 907 if (isa<Argument>(V)) { 908 if (FromBB == &FromBB->getParent()->getEntryBlock()) 909 return true; 910 911 // Otherwise, can only export this if it is already exported. 912 return FuncInfo.isExportedInst(V); 913 } 914 915 // Otherwise, constants can always be exported. 916 return true; 917 } 918 919 static bool InBlock(const Value *V, const BasicBlock *BB) { 920 if (const Instruction *I = dyn_cast<Instruction>(V)) 921 return I->getParent() == BB; 922 return true; 923 } 924 925 /// getFCmpCondCode - Return the ISD condition code corresponding to 926 /// the given LLVM IR floating-point condition code. This includes 927 /// consideration of global floating-point math flags. 928 /// 929 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 930 ISD::CondCode FPC, FOC; 931 switch (Pred) { 932 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 933 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 934 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 935 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 936 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 937 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 938 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 939 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 940 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 941 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 942 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 943 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 944 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 945 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 946 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 947 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 948 default: 949 llvm_unreachable("Invalid FCmp predicate opcode!"); 950 FOC = FPC = ISD::SETFALSE; 951 break; 952 } 953 if (FiniteOnlyFPMath()) 954 return FOC; 955 else 956 return FPC; 957 } 958 959 /// getICmpCondCode - Return the ISD condition code corresponding to 960 /// the given LLVM IR integer condition code. 961 /// 962 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 963 switch (Pred) { 964 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 965 case ICmpInst::ICMP_NE: return ISD::SETNE; 966 case ICmpInst::ICMP_SLE: return ISD::SETLE; 967 case ICmpInst::ICMP_ULE: return ISD::SETULE; 968 case ICmpInst::ICMP_SGE: return ISD::SETGE; 969 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 970 case ICmpInst::ICMP_SLT: return ISD::SETLT; 971 case ICmpInst::ICMP_ULT: return ISD::SETULT; 972 case ICmpInst::ICMP_SGT: return ISD::SETGT; 973 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 974 default: 975 llvm_unreachable("Invalid ICmp predicate opcode!"); 976 return ISD::SETNE; 977 } 978 } 979 980 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 981 /// This function emits a branch and is used at the leaves of an OR or an 982 /// AND operator tree. 983 /// 984 void 985 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 986 MachineBasicBlock *TBB, 987 MachineBasicBlock *FBB, 988 MachineBasicBlock *CurBB) { 989 const BasicBlock *BB = CurBB->getBasicBlock(); 990 991 // If the leaf of the tree is a comparison, merge the condition into 992 // the caseblock. 993 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 994 // The operands of the cmp have to be in this block. We don't know 995 // how to export them from some other block. If this is the first block 996 // of the sequence, no exporting is needed. 997 if (CurBB == CurMBB || 998 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 999 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1000 ISD::CondCode Condition; 1001 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1002 Condition = getICmpCondCode(IC->getPredicate()); 1003 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1004 Condition = getFCmpCondCode(FC->getPredicate()); 1005 } else { 1006 Condition = ISD::SETEQ; // silence warning. 1007 llvm_unreachable("Unknown compare instruction"); 1008 } 1009 1010 CaseBlock CB(Condition, BOp->getOperand(0), 1011 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1012 SwitchCases.push_back(CB); 1013 return; 1014 } 1015 } 1016 1017 // Create a CaseBlock record representing this branch. 1018 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1019 NULL, TBB, FBB, CurBB); 1020 SwitchCases.push_back(CB); 1021 } 1022 1023 /// FindMergedConditions - If Cond is an expression like 1024 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1025 MachineBasicBlock *TBB, 1026 MachineBasicBlock *FBB, 1027 MachineBasicBlock *CurBB, 1028 unsigned Opc) { 1029 // If this node is not part of the or/and tree, emit it as a branch. 1030 Instruction *BOp = dyn_cast<Instruction>(Cond); 1031 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1032 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1033 BOp->getParent() != CurBB->getBasicBlock() || 1034 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1035 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1036 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1037 return; 1038 } 1039 1040 // Create TmpBB after CurBB. 1041 MachineFunction::iterator BBI = CurBB; 1042 MachineFunction &MF = DAG.getMachineFunction(); 1043 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1044 CurBB->getParent()->insert(++BBI, TmpBB); 1045 1046 if (Opc == Instruction::Or) { 1047 // Codegen X | Y as: 1048 // jmp_if_X TBB 1049 // jmp TmpBB 1050 // TmpBB: 1051 // jmp_if_Y TBB 1052 // jmp FBB 1053 // 1054 1055 // Emit the LHS condition. 1056 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1057 1058 // Emit the RHS condition into TmpBB. 1059 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1060 } else { 1061 assert(Opc == Instruction::And && "Unknown merge op!"); 1062 // Codegen X & Y as: 1063 // jmp_if_X TmpBB 1064 // jmp FBB 1065 // TmpBB: 1066 // jmp_if_Y TBB 1067 // jmp FBB 1068 // 1069 // This requires creation of TmpBB after CurBB. 1070 1071 // Emit the LHS condition. 1072 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1073 1074 // Emit the RHS condition into TmpBB. 1075 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1076 } 1077 } 1078 1079 /// If the set of cases should be emitted as a series of branches, return true. 1080 /// If we should emit this as a bunch of and/or'd together conditions, return 1081 /// false. 1082 bool 1083 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1084 if (Cases.size() != 2) return true; 1085 1086 // If this is two comparisons of the same values or'd or and'd together, they 1087 // will get folded into a single comparison, so don't emit two blocks. 1088 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1089 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1090 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1091 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1092 return false; 1093 } 1094 1095 return true; 1096 } 1097 1098 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1099 // Update machine-CFG edges. 1100 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1101 1102 // Figure out which block is immediately after the current one. 1103 MachineBasicBlock *NextBlock = 0; 1104 MachineFunction::iterator BBI = CurMBB; 1105 if (++BBI != FuncInfo.MF->end()) 1106 NextBlock = BBI; 1107 1108 if (I.isUnconditional()) { 1109 // Update machine-CFG edges. 1110 CurMBB->addSuccessor(Succ0MBB); 1111 1112 // If this is not a fall-through branch, emit the branch. 1113 if (Succ0MBB != NextBlock) { 1114 SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(), 1115 MVT::Other, getControlRoot(), 1116 DAG.getBasicBlock(Succ0MBB)); 1117 DAG.setRoot(V); 1118 1119 if (DisableScheduling) 1120 DAG.AssignOrdering(V.getNode(), SDNodeOrder); 1121 } 1122 1123 return; 1124 } 1125 1126 // If this condition is one of the special cases we handle, do special stuff 1127 // now. 1128 Value *CondVal = I.getCondition(); 1129 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1130 1131 // If this is a series of conditions that are or'd or and'd together, emit 1132 // this as a sequence of branches instead of setcc's with and/or operations. 1133 // For example, instead of something like: 1134 // cmp A, B 1135 // C = seteq 1136 // cmp D, E 1137 // F = setle 1138 // or C, F 1139 // jnz foo 1140 // Emit: 1141 // cmp A, B 1142 // je foo 1143 // cmp D, E 1144 // jle foo 1145 // 1146 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1147 if (BOp->hasOneUse() && 1148 (BOp->getOpcode() == Instruction::And || 1149 BOp->getOpcode() == Instruction::Or)) { 1150 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1151 // If the compares in later blocks need to use values not currently 1152 // exported from this block, export them now. This block should always 1153 // be the first entry. 1154 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1155 1156 // Allow some cases to be rejected. 1157 if (ShouldEmitAsBranches(SwitchCases)) { 1158 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1159 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1160 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1161 } 1162 1163 // Emit the branch for this block. 1164 visitSwitchCase(SwitchCases[0]); 1165 SwitchCases.erase(SwitchCases.begin()); 1166 return; 1167 } 1168 1169 // Okay, we decided not to do this, remove any inserted MBB's and clear 1170 // SwitchCases. 1171 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1172 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1173 1174 SwitchCases.clear(); 1175 } 1176 } 1177 1178 // Create a CaseBlock record representing this branch. 1179 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1180 NULL, Succ0MBB, Succ1MBB, CurMBB); 1181 1182 // Use visitSwitchCase to actually insert the fast branch sequence for this 1183 // cond branch. 1184 visitSwitchCase(CB); 1185 } 1186 1187 /// visitSwitchCase - Emits the necessary code to represent a single node in 1188 /// the binary search tree resulting from lowering a switch instruction. 1189 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1190 SDValue Cond; 1191 SDValue CondLHS = getValue(CB.CmpLHS); 1192 DebugLoc dl = getCurDebugLoc(); 1193 1194 // Build the setcc now. 1195 if (CB.CmpMHS == NULL) { 1196 // Fold "(X == true)" to X and "(X == false)" to !X to 1197 // handle common cases produced by branch lowering. 1198 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1199 CB.CC == ISD::SETEQ) 1200 Cond = CondLHS; 1201 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1202 CB.CC == ISD::SETEQ) { 1203 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1204 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1205 } else 1206 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1207 } else { 1208 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1209 1210 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1211 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1212 1213 SDValue CmpOp = getValue(CB.CmpMHS); 1214 EVT VT = CmpOp.getValueType(); 1215 1216 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1217 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1218 ISD::SETLE); 1219 } else { 1220 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1221 VT, CmpOp, DAG.getConstant(Low, VT)); 1222 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1223 DAG.getConstant(High-Low, VT), ISD::SETULE); 1224 } 1225 } 1226 1227 // Update successor info 1228 CurMBB->addSuccessor(CB.TrueBB); 1229 CurMBB->addSuccessor(CB.FalseBB); 1230 1231 // Set NextBlock to be the MBB immediately after the current one, if any. 1232 // This is used to avoid emitting unnecessary branches to the next block. 1233 MachineBasicBlock *NextBlock = 0; 1234 MachineFunction::iterator BBI = CurMBB; 1235 if (++BBI != FuncInfo.MF->end()) 1236 NextBlock = BBI; 1237 1238 // If the lhs block is the next block, invert the condition so that we can 1239 // fall through to the lhs instead of the rhs block. 1240 if (CB.TrueBB == NextBlock) { 1241 std::swap(CB.TrueBB, CB.FalseBB); 1242 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1243 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1244 } 1245 1246 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1247 MVT::Other, getControlRoot(), Cond, 1248 DAG.getBasicBlock(CB.TrueBB)); 1249 1250 // If the branch was constant folded, fix up the CFG. 1251 if (BrCond.getOpcode() == ISD::BR) { 1252 CurMBB->removeSuccessor(CB.FalseBB); 1253 } else { 1254 // Otherwise, go ahead and insert the false branch. 1255 if (BrCond == getControlRoot()) 1256 CurMBB->removeSuccessor(CB.TrueBB); 1257 1258 if (CB.FalseBB != NextBlock) 1259 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1260 DAG.getBasicBlock(CB.FalseBB)); 1261 } 1262 1263 DAG.setRoot(BrCond); 1264 1265 if (DisableScheduling) 1266 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1267 } 1268 1269 /// visitJumpTable - Emit JumpTable node in the current MBB 1270 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1271 // Emit the code for the jump table 1272 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1273 EVT PTy = TLI.getPointerTy(); 1274 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1275 JT.Reg, PTy); 1276 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1277 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1278 MVT::Other, Index.getValue(1), 1279 Table, Index); 1280 DAG.setRoot(BrJumpTable); 1281 1282 if (DisableScheduling) 1283 DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder); 1284 } 1285 1286 /// visitJumpTableHeader - This function emits necessary code to produce index 1287 /// in the JumpTable from switch case. 1288 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1289 JumpTableHeader &JTH) { 1290 // Subtract the lowest switch case value from the value being switched on and 1291 // conditional branch to default mbb if the result is greater than the 1292 // difference between smallest and largest cases. 1293 SDValue SwitchOp = getValue(JTH.SValue); 1294 EVT VT = SwitchOp.getValueType(); 1295 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1296 DAG.getConstant(JTH.First, VT)); 1297 1298 // The SDNode we just created, which holds the value being switched on minus 1299 // the the smallest case value, needs to be copied to a virtual register so it 1300 // can be used as an index into the jump table in a subsequent basic block. 1301 // This value may be smaller or larger than the target's pointer type, and 1302 // therefore require extension or truncating. 1303 SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1304 1305 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1306 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1307 JumpTableReg, SwitchOp); 1308 JT.Reg = JumpTableReg; 1309 1310 // Emit the range check for the jump table, and branch to the default block 1311 // for the switch statement if the value being switched on exceeds the largest 1312 // case in the switch. 1313 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1314 TLI.getSetCCResultType(SUB.getValueType()), SUB, 1315 DAG.getConstant(JTH.Last-JTH.First,VT), 1316 ISD::SETUGT); 1317 1318 // Set NextBlock to be the MBB immediately after the current one, if any. 1319 // This is used to avoid emitting unnecessary branches to the next block. 1320 MachineBasicBlock *NextBlock = 0; 1321 MachineFunction::iterator BBI = CurMBB; 1322 if (++BBI != FuncInfo.MF->end()) 1323 NextBlock = BBI; 1324 1325 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1326 MVT::Other, CopyTo, CMP, 1327 DAG.getBasicBlock(JT.Default)); 1328 1329 if (JT.MBB != NextBlock) 1330 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1331 DAG.getBasicBlock(JT.MBB)); 1332 1333 DAG.setRoot(BrCond); 1334 1335 if (DisableScheduling) 1336 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1337 } 1338 1339 /// visitBitTestHeader - This function emits necessary code to produce value 1340 /// suitable for "bit tests" 1341 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1342 // Subtract the minimum value 1343 SDValue SwitchOp = getValue(B.SValue); 1344 EVT VT = SwitchOp.getValueType(); 1345 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1346 DAG.getConstant(B.First, VT)); 1347 1348 // Check range 1349 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1350 TLI.getSetCCResultType(SUB.getValueType()), 1351 SUB, DAG.getConstant(B.Range, VT), 1352 ISD::SETUGT); 1353 1354 SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1355 1356 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1357 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1358 B.Reg, ShiftOp); 1359 1360 // Set NextBlock to be the MBB immediately after the current one, if any. 1361 // This is used to avoid emitting unnecessary branches to the next block. 1362 MachineBasicBlock *NextBlock = 0; 1363 MachineFunction::iterator BBI = CurMBB; 1364 if (++BBI != FuncInfo.MF->end()) 1365 NextBlock = BBI; 1366 1367 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1368 1369 CurMBB->addSuccessor(B.Default); 1370 CurMBB->addSuccessor(MBB); 1371 1372 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1373 MVT::Other, CopyTo, RangeCmp, 1374 DAG.getBasicBlock(B.Default)); 1375 1376 if (MBB != NextBlock) 1377 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1378 DAG.getBasicBlock(MBB)); 1379 1380 DAG.setRoot(BrRange); 1381 1382 if (DisableScheduling) 1383 DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder); 1384 } 1385 1386 /// visitBitTestCase - this function produces one "bit test" 1387 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1388 unsigned Reg, 1389 BitTestCase &B) { 1390 // Make desired shift 1391 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1392 TLI.getPointerTy()); 1393 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1394 TLI.getPointerTy(), 1395 DAG.getConstant(1, TLI.getPointerTy()), 1396 ShiftOp); 1397 1398 // Emit bit tests and jumps 1399 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1400 TLI.getPointerTy(), SwitchVal, 1401 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1402 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1403 TLI.getSetCCResultType(AndOp.getValueType()), 1404 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1405 ISD::SETNE); 1406 1407 CurMBB->addSuccessor(B.TargetBB); 1408 CurMBB->addSuccessor(NextMBB); 1409 1410 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1411 MVT::Other, getControlRoot(), 1412 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1413 1414 // Set NextBlock to be the MBB immediately after the current one, if any. 1415 // This is used to avoid emitting unnecessary branches to the next block. 1416 MachineBasicBlock *NextBlock = 0; 1417 MachineFunction::iterator BBI = CurMBB; 1418 if (++BBI != FuncInfo.MF->end()) 1419 NextBlock = BBI; 1420 1421 if (NextMBB != NextBlock) 1422 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1423 DAG.getBasicBlock(NextMBB)); 1424 1425 DAG.setRoot(BrAnd); 1426 1427 if (DisableScheduling) 1428 DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder); 1429 } 1430 1431 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1432 // Retrieve successors. 1433 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1434 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1435 1436 const Value *Callee(I.getCalledValue()); 1437 if (isa<InlineAsm>(Callee)) 1438 visitInlineAsm(&I); 1439 else 1440 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1441 1442 // If the value of the invoke is used outside of its defining block, make it 1443 // available as a virtual register. 1444 CopyToExportRegsIfNeeded(&I); 1445 1446 // Update successor info 1447 CurMBB->addSuccessor(Return); 1448 CurMBB->addSuccessor(LandingPad); 1449 1450 // Drop into normal successor. 1451 SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(), 1452 MVT::Other, getControlRoot(), 1453 DAG.getBasicBlock(Return)); 1454 DAG.setRoot(Branch); 1455 1456 if (DisableScheduling) 1457 DAG.AssignOrdering(Branch.getNode(), SDNodeOrder); 1458 } 1459 1460 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1461 } 1462 1463 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1464 /// small case ranges). 1465 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1466 CaseRecVector& WorkList, 1467 Value* SV, 1468 MachineBasicBlock* Default) { 1469 Case& BackCase = *(CR.Range.second-1); 1470 1471 // Size is the number of Cases represented by this range. 1472 size_t Size = CR.Range.second - CR.Range.first; 1473 if (Size > 3) 1474 return false; 1475 1476 // Get the MachineFunction which holds the current MBB. This is used when 1477 // inserting any additional MBBs necessary to represent the switch. 1478 MachineFunction *CurMF = FuncInfo.MF; 1479 1480 // Figure out which block is immediately after the current one. 1481 MachineBasicBlock *NextBlock = 0; 1482 MachineFunction::iterator BBI = CR.CaseBB; 1483 1484 if (++BBI != FuncInfo.MF->end()) 1485 NextBlock = BBI; 1486 1487 // TODO: If any two of the cases has the same destination, and if one value 1488 // is the same as the other, but has one bit unset that the other has set, 1489 // use bit manipulation to do two compares at once. For example: 1490 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1491 1492 // Rearrange the case blocks so that the last one falls through if possible. 1493 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1494 // The last case block won't fall through into 'NextBlock' if we emit the 1495 // branches in this order. See if rearranging a case value would help. 1496 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1497 if (I->BB == NextBlock) { 1498 std::swap(*I, BackCase); 1499 break; 1500 } 1501 } 1502 } 1503 1504 // Create a CaseBlock record representing a conditional branch to 1505 // the Case's target mbb if the value being switched on SV is equal 1506 // to C. 1507 MachineBasicBlock *CurBlock = CR.CaseBB; 1508 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1509 MachineBasicBlock *FallThrough; 1510 if (I != E-1) { 1511 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1512 CurMF->insert(BBI, FallThrough); 1513 1514 // Put SV in a virtual register to make it available from the new blocks. 1515 ExportFromCurrentBlock(SV); 1516 } else { 1517 // If the last case doesn't match, go to the default block. 1518 FallThrough = Default; 1519 } 1520 1521 Value *RHS, *LHS, *MHS; 1522 ISD::CondCode CC; 1523 if (I->High == I->Low) { 1524 // This is just small small case range :) containing exactly 1 case 1525 CC = ISD::SETEQ; 1526 LHS = SV; RHS = I->High; MHS = NULL; 1527 } else { 1528 CC = ISD::SETLE; 1529 LHS = I->Low; MHS = SV; RHS = I->High; 1530 } 1531 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1532 1533 // If emitting the first comparison, just call visitSwitchCase to emit the 1534 // code into the current block. Otherwise, push the CaseBlock onto the 1535 // vector to be later processed by SDISel, and insert the node's MBB 1536 // before the next MBB. 1537 if (CurBlock == CurMBB) 1538 visitSwitchCase(CB); 1539 else 1540 SwitchCases.push_back(CB); 1541 1542 CurBlock = FallThrough; 1543 } 1544 1545 return true; 1546 } 1547 1548 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1549 return !DisableJumpTables && 1550 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1551 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1552 } 1553 1554 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1555 APInt LastExt(Last), FirstExt(First); 1556 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1557 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1558 return (LastExt - FirstExt + 1ULL); 1559 } 1560 1561 /// handleJTSwitchCase - Emit jumptable for current switch case range 1562 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1563 CaseRecVector& WorkList, 1564 Value* SV, 1565 MachineBasicBlock* Default) { 1566 Case& FrontCase = *CR.Range.first; 1567 Case& BackCase = *(CR.Range.second-1); 1568 1569 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1570 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1571 1572 APInt TSize(First.getBitWidth(), 0); 1573 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1574 I!=E; ++I) 1575 TSize += I->size(); 1576 1577 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1578 return false; 1579 1580 APInt Range = ComputeRange(First, Last); 1581 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1582 if (Density < 0.4) 1583 return false; 1584 1585 DEBUG(errs() << "Lowering jump table\n" 1586 << "First entry: " << First << ". Last entry: " << Last << '\n' 1587 << "Range: " << Range 1588 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1589 1590 // Get the MachineFunction which holds the current MBB. This is used when 1591 // inserting any additional MBBs necessary to represent the switch. 1592 MachineFunction *CurMF = FuncInfo.MF; 1593 1594 // Figure out which block is immediately after the current one. 1595 MachineFunction::iterator BBI = CR.CaseBB; 1596 ++BBI; 1597 1598 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1599 1600 // Create a new basic block to hold the code for loading the address 1601 // of the jump table, and jumping to it. Update successor information; 1602 // we will either branch to the default case for the switch, or the jump 1603 // table. 1604 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1605 CurMF->insert(BBI, JumpTableBB); 1606 CR.CaseBB->addSuccessor(Default); 1607 CR.CaseBB->addSuccessor(JumpTableBB); 1608 1609 // Build a vector of destination BBs, corresponding to each target 1610 // of the jump table. If the value of the jump table slot corresponds to 1611 // a case statement, push the case's BB onto the vector, otherwise, push 1612 // the default BB. 1613 std::vector<MachineBasicBlock*> DestBBs; 1614 APInt TEI = First; 1615 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1616 const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); 1617 const APInt& High = cast<ConstantInt>(I->High)->getValue(); 1618 1619 if (Low.sle(TEI) && TEI.sle(High)) { 1620 DestBBs.push_back(I->BB); 1621 if (TEI==High) 1622 ++I; 1623 } else { 1624 DestBBs.push_back(Default); 1625 } 1626 } 1627 1628 // Update successor info. Add one edge to each unique successor. 1629 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1630 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1631 E = DestBBs.end(); I != E; ++I) { 1632 if (!SuccsHandled[(*I)->getNumber()]) { 1633 SuccsHandled[(*I)->getNumber()] = true; 1634 JumpTableBB->addSuccessor(*I); 1635 } 1636 } 1637 1638 // Create a jump table index for this jump table, or return an existing 1639 // one. 1640 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 1641 1642 // Set the jump table information so that we can codegen it as a second 1643 // MachineBasicBlock 1644 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1645 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1646 if (CR.CaseBB == CurMBB) 1647 visitJumpTableHeader(JT, JTH); 1648 1649 JTCases.push_back(JumpTableBlock(JTH, JT)); 1650 1651 return true; 1652 } 1653 1654 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1655 /// 2 subtrees. 1656 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1657 CaseRecVector& WorkList, 1658 Value* SV, 1659 MachineBasicBlock* Default) { 1660 // Get the MachineFunction which holds the current MBB. This is used when 1661 // inserting any additional MBBs necessary to represent the switch. 1662 MachineFunction *CurMF = FuncInfo.MF; 1663 1664 // Figure out which block is immediately after the current one. 1665 MachineFunction::iterator BBI = CR.CaseBB; 1666 ++BBI; 1667 1668 Case& FrontCase = *CR.Range.first; 1669 Case& BackCase = *(CR.Range.second-1); 1670 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1671 1672 // Size is the number of Cases represented by this range. 1673 unsigned Size = CR.Range.second - CR.Range.first; 1674 1675 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1676 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1677 double FMetric = 0; 1678 CaseItr Pivot = CR.Range.first + Size/2; 1679 1680 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1681 // (heuristically) allow us to emit JumpTable's later. 1682 APInt TSize(First.getBitWidth(), 0); 1683 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1684 I!=E; ++I) 1685 TSize += I->size(); 1686 1687 APInt LSize = FrontCase.size(); 1688 APInt RSize = TSize-LSize; 1689 DEBUG(errs() << "Selecting best pivot: \n" 1690 << "First: " << First << ", Last: " << Last <<'\n' 1691 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1692 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1693 J!=E; ++I, ++J) { 1694 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1695 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1696 APInt Range = ComputeRange(LEnd, RBegin); 1697 assert((Range - 2ULL).isNonNegative() && 1698 "Invalid case distance"); 1699 double LDensity = (double)LSize.roundToDouble() / 1700 (LEnd - First + 1ULL).roundToDouble(); 1701 double RDensity = (double)RSize.roundToDouble() / 1702 (Last - RBegin + 1ULL).roundToDouble(); 1703 double Metric = Range.logBase2()*(LDensity+RDensity); 1704 // Should always split in some non-trivial place 1705 DEBUG(errs() <<"=>Step\n" 1706 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1707 << "LDensity: " << LDensity 1708 << ", RDensity: " << RDensity << '\n' 1709 << "Metric: " << Metric << '\n'); 1710 if (FMetric < Metric) { 1711 Pivot = J; 1712 FMetric = Metric; 1713 DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); 1714 } 1715 1716 LSize += J->size(); 1717 RSize -= J->size(); 1718 } 1719 if (areJTsAllowed(TLI)) { 1720 // If our case is dense we *really* should handle it earlier! 1721 assert((FMetric > 0) && "Should handle dense range earlier!"); 1722 } else { 1723 Pivot = CR.Range.first + Size/2; 1724 } 1725 1726 CaseRange LHSR(CR.Range.first, Pivot); 1727 CaseRange RHSR(Pivot, CR.Range.second); 1728 Constant *C = Pivot->Low; 1729 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1730 1731 // We know that we branch to the LHS if the Value being switched on is 1732 // less than the Pivot value, C. We use this to optimize our binary 1733 // tree a bit, by recognizing that if SV is greater than or equal to the 1734 // LHS's Case Value, and that Case Value is exactly one less than the 1735 // Pivot's Value, then we can branch directly to the LHS's Target, 1736 // rather than creating a leaf node for it. 1737 if ((LHSR.second - LHSR.first) == 1 && 1738 LHSR.first->High == CR.GE && 1739 cast<ConstantInt>(C)->getValue() == 1740 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1741 TrueBB = LHSR.first->BB; 1742 } else { 1743 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1744 CurMF->insert(BBI, TrueBB); 1745 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1746 1747 // Put SV in a virtual register to make it available from the new blocks. 1748 ExportFromCurrentBlock(SV); 1749 } 1750 1751 // Similar to the optimization above, if the Value being switched on is 1752 // known to be less than the Constant CR.LT, and the current Case Value 1753 // is CR.LT - 1, then we can branch directly to the target block for 1754 // the current Case Value, rather than emitting a RHS leaf node for it. 1755 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1756 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1757 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1758 FalseBB = RHSR.first->BB; 1759 } else { 1760 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1761 CurMF->insert(BBI, FalseBB); 1762 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1763 1764 // Put SV in a virtual register to make it available from the new blocks. 1765 ExportFromCurrentBlock(SV); 1766 } 1767 1768 // Create a CaseBlock record representing a conditional branch to 1769 // the LHS node if the value being switched on SV is less than C. 1770 // Otherwise, branch to LHS. 1771 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1772 1773 if (CR.CaseBB == CurMBB) 1774 visitSwitchCase(CB); 1775 else 1776 SwitchCases.push_back(CB); 1777 1778 return true; 1779 } 1780 1781 /// handleBitTestsSwitchCase - if current case range has few destination and 1782 /// range span less, than machine word bitwidth, encode case range into series 1783 /// of masks and emit bit tests with these masks. 1784 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1785 CaseRecVector& WorkList, 1786 Value* SV, 1787 MachineBasicBlock* Default){ 1788 EVT PTy = TLI.getPointerTy(); 1789 unsigned IntPtrBits = PTy.getSizeInBits(); 1790 1791 Case& FrontCase = *CR.Range.first; 1792 Case& BackCase = *(CR.Range.second-1); 1793 1794 // Get the MachineFunction which holds the current MBB. This is used when 1795 // inserting any additional MBBs necessary to represent the switch. 1796 MachineFunction *CurMF = FuncInfo.MF; 1797 1798 // If target does not have legal shift left, do not emit bit tests at all. 1799 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1800 return false; 1801 1802 size_t numCmps = 0; 1803 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1804 I!=E; ++I) { 1805 // Single case counts one, case range - two. 1806 numCmps += (I->Low == I->High ? 1 : 2); 1807 } 1808 1809 // Count unique destinations 1810 SmallSet<MachineBasicBlock*, 4> Dests; 1811 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1812 Dests.insert(I->BB); 1813 if (Dests.size() > 3) 1814 // Don't bother the code below, if there are too much unique destinations 1815 return false; 1816 } 1817 DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' 1818 << "Total number of comparisons: " << numCmps << '\n'); 1819 1820 // Compute span of values. 1821 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1822 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1823 APInt cmpRange = maxValue - minValue; 1824 1825 DEBUG(errs() << "Compare range: " << cmpRange << '\n' 1826 << "Low bound: " << minValue << '\n' 1827 << "High bound: " << maxValue << '\n'); 1828 1829 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1830 (!(Dests.size() == 1 && numCmps >= 3) && 1831 !(Dests.size() == 2 && numCmps >= 5) && 1832 !(Dests.size() >= 3 && numCmps >= 6))) 1833 return false; 1834 1835 DEBUG(errs() << "Emitting bit tests\n"); 1836 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1837 1838 // Optimize the case where all the case values fit in a 1839 // word without having to subtract minValue. In this case, 1840 // we can optimize away the subtraction. 1841 if (minValue.isNonNegative() && 1842 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1843 cmpRange = maxValue; 1844 } else { 1845 lowBound = minValue; 1846 } 1847 1848 CaseBitsVector CasesBits; 1849 unsigned i, count = 0; 1850 1851 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1852 MachineBasicBlock* Dest = I->BB; 1853 for (i = 0; i < count; ++i) 1854 if (Dest == CasesBits[i].BB) 1855 break; 1856 1857 if (i == count) { 1858 assert((count < 3) && "Too much destinations to test!"); 1859 CasesBits.push_back(CaseBits(0, Dest, 0)); 1860 count++; 1861 } 1862 1863 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1864 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1865 1866 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1867 uint64_t hi = (highValue - lowBound).getZExtValue(); 1868 1869 for (uint64_t j = lo; j <= hi; j++) { 1870 CasesBits[i].Mask |= 1ULL << j; 1871 CasesBits[i].Bits++; 1872 } 1873 1874 } 1875 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1876 1877 BitTestInfo BTC; 1878 1879 // Figure out which block is immediately after the current one. 1880 MachineFunction::iterator BBI = CR.CaseBB; 1881 ++BBI; 1882 1883 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1884 1885 DEBUG(errs() << "Cases:\n"); 1886 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1887 DEBUG(errs() << "Mask: " << CasesBits[i].Mask 1888 << ", Bits: " << CasesBits[i].Bits 1889 << ", BB: " << CasesBits[i].BB << '\n'); 1890 1891 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1892 CurMF->insert(BBI, CaseBB); 1893 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1894 CaseBB, 1895 CasesBits[i].BB)); 1896 1897 // Put SV in a virtual register to make it available from the new blocks. 1898 ExportFromCurrentBlock(SV); 1899 } 1900 1901 BitTestBlock BTB(lowBound, cmpRange, SV, 1902 -1U, (CR.CaseBB == CurMBB), 1903 CR.CaseBB, Default, BTC); 1904 1905 if (CR.CaseBB == CurMBB) 1906 visitBitTestHeader(BTB); 1907 1908 BitTestCases.push_back(BTB); 1909 1910 return true; 1911 } 1912 1913 1914 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1915 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1916 const SwitchInst& SI) { 1917 size_t numCmps = 0; 1918 1919 // Start with "simple" cases 1920 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1921 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1922 Cases.push_back(Case(SI.getSuccessorValue(i), 1923 SI.getSuccessorValue(i), 1924 SMBB)); 1925 } 1926 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1927 1928 // Merge case into clusters 1929 if (Cases.size() >= 2) 1930 // Must recompute end() each iteration because it may be 1931 // invalidated by erase if we hold on to it 1932 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1933 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1934 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1935 MachineBasicBlock* nextBB = J->BB; 1936 MachineBasicBlock* currentBB = I->BB; 1937 1938 // If the two neighboring cases go to the same destination, merge them 1939 // into a single case. 1940 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1941 I->High = J->High; 1942 J = Cases.erase(J); 1943 } else { 1944 I = J++; 1945 } 1946 } 1947 1948 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1949 if (I->Low != I->High) 1950 // A range counts double, since it requires two compares. 1951 ++numCmps; 1952 } 1953 1954 return numCmps; 1955 } 1956 1957 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 1958 // Figure out which block is immediately after the current one. 1959 MachineBasicBlock *NextBlock = 0; 1960 1961 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1962 1963 // If there is only the default destination, branch to it if it is not the 1964 // next basic block. Otherwise, just fall through. 1965 if (SI.getNumOperands() == 2) { 1966 // Update machine-CFG edges. 1967 1968 // If this is not a fall-through branch, emit the branch. 1969 CurMBB->addSuccessor(Default); 1970 if (Default != NextBlock) { 1971 SDValue Val = DAG.getNode(ISD::BR, getCurDebugLoc(), 1972 MVT::Other, getControlRoot(), 1973 DAG.getBasicBlock(Default)); 1974 DAG.setRoot(Val); 1975 1976 if (DisableScheduling) 1977 DAG.AssignOrdering(Val.getNode(), SDNodeOrder); 1978 } 1979 1980 return; 1981 } 1982 1983 // If there are any non-default case statements, create a vector of Cases 1984 // representing each one, and sort the vector so that we can efficiently 1985 // create a binary search tree from them. 1986 CaseVector Cases; 1987 size_t numCmps = Clusterify(Cases, SI); 1988 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() 1989 << ". Total compares: " << numCmps << '\n'); 1990 numCmps = 0; 1991 1992 // Get the Value to be switched on and default basic blocks, which will be 1993 // inserted into CaseBlock records, representing basic blocks in the binary 1994 // search tree. 1995 Value *SV = SI.getOperand(0); 1996 1997 // Push the initial CaseRec onto the worklist 1998 CaseRecVector WorkList; 1999 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2000 2001 while (!WorkList.empty()) { 2002 // Grab a record representing a case range to process off the worklist 2003 CaseRec CR = WorkList.back(); 2004 WorkList.pop_back(); 2005 2006 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2007 continue; 2008 2009 // If the range has few cases (two or less) emit a series of specific 2010 // tests. 2011 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2012 continue; 2013 2014 // If the switch has more than 5 blocks, and at least 40% dense, and the 2015 // target supports indirect branches, then emit a jump table rather than 2016 // lowering the switch to a binary tree of conditional branches. 2017 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2018 continue; 2019 2020 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2021 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2022 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2023 } 2024 } 2025 2026 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 2027 // Update machine-CFG edges. 2028 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2029 CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); 2030 2031 SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2032 MVT::Other, getControlRoot(), 2033 getValue(I.getAddress())); 2034 DAG.setRoot(Res); 2035 2036 if (DisableScheduling) 2037 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2038 } 2039 2040 void SelectionDAGBuilder::visitFSub(User &I) { 2041 // -0.0 - X --> fneg 2042 const Type *Ty = I.getType(); 2043 if (isa<VectorType>(Ty)) { 2044 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2045 const VectorType *DestTy = cast<VectorType>(I.getType()); 2046 const Type *ElTy = DestTy->getElementType(); 2047 unsigned VL = DestTy->getNumElements(); 2048 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2049 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2050 if (CV == CNZ) { 2051 SDValue Op2 = getValue(I.getOperand(1)); 2052 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2053 Op2.getValueType(), Op2); 2054 setValue(&I, Res); 2055 2056 if (DisableScheduling) 2057 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2058 2059 return; 2060 } 2061 } 2062 } 2063 2064 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2065 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2066 SDValue Op2 = getValue(I.getOperand(1)); 2067 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2068 Op2.getValueType(), Op2); 2069 setValue(&I, Res); 2070 2071 if (DisableScheduling) 2072 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2073 2074 return; 2075 } 2076 2077 visitBinary(I, ISD::FSUB); 2078 } 2079 2080 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2081 SDValue Op1 = getValue(I.getOperand(0)); 2082 SDValue Op2 = getValue(I.getOperand(1)); 2083 SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(), 2084 Op1.getValueType(), Op1, Op2); 2085 setValue(&I, Res); 2086 2087 if (DisableScheduling) 2088 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2089 } 2090 2091 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2092 SDValue Op1 = getValue(I.getOperand(0)); 2093 SDValue Op2 = getValue(I.getOperand(1)); 2094 if (!isa<VectorType>(I.getType()) && 2095 Op2.getValueType() != TLI.getShiftAmountTy()) { 2096 // If the operand is smaller than the shift count type, promote it. 2097 EVT PTy = TLI.getPointerTy(); 2098 EVT STy = TLI.getShiftAmountTy(); 2099 if (STy.bitsGT(Op2.getValueType())) 2100 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2101 TLI.getShiftAmountTy(), Op2); 2102 // If the operand is larger than the shift count type but the shift 2103 // count type has enough bits to represent any shift value, truncate 2104 // it now. This is a common case and it exposes the truncate to 2105 // optimization early. 2106 else if (STy.getSizeInBits() >= 2107 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2108 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2109 TLI.getShiftAmountTy(), Op2); 2110 // Otherwise we'll need to temporarily settle for some other 2111 // convenient type; type legalization will make adjustments as 2112 // needed. 2113 else if (PTy.bitsLT(Op2.getValueType())) 2114 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2115 TLI.getPointerTy(), Op2); 2116 else if (PTy.bitsGT(Op2.getValueType())) 2117 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2118 TLI.getPointerTy(), Op2); 2119 } 2120 2121 SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(), 2122 Op1.getValueType(), Op1, Op2); 2123 setValue(&I, Res); 2124 2125 if (DisableScheduling) 2126 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2127 } 2128 2129 void SelectionDAGBuilder::visitICmp(User &I) { 2130 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2131 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2132 predicate = IC->getPredicate(); 2133 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2134 predicate = ICmpInst::Predicate(IC->getPredicate()); 2135 SDValue Op1 = getValue(I.getOperand(0)); 2136 SDValue Op2 = getValue(I.getOperand(1)); 2137 ISD::CondCode Opcode = getICmpCondCode(predicate); 2138 2139 EVT DestVT = TLI.getValueType(I.getType()); 2140 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode); 2141 setValue(&I, Res); 2142 2143 if (DisableScheduling) 2144 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2145 } 2146 2147 void SelectionDAGBuilder::visitFCmp(User &I) { 2148 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2149 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2150 predicate = FC->getPredicate(); 2151 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2152 predicate = FCmpInst::Predicate(FC->getPredicate()); 2153 SDValue Op1 = getValue(I.getOperand(0)); 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 ISD::CondCode Condition = getFCmpCondCode(predicate); 2156 EVT DestVT = TLI.getValueType(I.getType()); 2157 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition); 2158 setValue(&I, Res); 2159 2160 if (DisableScheduling) 2161 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2162 } 2163 2164 void SelectionDAGBuilder::visitSelect(User &I) { 2165 SmallVector<EVT, 4> ValueVTs; 2166 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2167 unsigned NumValues = ValueVTs.size(); 2168 if (NumValues == 0) return; 2169 2170 SmallVector<SDValue, 4> Values(NumValues); 2171 SDValue Cond = getValue(I.getOperand(0)); 2172 SDValue TrueVal = getValue(I.getOperand(1)); 2173 SDValue FalseVal = getValue(I.getOperand(2)); 2174 2175 for (unsigned i = 0; i != NumValues; ++i) { 2176 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2177 TrueVal.getNode()->getValueType(i), Cond, 2178 SDValue(TrueVal.getNode(), 2179 TrueVal.getResNo() + i), 2180 SDValue(FalseVal.getNode(), 2181 FalseVal.getResNo() + i)); 2182 2183 if (DisableScheduling) 2184 DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder); 2185 } 2186 2187 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2188 DAG.getVTList(&ValueVTs[0], NumValues), 2189 &Values[0], NumValues); 2190 setValue(&I, Res); 2191 2192 if (DisableScheduling) 2193 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2194 } 2195 2196 void SelectionDAGBuilder::visitTrunc(User &I) { 2197 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2198 SDValue N = getValue(I.getOperand(0)); 2199 EVT DestVT = TLI.getValueType(I.getType()); 2200 SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N); 2201 setValue(&I, Res); 2202 2203 if (DisableScheduling) 2204 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2205 } 2206 2207 void SelectionDAGBuilder::visitZExt(User &I) { 2208 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2209 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2210 SDValue N = getValue(I.getOperand(0)); 2211 EVT DestVT = TLI.getValueType(I.getType()); 2212 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N); 2213 setValue(&I, Res); 2214 2215 if (DisableScheduling) 2216 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2217 } 2218 2219 void SelectionDAGBuilder::visitSExt(User &I) { 2220 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2221 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2222 SDValue N = getValue(I.getOperand(0)); 2223 EVT DestVT = TLI.getValueType(I.getType()); 2224 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N); 2225 setValue(&I, Res); 2226 2227 if (DisableScheduling) 2228 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2229 } 2230 2231 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2232 // FPTrunc is never a no-op cast, no need to check 2233 SDValue N = getValue(I.getOperand(0)); 2234 EVT DestVT = TLI.getValueType(I.getType()); 2235 SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2236 DestVT, N, DAG.getIntPtrConstant(0)); 2237 setValue(&I, Res); 2238 2239 if (DisableScheduling) 2240 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2241 } 2242 2243 void SelectionDAGBuilder::visitFPExt(User &I){ 2244 // FPTrunc is never a no-op cast, no need to check 2245 SDValue N = getValue(I.getOperand(0)); 2246 EVT DestVT = TLI.getValueType(I.getType()); 2247 SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N); 2248 setValue(&I, Res); 2249 2250 if (DisableScheduling) 2251 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2252 } 2253 2254 void SelectionDAGBuilder::visitFPToUI(User &I) { 2255 // FPToUI is never a no-op cast, no need to check 2256 SDValue N = getValue(I.getOperand(0)); 2257 EVT DestVT = TLI.getValueType(I.getType()); 2258 SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N); 2259 setValue(&I, Res); 2260 2261 if (DisableScheduling) 2262 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2263 } 2264 2265 void SelectionDAGBuilder::visitFPToSI(User &I) { 2266 // FPToSI is never a no-op cast, no need to check 2267 SDValue N = getValue(I.getOperand(0)); 2268 EVT DestVT = TLI.getValueType(I.getType()); 2269 SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N); 2270 setValue(&I, Res); 2271 2272 if (DisableScheduling) 2273 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2274 } 2275 2276 void SelectionDAGBuilder::visitUIToFP(User &I) { 2277 // UIToFP is never a no-op cast, no need to check 2278 SDValue N = getValue(I.getOperand(0)); 2279 EVT DestVT = TLI.getValueType(I.getType()); 2280 SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N); 2281 setValue(&I, Res); 2282 2283 if (DisableScheduling) 2284 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2285 } 2286 2287 void SelectionDAGBuilder::visitSIToFP(User &I){ 2288 // SIToFP is never a no-op cast, no need to check 2289 SDValue N = getValue(I.getOperand(0)); 2290 EVT DestVT = TLI.getValueType(I.getType()); 2291 SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N); 2292 setValue(&I, Res); 2293 2294 if (DisableScheduling) 2295 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2296 } 2297 2298 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2299 // What to do depends on the size of the integer and the size of the pointer. 2300 // We can either truncate, zero extend, or no-op, accordingly. 2301 SDValue N = getValue(I.getOperand(0)); 2302 EVT SrcVT = N.getValueType(); 2303 EVT DestVT = TLI.getValueType(I.getType()); 2304 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2305 setValue(&I, Res); 2306 2307 if (DisableScheduling) 2308 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2309 } 2310 2311 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2312 // What to do depends on the size of the integer and the size of the pointer. 2313 // We can either truncate, zero extend, or no-op, accordingly. 2314 SDValue N = getValue(I.getOperand(0)); 2315 EVT SrcVT = N.getValueType(); 2316 EVT DestVT = TLI.getValueType(I.getType()); 2317 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2318 setValue(&I, Res); 2319 2320 if (DisableScheduling) 2321 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2322 } 2323 2324 void SelectionDAGBuilder::visitBitCast(User &I) { 2325 SDValue N = getValue(I.getOperand(0)); 2326 EVT DestVT = TLI.getValueType(I.getType()); 2327 2328 // BitCast assures us that source and destination are the same size so this is 2329 // either a BIT_CONVERT or a no-op. 2330 if (DestVT != N.getValueType()) { 2331 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2332 DestVT, N); // convert types. 2333 setValue(&I, Res); 2334 2335 if (DisableScheduling) 2336 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2337 } else { 2338 setValue(&I, N); // noop cast. 2339 } 2340 } 2341 2342 void SelectionDAGBuilder::visitInsertElement(User &I) { 2343 SDValue InVec = getValue(I.getOperand(0)); 2344 SDValue InVal = getValue(I.getOperand(1)); 2345 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2346 TLI.getPointerTy(), 2347 getValue(I.getOperand(2))); 2348 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2349 TLI.getValueType(I.getType()), 2350 InVec, InVal, InIdx); 2351 setValue(&I, Res); 2352 2353 if (DisableScheduling) 2354 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2355 } 2356 2357 void SelectionDAGBuilder::visitExtractElement(User &I) { 2358 SDValue InVec = getValue(I.getOperand(0)); 2359 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2360 TLI.getPointerTy(), 2361 getValue(I.getOperand(1))); 2362 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2363 TLI.getValueType(I.getType()), InVec, InIdx); 2364 setValue(&I, Res); 2365 2366 if (DisableScheduling) 2367 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2368 } 2369 2370 2371 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2372 // from SIndx and increasing to the element length (undefs are allowed). 2373 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2374 unsigned MaskNumElts = Mask.size(); 2375 for (unsigned i = 0; i != MaskNumElts; ++i) 2376 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2377 return false; 2378 return true; 2379 } 2380 2381 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2382 SmallVector<int, 8> Mask; 2383 SDValue Src1 = getValue(I.getOperand(0)); 2384 SDValue Src2 = getValue(I.getOperand(1)); 2385 2386 // Convert the ConstantVector mask operand into an array of ints, with -1 2387 // representing undef values. 2388 SmallVector<Constant*, 8> MaskElts; 2389 cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 2390 MaskElts); 2391 unsigned MaskNumElts = MaskElts.size(); 2392 for (unsigned i = 0; i != MaskNumElts; ++i) { 2393 if (isa<UndefValue>(MaskElts[i])) 2394 Mask.push_back(-1); 2395 else 2396 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2397 } 2398 2399 EVT VT = TLI.getValueType(I.getType()); 2400 EVT SrcVT = Src1.getValueType(); 2401 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2402 2403 if (SrcNumElts == MaskNumElts) { 2404 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2405 &Mask[0])); 2406 return; 2407 } 2408 2409 // Normalize the shuffle vector since mask and vector length don't match. 2410 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2411 // Mask is longer than the source vectors and is a multiple of the source 2412 // vectors. We can use concatenate vector to make the mask and vectors 2413 // lengths match. 2414 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2415 // The shuffle is concatenating two vectors together. 2416 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2417 VT, Src1, Src2)); 2418 return; 2419 } 2420 2421 // Pad both vectors with undefs to make them the same length as the mask. 2422 unsigned NumConcat = MaskNumElts / SrcNumElts; 2423 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2424 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2425 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2426 2427 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2428 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2429 MOps1[0] = Src1; 2430 MOps2[0] = Src2; 2431 2432 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2433 getCurDebugLoc(), VT, 2434 &MOps1[0], NumConcat); 2435 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2436 getCurDebugLoc(), VT, 2437 &MOps2[0], NumConcat); 2438 2439 // Readjust mask for new input vector length. 2440 SmallVector<int, 8> MappedOps; 2441 for (unsigned i = 0; i != MaskNumElts; ++i) { 2442 int Idx = Mask[i]; 2443 if (Idx < (int)SrcNumElts) 2444 MappedOps.push_back(Idx); 2445 else 2446 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2447 } 2448 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2449 &MappedOps[0])); 2450 return; 2451 } 2452 2453 if (SrcNumElts > MaskNumElts) { 2454 // Analyze the access pattern of the vector to see if we can extract 2455 // two subvectors and do the shuffle. The analysis is done by calculating 2456 // the range of elements the mask access on both vectors. 2457 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2458 int MaxRange[2] = {-1, -1}; 2459 2460 for (unsigned i = 0; i != MaskNumElts; ++i) { 2461 int Idx = Mask[i]; 2462 int Input = 0; 2463 if (Idx < 0) 2464 continue; 2465 2466 if (Idx >= (int)SrcNumElts) { 2467 Input = 1; 2468 Idx -= SrcNumElts; 2469 } 2470 if (Idx > MaxRange[Input]) 2471 MaxRange[Input] = Idx; 2472 if (Idx < MinRange[Input]) 2473 MinRange[Input] = Idx; 2474 } 2475 2476 // Check if the access is smaller than the vector size and can we find 2477 // a reasonable extract index. 2478 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. 2479 int StartIdx[2]; // StartIdx to extract from 2480 for (int Input=0; Input < 2; ++Input) { 2481 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2482 RangeUse[Input] = 0; // Unused 2483 StartIdx[Input] = 0; 2484 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2485 // Fits within range but we should see if we can find a good 2486 // start index that is a multiple of the mask length. 2487 if (MaxRange[Input] < (int)MaskNumElts) { 2488 RangeUse[Input] = 1; // Extract from beginning of the vector 2489 StartIdx[Input] = 0; 2490 } else { 2491 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2492 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2493 StartIdx[Input] + MaskNumElts < SrcNumElts) 2494 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2495 } 2496 } 2497 } 2498 2499 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2500 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2501 return; 2502 } 2503 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2504 // Extract appropriate subvector and generate a vector shuffle 2505 for (int Input=0; Input < 2; ++Input) { 2506 SDValue& Src = Input == 0 ? Src1 : Src2; 2507 if (RangeUse[Input] == 0) { 2508 Src = DAG.getUNDEF(VT); 2509 } else { 2510 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2511 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2512 } 2513 } 2514 // Calculate new mask. 2515 SmallVector<int, 8> MappedOps; 2516 for (unsigned i = 0; i != MaskNumElts; ++i) { 2517 int Idx = Mask[i]; 2518 if (Idx < 0) 2519 MappedOps.push_back(Idx); 2520 else if (Idx < (int)SrcNumElts) 2521 MappedOps.push_back(Idx - StartIdx[0]); 2522 else 2523 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2524 } 2525 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2526 &MappedOps[0])); 2527 return; 2528 } 2529 } 2530 2531 // We can't use either concat vectors or extract subvectors so fall back to 2532 // replacing the shuffle with extract and build vector. 2533 // to insert and build vector. 2534 EVT EltVT = VT.getVectorElementType(); 2535 EVT PtrVT = TLI.getPointerTy(); 2536 SmallVector<SDValue,8> Ops; 2537 for (unsigned i = 0; i != MaskNumElts; ++i) { 2538 if (Mask[i] < 0) { 2539 Ops.push_back(DAG.getUNDEF(EltVT)); 2540 } else { 2541 int Idx = Mask[i]; 2542 if (Idx < (int)SrcNumElts) 2543 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2544 EltVT, Src1, DAG.getConstant(Idx, PtrVT))); 2545 else 2546 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2547 EltVT, Src2, 2548 DAG.getConstant(Idx - SrcNumElts, PtrVT))); 2549 } 2550 } 2551 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2552 VT, &Ops[0], Ops.size())); 2553 } 2554 2555 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2556 const Value *Op0 = I.getOperand(0); 2557 const Value *Op1 = I.getOperand(1); 2558 const Type *AggTy = I.getType(); 2559 const Type *ValTy = Op1->getType(); 2560 bool IntoUndef = isa<UndefValue>(Op0); 2561 bool FromUndef = isa<UndefValue>(Op1); 2562 2563 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2564 I.idx_begin(), I.idx_end()); 2565 2566 SmallVector<EVT, 4> AggValueVTs; 2567 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2568 SmallVector<EVT, 4> ValValueVTs; 2569 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2570 2571 unsigned NumAggValues = AggValueVTs.size(); 2572 unsigned NumValValues = ValValueVTs.size(); 2573 SmallVector<SDValue, 4> Values(NumAggValues); 2574 2575 SDValue Agg = getValue(Op0); 2576 SDValue Val = getValue(Op1); 2577 unsigned i = 0; 2578 // Copy the beginning value(s) from the original aggregate. 2579 for (; i != LinearIndex; ++i) 2580 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2581 SDValue(Agg.getNode(), Agg.getResNo() + i); 2582 // Copy values from the inserted value(s). 2583 for (; i != LinearIndex + NumValValues; ++i) 2584 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2585 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2586 // Copy remaining value(s) from the original aggregate. 2587 for (; i != NumAggValues; ++i) 2588 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2589 SDValue(Agg.getNode(), Agg.getResNo() + i); 2590 2591 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2592 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2593 &Values[0], NumAggValues)); 2594 } 2595 2596 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2597 const Value *Op0 = I.getOperand(0); 2598 const Type *AggTy = Op0->getType(); 2599 const Type *ValTy = I.getType(); 2600 bool OutOfUndef = isa<UndefValue>(Op0); 2601 2602 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2603 I.idx_begin(), I.idx_end()); 2604 2605 SmallVector<EVT, 4> ValValueVTs; 2606 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2607 2608 unsigned NumValValues = ValValueVTs.size(); 2609 SmallVector<SDValue, 4> Values(NumValValues); 2610 2611 SDValue Agg = getValue(Op0); 2612 // Copy out the selected value(s). 2613 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2614 Values[i - LinearIndex] = 2615 OutOfUndef ? 2616 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2617 SDValue(Agg.getNode(), Agg.getResNo() + i); 2618 2619 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2620 DAG.getVTList(&ValValueVTs[0], NumValValues), 2621 &Values[0], NumValValues)); 2622 } 2623 2624 2625 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2626 SDValue N = getValue(I.getOperand(0)); 2627 const Type *Ty = I.getOperand(0)->getType(); 2628 2629 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2630 OI != E; ++OI) { 2631 Value *Idx = *OI; 2632 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2633 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2634 if (Field) { 2635 // N = N + Offset 2636 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2637 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2638 DAG.getIntPtrConstant(Offset)); 2639 } 2640 Ty = StTy->getElementType(Field); 2641 } else { 2642 Ty = cast<SequentialType>(Ty)->getElementType(); 2643 2644 // If this is a constant subscript, handle it quickly. 2645 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2646 if (CI->getZExtValue() == 0) continue; 2647 uint64_t Offs = 2648 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2649 SDValue OffsVal; 2650 EVT PTy = TLI.getPointerTy(); 2651 unsigned PtrBits = PTy.getSizeInBits(); 2652 if (PtrBits < 64) { 2653 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2654 TLI.getPointerTy(), 2655 DAG.getConstant(Offs, MVT::i64)); 2656 } else 2657 OffsVal = DAG.getIntPtrConstant(Offs); 2658 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2659 OffsVal); 2660 continue; 2661 } 2662 2663 // N = N + Idx * ElementSize; 2664 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2665 TD->getTypeAllocSize(Ty)); 2666 SDValue IdxN = getValue(Idx); 2667 2668 // If the index is smaller or larger than intptr_t, truncate or extend 2669 // it. 2670 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2671 2672 // If this is a multiply by a power of two, turn it into a shl 2673 // immediately. This is a very common case. 2674 if (ElementSize != 1) { 2675 if (ElementSize.isPowerOf2()) { 2676 unsigned Amt = ElementSize.logBase2(); 2677 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2678 N.getValueType(), IdxN, 2679 DAG.getConstant(Amt, TLI.getPointerTy())); 2680 } else { 2681 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2682 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2683 N.getValueType(), IdxN, Scale); 2684 } 2685 } 2686 2687 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2688 N.getValueType(), N, IdxN); 2689 } 2690 } 2691 setValue(&I, N); 2692 } 2693 2694 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2695 // If this is a fixed sized alloca in the entry block of the function, 2696 // allocate it statically on the stack. 2697 if (FuncInfo.StaticAllocaMap.count(&I)) 2698 return; // getValue will auto-populate this. 2699 2700 const Type *Ty = I.getAllocatedType(); 2701 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2702 unsigned Align = 2703 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2704 I.getAlignment()); 2705 2706 SDValue AllocSize = getValue(I.getArraySize()); 2707 2708 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2709 AllocSize, 2710 DAG.getConstant(TySize, AllocSize.getValueType())); 2711 2712 2713 2714 EVT IntPtr = TLI.getPointerTy(); 2715 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2716 2717 // Handle alignment. If the requested alignment is less than or equal to 2718 // the stack alignment, ignore it. If the size is greater than or equal to 2719 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2720 unsigned StackAlign = 2721 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2722 if (Align <= StackAlign) 2723 Align = 0; 2724 2725 // Round the size of the allocation up to the stack alignment size 2726 // by add SA-1 to the size. 2727 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2728 AllocSize.getValueType(), AllocSize, 2729 DAG.getIntPtrConstant(StackAlign-1)); 2730 // Mask out the low bits for alignment purposes. 2731 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2732 AllocSize.getValueType(), AllocSize, 2733 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2734 2735 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2736 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2737 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2738 VTs, Ops, 3); 2739 setValue(&I, DSA); 2740 DAG.setRoot(DSA.getValue(1)); 2741 2742 // Inform the Frame Information that we have just allocated a variable-sized 2743 // object. 2744 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2745 } 2746 2747 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2748 const Value *SV = I.getOperand(0); 2749 SDValue Ptr = getValue(SV); 2750 2751 const Type *Ty = I.getType(); 2752 bool isVolatile = I.isVolatile(); 2753 unsigned Alignment = I.getAlignment(); 2754 2755 SmallVector<EVT, 4> ValueVTs; 2756 SmallVector<uint64_t, 4> Offsets; 2757 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2758 unsigned NumValues = ValueVTs.size(); 2759 if (NumValues == 0) 2760 return; 2761 2762 SDValue Root; 2763 bool ConstantMemory = false; 2764 if (I.isVolatile()) 2765 // Serialize volatile loads with other side effects. 2766 Root = getRoot(); 2767 else if (AA->pointsToConstantMemory(SV)) { 2768 // Do not serialize (non-volatile) loads of constant memory with anything. 2769 Root = DAG.getEntryNode(); 2770 ConstantMemory = true; 2771 } else { 2772 // Do not serialize non-volatile loads against each other. 2773 Root = DAG.getRoot(); 2774 } 2775 2776 SmallVector<SDValue, 4> Values(NumValues); 2777 SmallVector<SDValue, 4> Chains(NumValues); 2778 EVT PtrVT = Ptr.getValueType(); 2779 for (unsigned i = 0; i != NumValues; ++i) { 2780 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2781 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2782 PtrVT, Ptr, 2783 DAG.getConstant(Offsets[i], PtrVT)), 2784 SV, Offsets[i], isVolatile, Alignment); 2785 Values[i] = L; 2786 Chains[i] = L.getValue(1); 2787 } 2788 2789 if (!ConstantMemory) { 2790 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2791 MVT::Other, 2792 &Chains[0], NumValues); 2793 if (isVolatile) 2794 DAG.setRoot(Chain); 2795 else 2796 PendingLoads.push_back(Chain); 2797 } 2798 2799 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2800 DAG.getVTList(&ValueVTs[0], NumValues), 2801 &Values[0], NumValues)); 2802 } 2803 2804 2805 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2806 Value *SrcV = I.getOperand(0); 2807 Value *PtrV = I.getOperand(1); 2808 2809 SmallVector<EVT, 4> ValueVTs; 2810 SmallVector<uint64_t, 4> Offsets; 2811 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2812 unsigned NumValues = ValueVTs.size(); 2813 if (NumValues == 0) 2814 return; 2815 2816 // Get the lowered operands. Note that we do this after 2817 // checking if NumResults is zero, because with zero results 2818 // the operands won't have values in the map. 2819 SDValue Src = getValue(SrcV); 2820 SDValue Ptr = getValue(PtrV); 2821 2822 SDValue Root = getRoot(); 2823 SmallVector<SDValue, 4> Chains(NumValues); 2824 EVT PtrVT = Ptr.getValueType(); 2825 bool isVolatile = I.isVolatile(); 2826 unsigned Alignment = I.getAlignment(); 2827 for (unsigned i = 0; i != NumValues; ++i) 2828 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2829 SDValue(Src.getNode(), Src.getResNo() + i), 2830 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2831 PtrVT, Ptr, 2832 DAG.getConstant(Offsets[i], PtrVT)), 2833 PtrV, Offsets[i], isVolatile, Alignment); 2834 2835 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2836 MVT::Other, &Chains[0], NumValues)); 2837 } 2838 2839 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2840 /// node. 2841 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 2842 unsigned Intrinsic) { 2843 bool HasChain = !I.doesNotAccessMemory(); 2844 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2845 2846 // Build the operand list. 2847 SmallVector<SDValue, 8> Ops; 2848 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2849 if (OnlyLoad) { 2850 // We don't need to serialize loads against other loads. 2851 Ops.push_back(DAG.getRoot()); 2852 } else { 2853 Ops.push_back(getRoot()); 2854 } 2855 } 2856 2857 // Info is set by getTgtMemInstrinsic 2858 TargetLowering::IntrinsicInfo Info; 2859 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2860 2861 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2862 if (!IsTgtIntrinsic) 2863 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2864 2865 // Add all operands of the call to the operand list. 2866 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2867 SDValue Op = getValue(I.getOperand(i)); 2868 assert(TLI.isTypeLegal(Op.getValueType()) && 2869 "Intrinsic uses a non-legal type?"); 2870 Ops.push_back(Op); 2871 } 2872 2873 SmallVector<EVT, 4> ValueVTs; 2874 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2875 #ifndef NDEBUG 2876 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2877 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2878 "Intrinsic uses a non-legal type?"); 2879 } 2880 #endif // NDEBUG 2881 if (HasChain) 2882 ValueVTs.push_back(MVT::Other); 2883 2884 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2885 2886 // Create the node. 2887 SDValue Result; 2888 if (IsTgtIntrinsic) { 2889 // This is target intrinsic that touches memory 2890 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2891 VTs, &Ops[0], Ops.size(), 2892 Info.memVT, Info.ptrVal, Info.offset, 2893 Info.align, Info.vol, 2894 Info.readMem, Info.writeMem); 2895 } 2896 else if (!HasChain) 2897 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2898 VTs, &Ops[0], Ops.size()); 2899 else if (I.getType() != Type::getVoidTy(*DAG.getContext())) 2900 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2901 VTs, &Ops[0], Ops.size()); 2902 else 2903 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2904 VTs, &Ops[0], Ops.size()); 2905 2906 if (HasChain) { 2907 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2908 if (OnlyLoad) 2909 PendingLoads.push_back(Chain); 2910 else 2911 DAG.setRoot(Chain); 2912 } 2913 if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 2914 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2915 EVT VT = TLI.getValueType(PTy); 2916 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2917 } 2918 setValue(&I, Result); 2919 } 2920 } 2921 2922 /// GetSignificand - Get the significand and build it into a floating-point 2923 /// number with exponent of 1: 2924 /// 2925 /// Op = (Op & 0x007fffff) | 0x3f800000; 2926 /// 2927 /// where Op is the hexidecimal representation of floating point value. 2928 static SDValue 2929 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2930 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2931 DAG.getConstant(0x007fffff, MVT::i32)); 2932 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2933 DAG.getConstant(0x3f800000, MVT::i32)); 2934 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2935 } 2936 2937 /// GetExponent - Get the exponent: 2938 /// 2939 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2940 /// 2941 /// where Op is the hexidecimal representation of floating point value. 2942 static SDValue 2943 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2944 DebugLoc dl) { 2945 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2946 DAG.getConstant(0x7f800000, MVT::i32)); 2947 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2948 DAG.getConstant(23, TLI.getPointerTy())); 2949 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2950 DAG.getConstant(127, MVT::i32)); 2951 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2952 } 2953 2954 /// getF32Constant - Get 32-bit floating point constant. 2955 static SDValue 2956 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2957 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2958 } 2959 2960 /// Inlined utility function to implement binary input atomic intrinsics for 2961 /// visitIntrinsicCall: I is a call instruction 2962 /// Op is the associated NodeType for I 2963 const char * 2964 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 2965 SDValue Root = getRoot(); 2966 SDValue L = 2967 DAG.getAtomic(Op, getCurDebugLoc(), 2968 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2969 Root, 2970 getValue(I.getOperand(1)), 2971 getValue(I.getOperand(2)), 2972 I.getOperand(1)); 2973 setValue(&I, L); 2974 DAG.setRoot(L.getValue(1)); 2975 return 0; 2976 } 2977 2978 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2979 const char * 2980 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 2981 SDValue Op1 = getValue(I.getOperand(1)); 2982 SDValue Op2 = getValue(I.getOperand(2)); 2983 2984 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2985 SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); 2986 2987 setValue(&I, Result); 2988 return 0; 2989 } 2990 2991 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2992 /// limited-precision mode. 2993 void 2994 SelectionDAGBuilder::visitExp(CallInst &I) { 2995 SDValue result; 2996 DebugLoc dl = getCurDebugLoc(); 2997 2998 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3000 SDValue Op = getValue(I.getOperand(1)); 3001 3002 // Put the exponent in the right bit position for later addition to the 3003 // final result: 3004 // 3005 // #define LOG2OFe 1.4426950f 3006 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3007 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3008 getF32Constant(DAG, 0x3fb8aa3b)); 3009 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3010 3011 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3012 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3013 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3014 3015 // IntegerPartOfX <<= 23; 3016 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3017 DAG.getConstant(23, TLI.getPointerTy())); 3018 3019 if (LimitFloatPrecision <= 6) { 3020 // For floating-point precision of 6: 3021 // 3022 // TwoToFractionalPartOfX = 3023 // 0.997535578f + 3024 // (0.735607626f + 0.252464424f * x) * x; 3025 // 3026 // error 0.0144103317, which is 6 bits 3027 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3028 getF32Constant(DAG, 0x3e814304)); 3029 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3030 getF32Constant(DAG, 0x3f3c50c8)); 3031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3032 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3033 getF32Constant(DAG, 0x3f7f5e7e)); 3034 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3035 3036 // Add the exponent into the result in integer domain. 3037 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3038 TwoToFracPartOfX, IntegerPartOfX); 3039 3040 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3041 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3042 // For floating-point precision of 12: 3043 // 3044 // TwoToFractionalPartOfX = 3045 // 0.999892986f + 3046 // (0.696457318f + 3047 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3048 // 3049 // 0.000107046256 error, which is 13 to 14 bits 3050 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3051 getF32Constant(DAG, 0x3da235e3)); 3052 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3053 getF32Constant(DAG, 0x3e65b8f3)); 3054 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3055 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3056 getF32Constant(DAG, 0x3f324b07)); 3057 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3058 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3059 getF32Constant(DAG, 0x3f7ff8fd)); 3060 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3061 3062 // Add the exponent into the result in integer domain. 3063 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3064 TwoToFracPartOfX, IntegerPartOfX); 3065 3066 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3067 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3068 // For floating-point precision of 18: 3069 // 3070 // TwoToFractionalPartOfX = 3071 // 0.999999982f + 3072 // (0.693148872f + 3073 // (0.240227044f + 3074 // (0.554906021e-1f + 3075 // (0.961591928e-2f + 3076 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3077 // 3078 // error 2.47208000*10^(-7), which is better than 18 bits 3079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3080 getF32Constant(DAG, 0x3924b03e)); 3081 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3082 getF32Constant(DAG, 0x3ab24b87)); 3083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3084 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3085 getF32Constant(DAG, 0x3c1d8c17)); 3086 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3087 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3088 getF32Constant(DAG, 0x3d634a1d)); 3089 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3090 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3091 getF32Constant(DAG, 0x3e75fe14)); 3092 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3093 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3094 getF32Constant(DAG, 0x3f317234)); 3095 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3096 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3097 getF32Constant(DAG, 0x3f800000)); 3098 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3099 MVT::i32, t13); 3100 3101 // Add the exponent into the result in integer domain. 3102 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3103 TwoToFracPartOfX, IntegerPartOfX); 3104 3105 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3106 } 3107 } else { 3108 // No special expansion. 3109 result = DAG.getNode(ISD::FEXP, dl, 3110 getValue(I.getOperand(1)).getValueType(), 3111 getValue(I.getOperand(1))); 3112 } 3113 3114 setValue(&I, result); 3115 } 3116 3117 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3118 /// limited-precision mode. 3119 void 3120 SelectionDAGBuilder::visitLog(CallInst &I) { 3121 SDValue result; 3122 DebugLoc dl = getCurDebugLoc(); 3123 3124 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3125 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3126 SDValue Op = getValue(I.getOperand(1)); 3127 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3128 3129 // Scale the exponent by log(2) [0.69314718f]. 3130 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3131 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3132 getF32Constant(DAG, 0x3f317218)); 3133 3134 // Get the significand and build it into a floating-point number with 3135 // exponent of 1. 3136 SDValue X = GetSignificand(DAG, Op1, dl); 3137 3138 if (LimitFloatPrecision <= 6) { 3139 // For floating-point precision of 6: 3140 // 3141 // LogofMantissa = 3142 // -1.1609546f + 3143 // (1.4034025f - 0.23903021f * x) * x; 3144 // 3145 // error 0.0034276066, which is better than 8 bits 3146 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3147 getF32Constant(DAG, 0xbe74c456)); 3148 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3149 getF32Constant(DAG, 0x3fb3a2b1)); 3150 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3151 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3152 getF32Constant(DAG, 0x3f949a29)); 3153 3154 result = DAG.getNode(ISD::FADD, dl, 3155 MVT::f32, LogOfExponent, LogOfMantissa); 3156 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3157 // For floating-point precision of 12: 3158 // 3159 // LogOfMantissa = 3160 // -1.7417939f + 3161 // (2.8212026f + 3162 // (-1.4699568f + 3163 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3164 // 3165 // error 0.000061011436, which is 14 bits 3166 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3167 getF32Constant(DAG, 0xbd67b6d6)); 3168 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3169 getF32Constant(DAG, 0x3ee4f4b8)); 3170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3171 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3172 getF32Constant(DAG, 0x3fbc278b)); 3173 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3174 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3175 getF32Constant(DAG, 0x40348e95)); 3176 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3177 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3178 getF32Constant(DAG, 0x3fdef31a)); 3179 3180 result = DAG.getNode(ISD::FADD, dl, 3181 MVT::f32, LogOfExponent, LogOfMantissa); 3182 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3183 // For floating-point precision of 18: 3184 // 3185 // LogOfMantissa = 3186 // -2.1072184f + 3187 // (4.2372794f + 3188 // (-3.7029485f + 3189 // (2.2781945f + 3190 // (-0.87823314f + 3191 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3192 // 3193 // error 0.0000023660568, which is better than 18 bits 3194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3195 getF32Constant(DAG, 0xbc91e5ac)); 3196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3197 getF32Constant(DAG, 0x3e4350aa)); 3198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3199 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3200 getF32Constant(DAG, 0x3f60d3e3)); 3201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3203 getF32Constant(DAG, 0x4011cdf0)); 3204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3205 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3206 getF32Constant(DAG, 0x406cfd1c)); 3207 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3208 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3209 getF32Constant(DAG, 0x408797cb)); 3210 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3211 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3212 getF32Constant(DAG, 0x4006dcab)); 3213 3214 result = DAG.getNode(ISD::FADD, dl, 3215 MVT::f32, LogOfExponent, LogOfMantissa); 3216 } 3217 } else { 3218 // No special expansion. 3219 result = DAG.getNode(ISD::FLOG, dl, 3220 getValue(I.getOperand(1)).getValueType(), 3221 getValue(I.getOperand(1))); 3222 } 3223 3224 setValue(&I, result); 3225 } 3226 3227 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3228 /// limited-precision mode. 3229 void 3230 SelectionDAGBuilder::visitLog2(CallInst &I) { 3231 SDValue result; 3232 DebugLoc dl = getCurDebugLoc(); 3233 3234 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3235 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3236 SDValue Op = getValue(I.getOperand(1)); 3237 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3238 3239 // Get the exponent. 3240 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3241 3242 // Get the significand and build it into a floating-point number with 3243 // exponent of 1. 3244 SDValue X = GetSignificand(DAG, Op1, dl); 3245 3246 // Different possible minimax approximations of significand in 3247 // floating-point for various degrees of accuracy over [1,2]. 3248 if (LimitFloatPrecision <= 6) { 3249 // For floating-point precision of 6: 3250 // 3251 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3252 // 3253 // error 0.0049451742, which is more than 7 bits 3254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3255 getF32Constant(DAG, 0xbeb08fe0)); 3256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3257 getF32Constant(DAG, 0x40019463)); 3258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3259 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3260 getF32Constant(DAG, 0x3fd6633d)); 3261 3262 result = DAG.getNode(ISD::FADD, dl, 3263 MVT::f32, LogOfExponent, Log2ofMantissa); 3264 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3265 // For floating-point precision of 12: 3266 // 3267 // Log2ofMantissa = 3268 // -2.51285454f + 3269 // (4.07009056f + 3270 // (-2.12067489f + 3271 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3272 // 3273 // error 0.0000876136000, which is better than 13 bits 3274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3275 getF32Constant(DAG, 0xbda7262e)); 3276 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3277 getF32Constant(DAG, 0x3f25280b)); 3278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3279 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3280 getF32Constant(DAG, 0x4007b923)); 3281 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3282 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3283 getF32Constant(DAG, 0x40823e2f)); 3284 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3285 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3286 getF32Constant(DAG, 0x4020d29c)); 3287 3288 result = DAG.getNode(ISD::FADD, dl, 3289 MVT::f32, LogOfExponent, Log2ofMantissa); 3290 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3291 // For floating-point precision of 18: 3292 // 3293 // Log2ofMantissa = 3294 // -3.0400495f + 3295 // (6.1129976f + 3296 // (-5.3420409f + 3297 // (3.2865683f + 3298 // (-1.2669343f + 3299 // (0.27515199f - 3300 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3301 // 3302 // error 0.0000018516, which is better than 18 bits 3303 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3304 getF32Constant(DAG, 0xbcd2769e)); 3305 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3306 getF32Constant(DAG, 0x3e8ce0b9)); 3307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3308 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3309 getF32Constant(DAG, 0x3fa22ae7)); 3310 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3311 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3312 getF32Constant(DAG, 0x40525723)); 3313 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3314 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3315 getF32Constant(DAG, 0x40aaf200)); 3316 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3317 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3318 getF32Constant(DAG, 0x40c39dad)); 3319 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3320 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3321 getF32Constant(DAG, 0x4042902c)); 3322 3323 result = DAG.getNode(ISD::FADD, dl, 3324 MVT::f32, LogOfExponent, Log2ofMantissa); 3325 } 3326 } else { 3327 // No special expansion. 3328 result = DAG.getNode(ISD::FLOG2, dl, 3329 getValue(I.getOperand(1)).getValueType(), 3330 getValue(I.getOperand(1))); 3331 } 3332 3333 setValue(&I, result); 3334 } 3335 3336 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3337 /// limited-precision mode. 3338 void 3339 SelectionDAGBuilder::visitLog10(CallInst &I) { 3340 SDValue result; 3341 DebugLoc dl = getCurDebugLoc(); 3342 3343 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3344 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3345 SDValue Op = getValue(I.getOperand(1)); 3346 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3347 3348 // Scale the exponent by log10(2) [0.30102999f]. 3349 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3350 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3351 getF32Constant(DAG, 0x3e9a209a)); 3352 3353 // Get the significand and build it into a floating-point number with 3354 // exponent of 1. 3355 SDValue X = GetSignificand(DAG, Op1, dl); 3356 3357 if (LimitFloatPrecision <= 6) { 3358 // For floating-point precision of 6: 3359 // 3360 // Log10ofMantissa = 3361 // -0.50419619f + 3362 // (0.60948995f - 0.10380950f * x) * x; 3363 // 3364 // error 0.0014886165, which is 6 bits 3365 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3366 getF32Constant(DAG, 0xbdd49a13)); 3367 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3368 getF32Constant(DAG, 0x3f1c0789)); 3369 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3370 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3371 getF32Constant(DAG, 0x3f011300)); 3372 3373 result = DAG.getNode(ISD::FADD, dl, 3374 MVT::f32, LogOfExponent, Log10ofMantissa); 3375 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3376 // For floating-point precision of 12: 3377 // 3378 // Log10ofMantissa = 3379 // -0.64831180f + 3380 // (0.91751397f + 3381 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3382 // 3383 // error 0.00019228036, which is better than 12 bits 3384 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3385 getF32Constant(DAG, 0x3d431f31)); 3386 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3387 getF32Constant(DAG, 0x3ea21fb2)); 3388 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3389 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3390 getF32Constant(DAG, 0x3f6ae232)); 3391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3392 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3393 getF32Constant(DAG, 0x3f25f7c3)); 3394 3395 result = DAG.getNode(ISD::FADD, dl, 3396 MVT::f32, LogOfExponent, Log10ofMantissa); 3397 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3398 // For floating-point precision of 18: 3399 // 3400 // Log10ofMantissa = 3401 // -0.84299375f + 3402 // (1.5327582f + 3403 // (-1.0688956f + 3404 // (0.49102474f + 3405 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3406 // 3407 // error 0.0000037995730, which is better than 18 bits 3408 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3409 getF32Constant(DAG, 0x3c5d51ce)); 3410 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3411 getF32Constant(DAG, 0x3e00685a)); 3412 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3413 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3414 getF32Constant(DAG, 0x3efb6798)); 3415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3416 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3417 getF32Constant(DAG, 0x3f88d192)); 3418 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3419 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3420 getF32Constant(DAG, 0x3fc4316c)); 3421 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3422 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3423 getF32Constant(DAG, 0x3f57ce70)); 3424 3425 result = DAG.getNode(ISD::FADD, dl, 3426 MVT::f32, LogOfExponent, Log10ofMantissa); 3427 } 3428 } else { 3429 // No special expansion. 3430 result = DAG.getNode(ISD::FLOG10, dl, 3431 getValue(I.getOperand(1)).getValueType(), 3432 getValue(I.getOperand(1))); 3433 } 3434 3435 setValue(&I, result); 3436 } 3437 3438 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3439 /// limited-precision mode. 3440 void 3441 SelectionDAGBuilder::visitExp2(CallInst &I) { 3442 SDValue result; 3443 DebugLoc dl = getCurDebugLoc(); 3444 3445 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3446 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3447 SDValue Op = getValue(I.getOperand(1)); 3448 3449 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3450 3451 // FractionalPartOfX = x - (float)IntegerPartOfX; 3452 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3453 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3454 3455 // IntegerPartOfX <<= 23; 3456 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3457 DAG.getConstant(23, TLI.getPointerTy())); 3458 3459 if (LimitFloatPrecision <= 6) { 3460 // For floating-point precision of 6: 3461 // 3462 // TwoToFractionalPartOfX = 3463 // 0.997535578f + 3464 // (0.735607626f + 0.252464424f * x) * x; 3465 // 3466 // error 0.0144103317, which is 6 bits 3467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3468 getF32Constant(DAG, 0x3e814304)); 3469 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3470 getF32Constant(DAG, 0x3f3c50c8)); 3471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3473 getF32Constant(DAG, 0x3f7f5e7e)); 3474 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3475 SDValue TwoToFractionalPartOfX = 3476 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3477 3478 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3479 MVT::f32, TwoToFractionalPartOfX); 3480 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3481 // For floating-point precision of 12: 3482 // 3483 // TwoToFractionalPartOfX = 3484 // 0.999892986f + 3485 // (0.696457318f + 3486 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3487 // 3488 // error 0.000107046256, which is 13 to 14 bits 3489 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3490 getF32Constant(DAG, 0x3da235e3)); 3491 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3492 getF32Constant(DAG, 0x3e65b8f3)); 3493 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3494 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3495 getF32Constant(DAG, 0x3f324b07)); 3496 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3497 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3498 getF32Constant(DAG, 0x3f7ff8fd)); 3499 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3500 SDValue TwoToFractionalPartOfX = 3501 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3502 3503 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3504 MVT::f32, TwoToFractionalPartOfX); 3505 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3506 // For floating-point precision of 18: 3507 // 3508 // TwoToFractionalPartOfX = 3509 // 0.999999982f + 3510 // (0.693148872f + 3511 // (0.240227044f + 3512 // (0.554906021e-1f + 3513 // (0.961591928e-2f + 3514 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3515 // error 2.47208000*10^(-7), which is better than 18 bits 3516 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3517 getF32Constant(DAG, 0x3924b03e)); 3518 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3519 getF32Constant(DAG, 0x3ab24b87)); 3520 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3521 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3522 getF32Constant(DAG, 0x3c1d8c17)); 3523 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3524 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3525 getF32Constant(DAG, 0x3d634a1d)); 3526 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3527 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3528 getF32Constant(DAG, 0x3e75fe14)); 3529 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3530 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3531 getF32Constant(DAG, 0x3f317234)); 3532 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3533 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3534 getF32Constant(DAG, 0x3f800000)); 3535 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3536 SDValue TwoToFractionalPartOfX = 3537 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3538 3539 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3540 MVT::f32, TwoToFractionalPartOfX); 3541 } 3542 } else { 3543 // No special expansion. 3544 result = DAG.getNode(ISD::FEXP2, dl, 3545 getValue(I.getOperand(1)).getValueType(), 3546 getValue(I.getOperand(1))); 3547 } 3548 3549 setValue(&I, result); 3550 } 3551 3552 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3553 /// limited-precision mode with x == 10.0f. 3554 void 3555 SelectionDAGBuilder::visitPow(CallInst &I) { 3556 SDValue result; 3557 Value *Val = I.getOperand(1); 3558 DebugLoc dl = getCurDebugLoc(); 3559 bool IsExp10 = false; 3560 3561 if (getValue(Val).getValueType() == MVT::f32 && 3562 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3563 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3564 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3565 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3566 APFloat Ten(10.0f); 3567 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3568 } 3569 } 3570 } 3571 3572 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3573 SDValue Op = getValue(I.getOperand(2)); 3574 3575 // Put the exponent in the right bit position for later addition to the 3576 // final result: 3577 // 3578 // #define LOG2OF10 3.3219281f 3579 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3580 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3581 getF32Constant(DAG, 0x40549a78)); 3582 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3583 3584 // FractionalPartOfX = x - (float)IntegerPartOfX; 3585 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3586 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3587 3588 // IntegerPartOfX <<= 23; 3589 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3590 DAG.getConstant(23, TLI.getPointerTy())); 3591 3592 if (LimitFloatPrecision <= 6) { 3593 // For floating-point precision of 6: 3594 // 3595 // twoToFractionalPartOfX = 3596 // 0.997535578f + 3597 // (0.735607626f + 0.252464424f * x) * x; 3598 // 3599 // error 0.0144103317, which is 6 bits 3600 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3601 getF32Constant(DAG, 0x3e814304)); 3602 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3603 getF32Constant(DAG, 0x3f3c50c8)); 3604 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3605 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3606 getF32Constant(DAG, 0x3f7f5e7e)); 3607 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3608 SDValue TwoToFractionalPartOfX = 3609 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3610 3611 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3612 MVT::f32, TwoToFractionalPartOfX); 3613 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3614 // For floating-point precision of 12: 3615 // 3616 // TwoToFractionalPartOfX = 3617 // 0.999892986f + 3618 // (0.696457318f + 3619 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3620 // 3621 // error 0.000107046256, which is 13 to 14 bits 3622 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3623 getF32Constant(DAG, 0x3da235e3)); 3624 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3625 getF32Constant(DAG, 0x3e65b8f3)); 3626 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3627 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3628 getF32Constant(DAG, 0x3f324b07)); 3629 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3630 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3631 getF32Constant(DAG, 0x3f7ff8fd)); 3632 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3633 SDValue TwoToFractionalPartOfX = 3634 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3635 3636 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3637 MVT::f32, TwoToFractionalPartOfX); 3638 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3639 // For floating-point precision of 18: 3640 // 3641 // TwoToFractionalPartOfX = 3642 // 0.999999982f + 3643 // (0.693148872f + 3644 // (0.240227044f + 3645 // (0.554906021e-1f + 3646 // (0.961591928e-2f + 3647 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3648 // error 2.47208000*10^(-7), which is better than 18 bits 3649 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3650 getF32Constant(DAG, 0x3924b03e)); 3651 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3652 getF32Constant(DAG, 0x3ab24b87)); 3653 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3654 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3655 getF32Constant(DAG, 0x3c1d8c17)); 3656 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3657 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3658 getF32Constant(DAG, 0x3d634a1d)); 3659 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3660 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3661 getF32Constant(DAG, 0x3e75fe14)); 3662 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3663 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3664 getF32Constant(DAG, 0x3f317234)); 3665 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3666 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3667 getF32Constant(DAG, 0x3f800000)); 3668 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3669 SDValue TwoToFractionalPartOfX = 3670 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3671 3672 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3673 MVT::f32, TwoToFractionalPartOfX); 3674 } 3675 } else { 3676 // No special expansion. 3677 result = DAG.getNode(ISD::FPOW, dl, 3678 getValue(I.getOperand(1)).getValueType(), 3679 getValue(I.getOperand(1)), 3680 getValue(I.getOperand(2))); 3681 } 3682 3683 setValue(&I, result); 3684 } 3685 3686 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3687 /// we want to emit this as a call to a named external function, return the name 3688 /// otherwise lower it and return null. 3689 const char * 3690 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3691 DebugLoc dl = getCurDebugLoc(); 3692 switch (Intrinsic) { 3693 default: 3694 // By default, turn this into a target intrinsic node. 3695 visitTargetIntrinsic(I, Intrinsic); 3696 return 0; 3697 case Intrinsic::vastart: visitVAStart(I); return 0; 3698 case Intrinsic::vaend: visitVAEnd(I); return 0; 3699 case Intrinsic::vacopy: visitVACopy(I); return 0; 3700 case Intrinsic::returnaddress: 3701 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3702 getValue(I.getOperand(1)))); 3703 return 0; 3704 case Intrinsic::frameaddress: 3705 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3706 getValue(I.getOperand(1)))); 3707 return 0; 3708 case Intrinsic::setjmp: 3709 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3710 break; 3711 case Intrinsic::longjmp: 3712 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3713 break; 3714 case Intrinsic::memcpy: { 3715 SDValue Op1 = getValue(I.getOperand(1)); 3716 SDValue Op2 = getValue(I.getOperand(2)); 3717 SDValue Op3 = getValue(I.getOperand(3)); 3718 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3719 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3720 I.getOperand(1), 0, I.getOperand(2), 0)); 3721 return 0; 3722 } 3723 case Intrinsic::memset: { 3724 SDValue Op1 = getValue(I.getOperand(1)); 3725 SDValue Op2 = getValue(I.getOperand(2)); 3726 SDValue Op3 = getValue(I.getOperand(3)); 3727 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3728 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 3729 I.getOperand(1), 0)); 3730 return 0; 3731 } 3732 case Intrinsic::memmove: { 3733 SDValue Op1 = getValue(I.getOperand(1)); 3734 SDValue Op2 = getValue(I.getOperand(2)); 3735 SDValue Op3 = getValue(I.getOperand(3)); 3736 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3737 3738 // If the source and destination are known to not be aliases, we can 3739 // lower memmove as memcpy. 3740 uint64_t Size = -1ULL; 3741 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3742 Size = C->getZExtValue(); 3743 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3744 AliasAnalysis::NoAlias) { 3745 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3746 I.getOperand(1), 0, I.getOperand(2), 0)); 3747 return 0; 3748 } 3749 3750 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 3751 I.getOperand(1), 0, I.getOperand(2), 0)); 3752 return 0; 3753 } 3754 case Intrinsic::dbg_stoppoint: 3755 case Intrinsic::dbg_region_start: 3756 case Intrinsic::dbg_region_end: 3757 case Intrinsic::dbg_func_start: 3758 // FIXME - Remove this instructions once the dust settles. 3759 return 0; 3760 case Intrinsic::dbg_declare: { 3761 if (OptLevel != CodeGenOpt::None) 3762 // FIXME: Variable debug info is not supported here. 3763 return 0; 3764 DwarfWriter *DW = DAG.getDwarfWriter(); 3765 if (!DW) 3766 return 0; 3767 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3768 if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) 3769 return 0; 3770 3771 MDNode *Variable = DI.getVariable(); 3772 Value *Address = DI.getAddress(); 3773 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3774 Address = BCI->getOperand(0); 3775 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3776 // Don't handle byval struct arguments or VLAs, for example. 3777 if (!AI) 3778 return 0; 3779 DenseMap<const AllocaInst*, int>::iterator SI = 3780 FuncInfo.StaticAllocaMap.find(AI); 3781 if (SI == FuncInfo.StaticAllocaMap.end()) 3782 return 0; // VLAs. 3783 int FI = SI->second; 3784 3785 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3786 if (MMI) { 3787 MetadataContext &TheMetadata = 3788 DI.getParent()->getContext().getMetadata(); 3789 unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); 3790 MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); 3791 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3792 } 3793 return 0; 3794 } 3795 case Intrinsic::eh_exception: { 3796 // Insert the EXCEPTIONADDR instruction. 3797 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 3798 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3799 SDValue Ops[1]; 3800 Ops[0] = DAG.getRoot(); 3801 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3802 setValue(&I, Op); 3803 DAG.setRoot(Op.getValue(1)); 3804 return 0; 3805 } 3806 3807 case Intrinsic::eh_selector: { 3808 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3809 3810 if (CurMBB->isLandingPad()) 3811 AddCatchInfo(I, MMI, CurMBB); 3812 else { 3813 #ifndef NDEBUG 3814 FuncInfo.CatchInfoLost.insert(&I); 3815 #endif 3816 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3817 unsigned Reg = TLI.getExceptionSelectorRegister(); 3818 if (Reg) CurMBB->addLiveIn(Reg); 3819 } 3820 3821 // Insert the EHSELECTION instruction. 3822 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3823 SDValue Ops[2]; 3824 Ops[0] = getValue(I.getOperand(1)); 3825 Ops[1] = getRoot(); 3826 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3827 3828 DAG.setRoot(Op.getValue(1)); 3829 3830 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3831 return 0; 3832 } 3833 3834 case Intrinsic::eh_typeid_for: { 3835 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3836 3837 if (MMI) { 3838 // Find the type id for the given typeinfo. 3839 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3840 3841 unsigned TypeID = MMI->getTypeIDFor(GV); 3842 setValue(&I, DAG.getConstant(TypeID, MVT::i32)); 3843 } else { 3844 // Return something different to eh_selector. 3845 setValue(&I, DAG.getConstant(1, MVT::i32)); 3846 } 3847 3848 return 0; 3849 } 3850 3851 case Intrinsic::eh_return_i32: 3852 case Intrinsic::eh_return_i64: 3853 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3854 MMI->setCallsEHReturn(true); 3855 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3856 MVT::Other, 3857 getControlRoot(), 3858 getValue(I.getOperand(1)), 3859 getValue(I.getOperand(2)))); 3860 } else { 3861 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3862 } 3863 3864 return 0; 3865 case Intrinsic::eh_unwind_init: 3866 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3867 MMI->setCallsUnwindInit(true); 3868 } 3869 3870 return 0; 3871 3872 case Intrinsic::eh_dwarf_cfa: { 3873 EVT VT = getValue(I.getOperand(1)).getValueType(); 3874 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3875 TLI.getPointerTy()); 3876 3877 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3878 TLI.getPointerTy(), 3879 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3880 TLI.getPointerTy()), 3881 CfaArg); 3882 setValue(&I, DAG.getNode(ISD::ADD, dl, 3883 TLI.getPointerTy(), 3884 DAG.getNode(ISD::FRAMEADDR, dl, 3885 TLI.getPointerTy(), 3886 DAG.getConstant(0, 3887 TLI.getPointerTy())), 3888 Offset)); 3889 return 0; 3890 } 3891 case Intrinsic::convertff: 3892 case Intrinsic::convertfsi: 3893 case Intrinsic::convertfui: 3894 case Intrinsic::convertsif: 3895 case Intrinsic::convertuif: 3896 case Intrinsic::convertss: 3897 case Intrinsic::convertsu: 3898 case Intrinsic::convertus: 3899 case Intrinsic::convertuu: { 3900 ISD::CvtCode Code = ISD::CVT_INVALID; 3901 switch (Intrinsic) { 3902 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3903 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3904 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3905 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3906 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3907 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3908 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3909 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3910 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3911 } 3912 EVT DestVT = TLI.getValueType(I.getType()); 3913 Value* Op1 = I.getOperand(1); 3914 setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3915 DAG.getValueType(DestVT), 3916 DAG.getValueType(getValue(Op1).getValueType()), 3917 getValue(I.getOperand(2)), 3918 getValue(I.getOperand(3)), 3919 Code)); 3920 return 0; 3921 } 3922 3923 case Intrinsic::sqrt: 3924 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3925 getValue(I.getOperand(1)).getValueType(), 3926 getValue(I.getOperand(1)))); 3927 return 0; 3928 case Intrinsic::powi: 3929 setValue(&I, DAG.getNode(ISD::FPOWI, dl, 3930 getValue(I.getOperand(1)).getValueType(), 3931 getValue(I.getOperand(1)), 3932 getValue(I.getOperand(2)))); 3933 return 0; 3934 case Intrinsic::sin: 3935 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3936 getValue(I.getOperand(1)).getValueType(), 3937 getValue(I.getOperand(1)))); 3938 return 0; 3939 case Intrinsic::cos: 3940 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3941 getValue(I.getOperand(1)).getValueType(), 3942 getValue(I.getOperand(1)))); 3943 return 0; 3944 case Intrinsic::log: 3945 visitLog(I); 3946 return 0; 3947 case Intrinsic::log2: 3948 visitLog2(I); 3949 return 0; 3950 case Intrinsic::log10: 3951 visitLog10(I); 3952 return 0; 3953 case Intrinsic::exp: 3954 visitExp(I); 3955 return 0; 3956 case Intrinsic::exp2: 3957 visitExp2(I); 3958 return 0; 3959 case Intrinsic::pow: 3960 visitPow(I); 3961 return 0; 3962 case Intrinsic::pcmarker: { 3963 SDValue Tmp = getValue(I.getOperand(1)); 3964 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 3965 return 0; 3966 } 3967 case Intrinsic::readcyclecounter: { 3968 SDValue Op = getRoot(); 3969 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, 3970 DAG.getVTList(MVT::i64, MVT::Other), 3971 &Op, 1); 3972 setValue(&I, Tmp); 3973 DAG.setRoot(Tmp.getValue(1)); 3974 return 0; 3975 } 3976 case Intrinsic::bswap: 3977 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 3978 getValue(I.getOperand(1)).getValueType(), 3979 getValue(I.getOperand(1)))); 3980 return 0; 3981 case Intrinsic::cttz: { 3982 SDValue Arg = getValue(I.getOperand(1)); 3983 EVT Ty = Arg.getValueType(); 3984 SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); 3985 setValue(&I, result); 3986 return 0; 3987 } 3988 case Intrinsic::ctlz: { 3989 SDValue Arg = getValue(I.getOperand(1)); 3990 EVT Ty = Arg.getValueType(); 3991 SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); 3992 setValue(&I, result); 3993 return 0; 3994 } 3995 case Intrinsic::ctpop: { 3996 SDValue Arg = getValue(I.getOperand(1)); 3997 EVT Ty = Arg.getValueType(); 3998 SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); 3999 setValue(&I, result); 4000 return 0; 4001 } 4002 case Intrinsic::stacksave: { 4003 SDValue Op = getRoot(); 4004 SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, 4005 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4006 setValue(&I, Tmp); 4007 DAG.setRoot(Tmp.getValue(1)); 4008 return 0; 4009 } 4010 case Intrinsic::stackrestore: { 4011 SDValue Tmp = getValue(I.getOperand(1)); 4012 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); 4013 return 0; 4014 } 4015 case Intrinsic::stackprotector: { 4016 // Emit code into the DAG to store the stack guard onto the stack. 4017 MachineFunction &MF = DAG.getMachineFunction(); 4018 MachineFrameInfo *MFI = MF.getFrameInfo(); 4019 EVT PtrTy = TLI.getPointerTy(); 4020 4021 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4022 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4023 4024 int FI = FuncInfo.StaticAllocaMap[Slot]; 4025 MFI->setStackProtectorIndex(FI); 4026 4027 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4028 4029 // Store the stack protector onto the stack. 4030 SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4031 PseudoSourceValue::getFixedStack(FI), 4032 0, true); 4033 setValue(&I, Result); 4034 DAG.setRoot(Result); 4035 return 0; 4036 } 4037 case Intrinsic::objectsize: { 4038 // If we don't know by now, we're never going to know. 4039 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4040 4041 assert(CI && "Non-constant type in __builtin_object_size?"); 4042 4043 SDValue Arg = getValue(I.getOperand(0)); 4044 EVT Ty = Arg.getValueType(); 4045 4046 if (CI->getZExtValue() < 2) 4047 setValue(&I, DAG.getConstant(-1ULL, Ty)); 4048 else 4049 setValue(&I, DAG.getConstant(0, Ty)); 4050 return 0; 4051 } 4052 case Intrinsic::var_annotation: 4053 // Discard annotate attributes 4054 return 0; 4055 4056 case Intrinsic::init_trampoline: { 4057 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4058 4059 SDValue Ops[6]; 4060 Ops[0] = getRoot(); 4061 Ops[1] = getValue(I.getOperand(1)); 4062 Ops[2] = getValue(I.getOperand(2)); 4063 Ops[3] = getValue(I.getOperand(3)); 4064 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4065 Ops[5] = DAG.getSrcValue(F); 4066 4067 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, 4068 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4069 Ops, 6); 4070 4071 setValue(&I, Tmp); 4072 DAG.setRoot(Tmp.getValue(1)); 4073 return 0; 4074 } 4075 4076 case Intrinsic::gcroot: 4077 if (GFI) { 4078 Value *Alloca = I.getOperand(1); 4079 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4080 4081 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4082 GFI->addStackRoot(FI->getIndex(), TypeMap); 4083 } 4084 return 0; 4085 4086 case Intrinsic::gcread: 4087 case Intrinsic::gcwrite: 4088 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4089 return 0; 4090 4091 case Intrinsic::flt_rounds: { 4092 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4093 return 0; 4094 } 4095 4096 case Intrinsic::trap: { 4097 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4098 return 0; 4099 } 4100 4101 case Intrinsic::uadd_with_overflow: 4102 return implVisitAluOverflow(I, ISD::UADDO); 4103 case Intrinsic::sadd_with_overflow: 4104 return implVisitAluOverflow(I, ISD::SADDO); 4105 case Intrinsic::usub_with_overflow: 4106 return implVisitAluOverflow(I, ISD::USUBO); 4107 case Intrinsic::ssub_with_overflow: 4108 return implVisitAluOverflow(I, ISD::SSUBO); 4109 case Intrinsic::umul_with_overflow: 4110 return implVisitAluOverflow(I, ISD::UMULO); 4111 case Intrinsic::smul_with_overflow: 4112 return implVisitAluOverflow(I, ISD::SMULO); 4113 4114 case Intrinsic::prefetch: { 4115 SDValue Ops[4]; 4116 Ops[0] = getRoot(); 4117 Ops[1] = getValue(I.getOperand(1)); 4118 Ops[2] = getValue(I.getOperand(2)); 4119 Ops[3] = getValue(I.getOperand(3)); 4120 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4121 return 0; 4122 } 4123 4124 case Intrinsic::memory_barrier: { 4125 SDValue Ops[6]; 4126 Ops[0] = getRoot(); 4127 for (int x = 1; x < 6; ++x) 4128 Ops[x] = getValue(I.getOperand(x)); 4129 4130 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4131 return 0; 4132 } 4133 case Intrinsic::atomic_cmp_swap: { 4134 SDValue Root = getRoot(); 4135 SDValue L = 4136 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4137 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4138 Root, 4139 getValue(I.getOperand(1)), 4140 getValue(I.getOperand(2)), 4141 getValue(I.getOperand(3)), 4142 I.getOperand(1)); 4143 setValue(&I, L); 4144 DAG.setRoot(L.getValue(1)); 4145 return 0; 4146 } 4147 case Intrinsic::atomic_load_add: 4148 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4149 case Intrinsic::atomic_load_sub: 4150 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4151 case Intrinsic::atomic_load_or: 4152 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4153 case Intrinsic::atomic_load_xor: 4154 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4155 case Intrinsic::atomic_load_and: 4156 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4157 case Intrinsic::atomic_load_nand: 4158 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4159 case Intrinsic::atomic_load_max: 4160 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4161 case Intrinsic::atomic_load_min: 4162 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4163 case Intrinsic::atomic_load_umin: 4164 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4165 case Intrinsic::atomic_load_umax: 4166 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4167 case Intrinsic::atomic_swap: 4168 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4169 4170 case Intrinsic::invariant_start: 4171 case Intrinsic::lifetime_start: 4172 // Discard region information. 4173 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4174 return 0; 4175 case Intrinsic::invariant_end: 4176 case Intrinsic::lifetime_end: 4177 // Discard region information. 4178 return 0; 4179 } 4180 } 4181 4182 /// Test if the given instruction is in a position to be optimized 4183 /// with a tail-call. This roughly means that it's in a block with 4184 /// a return and there's nothing that needs to be scheduled 4185 /// between it and the return. 4186 /// 4187 /// This function only tests target-independent requirements. 4188 /// For target-dependent requirements, a target should override 4189 /// TargetLowering::IsEligibleForTailCallOptimization. 4190 /// 4191 static bool 4192 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, 4193 const TargetLowering &TLI) { 4194 const BasicBlock *ExitBB = I->getParent(); 4195 const TerminatorInst *Term = ExitBB->getTerminator(); 4196 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4197 const Function *F = ExitBB->getParent(); 4198 4199 // The block must end in a return statement or an unreachable. 4200 if (!Ret && !isa<UnreachableInst>(Term)) return false; 4201 4202 // If I will have a chain, make sure no other instruction that will have a 4203 // chain interposes between I and the return. 4204 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4205 !I->isSafeToSpeculativelyExecute()) 4206 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4207 --BBI) { 4208 if (&*BBI == I) 4209 break; 4210 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4211 !BBI->isSafeToSpeculativelyExecute()) 4212 return false; 4213 } 4214 4215 // If the block ends with a void return or unreachable, it doesn't matter 4216 // what the call's return type is. 4217 if (!Ret || Ret->getNumOperands() == 0) return true; 4218 4219 // If the return value is undef, it doesn't matter what the call's 4220 // return type is. 4221 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4222 4223 // Conservatively require the attributes of the call to match those of 4224 // the return. Ignore noalias because it doesn't affect the call sequence. 4225 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4226 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4227 return false; 4228 4229 // Otherwise, make sure the unmodified return value of I is the return value. 4230 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4231 U = dyn_cast<Instruction>(U->getOperand(0))) { 4232 if (!U) 4233 return false; 4234 if (!U->hasOneUse()) 4235 return false; 4236 if (U == I) 4237 break; 4238 // Check for a truly no-op truncate. 4239 if (isa<TruncInst>(U) && 4240 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4241 continue; 4242 // Check for a truly no-op bitcast. 4243 if (isa<BitCastInst>(U) && 4244 (U->getOperand(0)->getType() == U->getType() || 4245 (isa<PointerType>(U->getOperand(0)->getType()) && 4246 isa<PointerType>(U->getType())))) 4247 continue; 4248 // Otherwise it's not a true no-op. 4249 return false; 4250 } 4251 4252 return true; 4253 } 4254 4255 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4256 bool isTailCall, 4257 MachineBasicBlock *LandingPad) { 4258 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4259 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4260 const Type *RetTy = FTy->getReturnType(); 4261 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4262 unsigned BeginLabel = 0, EndLabel = 0; 4263 4264 TargetLowering::ArgListTy Args; 4265 TargetLowering::ArgListEntry Entry; 4266 Args.reserve(CS.arg_size()); 4267 4268 // Check whether the function can return without sret-demotion. 4269 SmallVector<EVT, 4> OutVTs; 4270 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4271 SmallVector<uint64_t, 4> Offsets; 4272 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4273 OutVTs, OutsFlags, TLI, &Offsets); 4274 4275 4276 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4277 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4278 4279 SDValue DemoteStackSlot; 4280 4281 if (!CanLowerReturn) { 4282 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4283 FTy->getReturnType()); 4284 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4285 FTy->getReturnType()); 4286 MachineFunction &MF = DAG.getMachineFunction(); 4287 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4288 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4289 4290 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4291 Entry.Node = DemoteStackSlot; 4292 Entry.Ty = StackSlotPtrType; 4293 Entry.isSExt = false; 4294 Entry.isZExt = false; 4295 Entry.isInReg = false; 4296 Entry.isSRet = true; 4297 Entry.isNest = false; 4298 Entry.isByVal = false; 4299 Entry.Alignment = Align; 4300 Args.push_back(Entry); 4301 RetTy = Type::getVoidTy(FTy->getContext()); 4302 } 4303 4304 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4305 i != e; ++i) { 4306 SDValue ArgNode = getValue(*i); 4307 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4308 4309 unsigned attrInd = i - CS.arg_begin() + 1; 4310 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4311 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4312 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4313 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4314 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4315 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4316 Entry.Alignment = CS.getParamAlignment(attrInd); 4317 Args.push_back(Entry); 4318 } 4319 4320 if (LandingPad && MMI) { 4321 // Insert a label before the invoke call to mark the try range. This can be 4322 // used to detect deletion of the invoke via the MachineModuleInfo. 4323 BeginLabel = MMI->NextLabelID(); 4324 4325 // Both PendingLoads and PendingExports must be flushed here; 4326 // this call might not return. 4327 (void)getRoot(); 4328 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4329 getControlRoot(), BeginLabel)); 4330 } 4331 4332 // Check if target-independent constraints permit a tail call here. 4333 // Target-dependent constraints are checked within TLI.LowerCallTo. 4334 if (isTailCall && 4335 !isInTailCallPosition(CS.getInstruction(), 4336 CS.getAttributes().getRetAttributes(), 4337 TLI)) 4338 isTailCall = false; 4339 4340 std::pair<SDValue,SDValue> Result = 4341 TLI.LowerCallTo(getRoot(), RetTy, 4342 CS.paramHasAttr(0, Attribute::SExt), 4343 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4344 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4345 CS.getCallingConv(), 4346 isTailCall, 4347 !CS.getInstruction()->use_empty(), 4348 Callee, Args, DAG, getCurDebugLoc()); 4349 assert((isTailCall || Result.second.getNode()) && 4350 "Non-null chain expected with non-tail call!"); 4351 assert((Result.second.getNode() || !Result.first.getNode()) && 4352 "Null value expected with tail call!"); 4353 if (Result.first.getNode()) 4354 setValue(CS.getInstruction(), Result.first); 4355 else if (!CanLowerReturn && Result.second.getNode()) { 4356 // The instruction result is the result of loading from the 4357 // hidden sret parameter. 4358 SmallVector<EVT, 1> PVTs; 4359 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4360 4361 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4362 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4363 EVT PtrVT = PVTs[0]; 4364 unsigned NumValues = OutVTs.size(); 4365 SmallVector<SDValue, 4> Values(NumValues); 4366 SmallVector<SDValue, 4> Chains(NumValues); 4367 4368 for (unsigned i = 0; i < NumValues; ++i) { 4369 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4370 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, 4371 DAG.getConstant(Offsets[i], PtrVT)), 4372 NULL, Offsets[i], false, 1); 4373 Values[i] = L; 4374 Chains[i] = L.getValue(1); 4375 } 4376 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4377 MVT::Other, &Chains[0], NumValues); 4378 PendingLoads.push_back(Chain); 4379 4380 setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, 4381 getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), 4382 &Values[0], NumValues)); 4383 } 4384 // As a special case, a null chain means that a tail call has 4385 // been emitted and the DAG root is already updated. 4386 if (Result.second.getNode()) 4387 DAG.setRoot(Result.second); 4388 else 4389 HasTailCall = true; 4390 4391 if (LandingPad && MMI) { 4392 // Insert a label at the end of the invoke call to mark the try range. This 4393 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4394 EndLabel = MMI->NextLabelID(); 4395 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4396 getRoot(), EndLabel)); 4397 4398 // Inform MachineModuleInfo of range. 4399 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4400 } 4401 } 4402 4403 4404 void SelectionDAGBuilder::visitCall(CallInst &I) { 4405 const char *RenameFn = 0; 4406 if (Function *F = I.getCalledFunction()) { 4407 if (F->isDeclaration()) { 4408 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4409 if (II) { 4410 if (unsigned IID = II->getIntrinsicID(F)) { 4411 RenameFn = visitIntrinsicCall(I, IID); 4412 if (!RenameFn) 4413 return; 4414 } 4415 } 4416 if (unsigned IID = F->getIntrinsicID()) { 4417 RenameFn = visitIntrinsicCall(I, IID); 4418 if (!RenameFn) 4419 return; 4420 } 4421 } 4422 4423 // Check for well-known libc/libm calls. If the function is internal, it 4424 // can't be a library call. 4425 if (!F->hasLocalLinkage() && F->hasName()) { 4426 StringRef Name = F->getName(); 4427 if (Name == "copysign" || Name == "copysignf") { 4428 if (I.getNumOperands() == 3 && // Basic sanity checks. 4429 I.getOperand(1)->getType()->isFloatingPoint() && 4430 I.getType() == I.getOperand(1)->getType() && 4431 I.getType() == I.getOperand(2)->getType()) { 4432 SDValue LHS = getValue(I.getOperand(1)); 4433 SDValue RHS = getValue(I.getOperand(2)); 4434 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4435 LHS.getValueType(), LHS, RHS)); 4436 return; 4437 } 4438 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4439 if (I.getNumOperands() == 2 && // Basic sanity checks. 4440 I.getOperand(1)->getType()->isFloatingPoint() && 4441 I.getType() == I.getOperand(1)->getType()) { 4442 SDValue Tmp = getValue(I.getOperand(1)); 4443 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4444 Tmp.getValueType(), Tmp)); 4445 return; 4446 } 4447 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4448 if (I.getNumOperands() == 2 && // Basic sanity checks. 4449 I.getOperand(1)->getType()->isFloatingPoint() && 4450 I.getType() == I.getOperand(1)->getType() && 4451 I.onlyReadsMemory()) { 4452 SDValue Tmp = getValue(I.getOperand(1)); 4453 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4454 Tmp.getValueType(), Tmp)); 4455 return; 4456 } 4457 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4458 if (I.getNumOperands() == 2 && // Basic sanity checks. 4459 I.getOperand(1)->getType()->isFloatingPoint() && 4460 I.getType() == I.getOperand(1)->getType() && 4461 I.onlyReadsMemory()) { 4462 SDValue Tmp = getValue(I.getOperand(1)); 4463 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4464 Tmp.getValueType(), Tmp)); 4465 return; 4466 } 4467 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4468 if (I.getNumOperands() == 2 && // Basic sanity checks. 4469 I.getOperand(1)->getType()->isFloatingPoint() && 4470 I.getType() == I.getOperand(1)->getType() && 4471 I.onlyReadsMemory()) { 4472 SDValue Tmp = getValue(I.getOperand(1)); 4473 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4474 Tmp.getValueType(), Tmp)); 4475 return; 4476 } 4477 } 4478 } 4479 } else if (isa<InlineAsm>(I.getOperand(0))) { 4480 visitInlineAsm(&I); 4481 return; 4482 } 4483 4484 SDValue Callee; 4485 if (!RenameFn) 4486 Callee = getValue(I.getOperand(0)); 4487 else 4488 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4489 4490 // Check if we can potentially perform a tail call. More detailed 4491 // checking is be done within LowerCallTo, after more information 4492 // about the call is known. 4493 bool isTailCall = PerformTailCallOpt && I.isTailCall(); 4494 4495 LowerCallTo(&I, Callee, isTailCall); 4496 } 4497 4498 4499 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4500 /// this value and returns the result as a ValueVT value. This uses 4501 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4502 /// If the Flag pointer is NULL, no flag is used. 4503 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4504 SDValue &Chain, 4505 SDValue *Flag) const { 4506 // Assemble the legal parts into the final values. 4507 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4508 SmallVector<SDValue, 8> Parts; 4509 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4510 // Copy the legal parts from the registers. 4511 EVT ValueVT = ValueVTs[Value]; 4512 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4513 EVT RegisterVT = RegVTs[Value]; 4514 4515 Parts.resize(NumRegs); 4516 for (unsigned i = 0; i != NumRegs; ++i) { 4517 SDValue P; 4518 if (Flag == 0) 4519 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4520 else { 4521 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4522 *Flag = P.getValue(2); 4523 } 4524 Chain = P.getValue(1); 4525 4526 // If the source register was virtual and if we know something about it, 4527 // add an assert node. 4528 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4529 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4530 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4531 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4532 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4533 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4534 4535 unsigned RegSize = RegisterVT.getSizeInBits(); 4536 unsigned NumSignBits = LOI.NumSignBits; 4537 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4538 4539 // FIXME: We capture more information than the dag can represent. For 4540 // now, just use the tightest assertzext/assertsext possible. 4541 bool isSExt = true; 4542 EVT FromVT(MVT::Other); 4543 if (NumSignBits == RegSize) 4544 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4545 else if (NumZeroBits >= RegSize-1) 4546 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4547 else if (NumSignBits > RegSize-8) 4548 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4549 else if (NumZeroBits >= RegSize-8) 4550 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4551 else if (NumSignBits > RegSize-16) 4552 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4553 else if (NumZeroBits >= RegSize-16) 4554 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4555 else if (NumSignBits > RegSize-32) 4556 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4557 else if (NumZeroBits >= RegSize-32) 4558 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4559 4560 if (FromVT != MVT::Other) { 4561 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4562 RegisterVT, P, DAG.getValueType(FromVT)); 4563 4564 } 4565 } 4566 } 4567 4568 Parts[i] = P; 4569 } 4570 4571 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4572 NumRegs, RegisterVT, ValueVT); 4573 Part += NumRegs; 4574 Parts.clear(); 4575 } 4576 4577 return DAG.getNode(ISD::MERGE_VALUES, dl, 4578 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4579 &Values[0], ValueVTs.size()); 4580 } 4581 4582 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4583 /// specified value into the registers specified by this object. This uses 4584 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4585 /// If the Flag pointer is NULL, no flag is used. 4586 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4587 SDValue &Chain, SDValue *Flag) const { 4588 // Get the list of the values's legal parts. 4589 unsigned NumRegs = Regs.size(); 4590 SmallVector<SDValue, 8> Parts(NumRegs); 4591 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4592 EVT ValueVT = ValueVTs[Value]; 4593 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4594 EVT RegisterVT = RegVTs[Value]; 4595 4596 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 4597 &Parts[Part], NumParts, RegisterVT); 4598 Part += NumParts; 4599 } 4600 4601 // Copy the parts into the registers. 4602 SmallVector<SDValue, 8> Chains(NumRegs); 4603 for (unsigned i = 0; i != NumRegs; ++i) { 4604 SDValue Part; 4605 if (Flag == 0) 4606 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4607 else { 4608 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4609 *Flag = Part.getValue(1); 4610 } 4611 Chains[i] = Part.getValue(0); 4612 } 4613 4614 if (NumRegs == 1 || Flag) 4615 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4616 // flagged to it. That is the CopyToReg nodes and the user are considered 4617 // a single scheduling unit. If we create a TokenFactor and return it as 4618 // chain, then the TokenFactor is both a predecessor (operand) of the 4619 // user as well as a successor (the TF operands are flagged to the user). 4620 // c1, f1 = CopyToReg 4621 // c2, f2 = CopyToReg 4622 // c3 = TokenFactor c1, c2 4623 // ... 4624 // = op c3, ..., f2 4625 Chain = Chains[NumRegs-1]; 4626 else 4627 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4628 } 4629 4630 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4631 /// operand list. This adds the code marker and includes the number of 4632 /// values added into it. 4633 void RegsForValue::AddInlineAsmOperands(unsigned Code, 4634 bool HasMatching,unsigned MatchingIdx, 4635 SelectionDAG &DAG, 4636 std::vector<SDValue> &Ops) const { 4637 EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 4638 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 4639 unsigned Flag = Code | (Regs.size() << 3); 4640 if (HasMatching) 4641 Flag |= 0x80000000 | (MatchingIdx << 16); 4642 Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); 4643 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4644 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4645 EVT RegisterVT = RegVTs[Value]; 4646 for (unsigned i = 0; i != NumRegs; ++i) { 4647 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4648 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4649 } 4650 } 4651 } 4652 4653 /// isAllocatableRegister - If the specified register is safe to allocate, 4654 /// i.e. it isn't a stack pointer or some other special register, return the 4655 /// register class for the register. Otherwise, return null. 4656 static const TargetRegisterClass * 4657 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4658 const TargetLowering &TLI, 4659 const TargetRegisterInfo *TRI) { 4660 EVT FoundVT = MVT::Other; 4661 const TargetRegisterClass *FoundRC = 0; 4662 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4663 E = TRI->regclass_end(); RCI != E; ++RCI) { 4664 EVT ThisVT = MVT::Other; 4665 4666 const TargetRegisterClass *RC = *RCI; 4667 // If none of the the value types for this register class are valid, we 4668 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4669 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4670 I != E; ++I) { 4671 if (TLI.isTypeLegal(*I)) { 4672 // If we have already found this register in a different register class, 4673 // choose the one with the largest VT specified. For example, on 4674 // PowerPC, we favor f64 register classes over f32. 4675 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4676 ThisVT = *I; 4677 break; 4678 } 4679 } 4680 } 4681 4682 if (ThisVT == MVT::Other) continue; 4683 4684 // NOTE: This isn't ideal. In particular, this might allocate the 4685 // frame pointer in functions that need it (due to them not being taken 4686 // out of allocation, because a variable sized allocation hasn't been seen 4687 // yet). This is a slight code pessimization, but should still work. 4688 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4689 E = RC->allocation_order_end(MF); I != E; ++I) 4690 if (*I == Reg) { 4691 // We found a matching register class. Keep looking at others in case 4692 // we find one with larger registers that this physreg is also in. 4693 FoundRC = RC; 4694 FoundVT = ThisVT; 4695 break; 4696 } 4697 } 4698 return FoundRC; 4699 } 4700 4701 4702 namespace llvm { 4703 /// AsmOperandInfo - This contains information for each constraint that we are 4704 /// lowering. 4705 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4706 public TargetLowering::AsmOperandInfo { 4707 public: 4708 /// CallOperand - If this is the result output operand or a clobber 4709 /// this is null, otherwise it is the incoming operand to the CallInst. 4710 /// This gets modified as the asm is processed. 4711 SDValue CallOperand; 4712 4713 /// AssignedRegs - If this is a register or register class operand, this 4714 /// contains the set of register corresponding to the operand. 4715 RegsForValue AssignedRegs; 4716 4717 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4718 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4719 } 4720 4721 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4722 /// busy in OutputRegs/InputRegs. 4723 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4724 std::set<unsigned> &OutputRegs, 4725 std::set<unsigned> &InputRegs, 4726 const TargetRegisterInfo &TRI) const { 4727 if (isOutReg) { 4728 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4729 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4730 } 4731 if (isInReg) { 4732 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4733 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4734 } 4735 } 4736 4737 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4738 /// corresponds to. If there is no Value* for this operand, it returns 4739 /// MVT::Other. 4740 EVT getCallOperandValEVT(LLVMContext &Context, 4741 const TargetLowering &TLI, 4742 const TargetData *TD) const { 4743 if (CallOperandVal == 0) return MVT::Other; 4744 4745 if (isa<BasicBlock>(CallOperandVal)) 4746 return TLI.getPointerTy(); 4747 4748 const llvm::Type *OpTy = CallOperandVal->getType(); 4749 4750 // If this is an indirect operand, the operand is a pointer to the 4751 // accessed type. 4752 if (isIndirect) 4753 OpTy = cast<PointerType>(OpTy)->getElementType(); 4754 4755 // If OpTy is not a single value, it may be a struct/union that we 4756 // can tile with integers. 4757 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4758 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4759 switch (BitSize) { 4760 default: break; 4761 case 1: 4762 case 8: 4763 case 16: 4764 case 32: 4765 case 64: 4766 case 128: 4767 OpTy = IntegerType::get(Context, BitSize); 4768 break; 4769 } 4770 } 4771 4772 return TLI.getValueType(OpTy, true); 4773 } 4774 4775 private: 4776 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4777 /// specified set. 4778 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4779 const TargetRegisterInfo &TRI) { 4780 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4781 Regs.insert(Reg); 4782 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4783 for (; *Aliases; ++Aliases) 4784 Regs.insert(*Aliases); 4785 } 4786 }; 4787 } // end llvm namespace. 4788 4789 4790 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4791 /// specified operand. We prefer to assign virtual registers, to allow the 4792 /// register allocator to handle the assignment process. However, if the asm 4793 /// uses features that we can't model on machineinstrs, we have SDISel do the 4794 /// allocation. This produces generally horrible, but correct, code. 4795 /// 4796 /// OpInfo describes the operand. 4797 /// Input and OutputRegs are the set of already allocated physical registers. 4798 /// 4799 void SelectionDAGBuilder:: 4800 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4801 std::set<unsigned> &OutputRegs, 4802 std::set<unsigned> &InputRegs) { 4803 LLVMContext &Context = FuncInfo.Fn->getContext(); 4804 4805 // Compute whether this value requires an input register, an output register, 4806 // or both. 4807 bool isOutReg = false; 4808 bool isInReg = false; 4809 switch (OpInfo.Type) { 4810 case InlineAsm::isOutput: 4811 isOutReg = true; 4812 4813 // If there is an input constraint that matches this, we need to reserve 4814 // the input register so no other inputs allocate to it. 4815 isInReg = OpInfo.hasMatchingInput(); 4816 break; 4817 case InlineAsm::isInput: 4818 isInReg = true; 4819 isOutReg = false; 4820 break; 4821 case InlineAsm::isClobber: 4822 isOutReg = true; 4823 isInReg = true; 4824 break; 4825 } 4826 4827 4828 MachineFunction &MF = DAG.getMachineFunction(); 4829 SmallVector<unsigned, 4> Regs; 4830 4831 // If this is a constraint for a single physreg, or a constraint for a 4832 // register class, find it. 4833 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4834 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4835 OpInfo.ConstraintVT); 4836 4837 unsigned NumRegs = 1; 4838 if (OpInfo.ConstraintVT != MVT::Other) { 4839 // If this is a FP input in an integer register (or visa versa) insert a bit 4840 // cast of the input value. More generally, handle any case where the input 4841 // value disagrees with the register class we plan to stick this in. 4842 if (OpInfo.Type == InlineAsm::isInput && 4843 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4844 // Try to convert to the first EVT that the reg class contains. If the 4845 // types are identical size, use a bitcast to convert (e.g. two differing 4846 // vector types). 4847 EVT RegVT = *PhysReg.second->vt_begin(); 4848 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4849 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4850 RegVT, OpInfo.CallOperand); 4851 OpInfo.ConstraintVT = RegVT; 4852 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4853 // If the input is a FP value and we want it in FP registers, do a 4854 // bitcast to the corresponding integer type. This turns an f64 value 4855 // into i64, which can be passed with two i32 values on a 32-bit 4856 // machine. 4857 RegVT = EVT::getIntegerVT(Context, 4858 OpInfo.ConstraintVT.getSizeInBits()); 4859 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4860 RegVT, OpInfo.CallOperand); 4861 OpInfo.ConstraintVT = RegVT; 4862 } 4863 } 4864 4865 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 4866 } 4867 4868 EVT RegVT; 4869 EVT ValueVT = OpInfo.ConstraintVT; 4870 4871 // If this is a constraint for a specific physical register, like {r17}, 4872 // assign it now. 4873 if (unsigned AssignedReg = PhysReg.first) { 4874 const TargetRegisterClass *RC = PhysReg.second; 4875 if (OpInfo.ConstraintVT == MVT::Other) 4876 ValueVT = *RC->vt_begin(); 4877 4878 // Get the actual register value type. This is important, because the user 4879 // may have asked for (e.g.) the AX register in i32 type. We need to 4880 // remember that AX is actually i16 to get the right extension. 4881 RegVT = *RC->vt_begin(); 4882 4883 // This is a explicit reference to a physical register. 4884 Regs.push_back(AssignedReg); 4885 4886 // If this is an expanded reference, add the rest of the regs to Regs. 4887 if (NumRegs != 1) { 4888 TargetRegisterClass::iterator I = RC->begin(); 4889 for (; *I != AssignedReg; ++I) 4890 assert(I != RC->end() && "Didn't find reg!"); 4891 4892 // Already added the first reg. 4893 --NumRegs; ++I; 4894 for (; NumRegs; --NumRegs, ++I) { 4895 assert(I != RC->end() && "Ran out of registers to allocate!"); 4896 Regs.push_back(*I); 4897 } 4898 } 4899 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4900 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4901 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4902 return; 4903 } 4904 4905 // Otherwise, if this was a reference to an LLVM register class, create vregs 4906 // for this reference. 4907 if (const TargetRegisterClass *RC = PhysReg.second) { 4908 RegVT = *RC->vt_begin(); 4909 if (OpInfo.ConstraintVT == MVT::Other) 4910 ValueVT = RegVT; 4911 4912 // Create the appropriate number of virtual registers. 4913 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4914 for (; NumRegs; --NumRegs) 4915 Regs.push_back(RegInfo.createVirtualRegister(RC)); 4916 4917 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4918 return; 4919 } 4920 4921 // This is a reference to a register class that doesn't directly correspond 4922 // to an LLVM register class. Allocate NumRegs consecutive, available, 4923 // registers from the class. 4924 std::vector<unsigned> RegClassRegs 4925 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 4926 OpInfo.ConstraintVT); 4927 4928 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4929 unsigned NumAllocated = 0; 4930 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 4931 unsigned Reg = RegClassRegs[i]; 4932 // See if this register is available. 4933 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 4934 (isInReg && InputRegs.count(Reg))) { // Already used. 4935 // Make sure we find consecutive registers. 4936 NumAllocated = 0; 4937 continue; 4938 } 4939 4940 // Check to see if this register is allocatable (i.e. don't give out the 4941 // stack pointer). 4942 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 4943 if (!RC) { // Couldn't allocate this register. 4944 // Reset NumAllocated to make sure we return consecutive registers. 4945 NumAllocated = 0; 4946 continue; 4947 } 4948 4949 // Okay, this register is good, we can use it. 4950 ++NumAllocated; 4951 4952 // If we allocated enough consecutive registers, succeed. 4953 if (NumAllocated == NumRegs) { 4954 unsigned RegStart = (i-NumAllocated)+1; 4955 unsigned RegEnd = i+1; 4956 // Mark all of the allocated registers used. 4957 for (unsigned i = RegStart; i != RegEnd; ++i) 4958 Regs.push_back(RegClassRegs[i]); 4959 4960 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 4961 OpInfo.ConstraintVT); 4962 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4963 return; 4964 } 4965 } 4966 4967 // Otherwise, we couldn't allocate enough registers for this. 4968 } 4969 4970 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 4971 /// processed uses a memory 'm' constraint. 4972 static bool 4973 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 4974 const TargetLowering &TLI) { 4975 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 4976 InlineAsm::ConstraintInfo &CI = CInfos[i]; 4977 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 4978 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 4979 if (CType == TargetLowering::C_Memory) 4980 return true; 4981 } 4982 4983 // Indirect operand accesses access memory. 4984 if (CI.isIndirect) 4985 return true; 4986 } 4987 4988 return false; 4989 } 4990 4991 /// visitInlineAsm - Handle a call to an InlineAsm object. 4992 /// 4993 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 4994 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4995 4996 /// ConstraintOperands - Information about all of the constraints. 4997 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 4998 4999 std::set<unsigned> OutputRegs, InputRegs; 5000 5001 // Do a prepass over the constraints, canonicalizing them, and building up the 5002 // ConstraintOperands list. 5003 std::vector<InlineAsm::ConstraintInfo> 5004 ConstraintInfos = IA->ParseConstraints(); 5005 5006 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5007 5008 SDValue Chain, Flag; 5009 5010 // We won't need to flush pending loads if this asm doesn't touch 5011 // memory and is nonvolatile. 5012 if (hasMemory || IA->hasSideEffects()) 5013 Chain = getRoot(); 5014 else 5015 Chain = DAG.getRoot(); 5016 5017 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5018 unsigned ResNo = 0; // ResNo - The result number of the next output. 5019 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5020 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5021 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5022 5023 EVT OpVT = MVT::Other; 5024 5025 // Compute the value type for each operand. 5026 switch (OpInfo.Type) { 5027 case InlineAsm::isOutput: 5028 // Indirect outputs just consume an argument. 5029 if (OpInfo.isIndirect) { 5030 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5031 break; 5032 } 5033 5034 // The return value of the call is this value. As such, there is no 5035 // corresponding argument. 5036 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5037 "Bad inline asm!"); 5038 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5039 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5040 } else { 5041 assert(ResNo == 0 && "Asm only has one result!"); 5042 OpVT = TLI.getValueType(CS.getType()); 5043 } 5044 ++ResNo; 5045 break; 5046 case InlineAsm::isInput: 5047 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5048 break; 5049 case InlineAsm::isClobber: 5050 // Nothing to do. 5051 break; 5052 } 5053 5054 // If this is an input or an indirect output, process the call argument. 5055 // BasicBlocks are labels, currently appearing only in asm's. 5056 if (OpInfo.CallOperandVal) { 5057 // Strip bitcasts, if any. This mostly comes up for functions. 5058 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5059 5060 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5061 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5062 } else { 5063 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5064 } 5065 5066 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5067 } 5068 5069 OpInfo.ConstraintVT = OpVT; 5070 } 5071 5072 // Second pass over the constraints: compute which constraint option to use 5073 // and assign registers to constraints that want a specific physreg. 5074 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5075 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5076 5077 // If this is an output operand with a matching input operand, look up the 5078 // matching input. If their types mismatch, e.g. one is an integer, the 5079 // other is floating point, or their sizes are different, flag it as an 5080 // error. 5081 if (OpInfo.hasMatchingInput()) { 5082 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5083 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5084 if ((OpInfo.ConstraintVT.isInteger() != 5085 Input.ConstraintVT.isInteger()) || 5086 (OpInfo.ConstraintVT.getSizeInBits() != 5087 Input.ConstraintVT.getSizeInBits())) { 5088 llvm_report_error("Unsupported asm: input constraint" 5089 " with a matching output constraint of incompatible" 5090 " type!"); 5091 } 5092 Input.ConstraintVT = OpInfo.ConstraintVT; 5093 } 5094 } 5095 5096 // Compute the constraint code and ConstraintType to use. 5097 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5098 5099 // If this is a memory input, and if the operand is not indirect, do what we 5100 // need to to provide an address for the memory input. 5101 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5102 !OpInfo.isIndirect) { 5103 assert(OpInfo.Type == InlineAsm::isInput && 5104 "Can only indirectify direct input operands!"); 5105 5106 // Memory operands really want the address of the value. If we don't have 5107 // an indirect input, put it in the constpool if we can, otherwise spill 5108 // it to a stack slot. 5109 5110 // If the operand is a float, integer, or vector constant, spill to a 5111 // constant pool entry to get its address. 5112 Value *OpVal = OpInfo.CallOperandVal; 5113 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5114 isa<ConstantVector>(OpVal)) { 5115 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5116 TLI.getPointerTy()); 5117 } else { 5118 // Otherwise, create a stack slot and emit a store to it before the 5119 // asm. 5120 const Type *Ty = OpVal->getType(); 5121 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5122 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5123 MachineFunction &MF = DAG.getMachineFunction(); 5124 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5125 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5126 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5127 OpInfo.CallOperand, StackSlot, NULL, 0); 5128 OpInfo.CallOperand = StackSlot; 5129 } 5130 5131 // There is no longer a Value* corresponding to this operand. 5132 OpInfo.CallOperandVal = 0; 5133 // It is now an indirect operand. 5134 OpInfo.isIndirect = true; 5135 } 5136 5137 // If this constraint is for a specific register, allocate it before 5138 // anything else. 5139 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5140 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5141 } 5142 ConstraintInfos.clear(); 5143 5144 5145 // Second pass - Loop over all of the operands, assigning virtual or physregs 5146 // to register class operands. 5147 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5148 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5149 5150 // C_Register operands have already been allocated, Other/Memory don't need 5151 // to be. 5152 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5153 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5154 } 5155 5156 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5157 std::vector<SDValue> AsmNodeOperands; 5158 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5159 AsmNodeOperands.push_back( 5160 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 5161 5162 5163 // Loop over all of the inputs, copying the operand values into the 5164 // appropriate registers and processing the output regs. 5165 RegsForValue RetValRegs; 5166 5167 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5168 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5169 5170 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5171 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5172 5173 switch (OpInfo.Type) { 5174 case InlineAsm::isOutput: { 5175 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5176 OpInfo.ConstraintType != TargetLowering::C_Register) { 5177 // Memory output, or 'other' output (e.g. 'X' constraint). 5178 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5179 5180 // Add information to the INLINEASM node to know about this output. 5181 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5182 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5183 TLI.getPointerTy())); 5184 AsmNodeOperands.push_back(OpInfo.CallOperand); 5185 break; 5186 } 5187 5188 // Otherwise, this is a register or register class output. 5189 5190 // Copy the output from the appropriate register. Find a register that 5191 // we can use. 5192 if (OpInfo.AssignedRegs.Regs.empty()) { 5193 llvm_report_error("Couldn't allocate output reg for" 5194 " constraint '" + OpInfo.ConstraintCode + "'!"); 5195 } 5196 5197 // If this is an indirect operand, store through the pointer after the 5198 // asm. 5199 if (OpInfo.isIndirect) { 5200 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5201 OpInfo.CallOperandVal)); 5202 } else { 5203 // This is the result value of the call. 5204 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5205 "Bad inline asm!"); 5206 // Concatenate this output onto the outputs list. 5207 RetValRegs.append(OpInfo.AssignedRegs); 5208 } 5209 5210 // Add information to the INLINEASM node to know that this register is 5211 // set. 5212 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5213 6 /* EARLYCLOBBER REGDEF */ : 5214 2 /* REGDEF */ , 5215 false, 5216 0, 5217 DAG, AsmNodeOperands); 5218 break; 5219 } 5220 case InlineAsm::isInput: { 5221 SDValue InOperandVal = OpInfo.CallOperand; 5222 5223 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5224 // If this is required to match an output register we have already set, 5225 // just use its register. 5226 unsigned OperandNo = OpInfo.getMatchedOperand(); 5227 5228 // Scan until we find the definition we already emitted of this operand. 5229 // When we find it, create a RegsForValue operand. 5230 unsigned CurOp = 2; // The first operand. 5231 for (; OperandNo; --OperandNo) { 5232 // Advance to the next operand. 5233 unsigned OpFlag = 5234 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5235 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5236 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5237 (OpFlag & 7) == 4 /*MEM*/) && 5238 "Skipped past definitions?"); 5239 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5240 } 5241 5242 unsigned OpFlag = 5243 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5244 if ((OpFlag & 7) == 2 /*REGDEF*/ 5245 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5246 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5247 if (OpInfo.isIndirect) { 5248 llvm_report_error("Don't know how to handle tied indirect " 5249 "register inputs yet!"); 5250 } 5251 RegsForValue MatchedRegs; 5252 MatchedRegs.TLI = &TLI; 5253 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5254 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5255 MatchedRegs.RegVTs.push_back(RegVT); 5256 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5257 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5258 i != e; ++i) 5259 MatchedRegs.Regs. 5260 push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5261 5262 // Use the produced MatchedRegs object to 5263 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5264 Chain, &Flag); 5265 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5266 true, OpInfo.getMatchedOperand(), 5267 DAG, AsmNodeOperands); 5268 break; 5269 } else { 5270 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5271 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5272 "Unexpected number of operands"); 5273 // Add information to the INLINEASM node to know about this input. 5274 // See InlineAsm.h isUseOperandTiedToDef. 5275 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5276 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5277 TLI.getPointerTy())); 5278 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5279 break; 5280 } 5281 } 5282 5283 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5284 assert(!OpInfo.isIndirect && 5285 "Don't know how to handle indirect other inputs yet!"); 5286 5287 std::vector<SDValue> Ops; 5288 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5289 hasMemory, Ops, DAG); 5290 if (Ops.empty()) { 5291 llvm_report_error("Invalid operand for inline asm" 5292 " constraint '" + OpInfo.ConstraintCode + "'!"); 5293 } 5294 5295 // Add information to the INLINEASM node to know about this input. 5296 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5297 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5298 TLI.getPointerTy())); 5299 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5300 break; 5301 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5302 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5303 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5304 "Memory operands expect pointer values"); 5305 5306 // Add information to the INLINEASM node to know about this input. 5307 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5308 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5309 TLI.getPointerTy())); 5310 AsmNodeOperands.push_back(InOperandVal); 5311 break; 5312 } 5313 5314 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5315 OpInfo.ConstraintType == TargetLowering::C_Register) && 5316 "Unknown constraint type!"); 5317 assert(!OpInfo.isIndirect && 5318 "Don't know how to handle indirect register inputs yet!"); 5319 5320 // Copy the input into the appropriate registers. 5321 if (OpInfo.AssignedRegs.Regs.empty()) { 5322 llvm_report_error("Couldn't allocate input reg for" 5323 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5324 } 5325 5326 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5327 Chain, &Flag); 5328 5329 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5330 DAG, AsmNodeOperands); 5331 break; 5332 } 5333 case InlineAsm::isClobber: { 5334 // Add the clobbered value to the operand list, so that the register 5335 // allocator is aware that the physreg got clobbered. 5336 if (!OpInfo.AssignedRegs.Regs.empty()) 5337 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5338 false, 0, DAG,AsmNodeOperands); 5339 break; 5340 } 5341 } 5342 } 5343 5344 // Finish up input operands. 5345 AsmNodeOperands[0] = Chain; 5346 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5347 5348 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5349 DAG.getVTList(MVT::Other, MVT::Flag), 5350 &AsmNodeOperands[0], AsmNodeOperands.size()); 5351 Flag = Chain.getValue(1); 5352 5353 // If this asm returns a register value, copy the result from that register 5354 // and set it as the value of the call. 5355 if (!RetValRegs.Regs.empty()) { 5356 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5357 Chain, &Flag); 5358 5359 // FIXME: Why don't we do this for inline asms with MRVs? 5360 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5361 EVT ResultType = TLI.getValueType(CS.getType()); 5362 5363 // If any of the results of the inline asm is a vector, it may have the 5364 // wrong width/num elts. This can happen for register classes that can 5365 // contain multiple different value types. The preg or vreg allocated may 5366 // not have the same VT as was expected. Convert it to the right type 5367 // with bit_convert. 5368 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5369 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5370 ResultType, Val); 5371 5372 } else if (ResultType != Val.getValueType() && 5373 ResultType.isInteger() && Val.getValueType().isInteger()) { 5374 // If a result value was tied to an input value, the computed result may 5375 // have a wider width than the expected result. Extract the relevant 5376 // portion. 5377 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5378 } 5379 5380 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5381 } 5382 5383 setValue(CS.getInstruction(), Val); 5384 // Don't need to use this as a chain in this case. 5385 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5386 return; 5387 } 5388 5389 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5390 5391 // Process indirect outputs, first output all of the flagged copies out of 5392 // physregs. 5393 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5394 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5395 Value *Ptr = IndirectStoresToEmit[i].second; 5396 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5397 Chain, &Flag); 5398 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5399 5400 } 5401 5402 // Emit the non-flagged stores from the physregs. 5403 SmallVector<SDValue, 8> OutChains; 5404 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) 5405 OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), 5406 StoresToEmit[i].first, 5407 getValue(StoresToEmit[i].second), 5408 StoresToEmit[i].second, 0)); 5409 if (!OutChains.empty()) 5410 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5411 &OutChains[0], OutChains.size()); 5412 DAG.setRoot(Chain); 5413 } 5414 5415 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5416 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5417 MVT::Other, getRoot(), 5418 getValue(I.getOperand(1)), 5419 DAG.getSrcValue(I.getOperand(1)))); 5420 } 5421 5422 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5423 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5424 getRoot(), getValue(I.getOperand(0)), 5425 DAG.getSrcValue(I.getOperand(0))); 5426 setValue(&I, V); 5427 DAG.setRoot(V.getValue(1)); 5428 } 5429 5430 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5431 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5432 MVT::Other, getRoot(), 5433 getValue(I.getOperand(1)), 5434 DAG.getSrcValue(I.getOperand(1)))); 5435 } 5436 5437 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5438 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5439 MVT::Other, getRoot(), 5440 getValue(I.getOperand(1)), 5441 getValue(I.getOperand(2)), 5442 DAG.getSrcValue(I.getOperand(1)), 5443 DAG.getSrcValue(I.getOperand(2)))); 5444 } 5445 5446 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5447 /// implementation, which just calls LowerCall. 5448 /// FIXME: When all targets are 5449 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5450 std::pair<SDValue, SDValue> 5451 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5452 bool RetSExt, bool RetZExt, bool isVarArg, 5453 bool isInreg, unsigned NumFixedArgs, 5454 CallingConv::ID CallConv, bool isTailCall, 5455 bool isReturnValueUsed, 5456 SDValue Callee, 5457 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5458 5459 assert((!isTailCall || PerformTailCallOpt) && 5460 "isTailCall set when tail-call optimizations are disabled!"); 5461 5462 // Handle all of the outgoing arguments. 5463 SmallVector<ISD::OutputArg, 32> Outs; 5464 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5465 SmallVector<EVT, 4> ValueVTs; 5466 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5467 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5468 Value != NumValues; ++Value) { 5469 EVT VT = ValueVTs[Value]; 5470 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5471 SDValue Op = SDValue(Args[i].Node.getNode(), 5472 Args[i].Node.getResNo() + Value); 5473 ISD::ArgFlagsTy Flags; 5474 unsigned OriginalAlignment = 5475 getTargetData()->getABITypeAlignment(ArgTy); 5476 5477 if (Args[i].isZExt) 5478 Flags.setZExt(); 5479 if (Args[i].isSExt) 5480 Flags.setSExt(); 5481 if (Args[i].isInReg) 5482 Flags.setInReg(); 5483 if (Args[i].isSRet) 5484 Flags.setSRet(); 5485 if (Args[i].isByVal) { 5486 Flags.setByVal(); 5487 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5488 const Type *ElementTy = Ty->getElementType(); 5489 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5490 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5491 // For ByVal, alignment should come from FE. BE will guess if this 5492 // info is not there but there are cases it cannot get right. 5493 if (Args[i].Alignment) 5494 FrameAlign = Args[i].Alignment; 5495 Flags.setByValAlign(FrameAlign); 5496 Flags.setByValSize(FrameSize); 5497 } 5498 if (Args[i].isNest) 5499 Flags.setNest(); 5500 Flags.setOrigAlign(OriginalAlignment); 5501 5502 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5503 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5504 SmallVector<SDValue, 4> Parts(NumParts); 5505 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5506 5507 if (Args[i].isSExt) 5508 ExtendKind = ISD::SIGN_EXTEND; 5509 else if (Args[i].isZExt) 5510 ExtendKind = ISD::ZERO_EXTEND; 5511 5512 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); 5513 5514 for (unsigned j = 0; j != NumParts; ++j) { 5515 // if it isn't first piece, alignment must be 1 5516 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5517 if (NumParts > 1 && j == 0) 5518 MyFlags.Flags.setSplit(); 5519 else if (j != 0) 5520 MyFlags.Flags.setOrigAlign(1); 5521 5522 Outs.push_back(MyFlags); 5523 } 5524 } 5525 } 5526 5527 // Handle the incoming return values from the call. 5528 SmallVector<ISD::InputArg, 32> Ins; 5529 SmallVector<EVT, 4> RetTys; 5530 ComputeValueVTs(*this, RetTy, RetTys); 5531 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5532 EVT VT = RetTys[I]; 5533 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5534 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5535 for (unsigned i = 0; i != NumRegs; ++i) { 5536 ISD::InputArg MyFlags; 5537 MyFlags.VT = RegisterVT; 5538 MyFlags.Used = isReturnValueUsed; 5539 if (RetSExt) 5540 MyFlags.Flags.setSExt(); 5541 if (RetZExt) 5542 MyFlags.Flags.setZExt(); 5543 if (isInreg) 5544 MyFlags.Flags.setInReg(); 5545 Ins.push_back(MyFlags); 5546 } 5547 } 5548 5549 // Check if target-dependent constraints permit a tail call here. 5550 // Target-independent constraints should be checked by the caller. 5551 if (isTailCall && 5552 !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) 5553 isTailCall = false; 5554 5555 SmallVector<SDValue, 4> InVals; 5556 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5557 Outs, Ins, dl, DAG, InVals); 5558 5559 // Verify that the target's LowerCall behaved as expected. 5560 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5561 "LowerCall didn't return a valid chain!"); 5562 assert((!isTailCall || InVals.empty()) && 5563 "LowerCall emitted a return value for a tail call!"); 5564 assert((isTailCall || InVals.size() == Ins.size()) && 5565 "LowerCall didn't emit the correct number of values!"); 5566 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5567 assert(InVals[i].getNode() && 5568 "LowerCall emitted a null value!"); 5569 assert(Ins[i].VT == InVals[i].getValueType() && 5570 "LowerCall emitted a value with the wrong type!"); 5571 }); 5572 5573 // For a tail call, the return value is merely live-out and there aren't 5574 // any nodes in the DAG representing it. Return a special value to 5575 // indicate that a tail call has been emitted and no more Instructions 5576 // should be processed in the current block. 5577 if (isTailCall) { 5578 DAG.setRoot(Chain); 5579 return std::make_pair(SDValue(), SDValue()); 5580 } 5581 5582 // Collect the legal value parts into potentially illegal values 5583 // that correspond to the original function's return values. 5584 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5585 if (RetSExt) 5586 AssertOp = ISD::AssertSext; 5587 else if (RetZExt) 5588 AssertOp = ISD::AssertZext; 5589 SmallVector<SDValue, 4> ReturnValues; 5590 unsigned CurReg = 0; 5591 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5592 EVT VT = RetTys[I]; 5593 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5594 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5595 5596 SDValue ReturnValue = 5597 getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, 5598 AssertOp); 5599 ReturnValues.push_back(ReturnValue); 5600 CurReg += NumRegs; 5601 } 5602 5603 // For a function returning void, there is no return value. We can't create 5604 // such a node, so we just return a null return value in that case. In 5605 // that case, nothing will actualy look at the value. 5606 if (ReturnValues.empty()) 5607 return std::make_pair(SDValue(), Chain); 5608 5609 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5610 DAG.getVTList(&RetTys[0], RetTys.size()), 5611 &ReturnValues[0], ReturnValues.size()); 5612 5613 return std::make_pair(Res, Chain); 5614 } 5615 5616 void TargetLowering::LowerOperationWrapper(SDNode *N, 5617 SmallVectorImpl<SDValue> &Results, 5618 SelectionDAG &DAG) { 5619 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5620 if (Res.getNode()) 5621 Results.push_back(Res); 5622 } 5623 5624 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5625 llvm_unreachable("LowerOperation not implemented for this target!"); 5626 return SDValue(); 5627 } 5628 5629 5630 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 5631 SDValue Op = getValue(V); 5632 assert((Op.getOpcode() != ISD::CopyFromReg || 5633 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5634 "Copy from a reg to the same reg!"); 5635 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5636 5637 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5638 SDValue Chain = DAG.getEntryNode(); 5639 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5640 PendingExports.push_back(Chain); 5641 } 5642 5643 #include "llvm/CodeGen/SelectionDAGISel.h" 5644 5645 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 5646 // If this is the entry block, emit arguments. 5647 Function &F = *LLVMBB->getParent(); 5648 SelectionDAG &DAG = SDB->DAG; 5649 SDValue OldRoot = DAG.getRoot(); 5650 DebugLoc dl = SDB->getCurDebugLoc(); 5651 const TargetData *TD = TLI.getTargetData(); 5652 SmallVector<ISD::InputArg, 16> Ins; 5653 5654 // Check whether the function can return without sret-demotion. 5655 SmallVector<EVT, 4> OutVTs; 5656 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5657 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5658 OutVTs, OutsFlags, TLI); 5659 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5660 5661 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5662 OutVTs, OutsFlags, DAG); 5663 if (!FLI.CanLowerReturn) { 5664 // Put in an sret pointer parameter before all the other parameters. 5665 SmallVector<EVT, 1> ValueVTs; 5666 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5667 5668 // NOTE: Assuming that a pointer will never break down to more than one VT 5669 // or one register. 5670 ISD::ArgFlagsTy Flags; 5671 Flags.setSRet(); 5672 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5673 ISD::InputArg RetArg(Flags, RegisterVT, true); 5674 Ins.push_back(RetArg); 5675 } 5676 5677 // Set up the incoming argument description vector. 5678 unsigned Idx = 1; 5679 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 5680 I != E; ++I, ++Idx) { 5681 SmallVector<EVT, 4> ValueVTs; 5682 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5683 bool isArgValueUsed = !I->use_empty(); 5684 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5685 Value != NumValues; ++Value) { 5686 EVT VT = ValueVTs[Value]; 5687 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5688 ISD::ArgFlagsTy Flags; 5689 unsigned OriginalAlignment = 5690 TD->getABITypeAlignment(ArgTy); 5691 5692 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5693 Flags.setZExt(); 5694 if (F.paramHasAttr(Idx, Attribute::SExt)) 5695 Flags.setSExt(); 5696 if (F.paramHasAttr(Idx, Attribute::InReg)) 5697 Flags.setInReg(); 5698 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5699 Flags.setSRet(); 5700 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5701 Flags.setByVal(); 5702 const PointerType *Ty = cast<PointerType>(I->getType()); 5703 const Type *ElementTy = Ty->getElementType(); 5704 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5705 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5706 // For ByVal, alignment should be passed from FE. BE will guess if 5707 // this info is not there but there are cases it cannot get right. 5708 if (F.getParamAlignment(Idx)) 5709 FrameAlign = F.getParamAlignment(Idx); 5710 Flags.setByValAlign(FrameAlign); 5711 Flags.setByValSize(FrameSize); 5712 } 5713 if (F.paramHasAttr(Idx, Attribute::Nest)) 5714 Flags.setNest(); 5715 Flags.setOrigAlign(OriginalAlignment); 5716 5717 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5718 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5719 for (unsigned i = 0; i != NumRegs; ++i) { 5720 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5721 if (NumRegs > 1 && i == 0) 5722 MyFlags.Flags.setSplit(); 5723 // if it isn't first piece, alignment must be 1 5724 else if (i > 0) 5725 MyFlags.Flags.setOrigAlign(1); 5726 Ins.push_back(MyFlags); 5727 } 5728 } 5729 } 5730 5731 // Call the target to set up the argument values. 5732 SmallVector<SDValue, 8> InVals; 5733 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5734 F.isVarArg(), Ins, 5735 dl, DAG, InVals); 5736 5737 // Verify that the target's LowerFormalArguments behaved as expected. 5738 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5739 "LowerFormalArguments didn't return a valid chain!"); 5740 assert(InVals.size() == Ins.size() && 5741 "LowerFormalArguments didn't emit the correct number of values!"); 5742 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5743 assert(InVals[i].getNode() && 5744 "LowerFormalArguments emitted a null value!"); 5745 assert(Ins[i].VT == InVals[i].getValueType() && 5746 "LowerFormalArguments emitted a value with the wrong type!"); 5747 }); 5748 5749 // Update the DAG with the new chain value resulting from argument lowering. 5750 DAG.setRoot(NewRoot); 5751 5752 // Set up the argument values. 5753 unsigned i = 0; 5754 Idx = 1; 5755 if (!FLI.CanLowerReturn) { 5756 // Create a virtual register for the sret pointer, and put in a copy 5757 // from the sret argument into it. 5758 SmallVector<EVT, 1> ValueVTs; 5759 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5760 EVT VT = ValueVTs[0]; 5761 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5762 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5763 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, 5764 VT, AssertOp); 5765 5766 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5767 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5768 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5769 FLI.DemoteRegister = SRetReg; 5770 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); 5771 DAG.setRoot(NewRoot); 5772 5773 // i indexes lowered arguments. Bump it past the hidden sret argument. 5774 // Idx indexes LLVM arguments. Don't touch it. 5775 ++i; 5776 } 5777 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5778 ++I, ++Idx) { 5779 SmallVector<SDValue, 4> ArgValues; 5780 SmallVector<EVT, 4> ValueVTs; 5781 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5782 unsigned NumValues = ValueVTs.size(); 5783 for (unsigned Value = 0; Value != NumValues; ++Value) { 5784 EVT VT = ValueVTs[Value]; 5785 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5786 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5787 5788 if (!I->use_empty()) { 5789 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5790 if (F.paramHasAttr(Idx, Attribute::SExt)) 5791 AssertOp = ISD::AssertSext; 5792 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5793 AssertOp = ISD::AssertZext; 5794 5795 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 5796 PartVT, VT, AssertOp)); 5797 } 5798 i += NumParts; 5799 } 5800 if (!I->use_empty()) { 5801 SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, 5802 SDB->getCurDebugLoc())); 5803 // If this argument is live outside of the entry block, insert a copy from 5804 // whereever we got it to the vreg that other BB's will reference it as. 5805 SDB->CopyToExportRegsIfNeeded(I); 5806 } 5807 } 5808 assert(i == InVals.size() && "Argument register count mismatch!"); 5809 5810 // Finally, if the target has anything special to do, allow it to do so. 5811 // FIXME: this should insert code into the DAG! 5812 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 5813 } 5814 5815 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5816 /// ensure constants are generated when needed. Remember the virtual registers 5817 /// that need to be added to the Machine PHI nodes as input. We cannot just 5818 /// directly add them, because expansion might result in multiple MBB's for one 5819 /// BB. As such, the start of the BB might correspond to a different MBB than 5820 /// the end. 5821 /// 5822 void 5823 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 5824 TerminatorInst *TI = LLVMBB->getTerminator(); 5825 5826 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5827 5828 // Check successor nodes' PHI nodes that expect a constant to be available 5829 // from this block. 5830 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5831 BasicBlock *SuccBB = TI->getSuccessor(succ); 5832 if (!isa<PHINode>(SuccBB->begin())) continue; 5833 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5834 5835 // If this terminator has multiple identical successors (common for 5836 // switches), only handle each succ once. 5837 if (!SuccsHandled.insert(SuccMBB)) continue; 5838 5839 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5840 PHINode *PN; 5841 5842 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5843 // nodes and Machine PHI nodes, but the incoming operands have not been 5844 // emitted yet. 5845 for (BasicBlock::iterator I = SuccBB->begin(); 5846 (PN = dyn_cast<PHINode>(I)); ++I) { 5847 // Ignore dead phi's. 5848 if (PN->use_empty()) continue; 5849 5850 unsigned Reg; 5851 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5852 5853 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 5854 unsigned &RegOut = SDB->ConstantsOut[C]; 5855 if (RegOut == 0) { 5856 RegOut = FuncInfo->CreateRegForValue(C); 5857 SDB->CopyValueToVirtualRegister(C, RegOut); 5858 } 5859 Reg = RegOut; 5860 } else { 5861 Reg = FuncInfo->ValueMap[PHIOp]; 5862 if (Reg == 0) { 5863 assert(isa<AllocaInst>(PHIOp) && 5864 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 5865 "Didn't codegen value into a register!??"); 5866 Reg = FuncInfo->CreateRegForValue(PHIOp); 5867 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 5868 } 5869 } 5870 5871 // Remember that this register needs to added to the machine PHI node as 5872 // the input for this MBB. 5873 SmallVector<EVT, 4> ValueVTs; 5874 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 5875 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 5876 EVT VT = ValueVTs[vti]; 5877 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5878 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 5879 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 5880 Reg += NumRegisters; 5881 } 5882 } 5883 } 5884 SDB->ConstantsOut.clear(); 5885 } 5886 5887 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 5888 /// supports legal types, and it emits MachineInstrs directly instead of 5889 /// creating SelectionDAG nodes. 5890 /// 5891 bool 5892 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 5893 FastISel *F) { 5894 TerminatorInst *TI = LLVMBB->getTerminator(); 5895 5896 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5897 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 5898 5899 // Check successor nodes' PHI nodes that expect a constant to be available 5900 // from this block. 5901 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5902 BasicBlock *SuccBB = TI->getSuccessor(succ); 5903 if (!isa<PHINode>(SuccBB->begin())) continue; 5904 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5905 5906 // If this terminator has multiple identical successors (common for 5907 // switches), only handle each succ once. 5908 if (!SuccsHandled.insert(SuccMBB)) continue; 5909 5910 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5911 PHINode *PN; 5912 5913 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5914 // nodes and Machine PHI nodes, but the incoming operands have not been 5915 // emitted yet. 5916 for (BasicBlock::iterator I = SuccBB->begin(); 5917 (PN = dyn_cast<PHINode>(I)); ++I) { 5918 // Ignore dead phi's. 5919 if (PN->use_empty()) continue; 5920 5921 // Only handle legal types. Two interesting things to note here. First, 5922 // by bailing out early, we may leave behind some dead instructions, 5923 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 5924 // own moves. Second, this check is necessary becuase FastISel doesn't 5925 // use CreateRegForValue to create registers, so it always creates 5926 // exactly one register for each non-void instruction. 5927 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 5928 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 5929 // Promote MVT::i1. 5930 if (VT == MVT::i1) 5931 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 5932 else { 5933 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5934 return false; 5935 } 5936 } 5937 5938 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5939 5940 unsigned Reg = F->getRegForValue(PHIOp); 5941 if (Reg == 0) { 5942 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5943 return false; 5944 } 5945 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 5946 } 5947 } 5948 5949 return true; 5950 } 5951